1. Annex I: Supplementary Material of Chapter I.

Denletion Method			t	OH/TCA					HSA Kit				None	
Serum Most Abundant Proteins & Immunoglobulins	S1	S2	S3	Average	S3 (HSA)	S1	S2	S3	Average	S3 (HSA)	S1	S 2	S3	Average
Acid-1-Glycoprotein	10	9	5	7	2	13	~	9	6	2	15	10	6	11
HSA	63	55	53	57	253	37	46	54	46	207	185	167	195	182
Apolipoprotein A1	18	11	11	13	39	20	25	24	23	18	31	28	29	29
Apolipoprotein A2	Ч	-	Ч	1	9	m	7	ß	5	1	m	S	4	4
Apolipoprotein A3														
Apolipoprotein B	44	41	34	40						2	17	12	00	12
Ceruloplasmin	35	40	28	34	00		23	31	27	c	24	20	18	21
Complement C1q	5	9	6	7						9	m	2	с	œ
Complement C3	67	60	76	68	14	24	24	41	30	99	56	42	54	51
Complement C4	43	34	36	38		S	e	7	IJ	37	26	15	21	21
Fibrinogen			Ч	1			4	4	4					
Haptoglobin	27	28	24	26	S	43	53	37	44	ъ	27	20	19	22
IgAs	15	17	26	19	£	22	28	24	25	13	12	~	10	10
IgDs														
IgGs	93	76	78	82	12	94	82	83	86	40	36	35	24	32
IgMs	34	25	29	29	4	31	14	22	22	20	24	m	20	16
Plasminogen	24	16	24	21	2					25	11	m	13	6
Prealbumin	9	9	∞	7	5	00	10	10	6	2	Η	-	1	1
Transferrin	40	55	44	46	34	72	103	81	85	12	41	48	38	42
α-1-Antitrypsin	25	18	12	18	13	28	15	20	21	2	20	6	11	13
α-2-Macroglobulin	59	70	71	67	10	86	55	73	71	21	53	51	51	52
N of Proteins Identified	113	109	113	112	52	76	77	74	76	81	75	63	70	69
N of Peptides Identified	1136	1089	1087	1104	632	914	921	907	914	894	962	765	897	875
% HSA Peptides	5,6	5,1	4,9	5,2	40,0	4,0	5,0	6,0	5,0	23,2	19,2	21,8	21,7	20,9
% IgG Peptides	8,2	7,0	7,2	7,4	1,9	10,3	8,9	9,2	9,4	4,5	3,7	4,6	2,7	3,7
% IgA Peptides	1,3	1,6	2,4	1,8	0,5	2,4	3,0	2,6	2,7	1,5	1,2	6'0	1, 1	1,1
% IgM Peptides	3,0	2,3	2,7	2,7	0,6	3,4	1,5	2,4	2,4	2,2	2,5	0,4	2,2	1,7

Annex I. Supplementary data I. HSA depletion results after comparing two strategies: TAC/EtOH chemical depletion and the commercial Thermo HSA depletion kit.

After performing nanoLC-MALDI-TOF/TOF analysis of the 3 sera (S1, S2 and S3), under the 3 depletion conditions (EtOH/TCA, HSA kit and none), protein identifications were attained using the ProteinPilot software under the same searching and processing modes. The precedent table shows some of this information, particularly the most abundant serum/plasma proteins as well as the most frequent immunoglobulins. Besides, it indicates likewise the total number of proteins and peptides identified and from them, the % of the peptides which appertained to HSA and immunoglobulins. As it can be observed, the number of proteins identified is higher when using the EtOH/TCA depletion method (average: 112) than when using the HSA kit (76) or none of them (69). The same trend is followed with the number of peptides (1104 vs 914 vs 875, respectively). Hence, using the EtOH/TCA method, we could achieve a much better identification than when using either the other commercial method or none. Moreover, both depletion methods (the chemical and the commercial) reveal a decreased presence of HSA peptides in comparison with the total number of peptides (around 5%) when comparing them with the non-depleted samples (20.9%). These outcomes are illustrated in the following 3 charts.

There is also a noticeable peptide number increase, considering the different immunoglobulins and the rest of the most abundant proteins, when any of the depletion methods are conducted. This entails a wider sequence coverage of the proteins identified, improving as well the LC-MS/MS analysis. Furthermore, the phases where the HSA was supposed to remain on the two depletions studied were also analyzed for one of the serum samples (S3). In the corresponding protocols, for the EtOH/TCA method, this phase is the supernatant; while in the HSA kit, it is the elution phase, both named in the table as S3 (HSA). A higher percentage and number of HSA peptides is noticed when performing the EtOH/TCA method (253 peptides, 40%) in comparison with the other depletion method (207 peptides, 23.2%) or no depletion. In contrast, the total number of identified proteins and peptides is larger when the commercial method is carried out (81 proteins and 894 peptides vs 52 proteins and 632 peptides). From this data, it is presumed that with the commercial depletion, a greater number of proteins was also depleted, while the proportion of HSA peptides was almost 2 times lower than with the EtOH/TCA method. All in all, EtOH/TCA depletion method seems to be effective considering that it lowers down the number and proportion of HSA peptides while it also enriches the protein identification of the samples with a greater number of proteins and peptides. A similar propensity is followed when considering the commercial kit, although it is conformed in a smaller degree. In addition, the supposed remaining HSA phase contains more HSA (in terms of peptides and proportion of peptides) and a lower number of other different proteins and peptides when using the EtOH/TCA method than the commercial kit.

Annex I. Supplementary data II. Proteins commonly and exclusively identified by nanoLC-MALDI-TOF/TOF and nanoLC-ESI-tTOF.

This data is included in an excel in the attached CD.

Annex I. Supplementary data III. Intra- and inter-plate protein variability calculated with the triplicate measurements of the RA pool.

SAA1 (RA pool)	I	[SAA1] (ng/mL)	[SAA1] plasma (µg/mL)	Average Intraplate	CV Intraplate	CV Interplate
	0,8386	229,3434817	4,586869634	4,82	9,06	17,65
P1	0,9511	265,9772906	5,319545813			
	0,8319	227,1380914	4,542761829			
	0,8548	169,1244231	3,382488461	3,34	11,03	
P2	0,9229	184,382656	3,687653119			
	0,7578	147,6916248	2,953832496			
	0,8843	190,6947144	3,813894288	4,13	7,84	
P3	0,9473	205,9976234	4,119952467			
	1,0155	223,0740555	4,46148111			
	0,9487	198,2143388	3,964286775	3,46	14,17	
P4	0,8429	172,0901336	3,441802673			
	0,7482	149,1919068	2,983838136			
	0,8991	203,717042	4,07434084	4,66	10,86	
P5	1,0737	248,7182108	4,974364215			
	1,0642	246,2232027	4,924464055			

AACT (RA pool)	I	[AACT] (pg/mL)	[AACT] plasma (µg/mL)	Average Intraplate	CV Intraplate	CV Interplate
	0,8886	1368,921627	1368,921627	1380,34	5,29	17,41
P1	0,9539	1458,36996	1458,36996			
	0,8487	1313,722463	1313,722463			
	0,9357	2196,250267	2196,250267	2064,43	8,09	
P2	0,8071	1876,621035	1876,621035			
	0,9053	2120,432643	2120,432643			
	0,8837	1742,486026	1742,486026	1605,11	7,53	
P3	0,776	1514,969746	1514,969746			
	0,7964	1557,881751	1557,881751			
	0,8324	1951,227758	1951,227758	1821,58	7,73	
P4	0,785	1841,628175	1841,628175			
	0,7122	1671,878705	1671,878705			
	0,7871	1391,903622	1391,903622	1394,00	0,28	
P5	0,7869	1391,562893	1391,562893			
	0,791	1398,544584	1398,544584			

HPT (RA pool)	I	[HPT] (µg/mL)	[HPT] plasma (µg/mL)	Average Intraplate	CV Intraplate	CV interplate
	1,2388	6441,219701	1610,304925	1295,32	34,39	20,44
P1	0,5236	864,9531348	216,2382837			
	1,1578	3921,346756	980,336689			
	0,9585	2392,976219	598,2440547	523,82	13,84	
P2	0,8119	1813,759446	453,4398615			
	0,8841	2079,153804	519,788451			
	1,035	2554,200939	638,5502347	609,21	6,55	
P3	1,0271	2501,171644	625,292911			
	0,985	2255,192293	563,7980733			
	1,0251	2881,509306	720,3773266	335,86	0,38	
P4	0,6996	1347,099631	336,7749078			
	0,6971	1339,800737	334,9501842			
	1,0052	2120,011428	530,002857	498,43	6,75	
P5	0,9372	1852,172078	463,0430194			
	0,9786	2008,957099	502,2392747			

A1AG (RA pool)	I.	[A1AG] (µg/mL)	[A1AG] plasma (µg/mL)	Average Intraplate	CV Intraplate	CV interplate
	1,0764	780,9959768	780,9959768	1203,58	49,65	31,39
P1	1,8004	1626,165028	1626,165028			
	-	-	-			
	1,1683	801,8279348	801,8279348	844,13	7,09	
P2	1,2551	886,4236038	886,4236038			
	3,2442	4363,631103	4363,631103			
	1,8056	1373,513879	1373,513879	1392,99	19,59	
P3	2,0678	1675,107348	1675,107348			
	1,5679	1130,352851	1130,352851			
	0,995	711,0890653	711,0890653	834,91	13,73	
P4	1,1572	856,2734995	856,2734995			
	1,2448	937,3576705	937,3576705			
	1,4128	1159,070883	1159,070883	2104,78	63,54	
P5	2,6412	3050,482625	3050,482625			
	2,833	-	-			

Annex I. Supplementary data IV. Statistics for each protein measured by ELISA with or without median normalization of the data and/or outlier removal.

SAA1 Group	М	edian Normal	ization	Median No	rmalization v	without outliers		No Normaliza	ation
Comparison	Kruskal-W	allis: < 0.0001	Mann Whitney	Kruskal-Wa	llis: < 0.0001	Mann Whitney	Kruskal-Wa	llis: < 0.0001	Mann Whitney
HD vs RA	-151.2	****	<0.0001	-154.7	****	<0.0001	-151.2	***	<0.0001
HD vs SLE	-90.81	****	<0.0001	-94.41	****	<0.0001	-90.31	***	<0.0001
HD vs PsA	-88.91	****	<0.0001	-87.14	****	<0.0001	-87.63	***	<0.0001
RA vs SLE	60.38	***	<0.0001	60.26	***	<0.0001	60.92	***	<0.0001
RA vs PsA	62.29	***	<0.0001	67.53	***	<0.0001	63.61	***	<0.0001
SLE vs PsA	1.905	ns	0.9606	7.269	ns	0.7417	2.684	ns	0.8921

SAA1 Group	Med	lian Norma	lization	Median No	ormalization v	vithout outliers	I	No Normaliza	tion
Comparison	Kruskal-Wall	is: < 0.0001	Mann Whitney	Kruskal-Wa	allis: < 0.0001	Mann Whitney	Kruskal-Wa	llis: < 0.0001	Mann Whitney
HD vs HA-RA	-181.5	****	<0.0001	-184,9	****	<0.0001	-181.3	****	<0.0001
HD vs LA-RA	-117.5	****	<0.0001	-121	****	<0.0001	-117.7	****	<0.0001
HD vs HA-SLE	-105.1	****	<0.0001	-108,7	****	<0.0001	-108.5	****	<0.0001
HD vs LA-SLE	-76.86	*	<0.0001	-80,46	**	<0.0001	-72.56	*	<0.0001
HD vs HA-PsA	-112.3	****	<0.0001	-111,1	****	<0.0001	-115.5	****	<0.0001
HD vs LA-PsA	-66.13	ns	0.0006	-63,82	ns	0.0006	-60.48	ns	0.0015
HA-RA vs LA-RA	64.03	**	<0.0001	63,86	**	<0.0001	63.63	**	0.0001
HA-SLE vs LA-SLE	28.26	ns	0.2538	28,26	ns	0.2538	35.97	ns	0.1454
HA-PsA vs LA-PsA	46.15	ns	0.0549	47,26	ns	0.046	55.01	ns	0.0209
HA-RA vs HA-SLE	76.37	*	0.0002	76,16	*	0.0002	72.81	*	0.0004
HA-RA vs HA-PsA	69.21	*	0.0006	73,8	*	0.0002	65.86	ns	0.0011

AACT Group	M	edian Norma	ization	Ν	lo Normaliz	ation
Comparison	Kruskal-Wa	allis: < 0.0001	Mann Whitney	Kruskal-Wa	llis:<0,0001	Mann Whitney
HD vs RA	-132.6	****	<0.0001	-122.9	***	<0.0001
HD vs SLE	-85.79	****	<0.0001	-78.11	***	<0.0001
HD vs PsA	-83.58	****	<0.0001	-75.80	***	<0.0001
RA vs SLE	46.84	*	0.0022	44.83	*	0.0042
RA vs PsA	49.05	*	0.0007	47.14	*	0.0015
SLE vs PsA	2.219	ns	0.7979	2.306	ns	0.8471

AACT Group	Me	dian Normal	lization	1	No Normaliza	tion
Comparison	Kruskal-Wal	lis: < 0.0001	Mann Whitney	Kruskal-Wa	llis: < 0.0001	Mann Whitney
HD vs HA-RA	-173.5	****	<0.0001	-162.4	****	<0.0001
HD vs LA-RA	-85.55	***	<0.0001	-77.47	***	<0.0001
HD vs HA-SLE	-122.5	****	<0.0001	-107.6	****	<0.0001
HD vs LA-SLE	-49.11	ns	0.0147	-48.67	ns	0.0207
HD vs HA-PsA	-115.1	****	<0.0001	-99.53	***	<0.0001
HD vs LA-PsA	-52.03	ns	0.0021	-52.08	ns	0.003
HA-RA vs LA-RA	87.96	****	<0.0001	84.94	***	<0.0001
HA-SLE vs LA-SLE	73.38	ns	0.0042	58.89	ns	0.0196
HA-PsA vs LA-PsA	63.09	ns	0.0051	47.45	ns	0.0418
HA-RA vs HA-SLE	51.02	ns	0.012	54.86	ns	0.0109
HA-RA vs HA-PsA	58.39	ns	0.0015	62.89	ns	0.002

HPT Group	M	edian Normal	ization	No	Normaliza	ation
Comparison	Kruskal-Wa	allis: < 0,0001	Mann Whitney	Kruskal-Wallis:	< 0,0001	Mann Whitney
HD vs RA	-87.91	****	<0.0001	-81,28	****	<0.0001
HD vs SLE	-38.23	ns	0.0241	-35,07	ns	0.0337
HD vs PsA	-71.83	***	0.0002	-68,28	**	0.0006
RA vs SLE	49.68	*	0.0019	46,21	*	0.0034
RA vs PsA	16.08	ns	0.3764	13	ns	0.5092
SLE vs PsA	-33.61	ns	0.0635	-33,21	ns	0.0696

HPT Group	Me	dian Norma	lization	N	o Normaliz	ation
Comparison	Kruskal-Wa	lis: < 0,0001	Mann Whitney	Kruskal-Wall	is: < 0,0001	Mann Whitney
HD vs HA-RA	-125.4	***	< 0.0001	-114.7	****	<0.0001
HD vs LA-RA	-44.09	ns	0.0171	-42.27	ns	0.0327
HD vs HA-SLE	-40.45	ns	0.0631	-72	*	0.0007
HD vs LA-SLE	-36.01	ns	0.0758	1.86	ns	0.9388
HD vs HA-PsA	-120.5	***	< 0.0001	-142	****	<0.0001
HD vs LA-PsA	-23.2	ns	0.5039	5.397	ns	0.5087
HA-RA vs LA-RA	81.31	***	< 0.0001	72.39	**	0.0001
HA-SLE vs LA-SLE	4.438	ns	0.8663	73.86	ns	0.0025
HA-PsA vs LA-PsA	97.28	**	0.0013	147.4	****	<0.0001
HA-RA vs HA-SLE	84.95	**	0.0002	42.65	ns	0.0553
HA-RA vs HA-PsA	4.928	ns	0.8106	-27.3	ns	0.1653

A1AG Group	M	edian Normal	ization	Ν	lo Normaliz	ation
Comparison	Kruskal-Wa	allis: < 0.0001	Mann Whitney	Kruskal-Wa	llis: 0,0003	Mann Whitney
HD vs RA	-75.16	****	<0.0001	-57.73	***	0.0001
HD vs SLE	-85.63	****	<0.0001	-69.05	***	0.0003
HD vs PsA	-55.64	*	0.0009	-41.44	ns	0.0185
RA vs SLE	-10.47	ns	0.499	-11.32	ns	0.3942
RA vs PsA	19.53	ns	0.1921	16.29	ns	0.2806
SLE vs PsA	30	ns	0.092	27.61	ns	0.1567

A1AG Group	Me	Median Normalization			No Normalization			
Comparison	Kruskal-Wal	lis: < 0.0001	Mann Whitney	Kruskal-Wa	allis: 0,0005	Mann Whitney		
HD vs HA-RA	-97.75	****	<0.0001	-77.49	***	< 0.0001		
HD vs LA-RA	-50.17	ns	0.0063	-35.85	ns	0.0526		
HD vs HA-SLE	-94.34	***	0.0001	-60.21	ns	0.0145		
HD vs LA-SLE	-77.82	**	0.0002	-76.98	*	0.0008		
HD vs HA-PsA	-74.44	*	0.001	-40.94	ns	0.0468		
HD vs LA-PsA	-37.31	ns	0.0377	-41.93	ns	0.0711		
HA-RA vs LA-RA	47.58	ns	0.0096	41.64	ns	0.028		
HA-SLE vs LA-SLE	16.52	ns	0.4363	-16.77	ns	0.5808		
HA-PsA vs LA-PsA	37.13	ns	0.1683	-0.9885	ns	0.9472		
HA-RA vs HA-SLE	3.411	ns	0.9253	17.29	ns	0.5717		
HA-RA vs HA-PsA	23.31	ns	0.3203	36.55	ns	0.0641		

Annex I. Supplementary data V. SAA1, AACT, HPT and A1AG ELISA data normalization including the n factor determination and the data information of each of the groups analyzed.

SAA1 Normalization	Median	n factor (median)
All Plates	872,53	
P1	890,37	0,98
P2	835,07	1,04
P3	1092,01	0,80
P4	868,60	1,00
P5	750,15	1,16

SAA1	HD	AR	SLE	PsA
Number of values	79	167	79	77
[SAA1] in plasma sa	mples after	Median Norm	nalization & Out	lier Removal
Minimum	84,15	139	95,8	123,4
25% Percentile	264,1	769,7	503,2	390,6
Median	357,9	1445	774,3	883,8
75% Percentile	570,9	3343	1441	1369
Maximum	3528	25671	11718	5903
Mean	505,9	3223	1476	1154
Std. Deviation	461,6	4406	2083	1176
Std. Error of Mean	51,93	341	234,4	134,1
Lower 95% Cl	402,5	2550	1010	886,5
Upper 95% Cl	609,3	3896	1943	1421

SAA1	HD	HA-RA	LA-RA	HA-SLE	LA-SLE	HA-PsA	LA-PsA
Number of values	79	88	79	39	40	38	39
	[SAA1] in p	lasma sampl	es after Median	Normalizatio	n & Outlier R	emoval	
Minimum	84,15	247,8	139	249,9	95,8	231,2	123,4
25% Percentile	264,1	920,9	583	522,5	459,8	549,3	364,5
Median	357,9	2199	1159	881,2	703,6	1142	742,1
75% Percentile	570,9	4887	2003	1606	1133	1768	982
Maximum	3528	25671	15286	11718	6693	5903	2986
Mean	505,9	4319	2001	1882	1081	1477	838,8
Std. Deviation	461,6	5241	2795	2675	1174	1493	625,2
Std. Error of Mean	51,93	558,7	314,4	428,4	185,6	242,2	100,1
Lower 95% CI	402,5	3209	1375	1015	705,1	985,7	636,2
Upper 95% Cl	609,3	5430	2627	2750	1456	1967	1042

AACT Normalization	Median	n factor (median)
All Plates	725,78	
P1	636,85	1,14
P2	824,89	0,88
Р3	746,56	0,97
P4	863,79	0,84
Р5	649,27	1,12

AACT	HD	AR	SLE	PsA			
Number of values	90	170	80	80			
[AACT] in plasma samples (µg/mL) after Median Normalization							
Minimum	281,3	233,9	26,67	398,2			
25% Percentile	510,7	653,3	603,6	599,9			
Median	581,7	821	736,3	723,2			
75% Percentile	680,5	1048	861,3	826,2			
Maximum	992,5	2556	2080	1290			
Mean	602,2	897,3	760,1	741,2			
Std. Deviation	144,7	360,5	273,5	184,3			
Std. Error of Mean	15,25	27,65	30,57	20,61			
Lower 95% Cl	571,9	842,7	699,2	700,2			
Upper 95% Cl	632,5	951,8	821	782,2			

AACT	HD	HA-RA	LA-RA	HA-SLE	LA-SLE	HA-PsA	LA-PsA
Number of values	90	91	79	40	40	40	40
	[AAC]	[] in plasma s	amples (µg/mL)	after Mediar	n Normalizati	on	
Minimum	281,3	437,9	233,9	26,67	348,1	398,2	446,2
25% Percentile	510,7	759	574,7	638,3	530,1	652,9	581,6
Median	581,7	916,7	719,5	794,9	695,1	789,6	675,1
75% Percentile	680,5	1182	957,7	985,5	799,5	900	755
Maximum	992,5	2556	1426	2080	1273	1290	1256
Mean	602,2	1015	762	838,2	682	797,2	685,2
Std. Deviation	144,7	391,5	264,8	326,3	180,3	198	152,3
Std. Error of Mean	15,25	41,04	29,8	51,59	28,51	31,3	24,08
Lower 95% Cl	571,9	933,2	702,6	733,9	624,3	733,9	636,5
Upper 95% Cl	632,5	1096	821,3	942,6	739,6	860,5	733,9

HPT Normalization	Median	n factor
All Plates	550,56	
P1	752,74	0,73
P2	578,48	0,95
P3	595,15	0,93
P4	489,87	1,12
P5	502,50	1,10

НРТ	HD	AR	SLE	PsA			
Number of values	90	167	80	80			
[HPT] in plasma samples (µg/mL) after Median Normalization							
Minimum	50,18	38,19	26,66	150,6			
25% Percentile	355,2	472,3	399,5	432,1			
Median	468,7	592,8	507,5	564,5			
75% Percentile	579,7	746,8	623,6	757			
Maximum	1220	1949	1393	1933			
Mean	468,5	671,8	520,8	648,4			
Std. Deviation	171,1	344,2	228,9	358,4			
Std. Error of Mean	18,03	26,64	25,6	40,07			
Lower 95% Cl	432,7	619,3	469,9	568,6			
Upper 95% Cl	504,4	724,4	571,8	728,2			

НРТ	HD	HA-RA	LA-RA	HA-SLE	LA-SLE	HA-PsA	LA-PsA
Number of values	90	90	77	40	40	40	40
	[HPT]	in plasma sa	mples (µg/mL) a	fter Median I	Normalizati	on	
Minimum	50,18	286,3	38,19	46,17	26,66	288,5	150,6
25% Percentile	355,2	545,2	395,5	401,8	399,1	513,5	342,3
Median	468,7	635	537,3	502,8	511,9	677,1	499,1
75% Percentile	579,7	857	638,3	633,8	619,8	836,2	596,2
Maximum	1220	1949	1620	1393	888,9	1525	1933
Mean	468,5	767,6	559,9	540,2	501,4	746,3	550,5
Std. Deviation	171,1	370,8	272,5	262,2	191,4	339	354,5
Std. Error of Mean	18,03	39,08	31,06	41,46	30,26	53,6	56,05
Lower 95% Cl	432,7	690	498	456,3	440,2	637,9	437,2
Upper 95% Cl	504,4	845,3	621,7	624,1	562,6	854,7	663,9

A1AG Normalization	Median	n factor
All Plates	1170,94	
P1	945,37	1,24
P2	931,91	1,26
P3	1633,11	0,72
P4	782,02	1,50
P5	1926,83	0,61

A1AG	HD	AR	SLE	PsA			
Number of values	87	158	74	77			
[A1AG] in plasma samples (µg/mL) after Median Normalization							
Minimum	424,4	383,6	600,1	430,4			
25% Percentile	771,5	956,8	947	942,3			
Median	950,7	1279	1300	1163			
75% Percentile	1232	1809	1945	1547			
Maximum	3235	4973	3878	3721			
Mean	1076	1486	1547	1359			
Std. Deviation	524,2	795,4	763,8	705,7			
Std. Error of Mean	56,2	63,28	88,79	80,42			
Lower 95% Cl	964,5	1361	1370	1199			
Upper 95% Cl	1188	1611	1724	1519			

A1AG	HD	HA-RA	LA-RA	HA-SLE	LA-SLE	HA-PsA	LA-PsA
Number of values	87	83	75	35	39	38	39
	[A1AG] in plasma s	amples (µg/mL)	after Median	Normalizati	ion	
Minimum	424,4	383,6	452,6	600,1	698,7	607,5	430,4
25% Percentile	771,5	1108	838,5	952,5	930,2	943,6	911,4
Median	950,7	1428	1120	1436	1292	1159	1179
75% Percentile	1232	1993	1651	2503	1823	1834	1447
Maximum	3235	4973	3866	3878	3118	3721	2096
Mean	1076	1630	1327	1698	1411	1555	1168
Std. Deviation	524,2	881	658,4	929,6	554,6	881,3	404,9
Std. Error of Mean	56,2	96,7	76,02	157,1	88,81	143	64,84
Lower 95% Cl	964,5	1438	1176	1378	1231	1265	1037
Upper 95% Cl	1188	1823	1479	2017	1591	1845	1300

Annex I. Supplementary data VI. Protein sequences and MRM measured peptides (in orange).

AACT

HPNSPLDEENLTQENQDRGTHVDLGLASANVDFAFSLYKQLVLKAPDKNVIFSPLSISTALAFLSLGA HNTTLTEILKGLKFNLTETSEAEIHQSFQHLLRTLNQSSDELQLSMGNAMFVKEQLSLLDRFTEDAKR LYGSEAFATDFQDSAAAKKLINDYVKNGTRGKITDLIKDLDSQTMMVLVNYIFFKAKWEMPFDPQD THQSRFYLSKKKWVMVPMMSLHHLTIPYFRDEELSCTVVELKYTGNASALFILPDQDKMEEVEAM LLPETLKRWRDSLEFR<mark>EIGELYLPK</mark>FSISRDYNLNDILLQLGIEEAFTSKADLSGITGARNLAVSQVVHK **AVLDVFEEGTEASAATAVK**ITLLSALVETRTIVRFNRPFLMIIVPTDTQNIFFMSKVTNPKQA

A1AG1

QIPLCANLVPVPITNATLDQITGKWFYIASAFRNEEYNKSVQEIQATFFYFTPNKTEDTIFLREYQTRQ DQCIYNTTYLNVQRENGTISR<mark>YVGGQEHFAHLLILR</mark>DTKTYMLAFDVNDEKNWGLSVYADKPETT K<mark>EQLGEFYEALDCLRIPK/SDVVYTDWK</mark>KDKCEPLEKQHEKERKQEEGES

A1AG2

QIPLCANLVPVPITNATLDRITGKWFYIASAFRNEEYNKSVQEIQATFFYFTPNKTEDTIFLREYQTRQ NQCFYNSSYLNVQRENGTVSRYEGGREHVAHLLFLRDTKTLMFGSYLDDEKNWGLSFYADKPETT K<mark>EQLGEFYEALDCLCIPR</mark>SDVMYTDWKKDKCEPLEKQHEKERKQEEGES

HPT ALPHA CHAIN / BETA CHAIN

VDSGNDVTDIADDGCPKPPEIAHGYVEHSVRYQCKNYYKLRTEGDGVYTLNDKKQWINKAVGDKL PECEADDGCPKPPEIAHGYVEHSVRYQCKNYYKLRTEGDGVYTLNNEKQWINKAVGDKLPECEAV CGKPKNPANPVQ // RILGGHLDAKGSFPWQAKMVSHHNLTTGATLINEQWLLTTAKNLFLNHSENATAKDIAPTLTLYVGK KQLVEIEKVVLHPNYSQVDIGLIKLKQKVSVNERVMPICLPSKDYAEVGRVGYVSGWGRNANFKFT DHLKYVMLPVADQDQCIRHYEGSTVPEKKTPKSPVGVQPILNEHTFCAGMSKYQEDTCYGDAGSA FAVHDLEEDTWYATGILSFDKSCAVAEYGVYVKVTSIQDWVQKTIAEN

SAA1

R**SFFSFLGEAFDGAR**DMWRAYSDMREANYIGSDKYFHARGNYDAAKRGPGGVWAAEAISDARE NIQRFFGHGAEDSLADQAANEWGRSGKDPNHFRPAGLPEKY

2. Annex II: Supplementary Material of Chapter II.

Annex II. Supplementary data I. Discovery phase results. Number of endogenous peptides and their corresponding unique proteins identified in the secretomes of human articular cartilage.

Unique proteins corresponding to the endoger	nous pep	tides ide	ntified in	this work	ς.			
Protein name	Numb	er of neo	peptides	found in	each car	tilage sec	retome s	sample
FIOLEII IIdille	UZ1	WZ1	UZ2	WZ2	UZ3	WZ3	N1	N2
[Pyruvate dehydrogenase [acetyl-transferring]]-phosphatase 1, mitochondrial			2					
Adipocyte enhancer-binding protein 1	2	4						
Aggrecan core protein			4		2		5	2
Annexin A1	2			2	2			
Apolipoprotein A-I	2	9	[
Apolipoprotein A-IV	6	22						<u> </u>
Apolipoprotein C-III		3						<u> </u>
Apolipoprotein E	21	23	3	4			2	
Arginase-1				2				
Augurin	5	4	4	4	2		2	3
Biglycan	7	17	2		5	2	2	<u> </u>
Cartilage intermediate layer protein 1		16	7	9	4		14	6
Cartilage intermediate layer protein 2	2	6	3	5	2			2
Cartilage oligomeric matrix protein	23	35	47	28	17	6	41	25
Chitinase-3-like protein 2		3		2				
Chondroadherin			3	2				
Clusterin	23	56	26	25	12	6	18	21
Coagulation factor V		2						
Collagen alpha-1(I) chain					5	2		
Collagen alpha-1(II) chain	7		13	4	9	3	6	
Collagen alpha-1(III) chain	2		3		5	2	6	<u> </u>
Collagen alpha-1(IV) chain				2	[[
Collagen alpha-1(XXIV) chain		2	2	3				
Collagen alpha-1(XXV) chain					2			
Collagen alpha-2(I) chain				4	5			
Collagen alpha-2(IV) chain				3				
Collagen alpha-2(V) chain					5	2		
Collagen alpha-2(XI) chain					5			
Collagen alpha-5(IV) chain		2						
Collagen alpha-6(IV) chain			2					
Complement C1s subcomponent		3						
Complement C3	3	9	2					
Corneodesmosin				2				
Cubilin		3						
Decorin	13	34	2					
Dermcidin						2		
Desmocollin-1	2		3	7				
Desmoglein-1			3	2				
Fibrinogen alpha chain	28	48	9	27		3	5	
Fibrinogen beta chain	3	25		5			L	
Fibrinogen gamma chain	6	15	<u> </u>	6	2			
Fibromodulin	7	16	5				4	2
Fibronectin	5	9	17	14	15	2	20	22
Glia-derived nexin	14	5	4					
Glyceraldehyde-3-phosphate dehydrogenase			4	10	5	2		
Heat shock 70 kDa protein 1A/1B	3		<u> </u>				L	
Hemoglobin subunit alpha	14	15			17	8	L	
Hemoglobin subunit beta	18	18	<u> </u>		24	24		
Hemoglobin subunit delta	8	3						
Hemoglobin subunit epsilon	2							
Histone H2B type 1-A			2					

Unique proteins corresponding to the endoger	nous pep	tides ide	ntified in	this worl	.			
Durch dia manana	Numb	er of neo	peptides	found in	each car	tilage sec	retome s	ample
Protein name	UZ1	WZ1	UZ2	WZ2	UZ3	WZ3	N1	N2
Inter-alpha-trypsin inhibitor heavy chain H2		9						
Keratin, type I cytoskeletal 10				3		4		
Keratin, type I cytoskeletal 24		2						
Keratin, type I cytoskeletal 9	6	3	20	16		6	8	12
Keratin, type II cytoskeletal 1	-		5			-		
lactadherin			-	2			2	
Latent-transforming growth factor beta-binding protein 2	5	4		-	3		3	2
	2				5		5	-
Matrix Gla protein	3		2		4			2
Melanoma-derived growth regulatory protein		2			· ·			
Mimeran		2						
Mucin-17		2						
Multiple enidermal growth factor-like domains protein 10	2	2						
Muocuto specific enhancer factor 2B	2			2				
Notrin_1	2	3		2				
Neuroblast differentiation-associated protein AHNAK	2		3	2				
Phospholipase A2 membrane associated		2	2	2				
Phosphonpase A2, membrane associated		2	2		n			
Pleckstrin nomology domain-containing ramity wi member 2			2		2			
Prexin domain-containing protein 2			2		2			
Probable E3 ubiquitin-protein ligase HECID4		2			2			
Procollagen C-endopeptidase ennancer 2	10	2	20	10	-		10	12
Prolargin Deste a skuser 4	16	61	26	19	/		10	12
Proteoglycan 4	12	15			5		4	
Protocadherin Fat 4		3		-	-		-	
Pyruvate kinase isozymes M1/M2		5		3	2		2	
Rap guanine nucleotide exchange factor-like 1		-		2				
Retinoic acid receptor responder protein 2		2						
Ribonuclease 4		2						
Salivary acidic proline-rich phosphoprotein 1/2						3		
Semaphorin-3D	2				-		2	2
Serine protease HTRA1	2	29	2	2	2			
Serine protease HTRA3		7						
Serum albumin			2	4				2
Serum amyloid A-1 protein			5	3			2	
Serum amyloid A-2 protein	~		3	2			2	
Short stature homeobox protein 2	3							
SPARC-related modular calcium-binding protein 2		6						
Stromelysin-1			5				2	
Synovial phospholipase-A2					2			
Target of Nesh-SH3		4						
Tenascin		3						
Threonine aspartase 1				2				
Thrombospondin-3	2	6	7	6			4	2
Thrombospondin-4	11	12	18	9			13	7
Transforming growth factor-beta-induced protein ig-h3		2		2				
Transthyretin	18	10	2					
Tubulin beta-4B chain					2			
Tumor necrosis factor receptor superfamily member 11B	5	8		2				2
Vimentin	15				3		11	
Vitronectin		2						

Annex II. Supplementary data II. Targeted proteomics design. MRM mass spectrometry transitions analyzed in this work, and settings for their analysis.

			Transitions and settings for MRM analysis.				
Q1 m/z	Q3 m/z	RT	Compund name	DP (volts)	CE (volts)	EP	СХР
565.788	687.331	20	sp P51888 PRELP_HUMAN.DSNKIETIPN.+2b6.light	72.4	29.2	10	15
565.788	788.378	20	sp P51888 PRELP_HUMAN.DSNKIETIPN.+2b7.light	72.4	29.2	10	15
565.788	901.463	20	sp P51888 PRELP_HUMAN.DSNKIETIPN.+2b8.light	72.4	29.2	10	15
568.795	687.331	20	sp P51888 PRELP_HUMAN.DSNKIETIPN.+2b6.heavy	72.4	29.2	10	15
568.795	788.378	20	sp P51888 PRELP_HUMAN.DSNKIETIPN.+2b7.heavy	72.4	29.2	10	15
568.795	901.463	20	sp P51888 PRELP_HUMAN.DSNKIETIPN.+2b8.heavy	72.4	29.2	10	15
483.232	763.398	18.5	sp P51888 PRELP_HUMAN.SDGVFKPDT.+2y7.light	66.3	26.3	10	15
483.232	460.24	18.5	sp P51888 PRELP_HUMAN.SDGVFKPDT.+2y4.light	66.3	26.3	10	15
486.239	769.412	18.5	sp P51888 PRELP_HUMAN.SDGVFKPDT.+2y7.heavy	66.3	26.3	10	15
486.239	466.254	18.5	sp P51888 PRELP_HUMAN.SDGVFKPDT.+2y4.heavy	66.3	26.3	10	15
499.233	823.394	19	sp P51888 PRELP_HUMAN.SSDLENVPH.+2y7.light	67.5	26.8	10	15
499.233	708.367	19	sp P51888 PRELP_HUMAN.SSDLENVPH.+2y6.light	67.5	26.8	10	15
502.741	830.412	19	sp P51888 PRELP_HUMAN.SSDLENVPH.+2y7.heavy	67.5	26.8	10	15
502.741	715.385	19	sp P51888 PRELP_HUMAN.SSDLENVPH.+2y6.heavy	67.5	26.8	10	15
546.793	864.469	23	sp P51888 PRELP_HUMAN.DLENVPHLR.+2y7.light	71	28.5	10	15
546.793	735.426	23	sp P51888 PRELP_HUMAN.DLENVPHLR.+2y6.light	71	28.5	10	15
546.793	621.383	23	sp P51888 PRELP_HUMAN.DLENVPHLR.+2y5.light	71	28.5	10	15
546.793	571.272	23	sp P51888 PRELP_HUMAN.DLENVPHLR.+2b5.light	71	28.5	10	15
551.798	874.477	23	sp P51888 PRELP_HUMAN.DLENVPHLR.+2y7.heavy	71	28.5	10	15
551.798	745.434	23	sp P51888 PRELP_HUMAN.DLENVPHLR.+2y6.heavy	71	28.5	10	15
551.798	631.391	23	sp P51888 PRELP_HUMAN.DLENVPHLR.+2y5.heavy	71	28.5	10	15
551.798	571.272	23	sp P51888 PRELP_HUMAN.DLENVPHLR.+2b5.heavy	71	28.5	10	15
626.302	876.457	23.5	sp P02751 FINC_HUMAN.SSGSGPFTDVRAA.+2y8.light	76.8	31.4	10	15
626.302	779.405	23.5	sp P02751 FINC_HUMAN.SSGSGPFTDVRAA.+2y7.light	76.8	31.4	10	15
626.302	632.336	23.5	sp P02751 FINC_HUMAN.SSGSGPFTDVRAA.+2y6.light	76.8	31.4	10	15
628.305	880.464	23.5	sp P02751 FINC_HUMAN.SSGSGPFTDVRAA.+2y8.heavy	76.8	31.4	10	15
628.305	783.412	23.5	sp P02751 FINC_HUMAN.SSGSGPFTDVRAA.+2y7.heavy	76.8	31.4	10	15
628.305	636.343	23.5	sp P02751 FINC_HUMAN.SSGSGPFTDVRAA.+2y6.heavy	76.8	31.4	10	15
676.826	876.457	23.5	sp P02751 FINC_HUMAN.TSSGSGPFTDVRAA.+2y8.light	80.5	33.2	10	15
676.826	632.336	23.5	sp P02751 FINC_HUMAN.TSSGSGPFTDVRAA.+2y6.light	80.5	33.2	10	15
676.826	531.289	23.5	sp P02751 FINC_HUMAN.TSSGSGPFTDVRAA.+2y5.light	80.5	33.2	10	15
678.829	880.464	23.5	sp P02751 FINC_HUMAN.TSSGSGPFTDVRAA.+2y8.heavy	80.5	33.2	10	15
678.829	636.343	23.5	sp P02751 FINC_HUMAN.TSSGSGPFTDVRAA.+2y6.heavy	80.5	33.2	10	15
678.829	535.296	23.5	sp P02751 FINC_HUMAN.TSSGSGPFTDVRAA.+2y5.heavy	80.5	33.2	10	15
581.285	975.499	29.5	sp P81605 DCD HUMAN.DAVEDLESVGK.+2y9.light	73.5	29.8	10	15
581.285	876.431	29.5	sp P81605 DCD_HUMAN.DAVEDLESVGK.+2y8.light	73.5	29.8	10	15
581.285	747.388	29.5	sp P81605 DCD_HUMAN.DAVEDLESVGK.+2y7.light	73.5	29.8	10	15
585.292	983.513	29.5	sp P81605 DCD_HUMAN.DAVEDLESVGK.+2y9.heavy	73.5	29.8	10	15
585.292	884.445	29.5	sp P81605 DCD_HUMAN.DAVEDLESVGK.+2y8.heavy	73.5	29.8	10	15
585.292	755.403	29.5	sp P81605 DCD_HUMAN.DAVEDLESVGK.+2y7.heavy	73.5	29.8	10	15
564.768	814.405	15	sp P81605 DCD_HUMAN.ENAGEDPGLAR.+2v8.light	72.3	29.2	10	15
564.768	628.341	15	sp P81605 DCD_HUMAN.ENAGEDPGLAR.+2v6.light	72.3	29.2	10	15
564.768	513.314	15	sp P81605 DCD_HUMAN.ENAGEDPGLAR.+2v5.light	72.3	29.2	10	15
569.772	824.414	15	sp P81605 DCD_HUMAN.ENAGEDPGLAR.+2v8.heavv	72.3	29.2	10	15
569.772	638.35	15	sp P81605 DCD_HUMAN.ENAGEDPGLAR.+2v6.heavv	72.3	29.2	10	15
569.772	523.323	15	sp P81605 DCD_HUMAN.ENAGEDPGLAR.+2v5.heavv	72.3	29.2	10	15

			Transitions and settings for MRM analysis.				
Q1 m/z	Q3 m/z	RT	Compund name	DP (volts)	CE (volts)	EP	СХР
638.326	976.521	19.5	sp P08493 MGP_HUMAN.NANTFISPQQR.+2y8.light	77.7	31.8	10	15
638.326	875.473	19.5	sp P08493 MGP_HUMAN.NANTFISPQQR.+2y7.light	77.7	31.8	10	15
638.326	728.405	19.5	sp P08493 MGP_HUMAN.NANTFISPQQR.+2y6.light	77.7	31.8	10	15
638.326	528.289	19.5	sp P08493 MGP_HUMAN.NANTFISPQQR.+2y4.light	77.7	31.8	10	15
643.33	986.529	19.5	sp P08493 MGP_HUMAN.NANTFISPQQR.+2y8.heavy	77.7	31.8	10	15
643.33	885.482	19.5	sp P08493 MGP_HUMAN.NANTFISPQQR.+2y7.heavy	77.7	31.8	10	15
643.33	738.413	19.5	sp P08493 MGP_HUMAN.NANTFISPQQR.+2y6.heavy	77.7	31.8	10	15
643.33	538.297	19.5	sp P08493 MGP_HUMAN.NANTFISPQQR.+2y4.heavy	77.7	31.8	10	15
545.786	875.473	19.5	sp P08493 MGP_HUMAN.NTFISPQQR.+2y7.light	70.9	28.5	10	15
545.786	728.405	19.5	sp P08493 MGP_HUMAN.NTFISPQQR.+2y6.light	70.9	28.5	10	15
545.786	615.321	19.5	sp P08493 MGP_HUMAN.NTFISPQQR.+2y5.light	70.9	28.5	10	15
550.79	885.482	19.5	sp P08493 MGP_HUMAN.NTFISPQQR.+2y7.heavy	70.9	28.5	10	15
550.79	738.413	19.5	sp P08493 MGP_HUMAN.NTFISPQQR.+2y6.heavy	70.9	28.5	10	15
550.79	625.329	19.5	sp P08493 MGP_HUMAN.NTFISPQQR.+2y5.heavy	70.9	28.5	10	15
513.303	825.519	25.5	sp P49747 COMP_HUMAN.AEPGIQLKAV.+2v8.light	68.5	27.3	10	15
513.303	728.466	25.5	sp P49747 COMP_HUMAN.AEPGIQLKAV.+2y7.light	68.5	27.3	10	15
513.303	558.361	25.5	sp P49747 COMP_HUMAN.AEPGIQLKAV.+2y5.light	68.5	27.3	10	15
516.812	832.536	25.5	sp P49747 COMP_HUMAN.AEPGIQLKAV.+2y8.heavy	68.5	27.3	10	15
516.812	735.484	25.5	sp P49747 COMP_HUMAN.AEPGIQLKAV.+2y7.heavy	68.5	27.3	10	15
516.812	565.378	25.5	sp P49747 COMP_HUMAN.AEPGIQLKAV.+2y5.heavy	68.5	27.3	10	15
513.303	855.493	22	sp P49747 COMP_HUMAN.AVAEPGIQLK.+2v8.light	68.5	27.3	10	15
513.303	784.456	22	sp[P49747]COMP_HUMAN.AVAEPGIOLK.+2v7.light	68.5	27.3	10	15
513.303	655.414	22	sp[P49747]COMP_HUMAN.AVAEPGIOLK.+2v6.light	68.5	27.3	10	15
516.812	862.511	22	sp[P49747]COMP_HUMAN.AVAEPGIOLK.+2v8.heavy	68.5	27.3	10	15
516.812	791,474	22	sp P49747 COMP_HUMAN.AVAEPGIOLK.+2v7.heavy	68.5	27.3	10	15
516.812	662.431	22	sp[P49747]COMP_HUMAN.AVAEPGIOLK.+2v6.heavy	68.5	27.3	10	15
628.852	930.5	20	sp/P49747/COMP_HUMAN_VINOGREIVOT_+2v8.light	77	31.5	10	15
628.852	802,442	20	sp[P49747]COMP_HUMAN_VINOGREIVQT+2v7.light	77	31.5	10	15
628.852	797.426	20	sp1P497471COMP_HUMAN_VINOGREIVOT_+2b7.light	77	31.5	10	15
628.852	910.51	20	sp/P49747/COMP_HUMAN_VINOGREIVOT_+2b8.light	77	31.5	10	15
632.36	930.5	20	sp[P49747]COMP_HUMAN_VINOGREIVOT.+2v8.heavy	77	31.5	10	15
632.36	802,442	20	sp[P49747]COMP_HUMAN_VINOGREIVOT.+2v7.heavy	77	31.5	10	15
632.36	804.444	20	sp P49747 COMP_HUMAN.VLNOGREIVOT.+2b7.heavy	77	31.5	10	15
632.36	917.528	20	sp[P49747]COMP_HUMAN.VLNOGREIVOT.+2b8.heavy	77	31.5	10	15
525 249	805 42	26	spl075339/CILP1_HUMAN_DEGDTEPLR_+2v7_light	69.4	27.8	10	15
525 249	748 399	26	sp[075339]CILP1_HUMAN_DEGDTEPLR +2v6 light	69.4	27.8	10	15
525.249	633.372	26	sp[075339]CILP1_HUMAN.DEGDTEPLR.+2v5.light	69.4	27.8	10	15
530 253	815 429	26	sp[075339]CIIP1 HUMAN DEGDTEPIR +2v7 heavy	69.4	27.8	10	15
530 253	758 407	26	sp[075339]CIIP1 HUMAN DEGDTEPI R +2v6 heavy	69.4	27.8	10	15
530.253	643.38	26	sp[075339]CILP1_HUMAN.DEGDTFPLR.+2v5.heavy	69.4	27.8	10	15
624 323	794 416	27.5	sp[075339]CILP1_HUMAN_NI EPRTGELSN_+2v7_light	76.6	31.3	10	15
624 323	638 314	27.5	sp[075339]CILP1_HUMAN_NI EPRTGELSN_+2v6 light	76.6	31.3	10	15
624 323	768.4	27.5	sp[075339]CILP1_HUMAN_NI EPRTGELSN_+2b7 light	76.6	31.3	10	15
624 323	915 468	27.5	sp[075339]CILP1_HUMAN_NI EPRTGELSN_205/light	76.6	31.3	10	15
627 831	801 433	27.5	spl075339/CIIP1_HUMAN_NIEPRTGELSN_+2v7 heavy	76.6	31.3	10	15
627 831	645 332	27.5	sp[075339]CIIP1_HUMAN_NIEPRTGELSN_+2v6 heavy	76.6	31.3	10	15
627 831	768.4	27.5	sp[075339]CILP1_HUMAN_NLEPRTGELSN_+2b7 heavy	76.6	31.3	10	15
627 831	915 468	27.5	sp[075339]CILP1_HUMAN_NLEPRTGELSN_+2b8 heavy	76.6	31.3	10	15
733.86	964 473	27.5	sp[075339]CILP1 HUMAN STATAAOTDI NEIN +2v8 light	84.6	35.3	10	15
733.86	735 367	33.5	sn[075339]CIIP1_HIIMAN_STATAAOTDINEINI_+2v6.light	84.6	25.5	10	15
733.86	847 270	33.5	sn[075339]CIIP1_HIIMAN_STATAAOTDINEINI_290.IIgiit	84.6	25.5	10	15
733.86	1 074 506	33.5	sp[0.75339] CII P1 HUMAN STATAAOTDI NFIN +2b11 light	84.6	35.5	10	15
737 368	971 /01	33.5	sp[075339]CIIP1 HIIMAN STATAAOTDI NEIN +2v8 beavy	84.6	25.5	10	15
737 269	747 284	33.5	sp[075339]CILP1 HUMAN STATAAQIDLINTIN.T2y6.IPdVy	81.6	25.2	10	15
737 368	847 270	33.5	sp[075339]CILP1_HUMAN_STATAAOTDI NEIN_+2h0 heavy	84.6	25.2	10	15
737.368	1.081.523	33.5	sp[075339]CILP1_HUMAN.STATAAOTDI NFIN.+2b11 heavy	84.6	35.3	10	15

Transitions and settings for MRM analysis.								
Q1 m/z	Q3 m/z	RT	Compund name	DP (volts)	CE (volts)	EP	СХР	
794.36	787.42	22.5	sp P10909 CLUS_HUMAN.ASHTSDSDVPSGVTEV.+2y8.light	89	37.5	10	15	
794.36	688.351	22.5	sp P10909 CLUS_HUMAN.ASHTSDSDVPSGVTEV.+2y7.light	89	37.5	10	15	
794.36	801.301	22.5	sp P10909 CLUS_HUMAN.ASHTSDSDVPSGVTEV.+2b8.light	89	37.5	10	15	
794.36	900.369	22.5	sp P10909 CLUS_HUMAN.ASHTSDSDVPSGVTEV.+2b9.light	89	37.5	10	15	
797.367	793.433	22.5	sp P10909 CLUS_HUMAN.ASHTSDSDVPSGVTEV.+2y8.heavy	89	37.5	10	15	
797.367	694.365	22.5	sp P10909 CLUS_HUMAN.ASHTSDSDVPSGVTEV.+2y7.heavy	89	37.5	10	15	
797.367	801.301	22.5	sp P10909 CLUS_HUMAN.ASHTSDSDVPSGVTEV.+2b8.heavy	89	37.5	10	15	
797.367	900.369	22.5	sp P10909 CLUS_HUMAN.ASHTSDSDVPSGVTEV.+2b9.heavy	89	37.5	10	15	
843.894	787.42	26	sp P10909 CLUS_HUMAN.ASHTSDSDVPSGVTEVV.+2y8.light	92.6	39.2	10	15	
843.894	801.301	26	sp P10909 CLUS_HUMAN.ASHTSDSDVPSGVTEVV.+2b8.light	92.6	39.2	10	15	
843.894	900.369	26	sp P10909 CLUS_HUMAN.ASHTSDSDVPSGVTEVV.+2b9.light	92.6	39.2	10	15	
846.901	793.433	26	sp P10909 CLUS_HUMAN.ASHTSDSDVPSGVTEVV.+2y8.heavy	92.6	39.2	10	15	
846.901	801.301	26	sp P10909 CLUS_HUMAN.ASHTSDSDVPSGVTEVV.+2b8.heavy	92.6	39.2	10	15	
846.901	900.369	26	sp P10909 CLUS_HUMAN.ASHTSDSDVPSGVTEVV.+2b9.heavy	92.6	39.2	10	15	
722.359	1142.62	31.5	sp P10909 CLUS_HUMAN.GEDQYYLRVTTV.+2y9.light	83.8	34.9	10	15	
722.359	1.014.562	31.5	sp P10909 CLUS_HUMAN.GEDQYYLRVTTV.+2y8.light	83.8	34.9	10	15	
722.359	756.284	31.5	sp P10909 CLUS_HUMAN.GEDQYYLRVTTV.+2b6.light	83.8	34.9	10	15	
725.366	1.148.634	31.5	sp P10909 CLUS_HUMAN.GEDQYYLRVTTV.+2y9.heavy	83.8	34.9	10	15	
725.366	1.020.576	31.5	sp P10909 CLUS_HUMAN.GEDQYYLRVTTV.+2y8.heavy	83.8	34.9	10	15	
725.366	756.284	31.5	sp P10909 CLUS_HUMAN.GEDQYYLRVTTV.+2b6.heavy	83.8	34.9	10	15	
718.367	589.356	24.5	splP070931GDN_HUMAN.SEDGTKASAATTAIL.+2v6.light	83.5	34.7	10	15	
718.367	776.342	24.5	sp[P07093]GDN_HUMAN.SEDGTKASAATTAIL.+2b8.light	83.5	34.7	10	15	
718.367	847.379	24.5	sp P07093 GDN_HUMAN.SEDGTKASAATTAIL.+2b9.light	83.5	34.7	10	15	
718.367	918.416	24.5	sp/P07093/GDN_HUMAN.SEDGTKASAATTAIL.+2b10.light	83.5	34.7	10	15	
721.876	596.373	24.5	sp/P07093/GDN_HUMAN.SEDGTKASAATTAIL.+2y6.heavy	83.5	34.7	10	15	
721.876	776.342	24.5	sp P07093 GDN_HUMAN.SEDGTKASAATTAIL.+2b8.heavy	83.5	34.7	10	15	
721.876	847.379	24.5	sp/P07093/GDN_HUMAN.SEDGTKASAATTAIL.+2b9.heavy	83.5	34.7	10	15	
721.876	918.416	24.5	sp P07093 GDN_HUMAN.SEDGTKASAATTAIL.+2b10.heavy	83.5	34.7	10	15	
471.277	826.54	24	sp P07093 GDN_HUMAN.AVAQTDLKEPLKV.+3v7.light	65.5	23.2	10	15	
471.277	713.456	24	sp P07093 GDN_HUMAN.AVAOTDLKEPLKV.+3v6.light	65.5	23.2	10	15	
471.277	585.361	24	sp P07093 GDN_HUMAN.AVAQTDLKEPLKV.+3v5.light	65.5	23.2	10	15	
471.277	586.283	24	sp[P07093]GDN_HUMAN.AVAOTDLKEPLKV.+3b6.light	65.5	23.2	10	15	
473.616	833.557	24	sp[P07093]GDN_HUMAN.AVAOTDLKEPLKV.+3v7.heavy	65.5	23.2	10	15	
473.616	720.473	24	sp P07093 GDN_HUMAN.AVAQTDLKEPLKV.+3v6.heavy	65.5	23.2	10	15	
473.616	592.378	24	sp P07093 GDN_HUMAN.AVAQTDLKEPLKV.+3v5.heavy	65.5	23.2	10	15	
473.616	586.283	24	sp[P07093]GDN_HUMAN.AVAOTDLKEPLKV.+3b6.heavy	65.5	23.2	10	15	
515,769	576.314	21	sp/P02458/CO2A1_HUMAN_AGPPGPVGPAGGP_+2b7_light	68.7	27.4	10	15	
515.769	633.336	21	sp/P02458/C02A1_HUMAN_AGPPGPVGPAGGP_+2b8.light	68.7	27.4	10	15	
515.769	708.367	21	sp/P02458/C02A1_HUMAN_AGPPGPVGPAGGP.+2v9.light	68.7	27.4	10	15	
515.769	651.346	21	sn P02458 CO2A1 HUMAN AGPPGPVGPAGGP + 2v8 light	68.7	27.4	10	15	
518.776	576.314	21	sp[P02458]CO2A1_HUMAN_AGPPGPVGPAGGP.+2b7.heavy	68.7	27.4	10	15	
518 776	633 336	21	sp[P02458]CO2A1_HUMAN_AGPPGPVGPAGGP +2b8 heavy	68.7	27.4	10	15	
518.776	714.381	21	sp P02458 CO2A1_HUMAN_AGPPGPVGPAGGP.+2v9.heavy	68.7	27.4	10	15	
518.776	657.36	21	sp[P02458]CO2A1_HUMAN_AGPPGPVGPAGGP_+2v8_heavy	68.7	27.4	10	15	
650 344	620 34	19	sp[P02458]C02A1_HUMAN_AGPSGPRGPPGPVGP +2v7 light	78 5	32.3	10	15	
650 344	523 287	19	sp[P02458]CO2A1_HUMAN_AGPSGPRGPDGP/GP +2v6 light	78 5	32.3	10	15	
650 344	680 347	19	sp[P02458]CO2A1_HUMAN_AGPSGPRGPPGPVGP +2h8 light	78 5	32.3	10	15	
653 351	626 354	19	sp[P02458]CO2A1_HUMAN_AGPSGPRGPPGPVGP +2v7 heavy	78 5	32.3	10	15	
653 351	529 301	19	sp[P02458]C02A1_HUMAN_AGPSGPRGPPGPVGP +2v6 heavy	78 5	32.3	10	15	
653.351	680.347	19	sp[P02458]CO2A1_HUMAN.AGPSGPRGPPGPVGP.+2b8.heavv	78.5	32.3	10	15	

Annex II. Supplementary data III. Quantification data obtained for the panel of peptides analyzed by MRM mass spectrometry. Results are expressed in peak area ratios of abundance (light/heavy peptides), with a confidence level of p<0.05*.

This data is included in the excel in the attached CD.

Annex II. Supplementary data IV. Serum and synovial fluid (SF) proteins whose neopeptides were selected for MRM method development.

Serum/SF neopeptide appertaining pro	oteins selected for MRM development
Actin, cytoplasmic 1	Histone H2B type 1-O
Alpha-2-HS-glycoprotein	Histone H2B type 2-E
Alpha-2-macroglobulin	Insulin-like growth factor II
Apolipoprotein A-I	Inter-alpha-trypsin inhibitor heavy chain H1
Apolipoprotein A-II	Inter-alpha-trypsin inhibitor heavy chain H4
Apolipoprotein A-IV	Matrix gla protein
Apolipoprotein C-III	Kininogen-1
Apolipoprotein E	Osteopontin
Caldesmon	Plasminogen
Cathepsin g	Plexin domain-containing protein 2
Clusterin	PDZ and LIM domain protein 1
Coagulation factor V	Protein S100-A8
Collagen alpha-1(I) chain	Protein S100-A9
Collagen alpha-2(I) chain	Septin-2
Complement C3	Serglycin
Dermcidin	Thymosin beta-4
Extracellular matrix protein 1	Transcription factor maf
Fibrillin-1	Transforming growth factor beta-1- induced
Fibronectin	transcript 1 protein
Filamin-a	Transgelin-2
Frizzled-2	Sulfhydryl oxidase 1
Gelsolin	Transthyretin
Heat shock protein beta-1	Vitronectin

3. Annex III: Supplementary Material of Chapter III.

Annex III. Supplementary data I. MRM chromatograms showing the presence of CILP1-IVG and CILP1-TFL in a cartilage digest sample (at 24.9min and 32.8 min respectively), confirmed with a high confidence (greater than 98%) by peptide identification search using the ProteinPilot software, whereas they are not detected and/or identified in the depleted and/or non-depleted serum digests.

Annex III. Supplementary data II. MRM chromatograms showing the presence of PRG4-GGS and PRG4-GFG in a cartilage digest sample (at 14.1min and 20.2min respectively), confirmed with a high confidence (99%) by peptide identification search using the ProteinPilot software, whereas they are hardly detected and no identified in the non-depleted serum digests. In the case of depleted serum digests, the peptides and analogous proteins are detected by MRM, however this was not sufficient to achieve protein and/or peptide identification when MS/MS spectra were searched in the ProteinPilot software.

Annex III. Supplementary data III. First iMALDI PRG4-GFG response curve with 8 points made in triplicates from 0 to 2500 fmol, used for assay validation. Light (L/NAT) and heavy (H/SIS) peak intensities and their corresponding L/H ratios, including the average and coefficient of variation (CV) data of each triplicate measurements.

iMALDI PRG4-GFG				H/L ra	tio (I)
Response Curve	L/NAT(I)	H/SIS (I)	H/L ratio (I)	Average	CV
0	6539				
0	6617				
0	1974				
50	2967	403	0,14	0,15	15,90
50	6941	1266	0,18		
50	7209	1049	0,15		
250	5177	2026	0,39	0,35	10,14
250	3714	1232	0,33		
250	3054	1002	0,33		
500	828	526	0,64	0,66	5,46
500	1956	1251	0,64		
500	2180	1525	0,70		
750	2412	2213	0,92	0,97	4,55
750	2725	2721	1,00		
750	1424	1407	0,99		
1000	3374	4352	1,29	1,40	9,06
1000	2758	3767	1,37		
1000	1683	2587	1,54		
1500	2157	4347	2,02	1,96	5,80
1500	1322	2697	2,04		
1500	2998	5492	1,83		
2500	2024	6767	3,34	3,21	5,46
2500	1968	6429	3,27		
2500	1197	3602	3,01		

Annex III. Supplementary data IV. iMALDI PRG4-GFG assay intra-day and inter-day variability and precision measurements of low (117.5 fmol), medium (470 fmol) and high (2350 fmol) concentrations made with 5 replicates.

							л					4					ω					2					1			Day	PRG4-GFG
		Interday % CV			л	4	ω	2	1	л	4	з	2	1	л	4	з	2	1	5	4	3	2	1	5	4	з	2	1	Replicate Number	LLOQ: 47 fmol
Replic	Replic	Replic	Replic	Replic	7464	4185	3467	6148	4031	6971	5189	3932	6201	3287	4273	2675	4908	3706	3200	5008	4053	4960	4409	5236	2008	3091	6162	6395	4265	NAT LOW (I)	LOW (2.
ate 5	ate 4	ate 3	ate 2	ate 1	1771	1407	977	2078	1251	1554	1149	923	1531	730	1221	804	1501	1192	956	1346	1207	1342	1272	1637	491	711	1382	1584	981	SIS LOW (I)	5X LLOQ): 117.
8,95	15,96	11,44	12,92	14,61	0,24	0,34	0,28	0,34	0,31	0,22	0,22	0,23	0,25	0,22	0,29	0,30	0,31	0,32	0,30	0,27	0,30	0,27	0,29	0,31	0,24	0,23	0,22	0,25	0,23	SIS/NAT ratio (LOW)	5 fmol
Replic	Replic	Replic	Replic	Replic	6202	3105	5600	3995	1708	4883	2917	2971	3014	4098	3605	2896	2715	3013	3063	4555	4163	5685	4148	2003	2759	3469	5587	4413	2874	NAT MED (I)	MEDIUN
ate 5	ate 4	ate 3	ate 2	ate 1	4716	2361	4853	3463	1470	3498	1948	2214	2200	2948	2697	2396	2204	2291	2459	3936	3819	5150	3590	1742	2195	2747	4077	3500	2185	SIS MED (I)	1 (10X LLOQ): 4
6,49	10,30	8,36	6,87	7,18	0,76	0,76	0,87	0,87	0,86	0,72	0,67	0,75	0,73	0,72	0,75	0,83	0,81	0,76	0,80	0,86	0,92	0,91	0,87	0,87	0,80	0,79	0,73	0,79	0,76	SIS/NAT ratio (MED)	470 fmol
Repli	Repli	Repli	Repli	Repli	2471	2645	1865	1551	1886	3955	3371	1234	1841	2537	2129	2453	1114	2431	1701	2220	1592	2592	2754	2430	3050	1706	2478	2607	2974	NAT HIGH (I)	HIGH (
cate 5	cate 4	cate 3	cate 2	cate 1	7972	8790	5884	4820	5716	11461	9895	3752	6097	7794	5750	7335	3017	7528	6218	7570	5526	9026	6066	8469	8036	5971	8374	9666	9818	SIS HIGH (I)	50X LLOQ): 23
10,08	7,33	8,63	7,43	7,21	3,23	3,32	3, 15	3,11	3,03	2,90	2,94	3,04	3,31	3,07	2,70	2,99	2,71	3, 10	3,66	3,41	3,47	3,48	3,60	3,49	2,63	3,50	3,38	3,71	3,30	SIS/NAT ratio (HIGH)	50 fmol
							14,03		•		•	4,84					4,30					6,45					4,33		•	%CV LOW (n=5)	Prec
							6,95					4,06					4,32					2,85					3,71			%CV MED (n=5)	ision / Intrada
							3,53					5,32					12,88					1,95					12,25			%CV HIGH (n=5)	y %CV

PRG4-GFG	LLOQ: 47 fmol	LOW (2.5	5X LLOQ): 117.	5 fmol	MEDIUM	(10X LLOQ):	170 fmol	нон (5	50X LLOQ): 235	0 fmol
	Replicate	SIS/NAT ratio		SIS MAS	SIS/NAT	cic cuito	SPM SIS	SIS/NAT		SPM SIS
Day	Number	(NOT)		(fmol)	ratio (MED)	avide cie	(fmol)	ratio (HIGH)		(fmol)
	1	0,23	664,308	152,80	0,76	664,308	505,05	3,30	664,308	2193,07
	2	0,25	664,308	164,54	0,79	664,308	526,87	3,71	664,308	2463,06
H	3	0,22	664,308	148,99	0,73	664,308	484,77	3,38	664,308	2244,92
	4	0,23	664,308	152,81	0,79	664,308	526,05	3,50	664,308	2325,08
	5	0,24	664,308	162,44	0,80	664,308	528,51	2,63	664,308	1750,29
	1	0,31	664,308	207,69	0,87	664,308	577,75	3,49	664,308	2315,24
	2	0,29	664,308	191,65	0,87	664,308	574,94	3,60	664,308	2390,21
7	3	0,27	664,308	179,74	0,91	664,308	601,79	3,48	664,308	2313,29
	4	0,30	664,308	197,83	0,92	664,308	609,41	3,47	664,308	2305,88
	5	0,27	664,308	178,55	0,86	664,308	574,03	3,41	664,308	2265,23
	1	0,30	664,308	198,46	0,80	664,308	533,31	3,66	664,308	2428,38
	2	0,32	664,308	213,67	0,76	664,308	505,12	3,10	664,308	2057,14
m	3	0,31	664,308	203,16	0,81	664,308	539,28	2,71	664,308	1799,12
	4	0,30	664,308	199,66	0,83	664,308	549,61	2,99	664,308	1986,42
	5	0,29	664,308	189,82	0,75	664,308	496,99	2,70	664,308	1794,16
	1	0,22	664,308	147,53	0,72	664,308	477,89	3,07	664,308	2040,84
	2	0,25	664,308	164,01	0,73	664,308	484,90	3,31	664,308	2200,05
4	3	0,23	664,308	155,94	0,75	664,308	495,04	3,04	664,308	2019,84
	4	0,22	664,308	147,10	0,67	664,308	443,63	2,94	664,308	1949,96
	5	0,22	664,308	148,09	0,72	664,308	475,89	2,90	664,308	1925,07
	1	0,31	664,308	206,16	0,86	664,308	571,74	3,03	664,308	2013,35
	2	0,34	664,308	224,53	0,87	664,308	575,84	3,11	664,308	2064,45
Ŋ	3	0,28	664,308	187,20	0,87	664,308	575,69	3,15	664,308	2095,87
	4	0,34	664,308	223,34	0,76	664,308	505,13	3,32	664,308	2207,66
	5	0,24	664,308	157,62	0,76	664,308	505,14	3,23	664,308	2143,21
		Average	LOW SIS	100 12	Average	MED SIS	530.77	Average	HIGH SIS	23 1616
		experimen	tal (fmol)	CT 'DOT	experimen	tal (fmol)	11,620	experimen	ital (fmol)	10/1612
		LOW % Nor	ninal: (SIS		MED % Nor	ninal: (SIS		HIGH % NOI	minal: (SIS	
		experime	ntal / SIS	153,31	experime	ntal / SIS	112,72	experime	ntal / SIS	90,71
		theoretic	cal)*100		theoretic	cal)*100		theoreti	cal)*100	

Annex III. Supplementary data V. iMALDI PRG4-GFG accuracy (% nominal) measurements of low (117.5 fmol), medium (470 fmol) and high (2350 fmol) concentrations made with 5 replicates.

Annex III. Supplementary data VI. Second iMALDI PRG4-GFG response curve with 8 points made in triplicates from 0 to 2500 fmol, used for sample measurement. Light (L/NAT) and heavy (H/SIS) peak intensities and their corresponding L/H ratios, including the average and coefficient of variation (CV) data of each triplicate measurements.

iMALDI	. (H/L ra	tio (I)
PRG4-GFG	L/NAT (I)	H/SIS (I)	H/L ratio (I)	Average	CV
0	2506				
0	6365				
0	3273				
50	8013	1578	0,20	0,19	6,78
50	5917	1135	0,19		
50	5514	953	0,17		
250	5006	2278	0,46	0,46	1,61
250	5127	2387	0,47		
250	6349	2866	0,45		
500	4348	3628	0,83	0,80	7,23
500	5653	4759	0,84		
500	1764	1301	0,74		
750	4560	5249	1,15	1,17	1,59
750	4635	5472	1,18		
750	4587	5439	1,19		
1000	3995	6026	1,51	1,54	3,00
1000	2357	3560	1,51		
1000	903	1435	1,59		
1500	3628	7289	2,01	2,21	9,82
1500	2416	5891	2,44		
1500	3651	7932	2,17		
2500	2567	7798	3,04	3,39	10,88
2500	3020	11389	3,77		
2500	2830	9473	3,35		

Annex III. Supplementary data VII. Second iMALDI PRG4-GFG response curve representation with Qualis-SIS software of 8 points made in triplicates from 0 to 2500 fmol, used for sample measurement.

	Criteria	Qualification		Metric	Value
		Requirements	1	LLOQ (ng/mL)	6924.090
1	Precision Excluding LLOQ	av. <20% CV per level	2	LLOQ (fmol/uL)	46.685
2	Precision at LLOQ	av. <20% CV	3	ULOQ (ng/mL)	370785.000
3	Accuracy Excluding LLOQ	20%	4	ULOQ (fmol/uL)	2500.000
4	Accuracy at LLOQ	20%	5	Dynamic Range	53 550
5	Min. No. of Levels	3 consecutive	6	Conc NAT in Reference (ng/ml.)	84622.876
6	No. of Acceptable Replicates/Level	per qualified level	7	Conc NAT in Reference (fmol/uL) 570.566

Annex III. Supplementary data VIII. SPM and SCM measurements of the 38 serum samples analyzed using the validated iMALDI PRG4-GFG assay in fmol, fmol/ μ L serum, μ g/mL serum. Difference (%) between the cited SPM and SCM measurements.

Sample		PRG4-GFG SI	PM		(SPM-SCM)		
ID	fmol	fmol/µL serum	µg/mL serum	fmol	fmol/µL serum	µg/mL serum	/SCM*100
OA1	573,95	47,83	6,87	502,95	41,91	6,02	14,12
OA2	650,89	54,24	7,79	578,64	48,22	6,93	12,49
OA3	860,30	71,69	10,30	800,00	66,67	9,58	7,54
OA4	803,69	66,97	9,62	653,28	54,44	7,82	23,02
OA5	1340,91	111,74	16,06	1387,65	115,64	16,62	-3,37
OA6	422,28	35,19	5,06	360,04	30,00	4,31	17,29
OAR380	1049,68	87,47	12,57	1013,32	84,44	12,14	3,59
OAR405	1053,14	87,76	12,61	1017,49	84,79	12,18	3,50
OAR277	442,39	36,87	5,30	378,34	31,53	4,53	16,93
OAR330	663,88	55,32	7,95	592,42	49,37	7,09	12,06
OAR113	905,14	75,43	10,84	847,69	70,64	10,15	6,78
OAR2	790,34	65,86	9,46	722,59	60,22	8,65	9,38
OAR400	915,13	76,26	10,96	957,96	79,83	11,47	-4,47
OAR23	727,88	60,66	8,72	658,00	54,83	7,88	10,62
OAR387	753,56	62,80	9,02	684,04	57,00	8,19	10,16
OAR26	586,50	48,87	7,02	514,74	42,90	6,16	13,94
OAR265	767,53	63,96	9,19	699,06	58,26	8,37	9,79
OAR98	715,52	59,63	8,57	644,92	53,74	7,72	10,95
OAR34	1148,71	95,73	13,76	1133,64	94,47	13,58	1,33
OAR132	747,72	62,31	8,95	606,08	50,51	7,26	23,37
OAR74	736,73	61,39	8,82	666,69	55,56	7,98	10,50
OAR273	988,46	82,37	11,84	942,24	78,52	11,28	4,91
N07/546	783,55	65,30	9,38	716,35	59,70	8,58	9,38
N07/533	781,01	65,08	9,35	714,20	59,52	8,55	9,36
N07/1298	775,79	64,65	9,29	709,34	59,11	8,49	9,37
N07/1211	959,80	79,98	11,49	913,04	76,09	10,93	5,12
N1	862,13	71,84	10,32	802,51	66,88	9,61	7,43
N2	445,44	37,12	5,33	380,85	31,74	4,56	16,96
N3	405,93	33,83	4,86	344,58	28,72	4,13	17,80
N4	703,25	58,60	8,42	632,54	52,71	7,57	11,18
N5	489,01	40,75	5,86	421,67	35,14	5,05	15,97
N6	1053,04	87,75	12,61	1137,94	94,83	13,63	-7,46
N08/851	432,94	36,08	5,18	368,91	30,74	4,42	17,36
N06/1432	1539,27	128,27	18,43	1456,37	121,36	17,44	5,69
N07/1292	603,60	50,30	7,23	531,53	44,29	6,37	13,56
N06/1488	913,86	76,16	10,94	858,07	71,51	10,28	6,50
N07/1161	1628,68	135,72	19,50	1586,85	132,24	19,00	2,64
N07/618	539,02	44,92	6,46	469,16	39,10	5,62	14,89

Annex III. Supplementary data IX. SISCAPA-MRM CILP1-IVG response curve chromatogram representation and values of 6 points ranging from 0 to 500 fmol, made in duplicates. Light (NAT) and heavy (SIS) peak areas and their corresponding NAT/SIS ratios, including the average and coefficient of variation (CV) data of each duplicate measurements.

Protein Name	Peptide Sequence	Replicate Name	NAT Total Area	SIS Total Area	SIS/NAT ratio	Average SIS/NAT ratio	CV (%) SIS/NAT ratio
CILP1	IVGPLEVNVR	500 fmol SIS-IVG (1)	53975	620972	11,50	10.11	19,44
CILP1	IVGPLEVNVR	500 fmol SIS-IVG (2)	61470	536292	8,72	10,11	
CILP1	IVGPLEVNVR	300 fmol SIS-IVG (1)	84691	390399	4,61	4 51	3,16
CILP1	IVGPLEVNVR	300 fmol SIS-IVG (2)	80707	355794	4,41	4,51	
CILP1	IVGPLEVNVR	200 fmol SIS-IVG (1)	90625	324576	3,58	2 61	1,30
CILP1	IVGPLEVNVR	200 fmol SIS-IVG (2)	70734	258023	3,65	3,01	
CILP1	IVGPLEVNVR	100 fmol SIS-IVG (1)	83027	179451	2,16	2 41	14,44
CILP1	IVGPLEVNVR	100 fmol SIS-IVG (2)	59200	157060	2,65	2,41	
CILP1	IVGPLEVNVR	50 fmol SIS-IVG (1)	58820	47630	0,81	0.00	13,94
CILP1	IVGPLEVNVR	50 fmol SIS-IVG (2)	90184	88996	0,99	0,90	
CILP1	IVGPLEVNVR	0 fmol SIS-IVG (1)	97850	1557	0,02	0.02	29,82
CILP1	IVGPLEVNVR	0 fmol SIS-IVG (2)	83794	2046	0,02	0,02	

Annex III. Supplementary data X. SISCAPA-MRM CILP1-TFL response curve chromatogram representation and values of 6 points ranging from 0 to 500 fmol, made in duplicates. Light (NAT) and heavy (SIS) peak areas and their corresponding NAT/SIS ratios, including the average and coefficient of variation (CV) data of each duplicate measurements.

Protein Name	Peptide Sequence	Replicate Name	NAT Total Area	SIS Total Area	SIS/NAT ratio	Average SIS/NAT ratio	CV (%) SIS/NAT ratio
CILP1	TFLVGNLEIR	1000 fmol SIS-TFL (1)	3328	21150	6,36	4.01	41,46
CILP1	TFLVGNLEIR	1000 fmol SIS-TFL (2)	3691	12821	3,47	4,91	
CILP1	TFLVGNLEIR	750 fmol SIS-TFL (1)	5890	24856	4,22	2.00	21 70
CILP1	TFLVGNLEIR	750 fmol SIS-TFL (2)	4250	13163	3,10	3,00	21,70
CILP1	TFLVGNLEIR	500 fmol SIS-TFL (1)	4447	11203	2,52	2.50	2,37
CILP1	TFLVGNLEIR	500 fmol SIS-TFL (2)	2872	7482	2,61	2,50	
CILP1	TFLVGNLEIR	250 fmol SIS-TFL (1)	2974	5612	1,89	1.62	23,72
CILP1	TFLVGNLEIR	250 fmol SIS-TFL (2)	3192	4293	1,34	1,02	
CILP1	TFLVGNLEIR	125 fmol SIS-TFL (1)	2984	2275	0,76	0.92	10,58
CILP1	TFLVGNLEIR	125 fmol SIS-TFL (2)	6237	5524	0,89	0,82	
CILP1	TFLVGNLEIR	0 fmol SIS-TFL (1)	6427	252	0,04	0.04	14,11
CILP1	TFLVGNLEIR	0 fmol SIS-TFL (2)	6075	291	0,05	0,04	

Annex III. Supplementary data XI. Concentration measurements of 12 serum samples analyzed using the validated SISCAPA-MRM CILP1-IVG and CILP1-TFL multiplex assay in fmol, fmol/µL serum, µg/mL serum and the corresponding average values.

Protein Name	Peptide Sequence	Replicate Name	NAT/SIS ratio	NAT (fmol)	NAT (fmol/µL serum)	NAT (µg/mL serum)	Average NAT (µg/mL serum)
CILP1	IVGPLEVNVR	HD 1	0,62	124,92	6,86	0,89	
CILP1	IVGPLEVNVR	HD 2	0,74	147,54	8,11	1,06	
CILP1	IVGPLEVNVR	HD 3	0,56	112,44	6,18	0,80	1.38
CILP1	IVGPLEVNVR	HD 4	0,92	184,48	10,14	1,32	1,28
CILP1	IVGPLEVNVR	HD 5	1,09	218,20	11,99	1,56	
CILP1	IVGPLEVNVR	HD 6	1,41	282,30	15,51	2,02	
CILP1	IVGPLEVNVR	OA1	0,83	166,26	9,14	1,19	
CILP1	IVGPLEVNVR	OA2	1,31	262,62	14,43	1,88	
CILP1	IVGPLEVNVR	OA3	1,22	243,50	13,38	1,74	1.38
CILP1	IVGPLEVNVR	OA4	0,66	132,90	7,30	0,95	1,38
CILP1	IVGPLEVNVR	OA5	0,68	136,34	7,49	0,98	
CILP1	IVGPLEVNVR	OA6	1,08	215,40	11,84	1,54	

CILP1-IVG	OA	HD
Number of values	6	6
Minimum	0,9500	0,8000
25% Percentile	0,9725	0,8675
Median	1,365	1,190
75% Percentile	1,775	1,675
Maximum	1,880	2,020
Mean	1,380	1,275
Std. Deviation	0,3965	0,4601
Std. Error	0,1619	0,1878
Lower 95% Cl	0,9639	0,7922
Upper 95% Cl	1,796	1,758

Protein Name	Peptide Sequence	Replicate Name	NAT/SIS ratio	NAT (fmol)	NAT (fmol/µL serum)	NAT (µg/mL serum)	Average NAT (µg/mL serum)
CILP1	TFLVGNLEIR	HD 1	4,15	830,28	45,62	5,94	
CILP1	TFLVGNLEIR	HD 2	4,93	986,36	54,20	7,06	
CILP1	TFLVGNLEIR	HD 3	3,66	731,68	40,20	5,24	6.10
CILP1	TFLVGNLEIR	HD 4	5,47	1094,10	60,12	7,83	6,19
CILP1	TFLVGNLEIR	HD 5	4,53	906,30	49,80	6,49	
CILP1	TFLVGNLEIR	HD 6	3,19	637,18	35,01	4,56	
CILP1	TFLVGNLEIR	OA1	4,12	824,36	45,29	5,90	
CILP1	TFLVGNLEIR	OA2	9,57	1914,24	105,18	13,70	
CILP1	TFLVGNLEIR	OA3	4,34	867,52	47,67	6,21	9.70
CILP1	TFLVGNLEIR	OA4	7,24	1447,22	79,52	10,36	8,76
CILP1	TFLVGNLEIR	OA5	5,38	1076,52	59,15	7,71	
CILP1	TFLVGNLEIR	OA6	6,07	1213,64	66,68	8,69	

CILP1-TFL	OA	HD
Number of values	6	6
Minimum	5,900	4,560
25% Percentile	6,133	5,070
Median	8,200	6,215
75% Percentile	11,20	7,253
Maximum	13,70	7,830
Mean	8,762	6,187
Std. Deviation	2,924	1,197
Std. Error	1,194	0,4885
Lower 95% Cl	5,693	4,931
Upper 95% Cl	11,83	7,442