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Abstract

Sleep disorders affect a significant part of our population causing problems that go

from daytime sleepiness to severe, life-threatening conditions. Fortunately, physi-

cians can diagnose them and propose a treatment after analyzing the data recorded

with a sleep study. The most common one is polysomnography. Neurophysiological

signals are recorded during sleep and later analyzed by experts. The goal is the

characterization of sleep macro and microstructure to compare it against regular

and abnormal sleep characterization, leading to the identification of several sleep

disorders. The problem is that this task is complex and tedious because it involves

many data. The analysis of a single patient’s night data can take several hours even

for an expert. Undoubtedly, this time limits the capacity of sleep centers, being the

de facto bottleneck of these medical units. This thesis addresses this problem. The

purpose is to develop algorithms that analyze the signals automatically, discharging

the responsibility from the expert. Thus, the expert would only expend time in the

diagnosis and development of treatment plans.

We propose methods for the classification of sleep stages and the detection of

sleep events. We also present the validation of one of our algorithms and the con-

struction of an API, intended to facilitate the use of our methods.

In this thesis, we use artificial intelligence to meet our goals. With feature

extraction and machine learning, we detect two sleep micro-events: arousals and

sleep spindles. For the former, we also propose a method using pattern matching.

To classify the sleep stages, we mainly rely on deep learning methods.
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Resumo

Os trastornos do sono afectan a unha parte importante da sociedade, causando prob-

lemas que van dende a somnolencia diúrna ata condicións severas que ameazan a su-

pervivencia. Afortunadamente, os expertos médicos poden diagnosticalos e propoñer

un tratamento despois de analizar os datos rexistrados nun estudo do sono. O máis

común destes estudos é a polisomnograf́ıa. Durante o sono, rex́ıstranse os sinais

neurofisiolóxicas do doente e, posteriormente, os expertos estúdanos e anaĺızanos.

O obxectivo é caracterizar a macro e micro estrutura do sono para comparala con

caracterizacións de referencia, tanto de sono normal como de sono con trastornos.

Mediante esta comparación pódese identificar a patolox́ıa do doente. O problema

desta aproximación é que a caracterización é unha tarefa complexa e árida, con-

sumindo varias horas incluso a un experto adestrado. Sen dúbida, a duración de

esta tarefa diminúe a capacidade das unidades do sono, sendo o seu ĺımite principal.

Nesta tese desenvolvemos algoritmos que analizan os sinais automaticamente, solu-

cionando este problema. Evitamos que o tempo do experto se consuma no análise

para que o poida empregar na diagnose e na proposta de tratamento.

Propoñemos métodos para a clasificación das fases do sono e a detección dos seus

eventos, cubrindo aśı a caracterización da macro e micro estrutura do sono. Tamén

presentamos a validación dun dos nosos algoritmos, utilizándoo nun entorno real, e

a construción dunha API, pensada para facilitar o uso dos nosos algoritmos.

Nesta tese utilizamos a intelixencia artificial para conseguir as nosas metas. Con

extracción de caracteŕısticas e aprendizaxe máquina detectamos os eventos da mi-

croestrutura do sono: despertares e fusos do sono. Para o primeiro evento tamén

inclúımos un método baseado no recoñecemento de patróns. Para a clasificación

das fases do sono utilizamos modelos de aprendizaxe profunda, en particular redes

convolucionais.
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Resumen

Los trastornos del sueño afectan a una parte significativa de la población, causando

problemas que van desde la somnolencia diurna a condiciones severas que amenazan

la supervivencia. Afortunadamente, los expertos médicos pueden diagnosticarlos

y proponer un tratamiento después de analizar los datos registrados con un estu-

dio del sueño. El más común de estos estudios es la polisomnograf́ıa. Durante el

sueño, se registran las señales neurofisiológicas del paciente y, posteriormente, las

estudian y analizan los expertos. El objetivo es caracterizar la macro estructura y

la microestructura del sueño. Comparando la caracterización con las de un sueño

normal y los afectados por trastornos, se puede identificar la patoloǵıa del paciente.

El problema de esta aproximación es que la caracterización es una tarea compleja

y tediosa, con una duración de horas incluso para el experto entrenado. Indudable-

mente, la duración de esta tarea limita la capacidad de las unidades de sueño, siendo

el principal cuello de botella. En esta tesis desarrollamos algoritmos que analizan

las señales automáticamente, solucionando este problema. Evitamos que el tiempo

del experto se consuma en el análisis para que lo pueda enfocar en la diagnosis y en

la propuesta de tratamiento.

Proponemos métodos para la clasificación de las fases de sueño y la detección

de eventos de sueño, cubriendo aśı la caracterización de la macro y microestructura

del sueño. También presentamos la validación de uno de nuestros algoritmos, que

se utilizó en un entorno real, y la construcción de una API, pensada para facilitar

el uso de nuestros algoritmos.

En esta tesis utilizamos inteligencia artificial para conseguir nuestras metas. Con

extracción de caracteŕısticas y aprendizaje máquina detectamos dos eventos de la

microestructura del sueño: despertares y husos de sueño. Para el primero también

incluimos un método basado en el reconocimiento de patrones. Para la clasificación
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de las fases del sueño utilizamos modelos de aprendizaje profundo, en concreto redes

convolucionales.
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Chapter 1

Introduction

Sleep is the resting state in which the body is not active, and the mind is unconscious.

Usually, the body is in a lying posture, there are not voluntary corporal movements,

and the response to external stimuli is low. Also, sleep duration has to be limited to

some hours, typically between 6 and 10 in humans. Otherwise, we would be talking

about other states as comma or hibernation.

Sleep triggers complex mechanisms, some of them still under study, as changes

of the hormonal levels, metabolic and biochemical processes and thermoregulation.

Although we are not sure about the function of these mechanisms, we know that

sleep is fundamental to life. Thus, sleep is still under study from two different

approaches. Firstly, considering the physiology of sleep, measuring it and relating

the measures with various functions. Secondly, taking behavioral consequences of

sleep and attempting to find the physiological measures to explain them. An example

of the former was the discovery of slow waves and the attempt to relate them with

memory. An example of the latter is how the study of the role of sleep in alertness

led to the knowledge of how the hypothalamus is involved in this function.

In any case, it seems that sleep has more than one purpose as memory formation,

boost alertness and attention, stabilize mood, reduce strain on joints and muscles,

enhance the immune system or signal changes in hormone release. Some of these

purposes are altered in the presence of a sleep disorder, causing problems that go

from day time sleepiness to life-threatening conditions. Unfortunately, sleep disor-

ders affect a significant part of the population. Just as an example, between 30%

and 40% of adults complain of insomnia, and between 5% and 15% of sleepiness [1].

1



2 1. Introduction

Advances in the knowledge about sleep and sleep disorders facilitate the recogni-

tion of Sleep Medicine as a specialty from the second half of the 20th century. Still,

nowadays there is no standard on how to train these specialists or how to set up

their laboratories [2, 3]. Nevertheless, it is clear that sleep medicine is devoted to

the diagnosis and therapy of sleep disorders.

Doctors can diagnose these disorders analyzing data recorded during a sleep

study carried out in a sleep laboratory, being the polysomnography (PSG) the most

common one. These data are studied and characterized, usually trying to determine

the sleep macrostructure, i.e., sleep stages, and the sleep microstructure, i.e., events

happening during sleep such as arousals or sleep spindles. With the results of this

analysis, the specialist can make a diagnosis and propose a treatment.

The classification of sleep stages requires handling and analyzing large amounts of

information and knowledge [4]. Also, the quality and inter-rater agreement is often

less than 90%. For example, Stepnowsky et al. [5] studied the agreement between

two human raters and found kappas of 0.46–0.89. Similarly, Wang et al. [6] found

kappas between 0.72 and 0.85. Furthermore, the agreement between experts is even

lower when considering events from sleep microstructure. For example, reported

agreement for the detection of arousals is in the range 0.47-0.57 [7, 8].

In this thesis, we describe algorithms that automatically characterized the data

obtained in PSG studies. Why? Firstly, because this is typically the most consuming

task, so it is usually the bottleneck limiting the capacity of sleep laboratories. Sec-

ondly, because these algorithms would improve cohesion, improving the agreement

between different sleep centers.

This introduction describes our domain, beginning with a brief history of sleep

medicine. Afterward, we introduce sleep studies, focusing on polysomnography.

Then we describe the sleep macro and microstructure, with an emphasis in sleep

stages, arousals, and sleep spindles. We also summarise the research presented in

the subsequent chapters. We finish this chapter with conclusions and future work.

1.1 A brief history of sleep medicine

Although documents that refer to sleep date as back as to ancient Egypt [9], it was

not until 1913 that Henri Piéron [10] published the first book that attempted to
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deal with the physiology of sleep. Two years before, he had discovered a molecule

that could induce sleep when injected into animals [11]. In 1916, Constantin von

Economo identified the hypothalamus, considering it the center of sleep and wake

activity [12]. In 1925, one of the fathers of sleep medicine, Nathaniel Kleitman,

published his first work. Although his most significant contribution, the discovery

of the rapid eye movement stage (REM), would not happen until 1953 [13]. The

next big leap occurs in 1937, when Loomis, Harvey, and Hobart identified five sleep

stages using the electroencephalogram (invented in 1924), naming brain waves and

defining their main characteristics [14]. Their work was, indeed, the seed of nowadays

sleep structure. Another important book, Sleep and Wakefulness by Kleitman, was

published in 1939 [15]. The book covered sleep research, sleep disorders, changes in

body temperature and sleep-wake cycles. Kleitman also discovered, in 1954, the fact

that sleep itself is also a repetition of cycles. Later, in 1959, Michel Jouvet made

the distinction between REM and non-REM sleep, taking into account the variation

of the brain and muscle activity [16].

Around the sixties, obstructive sleep apnea was the first sleep disorder studied in

detail, also describing the physiological changes that it implied. This research was

afterward extended to a systematic study of temperature, circulatory, and breathing

changes during sleep. Later, parasomnias and bed-wetting were associated with

awakening from slow-wave sleep. Following this detailed study of disorders, Stanford

opened the first sleep research center in 1970. Two years before, Rechtschaffen and

Kales had published A Manual of Standardised Terminology, Techniques and Scoring

System for Sleep Stages of Human Subjects [17], the classification of sleep stages that

was in use until 2007.

The confirmation of the necessity of sleep to life would wait until 1983 when

researchers showed that sleep-deprived rats suffered severe health consequences [18].

In 1988, researchers carried out the first sleep cohort study [19], finding that the

prevalence of sleep apnea in the American population was between 2 and 4%. Soon

after, in 1989, the first book on sleep medicine, Principles of Sleep Medicine [20],

was published.

The first general diagnostic tool for sleep disorders was presented in 1991: the

Epworth sleepiness scale, a subjective assessment of daytime sleepiness [21]. In

the following years, the knowledge of sleep kept growing, showing its relationship

with energy and metabolism. It was in 1999 when the American Academy of Sleep
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Medicine (AASM) appeared. Even then, the association already included over 7000

physicians, researchers, and professionals specialized in sleep medicine. In 2007,

they published the latest classification of sleep stages, which with minor changes is

the standard today [22].

From there, researchers discovered new relationships between sleep and molecules,

as between sleep and its functions and, even more recently, between sleep and sleep

disorders with our genes.

1.2 Sleep Studies

Doctors can diagnose abnormal sleep patterns or any other sleep-related problem

with the data collected with a sleep study. Although it is usually necessary, the goal

of sleep studies is not to characterize the sleep structure but to detect the symptoms

and diagnose disorders which may be causing sleep problems and impacting daily

life. When referring to disorders it is now common the term dyssomnias, avoiding

the use of hypersomnias or insomnias, as poor sleep has a direct consequence in

daytime somnolence.

Some common sleep studies are the Multiple Sleep Latency Test, the Actigraphy,

and the Pulse Oximetry, described below.

Multiple Sleep Latency Test (MSLT) is the study of the input latency of sleep

and REM phase. It is done recording multiple naps during the same day with usually

two hours between consecutive naps. This test is used to detect a pathological hyper-

somnolence and even its relationship with a specific disorder such as narcolepsy.

Actigraphy is a study that evaluates the movement for several days. The usual

case is to place an accelerometer in the wrist and record periods lasting between four

and ten days. The idea is to estimate sleep periods of patients with sleep problems

using the arm’s movement.

Pulse Oximetry is a study that monitors oxygen concentration in hemoglobin,

usually measuring pulse rate as well. It is used to discard sleep apneas or to control

if a treatment is working in already diagnosed patients.
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However, the most popular and standard sleep study is polysomnography.

1.2.1 Polysomnography

Polysomnography (PSG) is the most common sleep study, used both to character-

ize sleep and as a diagnostic tool. It consists of the recording of multiple signals

during the night, placing sensors over the patient to monitor their physiological

functions. The number of recorded signals, as the number of sensors, depends on

the symptoms and their probable diagnose. Some studies only need to record neu-

rophysiological activity, while others require more signals, like those related to the

respiratory function.

Polysomnography is used to diagnose, or to rule out, many types of sleep dis-

orders, including narcolepsy, idiopathic hypersomnia, periodic limb movement dis-

order, REM behavior disorder, parasomnias, and sleep apnea. It is also useful to

rule out other sleep disorders and to detect episodes happening during sleep as

awakenings, somniloquy, sleepwalking, bruxism, or night terrors.

The standard test is carried out in the sleep laboratories of medical centers. The

patient comes to the medical center in the early evening and over the next one

or two hours is introduced to the setting, and the sensors are connected to record

multiple channels of data when it falls asleep. A sleep technician should always

be in attendance and is responsible for attaching the electrodes to the patient and

monitoring the patient during the study. Not only the attached sensors but the

disruption in the patient’s routine makes this procedure uncomfortable, biasing the

results as it impacts the patient’s sleep. This problem can be limited with new

portable devices that offer the possibility of doing the study at home, but their use

is usually limited to a screening function and not as reliable as in site monitoring.

The usual PSG montage involves three different types of signals: pulmonological,

neurophysiological, and contextual information.

Pulmonological signals

It is the set of signals comprising movements, oxygen saturation in arterial blood

and airflow. The two most common are respiratory airflow and oxygen saturation.
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• Respiratory airflow: is the signal that monitors the volume of air inhaled

and expelled from the lungs, resulting in a sinusoidal signal that reflects the

respiratory rhythm. The AASM suggests the simultaneous use of a pressure

transducer and a thermistor to record the airflow.

• Oxygen saturation: is the signal that monitors oxygen saturation in ar-

terial blood in a non-invasive manner, obtaining the percentage of arterial

hemoglobin measuring the changes in light absorption resulting from beats in

the arterial blood flow.

Neurophysiological signals

It is the set of signals related to the sleep function. The most common are elec-

trooculogram, electromyogram, and electroencephalogram.

• Electrooculogram (EOG): is the signal that monitors the ocular movements

using the difference in the potential between the cornea and the retina of the

eye, characterizing the eye as a rotatory dipole. It helps to distinguish the

different patterns of eye movements which occur during some sleep periods.

• Electromyogram (EMG): is the signal that monitors the neuromuscular ac-

tivity associated with muscle contraction, which is recorded using an electrode

over the skin surface of the corresponding muscle. Typically, the recorded

signals are the submental EMG, because it reflects changes in the normal pro-

gression of sleep, and two tibial derivations to track legs movements.

• Electroencephalogram (EEG)1: is the signal that monitors the brain elec-

trical activity, placing electrodes over multiples areas of the scalp, generally in

a bipolar setting where one extreme is attached to a specific region and the

other to a reference one. It is the most complex of the neurophysiological sig-

nals involved in the characterization of sleep as it is non-linear, non-stationary,

and has a low signal-to-noise ratio.

1See Appendix A to read more about the EEG, specifically the EEG wave patterns
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Contextual information signals

It is the set of signals that are not directly related to the sleep function. This

category also includes those that comprise information regarding the context of the

study.

• Body position: is the signal that monitors the body position using an ac-

celerometer attached to the patient’s trunk. The recorded position is usually

discretized in four key body positions: supine, prone, left lateral, and right

lateral.

• Lights control: is the signal that monitors the periods in which the patient

is already in the bed and about to sleep. It is used to discard intervals in the

PSG in which the recording is active but that are not valid sleep periods.

• Snore sound signal: is the signal that monitors the ambient sound, mainly

to record snore, as it may be a hint to locate respiratory pauses.

• Electrocardiogram (ECG): is the signal that monitors the heart electrical

activity. Although it is not used to characterize sleep, it is recorded as it is the

vital monitoring signal.

1.3 Sleep structure

Experts can analyze the data collected in a PSG to characterize the sleep structure,

which we can divide into two categories: macro and microstructure. The macrostruc-

ture is the classification of sleep stages, which is the evolution of the sleep process.

The microstructure is the set of different transient events that appear during the

distinct sleep stages such as arousals or sleep spindles.

1.3.1 Sleep Stages

As aforementioned, Loomis et al. [14] were the first to observe that sleep is not a

homogeneous state, describing different stages based on the EEG. In 1953, Aserinsky

and Kleitman observed a particular state of sleep characterized by rapid, binocularly

symmetrical eye movements [13]. They named it rapid eye movement (REM) sleep.
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The brain activity measured with the EEG during REM is similar to that during

wakefulness. Also, both respiratory and heart rate are higher compared to other

sleep stages. Studying the overnight recording of EEG and EOG, Kleitman and

Demet found a cyclic pattern of REM and non-REM (NREM) sleep [23]. Later,

Aserinsky and Kleitman [13] divided NREM sleep into four stages, ranging from the

lightest sleep in stage 1 to the deepest sleep in stage 4. Traditionally, the analysis

of the sleep structure is done using three primary sources: EOG, EMG, and EEG;

standardized since the work of Rechtschaffen and Kales (R&K) [17]. The R&K

manual includes parameters, techniques and wave patterns commonly detected in

PSG recordings, and it was the first standardization of sleep analysis, lasting until

2007.

The publication of a uniform and standard criteria was a necessity to increase the

comparability and replicability of the results from different laboratories. According

to the R&K criterion, sleep is divided into two great stages: REM and NREM.

They also split NREM into four stages, following the conclusions of Aserinsky and

Kleitman. The R&K manual also defines 20 or 30 seconds time windows, namely

epochs, and suggests to score sleep stages following an epoch-by-epoch approach.

The structural analysis of sleep proposed by R&K was the standard method until

the American Academy of Sleep Medicine (AASM) published a modification. The

AASM manual [22], published in 2007, was a response to the advances in sleep

medicine. Thus, it included new knowledge, technical methods, and capabilities.

Given the time-proved validity and reliability of the R&K system, the AASM rules

and specifications kept most of the framework, adding new definitions and some rule

modifications. Moreover, the AASM publication included conditions for the charac-

terization of pediatric patients and added a set of events into the standard scoring

system as arousals, movements, and respiratory and cardiac events. Regarding the

sleep macrostructure, the most significant change was the fusion of stages 3 and 4

into a single stage representing deep sleep.

The AASM manual defines a total of five stages: Wakefulness (W), Rapid Eye

Movements (REM), and three non-REM stages namely Stage 1 (N1), Stage 2 (N2),

and Stage 3 (N3).
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Stage W

Stage W represents the waking state, ranging from full alertness to early stages

of drowsiness. Electrophysiological and psychophysiological markers of drowsiness

may be present during stage W and may persist into stage N1. In stage W, the

majority of individuals with closed eyes show alpha rhythm2: trains of sinusoidal 8-

13 Hz activity recorded over the occipital region which attenuates with eyes opening.

The EEG pattern with opened eyes consists of low amplitude activity (beta and

alpha frequencies) without the alpha rhythm. During wakefulness, the EOG may

demonstrate rapid eye blinks at a rate ranging 0.5-2 Hz. With the progress of

drowsiness, the frequency of blinking decreases, and eye blinks may be replaced by

slow eye movements, even in the presence of continued alpha rhythm. If the eyes

were open, we would see voluntary rapid eye movements or reading eye movements.

The muscular activity registered with the chin EMG during stage W is usually higher

than during sleep stages.

Stage N1

It is the lightest sleep state in which the subject can still perceive the majority of

stimuli which happen around. Sleep in stage N1 is not practically restful at all. In

subjects which generate alpha rhythm, stage N1 is scored when the alpha rhythm

is attenuated and replaced by low amplitude, mixed frequency (4-7 Hz) activity

for more than 50% of the epoch. Other hallmarks of this stage are the presence of

vertex sharp waves3 and slow eye movements. Slow eye movements are characterized

by reasonably regular, sinusoidal eye movements with an initial deflection usually

lasting more than 500 ms. During stage N1, the muscular activity registered in the

chin EMG is variable but often lower than in stage W.

Stage N2

In this stage, our thalamus blocks sensorial inputs, provoking a disconnection from

the environment which facilitates the sleeping process. Sleep in this stage is partially

recovering, probably not enough to rest entirely. During stage N2, EEG activity

2See Appendix A to read more about the EEG wave patterns
3This and other events named in this section are explained in Section 1.3.2
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shows low amplitudes and mixed frequencies with the predominance of theta fre-

quency waves. It is also characterized by an increase in delta activity, compared to

delta activity during stage N1. However, the primary physiological activities dur-

ing stage N2 are sleep spindles and k-complexes. The EOG usually shows no eye

movements, but slow eye movements may persist in some subjects. The muscular

activity registered in the chin EMG is variable, but it usually is lower than in stage

W or N1.

Stage N3

In this stage, sensorial blocking intensifies compared to stage N2, indicating a deeper

sleep. If the subject wakes up in this stage, it will probably suffer confusion and

disorientation. Sleep in stage N3 is essential for a restful sleep. The EEG activity

shows slow waves with a predominance of delta frequency. Slow wave activity in-

cludes waves of frequency 0.5-2 Hz with a peak-to-peak amplitude higher than 75

µV, measured in the frontal regions. Typically, stage N3 is scored when at least 20%

of an epoch consists of slow wave activity. Sleep spindles may persist in this stage,

but the EOG typically shows no eye movements. The muscular activity registered

with chin EMG is often lower than in stage N2 and sometimes as low as in stage

REM.

Stage REM

It is the stage when the subject dreams. Cerebral activity in stage REM is high,

with low amplitude and mixed frequency, with a predominance of theta activity and

the possible presence of beta bursts. Thus, it is similar to the activity that appears

during stage N1. In this stage, the typical transient pattern of EEG activity is

saw-tooth waves. In some individuals, alpha activity is higher in stage REM than

in stage N1. However, alpha frequency in stage REM is often 1-2 Hz slower when

compared to wakefulness. Rapid eye movements are characteristic of this phase. We

can identify them as conjugate, irregular, sharply peaked eye movements with an

initial deflection usually lasting less than 500 ms. Transient muscle activity is also

frequent in the EMG, although it usually reaches its lowest amplitude. It appears

as short irregular bursts, regularly lasting less than 0.25 s. This activity is maximal

in association with rapid eye movements.
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1.3.2 Sleep microstructure

The identification of events happening during sleep is essential to facilitate the char-

acterization of sleep macrostructure. Also, these events can point to specific disor-

ders. For example, the number of arousals during the night (arousal index) can be

indicative of sleep apnea. Regarding the sleep microstructure, the research presented

in this thesis is focused on arousals and sleep spindles, although other events are

also useful for the complete characterization of sleep.

Arousals

The AASM defines the electroencephalographic arousal as an abrupt shift in the

EEG frequency including alpha, theta, and frequencies higher than 16 Hz (but not

spindles), that last at least 3 seconds and with at least 10 seconds of previous stable

sleep. Arousals are a response in the form of alert produced during sleep that does

not reflect a total awakening of the subject, although most of the times they imply

a change from a deeper sleep stage to a lighter one. As an indicator of disrupted

sleep, arousals are an excellent quantification of sleep quality.

These events alter standard sleep architecture, and the sleep fragmentation they

cause is one of the main reasons for the daytime sleepiness associated with some

sleep disorders. For scoring arousals, at least one central derivation of EEG needs

to be recorded. Arousal scoring can also incorporate information from the occipital

region. During stage REM it is also required a concurrent increase in the submental

EMG activity lasting for at least one second.

Sleep Spindles

Sleep spindles are defined as a train of distinct waves with frequency 11-16 Hz (most

commonly 12-14 Hz) lasting at least half a second, usually maximal in amplitude

using central derivations. They are one of the hallmarks of stage N2 and one of the

few EEG events uniquely related to sleep [24]. Berger was the first to describe this

event [25], but Loomis et al. [26] named them. This event is a group of rhythmic

waves which progressively increase their amplitude and then gradually decrease.

They are usually linked to low voltage background EEG, superimposed to delta

activity, or happening simultaneously with a vertex sharp wave or a k-complex.
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Sleep spindles show intra-cycle variations in the form of U-shape within the first

four sleep cycles and their presence increases with consecutive sleep cycles. Spindle

amplitude and density decrease with age but the high intra-individual variability

make it difficult to asses it.

Other events

• K-complex: is a brief negative high-voltage peak, usually higher than 100

µV, followed by a slower positive complex around 350 and 550 ms and at 900

ms a last negative peak.

• Vertex waves: are distinctive ‘V’ shaped waveforms with peaks reaching

100-200 µV and with the largest amplitude in the middle.

• Sawtooth: is a train of vertex waves that can appear in stage REM.

1.4 Research of this thesis

We now summarize the articles included in this thesis. As aforementioned, most of

our studies describe the design of automatic algorithms for the characterization of

sleep. The first two articles describe approaches for the detection of EEG arousals.

We validated the second approach in a real environment, and present our findings

in another article. The last article regarding sleep microstructure deals with the

detection of sleep spindles. To classify sleep stages, we include two additional works,

both using deep learning. Finally, the last article included in this thesis is a case

study in which we developed an API for increasing the usability of our algorithms.

1.4.1 Detection of EEG arousals

Multiple researchers have already proposed methods for the automatic detection of

EEG arousals. Some works do this detection using a single channel, although this a

slight simplification of the problem, as the definition of EEG arousal involves both

the EEG and EMG signals. Examples following this approach are works that use

the peripheral arterial tonometry [27], the heart rate variability [28], or just a single

derivation of the EEG signal [29, 30, 31].
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Undoubtedly, some research works use multiple signals, analyzing them with

wavelets [32] or applying pattern matching [33]. Either way, the most common

approach is first a step of feature extraction to build a vector of features, and second

the classification of the vector of features using machine learning. The differences

between these methods are the set of extracted features or the particular methods

used for the classification [34, 35].

Our first work follows this latter approach whereas the second one relies on

pattern matching. We also carried out experiments with the second approach in a

sleep center, validating our algorithm in a real environment.

Combining machine learning models for the automatic detection of EEG arousals

This method is based on feature extraction and classification, as we outline in Fig-

ure 1.1. Firstly, we decide in which epochs it is possible to detect arousals, then we

extract the vector of features and classify it to detect if the epoch contains or not

an arousal.

• Signal conditioning
• Power and amplitude 

search
• Group relevant intervals

Interval 
selection

• Hjorth’s parameters
• Sleep stage

Feature
extraction

• Select best
individidual classifiers

• Ensemble using
certainty factors

Classification

Figure 1.1: Outline of Combining machine learning models for the automatic detection of
EEG arousals

Our proposal uses four different signals: two EEG derivations, EMG, and ECG.

The latter is only used to remove artifacts from the first ones. The heartbeat induces

a spike in the EEG signals, introducing noise in the system. To remove the artifacts,
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we first need to locate the heartbeats finding the QRS complex in the ECG signal.

Then, we interpolate the EEG and EMG signals between the limits of each QRS

complex to remove the artifacts.

To select the relevant epochs, we search for events in each signal. An event is an

abrupt frequency change in the EEG signal and an amplitude change in the EMG

signal. We can find these changes comparing the measure of a particular magnitude

in a window against the average of measures in the previous windows. In the case of

the EEG, we use three magnitudes: the power in the alpha band, theta band, and

the power for frequencies higher than 16 Hz. In the case of the EMG, the magnitude

is the amplitude of the signal. We consider an epoch as relevant if we find at least

one event for each signal.

If an epoch is relevant, we extract features from each of the events to build our

vector. The features for the EEG events are the power on the delta, theta, alpha,

sigma, and greater than 16 Hz bands, and the Hjorth’s parameters [36], namely

activity, mobility and complexity. From the EMG, we extract values regarding

the amplitude. We complete the vector of features adding the sleep stage and the

overlapping time between the EEG intervals.

Using a database of 20 PSG recordings from the Sleep Heart Health Study [37],

we created two balanced datasets for training and testing. With the first one, we

trained six different classifiers: linear discriminant [38], support vector machine,

neural network [39], classification tree [40], k-nearest neighbor, and näıve bayes [41];

using a grid search to configure the best possible hyperparameters for each classifier.

We selected the four methods with the highest area under the curve to build an

ensemble. The ensemble combined the outputs of the individual classifiers with

two different approaches. The first one follows Shortliffe and Buchanan’s certainty

factors model [42], considering the output of each individual model as a certainty

factor. The second approach is a linear combination such that the sum of the weights

given to each individual model is 1.

Then, we carried out new experiments using an independent 26 PSG recordings

dataset. Our ensemble outperformed not only the individual methods but also well-

known ensembles, namely Random Forest [43] and an ensemble of k-NN [44], as

Table 1.1 shows. With the certainty factors approach we obtained a sensitivity of

0.78, a specificity of 0.89, and an error of 0.12; with the linear approach a sensitivity

of 0.81, a specificity of 0.88, and an error of 0.13.
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Classifier Error Sensitivity Specificity AUC

SVM 0.159 0.845 0.840 0.843
ANN 0.224 0.900 0.754 0.827
CT 0.161 0.785 0.849 0.817
k-NN 0.173 0.814 0.829 0.822

RF 0.160 0.844 0.839 0.842
k-NNE 0.328 0.908 0.629 0.768

S&B Combination 0.124 0.781 0.893 0.837
Linear Combination 0.133 0.810 0.878 0.844

Table 1.1: Results from the combined approaches, the individual and the ensemble models
using the 26 PSG recordings dataset.

A simple and robust method for the automatic scoring of EEG arousals in

polysomnographic recordings

Although our previous method achieves good results, its inherent problem is the

difficulty to explain its decisions. We developed this new method with simplicity in

mind. Results can be explained because they are based on physical measures. As

Figure 1.2 outlines, this method detects arousals finding their pattern in the relevant

signals.

• EKG reliability
• Adaptive filter

Signal
conditioning

• Search frequency
changes

Candidate
arousals

• Power-based
• Amplitude-based
• EMG pattern

Pattern
recognition

• Duration
• EMG activity during

REM
• Stable sleep

Discard false 
events

Figure 1.2: Outline of A simple and robust method for the automatic scoring of EEG
arousals in polysomnographic recordings

As in our previous work, this algorithm starts conditioning the signals. We

reduce noise with a high pass and notch filters and remove ECG artifacts from the

EEG signal with an adaptive filter. To do this removal, we first study the reliability
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of the ECG, which allows us to know when it is safe to apply and update the filter.

The filter is built and updated using the EEG signal at each heartbeat.

Using the signals without artifacts, we search for frequency changes in the EEG

signal both in alpha and beta bands. To do this search, we use a sliding window and

compare the power of the current window against the average values of the previous

ones. Each frequency change is then studied, trying to recognize an arousal pattern.

We recognize three different patterns. The first one is based on EEG power. As

we have already found a power increase, we find when it decreases to the previous

values. The second pattern measures the EEG amplitude. It is well known in clinical

practice that some arousals also increase the signal amplitude. Thus, for each power

increase, we check if the amplitude has also increased. In that case, we check when

it goes back to normal. Finally, the third pattern is pretty similar to the former,

but measuring the amplitude of the EMG signal.

With the power search, we find a possible beginning for the arousal, whereas

recognizing the pattern we find its possible end. It only lasts to check if it is an

arousal or some other event. We initially assume it is and then discard it in some

cases. The first case depends on the duration, removing those events lasting less

than 3 s which is the minimum duration according to the definition, and those lasting

more than 15 s, which probably means that for that epoch, stage is W. The second

case is to discard it if it is a spindle, which only depends on the primary frequency

of the event. We discard those with a main frequency between 12 and 16 Hz. The

third one deals with the requirement of EMG activation during REM. If the epoch is

in stage REM, but there is no amplitude change in the EMG, we discard the event.

Finally, we also discard the event if it is close to a previous one, as in that case there

is no 10 s of stable sleep.

We tested the method using 22 PSG recordings from a real patients database,

obtained in the sleep center of the Haaglanden Medisch Centrum (HMC) in The

Hague, The Netherlands. We obtained encouraging results with a precision value

of 0.86 and an F1 score value of 0.79. According to the kappa coefficient obtained

comparing our scored arousals against the gold standard (0.78), the agreement is

almost perfect. Table 1.2 compares our results against those reported in other

works. It also includes the scoring unit, as not all works evaluate the classification

of arousals the same way.
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Method #Recordings Scoring unit Sensitivity Specificity AUC Precision F1 score Kappa

Pacheco and Vaz [34] 8 (2 hours) 30 0.88 - - - - -
Cho et al. [30] 6 (NREM) 1 0.75 0.93 0.84* - - -
Sugi et al. [45] 8 1.28 (30 for TN) 0.82 0.88 0.85* - - -
Shmiel et al. [46] 20 30 0.75 - - 0.77 - -
Alvarez-Estevez and Moret-
Bonillo [47]

5 30 0.86 0.77 0.82 0.42* 0.57* 0.44*

Alvarez-Estevez et al. [48] 26 30 0.65 0.95 0.80 0.7* 0.68* 0.62*
Fernández-Varela et al. [49] 26 30 0.81 0.88 0.85 0.56* 0.66* 0.58*

Ours 22 30 0.75 0.99 0.87 0.86 0.80 0.78

Table 1.2: Results reported for methods using a fixed time window to compute agreements
and disagreements against the clinical reference; * Values were not explicitly mentioned
in the referenced work, but can be derived from the published data; AUC = Area Under
ROC Curve of one point obtained as (Sensitivity+Specificity)/2; NREM = Non-Rapid
Eye Movement; TN = True Negative.

Large-scale validation of an automatic EEG arousal detection algorithm using

different heterogeneous databases

So far, experiments with our methods were carried out using a single database. In

this work, we used two different sources of PSG recordings. The first one is the

Sleep Heart Health Study database and the second one is a database containing

private recordings from the Haaglanden Medisch Centrum (HMC) in The Hague,

The Netherlands. With both sources, we built three datasets: SHHS2, HMC-S, and

HMC-M; described in Table 1.3.

Dataset n Age Gender ArI AHI

HMC-S 220 52.99 ± 14.33 62% M/58% F 12.85 ± 07.86 13.33 ± 15.28
HMC-M 252 51.58 ± 16.22 53% M/47% F 12.45 ± 10.48 14.83 ± 21.03
SHHS2 2296 67.41 ± 10.03 45% M/55% F 12.91 ± 07.02 16.25 ± 15.64

Table 1.3: Summary of demographic data and main PSG characteristics for the different
datasets. n = number of recordings, M = males, F = females, ArI = arousal index, AHI
= apnea-hypopnea index

The code used to detect arousals is an adaptation of our previous work (1.4.1).

We made changes to support different montage configurations, signal sampling rates,

and filtering. We also updated the thresholds, to increase the capacity of detect-

ing alpha frequency changes and to improve how we discard events for being sleep

spindles. Finally, we simplified the process, removing some steps when dealing with

alpha events.
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We evaluated the algorithms with two complementary approaches. Firstly, an

event-to-event scoring validation using 30 s epochs, obtaining the results shown in

Table 1.4. Secondly, using the Arousal Index (ArI) calculated for each recording. We

obtained correlation coefficients among the respective automatic and clinical refer-

ence ArI scores. We used the Wilcoxon signed rank to obtain statistical significance

for paired differences, and also the Intraclass Correlation Coefficient (ICC) [50] as a

measure of repeatability to examine scoring differences. Table 1.5 shows the mean

ArI (with deviation) for each dataset and the mean difference between our method

and the gold standard. Results reject the null hypothesis H0 “median of differences

is zero” (α = 0.05), but for the HMC-M dataset. Although differences for HMC-S

and SHHS2 are not significant if we assume a median difference bias of 0.3.

Dataset #Epochs Sensitivity Specificity Precision F1-score Kappa

HMC-S 207312 0.580 0.972 0.707 0.637 0.600
HMC-M 236336 0.563 0.953 0.641 0.600 0.559
SHHS2 2201487 0.517 0.979 0.743 0.610 0.573

Table 1.4: Overall results of the event-by-event epoch-based validation on the testing
datasets.

Dataset Gold standard Method Difference p-value

HMC-S 13.32 ± 08.01 12.47 ± 08.06 0.84 ± 5.41 0.023
HMC-M 12.45 ± 10.48 12.97 ± 10.14 0.52 ± 6.68 0.224
SHHS2 12.91 ± 07.02 12.56 ± 07.73 0.35 ± 4.89 < 0.001

Table 1.5: Mean ArI score for each dataset, including the mean difference between them,
and p-value for the hypothesis: ”mean difference is zero”.

In this work, we also assess inter-scorer reliability. An independent expert scored

a set of representative recordings. We selected these recordings according to the

previous kappa index in the individual event validation. Table 1.6 shows the average

kappa index for each dataset, comparing the new expert (Rescoring), the original

expert (Original), and our method (Method). These results show that our method

performance is similar to what we would expect from another expert.
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Dataset Rescoring vs Original Method vs Original Method vs Rescoring

HMC-S 0.594 0.595 0.602
HMC-M 0.561 0.523 0.686
SHHS2 0.543 0.552 0.564

Table 1.6: Average kappa index comparing the experts and our method for the different
datasets.

1.4.2 Detection of Sleep Spindles

The detection of sleep spindles only requires the EEG signal. Thus, some works only

used band-pass filters and amplitude detection [51, 52], or the teager energy operator

and thresholds [53]. Many other works follow the same approach we aforementioned

for the detection of arousals, consisting of a first step of feature extraction and a

subsequent one of classifying a vector of features. Again, the differences appear in the

feature extraction or the classification methods. For feature extraction, we can find

works using the fourier fast transform [54] or adaptive autoregressive modeling [55],

between others. To classify, they have used multi-layer perceptron [56] or support

vector machines [55].

Our work also follows a two-step approach, decomposing the signal to extract

features and classifying them afterward.

A comparison of performance of sleep spindle classification methods using

wavelets

As aforementioned, we first extract features from our samples, using wavelet decom-

position. Then, we compare the performance obtained using different classifiers.

Figure 1.3 outlines our method.

The data used in this work belongs to the Sleep Laboratory of the André Vésale

Hospital in Belgium Devuyst et al. [57]. It contains eight segments of 30 minutes

from eight PSG from different patients. An expert analyzed them to detect sleep

spindles using the central EEG derivation, scoring a total of 289 spindles. Six

recordings have a sampling rate of 200 Hz, one of 100 Hz and the remaining one of

50 Hz.

From the available data, we built a dataset containing all the spindles and an
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Figure 1.3: Outline of A comparison of perfomance of sleep spindle classification using
wavelets

equal number of negative samples. Negative samples are randomly selected windows

of 0.5 s, which is the minimum spindle duration. We applied wavelet transforma-

tion [58] to the samples, obtaining a vector of features from each. We used the symlet

of order O5 (sym5) and O7 (sym7), and the biorthogonal of order O1.5 (bio1.5) to

decompose each sample and obtain a set of coefficients representing it. Given that

we have different sampling rates and even samples of different length, we limited our

vector of features to the first 13 coefficients, which would be the minimum number

of coefficients in the worst case.

These vectors were then classified using several methods: support vector machine

(SVM), proximal SVM (pSVM) [59], feed-forward neural network with one (1 FNN)

and two layers (2 FNN), classification tree (CT), random forest (RF) and naive

bayes (NB). Tables 1.7 and 1.8 show the accuracy and sensitivity obtained with a

10-fold cross validation with each classifier and wavelet family.

SVM pSVM 1 FNN 2 FNN CT RF NB

sym5 89.01 ± 4.3 86.20 ± 3.9 89.58 ± 3.9 87.89 ± 4.5 91.83 ± 4.5 94.08 ± 2.8 93.66 ± 1.7
sym7 86.90 ± 4.5 83.66 ± 6.8 85.35 ± 4.6 82.54 ± 6.6 86.20 ± 3.2 89.58 ± 3.2 85.77 ± 5.2
bio1.5 88.59 ± 3.9 86.20 ± 2.8 88.59 ± 2.7 86.48 ± 6.4 93.38 ± 2.4 94.08 ± 2.4 93.66 ± 2.9

Table 1.7: Mean test set accuracy for the 10-fold cross validation.
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SVM pSVM 1 FNN 2 FNN CT RF NB

sym5 92.67 ± 4.3 97.99 ± 1.9 96.01 ± 3.4 86.45 ± 6.1 91.86 ± 6.8 95.78 ± 2.8 95.15 ± 1.5
sym7 89.67 ± 4.5 95.04 ± 4.9 90.30 ± 3.8 82.16 ± 7.9 85.47 ± 7.8 88.69 ± 6.5 89.63 ± 4.3
bio1.5 92.08 ± 4.1 99.72 ± 0.8 98.89 ± 1.1 87.05 ± 7.9 93.14 ± 4.3 95.81 ± 3.3 96.36 ± 3.6

Table 1.8: Mean test set sensitivity for the 10-fold cross validation.

1.4.3 Classification of Sleep Stages

The classification of sleep stages is by far the problem in sleep medicine that needs

more data. It is also the most explored one. Many works follow the approach

we commented regarding the detection of sleep micro-events: feature extraction

and classification. Fraiwan et al. [60] used a random forest for the classification of

time-frequency features and Renyi’s entropy; Liang et al. [61] extracted multiscale

entropy and autoregressive features and then applied a linear discriminant analysis;

Zhu et al. [62] used features from a difference visibility graph and classified using a

support vector machine. Hassan and Bhuiyan [63] followed a single signal approach

with wavelet decomposition for the feature extraction and a random forest classifier.

The same authors, in other work [64], used finite sums to decompose the signal and

compared several classifiers; Sharma et al. [65] studied a discrete energy separation

algorithm over a single-channel EEG using iterative filtering, also comparing sev-

eral classifiers. Koley and Dey [66] applied a support vector machine to frequency,

time, and non-linear features extracted from a single-channel EEG. Lajnef et al. [67]

used multiple signals and multiple support vector machines to build a decision tree.

Huang et al. [68] studied the power spectral density of two EEG channels to obtain

frequency-domain features and classified them with a modification of a support vec-

tor machine; Finally, Günes et al. [69] used spectral analysis to extract the features

and a nearest neighbors algorithm for the classification.

Approaching the classification of sleep stages with feature extraction is inherently

biased towards the available dataset, a problem caused by the human engineered

features. Thus, most of these proposals cannot generalize to other datasets. Es-

pecially, given the nature of PSG recordings, with significant natural differences

between individuals apart from those introduced by the recording hardware.

One option to solve this issue is to use a method that can learn from raw data,

limiting human bias. Nowadays, the natural choice is deep learning, as it has outper-

formed previous methods in several fields, particularly in medical diagnosis [70, 71].
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Some works have already explored different algorithms that would belong to the

deep learning area: Längkvist et al. [72] used deep belief networks to learn prob-

abilistic representations from preprocessed raw signals; Tsinalis et al. [73] studied

convolutional neural networks to extract time-invariant features from a raw EEG

channel. The same authors also studied the use of stacked sparse autoencoders [74];

Supratak et al. [75] used a convolutional neural network complemented with a bidi-

rectional long short-term memory network (LSTM). Biswal et al. [76] compared a

recurrent neural network against other networks but using features as the input. Fi-

nally, Sors et al. [77] also used a convolutional neural network with a single channel

raw EEG.

Sleep staging with deep learning: a convolutional model

In this first work using deep learning, we simplified the problem, merging stages N1

and N2 into drowsy sleep (DS). This way we avoid the problem of detecting stage

N1, the most underrepresented and with the lowest agreement between experts.

Our neural network was developed and tested using 240 PSG recordings from the

SHHS dataset: 180 for training, 20 for validation and 40 for testing. As expected,

the dataset is highly unbalanced. In the training dataset, 39.7% of the samples are

classified as W, 38.3% as DS, 9.6% as N3, and 12.4% as REM. In the validation

dataset, the distribution is 42.0% for W, 37.3% for DS, 9.1% for N3, and 11.6% for

REM. Finally, in the test dataset, the distribution is 42.7% for W, 37.3% for DS,

8.8% for N3, and 11.2% for REM.

The input for the neural network is an epoch, and the output is the predicted

sleep stage. Our input contains the five available signals in the SHHS recordings:

both EEG channels, the EMG, and both EOG. As they are sampled at different

rates, we padded with zeros the signals with lower rates.

We limited our convolutions to one dimension, avoiding an artificial spatial re-

lationship between the signals. We selected the architecture and hyperparameters

of the network using the validation set and trying to reduce the number of lay-

ers to the minimum. In the end, the network was composed by two convolutional

layers each with 128 kernels, one pool layer, another convolutional layer with 256

kernels, a max pool layer, and a last fully connected layer. The filter size was fixed

at 20 for every convolutional layer, with padding adjusted to maintain the input
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dimension. The gradient optimizer was Adam [78] and the activation functions for

all the convolutional layers relu [79], except for a final softmax function. We im-

proved regularization normalizing the signals to mean 0 and deviation 1 and adding

a dropout [78] in the final layer. The training was done with batches of size 32

and finished using early stopping over the validation loss with a patience value of 3.

Table 1.9 shows the results obtained with the test dataset.

Sleep Stage Precision Recall F-1 Score

Awake (W) 0.96 0.96 0.96
Drowsy Sleep (DS) 0.90 0.91 0.90
Deep Sleep (N3) 0.89 0.82 0.85
REM 0.89 0.90 0.90
Average 0.91 0.90 0.90

Table 1.9: Precision, recall, and F-1 score for the classification of the test dataset.

Studying the results for the individual recordings we learned that for stage W

the network is robust, always achieving high values. On the contrary, for stage N3

results vary significantly with the recording. When compared against other works

(Table 1.10) results are encouraging, although we need to distinguish between stage

N1 and N2.

This work Alvarez-Estevez et al. [48] Sors et al. [77]

Awake 0.96 0.88 0.91

Drowsy Sleep 0.91 0.81
0.35 (N1)
0.89 (N2)

Deep Sleep 0.82 0.75 0.85
REM 0.90 0.84 0.86
Average 0.90 0.82 0.88*

Table 1.10: Comparison of our results against previous works reporting recall. * Taking
0.89 as reference for DS

A convolutional network for the classification of sleep stages

The goal of this work is to overcome the limitations of our previous one. Mainly,

we classify the five stages recognized by the AASM and improve the selection of

hyperparameters. We explain next these and some other changes.
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The dataset is also composed of PSG recordings from the SHHS database. In

this case, we filtered all the signals, to reduce noise and remove artifacts. The

filtering pipeline was already explained in Section 1.4.1. For training, we used 400

recordings, for validation 100 and for testing 500.

The input to the network is an epoch, upsampling the required signals to 125 Hz,

which is the highest frequency in our dataset. In this case, we avoid padding with

zeros because it would be less generalizable if we try to apply it to other databases.

We also avoided downsampling to keep all the frequencies that are relevant for

the classification of sleep stages. The neural network is a stack of convolutional

blocks. Each of this convolutional block contains a 1D convolution with batch

normalization [80] and relu activation and an average pool that reduces the input

size by half. The difference between a block and the following one is that the number

of filters of the latter is twice the number of filters of the former. Undoubtedly, the

input size for each block is half the previous one. Finally, the network includes a

global pool with dropout and a dense layer with softmax activation to output the

classification probabilities for each class.

As aforementioned, we also improved the selection of hyperparameters. As hy-

perparameters, we considered the number of convolutional blocks, the size of the

kernel, the number of filters of the first block, and the learning rate. To select

their values, we used a Tree-structure Parzen Estimator (TPE) [81]. TPE is a se-

quential based optimization that builds models in sequence trying to approximate

the performance of a selection of hyperparameters based on historical results, and

then chooses new values that are checked with the model. Using TPE, we trained

50 models to obtain the best possible hyperparameters. Each of these models was

trained using a subset of 250 recordings from the original training dataset.

Finally, we selected the five sets of hyperparameters obtaining the best results

and built an ensemble with them. We show in Table 1.11 the results obtained with

this ensemble when classifying our test dataset (500 recordings).

The class for which we achieved the best classification is W, with values near to

0.95 for the precision, sensitivity, and F1 score. Then, classes N2, N3, and REM

showed similar results, especially if we compare the F1 score, although sensitivity for

N3 was lower (thus, precision was higher). Lastly, results regarding the classification

of class N1 were rather low, not even achieving an F1 score of 0.3.
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Stage Precision Sensitivity F1 score

W 0,94 0,96 0,95
N1 0,39 0,21 0,27
N2 0,87 0,89 0,88
N3 0,92 0,77 0,84
REM 0,82 0,90 0,86

Average 0,78 0,75 0,76

Table 1.11: Performance measures for the classification of the test dataset using the en-
semble with the 5 selected models.

Table 1.12 shows the results reported in other works compared to ours. We

improve the general classification, as shown by the kappa value. The improvement

is because we classify better the most common stage, W. Although the F1 score for

N2, N3, and REM is also high, and between the best values reported, our method

struggles to classify stage N1.

Work Database Kappa F1 score
W N1 N2 N3 REM

Biswal et al. [76] Massachusetts General Hospital, 1000 recordings 0,77 0,81 0,70 0,77 0,83 0,92
Längkvist et al. [72] St Vicent’s University Hospital, 25 recordings 0,63 0,73 0,44 0,65 0,86 0,80
Sors et al. [77] SHHS, 1730 recordings 0,81 0,91 0,43 0,88 0,85 0,85
Supratak et al. [75] MASS dataset, 62 recordings 0,80 0,87 0,60 0,90 0,82 0,89
Supratak et al. [75] SleepEDF, 20 recordings 0,76 0,85 0,47 0,86 0,85 0,82
Tsinalis et al. [73] SleepEDF, 39 recordings 0,71 0,72 0,47 0,85 0,84 0,81
Tsinalis et al. [74] SleepEDF, 39 recordings 0,66 0,67 0,44 0,81 0,85 0,76

This work SHHS, 500 recordings 0,83 0,95 0,27 0,88 0,84 0,86

Table 1.12: Comparison of our results against previous works.

1.4.4 API for Sleep Medicine

One reason for the limited adoption of automatic algorithms in sleep centers is the

difficulty to integrate them with other existing software. An option to ease the

necessary effort is to provide an application programming interface (API). The goal

of an API is to facilitate the use of sophisticated methods giving simple function

definitions. This way, complexity is encapsulated and the methods can be easily

used.
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A systematic approach to API usability: taxonomy-derived criteria and a case

study

In this work, we built a set of heuristics and guidelines for API usability that synthe-

size previous API usability studies and cover missed points. We used the heuristics

and guidelines to build an API for sleep medicine. We were able to identify problems

in our API that we would not have found following previous works.

When building our heuristics and guidelines, we followed the taxonomy proposed

by Alonso-Ŕıos et al. [82]. We reviewed the previous works regarding API usability

mapping the different items described in them with the categories defined in the

taxonomy. All items found could be mapped to at least one category. Studying the

literature and following the taxonomy we built new heuristics and guidelines. We

took some heuristics from the previous studies, others are a synthesis from multiple

authors, and the remaining ones cover the categories of the taxonomy that we did

not found in the literature.

The requirements of the API for sleep medicine were defined by the usability

engineers and API developers, after analyzing the context of use. Analyzing the

context of use is essential because it is what distinguishes this particular API from

others and even from another type of software development. Then, we developed

the first API to use our algorithms, which we submitted to the heuristic evaluation.

The heuristic evaluation was carried out by the usability engineers, using the

proposed API, the requirements and the heuristics and guidelines. The result of

this evaluation was a list of weak and strong points regarding the usability of the

API and a set of proposals for improvement. Each guideline and heuristic can

be completely, partially or not fulfilled. Figure 1.4 shows the results of the first

evaluation.

With the evaluation we found problems as names that are not self-explanatory,

it is not easy to understand what the code does, or errors do not provide helpful in-

formation; between others. Most of the problems were addressed and fix, developing

a new version of our API.

This last was submitted for subjective analysis, asking the API users to respond

to a questionnaire. The API user was a computer scientist from the Haaglanden

Medisch Centrum (HMC) in The Hague, The Netherlands. The API user also had

an interview with the API developer to clarify the questionnaire. The user could



1.5. Conclusions 27

Figure 1.4: Results of the heuristic evaluation

not answer some questions as it did not have access to the source code nor had used

the API extensively. Figure 1.5 shows the results of the questionnaire and how the

new API version solved most of the problems of the previous one.

We can see that there are still areas for improvement, for example, trying to

identify and reduce heuristics that the user classified as “Partially” or developing

successive rounds of subjective analysis with new users, trying to involve them in

the design of the API.

1.5 Conclusions

Sleep medicine could greatly benefit from methods that can analyze data from sleep

studies characterizing the sleep macro and microstructure. If we could automate

this time-consuming task, specialists from sleep centers could focus their time on

diagnosing the disorder and planning the treatment. Automatic methods would

also help to avoid the problems that can appear when human experts are doing the

analysis. These are entirely objective and regular methods, always yielding the same

result for the same input. In this thesis, we present several techniques that analyze
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Figure 1.5: Results of the subjective evaluation. NEI = not enough information.

data from sleep studies.

To characterize sleep microstructure, we presented algorithms for the detection

of arousals and sleep spindles. Regarding the detection of arousals, our first method

relied on feature extraction with a subsequent classification using an ensemble of

different classifiers. We concluded that using the sleep stage and the Hjorth’s pa-

rameters as features improves detection. We improved detection even further using

an ensemble, combining the individual predictions following Shortlife and Buchanan

method for certainty factors. With our combination of features and the ensemble,

we achieved higher sensitivity and specificity than previous methods. The second

method finds relevant segments using frequency analysis and then detects arousals

studying different patterns. Although it was designed to be a simple method, results

showed higher F1 score and kappa index than previous works.

The latter method for the detection of arousals was generalized to use it with

more than one database. A common problem of previous studies in the literature

is the lack of adaptability. Researchers usually design for a single database and the

performance of their methods drops when exposed to other sources of PSG record-

ings. We showed how our method performs as one more expert when confronted
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with different databases, achieving an agreement with an expert similar to the agree-

ment between two experts. We carried out our experiments in a real environment,

a sleep center from The Netherlands, so we could also demonstrate how automatic

algorithms can reduce the time used in sleep characterization.

We also develop an algorithm for the detection of sleep spindles using feature

extraction and machine learning. We showed that signal analysis using wavelets

could obtain similar results to other proposed solutions in the literature when the

classifier is a random forest.

A different approach was used to classify sleep stages. Methods using feature

extraction as the first step are usually biased towards a single database. They also

depend on the human that engineered the features. To avoid these problems, we

relied on methods that can self-learn the relevant features. Our first study, using

deep learning and a simplified sleep staging classification problem, showed that this

is a valid approximation. The second work we have presented improves our first ap-

proach. We still trained a convolutional network, feeding it with the raw epochs from

PSG recordings, but considering the five known sleep stages. A fundamental step

when developing neural networks is the selection of hyperparameters. We resolved

this issue training several models with different configurations. The configuration

for a particular model depended on the results obtained with the previous ones.

The models with the five best hyperparameters configuration were selected to build

an ensemble. The classification achieved with this ensemble outperforms previous

works for some sleep stages while obtaining similar results for the remaining ones.

Finally, to facilitate the use of the developed algorithms, we built an applica-

tion programming interface (API). We improved our first API design following the

proposed heuristics and guidelines. Then, we used a questionnaire to interview an

engineer and assess the API from its subjective point of view. The engineer’s re-

sponse showed how our redesign API fixed most of the problems encountered with

the heuristics and guidelines and yet outline points that could still be improved.

1.6 Future Work

In this thesis, we presented a method that was validated and exploited in a sleep

center, which is not common. A possible explanation is that this method is simple
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enough to earn the trust of experts. Our algorithm makes decisions based on mea-

sures from the signal, so the outcome is easily understandable. On the contrary,

most automatic methods are not trustworthy. Usually, we present these methods as

a black box, with not a single explanation regarding their results. The first proposed

line for future work will address this problem. We should explain the results that

rely on machine learning or deep learning methods. Explainability is one of the most

active areas of research in the field of artificial intelligence.

The other line of future work is the improvement of the presented algorithms.

In this sense, we believe that the most promising algorithms are the ones using

deep learning. Within this line, we have four new proposals. Some try to address

different questions raised while developing our methods, while others try to integrate

the sleep characterization.

The first proposal is the detection of sleep micro-events using deep learning,

which is more complicated than sleep stages classification, given that this is a time

series problem. Also, if we develop new deep learning methods, we should also

obtain their saliency maps, a standard way of understanding how the network is

detecting events.

The second proposal is to study which is the best input for our networks. So far,

we always trained the neural networks using the electric signals recorded in PSG.

The most advanced methods in deep learning are those for image classification.

Moreover, expert analysis is also based on the image of a single epoch. Thus, we

should study networks using images as input.

The third proposal addresses the fact that sleep stages classification also depends

on previous stages. So far, none of our methods included memory, which means

we cannot take advantage of this property. Thus, we should study networks that

remember how they classified previous epochs such as Long Short Time Memory

networks (LSTM).

Finally, we should develop methods that achieve excellent results with different

databases. To do so, we should know if it is better to do transfer learning or train

several models with several databases.
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a b s t r a c t 

Electroencephalographic (EEG) arousals are related to sleep fragmentation and the consequent daytime 

sleepiness, and are usually detected by visual inspection of sleep polysomnographic (PSG) recordings. 

As this is a time-consuming task, automatic processes are required. A method using signal processing 

and machine learning models is presented. Using signal processing techniques, after a first step of signal 

conditioning, abrupt frequency changes in two EEG derivations and amplitude events in one submental 

electromyogram are identified. These events are grouped if they occur at the same time, using the epoch 

segmentation for that purpose. A set of features (that includes Hjorth’s Parameters and the Sleep Stage), 

is extracted from each group and used as input for several machine learning models. With a first dataset 

of 20 PSG recordings, six models are configured and compared: Fisher’s Linear Discriminant, Support Vec- 

tor Machines, Artificial Neural Networks, Classification Trees, k-Nearest Neighbors, and Naive Bayes. The 

best models, in terms of the classification error and the capabilities to detect EEG arousals, were used to 

build two different combined approaches. The first approach follows the Shortliffe and Buchanan’s cer- 

tainty factors model and the second follows a linear combination. Conducting experiments on 26 PSG 

recordings, a sensitivity of 0.78 and a specificity of 0.89 with an error of 0.12 was achieved using the 

first approach, and a sensitivity of 0.81 and a specificity of 0.88 with an error of 0.13 was achieved using 

the second approach. Both approaches improved the performance over the individual models. These re- 

sults were also compared to two well-known ensemble methods: Random Forest and k-Nearest Neighbor 

Ensemble. Again, the combined approaches showed the best performance. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The American Academy of Sleep Medicine (AASM) defines the 

electroencephalographic arousal as an abrupt shift in electroen- 

cephalogram (EEG) frequency, including alpha, theta, and/or fre- 

quencies greater than 16 Hz, lasting at least 3 s and with at least 

10 s of previous stable sleep [1] . Furthermore, during the rapid 

eye movement (REM) phase, a concurrent increase in the sub- 

mental electromyography (EMG), lasting at least 1 s, is needed to 

score such an event. EEG arousals alter the normal sleeping pat- 

tern, causing fragmented sleep, the second most common disease 

indicator, after pain. A high number of EEG arousals during sleep 

are related to daytime sleepiness. Thus, sleep studies must identify 

these events for a correct diagnosis. 

∗ Corresponding author. 

E-mail address: isaac.fvarela@udc.es (I. Fernández-Varela). 

Usually, sleep studies are performed with an overnight test, 

called polysomnography (PSG), which is the standard for the di- 

agnosis of multiple disorders [2] . The goal of this procedure is 

to record a set of physiological signals from the patient, includ- 

ing pneumological signals, electrophysiological signals, and other 

contextual information. An expert physician examines the sig- 

nals, detecting different events throughout the recording. Follow- 

ing the standard procedure, to find an EEG arousal, at least one 

central derivation of EEG and the EMG needs to be recorded. 

Once individual events are located and associated with their oc- 

currence time, clinical evidence patterns can be formed. Each pat- 

tern provides information, both from the individual events and 

from their structure, which allows the expert to decide about 

the presence of an arousal event during the pattern interval. 

Since the recording of a PSG lasts a whole night, the amount 

of data is huge, making the detection of EEG arousals a very 

time-consuming task. Thus, automatic detection and analysis are 

desirable. 

http://dx.doi.org/10.1016/j.neucom.2016.11.086 

0925-2312/© 2017 Elsevier B.V. All rights reserved. 
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Several previous works have attempted to achieve the goal of 

solving this automatic detection problem with differing levels of 

success. Even though the standard procedure implies the use of 

at least one EEG derivation and one EMG derivation, some au- 

thors have proposed the use of other signals. For example, Pillar 

et al. [3] studied the problem using a peripheral arterial tonome- 

try (PAT) to obtain the arousal index, using the PAT amplitude and 

the changes in the pulse rate. Telser et al. [4] followed a similar 

idea, detecting EEG arousals using the heart rate variability. Other 

works, such as Gouveia et al. [5] or Cho et al. [6] only used infor- 

mation from the EEG, avoiding REM stage identification. Agarwal 

[7] also only used EEG derivations, but in this case two deriva- 

tions, one for the study of the power in the alpha frequency band 

and the other in the beta band. The use of the standard proce- 

dure is a more complex task, including the difficulty of analyz- 

ing those events occurring in different signals at the same time. In 

this context, De Carli et al. [8] proposed a method using wavelets 

for the study of the EEG and average measures for the study of 

the EMG, while Malinowska et al. [9] applied pattern recognition 

techniques in the EEG and studied the deviation of the EMG sig- 

nal during REM stages. Other works followed a machine learning 

approach after a first phase of signal processing. With this tech- 

nique, Pacheco and Vaz [10] used a K-means classifier after obtain- 

ing the frequency and power of the EEG and EMG respectively, and 

Alvarez-Estevez and Moret-Bonillo [11] compared different classifi- 

cation models after selecting intervals based on the frequency from 

two EEG derivations, and on the amplitude from one submental 

EMG. A similar approach was followed by Shahrbabaki et al. [12] , 

but including information from leg movement, airflow and electro- 

cardiography (EKG). Finally, the work of Wallant et al. [13] avoided 

the use of machine learning algorithms, scoring the EEG arousals 

after searching for abrupt frequency changes in the EEG and for 

muscular activation in the EMG. 

The method described in this paper uses three signals (plus 

another one for conditioning purposes) analyzing their relevant 

parameters: the power in selected frequency bands in two EEG 

derivations, and the amplitude in an EMG signal. From these anal- 

yses, we obtain a set of intervals that must be related to one an- 

other, following temporal constraints. Each group of intervals is 

used to extract multiple features that are the input to several ma- 

chine learning models. The conducted study includes six different 

models: Fisher’s Linear Discriminant, Support Vector Machine, Ar- 

tificial Neural Network, Classification Tree, k-Nearest Neighbor, and 

Naive Bayes. At the end, the outputs of these models are com- 

bined to obtain a final decision. Two different approaches were 

tried to achieve this combination, one following the Shortliffe and 

Buchanan’s certainty factor models and the other one following a 

linear combination. The output of these approaches was compared 

to the output of two well-known ensemble methods: Random For- 

est and k-Nearest Neighbor Ensemble. 

With this work, we propose new algorithms for the selection 

of relevant intervals from the input signals, the use of a set of 

features not common in the literature, including Hjorth’s param- 

eters and sleep stage, and, finally, two different combined ap- 

proaches, built after selecting the best individual models, demon- 

strating that they improve the performance of the individual and 

ensemble models. 

2. Proposed method 

The proposed method works in a multichannel context, ana- 

lyzing three signals: two EEG derivations (C3/A2 and C4/A1) and 

one EMG (submental); making the final decision on the presence 

of EEG arousals with machine learning models. In the first step, 

a fourth signal, the electrocardiogram (EKG), is used to remove 

artifacts from the EEG derivations. Before applying the machine 

Fig. 1. Structure of the method proposed. 

learning models, using signal processing techniques, the suitable 

intervals from the different signals are selected and grouped to ex- 

tract defining features from them. Fig. 1 represents the structure of 

the method proposed in this paper. 

2.1. Signal processing 

The three selected signals are processed using different tech- 

niques. After removing the artifacts, both EEG signals are studied 

in the frequency domain whereas the EMG signal is explored in 

the time domain. In both cases, a sliding window is used to select 

the relevant intervals employed in further steps. 

2.1.1. Signal conditioning 

The EEG signal and other related biosignals usually present arti- 

facts that can mislead their interpretation [14] . The most common 

artifact, in the data used in this work, is the one induced by the 

EKG: a peak in the EEG at the same time as a QRS complex in 

the EKG. To remove these artifacts, the beginning and the end of 

the QRS complexes are located over the EKG signal. To locate these 

points, we studied the amplitude of the first derivative of the EKG, 

selecting the highest values. As not every complex causes an arti- 

fact, the original EEG is only corrected in those segments where an 

artifact is detected. To correct these segments, we interpolate the 

signal between the start and the end of the artifact. Fig. 2 illus- 

trates the conditioning process. 

2.1.2. Signal windowing 

After both EEG signals have been conditioned, a windowing 

process takes place. The three available signals, the two EEG 

derivations, and the submental EMG, are studied using a sliding 

window. 
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Fig. 2. Signal conditioning process to remove the EKG artifacts from the EEG. 

The window used in the EEG derivations has a duration of 3 s, 

with a shifting step empirically selected. Theoretically, the shift- 

ing step should tend to 0, but we can improve the computational 

performance using higher values. According to the AASM [1] , to 

score an EEG arousal, there must be an abrupt change in the alpha 

( α = 8 –12 Hz), theta ( θ = 4 –7 Hz) and/or frequencies greater than 

16 Hz. Transforming each window into the frequency domain, us- 

ing a Hamming function and the Fourier transform, the power of 

the window is obtained following the formula: 

power = 

1 

n 

2 

n ∑ 

i =1 

| X (n ) | 2 

where n is the number of samples in the window and X the sig- 

nal through the bandpass. A bandpass filter was applied for each 

frequency in the whole signal. 

For each of the previously named frequencies ( α, θ , and > 

16 Hz), a baseline over the average of the previous 10 s is created. 

Intervals with abrupt changes are selected when the ratio between 

the power and the baseline is greater than a threshold value se- 

lected empirically. From these different sets of intervals, one set for 

each band, those lasting less than 3 s (the minimum EEG arousal 

duration) are discarded. Moreover, two consecutive intervals from 

the same set, that last t 1 and t 2 with a non-overlapping time be- 

tween them t 3 , if t 1 + t 2 > t 3 , t 1 < t 3 and t 2 < t 3 , are replaced 

by one longer interval that includes both and lasts t 1 + t 2 + t 3 . The 

window length and the baseline duration were chosen based on 

the definition of EEG arousal from the AASM. Fig. 3 shows the ap- 

plication of the windowing technique in one EEG derivation. 

The process carried out in the EMG signal is similar to that de- 

scribed for the EEG derivations. Maintaining a 3 s window, we also 

selected an empirical value for the shifting step. To find the EMG 

activity related to an EEG arousal, the peak to peak amplitude in 

the window is studied. A baseline over the average of the previous 

30 s is created. Again, each value over the baseline reflects an am- 

plitude change. The selection of high activity intervals is also car- 

ried out when the ratio between both values (the amplitude value 

and the baseline) is greater than an empirically selected threshold. 

Intervals lasting less than 3 s are discarded. In this case, the win- 

dow duration and the baseline length were selected according to 

our experimentation. 

2.1.3. Intervals grouping 

In previous studies, a 30 s based segmentation, called epoch, is 

used. We used these divisions to group the intervals of the differ- 

ent signals. The goal is to identify those intervals from the three 

signals occurring within the same epoch. With all those intervals 

occurring in the same epoch, using the interval middle point to 

select the epoch an interval belongs to, we form a group choosing 

one interval from each signal. If there is no interval for one signal, 

no group is formed, whereas if there is more than one, we select 

the one with the highest power on the frequency bands mentioned 

in Section 2.1.2 . For example, as we see in Fig. 4 , in epoch i there is 

only one interval for each signal, obtaining the group in a straight- 

forward manner. In epoch i + 1 there is no interval in one of the 
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Fig. 3. Windowing technique through the EEG derivations. Only θ and > 16 Hz bands are represented for clarity. Straight and dotted squares represent two consecutive 

windows and the power values obtained for these bands. 

Fig. 4. Grouping intervals occurring in the same epoch. 

EEG derivations, so no group is obtained. Finally, in epoch i + 2 , 

there are two intervals in the first EEG derivation, so to create the 

group, the one with the highest power value in α, θ , and > 16 Hz 

bands is selected. 

2.2. Machine learning models 

From the groups obtained using the method described, a set of 

features is extracted and used over several classifications models. 

In this problem we have two possible classes, i.e. arousal and non- 

arousal. The best models, according to our experimentation, are se- 

lected to build combined approaches that improve the individual 

models’ performance. These approaches are compared to ensemble 

methods to assess their performance. 

2.2.1. Feature extraction 

The classical problem of pattern classification can be repre- 

sented by the relation 〈 v, d 〉 where v is a vector of features, and 

d the label indicating the classification. Applied to our problem, in 

general, v = { v 1 , t 1 , v 2 , t 2 , v 3 , t 3 , c} , where v 1 = { v 1 1 , . . . , v 1 n } is the 

vector of features extracted from the interval of the first deriva- 

tion of the EEG and t 1 the time at which the interval occurs; 

v 2 = { v 2 1 , . . . , v 2 n } is the vector of features extracted from the in- 

terval of the second derivation of the EEG and t 2 the time at which 

the interval occurs; v 3 = { v 3 1 , . . . , v 3 m } is the vector of features ex- 

tracted from the interval of the EMG and t 3 the time at which the 

interval occurs; and c = { c 1 , c 2 } is the vector of contextual features. 

As already mentioned, the use of the epoch division simplifies the 

problem because t 1 = t 2 = t 3 and thus, the vector of features stands 

as v = { v 1 , v 2 , v 3 , c} . 

Table 1 

Intervals features description. 

Signal Feature Description 

EEG C3/A2 v 1 1 –5 
Total power on the band δ, θ , α, σ and > 16 Hz 

v 1 6 –10 
Max. power on the band δ, θ , α, σ and > 16 Hz 

v 1 11 –15 
Min. power on the band δ, θ , α, σ and > 16 Hz 

v 1 16 –18 
Activity, mobility and complexity 

v 1 19 
Duration 

EEG C4/A1 v 2 1 –5 
Total power on the band δ, θ , α, σ and > 16 Hz 

v 2 6 –10 
Max. power on the band δ, θ , α, σ and > 16 Hz 

v 2 11 –15 
Min. power on the band δ, θ , α, σ and > 16 Hz 

v 2 16 –18 
Activity, mobility and complexity 

v 2 19 
Duration 

EMG v 3 1 Total amplitude 

v 3 2 Max. amplitude 

v 3 3 Min. amplitude 

v 3 4 Duration 

Contextual c 1 Sleep Stage 

c 2 Common time between the EEG intervals 

Table 1 describes the complete set of features, v , that are ex- 

tracted from each group of intervals. Regarding the EEG intervals, 

information of the power of the different bands is included. In 

Section 2.1.2 , we have already described how to obtain the α, θ , 

and > 16 Hz power values. These bands are completed adding the 

power of delta ( δ = 0 . 5 − 4 Hz ) and sigma ( σ = 12 –15 Hz ) bands. 

Lastly, Hjorth parameters are included, as it has been demonstrated 

that they are a good characterization of the EEG [15] . These param- 

eters are defined as follows: 

Act i v it y = v ar(X (n )) 

Mobility = 

√ 

Acti v ity (X 

′ (n )) 

Acti v ity (X (n )) 

Complexity = 

Mobility (X 

′ (n )) 

Mobility (X (n )) 

where X is the signal and X 

′ the first derivative. 

Regarding the EMG interval, we include information about the 

amplitude of the signal, obtaining the values as described in 

Section 2.1.2 . 

Finally, we include two contextual features: the sleep stage, au- 

tomatically obtained following the method described in [16] , as 
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the detection of EEG arousals should be adapted as a function 

of the sleep stage (i.e., scoring of arousal during REM requires a 

concurrent increase in submental EMG); and the common time 

during which both EEG intervals appear simultaneously, if they 

do not overlap c 2 = 0 , otherwise, c 2 = min (end E E G 1 , end E E G 2 ) −
max (start E E G 1 , s tart E E G 2 ) . 

2.2.2. Classification models 

As explained above, six classification models were considered 

for the EEG arousal detection task: Fisher’s Linear Discriminant 

(FLD), Support Vector Machine (SVM), Artificial Neural Networks 

(ANN), Classification Trees (CT), k-Nearest Neighbor (k-NN) and 

Naive Bayes (NB). 

2.2.3. Combined approach 

The aforementioned classification models were compared to a 

mixed approach that combines the classification algorithms in two 

different manners: (1) a model following Shortliffe and Buchanan’s 

certainty factors model, and (2) a linear combination approach. 

The model proposed by Shortliffe and Buchanan (S&B) [17] is 

based on the definition of certainty factors ( CF ). Given the hypoth- 

esis, i.e., the presence of arousal, the CF can obtain a value between 

( −1, 1) where 1 completely asserts the hypothesis and −1 com- 

pletely denies it. If for every classification, we translate the output 

of the model i to CF i , the outputs of two models are combined as 

follows: 

CF i j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

CF i + CF j − CF i × CF j if CF i > 0 , CF j > 0 

CF i + CF j + CF i × CF j if CF i < 0 , CF j < 0 

CF i + CF j 

1 − min (| CF i | , | CF j | ) if CF i × CF j < 0 

The second approach proposed in this work is based on a lin- 

ear combination. Maintaining the translation of the output to CF , 

we can define a linear combination of two individual models as 

follows: 

CF i j = w i × CF i + w j × CF j 

where w i , w j ∈ R and w i + w j = 1 . For n classification models, this 

can be generalized as: 

CF = 

n ∑ 

i =1 

w i × CF i 

where w i is a weight factor verifying that 
∑ n 

i =1 w i = 1 , w i ∈ R . 

For both combined approaches, the obtained output must be 

used to decide whether the input is classified as EEG arousal or 

non-arousal. In this sense, the easiest solution is to use a thresh- 

old, classifying values greater than the threshold as arousals, and 

values lower than it as non-arousals. 

2.2.4. Ensemble methods 

An ensemble method (ensemble of classifiers) is a set of classi- 

fiers whose individual decisions are combined in some way to clas- 

sify new examples. They usually outperform the accuracy reached 

by the considered models. A necessary and sufficient condition for 

an ensemble of classifiers to be more accurate than any of its in- 

dividual members is if the classifiers are accurate and diverse [18] . 

An accurate classifier is one that has a classification error better 

than random guessing on new x values. Two classifiers are diverse 

if they make different errors on new data points. In the literature, 

ensemble methods is the name given to those combination of clas- 

sifiers using only one classification model. 

In this work, we compare our combined approaches against two 

ensemble methods: Random Forest (RF) and k-Nearest Neighbor 

Ensemble (k-NNE). 

2.3. Performance measures 

The performance of the method is evaluated in terms of the 

following measures: 

• The classification error computed as the proportion of incorrectly 

classified positive and negative instances. 

• The sensitivity , which quantifies the ability to identify positive 

instances correctly. It is the proportion of true positives that are 

correctly identified. 

• The specificity , which quantifies the ability to identify negative 

instances correctly. It is the proportion of the true negatives 

that are correctly identified. 

• The AUC , which compares the sensitivity and specificity simul- 

taneously. In a two class problem, this is the average between 

both values. 

3. Experimental procedures 

The experiments conducted in this work use different data sets 

containing PSG recordings from real patients. All recordings were 

taken from the Sleep Heart Health Study (SHHS) [19] , a database 

granted by the Case Western Reserve University, emerged from a 

multicenter cohort study implemented by the National Heart Lung 

and Blood Institute to determine the cardiovascular and other con- 

sequences of sleep-disordered breathing. 

Each recording includes the annotations of different events, in- 

cluding EEG arousals, marked by the analysis of experts following 

the rules of the ASDA (current AASM) [20] . All the recordings were 

blind scored and anonymized. The montage includes the four sig- 

nals used in this work, sampled at 125 Hz, right and left elec- 

trooculograms, thoracic and abdominal excursions, airflow, pulse 

oximetry, body position and ambient light. 

From this study we built two different datasets: 

• A first dataset containing 20 recordings. This dataset contains 

2981 EEG arousal events in 23 , 972 epochs. It was divided into 

two smaller subsets: 15 recordings for a training and valida- 

tion set ( T R ) containing 2202 arousals in 18 , 094 epochs, and 

five recordings for a test set ( T S ) containing 779 arousals in 

5878 epochs. This dataset is used with two purposes. First, with 

the T R we configured the machine learning models, both the 

individual models and the ensemble models. Second, with the 

classification over the T S we compare the individual models, to 

select the best ones for the construction of the combined ap- 

proaches. 

• A second dataset containing 26 recordings, used previously in 

[21] . This dataset contains 4860 EEG arousals in 31,070 epochs. 

With this dataset we probed the combined approaches pro- 

posed, in a completely independent dataset. With this dataset 

we also compare the combined approaches against the individ- 

ual and the ensemble models. 

To select the empirical values mentioned in Section 2.1.2 , we 

calculated the maximum sensitivity and the minimum specificity 

our method can achieve. If there is an EEG arousal in certain epoch, 

we can only score it if, previously, we found relevant intervals for 

both EEG derivations in that epoch. In other words, we can only 

score an EEG arousal in an epoch if we formed a valid group in 

that epoch. We define the maximum sensitivity using the num- 

ber of epochs containing an EEG arousal and the number of those 

epochs where we found a valid group of events, and the minimum 

specificity with the number of epochs that do not contain an EEG 

arousal and the number of those epochs where we did not find a 

valid group. With these two parameters we selected the following 

values that are common for all the studied subjects: 
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• 0.2 s for the skipped time between windows in the EEG analy- 

sis. 

• 1.5 times greater power than the baseline on power values for 

the threshold to select relevant EEG intervals. 

• 0.4 s for the skipped time between windows in the EMG. 

• 2 times greater amplitude than the baseline on amplitude val- 

ues to select relevant EMG intervals. 

Before any further experimentation with the classification mod- 

els, some decisions regarding their configuration were made: 

• SVM : an RBF kernel was selected because it maps the samples 

into a higher dimensional space, being able to handle the case 

when the relation between class labels and attributes is nonlin- 

ear. 

• ANN : a feedforward network where one hidden layer was se- 

lected, trained with the conjugate gradient backpropagation al- 

gorithm [22] . 

• k-NN : the Spearman’s Distance [23] to measure the distance be- 

tween two elements was selected. 

• NB : a kernel distribution [24] was selected, assuming the data 

does not follow the normal distribution. 

As already explained, the T R set was employed to configure the 

relevant parameters of all the models used in this work, using a 

10-fold cross validation. It is important to notice that every dataset 

in this problem is highly unbalanced, with many more samples 

of non-arousal epochs than otherwise. This situation could eas- 

ily lead to a bias classifier. To avoid this difficulty, we applied an 

under-sampling technique in the T R set, preserving those epochs 

with presence of an EEG arousal and randomly selecting the same 

number of epochs without it. The test set remains unbalanced, as 

would be the case in a real life scenario in the presence of new, 

non-previously seen, PSG recordings. Those models achieving the 

lowest classification error with the 10-fold cross validation were 

the ones selected, after probing the following parameters: 

• SVM: We attempted exponentially growing sequences for 

the parameter C (2 −11 , 2 −9 , . . . , 2 11 ) and the parameter S 

(2 −11 , 2 −9 , . . . , 2 11 ) . Between the best values, a detailed grain 

search was conducted, choosing the final configuration as C = 

2 11 and S = 2 −3 . 

• ANN: A similar approach was followed for the ANN varying the 

number of hidden neurons, H , from 2 to 2 8 in powers of two. 

The final value chosen was H = 40 . 

• CT: Different prune levels from 1 to 20 were tried. The final 

prune value selected was 15. 

• k-NN: We tried the number of neighbors from 2 to 15, finally 

choosing 5 neighbors. 

The ensemble methods were also configured using the same 

procedure, and selecting those models achieving the lowest clas- 

sification error: 

• RF: We tried different numbers of CT used to build the ensem- 

ble, finally selecting the value of 100. 

• k-NNE: We tried combinations with different number of neigh- 

bors for the individual k-NN and length of subsets. The best 

combination found was 4 neighbors and 20 features in each 

subset. 

Once we had configured all the models, we trained them with 

the complete T R to conduct the remaining experiments. 

The goal of the experiments carried out with the T S is to 

specifically demonstrate the importance of two of the features in- 

cluded in the input space: the Sleep Stage and Hjorth’s parame- 

ters. While the Sleep Stage is not usually included in EEG arousals 

studies, Hjorth’s parameters are not considered good indicators for 

arousals [25] . Four feature selections experiments were conducted 

to meet the aforementioned goal: including all the features; ex- 

cluding Hjorth’s parameters; excluding the Sleep Stage; and ex- 

cluding both features. . With these experiments, we not only val- 

idate our features but also establish the importance of each one. 

Moreover, these experiments allowed us to compare the proposed 

classification models. 

To build our combined approaches, the best models in terms of 

classification error of these experiments were selected. These com- 

bined approaches also need a proper configuration to achieve the 

best performance. In the case of the S&B Combination, it has to 

be decided how to translate the classifiers output to a CF value, 

whereas for the Linear Combination the weights must be carefully 

chosen. 

In order to obtain CF values from the outputs of the individual 

models, we followed different strategies for each kind of classifier. 

For the probabilistic ones where the output is the probability of 

the input representing an EEG arousal, the translation is straight- 

forward, scaling its output values into the interval (−1 , 1) . For the 

categorical classifiers in which the output is the class the input 

belongs to, we need a value to represent the class arousal and 

another one to represent the class non-arousal. From the experi- 

ments performed and to establish a similarity between the proba- 

bilistic and categorical classifiers, a value of 0.7 is used to represent 

the arousal class and a value of −0 . 7 to represent the non-arousal 

class. This assignment is based in the observation that the prob- 

abilistic classifiers do not tend to use high values (close to 1) to 

classify an input as arousal; in fact, values higher than 0.7 mean 

that the classifier is almost sure that the input represents an EEG 

arousal. 

Regarding the linear combination model, the set of weights 

must be carefully chosen. We tried five different configurations: 

1. w i = 1 /n 

2. w i = er ror i / 
∑ n 

j=1 er ror j 
3. w i = sens i / 

∑ n 
j=1 sens j 

4. w i = spec i / 
∑ n 

j=1 spec j 
5. w i = AUC i / 

∑ n 
j=1 AUC j 

where n is the number of models selected for the combined ap- 

proaches, and the performance measures were obtained with the 

experimentation done with the T S set. The configuration chosen is 

the first one. 

Finally, for both combinations, the decision between arousal or 

non-arousal for each combination output is made with a threshold. 

If the combination yields a value greater than the threshold, we 

classify as arousal and, otherwise, as non-arousal. These thresholds 

can obtain values in the interval (−1 , 1) , which is the interval for 

the outputs of the combination methods. We selected those that 

achieve a similar AUC value compared to the individual classifiers, 

with the goal of minimizing the classification error. The final val- 

ues for the S&B Combination and the Linear Combination were, re- 

spectively, 0.7 and 0.3. 

4. Experimental results 

Table 2 represents the four experiments conducted over the T S 
set, including a trivial classifier that always decides there is no 

presence of EEG arousal. For those models that present variations 

over executions, because they used randomly initialized parame- 

ters, the results shown are the average of 15 executions. 

First of all, the inclusion of the trivial classifier demonstrates 

that the comparison between individual classifiers cannot be made 

only with the classification error, but that in addition AUC and the 

sensitivity should be analyzed. Thus, classifier A is better than clas- 

sifier B if the AUC achieved by A is higher than the AUC achieved 

by B and, at the same time, the classification error of A is lower 

than the classification error of B . 
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Table 2 

Results using the T S set from the individual classifiers showing the input features used. For those models vary- 

ing with each execution, results shown are the average of 15 executions. 

Error Sensitivity Specificity AUC 

Trivial classifier 0.133 0 1 0.5 

All the features FLD 0.196 0.762 0.810 0.786 

SVM 0.134 0.815 0.874 0.845 

ANN 0.159 0.868 0.836 0.852 

CT 0.139 0.810 0.869 0.839 

k-NN 0.145 0.799 0.864 0.832 

NB 0.368 0.885 0.594 0.734 

Without Hjorth parameters FLD 0.171 0.737 0.843 0.790 

SVM 0.161 0.814 0.843 0.828 

ANN 0.213 0.876 0.774 0.825 

CT 0.142 0.796 0.868 0.832 

k-NN 0.149 0.798 0.859 0.828 

NB 0.347 0.873 0.620 0.746 

Without Sleep Stage FLD 0.200 0.745 0.808 0.777 

SVM 0.163 0.811 0.841 0.826 

ANN 0.207 0.862 0.782 0.822 

CT 0.155 0.789 0.853 0.821 

k-NN 0.169 0.794 0.836 0.815 

NB 0.367 0.878 0.596 0.737 

With neither Hjorth nor Sleep Stage FLD 0.171 0.721 0.845 0.783 

SVM 0.190 0.840 0.806 0.823 

ANN 0.191 0.840 0.804 0.822 

CT 0.163 0.810 0.841 0.825 

k-NN 0.176 0.798 0.828 0.813 

NB 0.345 0.872 0.623 0.747 

It is clear that the inclusion of both features, Hjorth’s parame- 

ters and Sleep Stage, improves the performance of the classifiers, 

as, in general, the methods obtain higher AUC values and lower 

classification errors. Results obtained adding only one of these two 

features are similar no matter which one used, and in both cases 

are worse than the results achieved with the complete set of fea- 

tures. 

It is very noticeable that four of the models (SVM, ANN, CT and 

k-NN) outperform the other two (FLD and NB). Moreover, these lat- 

ter two methods do not achieve better results, not even with the 

complete set of features. Thus, both FLD and NB classifiers will be 

excluded in future experiments and discussions. 

Among the remaining classifiers, the experiment’s performance 

varies. Focusing on the experiment with the complete set of fea- 

tures, the classification error achieved by the SVM and the CT is 

clearly lower than the error by the rest of the classifiers, while 

the AUC value improves with the ANN. The ANN also obtains the 

higher sensitivity, but as the classification error is also higher, it 

means that the number of false positives is also high. In this sce- 

nario, the best classifier is the SVM, with the second largest AUC 

value but the lowest classification error. 

After comparing the individual models, we selected the four 

which achieved the best performance in terms of classification er- 

ror and AUC values (SVM, ANN, CT, and k-NN), as the remaining 

classifiers are not trustworthy to use in the combined approaches. 

As explained in Section 3 , the performance of these approaches 

was tested using a second dataset that contains 26 PSG record- 

ings. This dataset was also used to test the individual models. This 

way we can compare them to the combined approaches and the 

ensemble models, and check the generalization capabilities of the 

method. The performance measures obtained using the different 

models are shown in Table 3 . 

Combining the different models we should expect a reduction 

in the error because the score of an arousal is more demanding, 

i.e., more models should agree than disagree. It is evident how the 

obtained results back up this theory. Both combinations clearly re- 

duce the error, between a 16% in the worst case (the SVM com- 

Table 3 

Results from the combined approaches, the individual and the ensem- 

ble models using the dataset containing 26 PSG recordings. 

Error Sensitivity Specificity AUC 

Trivial classifier 0.156 0 1 0.5 

SVM 0.159 0.845 0.840 0.843 

ANN 0.224 0.900 0.754 0.827 

CT 0.161 0.785 0.849 0.817 

k-NN 0.173 0.814 0.829 0.822 

S&B combination 0.124 0.781 0.893 0.837 

Linear combination 0.133 0.810 0.878 0.844 

RF 0.160 0.844 0.839 0.842 

k-NNE 0.328 0.908 0.629 0.768 

pared against the Linear Combination) and a 45% in the best case 

(the ANN compared against the S&B Combination). Moreover, the 

higher AUC value is obtained with the Linear Combination, while 

the S&B combination achieved a higher AUC value than 3 of the in- 

dividual classifiers but slightly lower than the SVM (by less than 1% 

lower). Of course, this improvement in classification error and AUC 

value does not come without a trade-off. In both combined ap- 

proaches, sensitivity is lower than in most of the individual meth- 

ods, as we have reduced the lucky guesses . The interesting fact is 

that this reduction in the scored arousals implies a higher decrease 

in the false positives, thus improving the specificity. As the de- 

crease in false positives is higher than the loss of EEG arousals de- 

tected, the results obtained with the combinations are better than 

the ones obtained with the individual methods. 

It is clear that both approaches outperform the ensemble meth- 

ods. While the RF achieved slightly better results than the CT, the 

k-NNE obtained higher error and lower AUC values than the indi- 

vidual k-NN. The reason for this problem is that we could not se- 

lect the same distance function because it did not apply to some of 

the feature subsets. Actually, the goal of including both ensembles 

was to validate and compare the performance of our combined ap- 

proaches. As we see in the results, both in terms of lower classi- 
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fication error and higher AUC values, the proposals achieve better 

performance than the ensembles. 

5. Discussion and conclusions 

EEG arousals cause sleep fragmentation, one of the main rea- 

sons why a good night’s sleep is unattainable for patients with 

a high arousal index. The detection of these events is mandatory 

for a correct and complete analysis of a PSG recording and, thus, 

for the diagnosis of sleep disorders. This complex task implies the 

analysis of multiple signals at the same time, being also time- 

consuming for the expert. To solve the inherit problems associated 

to this task, the time an expert needs and the subjectivity associ- 

ated to the process, an automatic method is desired. 

This paper attempts to solve the problem proposing a new 

method for the automatic detection of EEG arousals using com- 

bined approaches based on machine learning models. Following 

the standard procedure, three signals are used, two EEG derivations 

and one submental EMG. Two phases summarize the method: a 

signal processing phase and a machine learning phase. Signal pro- 

cessing includes the conditioning of the EEG to reduce the im- 

pact of EKG artifacts; the analysis of EEG derivations in the fre- 

quency domain, searching for abrupt power changes; the analysis 

of EMG in the time domain, searching for high activity; and, finally, 

the union of the different relevant intervals found in the previous 

steps. The first step of the machine learning phase is the extrac- 

tion of features from the intervals selected before to feed differ- 

ent models: FLD, ANN, SVM, CT, k-NN, and NB. We tried different 

feature combinations, to demonstrate the importance of including 

both Hjorth parameters and the sleep stage. Both features are not 

commonly included in arousals studies. Finally, to reduce the error 

of the individual methods, two combined approaches of the indi- 

vidual classifiers are proposed. These approaches were compared 

to well-known ensemble methods (RF and k-NNE), proving their 

efficiency. 

It has been demonstrated that using the complete set of fea- 

tures proposed, the SVM model achieves the best results, obtaining 

a sensitivity of 0.815 and a specificity of 0.874, with an error of 

0.134. Using a different and bigger scenario, we show an effective 

way of reducing the error by as much as a 45% reduction in the 

best case. Both combinations achieved lower errors, 0.124 for the 

S&B and 0.133 for the Linear, while almost the highest AUC value. 

Even though this combination reduces the number of true posi- 

tives, the relative number of false positives achieved a greater re- 

duction in proportion, improving the results of the individual mod- 

els. Both combinations achieved better performance than the en- 

semble methods. 

Unfortunately, it is hard to compare the results obtained in this 

work to those previously published in the literature. The lack of 

a standard benchmark or methodology means that almost every 

work has to use its own recordings, scorings and validation meth- 

ods. To minimize this problem, we followed the validation used 

in [11] , so that our results are directly comparable to theirs. With 

their test set, they reported sensitivity, specificity and AUC values 

of 0.86, 0.76 and 0 . 81 , respectively, with a best case classification 

error of 0.20. Even though the sensitivity achieved in this work 

is lower than theirs, we clearly outperformed their classification 

error and AUC values. The second dataset we used in this paper, 

was directly obtained from [21] . In that work the authors reported 

a sensitivity of 0.65, a specificity of 0.95 and an error value of 

0.10. Even though the classification error is lower than the one we 

are presenting, as we have already seen with the trivial classifier, 

models achieving lower sensitivities have the benefit of obtaining 

lower classification errors. Furthermore, they achieve an AUC value 

of 0.80, whereas the value achieved in this work, for both combi- 

nation methods, is 0.84. 

In this paper, signal conditioning is made based on the prior ob- 

servations over the available recordings. More general and complex 

methods are desirable and proposed for future action. These meth- 

ods should adapt to the input, identify and avoid more and dif- 

ferent kind of artifacts. We have demonstrated how using Hjorth’s 

parameters and the sleep stage information improved the results 

obtained, although, the experimentation in this sense was not thor- 

ough and more experimentation could have been done. A com- 

plete and exhaustive feature selection study is desirable and ex- 

ploring features already used in previous works would be an excel- 

lent addition. Regarding the used methods, different configurations 

could be tried, broadening the configuration space which has al- 

ready been explored. As a summary, exploring possibilities towards 

a more general method (which is applicable to and tested over dif- 

ferent PSG sources) would benefit this work. This would enable us 

to achieve the goal of a complete and automatic EEG arousals scor- 

ing method. 
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polysomnographic recordings
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A B S T R A C T

Background: Clinical diagnosis of sleep disorders relies on the polysomnographic test to examine the neuro-
physiological markers of the sleep process. In this test, the recording of the electroencephalographic activity and
the submental electromyogram is the source of the analysis for the detection of electroencephalographic arousals.
The identification of these events is important for the evaluation of the sleep continuity because they cause the
fragmentation of the normal sleep process. This work proposes a new technique for the automatic detection of
arousals in polysomnographic recordings, presenting a non-computationally complex method with the idea of
providing an easy integration with other algorithms.
Methods: The proposed algorithm combines different well-known signal analysis solutions to identify relevant
arousal patterns with special emphasis on robustness and artifacts tolerance. It is a multistage method that after
obtaining an initial set of events, improves the detection finding common EEG arousal patterns. Finally, false
positives are discarded after examining each candidate within the context of clinical definitions.
Results: 22 polysomnographic recordings from real patients were used to validate the method. The results ob-
tained were encouraging, achieving a precision value of 0.86 and a F1 score value of 0.79. When compared with
the gold standard, the method achieves a substantial agreement (Kappa coefficient of 0.78), with an almost
perfect agreement with ten recordings.
Conclusions: The algorithm designed achieved encouraging results and shows robust behavior in presence of signal
artifacts. Its low-coupled design allows its implementation on different development platforms, and an easy
combination with other methods.

1. Introduction

Sleep disorders affect a major part of the population. Just as an
example, between 30% and 40% of adults complain of insomnia, and
between 5% and 15% of sleepiness [1]. Good sleep is essential for good
health, and the consequences of bad sleep have been reported broadly
[2]. Clinical diagnosis of sleep disorders relies nowadays on different
procedures, however, the so-called polysomnographic test (PSG) still
occupies a central role as the standard technique to examine the neuro-
physiological markers of the sleep process [3].

Among the different physiological data collected during the PSG, the
recording of the electroencephalographic (EEG) activity and of the sub-
mental electromyogram (EMG) is the source of the analysis for the
detection of transient events in the form of EEG arousals. These events

are of interest in the context of evaluating a subject's sleep continuity: at
the microstructural level of sleep, an EEG arousal represents an event
triggering an awakening activity. A high presence of these events
therefore provokes the fragmentation of the normal sleep process pre-
venting restful sleep [4]. Specifically, according to the AASM [5], an EEG
arousal is an abrupt shift in the EEG frequency including alpha, theta
and/or frequencies greater than 16 Hz (but not spindles) that lasts at least
3 s, with at least 10 s of previous stable sleep. Also, during Rapid Eye
Movement (REM) sleep stage, a concurrent increase in submental elec-
tromyography (EMG) is required.

Visual examination of the entire PSG for the scoring of these events is
costly, due to the complexity of the analysis and the huge amount of data
recorded per night. To help the clinician in the process, therefore,
different works have explored several possibilities to automate the
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detection procedure.
Pacheco and Vaz [6] (1998), implemented a system that obtained

frequency features from one central and one occipital EEG derivations
and power features from the EMG. The obtained values were used to feed
a K-means classifier, discarding false detected events with a context rule
module. Zamora and Tarassenko [7] (1999), compared the use of
autoregressive models and a bank of bandpass filters as a feature
extraction technique, from one EEG derivation, to train and test a radial
basis function neural network. De Carli et al. [8] (1999), followed a
multichannel approach, analyzing two EEG derivations and extracting
features by means of the wavelet transform. They also obtained transient
increases in EMG muscle activity using a weighed moving average
operator. Multichannel data was then integrated using a threshold to
select probable arousals. Pillar et al. [9] (2002), proposed the use of
peripheral arterial tonometry (PAT), studying the amplitude in combi-
nation with detected increases in pulse rate to obtain a derived PAT-
arousal index. Cho et al. [10] (2005), studied the use of a single EEG
derivation and proposed a method based on time-frequency character-
istics, followed by classification using Support Vector Machines. Agarwal
[11] (2005), extracted frequency features from the alpha and beta bands,
from one occipital, and one central derivations respectively. Then, they
applied segmentation and statistical methods over the features. Mali-
nowska et al. [12] (2006), applied a matched pursuit procedure in one
EEG derivation, and studied the deviation of the EMG amplitude during
REM stages. Sugi et al. [13] (2009) reported a method in which they
analyzed multichannel data, particularized for patients with sleep apnea
syndrome. Four channels of EEG were used, extracting their periodogram
features. Respiratory state (pressure and temperature) and chin and
tibialis EMG characteristics were computed as well. Adaptive detection
thresholds were developed on the basis of the respiratory and muscle
activity for the detection of respiratory-related EEG arousals. The method
included automatic detection of the sleep periods. Shmiel et al. [14]
(2009) on their part, proposed the use of data-mining techniques for the
extraction of arousal patterns implicit in the signals of EEG, EMG, pulse
rate and arterial oxygen saturation. Alvarez-Estevez and Moret-Bonillo
[15] (2011) developed a marker based on the spectral features of the
alpha and beta bands, followed by a feature extraction process using two
central EEG, and one submental EMG derivations. Different machine
learning models were used to evaluate the relevant features to identify
the arousal patterns. The application of feature selection methods to
reduce input dimensionality was studied in Alvarez-Estevez et al. [16],
and the method was more recently revised in Fern�andez-Varela et al.
[17]. Behera et al. [18] (2014), also followed the aforementioned study
[15], adding more features to the input of an artificial neural network.
Finally, Wallant et al. [19] (2016), have recently proposed a method for
the automatic detection of artifacts which included a module for the
characterization of EEG arousals.

This work proposes a new method based on a multi-channel analysis
context. The goal is to build a robust and efficient method, but simple at
the same time, to automatically score EEG arousals and help the clinician
during the PSG examination task. The method is designed to allow an
easy integration with different platforms or applications. To achieve this
end, well-known signal processing routines, easily implementable in any
programming language are used. The resulting algorithm is configurable,

and it can be executed using one EEG and one chin EMG derivations,
while the presence of an extra EKG derivation is desirable when the
aforementioned signals present artifacts caused by the interference of the
heart beats.

2. Proposed method

Following the design shown in Fig. 1, we propose a multistage
method that begins with signal conditioning and then obtains an initial
set of events – candidate EEG arousals – based on frequency measures
over the signals. Within this initial set of events, different methods search
for the arousal pattern to improve the detection. Several features from
each event are studied for this purpose. Finally, false positives are dis-
carded, examining the resulting patterns within the context of clinical
definitions.

In the following sections each stage of the method is described.

2.1. Signal conditioning

In this stage, every signal is Notch filtered to remove mains inter-
ference, which in our dataset happens at 50 Hz. Then, a high-pass filter
(cut-off 15 Hz) is applied to the EMG signal to eliminate low frequencies
not related to the chin muscle activity. Detailed information on the
implementation of both filters can be found in Alvarez-Estevez [20].

The resulting EEG and EMG signals are used to build an adaptive filter
that removes electrocardiogram (EKG) artifacts caused by the interfer-
ence of the heart beats. For this purpose, first the EKG beat series is ob-
tained using a standard QRS detection algorithm [21]. Then an EKG
reliability analysis is performed to determine which intervals of the EKG
series are reliable enough to be included in the adaptive filtering process.
Both the EKG reliability analysis and the design of the adaptive EKG filter
are described below.

2.1.1. EKG reliability analysis
The EKG signal is reliable if it has a low level of noise and is not

excessively affected by artifacts. Our hypothesis is that within reliable
signals, QRS peaks in the EKG would show similar amplitudes and would
be regularly distributed. We have implemented an algorithm to analyze
the reliability of the EKG signal using a 30 s window. The algorithm
works over a EKG-derived contour signal, namely the lump-signal, where
each lump corresponds to a QRS-complex occurrence. This signal is ob-
tained using the filtering pipeline proposed in Hamilton [22]. We have
modified this pipeline, adding a first Notch step, and replacing the low-
pass and high-pass filtering concatenation by our own 8–16 Hz band-
pass filtering implementation. Further, the output is amplitude normal-
ized to avoid inter-individual amplitude differences. More details about
the derivation of the lump-signal and of the filter's implementation have
been published elsewhere [23].

Using the derived lump signal, we compare the value of the signal
against a reference baseline to find the peaks. In this respect, we use a
10 s moving window without overlapping. For each window we use the
average amplitude of the lump signal as the reference baseline. Peaks are
defined as the maximum values of each region crossing over the base-
line reference.

Fig. 1. Outline of the proposed method.
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Finally, for each 30 s window, reliability is studied using the ampli-
tude of the corresponding peaks. The following ratio is calculated: r ¼
meanðAÞ=stdðAÞ, where A is the window's peaks vector. We have empir-
ically determined that the signal is reliable if r � 0:05. The interested
reader is aimed to check Alvarez-Estevez et al. [23] for more details.

2.1.2. Adaptive EKG artifacts removal
The EKG artifact cancellation algorithm works as follows. For each

(reliable) R-peak in the EKG beat series, we take a temporal 0.5 s window
WðtÞ in the corresponding signal (EEG or EMG), centered around the R-
peak occurrence. The windowWðtÞ is updated with an adaptive filtering
template T, using a memory factor α of 0.01:

T ½t� ¼ ð1� αÞ � T ½t � 1� þ α�W ½t�
The resulting filtering template is then “tapered” using a Hann

function, thus most of the filtering occurs around the peak occurrence,
fading away toward the window extremes. Finally, the resulting artifact
template is subtracted from the original signal. If the corresponding EKG
interval has been classified as unreliable, WðtÞ is set to the zero window
(WðtÞ ¼ 0) and therefore it does not contribute to the update of the
artifact template. Neither the filtering is done at the corresponding time
instant. Fig. 2 shows the effect of the resulting algorithm over a sample of
the EEG signal with presence of EKG artifact.

2.2. Detection of candidate EEG arousal events

After the preprocessing of the input signals, we search for abrupt EEG
frequency changes, that is, candidate arousal events. To do so, we
compare the power content at a certain instant of time with the corre-
sponding baseline levels from the immediate past instants.

Specifically, for the conditioned EEG signal, we evaluate the instant
power using the Short-Time Fourier Transform (STFT) with a 3 s sliding
window with Hamming transformation and a shifting step of 0.2 s. For
each window wðkÞ, power content in the alpha (8–12 Hz) and in the beta
(>16 Hz) bands is estimated by averaging the corresponding squared
periodogram regions.

For each frequency band (alpha and beta), the baseline level of the
current window is calculated by averaging the respective power values
from the previous 10 s windows. Candidate arousal events are then
marked between periods of relevant threshold crossing over the corre-
sponding baseline values. Specifically, events in the alpha band (alpha
events) are marked when instant power values cross 2.5 times over the
alpha baseline, and events in the beta band (beta events) are marked
when the corresponding power values cross over 2 times the respective
beta baseline.

2.3. EEG arousal pattern recognition

Candidate arousal regions detected by the aforementioned process
represent triggering events signaling the start of candidate EEG arousals.
Once these events have been marked, we study them individually to
recognize the actual arousal patterns with both EEG and EMG relevant
features. Eventually, several candidate EEG arousals can be merged
together or the initial arousal region can be adjusted, usually by
extending the event's end, if recognizable arousal activity follows. For
this purpose, a pattern matching approach is used which is described
next. For clarity purposes, let us from now on assume that each candidate
event is characterized by its respective onset and offset times t1 and t2.
We will refer to the instant power values of the window being processed
at the time instant t as wðtÞ.

2.3.1. EEG power-based pattern recognition
The first type of patterns we try to recognize are power related, and as

such, we use the instant power values series wðtÞ obtained by the pro-
cedure described in Section 2.2. Indeed, internal frequency content
variability during the occurrence of an arousal event and the sliding
window effect might lead to situations such as the one presented in
Fig. 3a and b, where an initial event has been detected, even though the
frequency shift is still visually noticeable after the initial offset time.
Notice as well, that due to the effect of the increased (in this case beta)
relative power content during the event, the concurrent associated
baseline level increases as well, hampering a correct detection of the
event's offset.

We can obtain more accurate event markers examining each candi-
date arousal and comparing the pre-event power activity to the future
power values. A pre-event reference power value (V2

ref ) is calculated
averaging the power series during the tref pre-event windows ½wðt1� tref Þ;
…; wðt1Þ�, where tref ¼ 10s for beta and 3 s for alpha power series. The
event's future power values are then examined, comparing V2

ref against

V2
f , which is defined as the mean power of the subsequent event's future

1 s windows: V2
f ðkÞ ¼ meanð½wðt2þ k� 1Þ; ⋯; wðt2þ kÞ�Þ; k ¼ 1; 2; ⋯ If

V2
f ðkÞ> th� V2

ref the end of the event is updated, stopping when n
consecutive windows fail meeting the previous condition. For the beta
events we defined th ¼ 3 and n ¼ 3 and for the alpha events th ¼ 4 and
n ¼ 1.

The event's end update is then validated, to ensure it is not a false
detection, using two measures. First, either the mean power during the
event or at least one of the future power values must be higher than th
times V2

ref , with th ¼ 5:5 for beta and 6.5 for alpha events. Second, to
avoid the false detection of artifacts in the form of amplitude peaks, the
peak-to-peak amplitude of the EEG signal during the event is limited to be
8 times the peak-to-peak amplitude of the previous 10 s window. Fig. 3a
and b shows the resulting delimitation of an EEG arousal before and after

Fig. 2. Adaptive EKG artifact removal in the EEG signal.
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the execution of the above described procedure.
During this procedure, we have used different parameter settings for

the beta and alpha power series. The different behavior of the corre-
sponding power series justifies these variations. Besides, using the
training data, the specific values on each case have been chosen to
optimize the sensitivity of the detection while keeping the number of
false positives low.

2.3.2. EEG amplitude-based pattern recognition
Even though the official AASM guidelines do not establish any pre-

requisite regarding the amplitude of the EEG, an EEG arousal usually
involves a shift in the EEG signal amplitude. We use this particularity to
improve the detection of EEG arousal patterns.

Hence, an amplitude change is detected when the ratio between the
event's peak-to-peak amplitude and the corresponding average from its
previous 5 1-s non-overlapping windows is greater than an empirically
selected threshold, with a value of 4 both for alpha and beta events. If
such an amplitude change is detected, then the subsequent 1 s window is
appended to the analyzed event. The process is repeated with the new
updated event, while the previous condition holds.

2.3.3. EMG pattern recognition
As arousals are usually accompanied by a concurrent EMG activation

[5], to improve the EEG arousal pattern detection, we applied several
methods based on this fact. These methods are described below.

EMG activity overlapping a candidate EEG event. Fig. 4a shows a typical
situation in which chin EMG activity can be found overlapping the
occurrence of an event detected in the EEG. In this situation we can

improve the initial delimitation of the arousal event recognizing the
active EMG region.

For this purpose, we compare the EMG amplitude during the original
event (Vev) against a reference value from the window surrounding the
event (Vref ). The window surrounding the event goes from t1� 15 s to t2þ
15 s, but excluding the event. To obtain the reference value we use the
mean peak-to-peak amplitude of the inner 0.1 s windows. If
Vev > 1:4� Vref , relevant EMG activation is detected, and in such a case,
the event is extended appending the consecutive 0.1 s window. The
process is repeated while the condition holds.

Sometimes, though, the associated EMG activation might not be
continuous, with short periods of lower amplitude alternating, which
might mislead the previous method. This situation is shown in Fig. 4b.

To solve this problem, we compare the measures from different
windows, using this time the rectified EMG. Relevant EMG activity is
then recognized using a 3 s sliding window wemgðkÞ, with a 0.5 s shifting
step during the period ½t1� 3:5 s; t2�. The similitude between two win-
dows (si) is defined as the mean difference between the i-th window
(wemgðiÞ) and the first window in the analysis period: si ¼ meanðwemgðiÞ�
wemgð0ÞÞ. Using this measure, the regions in which si >2�s1; 1< i � n are
marked, and the following corresponding values are calculated μdiffs ¼
meanðsiÞ and sddiffs ¼ sdðsiÞ (1< i � n). Finally the extension rule is
applied, appending consecutive 0.5 s windows to the original EEG
arousal event while sn > μdiffs� sddiffs.

Matching with non-overlapping EMG activity. EMG pattern detection can
be improved as well accounting the fact that EMG activation might occur
showing certain delay with respect to the initial delimited EEG event
(see Fig. 4c).

Fig. 3. Original event and power-based recognized pattern using the power series: (a) with the beta power series; and (b) with the alpha power series.
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This situation is detected comparing the amplitude values from the
future 0.5 s windows against a reference pre-event amplitude value,
corresponding to the 10 s window before the event's start. These values
are computed using the mean peak-to-peak amplitude of the corre-
sponding 0.125 s inner windows. If two consecutive future windows have
a value 2.5 times over the reference value, the event's end is updated to
include the corresponding following windows. The process stops when
the event is not updated after having analyzed the windows for the
next 4 s.

2.4. Discarding false EEG arousals detections

To discard false positives and improve the overall detection, several
post processing methods are applied. Each of these methods is inspired by
the standard EEG arousal definition as found in the reference clinical
guidelines [5].

Adjustment by event's duration. Events lasting less than 3 s are removed.
Events lasting more than 15 s within the same epoch, are discarded as
well, following clinical practice. Events overlapping two consecutive
epochs though allowed, up to a full duration of 30 s. Furthermore, short
duration alpha events (between 3 and 4.5 s) are also discarded as we have

Fig. 4. Overview of the original and recognized event using the EMG signal with the method for each situation: (a) with overlapping EMG activity; (b)with non-continuous overlapping
EMG activity; and (c) with non-overlapping EMG activity.
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found these to be very subjective, and often cause a misdetection.
Detection of Sleep Spindles. Every detected arousal pattern is analyzed

for possible presence of overlapping sleep spindle activity. Detection of
sleep spindles is done using a band passed EEG signal between 1 and
32 Hz to avoid interference of higher frequencies. A 0.5 s sliding window
– the minimum spindle duration – is used, crossing the whole arousal
event with a 0.125 s shifting step. Whenever spindle activity is found
(main frequency content of the window is in the spindle range 12–15 Hz)
then the start of a spindle is marked, from which re-evaluation of the
frequency content is performed by adding the successive 0.125 s win-
dows. The spindle's end is marked when the main frequency content
deviates out of the spindle range. The main frequency content associated
to a window w is calculated as:

fðw½n�Þ ¼ cðw½n�Þ
j� i

; i � n � j (1)

where

cðw½n�Þ ¼
����
�
d1

�jd1ðw½n�Þj
d1ðw½n�Þ

�
>0

�����; d1ðw½n�Þ ¼ w
�
n
�
� w

�
n� 1

�

withw½n� the sample of windoww at instant n, i the first sample ofw, and j
the last sample of w.

After all the spindle periods are identified, the decision whereas the
considered EEG arousal pattern is a false detection, or not, depends on
the duration of the remaining spindle-free segments. If within the
detected arousal pattern there is at least a period of 3 s or more, free of
spindle activity, then the event is considered a true detection. Otherwise
is discarded.

Discarding by absence of EMG activation during REM periods. During
REM sleep periods a EEG arousal requires the presence of at least 1 s of
concurrent EMG activation. We perform the detection of REM periods
using the low muscle tone characteristic, under the assumption that REM
sleep is the one with the lowest EMG amplitude [5]. The detection of
these periods is done on a 30 s epoch basis, using the rectified EMG
signal. A reference value is defined as the minimum peak-to-peak
amplitude value of all the epochs. Epochs with a peak-to-peak ampli-
tude lower than 2.5 times the reference value are associated to the low
tone characteristic (i.e. they are estimated to belong to a REM period).
Events during REM phases are evaluated comparing the peak-to-peak
EMG amplitude during the event against the EMG amplitude of the
epoch to which they belong. If the amplitude of the event is below 1.1
times the amplitude of the epoch, the event is not considered to show
enough EMG activation. Thus, it is discarded.

Discard by absence of 10 s of previous stable sleep. To remove those
events without at least 10 s of previous stable sleep, we follow two steps.
First, for every event, if the next one follows with less than 10 s after the
end of first, then the last one is removed. Second, those events happening
in an epoch scored as W (awake) are removed. For this purpose, the al-
gorithm needs as an input a classification of the epochs either as W or
sleep, which is discussed in the following sections.

3. Results and validation

The patient database at the sleep center of the Haaglanden Medisch
Centrum (The Netherlands) was used for the validation of our method.
The study obtained the approval of the Medical Ethics Committee of the
Southwest Holland region under reference METC 16-027. A set of 30 (16
males/14 females) in-lab PSG recordings with mean(SD) age of
50.4(20.8), Apnea Hypopnea Index (AHI) of 7.8(8.0), and Arousal Index
(ArI) of 13.9(11.2) was randomly selected in order to match as close as
possible the conditions of real common practice. Patients were referred to
the sleep center in the context of different sleeping conditions of which
from the previous dataset 16 presented a major Obstructive Sleep Apnea
Syndrome (OSAS) component, and the rest were diagnosed respectively

with complex OSAS (1), central SAS (2), hypersomnia and/or narcolepsy
(2), REM Sleep Behavior Disorder (2), NREM parasomnia (1), and the rest
(6) showed no evidence of major sleep disorders in the PSG, and there-
fore were considered as healthy subjects. No attempt was made to reject
any recording due to the presence of signal artifacts, with the only con-
dition that the quality of the recording was good enough for being scored
by a human expert. Patient signals were acquired using SOMNOscreenTM

plus devices (SOMNOmedics, Germany) and digitized to the
EDFþ format [24]. PSGs were afterwards analyzed offline by clinical
experts in the course of common clinical practice. Scoring of events
included, among others, the annotation of sleep stages and of EEG
arousals. For the purposes of this study the results of the clinical scoring
of EEG arousals were reviewed by an additional expert to achieve a
consensus scoring. All the procedures were performed according to the
last version of the AASM guidelines [5]. For the validation of our method
one EEG derivation (C4=A1), the submental EMG, and the single-channel
modified lead II EKG derivation were used. All signals were sampled at
256 Hz. Further the whole set was partitioned into two disjoint sets of 6
and 22 recordings respectively. The first one was used as training set to
develop the method and to set the parameters. The second partition was
used as independent validation set to assess the performance of
the method.

The validation was made on a 30 s epoch basis. Every EEG arousal
was assigned to a unique epoch, the one its middle point belongs to.
Table 1 shows the validation results.

As it can be seen, the number of EEG arousals detected is slightly
lower than the number of events scored by the experts (12% lower), as
well as the number of false positives compared to the number of false
negatives (48% lower). These situation was expected, as threshold set-
tings were selected in the method with the idea of keeping the number of
false positives relatively low. This settings are important to keep good
precision values, as usually the proportion of recording time with pres-
ence of EEG arousal is relatively short, comparing it against the total
recording time.

Indeed, it is worth noticing that in our dataset the classes distribution
is highly unbalanced and dominated by the absence of event – only an 8%
of the epochs contain an arousal event. Thus, in this domain, achieving a
high specificity and a low error rate is not representative.

We can further demonstrate this point by taking into account the
results shown in Table 2. In this table, the performance achieved by two
trivial methods is calculated: the first one scores an event in every epoch,
and the second one never scores an arousal.

The second trivial solution achieves an error of 0.078 and a specificity
of 1, while in fact the method “never detects an EEG arousal”. Instead,
metrics such as the F1-score and the Precision, which do not take into
account the number of true negatives, or the Kappa index, which adjusts
agreement due to chance, are better suited to study this problem. As it is
shown in Table 1, our method achieves an average Kappa score of 0.775,
which according to the interpretation scale made by Landis and Koch
[25] is a substantial agreement. Kappa indices per recording range be-
tween 0.654 and 0.886, on 10 recordings reaching almost perfect
agreement (kappa values over 0.80).

It is also interesting to compare how similar are the events scored by
the expert to the ones scored by the proposed method, avoiding the
established epoch granularity. For this purpose we can study the pairwise
time differences between the positive matches (TP in Table 1). In Fig. 5
we compare each pair of events, showing the difference between their
duration, and their onset and offset times. Positive values indicate that
the expert's event is longer (or happens later in case of the onset/offset
times) than the one scored by the automatic method. Both Anderson-
Darling and Lilliefors statistical tests rejected the null normality hy-
pothesis with p< 0:001 for all the three distributions. Their respective
quartile values are shown in Table 3. The Wilcoxon signed rank test over
the difference distributions showed that the respective medians were
significantly different from zero in the case of the onset/offset deviations
(p<0:001), while for the event's duration the null hypothesis could not
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be rejected (p ¼ 0:037), using a reference significance level of α ¼ 0:01.
Comparing the onset and offset differences, the null hypothesis that
method-expert offset deviations were higher than the onset differences is
accepted (p ¼ 0:959, Wilcoxon rank sum test). The complementary hy-
potheses (offset deviations are equal or less equal than onset differences)

were both rejected with p<0:001. In other words, the method detects the
start of the events more precisely (in accordance with the clinical experts)
than their ends. On the other hand, by comparing the time during which
both the expert and the method agree in the detection of an event
(common overlapping time), against the respective time in disagreement,
statistical tests rejected the null hypothesis of equality of medians
(p<0:001), while accepted the hypothesis that the median overlapping
time is bigger than the non-overlapping time (p ¼ 1). Fig. 6 shows the
respective distributions of agreement between expert and method's
events. Finally, we also tested the hypothesis that the absolute onset and
offset deviations were significantly minor than the common overlapping
time. Statistical tests confirmed the result, both for the onset and for the
offset times (p ¼ 1), rejecting the alternative hypotheses with p<0:001.

4. Discussion

In the presented method preliminary candidate events are first
detected by finding abrupt EEG frequency changes in the alpha and beta
bands. Even though the official clinical definition does also includes the
possibility of frequency shifts to occur in the theta band, in practice the
specificity of this band to the occurrence of EEG arousals is rather low.
Certainly theta changes are present during the occurrence of arousal
events, but transient theta activity does also appear all throughout full-

Table 1
Epoch-based validation for the detection of EEG arousals. RN¼ Recording Number; TP¼ True Positives; FP¼ False Positives; TN¼ True Negatives; FN¼ False Negatives; Sens¼ Sensitivity;
Spec ¼ Specificity; Prec ¼ Precision.

RN # EEG Arousals

Expert System TP FP TN FN Error Sens Spec Prec F1 score Kappa

1 51 52 44 8 883 7 0.016 0.863 0.991 0.846 0.854 0.846
2 148 164 124 40 628 24 0.078 0.838 0.940 0.756 0.795 0.747
3 51 37 31 6 981 20 0.025 0.608 0.994 0.838 0.705 0.692
4 24 30 24 6 924 0 0.006 1.000 0.994 0.800 0.889 0.886
5 61 61 45 16 813 16 0.036 0.738 0.981 0.738 0.738 0.718
6 129 135 118 17 670 11 0.034 0.915 0.975 0.874 0.894 0.873
7 42 36 32 4 2384 10 0.006 0.762 0.998 0.889 0.821 0.818
8 52 36 30 6 830 22 0.032 0.577 0.993 0.833 0.682 0.666
9 73 62 47 15 918 26 0.041 0.644 0.984 0.758 0.696 0.675
10 144 113 103 10 716 41 0.059 0.715 0.986 0.912 0.802 0.768
11 118 102 91 11 895 27 0.037 0.771 0.988 0.892 0.827 0.807
12 69 50 43 7 834 26 0.036 0.623 0.992 0.860 0.723 0.704
13 62 56 50 6 790 12 0.021 0.806 0.992 0.893 0.847 0.836
14 50 42 31 11 735 19 0.038 0.620 0.985 0.738 0.674 0.654
15 72 61 56 5 831 16 0.023 0.778 0.994 0.918 0.842 0.830
16 54 39 36 3 693 18 0.028 0.667 0.996 0.923 0.774 0.760
17 56 52 47 5 1251 9 0.011 0.839 0.996 0.904 0.870 0.865
18 89 53 49 4 723 40 0.054 0.551 0.994 0.925 0.690 0.663
19 114 96 85 11 801 29 0.043 0.746 0.986 0.885 0.810 0.785
20 96 92 81 11 863 15 0.027 0.844 0.987 0.880 0.862 0.847
21 66 60 55 5 923 11 0.016 0.833 0.995 0.917 0.873 0.864
22 77 67 56 11 824 21 0.035 0.727 0.987 0.836 0.778 0.759

Total 1698 1496 1278 218 19910 420 0.032 0,748 0,988 0.855 0,793 0,775

Table 2
Performance measures of the trivial methods for EEG arousals detection. Sens¼ Sensitivity;
Spec ¼ Specificity; Prec ¼ Precision.

Solution Error Sens Spec Prec F1 score Kappa

Always EEG Arousal 0.922 1.000 0.000 0.078 0.144 0.000
Never EEG Arousal 0.078 0.000 1.000 – 0.000 0.000

Fig. 5. Distribution of the differences between expert's and method's events.

Table 3
Significant values of the duration, onset and offset pairwise differences (in seconds). Data
coverage is calculated using lower and upper adjacent points.

Lower
Adjacent

25th
Percentile

Median 75th
Percentile

Upper
Adjacent

Coverage

Duration �7.35 �1.68 0.14 2.17 7.89 92.02%
Onset �1.95 �0.23 0.38 0.93 2.65 88.22%
Offset �5.44 �0.96 0.39 2.1 6.66 89.82%

Fig. 6. Distribution of the agreement between expert's and method's events.
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night EEG recordings. This activity is not necessarily linked to the
occurrence of arousals and thus makes detection very unreliable,
specially during periods of drowsy sleep and in stage REM. The identi-
fication of arousal activity in the EEG based on changes in the alpha and
beta frequency bands can be found in previous works in the litera-
ture [11,15,26].

Some empirically established thresholds were used for the parame-
terization of our method. During the initial detection phase, the use of
high threshold values implies the necessity of more abrupt frequency
changes to detect an event. But with such configuration, sensitivity to-
ward the less clear cases might be lost. The selected thresholds, therefore,
were optimized using the training dataset to maximize the sensitivity-
precision trade-off. A possible criticism to the use of thresholds is that
by relying on fixed detection values we might not correctly address the
signal variability due to subject-dependent characteristics. On this re-
gard, our method does only use relative power and amplitude rates. Thus,
we avoid relying on absolute physical measurements, solving the prob-
lematic of subject-dependency.

Detection and correction of possible signal artifacts is also of funda-
mental importance for a robust behavior of the detection algorithm. For
this purpose we have incorporated several stages of signal conditioning
in our analysis pipeline. In particular, EKG artifact can be seen affecting
the EEG and the EMG in some patients. The degree to which this artifact
could influence the overall performance is specific of each recording.
Normally, in our validation dataset of 22 patients, the differences in
performance with or without using the EKG filtering do not change
dramatically: overall kappa agreement decreases only to 0.753 from
0.775 when EKG filtering is deactivated. However, for some specific
patients in which the EKG artifact is specially relevant, the differences are
more clear. For example, recording 2 (see Table 1) shows a drop in the
kappa index from 0.747 to 0.636 when filtering is not applied.

Once candidate events are detected, the method reviews each one to
find recognizable EEG arousal patterns that match the standard clinical
definitions [5]. For this purpose different pattern matching techniques
were implemented in which the submental EMG was used as contextual
information. Contextual information about sleep and wake periods was
also used to discard false positives. In this regard it is worth to mention
that the results shown in Table 1 have been obtained when feeding the
algorithm with such a previous classification using hypnograms gener-
ated by human experts. We have tried a fully automatic approach using a
method developed by Alvarez-Estevez et al. [27] for the automatic gen-
eration of the hypnogram. The validation results obtained with this
approach showed a decay, with a moderate overall kappa of 0.558, a
precision and F1-score of 0.742 and 0.586 respectively. It should be
noticed that no attempt was made to adapt the aforementioned hypno-
gram generation algorithm [27] to the characteristics of the current
dataset. Thus, these results should be regarded only as illustrative, and
future work will be carried out on this direction.

That being said, the overall validation results obtained are satisfac-
tory, specially taking into account the high inter-rater variability be-
tween human expert scorers reported in the literature [4,28,29].
Specifically, studies assessing agreement between clinical experts on an
epoch-by-epoch EEG arousal scoring task have reported kappa indices in
the range 0.47–0.57 [30,31].

The comparison of our results to previous works in the literature is
difficult, due to the general lack of a standard benchmark or methodol-
ogy. Tables 4 and 5 try to summarize the results reported among the
relevant related works. Table 4 includes approaches in which only pos-
itive event matchings against the clinical reference scoring were counted.
On the other hand, Table 5 involves approaches for which a fixed time
window (granularity of the time scoring unit differs per approach) was
used to compute both agreements and disagreements with respect to the
clinical reference scoring.

The metrics reported and the validation methodology differ from
each method. Besides, while most of the published approaches in Table 5
keep reporting on the sensitivity and specificity values, we have shown

that usually the number of EEG arousals is highly reduced in relation to
the total recording time. Thus, the validation procedure in this case
should take into account the imbalance of the classes, and report more
appropriate measures such as the precision, the F1 score or the Kappa
coefficient.

Overall, it can be stated that our method achieves reasonable good
results. To be remarked is that, at least for the approximations of Zamora
and Tarassenko [7] (Table 4) and of Pacheco and Vaz [6] and Cho et al.
[10] (both in Table 5), validation is limited to partial selected periods
from the total recording time. In the work of De Carli et al. [8] the
standard reference was obtained from a consensus of two human scorers
and their own proposed method, which might bias the results. On the
other hand, it should be noticed that their method uses as input the ex-
pert's annotations of sleep stages to discard false positive detections
during stage REM. In Agarwal [11] it is mentioned that the configuration
of the method was optimized individually for each of the two testing
recordings. Therefore, the validation results might be biased as well. The
validation procedure described in Sugi et al. [13] presents a similar
problem, as 25% of each recording's data were used for training
their model.

The comparison of our results against the works of Shmiel et al. [14],
Alvarez-Estevez and Moret-Bonillo [15], �Alvarez Est�evez [32], Fern�an-
dez-Varela et al. [17] is specially interesting, given the similarities of the
validation approach. On this regard while the sensitivity achieved with
our method falls within the range of the reported indices (0.75 vs
0.65–0.88), taking the average of the sensitivity and specificity values,
our method outperforms all the rest (see column AUC in Table 5).
Moreover, we outperform the four methods with regard to the calculated
Precision, F1-score and Kappa metrics. As it has been previously stated,
when considering our results using the automatic hypnogram generation
method described in Alvarez-Estevez et al. [27], the validation metrics
decay, but we obtain values of Precision, F1-score and Kappa within the
range of the considered approaches.

Our validation is complemented with statistical analyses on the
event's time location as compared to the clinical reference scorings. These
analyses have revealed a bias toward better detection of the onset event
times. The same analyses have revealed quite good performance in terms
of event duration and overlapping time agreement. Actually, we have
shown that the onset and offset differences are not statistically relevant in
comparison to the common overlapping time.

The analysis of the PSG through the scoring of all the events is costly,
due to the complexity of the detection process and the huge amount of
data recorded per night. Complex methods would involve long periods of
analysis examining the complete PSG to diagnose sleep disorders, which
would limit its application in large scale trials. Therefore, to speed up the
hole analysis through simple and fast events detection procedures would
lead to better times in the diagnosis process. The method proposed to
identify arousals accomplishes this goal and achieves good performance
in a simple, robust and fast manner.

5. Conclusions

EEG arousals are microstructural events of the sleep that represent

Table 4
Results reported for methods counting only positive event matchings against the clinical
reference; * Values were not explicitly mentioned in the referenced work, but can be
derived from the published data.

Method #Recordings Sensitivity Precision F1 score True positive
definition

Zamora and
Tarassenko
[7]

7 (20 min) 0.7–1 0.88–1.0 – Detections within
10 s of an expert
score

De Carli et al.
[8]

8 0.88 0.74 – Overlapping events

Agarwal [11] 2 0.42–0.82 0.57–0.80 0.56–0.77* Overlapping events
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awakening activity from the EEG. They are associated with sleep frag-
mentation and therefore their quantification is very important for the
diagnosis of different sleep disorders. Visual inspection of the PSG to
score these events is complex and very resource-demanding. Given this
context, this work presents an automatic detection method with the
purpose of helping the clinician in the arousal scoring task. The aim of the
proposed solution is to perform a robust detection while relying on the
use of well-known, and relatively simple, signal processing techniques.
The purpose is to facilitate the described method to be easily imple-
mented on different programming environments.

We concluded that the results achieved in this work are encouraging,
yet there is room for improvement. More emphasis will be put in
extending the testing dataset for a broader evaluation of the method. To
fully automate the method, further work will focus toward automatic
differentiation of the sleep and wake periods, with the objective of
improving the results reported when our method was used in conjunction
with the automatic method for the hypnogram generation [27]. The
challenge is to keep a good performance independently of the patient
database used as reference.
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a b s t r a c t

Objective: To assess the validity of an automatic EEG arousal detection algorithm using large patient
samples and different heterogeneous databases.
Methods: Automatic scorings were confronted with results from human expert scorers on a total of 2768
full-night PSG recordings obtained from two different databases. Of them, 472 recordings were obtained
during a clinical routine at our sleep center and were subdivided into two subgroups of 220 (HMC-S) and
252 (HMC-M) recordings each, according to the procedure followed by the clinical expert during the
visual review (semi-automatic or purely manual, respectively). In addition, 2296 recordings from the
public SHHS-2 database were evaluated against the respective manual expert scorings.
Results: Event-by-event epoch-based validation resulted in an overall Cohen's kappa agreement of
k ¼ 0.600 (HMC-S), 0.559 (HMC-M), and 0.573 (SHHS2). Estimated inter-scorer variability on the datasets
was, respectively, k ¼ 0.594, 0.561 and 0.543. Analyses of the corresponding Arousal Index scores showed
associated automatic-human repeatability indices ranges of 0.693e0.771 (HMC-S), 0.646e0.791 (HMC-
M), and 0.759e0.791 (SHHS2).
Conclusions: Large-scale validation of our automatic EEG arousal detector on different databases has
shown robust performance and good generalization results comparable to the expected levels of human
agreement. Special emphasis was put on reproducibility of the results; implementation of our method
has been made available online as open source code.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Electroencephalographic (EEG) arousals are transient events of
the sleep EEG indicative of ongoing awakening activity. According
to the current clinical reference standards [1] EEG arousals are
defined as abrupt shifts in the EEG frequency including alpha, theta
and/or frequencies greater than 16 Hz (but not spindles), that last at
least 3 s with at least 10 s of stable sleep preceding the change. The
scoring of arousals during Rapid Eye Movement (REM) phases re-
quires a concurrent increase in submental electromyogram (EMG)
lasting at least 1 s.

Evidence supports EEG arousals as an important component of
the sleep process, and their scoring during routine polysomno-
graphic (PSG) examination is essential for evaluating a subject's

sleep continuity, and to give treatment and treatment response
guidelines to practitioners [2].

Manual visual examination of the entire PSG for the scoring of
these events is costly, due to both the complexity and the amount of
data involved. Given this context, several studies have explored the
possibility of developing automatic analysis software to help
clinicians during the scoring process [3e16].

While some of the previous approaches have shown promising
performance, validation methods are usually limited to relatively
small (ranging from2 to 31 recordings), controlled, andmostly local
and private datasets. It remains a question whether the detection
capabilities of these algorithms generalize to larger samples,
different databases, and perform well in a clinical (non-controlled)
environment. The reality is that the level of acceptability of these
algorithms among the clinical community remains low and thus
they are rarely used in the clinical practice.

In a recent work [16], we presented a preliminary version of a
method for automatic EEG arousal detection, obtaining good vali-
dation results on a controlled dataset of 22 PSG in-hospital
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recordings. Building upon this initial version, an updated algorithm
has been developed and set up to work in the clinical environment,
where clinicians can choose whether to use it or not as a supportive
scoring tool, while reviewing their night recordings.

In this paper, we present a large-scale validation of the perfor-
mance of this updated approach. Validation has been carried out on
a large sample of patients using our sleep center database; we have
also extended it by evaluating the algorithm over a large, external,
and public database, namely the Sleep Heart Health Study (SHHS)
[17]. In each case, the expected level of inter-scorer human
variability has been estimated to contextualize the results of the
analyses. Moreover, the source code of the algorithm has been
published on the internet, making it freely available to the research
and clinical communities. To our knowledge, this is the largest and
most complete validation ever done of an algorithm of this kind.

2. Methods

2.1. Databases

The validation of the EEG arousal detection algorithm was per-
formed using reference data from two different large databases.
The first database is composed of clinical sleep recordings from our
sleep center (Haaglanden Medisch Centrum - HMC, The Hague, The
Netherlands). Second, an external and publicly accessible source
was used, namely the Sleep Heart Health Study (SHHS) database
[17]. Each of the databases and the different derived datasets are
described in detail below. A summary of resulting demographics
and main PSG data are shown in Table 1.

2.1.1. HMC
This data collection is composed of PSG recordings gathered

retrospectively from the HaaglandenMedisch Centrum (The Hague,
The Netherlands) sleep center database. The PSG recordings were
acquired in the course of common clinical practice, and thus did not
subject people to any other treatment nor prescribe any additional
behavior outside of the usual clinical procedures. Data were ano-
nymized avoiding any possibility of individual patient identifica-
tion. The study was carried out in full compliance with the
corresponding applicable law and under the supervision of the
local Medical Ethics Committee. Patient signals were acquired
using SOMNOscreen™ plus devices (SOMNOmedics, Germany) and
digitized using the EDF þ format [18]. PSGs were afterward
analyzed offline by clinical experts in the course of common clinical
practice. Manual scoring of the events included, among the com-
mon standard parameters, the annotation of sleep stages and of
EEG arousals. All procedures were performed according to the
standard AASM guidelines [1]. As a homogenization criterion, we
required the recordings to contain at least 4 h of Total Sleep Time
(TST) after clinical scoring. To match a scenario as close as possible
to real working conditions, we made no further attempt to filter
out, nor to reject any recording, due to specific patient conditions or
to poor signal quality. The only required condition was that
the recording had been accepted by the clinicians for the manual
scoring of EEG arousals. In total, the sample included 472 re-
cordings from patients visiting our center between April and

October 2017. Data included both 24-h ambulatory (APSG, n ¼ 352)
and in-hospital night (HPSG, n ¼ 143) recordings.

From this database, two separated datasets were arranged as
described below.

2.1.1.1. HMC-S. This dataset containing 220 clinical recordings out
of the original 472 is composed of 176 APSGs and 45 HPSGs. PSG
recordings from this dataset were clinically scored using a semi-
automatic approach. First, the clinician used an automatic scoring
algorithm for the detection of EEG arousals, and then, on a second
pass, the scorer reviewed the results of the automatic scoring
replacing, adding or deleting events where necessary. The auto-
matic scoring algorithm used for this purpose was a previous
version of the current approach which was described in detail in
Ref. [16].

2.1.1.2. HMC-M. This dataset contains 252 clinical recordings out of
the original 472, split into 176 APSGs and 98HPSGs. Recordings from
this dataset were scored following the classical clinical routine (ie
purely-manual without any support from automatic scoring).

2.1.2. SHHS
The Sleep Heart Health Study (SHHS) is a multi-center cohort

study implemented by the National Heart Lung & Blood Institute to
determine the cardiovascular and other consequences of sleep-
disordered breathing. This database is available online upon
permission at the National Sleep Research Resource (NSRR) [19,20].
More information about the rationale, design, and protocol of the
SHHS study can be found in the dedicated NSRR section [21] and in
the literature [17,22]. A sample of participants who met the SHHS
inclusion criteria (age 40 years or older; no history of treatment of
sleep apnea; no tracheostomy; no current home oxygen therapy)
was invited to participate in the baseline examination of the SHHS,
which included an initial polysomnogram (SHHS-1). In all, 6441
individuals were enrolled between November 1, 1995, and January
31, 1998. During exam cycle three (January 2001eJune 2003), a
second polysomnogram (SHHS-2) was obtained on 3295 of the
participants. Raw PSG data are available at NSSR for 5793 subjects
within SHHS-1, and 2651 subjects within SHHS-2.

Polysomnograms were obtained in an unattended setting, usu-
ally at home, by trained and certified technicians. Specifications for
the full montage settings can be found in the corresponding section
at the NSRR website [21]. Scoring of sleep stages in SHHS is based
on the R&K guidelines [23]. Note that in SHHS, however, no attempt
was made to distinguish Stage 3 sleep from Stage 4; both are
combined into a single “Deep Sleep” category, similar to current
AASM standards [24,1]. Scoring of arousals was done following the
ASDA1992 manual [25]. Full specification of all the scoring criteria,
as well as quality control procedures for the SHHS study, can be
found in the Reading Center Manual of Operations [26].

From SHHS, the SHHS-2 dataset was used as the reference to
validate our EEG arousal detection algorithm. Out of the 2561 PSGs
available at NSRR, a total of 2492 recordings were selected after
excluding those that did not match the general SHHS2 v3 signal
montage [27], or for which no attempt to score EEG arousals was
performed by the SHHS scorers. From this subset, 60 recordings

Table 1
Summary of demographic data and main PSG characteristics for the different datasets.

Dataset n Age Gender ArI AHI

HMC-S 220 52.99 ± 14.33 137 M (62%)/83 F (38%) 12.85 ± 7.86 13.33 ± 15.28
HMC-M 252 51.58 ± 16.22 133 M (53%)/119 F (47%) 12.45 ± 10.48 14.83 ± 21.03
SHHS2 2296 67.41 ± 10.03 1026 M (45%)/1270 F (55%) 12.91 ± 7.02 16.25 ± 15.64

Data are indicated as mean ± standard deviation; n ¼ number of recordings, M ¼ Males, F ¼ Females, ArI ¼ Arousal Index, AHI ¼ Apnea-Hypopnea Index.
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were further excluded due to complete technical failure (complete
absence of workable EEG and/or EMG signal during the whole
recording) resulting in 2433 recordings remaining. No further
attempt was made to filter out, or reject any recording, due to poor
signal quality conditions. Similarly, as for HMC datasets, the
selection excluded recordings for which TST <4 h. In total 2296
recordings were finally included in the validation study of our
algorithm.

2.2. Algorithm overview

The current version of the EEG arousals detection algorithm is
largely based on a previous version which was described and vali-
dated elsewhere [16]. The current updated version is an evolution,
although it preserves the same original philosophy of simplicity and
robustness.

The algorithm works using just one EEG and one EMG chin
derivation. The use of an additional ECG channel for the removal of
ECG artifacts is optional. The method for ECG artifact removal is
based on adaptive filtering, and it has been described in detail
elsewhere [28,16].

It is a multistage method that consists first of a signal pre-
processing step (digital Notch filtering in both signals, with
optional adaptive ECG artifact removal, and high-pass filtering in
the EMG), followed by detection of candidate events based on
frequency changes in the EEG (power content analysis in the alpha
(8e12 Hz) and in the beta (>16 Hz) bands). As a result of these steps
candidate arousal regions are identified signaling the presence of
EEG arousal activity. The analysis proceeds by patternmatching this
activity using individual EEG and EMG relevant features. Eventu-
ally, candidate EEG arousals can be merged, or the initial arousal
region can be adjusted, usually by extending the corresponding
event's offset, if recognizable arousal activity follows. The detection
of EEG arousal events involves different subroutines including (i)
EEG power-based; (ii) EEG amplitude-based; and (iii) EMG
amplitude-based pattern recognition. Finally, false positives are
discarded after examining each candidate event within the context
of the accepted clinical definitions, including (i) its adequacy in
terms of the standard event duration constraints; (ii) the absence of
sleep spindle activity; (iii) the absence of EMG activity during REM
periods; and (iv) the presence of (at least) 10s of stable sleep pre-
ceding the onset of the event.

Adaptations to the algorithm were necessary to support the
possibility of different montage configurations, signal sampling
rates, andfiltering settings (eg,mains interference occurs in America
at 60 Hz while at 50 Hz in Europe). Also, detection thresholds were
modified to increase the sensitivity for detection of alpha-prevalent
arousal events and to achieve better discrimination of sleep spindle
activity. Some processing steps were also simplified, namely
regarding the EEG power-based pattern recognition (skipping the
first false detection check and discarding thewhole procedure in the
case of alpha arousals) and the detection of concurrent EMG activity.
Extended technical information is beyond the scope of this study,
and thus the interested reader is referred to the original publication
for details [16]. Furthermore, the source code of the algorithm has
beenmade publicly available as open-source, allowing tracking of all
the changes and implementation details. The code (implemented
using Matlab) can be downloaded from GitHub [29].

2.3. Experimental procedures

All the recordings from the datasets described in Section 2.1.
Were re-scored by the automatic algorithm. For parameter
configuration, two separated and relatively size-reduced datasets,
namely HMC-22 and SHHS1-26, were used. Using this approach, it

is possible to keep the parameterization independent of the testing
data (HMC-S, HMC-M, and SHHS2) therefore allowing the possi-
bility to evaluate the generalization capabilities of the algorithm.
HMC-22 was used for the validation of an earlier version of our
algorithm; it is composed of 22 in-hospital PSG recordings gathered
from the HMC database. A more detailed description of the dataset
and the related validation process can be found in Ref. [16]. The
SHHS1-26 dataset, on the other hand, is composed of 26 ambula-
tory PSG recordings gathered from the SHHS-1 study. This dataset
was used to validate alternative EEG arousal detection approaches
in the past, which are described in detail in Ref. [14] and in Ref. [15].
Subsets of SHHS1-26 were used as well to validate different
machine learning-based approaches described in Ref. [12] (n ¼ 20)
and in Ref. [13] (n ¼ 10).

Reference derivations for automatic EEG arousal analysis vary per
dataset due to differences between the respective clinical montages.
Specifically, for HMC datasets a C4/M1 EEG with bipolar submental
EMG configuration was used in HPSG recordings, while for APSGs
the Cz/O2 EEG derivation was used instead. In both cases, a single-
channel modified lead II ECG derivation was used as a reference
for the analysis and the removal of ECG artifacts from the EEG and
the EMG signals [16,28]. The sampling frequency was 256 Hz for all
signals. Out of the two central EEG derivations available for SHHS
recordings [21], the C3/A2 channel was used, together with the
default bipolar submental EMG trace. Bipolar-lead ECGwas sampled
at 125 Hz for SHHS-1, and at 250 Hz for SHHS-2 recordings, and it
was used analogously for ECG artifact removal purposes.

The analysis included the automatic rescoring of all EEG arousals,
while the remaining (non-EEG arousal) expert annotations were left
intact. The rescoring includes, for example, the “lights out” and
“lights on” markers, and the hypnogram annotations used respec-
tively to determine the valid scoring and the sleeping periods.

To avoid bias in the analysis due to an imbalance in recording
times between in-hospital and ambulatory recordings, we consid-
ered only Time In Bed (TIB) periods for the validation. Specifically,
for HMC datasets this period was extracted straightaway from the
“lights out” and “lights on” markers available within each of the
EDFþ annotation files, set by the scorers while manually reviewing
the recordings. For SHHS, such markers were not explicitly avail-
able within the file annotations. In this case, TIB was calculated
using the variables “stloutp” (Lights out time) and “time_bed” (TIB in
minutes from “lights out” to “lights on”) availablewithin the SHHS2
metadata (for details see Ref. [30]).

Once all the EEG arousals were automatically scored by the
algorithm, the validation was performed using two different,
complementary approaches. First, event-to-event scoring valida-
tionwas carried out using a 30 s epoch basis. For this purpose, every
EEG arousal event was assigned to a unique epoch, according to the
location of its middle point. Using a 2x2 confusionmatrix validation
metrics for nominal data, namely sensitivity (recall), specificity,
precision, F-1 score, and Cohen's kappa index were then calculated.

Second, from a clinical perspective the respective Arousal Index
(ArI) scores were calculated and compared per recording. For vali-
dation metrics involving numerical data, we used both the
Anderson-Darling and the Lilliefors tests, to check the normal dis-
tribution hypothesis. In general, statistical testing was conducted
using Matlab software, and the reference significance level was set
at a ¼ 0.05. Correlation coefficients were calculated among the
respective automatic and clinical reference ArI scores. Statistical
significance for paired differences at the recording level was calcu-
lated using the Wilcoxon signed rank test. Moreover, the Intraclass
Correlation Coefficient (ICC) was used as the default measure of
repeatability to examine scoring differences [31]. Specifically, a two-
way absolute single-measures ICC variant of the statistic was
considered [32], using the implementation available at [33]. ICC
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results were calculated both in the original scale and after log-
transformation of the respective automatic and clinical reference
scores. Furthermore, for non-Gaussian distributions, repeatability
was also examined using Generalized Linear Mixed-Effects Models
(GLMMs) with log-link and multiplicative overdispersion modeling
[34]. Parametric bootstrapping and Bayesianmethods were used for
interval estimation, and randomization methods were used for
significance testing. Results are provided both on the original and
the link scales. Specifically, the rptR package [34,35] available for the
R statistical computing language was used for this purpose.

2.3.1. Assessment of the expected inter-scorer reliability
Analysis of the expected level of inter-scorer variability was

performed to adequately contextualize the results of the automatic
scoring. For this purpose, a subset of the available PSGs for
each dataset was re-scored by an independent expert scorer, and
the results were compared against the original clinical scorings.
Manual rescoring of all the recordings in each dataset, however,
was unattainable in practice due to the high number of recordings,
and hence to the high associated costs in human resources.
Therefore, a procedure was established to estimate the actual un-
derlying variability using a reduced subset of recordings. The exact
procedure is described as follows:

(i) For each dataset, the respective distribution of the kappa
indices obtained from the previous automatic vs. clinical
validation was used as a reference.

(ii) From this distribution, the five recordings whose associated
indices represent the middle of each inter-quartile range,
plus the median, were selected as representatives of the
whole population. That is, for each dataset, the recordings
with kappa scores on the 12.5, 37.5, 50, 62.5 and 87.5 per-
centiles were used.

(iii) Each of these recordings was then re-scored by a dedicated
expert scorer (not present during the first scoring round),
blinded to the results of the original analysis. Display mon-
tages at the rescoring step were configured to match the
same conditions as during the original clinical scoring. Note
that during the rescoring, the hypnogram that resulted from
the first scoring was available for contextual interpretation.
Its modification, on the other hand, was not allowed. Note as
well that respiratory activity traces were omitted from the
display for EEG arousal scoring.

Analysis of the rescoring results was carried out by calculating
the corresponding derived kappa indices, and by confronting them
to both the corresponding clinical and automatic results. Further
statistical analyses of the corresponding ArI indices were omitted;
as with five measurements per dataset, a low statistical power of
the derived metrics was expected [36].

3. Results

Results of epoch-based event-by-event validation are summa-
rized in Tables 2 and 3. In Table 2, and for each dataset, the total

number of epochs and the respective validation metrics are accu-
mulated across all the recordings. In Table 3 statistical descriptors
are shown by considering the respective per-recording distribu-
tions. In general, indices do not follow a normal distribution, and
thus data is presented using themedian and the associated first and
third quartiles.

For the SHHS2 dataset Fig. 1 shows the corresponding kappa
index distributions in relation to the respective signal quality scores
(check [26] for details on SHHS quality assessment procedures).
KruskaleWallis analyses resulted in p ¼ 0.004 and p < 0.001
respectively for the EEG and chin EMG distributions. Subsequent
multiple comparison tests under the Tukey's significant difference
criterion showed, however, no group differences for the EEG, while
for the EMG, only group 1 was significantly different from groups 4
and 5. Unfortunately, quality assessment datawere not available for
the HMC database to perform a similar analysis.

3.1. Statistical analysis of diagnostic indices

The results from the corresponding ArI distribution analyses are
shown in Table 4. Distribution descriptors using the mean and
standard derivation, as well as the median and the respective
interquartile ranges, are shown per dataset. Individual and
difference distributions were analyzed showing non-Gaussian
distributions in general (p < 0.01 in all the cases). For the differ-
ence distributions, the corresponding Wilcoxon paired test p-value
is explicitly shown in the last column. In this respect, results reject
the null hypothesis H0 “median of differences is zero” at a ¼ 0.05,
but for the HMC-M dataset (p ¼ 0.224). A further tailed analysis
shows that differences for HMC-S and SHHS2 are not significant
anymore when assuming a median difference bias of þ0.3
(p ¼ 0.088 and p ¼ 0.104 respectively).

Results of the repeatability analyses are shown in Table 5. The
linear correlation coefficient (r) and the ICC indices are shown, both
for the original and for the log-transformed variables. GLMMs are
adequate in the case of non-Gaussian distributions [34], and the
corresponding derived indices were similarly calculated in the
original and the latent scales. In both cases, a log-link function was
used. Notice that reporting repeatability of the transformed vari-
ables is the most interesting choice in most of the cases [34,37]. For
completeness, however, here both estimates are reported. In all the
cases statistical significance of the respective tests was confirmed
(p < 0.001 for all the indices).

3.2. Expected inter-rater variability analysis

Results from the expected inter-scorer variability analysis are
shown in Table 6. For each recording, the representative percentile
within its dataset and the time spent during the manual rescoring
are indicated, respectively, in columns 2 and 3. The resulting kappa
indices are also respectively reported for the manual rescoring vs.
the original clinical annotations (ReC, column 4), the automatic vs.
the original clinical annotations (A-C, column 5), and the automatic
vs. the manual rescoring (A-R, column 6) analyses. From these
three, ReC is considered to set the reference for the expected levels

Table 2
Overall results of the event-by-event epoch-based validation on the testing datasets.

Dataset #Epochs TP FP TN FN Sens Spec Prec F1-score Kappa

HMC-S 207312 12492 5170 180600 9050 0.580 0.972 0.707 0.637 0.600
HMC-M 236336 13130 7340 205668 10198 0.563 0.953 0.641 0.600 0.559
SHHS2 2201487 119702 41398 1928384 112003 0.517 0.979 0.743 0.610 0.573

Sensitivity (Sens), Specificity (Spec), Precision (Prec), F1-score and Cohen's kappa index are calculated based on the total number of cases in the respective contingency table.
For each dataset the total number of epochs are accumulated across all the recordings; TP ¼ True Positives, FP ¼ False Negatives, TN ¼ True Negatives, FN ¼ False Negatives.

D. Alvarez-Estevez, I. Fern�andez-Varela / Sleep Medicine 57 (2019) 6e14 9

62 2. Detection of EEG Arousals



of (human) inter-scorer variability, as this is the one involving the
two independent manual scorings.

By comparing the average kappa values for ReC and A-C similar
ranges are noticed (columns 4 and 5: HMC-S 0.594/0.595, HMC-M
0.561/0.523, SHHS2 0.552/0.543); that supports the hypothesis of
the automatic algorithm behaving as “one expert more” (ie, no
important differences are evidenced between the humanehuman
and the automatic-human scorings regarding kappa agreement).
There is a slight global increase in the A-R agreements (column 6:
0.602, 0.686, 0.564) compared to the respective A-C (column 5:

HMC-S 0.595, HMC-M 0.523, SHHS2 0.552) and ReC (column 4:
HMC-S 0.594, HMC-M 0.561, SHHS2 0.543) agreements. This might
be indicative of the automatic algorithm behaving more as “the
rescoring expert” than as “the original clinical scorers.” The effect is
more noticeable among the HMC-M recordings. However, it is
seldom appreciable for HMC-S and SHHS2 for that to be considered
an effective global bias.

Accounting to the differences between the HMC-S and the HMC-
M datasets, wemight speculate about an expected increment in the
variability values in the second case. This is because scoring on the

Table 3
Distribution descriptors of the per-recording event-by-event validation metrics.

Dataset Sens Spec Prec F1-score Kappa

HMC-S 0.608 (0.476, 0.724) 0.978 (0.966, 0.986) 0.715 (0.618, 0.804) 0.643 (0.539, 0.712) 0.609 (0.494, 0.683)
HMC-M 0.587 (0.438, 0.731) 0.973 (0.954, 0.987) 0.667 (0.484, 0.784) 0.571 (0.489, 0.658) 0.529 (0.435, 0.621)
SHHS2 0.509 (0.394, 0.634) 0.983 (0.973, 0.989) 0.757 (0.661, 0.824) 0.590 (0.503, 0.683) 0.552 (0.461, 0.651)

Data is shown as Q2 (Q1, Q3) quartiles; Sens ¼ Sensitivity, Spec ¼ Specificity, Prec ¼ Precision.

Fig. 1. Signal quality assessments for the 2296 recordings used for validation in the SHHS2 dataset (automatic vs. manual event-by-event validation). Grades were assigned by SHHS
scorers according to the SHHS quality assessment procedures. In SHHS2 values vary from 1 (poorest) to 5 (best) and reflect the proportion of sleep time in which the signals were
free of artifact; “1”: <25%, “2”: 25e49%, “3”: 50e74%, “4”: 75e94%, “5”: >95%. Upper plot: “Quality of the EEG signal (queeg1)”. Lower plot: “Quality of the EMG chin signal (quchin).”
In each case, the first subplot shows the corresponding kappa distributions per group (numerical values for the median and the inter-quartile ranges are indicated below).
The subsequent subplot shows a histogram with the number of recordings involved in the corresponding category.

Table 4
Summary of statistical tests for the diagnostic ArI indices (automatic vs. clinical reference).

Dataset Individual distributions Difference distribution

Reference Auto Ref e Auto Wilcoxon paired test

Mean ± SD Q2 (Q1, Q3) Mean ± SD Q2 (Q1, Q3) Mean ± SD Q2 (Q1, Q3) p-value

HMC-S 13.32 ± 8.01** 11.86 (7.68, 16.61) 12.47 ± 8.06** 10.74 (7.42, 15.03) 0.84 ± 5.41** 0.40 (�1.99, 3.97) 0.023
HMC-M 12.45 ± 10.48** 9.97 (5.46, 15.52) 12.97 ± 10.14** 10.56 (6.92, 15.14) �0.52 ± 6.68* �0.60 (�4.21, 3.50) 0.224
SHHS2 12.91 ± 7.02** 11.54 (8.13, 15.97) 12.56 ± 7.73** 10.74 (7.37, 15.49) 0.35 ± 4.89** 0.44 (�2.07, 3.02) p < 0.001

*Normality test rejected with p < 0.01; **normality test rejected with p < 0.001.
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HMC-M dataset was performed “purely manual” (ie, automatic
scoring was not used as a pre-scoring step). The intuition behind
this hypothesis is simple: a first pass of the automatic algorithm
would help to focus the attention of the scorers, contributing both
to reduce the time needed for the scoring (revision is limited to
checking the results of the automatic analysis), and as a side effect,
to increase both the repeatability and the consistency of the scoring
criterion (thus, reducing the inter-scorer variability). This hypoth-
esis is only slightly supported by our results with a small relative
reduction on the respective ReC agreements (0.594 for HMC-S and
0.561 for HMC-M). Recall, on the other hand, the increased overall
agreement achieved by the automatic algorithm in HMC-S as
compared to HMC-M (Table 3, median kappa of 0.609 and 0.529
respectively), which might also be explained by the higher
expected inter-scorer variability associated with HMC-M. In either
case, results are not conclusive on this hypothesis.

Finally, concerning SHHS2, the expected levels of ReC agree-
ment are the lowest among the three datasets (column 4: HMC-S
0.594, HMC-M 0.561, SHHS2 0.543). We could hypothesize about
different contributing factors, such as the fact that the SHHS2
scoring criteria rely on an older version of the standard (ASDA1992
[25]). The use of different montages, or differences due to the
different training background of the reference rescoring expert,
might have contributed to this result. In any case, the slight dif-
ferences on the respective indices suggest that these factors are not
contributing in excess to cause major differences in the expected
levels of inter-rater variability. Perhaps most of the variability can
be better explained by the difficulty of the EEG arousal scoring task
itself, rather than by such external factors.

3.3. Inter-scorer variability reported in the literature

Human inter-scorer variability has been reported for the EEG
arousal scoring task in some works in the literature. Direct com-
parison between the different studies is challenging, however, as
the exact methods might differ per study, and exact reproducibility
of the experimentation is not always possible.

In a study by Drinnan et al., a comparison of different EEG
arousal scorings was carried out from a set of 90 events, and be-
tween 14 different European laboratories. A kappa agreement of
0.47 was reported in this study [38]. In a population of 20 patients,
with and without obstructive sleep apnea (OSA), Loredo et al., [39]
reported an ICC of 0.84 between two human scorers. Significant
differences were reported in the same work between the two
scorers when comparing the correlation coefficient of the respec-
tive ArI differences for two consecutive nights. Pittman et al., [8]
calculated the agreement between two human scorers on a data-
set of 31 OSA patients, reporting a kappa index of 0.57 using an
epoch-by-epoch event validation procedure. An ICC of 0.81 was
achieved when comparing the respective ArI scores. More recently,
Ruehland et al., [40] reported a median Fleiss kappa of 0.54
(modified for continuous measurements) to estimate the inter-
scorer reliability of the EEG arousal scoring task using standard
reference montages. They used a dataset of 15 recordings and four
different scorers.

Table 5
Repeatability indices calculated over the resulting ArI scores distributions (auto-
matic and clinical reference).

Dataset Metric Value 95% CI

HMC-S r 0.771 [0.676, 0.839]
ICC 0.770 [0.710, 0.820]
r (log) 0.693 [0.624, 0.724]
ICC (log) 0.694 [0.617, 0.757]
GLMM (original) 0.742 [0.667, 0.806]
GLMM (link-scale) 0.711 [0.643, 0.774]

HMC-M r 0.791 [0.712, 0.862]
ICC 0.790 [0.739, 0.832]
r (log) 0.646 [0.552, 0.685]
ICC (log) 0.648 [0.568, 0.715]
GLMM (original) 0.755 [0.678, 0.799]
GLMM (link-scale) 0.701 [0.639, 0.741]

SHHS2 r 0.780 [0.762, 0.789]
ICC 0.780 [0.764, 0.796]
r (log) 0.759 [0.734, 0.769]
ICC (log) 0.761 [0.739, 0.780]
GLMM (original) 0.791 [0.728, 0.774]
GLMM (link-scale) 0.761 [0.697, 0.742]

CI ¼ Confidence Interval; r ¼ Linear Correlation Coefficient; ICC ¼ Interclass Cor-
relation Coefficient; GLMM ¼ Generalized Linear Mixed-Effects Model. For GLMM
n ¼ 100 is used both for parametric bootstrapping and for interval estimation.

Table 6
Results of the inter-scorer variability analysis for the HMC-S, HMC-M and SHHS2 datasets. R-C: manual rescoring vs. original clinical scorings; A-C: automatic vs. original
clinical scorings; A-R: automatic scoring vs. manual rescoring

Id Percentile Time manual rescoring (min) Kappa index

ReC:
Rescoring vs Clinical

A-C:
Auto vs Clinical

A-R:
Auto vs Rescoring

HMC-S
HMCS01 12.5 40 0.449 0.437 0.324
HMCS02 37.5 25 0.698 0.555 0.694
HMCS03 50 40 0.628 0.609 0.687
HMCS04 62.5 27 0.543 0.644 0.622
HMCS05 87.5 20 0.654 0.730 0.685
Average e 30.4 0.594 0.595 0.602
HMC-M
HMCM01 12.5 50 0.490 0.347 0.592
HMCM02 37.5 15 0.601 0.485 0.772
HMCM03 50 20 0.466 0.530 0.747
HMCM04 62.5 25 0.681 0.583 0.577
HMCM05 87.5 20 0.567 0.672 0.743
Average e 26 0.561 0.523 0.686
SHHS2
204977 12.5 18 0.422 0.391 0.419
201413 37.5 32 0.605 0.509 0.607
202435 50 30 0.574 0.552 0.603
203204 62.5 18 0.495 0.597 0.574
205545 87.5 19 0.617 0.711 0.616
Average e 23.4 0.543 0.552 0.564
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In children (n ¼ 36) with and without OSA, Wong et al., [41]
calculated the differences between two human scorers resulting
in an overall ICC of 0.90 (0.88 for the normal group).

It is worth mentioning the study of Whitney et al., [42] as it
concerns human variability analysis in the SHHS database. In their
study, a subset of 30 recordings was used reporting an ICC of 0.54
between three different scorers. The ICC agreement increased to
0.72 when the two most experienced scorers were compared.
The intra-scorer variability was also analyzed on 20 out of the 30
recordings, and significant differences were found for two out of
the three scorers using a paired t-test among the respective ArI
derived indices [42].

The highest inter-rater agreement published in the literature
can be found in the study of Smurra et al. [43], who analyzed both
the inter- and the intra-scorer reliability for two different scorers
on a set of 20 OSA patients. Their analysis was carried out according
to two different scoring standards, namely the ASDA1992 and the
ULC. In their work Smurra et al. reported an inter-scorer ICC of 0.96
for the ASDA1992 and 0.98 for the UCL standards. Moreover, no
statistical differences were found using one-way ANOVA analysis,
when evaluating intra-scorer variabilities between the two scoring
references [43].

3.4. Results from other automatic approaches in the literature

Some previous works have performed validation procedures
based on positive (overlapping) event matchings against the clini-
cian's scorings (Zamora and Tarassenko [5], De Carli et al. [4], and
Agarwal [7]). Sensitivity and precision values vary on these studies
(0.42e1.00 and 0.57e1.00, respectively) as well as the number of
PSGs involved (from two to eight).

Some other works have carried out epoch-by-epoch validation
procedures using time-fixed scoring units. Cho et al., [6] used 1s
epochs reporting a sensitivity of 0.75 and a specificity of 0.93 on a
set of six recordings. Sugi et al. [10], on the other hand, used a 1.28s
epoch length for counting positive matches, while a 30s time
reference was used for the computation of true negative scores.
Reported indices of sensitivity and specificity were 0.82 and 0.88,
respectively, on a dataset of eight recordings. Using a 30s time
reference, as in our study, the method of Pacheco and Vaz [3]
achieved a sensitivity of 0.88 on selected 2-h periods from eight
PSG recordings. In another study [11], using a dataset of 20 full
recordings and a 30s epoch reference, Shmiel et al. obtained a
sensitivity of 0.75 and a precision of 0.77.

We note that, at least for the approximations of Zamora and
Tarassenko [5], Pacheco and Vaz [3], and Cho et al. [6], the validation
was limited to partial pre-selected periods out of the total recording
time. In the work of De Carli et al. [4], the standard reference was
obtained from the consensus of two human scorers and their pro-
posed method, which might bias the result. Agarwal [7] mentioned
that the configuration of the method was optimized individually for
each of the two testing recordings. Therefore, the validation results
might be biased as well. The validation procedure described in Sugi
et al., [10] presents a similar problem, as 25% of each recording's data
were used for training their model. Notice as well that none of the
previous works have reported on the respective expected values of
inter-scorer reliability for their datasets.

The work of Pittman et al., [8] is notable in this regard. Using a
dataset of 31 recordings and following a similar 30s epoch-by-
epoch validation procedure, they reported a kappa index of 0.57
between two reference human scorers. Their automatic algorithm
achieved kappa values of 0.28 and 0.30, respectively, against each of
the two human scorers. In the samework, also, a comparison of the
ArI derived indices was performed, resulting in a humanehuman
ICC of 0.81, and a human-computer ICC of 0.58 and 0.72.

3.5. Comparison with previous automatic approaches from the
authors

As introduced in Section 2.3 the authors have attempted
automatic EEG arousal scoring in the past following different ap-
proaches [16,15,14,13,12].

Specifically, in Ref. [14] and in Ref. [15], the full SHHS1-26
dataset was used, and in Ref. [16], the HMC-22 dataset was
taken as reference for the validation of a preliminary version of
the current algorithm. Table 7 shows the results of the current
version of the algorithm using the HMC-22 and the SHHS1-26
datasets, together with the results obtained in the original pub-
lications. On each case validation procedures were replicated
following the same conditions as in the original studies, there-
fore allowing one-by-one direct comparison of the results. The
total number of scorable 30s epochs in HMC-22 is of 21,826 and
in SHHS1-26 of 31,080.

To set a baseline to evaluate the generalization capabilities of
the new version of the algorithm with respect the earlier version
presented in Ref. [16], the original version was re-evaluated using
the SHHS1-26 dataset. Also, we were able to run the algorithm
described in Ref. [14] (originally validated for the SHHS1-26 dataset
only) using the HMC-22 dataset. Similar attempts to re-run the
algorithm described in Ref. [15] in the HMC-22 dataset were un-
fortunately unsuccessful, as considerable recoding effort would
have been necessary to enable the analysis with the alternative
database.

From Table 7 we observe that the current version of the algo-
rithm considerably outperforms its predecessor [16] in SHHS1-26
while keeping a similar performance in HMC-22. The current
version also outperforms, in general, all of the remaining examined
approaches, namely [14,15]. Given that the SHHS1-26 and the
HMC-22 datasets were used during the development phase of the
present algorithm, arguably there might be the presence of bias in
these results. Nevertheless, the generalization capabilities of the
current version of the algorithm have been already proven using
the large and independent HMC-S, HMC-M and SHHS2 datasets.
Thus, the improvement in the performance is rather interpreted as
confirming evidence of the good dataset generalization capabilities
of the updated version.

A lack-of-generalization effect can be observed regarding the
results of the algorithm described in Ref. [14], showing a decay in
the performance when reexamined in HMC-22. Hence, this result
supports the hypothesis that the original performance for the
method described in Ref. [14], evaluated in the SHHS1-26 dataset,
included, at least, a component of database-specific overfitting.
Overall, the results show that the previously reported algorithms
ultimately do not generalizewell when confrontedwith a change in
the database source.

Table 7
Performance comparison of previous automatic approaches on the alternative
SHHS1-26 and HMC-22 datasets.

SHHS1-26 Sens Spec Prec F1-score Kappa

Current 0.581 0.979 0.739 0.634 0.597
Approach in Ref. [16] 0.329 0.992 0.830 0.450 0.405
Approach in Ref. [14] 0.656 0.949 0.649 0.629 0.573
Approach in Ref. [15] 0.810 0.878 0.560 0.660 0.580
HMC-22
Current 0.791 0.981 0.807 0.792 0.773
Approach in Ref. [16] 0.748 0.988 0.855 0.793 0.775
Approach in Ref. [14] 0.531 0.962 0.555 0.506 0.470

Following the format used in the original publications, results are shown averaging
the respective per-patient indices, calculated over the whole recording time;
Sens ¼ Sensitivity, Spec ¼ Specificity, Prec ¼ Precision.
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4. Discussion

This study is the largest validation of an automatic EEG arousal
scoring algorithm carried out to date. One of the problems that
delay the implementation of automatic scoring systems in the
clinical routine is the difficulty that these algorithms encounter
trying to preserve their performance outside of a controlled
experimental environment. Approximations have been reported in
the literature showing promising results, but usually, validations
are restricted to a few, mostly local, and private recordings. More-
over, experiments are often carried out under controlled or ideal-
ized conditions. Closing this gap involves giving proof of the real
generalization capabilities when confronting large and heteroge-
neous databases.

Sources of variability challenging the generalization capabilities
of this kind of algorithms are diverse. Among others, different da-
tabases involve different signal acquisition and digitalization
methods, different population characteristics, and different expert
interpretations. Moreover, the latter is not exclusively influenced by
differences on the expert's training or background: even when
restricting the scoring to the very same recording, human subjec-
tivity still contributes to differences on account of the so-called
intra- and inter-rater effects. In consequence, it is fundamental to
contextualize the performance results of the algorithm in connec-
tion with the (database-specific) expected levels of human scoring
variability (or agreement), a fact which, despite some very few
exceptions [8], is barely reported among the validation studies in
the literature.

The performance of our algorithm was analyzed across large
patient samples using both our sleep center recordings and an
external public source, namely the SHHS database [17,21]. PSG re-
cordings out of the HMC database were further organized into
different, more specific datasets (HMC-S and HMC-M). A working
hypothesis here was to assess possible performance or inter-scorer
variability differences when confronting automatic and clinical
results obtained in the context of a semi-automatic approach (using
automatic scoring first, then reviewing the results manually) with
the results obtained using the classical (manual scoring only)
reviewing approach. Even though some trend was depicted in our
results for the HMC dataset, evidence was not conclusive on sup-
porting this hypothesis.

Specifically, expected levels of human agreement have been
estimated in all the three cases (k ¼ 0.594 HMC-S, k ¼ 0.561 HMC-
M, k ¼ 0.543 SHHS2) with our algorithm obtaining comparable
levels of performance (see Tables 2, 3 and 6). Therefore, we
conclude that our algorithm behaves as one expert more, showing
generalization capabilities comparable to the respective expected
levels of human agreement. Literature studies which have assessed
the agreement between clinical experts on an epoch-by-epoch EEG
arousal scoring task have reported kappa indices in the range
0.47e0.57 [38,8,40]. Apparently, this range is consistent with the
values obtained for the datasets used in this study.

When considering ArI agreement in terms of ICC, the literature
in general is less consistent, with inter-rater agreement varying
widely in the range 0.54e0.98 [2,42,39,8,41,43]. Although ICC is an
adequate statistic to quantify rater (human or automatic) vari-
ability, comparison of the different results across the literature is
not straightforward. In particular (and leaving aside the earlier
mentioned sources of variability) none of the previous publications
have clearly specified the exact ICC variant [31] being used for their
calculations. The problem is not limited to this particular domain
[37]; similarly, deviations from normality (although frequent in
practice) are usually non-adequately addressed [34]. For the sake of
reproducibility, and to increase across-literature comparability, we
have tried to overcome these specific limitations in our study. Thus,

we have referenced the specific procedures and reported different
“flavors” of ICC (among some other repeatability measures) in
Table 5.

Notwithstanding the preceding, we cannot avoid contrasting
our automatic-human repeatability scores in SHHS2 (generally
ranging in 0.759e0.791) with the values reported byWhitney et al.,
on a set of 30 recordings for the SHHS database (ICC ranging
0.54e0.72 [42]). Besides the uncertainty regarding the specific ICC
version used in Whitney et al., any conclusion derived from such a
tentative comparison should take into account that (i) SHHS scoring
procedures have been subject to the supervision of a Reading
Center [26] (this procedure is usually absent on a clinical routing),
and (ii) that guidelines for event scoring in SHHS were based on
an older version of the standards (ASDA1992 vs. AASM2017). At
least both references agree in the use of a 3 s arousal scoring rule,
and the use of the EMG for the scoring of arousals in REM. Inter-
scorer variability has been reported to decrease abruptly when
using arousal definitions shorter than 3 s [39,41], and also (but less
significantly) when no EMG derivation is used [2]. A remarkable
result in the SHHS2 dataset is that we have obtained robust
behavior almost independently of the quality of the associated
signals (see Fig. 1). Unfortunately, structured quality assessments
enabling similar conclusions were not available in the case of the
HMC database.

It is difficult to carry out a reliable comparison with other
automatic EEG arousal detection approaches in the literature. Pre-
vious validation studies are limited to the use of smaller (2e31
recordings) and non-public datasets. Methodology usually differs,
and exact reproducibility of the experimentation is not always
possible. Moreover, as previously stated, the general lack of
assessment of the expected levels of human agreement makes it
difficult to interpret the results reported by these approximations.
To our knowledge, only Pittman et al., [8] have co-analyzed the
respective levels of expected inter-scorer variability when vali-
dating their automatic detector. System validation, in this case,
showed performance values under the expected levels of human
agreement (k ¼ 0.57, ICC ¼ 0.81). Specifically, automatic versus
human agreement resulted in kappa indices of 0.28 and 0.30, with
ICC values of 0.58 and 0.72, respectively for each of the two human
scorers involved in the study.

Direct comparison with previously validated approaches was
possible when taking as the reference our previous results using
the HMC-22 and SHHS1-26 datasets. In this respect, we have shown
that our current algorithm does keep, or improve, the reference
performance over the different approaches, and for the respective
datasets. On the contrary, previous approaches are not able to
provide results when confronted with a database different from
which the algorithm was originally designed. The experimental
data suggest superior robustness of our approach compared to the
current state-of-the-art.

An additional comment concerns whether some time improve-
ment can be expected when using the semi-automatic approach in
comparison to classical manual scoring. Bringing together data from
Table 6 as the reference, we have estimated the average manual
scoring time to be around 25min (ranging 18e50min depending on
the recording). While systematic assessment of intra-scorer vari-
ability is left as future work, we were able to carry out a second
review of some of the recordings, using the same expert, but this
time using a semi-automatic approach. This second rescoring was
performed blinded to the results of the initial analysis, and with a
period of more than two months in-between. Overall, an average
scoring time improvement of around 20e25% was obtained. This
improvement translates into an average of 5e6 min saving per
recording. Note that the automatic scoring of one full PSG takes
about 30 s using a normal laptop computer.
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To conclude, we would like to refer to the minimalist nature of
the algorithm with regard to the number of signals involved in the
analysis. Specifically, our automatic algorithm operates using one
EEG and one chin EMG channels. The choice of the specific EEG and
EMG derivations used in this study was driven by the availability of
the respective database montages. Central EEG derivations (when
possible, referenced to the mastoid, and otherwise to the occipital
regions) were chosen in HMC to match as close as possible the
respective SHHS montages. Performance effects on HMC by the
choice of different EEG channels have not been assessed. While we
have opted to use an additional ECG trace for ECG artifact removal,
unpublished data show that, when evaluated on a large patient
sample, ECG filtering does not contribute significantly to the overall
performance of our algorithm. However, it does successfully
address some specific subsets of recordings highly affected by ECG
intrusion.

Future work might also explore the extension of the current
method to support multichannel EEG. On an earlier study using a
different approach, we have shown that further improvement
could be expected by combining independent information from
different channels [15].
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A Comparison of Performance of Sleep
Spindle Classification Methods Using
Wavelets

Elena Hernandez-Pereira, Isaac Fernandez-Varela
and Vicente Moret-Bonillo

Abstract Sleep spindles are transient waveforms and one of the key features that
contributes to sleep stages assessment. Due to the large number of sleep spindles
appearing on an overnight sleep, automating the detection of this waveforms is desir-
able. This paper presents a comparative study over the sleep spindle classification
task involving the discrete wavelet decomposition of the EEG signal, and seven dif-
ferent classification algorithms. The main goal was to find a classifier that achieves
the best performance. The results reported that Random Forest stands out over the
rest of models, achieving an accuracy value of 94.08 ± 2.8 and 94.08 ± 2.4% with
the symlet and biorthogonal wavelet families.
Keywords Sleep spindles ⋅ Wavelets ⋅ Machine learning

1 Introduction

According to the current AASM definition [3], the Sleep Spindle (SS) is a “train of
distinct waves with frequency 11–16 Hz (most commonly 12–14 Hz) with a duration
greater or equal to 0.5 s, usually maximal in amplitude in the central derivations”.
The sleep spindle waves are characterized by progressively increasing then gradu-
ally decreasing amplitude, that may be present in low voltage background Electroen-
cephalogram (EEG), superimposed to delta activity, or temporally locked to a vertex
sharp wave and to a K complex [16]. Spindles are one of the key features that con-
tributes to sleep stages assessment, specifically is one of the hallmarks of Non-Rapid
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Eye Movement (NREM) stage 2 sleep, both in adults and children. Unfortunately,
their visual identification is very time-consuming (there are typically hundreds of
sleep spindles in a full night recording), and they are borderline in frequency or
duration, or superimposed on other waveforms. Moreover, there are varying defini-
tions of sleep spindle in the literature, making the criterion used for spindle scoring
inconsistent across studies. Another limitation is that interscorer reliability for visual
identification suggests a variability between scorers possibly due to subjectivity or
expertise of the scorer [27]. Thus, automated sleep spindle detectors have been devel-
oped to reduce the workload of experts and eliminate the subjectivity.

The earliest sleep spindle detectors were dependent upon hardware [13, 20]. After
these detection systems several software solutions have been attempted. Two prin-
cipal approaches become accepted: those using band-pass filtering and amplitude
detection, and those applying feature extraction follow by decision-making for clas-
sification. The first approach, followed in [10, 29], suffers from the interscorer vari-
ability and that is one of the reasons for the second approach to be a noted research
line. Concerning algorithms based on features extraction followed by classification,
the Short Time Fourier Transform (STFT) is a suitable tool to identify the frequency
content of the sleep spindles. In [17], Gorur used STFT coefficients as inputs of a
classifier. An agreement rate of 88.7 and 95.4 % were obtained with a multilayer per-
ceptron (MLP) and a support vector machine (SVM) respectively. Another method
used for features extraction is adaptive autoregressive modelling (AAR). In [1] the
AAR coefficients were used as inputs for different classifiers: a discrete perceptron, a
MLP and a SVM. The results obtained were compared in terms of sensitivity, achiev-
ing values of 99.2 %, 89.1 % and 94.6 % respectively. In recent years advanced time-
frequency analysis tools like wavelets have been applied to the sleep EEG to derive
improved feature vectors for sleep spindles. Ahmed et al. [2] proposed a automatic
detector based upon the Teager Energy Operator (TEO) and Wavelet Packet Energy
Ratio, and achieved an accuracy of 93.9 %. In [11] a multi-resolution decomposi-
tion technique based on wavelets and STFT, is developed to detect sleep spindles.
After the detection, TEO is applied to determine spindle duration. By this approach,
an overall sensitivity and specificity of 96.17 and 95.54 % were achieved. TEO is
employed too in [19] where this operator isolated candidate spindle zones on sleep
EEG and spectral edge frequency confirmed its presence. The algorithm used a nor-
malized threshold and did not require patient-specific adjustments. It achieved 80 %
and 97.6 % values of sensitivity and specificity respectively. Günes et al. [18] pro-
posed a hybrid method based on time and frequency domain features. Welch spectral
analysis has been used for the extraction of frequency domain features and a MLP
for classification. The obtained classification accuracies for three feature sets (only
time domain, only frequency domain and both frequency and time domain features)
were 100, 56.86 and 93.84 %. In [24], an algorithm that models the amplitude fre-
quency spindle distribution with a bivariate normal distribution is proposed. Spindle
detection is not directly based on amplitude and frequency thresholds, but instead
on a spindle distribution model that is automatically adapted to each individual sub-
ject. Authors concluded that normal modelling enhanced performance and improved
spindle detection quality.
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This work studies the capabilities of several machine learning techniques to clas-
sify sleep spindles. The feature extraction is accomplished using a discrete wavelet
decomposition applied to the raw samples of the EEG signal segments. The paper is
structured as follows: Sect. 2 proposes the research methodology, Sect. 3 describes
the experimental procedure used in the research, Sect. 4 presents the results obtained
and finally, the conclusions are presented in Sect. 5.

2 Research Methodology

The main objective of this work is to obtain a method that achieves the best accuracy
results in the sleep spindle classification task. Over the EEG signal from several
sleep recordings, a set of isolated waveforms was obtained. Using these patterns,
the coefficients of a discrete wavelet decomposition were used as inputs for several
classifiers.

2.1 Data Set

Patient data was gathered from the Sleep Laboratory of the André Vésale Hospital
in Belgium. It consists of eight whole-nights recordings coming from patients—4
men and 4 women aged between 31 and 53—with different pathologies. Two EOG
channels, three EEG channels and one submental EMG channel were recorded. The
sampling frequency was 200 Hz for six records of the complete data set, 100 and
50 Hz for the two remaining ones. A segment of 30 min was extracted from each
night from the central EEG channel for spindles scoring. No effort was made to
select good spindle epochs or noise free epochs, in order to reflect reality as well as
possible. These segments were given to a medical expert for sleep spindle scoring.
The total number of identified spindles was 289 [10].

2.2 Feature Extraction

The wavelet transform is an efficient tool for decomposing a signal into a fundamen-
tal function set and obtaining sub-band localization. Figure 1 depicts the wavelet
decomposition tree.

In the first step, a high pass filter g(n) and a low pass filter h(n) are applied to the
original signal x(n). After the filtering process, half of the samples at high frequency
are discarded according to Nyquist Criteria. This operation is performed recursively
for every remaining sample and the desired frequency intervals are obtained. We can
mathematically express this procedure as follows:
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Fig. 1 Wavelet decomposition tree

Yhigh[k] =
∑

x[n]ġ[2k − n] (1)

Ylow[k] =
∑

x[n]ḣ[2k − n] (2)
where Yhigh[k] and Ylow[k] are the outputs of the high pass (D) and low pass (A)
filters, respectively.

The discrete wavelet transformation [26] provides a decomposition of a given sig-
nal into a set of approximation (ai) and detail (di) coefficients of level i. The decom-
position process can be iterated, with successive approximations being decomposed
in turn, so that a signal is broken down into many lower-resolution components.
Thus, in this case the samples of the EEG signal, are processed to obtain a level-1
transformation (a1 and d1 coefficients). Subsequently, each set of ai coefficients is
decomposed into a set of approximation ai+1 and detail di+1 coefficients. Also, to
obtain this decomposition some different types of wavelets functions can be used.
The level-detail was determined taking into account the sample rate of the EEG sig-
nal and the wavelet families were chosen after performing some other experiments
and discarding several wavelet families, specifically, the Symlet, Haar, Daubechies,
Coiflets, Biorthogonal, and the discrete approach of the Meyer wavelet [9].

2.3 Classification

In this section, we provide an overview of the methods used in the research for sleep
spindle classification. Several approaches were considered, two lineal models—a
one-layer feedforward neural network and a proximal support vector machine—, and
five non linear ones—a multilayer feedforward neural network, a classification tree,
a Random Forest, a Support Vector Machine and a Naive Bayes classifier—.
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∙ One-layer Feedforward Neural Network, One-lay FNN
The one-layer feedforward neural network (FNN) is a single-layer FNN without
hidden layers. This is a linear classification system that was trained using the super-
vised learning method proposed in [8]. The contribution of this learning method
is that it is based on the use of an alternative cost function that measures the errors
before the nonlinear activation functions instead of after them, as is normally the
case. An important consequence of this formulation is that the solution can be
obtained directly using a system of linear equations due to the fact that the new
cost function is convex [14]. So, the method avoids local minima, and a very good
approximation to the global minimum of the error function is obtained.

∙ Multilayer Feedforward Neural Network, FNN
The multilayer feedforward neural network is one of the most commonly used
neural network classification algorithms [4]. The architecture used for the classi-
fier consisted of a three layer feed-forward neural network: two hidden and one
output layer. The optimal number of hidden neurons for this problem was empiri-
cally obtained.

∙ Classification Trees, Class. Tree
Classification trees are used to predict membership of cases or objects in the
classes of a categorical dependent variable from their measurements on one or
more predictor variables. In these tree structures, leaves represent class labels and
branches represent conjunctions of features that lead to those class labels [5]. Each
internal (non-leaf) node of the tree is labelled with an input feature. The arcs com-
ing from a node labelled with a feature are labelled with each of the possible values
of the feature. Each leaf of the tree is labelled with a class or a probability distri-
bution over the classes. A tree can be “learned” by splitting the source set into
subsets based on an attribute value test. This process is repeated on each derived
subset in a recursive manner. The recursion is completed when the subset at a node
has all the same value of the target variable, or when splitting no longer adds value
to the predictions. This process of top-down induction of decision trees is by far
the most common strategy for learning decision trees from data [25].

∙ Random Forests, RF
Random Forests [7] are an ensemble learning method for classification that oper-
ates by constructing a multitude of decision trees at training time and outputting
the class that is the mode of the classes. For an ensemble of decision trees for
a multiclass classification function, one of the general methods is Bagging. This
method is the simpler, more robust and more highly parallel technique. In the
Bagging version used, a fixed-sized fraction of the training data is employed to
construct each classifier in the ensemble. The Bagging method simply produces
an ensemble of N decision trees constructed from N random subsets of the training
data, where each subset is of the fixed-size mentioned in the previous sentence.
With Bagging, the original method from the literature [6] of choosing a subset of
points from a complete training set of N points was to choose a bootstrap sample
[12]. Simply put, this means randomly choosing N points with equal probability
from the set with replacement, so that some points may be chosen more than once
or not at all.
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To compute prediction of an ensemble of trees for unseen data, the Random Forest
model takes an average of predictions from individual trees. To estimate the pre-
diction error of the bagged ensemble, predictions for each tree are computed on
its out-of-bag observations, are averaged over the entire ensemble for each obser-
vation and then the predicted out-of-bag response is compared with the true value
at this observation.

∙ Support Vector Machine, SVM
A Support Vector Machine is a supervised classification technique that works by
nonlinearly projecting the training data in the input space to a feature space of
higher (infinite) dimension by the use of a kernel function. This results in a lin-
early separable data set by a linear classifier. In many instances, classification in
high dimension feature spaces results in overfitting in the input space; however, in
SVMs, overfitting is controlled through the principle of structural risk minimiza-
tion [28]. The empirical risk of misclassification is minimized by maximizing the
margin between the data points and the decision boundary [21].

∙ Naive Bayes, NB
Naive Bayes classifiers are a family of simple probabilistic classifiers based on
applying Bayes’ theorem with strong (naive) independence assumptions between
the features. This assumption dramatically reduces the number of parameters that
must be estimated to learn the classifier. Naive Bayes is a widely used learning
algorithm, for both discrete and continuous inputs. The Naive Bayes Classifier
technique is particularly suited when the dimensionality of the inputs is high.
Despite its simplicity, Naive Bayes can often outperform more sophisticated clas-
sification methods [23].

∙ Proximal Support Vector Machine, pSVM
The proximal Support Vector Machine [15] is a method that classifies points
assigning them to the closest of two parallel planes (in input or feature space)
that are pushed as far apart as possible. The difference with a SVM is that this one
classifies points by assigning them to one of two disjoint half-spaces. The pSVM
leads to an extremely fast and simple algorithm by generating a linear or nonlinear
classifier that merely requires the solution of a single system of linear equations.

3 Experimental Procedure

In order to characterize the performance of the system, the sensitivity and accuracy
standard measures were used. The procedure presented has two stages: a feature
extraction stage that establishes the main inputs for classification and the classifi-
cation model itself. The initial step of the proposed methodology is the processing
of the available EEG signals, obtaining isolated waveforms. The positive examples
were identified by the medical expert and in order to achieve a balanced data set, the
same number of negative examples were selected from the whole set of recordings.
To get these negative examples, signal windows of 0.5 s (minimum sleep spindle
duration) were randomly selected.
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The sleep spindles contain low frequency components that are placed at 11–16
Hz band. Therefore, 8–16 Hz band covers all the information required for spindle
detection. Thus, the computational cost and detection errors can be reduced by lim-
iting the search to this sub-band. A discrete wavelet transformation was used as a
pre-processing phase to reduce and fix the number of inputs of the classifier. Experi-
mentally, for this work it was determined that the absolute value of the level-4-detail
coefficients (d4), the level-3-detail (d3), and the level-2-detail (d2) are the set of inputs
that obtains the best sleep spindle classification results for the different sample rates
(200 Hz, 100 Hz and 50 Hz respectively). Also, in order to make the decomposition,
the symlet and biorthogonal wavelet families were used with a length of the filter
equal to 10, 14 and 7 (symlet of order: O5, sym5 and O7, sym7; and biorthogonal of
order O1.5, bio1.5).

The number of coefficients supplied by the wavelet transformation depends on
the number of samples of the supplied pattern. In this case, the minimum number
of samples is 25 (as 0.5 s is the minimum duration of a sleep spindle and the lowest
sample rate is 50 Hz), therefore, the number of corresponding wavelet coefficients
is 13. As the number of inputs to the classification module must be fixed, the maxi-
mum number of coefficients that could be used is 13. For those patterns in which the
duration is the minimum (0.5 s) all the coefficients (13) were used. For those other
patterns with a duration greater than 0.5 s (for which more than 13 coefficients could
be obtained) the first 13 coefficients were used as inputs to the classifier.

The experimental procedure is detailed as follows:
1. Extract the initial set of features to be used as inputs.
2. For each nonlinear classifier, establish its architecture. For the FNN a two hidden

layer architecture with 10 and 8 units respectively was chosen. For the Random
Forest, the number of trees chosen was 20 and for the SVM, the RBF kernel
function was used.

3. Take the whole data set and generate 10-fold cross validation sets in order to
better estimate the true error rate of each model. Eight folds are used to train the
models, and the remainder ones to validate and test them respectively.

4. Train each model and obtain 10 performance measures over the validation sets
and the test sets.

5. Select the best model in terms of accuracy.
The experiments performed in this work were executed using the software tool

Matlab [22].

4 Results

In this section, the results obtained over the test set, after applying wavelet trans-
formation and several classifiers are shown and compared in terms of accuracy and
sensitivity. These results are yield against the standard reference, i.e. the medical
expert scores. Tables 1 and 2 show the performance measures obtained.
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Table 1 Sleep spindle classification results
pSVM One-lay.

FNN
Class. Tree RF FNN SVM NB

sym5 86.20± 3.9 89.58± 3.9 91.83± 4.5 94.08± 2.8 87.89± 4.5 89.01± 4.3 93.66± 1.7
sym7 83.66± 6.8 85.35± 4.6 86.20± 3.2 89.58± 3.2 82.54± 6.6 86.90± 4.5 85.77± 5.2
bio1.5 86.20± 2.8 88.59± 2.7 93.38± 4.2 94.08± 2.4 86.48± 6.4 88.59± 3.9 93.66± 2.9

Mean test set accuracy (%) of a 10-fold cv. Best values marked in bold font

Table 2 Sleep spindle classification results
pSVM One-lay.

FNN
Class. Tree RF FNN SVM NB

sym5 97.99± 1.9 96.01± 3.4 91.86± 6.8 95.78± 2.8 86.45± 6.1 92.67± 4.3 95.15± 1.5
sym7 95.04± 4.9 90.30± 3.8 85.47± 7.8 88.69± 6.5 82.16± 7.9 89.67± 4.5 89.63± 4.3
bio1.5 99.72± 0.8 98.89± 1.1 93.14± 4.3 95.81± 3.3 87.05± 7.9 92.08± 4.1 96.36± 3.6

Mean test set sensitivity (%) of a 10-fold cv

Among the linear models tested (pSVM and one-layer FNN), the one-layer FNN
showed the best performance, achieving the highest accuracy for all the wavelet fam-
ilies used. For this classifier, the bio1.5 wavelet offers the best inputs. Over the non-
linear models, the Random Forest obtained the best results. These facts state no mat-
ter what wavelet family used. Nevertheless, the biorthogonal wavelet is the one that
provides the best inputs for the classifier.

In terms of sensitivity, the linear models, pSVM and one-layer FNN, showed the
highest values with the bio1.5 wavelet, but their accuracy values are not as good as
expected. For the Random Forest model, the sensitivity values achieved were satis-
factory for the sym5 and bio1.5 wavelets.

5 Conclusions

This paper presents a comparative study over the sleep spindle classification task
involving the discrete wavelet decomposition of the EEG signal, and seven different
classification algorithms. The main goal was to find a classifier that achieves the best
accuracy results.

As a starting point, the extraction of isolated waveforms was carried out. Up to
the authors knowledge, not many previous methods were proposed for sleep spindle
classification that used the discrete wavelet decomposition as the feature extraction
method. In this environment, several wavelets families were probed, being the symlet
and biorthogonal families the ones that obtain the best results for the classifiers.

The results obtained were similar to those reported in the bibliography [2, 11] but
a fair comparative study is not possible due to differences in both datasets and eval-
uation methods. In this work, from the classifier point of view, the results reported
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that Random Forest is the best option, achieving an accuracy value of 94.08 ± 2.8
and 94.08 ± 2.4% with the symlet (order O = 5) and biorthogonal (order O = 1.5)
wavelet families. For these models, the sensitivity values are similar (95.78 ± 2.8
and 95.81 ± 3.3 respectively). The results are encouraging and a deeper study will
be done first in the negative examples extraction task. Different waveforms durations
should be considered to make more difficult the classifier task instead of providing
it with easy examples. Besides, we plan to test the use of ensembles of classifiers,
trying to take advantage of the strengths of the different algorithms tested here and
combine them in order to improve the classification accuracy. Finally, to confirm
Random Forest best results, experiments over the entire signal length should be per-
formed.
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Abstract. Sleep staging is a crucial task in the context of sleep studies
that involves the analysis of multiple signals, thus being a very tedious
and complex task. Even for a trained expert, it can take several hours to
annotate the signals recorded from a patient’s sleep during a single night.
To solve this problem several automatic methods have been developed,
although most of them rely on hand engineered features. To address the
inner problems of this approach, in this work we explore the possibility
of solving this problem with a deep learning network that can self-learn
the relevant features from the signals. Particularly, we propose a convolu-
tional network, obtaining higher performance than in previous methods,
achieving an average precision of 0.91, recall of 0.90, and F-1 score of 0.90.

1 Introduction

Among the main tasks within the medical analysis of the sleep stands out the
characterization of the sleep macro structure. Its final goal is the construction
of the hypnogram, a graph that helps to interpretate the recorded electrical
activities during a polysomnogram (PSG), showing the evolution of the different
sleep stages through time.

The construction of the hypnogram was first proposed by Rechtschaffen and
Kales (R&K) [1] in 1968 and only recently updated by the American Academy
of Sleep Medicine (AASM) [2]. The method establishes a set of rules to assign
labels (sleep stages) to time intervals typically lasting 30 s and called epochs.
These sleep stages are: wakefulness (W), two stages for drowsy sleep (N1 & N2),
one deep sleep (N3), and Rapid Eye Movement (REM).

Sleep staging is a tedious task, very time-consuming because it implies the
analysis of multiple signals that record several hours (at least 6), thus there is
a need to do it automatically. Several works address this problem with different
approaches but they suffer from the problem of using hand engineered features.

∗This research was partially funded by the Xunta de Galicia (Grant code GRC2014/035,
and ED431G/01) partially supported by the European Union ERDF and from the Xunta de
Galicia and the European Union Social Fund ESF.
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The latest review can be found in Penzel and Conradt [3]. Recent works already
solve this problem avoiding hand engineered features [4, 5].

This works classifies sleep stages automatically, avoiding the use of hand
engineered features using multiple signals at the same time. We also avoid the
use of filters of methods to remove artifacts from the signals, feeding the network
with the raw signals. The convolutional network that we are proposing is able
to learn the relevant features from the signals to classify the sleep stages.

2 Materials

To develop and validate our proposal we have used real PSG recordings from
the Sleep Heart Health Scoring database [6]. This database emerged from a
multi-center cohort study to determine cardiovascular and other consequences of
sleep-disordered breathing. Each recording includes off-line experts annotations
following the R&K procedure [1]. The montage includes two EEG derivations
(C4A2 and C4A1), rigth and left electrooculograms (EOG), bipolar submental
electromyogram (EMG); and other signals which are not relevant to our problem.
The EEG, EOG and EMG signals were recorded at 125 Hz and the EOG signals
at 50 Hz. All the signals were filtered with a high pass filter set at 0.15 Hz
during their acquisition.

A total of 240 recordings from different patients were randomly selected,
using 180 for training, 20 for validation and 40 for testing. From each recording
from train and validation sets and just to ease the model implementation, only 6
random hours were used, giving a total of 144,000 samples. The test set, which
has a total of 49,794 samples, was used completely. No effort was done to select
recordings with low noise ratio nor to discard segments with artifacts, as the
model should be able to adapt to these situations.

In the train dataset 39.7% of the samples are classified as Awake, 38.3% as
Drowsy Sleep, 9.6% as Deep Sleep, and 12.4% as REM. In the validation dataset
the class distribution is: 42.0% for W, 37.3% for DS, 9.1% for N3, and 11.6%
for REM. Finally, in the test dataset the distribution is: 42.7% for W, 37.3% for
DS, 8.8% for N3, and 11.2% for REM.

3 Method

The goal of this work is to classify the different sleep stages of a PSG recording.
As our first approximation, we simplify the problem using one label for drowsy
sleep which includes both N1 and N2 stages. This was done in previous works [7]
given that N1 is the stage for which expert classification presents the lowest inter-
agreement [8] and also, the one with lower presence (only 3% of the epochs are
classified as N1).

We solve this classification problem using a convolutional network1. A con-
volutional network is a deep feed-forward network that overcomes the limitations
of multilayer perceptrons using a shared-weights architecture. The main reason

1Code and model are available in https://github.com/bigsasi/deepsleep
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to use this network is its ability to learn the features that before were hand
engineered.

To avoid biasing the model, we use as much data as it is possible to train it.
Thus, we use the five available signals, although they are sampled at different
rates. To overcome this problem, those signals sampled with a lower rate were
padded with zeros. Then, a matrix with a row per signal was created. Obviously,
this was done for each 30 seconds window, following the sleep stage definition.
This way, each input to the network has a dimension of 3750 × 5. Although the
input is bi-dimensional, our experiments were all done using 1D convolutional
networks. With 1D convolutions we avoid imposing some artificial spatial struc-
ture between the different signals. Each signal was normalized to zero mean and
unit standard deviation using train set as reference.

The convolutional model was selected using the validation set, trying to ob-
tain the smallest network. From one layer models, we kept adding more layers
until the performance did not improve. The performance of the model was
defined as the average classification recall in the validation set. This experimen-
tation led towards the model represented in Figure 1, which is composed of the
following layers: two convolutional layers each with 128 kernels, one pool layer,
another convolutional layer with 256 kernel, a max pool layer, and a final fully
connected layer.

The filter size was fixed at 20 for every convolutional layer, with padding
adjusted to maintain the input dimension. This value was selected after trying
values from 3 (recommended value for convolutional networks used in artificial
vision) to 65 (which would cover half a second of our signals). We observed that
the performance improved with the filter size, but only up to 20, and decaying
afterwards. The gradient optimizer was Adam [9] (with learning rate 3e − 4)
and the activation functions for all the convolutional layers relu, except for a
final softmax function. We also added a dropout [10] of 0.5 in the final layer as
regularization to avoid over-fitting. With this configuration the network had a
total of 997,380 trainable parameters. Training was done with batches of size 32
and finished using early stopping over the validation loss with a patience value
of 3.

Fig. 1: Outline of the proposed convolutional network.
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4 Results

In order to validate the usefulness of the proposed approach an ensemble of 5
models was trained under the same dataset, but with random different 6 hours
selection samples from each recording. To decide the final classification we use
the mean value. Table 1 shows the global results obtained with our network and
Table 2 the associated confusion matrix. The best precision value is obtained
for the Awake class, achieving proximate values for the remaining classes. For
the recall measure, it is worth mentioning the drop observed in the Deep Sleep
stage.

Precision Recall F-1 Score

Awake (W) 0.96 0.96 0.96
Drowsy Sleep (DS) 0.90 0.91 0.90
Deep Sleep (N3) 0.89 0.82 0.85
REM 0.89 0.90 0.90
Average 0.91 0.90 0.90

Table 1: Precision, recall and F-1 score for each sleep stage

W DS N3 REM

W 20411 712 2 125
DS 741 16917 449 480
N3 1 796 3566 0
REM 152 392 0 5050

Table 2: Confusion matrix

Evaluating each recording individually, the distribution of the different mea-
sures is represented in Figure 2. This Figure confirms that the Awake class is
the one with the best classification, with F-1 scores over 0.9, and and that the
model struggles to classify Deep Sleep, with F-1 values falling to 0.4. Drowsy
Sleep and REM classification present similar performance, with values over 0.8
for the F-1 score. Deep Sleep is the class with the highest deviation values, spe-
cially regarding the recall measure. Although precision is still greater than 0.8
for most of the records, recall values are worse, with measure values even as low
as 0.3, which means that the model tends to underscore this class. Obviously,
the fact is also reflected by the F-1 score, showing higher deviation than the
other classes. In regards to outliers, the really low values (below 0.2) correspond
to those recordings where the number of epochs classified (by the expert) as N3
is limited (lower than 2). Especially, the outliers represented as 0 correspond to
a recording with no Deep Sleep epochs.

5 Conclusions

This work presents a method to classify sleep stages in PSG recordings using
the common 30 seconds division called epoch. Our solution proposes the use of
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Fig. 2: Distribution of the performance measures for the individual recordings

a convolutional network that is feed with five available signals. The objective of
this approach is to avoid human engineered features, which is how most works
have solved this problem previously. The raw signals available in our dataset (2
EEG derivations, 1 EMG and 2 EOG) were directly used to feed the network.
Thus, we also avoid the use of filters or signal preprocessing methods, apart from
those applied within the hardware used to record the data.

Our model was selected using a validation dataset trying to achieve the high-
est recall with the fewer number of layers. Specifically, the architecture of our
final model is composed of three convolutional layers with a pool layer after the
second one and a fully connected layer at the end, with a total of 997,380 pa-
rameters trained. This yielded an average precision value of 0.91, a recall value
of 0.90 and a F-1 score of 0.90.

It is difficult to compare our proposal against previous works due to the
lack of benchmarks or clear methodology. Alvarez-Estevez et al. [7] presents
a method using fuzzy logic after extracting hand engineered features from the
signals. The method is validated on 26 recordings from the SHHS dataset,
achieving an average recall value of 0.82, lower than the value obtained by the
model described. For each sleep stage our method achieves between 7% (REM
class) and 12% (DS class) higher recall. Längkvist et al. [11] avoid the use of
hand engineered features with a deep belief network, although they remove noisy
segments and select only those epochs with a clear label. Besides, they used a
different dataset and classify 5 sleep stages. Assuming that their classification
for drowsy sleep would be as good as it is for N2 stage (quite higher than for
N1 stage), their average F1-score value is 0.79. Between classes, out method
improved between 1% for the N3 class and 23% for the W class. Supratak et al.
[4] uses multiples neural networks and a single EEG channel to classify with the
Sleep-EDF dataset, achieving lower F-1 values compared to ours. Finally, Sors
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et al. [5] achieved a similar F-1 for DS and Deep Sleep to ours, although lower
in the remaining classes, using a deeper network and the same dataset. The
performance measures for the aforementioned works are presented in Table 3

Alvarez-Estevez et al. [7] Längkvist et al. [11] Supratak et al. [4] Sors et al. [5]
(similar dataset, recall) (different dataset, F-1 Score) (different dataset, F-1 Score) (similar dataset, recall)

Awake 0.88 0.78 0.85 0.91

Drowsy Sleep 0.81
0.37 (N1)
0.76 (N2)

0.47 (N1)
0.86 (N2)

0.35 (N1)
0.89 (N2)

Deep Sleep 0.75 0.84 0.85 0.85
REM 0.84 0.78 0.82 0.86
Average 0.82 0.79* 0.85* 0.88*

Table 3: Reported classification performance from previous works. * excluding
performance for N1

In the light of the results, there is room for improvement. First of all, fu-
ture models should include the five sleep classes as it is the standard nowadays.
Besides, the easy adjustment to new datasets, which may use different signals
or derivations, should be a quality of any model. Finally, actual trends in deep
learning are understanding why the models perform the way they do. In this
sense, to know which are the learned features or to evaluate the worse perfor-
mance for the Deep Sleep class would be very valuable.
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Abstract—Sleep stages classification is a crucial task in the
context of sleep studies. It involves the simultaneous analysis of
multiple signals recorded during sleep. However, it is complex
and tedious, and even the trained expert can spend several hours
scoring a single night recording. Multiple automatic methods
have tried to solve these problems in the past, most of them
by classifying a feature vector that is engineered for a specific
dataset. In this work, we avoid this bias using a deep learning
model that learns relevant features without human intervention.
Particularly, we propose an ensemble of 5 convolutional networks
that achieves a kappa index of 0.83 when classifying a dataset
of 500 sleep recordings.

Index Terms—convolutional network, sleep stages, classifica-
tion

I. INTRODUCTION

Sleep disorders affect a major part of the population. As
an example, 20% of the Spanish adults suffer insomnia, and
between 12% and 15% daytime sleepiness [1, 2]. Good sleep
is essential for a healthy life, and the adverse consequences of
restless nights have been extensively reported [3]. To evaluate
the sleep function, and to help the diagnosis of sleep disorders,
it is important to know the sequence of sleep stages that the
patient goes through the night.

The most common technique to monitor the sleep function
is the polysomnogram (PSG), which involves recording of
the patient’s biosignals during sleep, including various pneu-
mological, electrophisiological, and contextual information.
This is an expensive test, uncomfortable for the patient, and
for which interpretation of the results is difficult due to the
complexity of the data involved. An usual way to summarize
the sleep information contained in the PSG is the derivation of
the hypnogram, an ordered representation of the sleep stages
evolution.

The current gold standard for the building the hypnogram is
the American Academy of Sleep Medicine (AASM) [4] guide
for the identification of sleep stages and of their associated
events (e.g. EEG arousals, limb movements, and cardiac or

* This research was funded by the Xunta de Galicia (ED431G/01) and the
European Union (ERDF).

respiratory events). This guide identifies five sleep stages:
Awake (W), Rapid Eye Movements (REM), and 3 non-REM
phases (N1, N2, and N3). Correct identification of the sleep
stages and construction of the hypnogram is of fundamental
importance to achieve a good diagnosis, allowing the clinician
to focus efforts in the therapy. Such a task implies the analysis
of huge amounts of data and expert knowledge [5]. Moreover,
even following the guidelines, inter-expert agreement usually
remains below the 90%. For example, Stepnowsky et al. [6]
studied the agreement between two experts finding kappa
index values between 0.48 and 0.89. Similarly, Wang et al. [7]
found values between 0.72 and 0.85. Furthermore, agreement
is worse for some particular stages, usually being stage N1
the one with the highest disagreement.

All given, automatic methods for sleep stages classification
are needed. Most of these methods follow a two step approach.
First, feature extraction takes place, usually with features hand
tailored for a specific dataset. Then, feature vectors are built
to train a classifier and predict the sleep stages. While some
authors have used a single signal channel as reference (usually
the EEG), other approaches have extracted features using
several channels, building input vectors of various elements. At
this respect usually features from the electrooculogram (EOG)
or electromiogram (EMG) are added to those of the EEG, as
recommended by the AASM guidelines. Often features are
extracted either from to the time or from the frequency domain.

Among the methods following this 2-step approach we find:
Fraiwan et al. [8] use a random forest to classify features
both from the time-frequency domain and Renyi’s entropy;
Liang et al. [9] measure entropy with different scales obtaining
autoregresive features which classify using a linear discrimi-
nant; Hassan and Bhuiyan [10], apply wavelet transformations
for feature extraction and use a random forest technique for
the classification step. Sharma et al. [11], compare several
classifiers for iterative filters analysing a single EEG channel;
Koley and Dey [12], train a support vector machine (SVM)
with frequency, time and non-linear features extracted from a
single EEG channel; Lajnef et al. [13], base their approach on
multiple signals building a decision tree upon several SVMs;
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Huang et al. [14], study power spectral density of 2 EEG
channels classifying frequency features with a modified SVM;
Finally, Günes et al. [15], also analyse power spectral density
while classifying with a nearest neighbours algorithm.

The approach consisting in solving the sleep staging classi-
fication problem using handcrafted feature extraction induces
biases due to the design of features based on one specific
database. Thus, the aforementioned solutions usually do not
generalize well, specially given the nature of PSG recordings,
where variability effects are introduced due to several factors,
including patient, hardware or scoring differences.

One alternative option to solve this problem is the use of
methods than learn directly from the raw data, therefore avoid-
ing the human bias. In this sense, deep learning represents
a natural approach, as it demonstrated improvements against
traditional methods in multiple general fields, including in
particular, the medical diagnosis [16, 17].

Some works have already explored solutions with different
deep learning models: Längkvist et al. [18], used deep belief
networks learning a probabilistic representation of preproce-
cessed signals from PSG inputs; Tsinalis et al. [19], still
followed the 2 step approach, but with convolutional networks
for classification. In other work, the same authors [20] relied
on a stack of sparse autoencoders; Supratak et al. [21], per-
formed classification from the raw signals with a bidirectional
recurrent neural network; Biswal et al. [22], compared a
recurrent network against different models, although all were
trained with features instead of the raw signal; Finally, Sors
et al. [23] also used a convolutional neural network using one
single EEG channel as reference.

In this work we use deep learning to classify sleep stages
with a convolutional neural network that learns the relevant
features for each stage. Following the AASM guidelines we
use multiple signals; namely, two EEG, one EMG, and two
(left and right) EOG channels. Moreover, signals are filtered
in the first place, to reduce noise and remove artifacts.

II. MATERIALS

Design and analysis of the presented model was carried out
using PSG recordings from real patients. These recordings
belong to the Sleep Heart Health Study (SHHS) [24], a
database offered by the Case Western University, originated
from a cohort study involving multiple centers directed by
the National Heart Lung and Blood Institute, with the goal
of determining the cardiovascular consequences of respiratory
related sleep disorders.

Each recording contains annotations for different events
performed by clinical experts following the procedures de-
scribed in [25]. All recordings were anonymized and blind
scored. The montage for the signals acquisition included two
EEG derivations (C4A2 and C4A1), left and right EOGs, chin
EMG, and modified lead-II electrocardiogram (ECG). EEG,
EOG, and EMG were sampled at 125 Hz whereas EOG were
sampled at 50 Hz. All signals were filtered during acquisition
with a high pass filter at 0.15 Hz.

From this database three different datasets were selected to
train, validate and test our model. Training dataset included
400 recordings, validation 100, and test 500. The length of
the training recordings is matched (limiting each to a total
of 7 randomly selected hours) to facilitate the coding and
the training of the algorithm. Finally, our training dataset
contained 288.000 30−s epoch samples, the validation dataset
119.121 and the test dataset 606.981. Recordings were selected
randomly, including those with high levels of noise or artifacts.

The distribution for the different classes, both for the
complete dataset as for each individual recording is shown
in Table I. This table shows how unbalanced the datasets
are, being W the most represented class (about 38% of the
samples), although with a similar proportion to N2 (around
36%). On the contrary, class N1 is only represented in 3% of
the classes It is also interesting to notice how some recordings
do not contain samples for some of the classes, and how
much the distribution differs between the recordings. For
example, in the test dataset, whereas a particular recording
contains a 7.10% of samples for class N2, another goes up
to a 83.43%. Moreover, these are the two important problems
when trying to develop an automatic sleep staging classifier: 1)
the class unbalance and 2) the differences between individual
recordings.

III. METHODS

A. Signal filtering

Signals are preprocessed to reduce noise and remove com-
mon artifacts. Both operations are typically applied in previous
works before feature extraction.

The first of the two filters used to reduce noise is a
Notch filter centered at 60 Hz to remove mains interference.
This filter is applied to those signals with a sampling rate
higher than 60 Hz: EEG and EMG. The second one removes
DC component and frequencies not related with muscular
movements from the EMG, applying a high pass at 15 Hz.

Regarding artifacts, most of then happen during particular
short time periods, making it difficult even their detection.
However, ECG artifacts, caused by the heart beat interference,
are common and constant through the whole signals. We can
remove this kind of artifact with an adaptive filter. To do
so, we first obtained the beat series following a standard
QRS detection algorithm [26]. Then, we studied the signal
quality to asses which intervals could be safely included in the
construction of the adaptive filter. Finally, during the intervals
with enough signal quality, we applied and updated the filter
template to remove the artifacts. More information about this
process can be found in Fernández-Varela et al. [27].

B. Convolutional network

Sleep stages classification is usually carried out with 30 s
windows called epochs. Analyzing several features from each
epoch, clinicians score the corresponding sleep stage.

A convolutional neural network [28] is a feedforward
network solving the limitations of the multilayer perceptron
with a weight sharing architecture. Basically, it applies a
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TABLE I
DISTRIBUTION OF THE DIFFERENT CLASSES IN THE TRAINING, VALIDATION, AND TEST DATASETS.

W N1 N2 N3 REM Total

Training dataset Total 187.513 17.283 172.451 44.454 62.168 483.869
Proportion 38,75 % 3,57 % 35,64 % 9,19 % 12,85 % 100 %
Min in single record 8,20 % 0,00 % 12,59 % 0,00 % 0,00 %
Max in single record 71,61 % 13,75 % 68,65 % 33,43 % 26,58 %

Validation dataset Total 43.742 3.963 43.510 12.900 15.006 119.121
Proportion 36,72 % 3,33 % 36,53 % 10,83 % 12,60 % 100 %
Min in single record 11,21 % 0,29 % 12,38 % 0,00 % 0,00 %
Max in single record 76,79 % 17,08 % 60,09 % 30,16 % 23,68 %

Test dataset Total 231.707 19.769 217.246 61.281 76.978 606.981
Proportion 37,77 % 3,26 % 35,96 % 10,25 % 12,75 % 100 %
Min in single dataset 7,75 % 0,00 % 7,10 % 0,00 % 0,00 %
Max in single dataset 76,53 % 16,93 % 83,43 % 43,82 % 31,11 %

Raw Signals Sleep StagesFiltered Signals

Notch Filter

Band Pass Filter

ECG Artifacts

Convolutional Block
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Batch Norm
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Average Pool 
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Convolutional Block
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Fig. 1. Proposed convolutional neural network

convolution operation over the input, limiting the number of
parameters. Thus, it allows the construction of deeper networks
that are better at recognizing complex features. The proposed
network is represented in Figure 1.

The input to the convolutional network is the set of signals
(2 EEG channels, EMG, and both EOGs). Each input pattern
corresponds to a 30 s epoch window. As the signals are
sampled at different rates (aforementioned in Section II) we
upsampled those with sampling rates lower than 125 Hz.
We avoided downsampling to 50 Hz because it would mean
loosing high frequencies in the EEG that should contain
important information from a clinical perspective. Moreover,
we also discarded padding because the approach cannot be
easily generalized to other datasets with different sampling
rates. This way, each input to the network is a matrix with a
dimension of 3750×5. Each signal was normalized with mean
0 and deviation 1, using the mean and deviation obtained from
all the respective signals in the training dataset. When we tried
other normalizations with lower granularity, our training did
not converge. The convolutional block shown in Figure 1 is a
stack of four layers including a 1D convolution that preservers
the input dimension (with padding), a batch normalization
layer [29] to improve regularization, ReLu [30] activation, and
an average pool that reduces dimension by a factor of 2. By
using 1D convolution we avoided imposing a spatial structure
between our signals that is unknown a priori. This stack was
repeated n times, being n an hyperparamenter with a value
selected during experimentation. All layers were configured
with the same kernel size but the number of filters for layer
i is twice the number of filters for layer i − 1. The selection
value of n, the kernel size and the number of filters for the

first layers is explained in the following Section, together with
the remaining hyperparameters.

The output of the last convolutional block, after adjusting
dimensions with a global pooling and applying dropout, is
used as input for a dense layer with a softmax activation. This
layer returns the probability for each sleep stage given the
initial input. As usual, the final predicted class is set to the
output showing the highest probability.

To train the network we used Adam optimizer [31] and a
batch size of 64. This batch size was limited by our hardware.
The learning rate was configured whereas both betas are left
with the default values. Training ends using early stopping by
monitoring the validation loss with a patience of 10 epochs. To
limit the impact of class unbalance, we used weighted cross
entropy as the cost function, where weights were obtained
using the training dataset.

C. Hyperparameter optimization

A good selection of hyperparameters can mean the success
of a deep learning model. The difficulty when selecting the
best hyperparameters is not only to achieve the best perfor-
mance, but doing it while at the same time minimizing the
cost, either the economical or the computational cost.

In this work we relied on a Tree-structured Parzen Estimator
(TPE) that has shown better performance than other meth-
ods [32, 33]. TPE is a sequential models based optimization.
This kind of methods builds models sequentially to approx-
imate the performance of hyperparameters selection based
on historical results, and then chooses new hyperparameters
that are checked with the model. Particularly, TPE uses two
distributions P (x|y) and P (y) where x represents the hyper-
parameters and y the expected performance. The expected
improvement (EI) is optimized according to the following
equation:

EIy∗(x) =

∫ y∗

−∞
(y∗ − y)P (x|y)P (y)

P (x)

where y∗ is a quantil γ of the observed values y such as
p(y < y∗) = γ.
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We used TPE to select the best values for the following
hyperparameters related with the convolutional network: the
number of convolutional blocks, kernel size for the 1D convo-
lutions, and the number of filters for the first convolutional
block. Moreover, there is also a relationship between the
number of blocks and the number of initial filters. Given our
hardware restrictions, we did not add blocks that would have
more than 1024 filters. We also used TPE to select the learning
rate. The distributions for the random values of each of these
hyperparameters are summarized in Table II.

TABLE II
DISTRIBUTIONS FOR THE HYPERPARAMETERS

Hyperparameter Distribution

Convolutional Blocks Uniform between 1 and 10
Kernel Size Uniform between 3 and 50
First Block Filters Choice between 8, 16, 32 o 64
Learning Rate Log-uniform between -10 and -1

To reduce the computational time for the hyperparameter
selection we used a subset from the training set in order
to train, validate, and test the different models. This subset
contained 250 recordings where 20 were used for validation
during training, and 50 to test each model. In total, we tried
50 different hyperparameter configurations, using the kappa
index obtained with the test set as the criterion to select the
best one.

D. Performance

The performance of the models was evaluated using the
following metrics:
• Precision, the fraction between true positives and the

predicted positives.
• Sensitivity, the fraction between true positives and the

samples belonging to that class.
• F1 score, harmonic mean between precision and sensi-

tivity.
• Kappa, agreement measure between two classifiers that

takes into account the chances of random agreement.
Perfect agreement gets a value of 1, and by chance a
value of 0.

IV. RESULTS

Before focusing on the results achieved with the final model,
performance of the different models evaluated during the
hyperparameters search is shown in Figure 2. Data in the
figure suggest a clear trend toward low learning rates to ensure
convergence.

To improve the results obtained by a single model we used
an ensemble. Thereby, several models classify the same input,
and the final decision is taken using the majority vote. In
this case, we selected the 5 best models obtained during the
hyperparameter selection. Values for the hyperparameters for
each of those models are shown in Table II.

Results obtained with the ensemble using the test set are
shown in Table IV. The best classification was achieved for

Fig. 2. Dispersion graph with the different configurations of hyperparameters.
Each point color represents the kappa index for the model with the values
for the hyperparameters represented in the axes. Diagonal represents the
distribution for the values tried for a particular hyperparameter.

class W, with values near to 0.95 for the precision, sensitivity
and F1 score; then, classes N2, N3, and REM showed similar
results, specially if we compare the F1 score, although sensi-
tivity for N3 was lower (thus, precision was higher). Lastly,
results regarding the the classification of class N1 were rather
low, not even achieving a F1 score of 0.3. However, N1 is
typically the most difficult class to predict, showing the highest
disagreement also among trained experts.

The confusion matrix obtained with the ensemble is shown
in Figure 3, where we can verify how most of the N1 samples
are misclassified, specially towards class N2. Also, although
in a smaller proportion, whenever there is a classification error
it tends to be misclassifying as N2.

V. DISCUSSION AND CONCLUSIONS

In this work we present an ensemble of convolutional net-
works for the classification of sleep stages. Sleep staging is a
time consuming task, nevertheless critical for a good diagnosis
of sleep disorders. Most of the automatic methods reported so
far are based on human engineered features, designed for a
particular dataset. Thus, it is difficult to find a method that
generalizes correctly to other datasets. To solve this problem
we propose the use of a convolutional network that self learns
the relevant features for the classification, avoiding human
biases.

An important aspect for the success or failure of convolu-
tional methods is the correct choice of the hyperparameters.
In this paper, we experimented with 4 hyperparameters, op-
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TABLE III
HYPERPARAMETERS FOR THE 5 MODELS WITH THE BEST KAPPA INDEX

Parameter Model 1 Model 2 Model 3 Model 4 Model 5

Convolutional blocks 7 9 7 7 7
Kernel size 6 9 13 3 10
Initial filters 16 8 8 8 64
Learning rate 5, 99× 10−2 9, 00× 10−3 1, 45× 10−3 1, 91× 10−3 5, 49× 10−3

TABLE IV
PERFORMANCE MEASURES FOR THE CLASSIFICATION OF THE TEST
DATASET USING THE ENSEMBLE WITH THE 5 SELECTED MODELS.

Stage Precision Sensitivity F1 score

W 0,94 0,96 0,95
N1 0,39 0,21 0,27
N2 0,87 0,89 0,88
N3 0,92 0,77 0,84
REM 0,82 0,90 0,86

Average 0,78 0,75 0,76

Fig. 3. Confusion matrix for the classification of the test dataset using the
ensemble with the 5 selected models.

timizing their values with a tree-structured parzen estimator,
trying 50 different configurations.

Our ensemble, built from the best 5 hyperparameters con-
figurations, achieved an average precision, sensitivity, and F1
score of 0, 78, 0, 75 y 0, 76 respectively, with a kappa index
value of 0.83. Although globally our results are acceptable,
our solution has shown problems for the classification of class
N1. Also, in the event of misclassification, a trend has been
noticed towards class N2.

Comparison of our results against similar works is difficult
given the lack of standardization, both as with regard to the
chosen datasets, as well as in the procedures for the evaluation
process. In Table V we show results from previous works,
limiting to those that report values separately for each class.
As it can be seen, our kappa index is the highest, although it
is not the case for the F1 score. According to the F1 score,
and apart from class W, some works are able to achieve better
classification for the remaining classes. However, the values
that we obtained are competitive, excluding class N1, although

it is clear from all the results, that this is the most difficult
class. Taking as reference the only work showing results with
a similar dataset [23], our kappa index and F1 score for W
class are higher, with similar values for N2, N3, and REM but
lower for class N1.

Our results are promising and the chosen method should
be easily adaptable to other datasets, specially if we can train
the model for the different dataset. Moreover, training it with
more than one dataset should improve generalization, avoiding
biases for a single dataset.

To improve our result it is necessary to understand why and
how the network is classifying. Also, it would be interesting
to add memory to the model using recurrent networks, as the
classification of some inputs, following the clinical definition,
depends as well on the status of the neighbouring epochs.
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A B S T R A C T

Context: The currently existing literature about Application Program Interface (API) usability is heterogeneous
in terms of goals, scope, and audience; and its connection to accepted definitions of usability is rarely made
explicit. The use of metrics to measure API usability is focused only on measurable characteristics excluding
those usability aspects that are related to the subjectivity of human opinions.
Objective: Our objective is to build a comprehensive set of heuristics and guidelines for API usability that is a
structured synthesis of the existing literature on API usability but which also covers other aspects that have been
neglected so far. This set is explicitly connected with a usability model, something that allows us to check if we
are addressing actual usability problems.
Method: Our approach is to follow a systematic approach based on a comprehensive model of usability and
context-of-use. From this comprehensive model we derived the set of heuristics and guidelines that are used to
carry out a heuristic evaluation with usability experts and a subjective analysis with users. The influence of the
context of use, something that is normally ignored, is explicitly analyzed.
Results: Our heuristics and guidelines were integrated into a usability study of a sleep medicine API. In this
study, we were able to identify several usability issues of the proposed API that are not explicitly addressed in the
existing literature. The context of use helped us to identify those categories that were more relevant to consider
in order to improve API usability.
Conclusion: The literature on API usability is very technically-minded and tends to neglect the subjective
component of usability. We contribute to a more global and comprehensive view of the usability of APIs that is
not contradictory but complementary with metrics. Our criteria ease the always necessary usability evaluation
with human evaluators and users.

1. Introduction

An Application Program Interface (API) is a particular set of rules
and specifications that software programs can follow in order to com-
municate with each other. It serves as an interface between programs
and facilitates their interaction, just as a graphical user interface fa-
cilitates interaction between humans and computers.

Why are APIs so important in modern computer engineering? There
is a famous quote attributed to Newton that says “If I have seen further,
it is by standing on the shoulders of giants”. This metaphor expresses
the idea that new discoveries are built on previous discoveries. In the
same way, software construction nowadays is a task of building

software on top of other software. For example, you can use the in-
struction set of the processor, the system calls of the operating system,
the classes and methods of the core library of your programming lan-
guage, or the additional libraries that you are using for different pur-
poses (graphics, collections management, web services, etc.).

With the current popularity of web applications, it is common for
them (e.g., Google Maps, YouTube, Facebook, or Twitter) to expose an
API so programmers can interact with them and integrate them in their
web pages or mobile applications. There is a website called
ProgrammableWeb1 that has an extensive directory of APIs available to
web programmers. It has currently indexed over 15,000 APIs.

The problem with APIs is that so many of them are not well
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designed. Henning [27] stated that the prime reason is that it is very
easy to create a bad API, but rather difficult to create a good one. Minor
flaws are magnified when a considerable number of programmers are
using the API. That means that we have to pay careful attention to
usability issues related to API construction and use. However, how do
we analyze the usability of an API?

Our approach is based on the idea that comprehensive models of
usability can be used as the basis for studying the usability of APIs, just
as they can be used to assess the usability of devices, graphical user
interfaces, and so on. We also argue that usability heuristics and
guidelines should be explicitly connected to the concept of usability
itself, in order to address the full range of usability. This is why it is
important to make explicit the connection between API heuristics (and
guidelines) and the subjacent usability model.

This paper examines the existing literature on API usability and uses
an expanded usability model to organize this information and identify
deficiencies. As a result, we propose a comprehensive set of heuristics
and guidelines for usability studies that is a structured synthesis of the
existing literature but also covers other aspects that have been ne-
glected to date.

These heuristics and guidelines are tested by means of a case study.
The heuristics and guidelines are integrated into a usability study of an
API for a decision support system for sleep medicine.

The paper is structured as follows. Section 2 is a background section
in which we review the literature on API usability, introduce our ex-
panded usability model and explain the field of application. Section 3
describes the methodology used in our study. Section 4 presents the
results of our analysis, which consists in mapping the literature to the
usability model and proposing new heuristics and guidelines. Section 5
describes the case study including the requirements identification, the
heuristic evaluation and the subjective analysis. We finish with a dis-
cussion of the results, the conclusions, and plans for future work
(Section 6).

2. Background

The best known definition of usability is probably the one in ISO
9241–11:1998 which defines usability as “the extent to which a product
can be used by specified users to achieve specified goals with effec-
tiveness, efficiency and satisfaction in a specified context of use.” (ISO
9241–11, [29], p. 2). The simplicity of early usability models has been
criticized by usability researchers and practitioners, who have ap-
proached this problem in different ways. For example, by producing
extensive lists of heuristics and guidelines for usability studies. Another
approach is to investigate and expand on the concept of usability itself.
Researchers such as Bevan [12], Seffah et al. [47], Winter et al. [52],
and Alonso-Rıós et al. [1] have created what Lewis [36] calls “expanded
models of usability” . These expanded models refine the traditional
usability models in the literature by integrating different models and
breaking down attributes into subattributes.

2.1. Literature on API usability

One of the first publications that addresses the question of API us-
ability was McLellan et al. [39]. They stated the basic idea that pro-
grammers are users too and that they need libraries that are just as easy
to learn and use as the products they build from these libraries. They
identify the following attributes to take into account when analyzing
API usability: How easy the API is to learn, how efficiently the API can
be used for specific tasks, how easy the API calls are to remember, what
misconceptions or errors programmers make using the API, and how
programmers perceive the API.

Other authors follow a methodological approach to API usability.
For example Clarke [16, 17] based his work on the cognitive dimen-
sions framework of Green and Petre [25]. This framework is defined by
its authors as a “broad-brush evaluation technique for interactive

devices and for non-interactive notations”. It sets out a small vocabu-
lary of terms designed to capture the cognitively-relevant aspects of
structure, and shows how they can be traded off against one another.

As a result, Green and Petre identified thirteen cognitive dimen-
sions, namely: (1) Abstraction Gradient, (2) Closeness of Mapping, (3)
Consistency, (4) Diffuseness/Tenderness, (5) Error-proneness, (6) Hard
Mental Operations, (7) Hidden Dependencies, (8) Premature Commitment,
(9) Progressive Evaluation, (10) Role-expressiveness, (11) Secondary
Notation and Escape from Formalism, (12) Viscosity: resistance to local
change, and (13) Visibility and Juxtaposability.

Clarke [16] adapted these dimensions to the API usability problem
and identified 12 different dimensions or factors that individually and
collectively have an impact on the way that developers work with an
API and on the way that developers expect the API to work. These di-
mensions are: (1) Abstraction level, (2) Learning style, (3) Working fra-
mework, (4) Work-step unit, (5) Progressive evaluation, (6) Premature
commitment, (7) Penetrability, (8) API elaboration, (9) API Viscosity, (10)
Consistency, (11) Role expressiveness, and (12) Domain correspondence.

Clarke also proposes to follow a user-centered approach to de-
signing usable APIs that uses scenarios to ensure that the API reflects
the tasks that the users want to perform, rather than its implementation
details. He also established developer profiles (opportunistic, prag-
matic, and systematic) that would affect the way the usability of the API
is analyzed.

However, the work of Clarke tends to be too abstract to be directly
applicable by programmers [15], and it also leaves out important as-
pects of usability. We will see later in this paper that it does not take
into account criteria related to documentation of the API or to the
precision of the data types used. Bore and Bore [15] also proposed
“going back to basic programming guidelines to derive a simple set of
dimensions whose interpretation is clear”.

For example, there are publications that are more focused on pro-
grammers’ needs addressing specific problems or choices to be taken on
API design and proposing solutions and courses of action. Some ex-
amples are the usability problems with the Factory Pattern ([21]) or the
usability implications of requiring parameters in object constructors
and the recommendation of using the create-set-call pattern, that is,
objects can be created with default constructors and initialized later
(Stylos & Clarke, [49]).

Other authors developed comprehensive sets of guidelines to help
programmers develop usable APIs. Jacques [33] derived an API design
checklist from general usability principles, allowing it to be used in
inspections, walkthroughs and reviews. Henning [27] also proposed
some guidelines and stated that “these guidelines do not guarantee
success, but being aware of them during design makes it much more
likely that the result will turn out to be usable”. Henning's guidelines
are not especially detailed or comprehensive and tend to be very gen-
eral.

Moreover, Zibran [53, 54] described a detailed set of 22 specific
guidelines after an exhaustive study of existing literature. He stated that
an API is usable if it has five characteristics: (1) easy to learn, (2) easy to
remember, (3) easy write client code, (4) easy to interpret client code, and
(5) difficult to misuse. However, he does not relate these characteristics
to the proposed guidelines. Grill et al. [26] used the guidelines of Zibran
and proposed a methodology on how to use and combine HCI methods
with the goal to evaluate the usability of APIs. The methodology con-
sists of three phases: a heuristic evaluation, a developer workshop, and
interviews.

In addition, some of the most popular publications on API usability
are textbooks from experienced API designers like Beck [9], Bloch [14],
Martin [37], Tulach [51], or Cwalina and Abrams [18]. They published
many guidelines that are more like “best practices” of programming
rather than API usability guidelines but from which we can obtain
useful recommendations for API design [13].

Other authors have approached the problem of API usability from
the point of view of software metrics. A software metric is defined as a
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“function whose inputs are software data and whose output is a single
numerical value that can be interpreted as the degree to which software
possesses a given attribute that affects its quality” (IEEE [28], p. 3). One
of the first well-known examples of software metric is the cyclomatic
complexity defined by McCabe [38] used to indicate the complexity of a
program by measuring the number of linearly independent paths
through its source code. Metrics are used in many software-related
areas like cost and effort estimation, quality and reliability models,
security metrics, structural and complexity metrics, management me-
trics, etc. [22].

Bertoa et al. [11] presented a set of measures to assess the usability
of software components. They based their study on the ISO/IEC 9126
[30] model that defines usability in terms of five sub-characteristics: (1)
Understandability, (2) Learnability, (3) Operability, (4) Attractiveness, and
(5) Usability Compliance. But the derived metrics from their work were
rather abstract and it is not clear how they could be used in practice.
Furthermore, the metrics are associated with two measurable concepts
(quality of the documentation and complexity of the design) but are not
associated with the usability sub-characteristic identified before.

Doucette [20] proposed 12 metrics that were strictly complexity
metrics such as number of classes, depth of inheritance hierarchy, average
number of methods, etc. Souza and Bentolila ([48], p. 299) proposed
measuring API usability as a “function of its complexity, so that com-
plex APIs are harder to use and maintain than APIs that are not com-
plex”. The problem with this approach is that API usability is more than
API complexity and one cannot infer that an API is usable because it is
not complex, and the other way around, a complex API can be perfectly
usable if it is clear, consistent, well documented, etc.

Rama and Kak [45] proposed 9 new metrics that were created
specifically to measure API usability. These metrics were structural
measures such as: the existence of too many methods with nearly identical
names, not grouping conceptually similar API methods together, the poor
quality of API documentation, etc. The authors themselves state that
these structural measures “do not constitute an exhaustive enumeration
of all possible ways in which an API may exhibit structural defects”
(p.82).

Scheller and Kühn [46] followed the works of Bertoa et al. [11] and
Rama and Kak [45] and defined an API Concepts Framework, an ex-
tensible framework for measuring interface complexity. They defined
20 usability aspects and 30 potential measurable properties that can be
used to measure these usability aspects. While the work disregards
some aspects of usability due to the difficulty in measuring them by an
automated framework (e.g., documentation, naming or abstraction
level), the other aspects of usability are well measured.

Therefore, the common problem with the metric approach is that
the works are somewhat associated with a usability model, but the
metrics derived are not related with a usability characteristic or are
associated with only a few of these usability characteristics (those that
are easy to measure). Thus, those usability aspects that are related to
subjectivity are not taken into account in these models. Scheller and
Kühn [[46], p.146] recognized that “such kind of automated usability
measure can never completely replace a thorough usability investiga-
tion with human evaluators or tests with users”. Noticeably, Scheller
and Kühn are one of the few authors that highlight the importance of
taking into account not only the usability, but also the context of use
when evaluating the usability of an API.

Finally, some authors like Daughtry et al. [19] published a good
review of the state of the art of API usability studies. This state of the art
was updated by Myers and Stylos [40] and some of these authors
maintain a website (www.apiusability.org) as a repository for API us-
ability related papers. Myers and Stylos [40] stated that “API designers
should add usability as an explicit design and evaluation criterion so
they do not create an unusable API inadvertently” and they promote the
use of human-centered methods for improving API usability. As a
means of evaluating an API design, they use the guidelines proposed by
Nielsen [42] for performing a heuristic evaluation and map these

heuristics to specific API guidelines.
Specifically, the Nielsen heuristic guidelines are as follows: (1)

Visibility of system status, (2) Match between system and the real world, (3)
User control and freedom, (4) Consistency and standards, (5) Error pre-
vention, (6) Recognition rather than recall, (7) Flexibility and efficiency of
use, (8) Aesthetic and minimalist design, (9) Help users recognize, diagnose,
and recover from errors, and (10) Help and documentation.

As a summary, we can say that the literature on this issue is het-
erogeneous, coming from different sources that are aimed at different
audiences, and that synthesizing all this information is not necessarily
trivial. Some usability aspects are well covered by many authors (like
clarity, consistency, etc.) but many authors omit aspects that are in-
teresting when evaluating API usability or cover them only super-
ficially.

Our approach to this problem is to follow a systematic method
based on a comprehensive model of usability and context-of-use. From
this comprehensive model we derived a set of heuristics, some of them
are derived from the API literature but others are inferred for those
usability attributes that were mainly ignored in the API literature. The
objective is to obtain, for each relevant usability attribute identified in
our comprehensive model, one or more heuristics, which are then ty-
pically mapped to several specific guidelines. Therefore, this work is
complementary with the metric approach of authors like Scheller and
Kühn [46], facilitating the realization of heuristic and subjective stu-
dies.

2.2. The proposed usability model

The usability study in this paper is based on the usability taxonomy
by Alonso-Ríos et al. [1], as, among the expanded models mentioned
before, it is the most complete one that has been published in full. The
stated goals for this taxonomy were ([3], p. 586):

• To be comprehensive, covering all the usability aspects from the
literature but avoiding contradictions and redundancy.

• To be structured hierarchically into several levels of detail.
Typically, the usability models in the literature only have one level.

• To be applicable to any type of product. This contrasts strongly with
traditional usability models, which are restricted to IT systems.

• To provide definitions for all the attributes and subattributes.

We give a brief overview of the taxonomy below. In Fig. 1 we can
see the first levels of the taxonomy. These levels are further expanded in
more attributes and subattributes. The complete version is in Alonso-
Ríos et al. [1].

The first-level attributes are:

• Knowability: the property by means of which the user can under-
stand, learn, and remember how to use the system. This attribute is
subdivided into clarity, consistency, memorability, and helpfulness. The
first three apply to formal (e.g., visual, acoustic, etc.) and conceptual
aspects, and to the functioning of user and system tasks.

• Operability: the capacity of the system to provide users with the
necessary functionalities and to permit users with different needs to
adapt and use the system. This attribute is subdivided into com-
pleteness, precision, universality (e.g., accessibility and cultural uni-
versality), and flexibility (e.g., controllability and adaptiveness).

• Efficiency: the capacity of the system to produce appropriate results
in return for the resources that are invested. The taxonomy draws a
distinction between efficiency in human effort, in task execution time,
in tied up resources, and in economic costs, with each category further
decomposed into more subattributes.

• Robustness: the capacity of the system to resist error and adverse
situations. The taxonomy draws a distinction between robustness to
internal error, to improper use, to third party abuse, and to environment
problems.
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• Safety: the capacity to avoid risk and damage derived from the use of
the system. The taxonomy draws a distinction between user safety,
third party safety, and environment safety. The first two are further
subdivided into physical safety, legal safeguarding, confidentiality, and
safety of assets.

• Subjective satisfaction: the capacity of the system to produce feelings
of pleasure and interest in users. This attribute is subdivided into
interest (the capacity to capture and maintain the attention) and
aesthetics (the capacity of the system to please its user in sensorial
terms).

As stated explicitly in the ISO 9241–11 definition of usability – and
by researchers like Scheller and Kühn [46] – usability depends on the
specific context of use. That is, the particular characteristics of the users,
tasks, and environments. The expanded usability model [1] is com-
plemented with a separate context-of-use taxonomy [2] that follows the
same approach and principles as the usability taxonomy. That is, it was
motivated by the lack of consensus on the meaning of the term and was
intended as a detailed synthesis of the literature. The context of use is
not something to be evaluated, but rather, is used to identify those
categories that are more relevant to take into account in a usability
study and that can also be used to interpret the usability results and
decide which aspects to focus on.

The context-of-use taxonomy has the first-level attributes depicted
in Fig. 2. At this broad level, the attributes are those commonly ac-
cepted in the literature on usability, namely, the system users, tasks
performed by the users, and the environments in which the system is
used. They are described in detail next.

• User: A user is a person who interacts directly or indirectly with the
system. This attribute is subdivided into role, experience, education,
attitude to the system, physical characteristics, and cognitive char-
acteristics.

• Task: A task is a piece of work that the user carries out by interacting
with the system. This attribute is subdivided into choice in system use,
complexity, temporal characteristics, demands, workflow controllability,
safety, and criticality.

• Environment: The environment consists of the external factors that
affect the use of the system. It is distinguished between the physical
environment (the surroundings and space in which the user operates
the system), the social environment (the people with whom the user
interacts and who effect the user's interaction with the system), and
the technical environment (the technical equipment and infra-
structures that support the functioning of the system).

2.3. Field of application

The field of application of our case study is sleep medicine, for
which our research group has developed a decision support system for
aiding clinicians to make decisions on disorders such as sleep apnea.

The basic physiological test needed to diagnose sleep diseases is the
polysomnography. A polysomnography can be described as the com-
prehensive recording of biophysiological signals during sleep. These
signals typically include electroencephalography (EEG), electro-
oculography (EOG), and electromyography (EMG).

These kinds of signals can be used to identify the distinct stages of a
patient's sleep. The graphical and chronological representation of the
sleep stages of a given patient is called a “hypnogram” and is con-
structed following the rules of the American Academy of Sleep
Medicine (AASM2) [10].

Additional signals can be included in a polysomnography to detect
some afflictions. For example, respiratory airflow, respiratory effort,
and peripheral pulse oximetry, can be added in order to determine the
existence of a Sleep Apnea-Hypopnea Syndrome (SAHS). This syndrome
consists in the periodic, involuntary occurrence of pauses of airflow in
the respiratory tracts for at least ten seconds.

The tool chosen for our case study is a medical decision-support
system (DSS) for the diagnosis of SAHS [4]. It can be considered a
comprehensive tool in that it classifies the sleep stages, analyzes re-
spiratory activity, and provides detailed explanations of its results. This
comprehensive approach contrasts with previously-existing tools that
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Fig. 1. First levels of the usability taxonomy.

2 The American Academy of Sleep Medicine (AASM) is a sleep medicine association for
professionals dedicated to the treatment of sleep disorders.
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are typically focused on specific subtasks like patient screening, ana-
lysis of respiratory activity, and classification of apneic event types
(Álvarez-Estévez & Moret-Bonillo, [6]).

Our objective in this paper is to assess the API of the DSS for the
diagnosis of SAHS using different usability techniques. Our idea was not
only to evaluate the API of our tool but also to obtain an extensive and
hierarchically-organized set of heuristics and guidelines that can be
easily generalized to be used in APIs of different tools and domains.

The idea of focusing on the API instead on the graphical interface is
due to the particular domain in which this application works. SAHS is
one of the most important sleep disorders, others are insomnia and
restless legs syndrome or RLS (for a complete standard classification of
sleep disorders the user is referred to the American Academy of Sleep
Medicine [7]). For that reason there are many research prototypes and
commercial tools available that address the SAHS problem (Álvarez-
Estévez & Moret-Bonillo, [6]).

The strength of our tool resides in its analysis capabilities and one
promising approach is to try to integrate its artificial intelligence fea-
tures into an existing commercial or research development. But in order
to do that we need to expose an interface for programming (i.e., the
API) and, since the source code was originally created without plans to
make it available to third parties, it is now necessary to carry out an

analysis to ensure that this programming interface is usable.

3. Methodology

The first task we have taken was to conduct an extensive review of
the literature on the usability of APIs (already explained in the back-
ground section). The literature is mainly focused on suggesting guide-
lines, best practices, and so on.

As we have seen, some authors connect their API usability criteria to
the wider usability literature, whereas other authors do not. For ex-
ample, the cognitive dimensions of Clarke [16] are based on the cog-
nitive dimensions framework proposed by Green and Petre [25]; or the
guidelines proposed by Myers and Stylos [40] that follow Nielsen's
heuristics [43].

We argue that it is important to connect the API literature to a us-
ability model, in order to ensure that they are addressing the same
thing. In order to achieve this, we used the previously discussed us-
ability taxonomy by Alonso-Ríos et al. [1], searching for corre-
spondences between its usability attributes and the information in the
literature on API usability.

Establishing correspondences between different usability classifi-
cations also allows us to validate them against each other. This is si-
milar to how Winter et al. [52] investigated the validity of their us-
ability model by comparing it against the ISO 15005:2002 standard
([31]). Their goals were, firstly, to validate their usability model by
showing that it can be used to model the principles contained in the
standard, and, secondly, to use their model to uncover deficiencies in
the ISO standard. As a result, they identified problems like in-
completeness, lack of explicitness, and inconsistency in the require-
ments and recommendations proposed by the standard.

We structured the guidelines and recommendations in the literature
along two dimensions. Firstly, we mapped them to the corresponding
usability attribute or subattribute in the aforementioned taxonomy.
Secondly, we classified them into two categories, namely, heuristics and
specific guidelines. Following Nielsen's terminology [43], a heuristic is
defined as a broad rule of thumb. Guidelines, on the other hand, “can
range from highly specific prescriptions to broad principles” ([32], p.
487).

In our case, heuristics are rules of thumb that can be applied to
diverse situations, whereas guidelines are more specific examples of
application of these heuristics in specific environments (always trying
not to be very specific, maintaining a certain degree of generality).

Therefore, we took every item of information from the literature
and, regardless of how it was initially formulated, we expressed it or
rewrote it as a heuristic or a guideline. We also identified relevant us-
ability attributes that were not being addressed by the literature and
proposed requirements and heuristics for them.

For example, in the literature we can find guidelines like “avoiding
cryptic abbreviations in names”, “names should not obscure intent”,
“short variable names should not be used for big scopes”, etc. All these
guidelines can be summarized into a more general heuristic that states:
“Names should be self-explanatory”. These heuristics and guidelines are
mapped to the usability subattribute of “Knowability – Clarity – Clarity
of Elements”.

The ultimate goal is to integrate all this information into the typical
methods of a usability study – specifically, heuristic evaluation and
guideline review. Examples of other usability study methods applied to
APIs can be found in Myers et al. [41]. The API usability heuristics and
guidelines identified are presented in detail in the next section.

Our case study consisted in a usability study of the API of a sleep
medicine decision support system as it is going to be used by third
parties. In this study we identify the following roles:

• Usability engineers, Computer science engineers and PhDs specialized
in usability and with previous experience in health informatics.

• API developers, Computer science engineers in charge of maintaining
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the sleep medicine API.

• API users, Computer science engineers specialized in health and who
will use the API in real systems.

As mentioned in the literature review on API usability, the existing
heuristics and guidelines in the literature have been typically integrated
into well-known usability activities such as heuristic evaluation or in-
terviews. These techniques are complementary and offer different kinds
of insights – for example, heuristic evaluation is performed by usability
experts that check conformance with good practices, whereas inter-
views involve the subjective judgments of the users. We chose the fol-
lowing activities for our study:

• Requirements analysis, prior to the design, to identify the function-
alities that the software should have.

• Context-of-use analysis, prior to the design to analyze the influence of
the context-of-use in our usability analysis.

• Heuristic evaluation, which offers “rules of thumb” to guide the de-
sign combined with guideline review, to check that the im-
plementation conforms to precise guidelines.

• Subjective analysis, composed of user questionnaires (to assess the
subjective opinions of the users), and interviews (to elicit more
detailed information from the users on specific aspects).

The specific characteristics and the results of these usability ana-
lyses are discussed in detail in Section 5 (Case Study).

4. Designing API usability heuristics and guidelines

4.1. Mapping between usability taxonomy and the API literature

The first step in developing API usability heuristics and guidelines is
to compare the usability attributes of our methodology (those derived
from the usability taxonomy) with the usability attributes proposed by
other authors.

In this respect, we compared our usability attributes with those of
Clarke [16] based on cognitive dimensions, as these cognitive dimen-
sions attempt to cover all the usability related aspects. In the same way
we compared our work with Nielsen heuristic attributes [43] that were
used by Myers and Stylos to develop API usability guidelines.

Finally, we also choose the work of Zibran [53] that described a
detailed set of 22 specific guidelines after an exhaustive study of ex-
isting literature. His work is not intended to be methodological, for
example, he described five characteristics that an API should present to
be usable but he does not relate these characteristics to the proposed
guidelines. Nevertheless, Zibran's work was very comprehensive so it
will be interesting to compare his guidelines with the usability attri-
butes derived from our taxonomy.

Therefore Table 1 shows the correspondences between the usability
taxonomy by Alonso-Ríos et al. and those key authors from the litera-
ture on API usability. Each second-level of the usability taxonomy is
mapped to one or more usability criteria (or recommendations, guide-
lines, etc.) for APIs proposed by other authors. It should be considered
that in this mapping we are dealing with natural language sentences,
thus there is some degree of subjectivity in it.

Other authors in the literature, such as Jacques [33], Bloch [14],
and Martin [37] do not propose usability attributes, so they were used
to complete the heuristics and guidelines proposed in the next subsec-
tion.

The first thing that becomes clear is that all the criteria (or guide-
lines, etc.) for APIs that were proposed by other authors could be suc-
cessfully mapped to an attribute (or, sometimes, several attributes)
from the usability taxonomy. This has important consequences for both
ends of the mappings. Firstly, it shows that the taxonomy is compre-
hensive enough to encompass all the information in the API literature
even though the former is general-purpose and the latter is extremely

specialized. Secondly, all the criteria in the API literature can be traced
back to generic usability attributes derived from the usability literature.
A failure to achieve any of these two things would mean that the us-
ability taxonomy is incomplete or that the API literature is addressing
something that is unrelated to usability.

However, not all authors cover the same usability attributes, or in
the same way. Most noticeably, the criteria by Zibran are more com-
prehensive than the ones by Clarke, but Clarke also covers things that
the others do not. This is why the synthesis pursued in this research is
important – the literature on API usability is not only heterogeneous in
presentation, but also in content.

It is also interesting to see that several usability attributes and
subattributes in Table 1 (first column) do not have a correspondence
with the usability attributes or guidelines proposed by the other authors
included in the table (columns 2–5). We can see this in some efficiency
subattributes (efficiency in tied-up resources and efficiency in economic
costs), in some robustness subattributes (robustness to third-party abuse
and robustness to environment problems) and in all the subattributes re-
lated to safety and subjective satisfaction.

However this is not necessarily a symptom of deficiencies in the
literature and it is necessary to look at this on a case by case basis.
Because the taxonomy is general-purpose, it will typically include at-
tributes that are not relevant for a given domain. For example, for the
five senses, only the visual aspects are applicable to APIs. But we have
to take into account that this is only a first step in our analysis and will
be examined in detail in next subsection (Section 4.2).

4.2. Proposed API usability heuristics and guidelines

The next step is to analyze all the sources of information that discuss
API usability and to try to unify heuristics and guidelines for those
usability attributes covered by many authors, to add depth if necessary,
to resolve contradictions, and to try to develop new heuristics and
guidelines for those usability attributes that were mainly ignored in the
literature.

Tables 2–7 present the usability heuristics and guidelines obtained
from our synthesis of the literature. As mentioned, they are organized
according to the usability taxonomy by Alonso-Ríos et al. [1]. For each
relevant usability attribute in this taxonomy, one or more heuristics are
included, which are then typically mapped to several specific guide-
lines. A particular heuristic or guideline can be taken directly from the
literature, or synthesized from the work of different authors, or it can be
a new one obtained from the usability taxonomy. Each heuristic in-
dicates the sources from which it was derived, if any. It is interesting to
note that, as we said in the previous subsection, usability attributes
such as Efficiency, Safety, or Subjective Satisfaction, do not have a cor-
responding heuristic or guideline extracted from the literature, so we
have to create new ones just to complete the analysis based on the
taxonomy.

We have also addressed some contradictions in the literature. For
example:

• Some guidelines stated that a code that is no longer used should be
deleted, that is, dead code [37], but other guidelines state that
backwards compatibility is important [53].

• The contrast between the flexibility of having different ways of
doing a task compared with the complexity of having too many
options [53].

• A user study found that the Factory Pattern imposes difficulties on
the programmers that naturally expect to use constructors to in-
stantiate objects ([21]), but another author [51] states that you
facilitate an API's future evolution when you expose a factory
method rather than a constructor.

• Stylos and Clarke [49] stated that a create-set-call pattern is easier
to use than constructors with required parameters but Piccioni et al.
[44] did not find evidence for this. Scheller and Kühn [46] stated
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Table 1
Usability taxonomy correspondences.

Attribute Clarke [16] Zibran [53] Scheller & Khun [46] Myers & Stylos [40] Nielsen [43]

Knowability

Clarity 11. Role expressiveness
7. Penetrability

2. Naming
3. Ignorance of caller's perspective
10. Data types
11. Use of attributes
16. Long chain of reference
22 Intelligibility of source code

4. Classes for different tasks.
6. The naming of API elements.
8. Methods are very hard to find.
9. Method parameters that are self-
explaining.
11. Strings should not be used if a better type
exists.
12. Common usage scenarios.
22. API that exposes functionality through
annotations.

1. Visibility of system status
(Feedback)
2. Match between system and the real
world.
5. Error prevention
6. Recognition rather than recall
8. Aesthetic and minimalist design

Consistency 10. Consistency 2. Naming
5. Consistency and conventions
7. Method parameters and return
type

14. Parameters should be ordered
consistently across methods.

2. Match between system and the real
world.
4. Consistency and standards

Memorability 2. Learning style
12. Domain
correspondence

1. Complexity
7. Method parameters and return
type

5. The number of method parameters and
return values has a strong influence on
usability.
13. Functions with multiple consecutive
parameters.

2. Match between system and the real
world.

Helpfulness 4. Documentation and code
examples
20. API Evolution or Change
22 Intelligibility of source code

9. Help users recognize, diagnose, and
recover from errors
10. Help and documentation

Operability

Completeness 8. API elaboration

Precision 6. Conceptual correctness
10. Data types

19. Ambiguous method overloads.
20. Different overloadings of the same
method

Universality

Flexibility 5. Progressive evaluation
6. Premature commitment
9. API Viscosity

8. Parameterized constructor
17. Implementation vs. interface
dependency
19. Technical mismatch
20. API Evolution or Change
21. API Aging

1. An API should be minimal.
18. Fields should not be public.
23. Create-set-call pattern vs. constructors.

3. User control and freedom

Efficiency

Human effort 1. Abstraction level
3. Working framework
4. Work-step unit

1. Complexity
15. Multiple ways to do one thing

2. Not be required to do anything the module
could do itself.
3. Explicitly instantiate more than one type.
7. Code completion.
16. The abstraction level of an API.
17. The factory pattern.
21. Providing different API variants.

Task execution time 9. Factory pattern
14. Leftovers for client code

7. Flexibility and efficiency of use

Tied-up resources

Economic costs

Robustness

Internal error

Improper use 7. Method parameters and return
type
12. Concurrency
13. Error handling and exceptions
18. Memory management

10. The API should report usage errors.
15. Exceptions should only be used to
indicate exceptional conditions.

5. Error prevention
9. Help users recognize, diagnose, and
recover from errors

Third-party abuse

(continued on next page)
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that “If a documentation is used (which was not the case in Stylos
and Clarke [49]), the negative impact of required parameters is
likely limited”.

All these contradictions were expressed in our guidelines in the form
of trade-offs. The context of use will dictate what is more important in
each case and the hierarchical structure of the taxonomy facilitates
focusing on one aspect over another.

5. Case study

5.1. Requirements analysis

As we mention in Section 2.3 (Field of application) our main interest
is sleep medicine, focusing on the construction of the hypnogram and
on the analysis of the Sleep Apnea-Hypopnea Syndrome. In this field,
the de-facto standard for exchange and storage of multichannel biolo-
gical and physical signals is the European Data Format (EDF).

EDF is a simple and flexible format developed by medical engineers
who wanted to promote standard access and exchange of information
between sleep centers. It was first published in 1992 [34] and since
then it was widely used for EEG and PSG recordings in commercial
equipment and multicenter research projects.

An extension of EDF, named EDF+, was published in 2003 [35] and
is largely compatible with EDF. The EDF+ format extends EDF by
supporting discontinuous recordings, annotations, stimuli and events.

A first requirement for an API for a decision support system for sleep
medicine should be importing data from EDF+ files. The EDF+ data
are represented internally by a PSG recording object that allows us to
manage this information more efficiently in our algorithms. In addition,
we need to export the results of our algorithms to an annotated EDF+
file so we can share the results in a standard way.

Once we have the data represented in an internal PSG recording
object we can build a hypnogram following the rules of the American
Academy of Sleep Medicine –AASM– [10]. The algorithms that we use
to build the hypnogram have been described in Álvarez-Estévez et al.
[5]. Following this work, a knowledge model for hypnogram con-
struction developed using the CommonKADS methodology has been
published in [23].

Finally, we analyze the PSG signals, remove the signal artifacts and
identify several events (arousals, respiratory events, sleep spindles and
K-complexes) that are relevant to our domain.

The requirements of the API were defined by the usability engineers
and API developers, and the medical doctors play the role of stake-
holders. A summary of all these requirements can be found in the use
case diagram depicted in Fig. 3. It is important to say that there are
other features in the tool that lie outside the scope of this API because
they were not relevant to our study.

5.2. Analysis of the context of use

As previously mentioned, the context-of-use has an important re-
levance in the analysis of usability. The usability engineers examine the
characteristics of the context of use by following the context-of-use
taxonomy. This analysis will aid in the interpretation of the results of
the subsequent phases of the usability study.

After analyzing the high-level categories in the context-of-use tax-
onomy (user, task, and environment) we highlight the findings below.

Even though the API in question is not made with specific users in
mind, it is fair to assume a certain level of prior experience and educa-
tional background on the part of the API users (this role is played by
health engineers, as described in the methodology).

Physical characteristics and disabilities, assuming they exist, should
not be an obstacle. Similarly, even though the API is not made with
specific environments in mind, we should assume the existence of
adequate physical, social, and technical environment.

The most important attributes of the context of use for this analysis
are the characteristics of the tasks themselves (which basically consist
in writing code using the API). This is what distinguishes the object
under study not only from other types of software but also from the
APIs for other fields. With that in mind, we obtained the following
conclusions, organized according to the subattributes of the task attri-
bute of the context-of-use taxonomy (see Fig. 2) and outlining their
impact on usability:

• Choice in system use. The whole code must be written using only this
API, which means that the user must feel comfortable, engaged, and
in control. Workarounds are to be avoided, so the API must offer
complete functionality (completeness).

• Complexity. Writing code with an API like this can be a very complex
task, even though the building blocks themselves (e.g., the functions
and procedures) are simple. That is, complexity is incremental.
Knowability, helpfulness, and efficiency must be prioritized.

• Temporal characteristics. Similarly, writing code can be a long task
that is broken down into shorter and frequent subtasks.

• Demands. The demands are mainly cognitive. Physical effort can be
demanding in terms of sustained activity, but it is not physically
intense. Again, knowability, helpfulness, and efficiency must be
prioritized.

• Workflow controllability. Programming with an API like this is
usually a routine task, with fixed steps and programming patterns.
Good guidance is sometimes preferable to total flexibility.

• Safety. Physical safety is not usually compromised, but confidentiality
and legal safety may be. The API must be designed and implemented
with this in mind, and this responsibility should not be transferred
entirely to the programmer.

• Criticality. Precision in data is critical, and robustness is very

Table 1 (continued)

Attribute Clarke [16] Zibran [53] Scheller & Khun [46] Myers & Stylos [40] Nielsen [43]

Environment problems

Safety

User safety

Third party safety

Environment safety

Subjective satisfaction

Interest

Aesthetics
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Table 2
Knowability heuristics.

Id. Heuristics Guidelines Sources

Knowability – Clarity – Clarity of Elements

KCE-1 Names should be self-explanatory. • Cryptic abbreviations and names should be avoided.
• Be as expressive as possible, do not obscure intent (e.g. using Hungarian notation, etc.).
• Names should be self-documenting.
• If you have to look at the implementation (or documentation) of the function to know
what it does, then you should work to find a better name or rearrange the functionality.
• Short variable names can be used for tiny scopes (i, j), but for big scopes you should use
longer names.

[13][16][26]
[33][37][40]
[45][46][53]

KCE-2 Data types should be as specific as possible to make the
code more readable.

• Avoid generic types when a specific type can be used.
• Avoid boolean or string types. Use an enumeration value instead:
list.insert("value", true) vs. list.insert("value", Insert.ORDERED)
• Another option is avoiding the parameter by splitting a large function into several smaller
functions: insert(“value”), insertOrdered(“value”)

[13]
[16] [26]
[33]
[37]
[46]
[53]

Knowability – Clarity – Clarity of Structure

KCS-1 Inheritance hierarchies should not be too deep. • The inheritance tree should not be unnecessarily deep.
• However, the number of children (classes that inherit directly from a particular class) does
not have a significant effect on the understandability of the hierarchy.

[26]
[24]
[53]

KCS-2 When reading code that uses the API, it should be easy to
understand what that code does.

• Make the code easy to read.
• The code should flow in a clear way.
• When method calls (or other elements) are chained together, the resulting code can be
quickly understood. But avoid long chains of method delegations that are difficult to track.
• Encapsulate recurrent and complex conditional sentences in functions: if
(shouldBeDeleted(timer)).
• Avoid negative conditionals.
• There should be a correspondence between naming and structure (e.g. use “get” for
reading values and “set” to writing).

[16]
[33]
[37]
[40]
[53]

KCS-3 Do not expose core API functionality through secondary
elements (attributes, annotations, etc.).

• Many developers will not expect the core functionality of an API to be controlled through
secondary elements like attributes or annotations.
• Combinatorial effects between different elements should be avoided.
• If they cannot be avoided, the relationship between different elements should be expressed
through good naming.

[16]
[46]
[53]

KCS-4 If the API is open source, the internal implementation
should be also readable.

• Use proper indentation following a standard consistently.
• Do not use long source files, classes, methods, etc.
• Make the code readable (e.g. loop conditions).
• Put classes and methods that are most frequently used first.
• Group together methods representing related tasks.

[33]
[53]

KCS-5 The API should be loosely coupled. • Elements that don't depend upon each other should not be artificially coupled.
• If some elements are coupled together, this coupling should be obvious, e.g. temporal
couplings between functions should be clear through arguments: IntermediateResult
ir= doFirst(); FinalResult fr= doLast(ir);

[37]

KCS-6 The different API elements (classes, methods, etc.)
should be placed in the most logical place to be and
where users expect to find them.

• Place classes in packages in a coherent manner: Group classes with similar functionalities
or that are used together in the same package. Classes for different tasks should be placed in
different packages.
• In an object oriented environment methods and functions should be bundled with the data
needed for their operation.

[45] [46]
[50]

Knowability – Clarity – Clarity in Functioning

KCF-1 Functions should focus on doing one thing. • Functions should do one thing.
• Do not include output arguments as they are counterintuitive. Use the return argument or
change the state of the owning object.

[37]

KCF-2 Functions should perform only the tasks described in
their names.

• Principle of Least Astonishment: User of API should not be surprised by behavior.
• The methods should not have side-effects.
• If side-effects are present, they should be described in the function's name.

[13]
[26]
[37]

KCF-3 When writing code it should be easy to know what
classes and methods of the API to use.

• The methods and classes in the API are well defined.
• The names of classes and methods, their structure and organization ease the
understanding of their functioning.
• Code should be placed where a reader would naturally expect it to be.

[16]
[37],
[40]

(continued on next page)
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Table 2 (continued)

Id. Heuristics Guidelines Sources

KCF-4 It should be possible to check where you are in a given
scenario.

• If the functioning of some methods is affected by the state of an object it should be possible
to check that state (e.g. use "getter" methods).
• Provide appropriate feedback if some function is invalid in some state.
• The API should allow checking progress in the middle of a computational scenario to find
out how much progress has been made.
• If possible, partially completed code should be allowed to be executed to obtain feedback
on code behavior.

[16]
[26]
[40]

Knowability – Consistency

KC-1 The API should be consistent with itself. • The meaning of the names should be consistent throughout the API.
• The order of parameters, call semantics, etc. should be consistent across methods.
• If you are familiar with part of the API the rest of it should be easily inferred
• Do not mix different languages in the names used in the API.

[13]
[16]
[26]
[26]
[37]
[40]
[45] [46]
[53]

KC-2 The API should be consistent with standard conventions. • The API should obey standard conventions based on common usage or industry norms. [13]
[26]
[33]
[37]
[40]
[53]

KC-3 The API should be highly cohesive. • Classes and modules should have a high cohesion level (i.e. the methods inside a class are
linked together semantically).
• Classes should have only one (or a few) clear responsibility.

[26]
[37]

Knowability – Memorability

KM-1 The API should be easy to remember. • Classes and methods should not have long names: (e.g.
AbstractSingletonProxyFactoryBean).
• Classes should not have a large amount of methods.
• Avoid long parameter lists. Aim for four parameters or fewer.
• Avoid long sequences of identically typed parameters.
• Concentrate on keeping interfaces very tight and very small limiting what it is exposed in
them.
• Use named constants and not "magic numbers" to represent important values.
• Avoid long lists of return values.

[13]
[16]
[26]
[37]
[45]
[46]
[53]

KM-2 The API should follow the terminology of the field. • The API should be connected to the domain using the same terminology.
• Methods names should be related with the name of the task they are supposed to perform.

[16]
[26]
[40]

Knowability – Helpfulness – Suitability of documentation content

KHS-1 Every element of the API should be documented. • Every class, interface, method, constructor, parameter, and exception should be
documented including the following information:
o Class: what an instance represents.
o Method: Preconditions, post-conditions, side-effects, thread-safety.
o Parameter: indicate units, form, ownership.

• Open source APIs should include also inline comments.

[13]
[26]
[33]
[40]
[45]
[53]

KHS-2 Documentation and comments should only include
relevant information.

• Remove information that is:
o Unnecessary: like meta-data (author, date, version, etc.) that is included in control-

version systems.
o Obsolete: A comment that is outdated.
o Redundant: if it describes something that adequately describes itself.

[37]

KHS-3 The API should properly identify deprecated classes and
methods.

• The deprecated classes and methods should be clearly identified in the API
documentation.
• The documentation should propose alternatives to deprecated elements and (if necessary)
explain the reasons of deprecation.

[53]

KHS-4 The API should supply helpful error information and, if
possible, suggest a solution.

• Exceptions should include information that helps to manage and recover from them.
• It should be clear why and where an error occurred.
• Avoid error numbers and internal codes and include textual description of the errors.

[33]
[40]

KHS-5 The API documentation should include code samples for
the most common scenarios.

• The documentation should provide code examples.
• The documentation should provide tutorials on how to use the API.

[16]
[26]
[53]
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important too. Again, the API must be designed and implemented
with this in mind.

5.3. Heuristic evaluation

The heuristic evaluation involves usability specialists examining a
product and assessing its usability according to a set of good practices
or guidelines. This is one of the most popular usability techniques be-
cause it can quickly and inexpensively detect significant usability

problems during the earliest stages of a project. Heuristic evaluation is
typically informal and best performed by several persons individually,
as one person normally discovers only a fraction of the actual usability
problems [42].

Here it is important to say that this software was developed by
several programmers in a long period of time within different projects
with different objectives in mind and was never intended to be used by
third parties. So, it is a system that meets its functional requirements
but it is not easy to use or integrate into third-party applications.

Table 3
Operability heuristics.

Id. Heuristics Guidelines Sources

Operability – Completeness

OC-1 The API should provide the functionalities necessary to
implement the tasks intended by the user.

• The API should satisfy user requirements.
• All the possible scenarios should be taken into account.
• The API should not require users to implement methods or create classes when it is not
necessary.

[13]
[16]

OC-2 The API should maintain backwards compatibility
deprecating functions in a clear way.

• API changes should keep backwards compatibility.
• Older functions can be highlighted as deprecated but should not be deleted unless it is
clearly necessary.
• However, private code that is no longer needed should be discarded (keeping dead code
around is wasteful).

[33]
[37] [53],

Operability – Precision

OP-1 Numeric data types should be as precise as necessary. • Use more precise data types: (e.g. double −64 bits- rather than float −32 bits-).
• Do not use floating point if precision is needed (e.g. monetary values). Use specific types
(e.g. Currency or Money) or use an integer type and round appropriately.

[13]
[37],
[53]

OP-2 Data types should be as conceptually precise as necessary. • Do not use lists when a set is a better option (because lists allow duplicates and sets do not).
• Use subtyping only when a is-a relationship is present (use composition instead).
• In some occasions, it is better not to be too precise. Declaring a variable to be an ArrayList
when a List will do is overly constraining.
• When overloading, data types in parameters and return values should be precise to avoid
ambiguities. If it is not possible to avoid ambiguities then it is better to use different method
names.

[26] [45]
[46]
[53]

Operability – Universality

OU-1 The API should avoid the use of elements (units, formats,
spellings, etc.) that are not universally recognized.

• Avoid the use of expressions that are circumscribed to a particular language (use more
universal expressions instead).
• Avoid the use of units that are not standard or are outside the field of the API.
• When there are no standards allow the use of the different possibilities (e.g. the first day of
the week can be Monday or Sunday).

Operability – Flexibility

OF-1 The API should be easy to change. • The implementation details should not “leak” into the API: e.g. Public classes should have no
public fields.
• Interfaces and abstract classes should be preferred over concrete classes (e.g. using List
instead of ArrayList or LinkedList).
• It should be easy to extend the API to perform new features: e.g. new classes.
• Base classes should know nothing about their derivative classes.
• Favor polymorphism: Preferring non-static methods to static methods. Using polymorphism
instead of If/Else or Switch/Case.

[13]
[16]
[26]
[33]
[37]
[46]
[53]

Operability – Flexibility – Controllability – Workflow Controllability – Freedom in tasks

OFC-1 The API should not force users to make irreversible decisions
without all the information available.

• The user should have all the information available when making a decision.
• If not all the information is available the situation should be reversible, e.g. using
abstraction and allowing to change an ArrayList for a LinkedList.
• Another possibility is to offer several ways of performing a task (e.g. a constructor with
required parameters vs. a parameterless constructor) but documenting clearly the
implications of each way.

[16]
[46]

Operability – Flexibility – Controllability – Workflow Controllability – Reversibility

OFC-2 The API should allow reverting actions and returning to a
previous state.

• It should be possible to revert the state of an object to a previous state if necessary. For
example: If not all the information is available before taking an irreversible decision, the
situation should be reversible (e.g. creating and object with a default constructor and then
using setters to modify the state).

[16]
[26]
[40]
[53]
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The heuristic evaluation was carried out by the usability engineers.
The inputs for this activity were the original API, the requirements, and
the API heuristics and guidelines. The results of this evaluation were a
list of strong and weak points of the usability of the API and a set of
proposals for improvement.

The process was as follows: First the heuristics and guidelines of
Tables 2–7 (which follow the attributes of the usability taxonomy) were
used to check if they were fulfilled. Then we classified each one ac-
cording to the following categories:

• Yes. It is fulfilled.

• Partially. It is only partially fulfilled (i.e. in some parts of the code it
is fulfilled but in other parts it is not, or some guidelines are fulfilled
but others are not, etc.)

• No. It is not fulfilled.

• Not Applicable (N/A). It is not possible to apply the heuristic for
various reasons (it refers to aspects that are not supported by the
current programming language being used, it is not possible to apply
it in the current development phase, etc.).

Finally, the results of analyzing the 44 heuristics proposed are de-
picted in Fig. 4.

As we can see there is an important dichotomy, heuristics were met
or were not met, there is practically no partial compliance, which im-
plies that programmers were careful to address some aspects, but others

were completely left out.
The problems that we found in the API were mostly from the

knowability attribute, for example about clarity we found that: names
were not self-explanatory (KCE-1), it was not easy to understand what
the code did (KCS-2), functions performed several tasks that not always
were described in their names (KCF-1, KCF-2) and it was not clear what
classes and methods we need to use to perform some tasks (KCF-3).

Also the API was not consistent with itself in several aspects –order of
parameters, language used, etc. (KC-1)– and it was also not consistent
with the conventions of the language used –Matlab (KC-2)–. Due to this
the API had a low memorability (KM-1) and was difficult to use because
it was poorly documented (KHS-1), did not provide helpful information
in the case of an error (KHS-4) and did not provide code samples for the
most common scenarios (KHS-5).

We found also problems in other categories like operability –the API
was not easy to change (OF-1)–; efficiency –the user needed to put too
much effort when doing a task (EH-2), and did not use the resources
efficiently (ER-1)–; robustness, –the API did not use exceptions to
manage errors (RU-1) and exposed vulnerabilities that would allow
users to make errors (RU-3)–; and finally subjective satisfaction, –Using
the API was not satisfying (SI-1)–.

We can see that many of the categories that were identified as im-
portant by the context of use are not fulfilled by the code after the
heuristic analysis. For example, the code is not easy to understand since
it has some important drawbacks in terms of clarity, consistency and

Table 4
Efficiency heuristics.

Id. Heuristics Guidelines Sources

Efficiency – Efficiency in human effort / task execution time

EH-1 The level of abstraction of the API should be adequate for
the users and the domain.

• The level of abstraction exposed by the API should match the expectations of targeted developers.
• Do not mix higher level concepts with lower level concepts in the same abstraction.
• Names should be at the appropriate level of abstraction.
• There should be a balance between the flexibility of having different ways of doing a task and the
complexity of having too many options.
• Do not use a factory pattern in situations in which a constructor would be more adequate.

[16]
[21]
[26]
[33]
[37]
[46]
[53]

EH-2 The API should require the user to type as little as possible. • Common tasks should be completed in a single step or with minimum coding.
• The user should not be forced to put too much effort when doing a task.
• Reduce the need for boilerplate code.
• The user error handling code should be minimal.

[13]
[16]
[26]
[33]
[46]
[53]

EH-3 If the API must be complex, establish layers of complexity
for beginners and advanced users.

• Establish different features for “beginners” and “advanced” users.
• Use the Facade pattern to define a higher-level interface that makes the system easier to use
without hiding the lower-level functionality from the ones that need it.
• The API should minimize the amount of information that the users need in order to use it.

[8]
[16]
[46]
[53]

Efficiency – Efficiency in task execution time

ET-1 The API should not force the user to take actions that
would affect performance.

• Avoid public mutable types as they may often require needless defensive copying.
• Favor composition over inheritance because inheritance would tie the class forever to its
superclass.
• Favor the use of interfaces above implementation types as the latter tie you to a specific
implementation.

[13]
[40]
[46]

Efficiency – Efficiency in tied-up resources

ER-1 The API should not excessively occupy limited resources. • The API should not incur in resource leaks in finite system resources (i.e. memory, file handles)
that become exhausted by repeated allocation without release.
• The API should not make excessive use of shared resources like processor, Internet connection,
disk, memory, etc.

Efficiency – Efficiency in economic costs

EC-1 The economic costs derived from using the API (if any)
should be reasonable.

• License costs should be adequate to the services offered and should be in line with market prices.
• Using the API should not involve excessive personnel or equipment costs.
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memorability (all of them included into the knowability attribute).
The context has also helped us to detect situations that were, at first,

classified as problematic but, after their review, they can be considered
as lesser or minor problems. For example, efficiency is fundamental and

the fact that the complete sleep analysis performed by the tool took a
couple of minutes to complete would seem to be inefficient. But if we
take into account the particular characteristics of that task, in which a
polysomnography is analyzed off-line after a long night of sleep, then

Table 5
Robustness heuristics.

Id. Heuristics Guidelines Sources

Robustness – Robustness to internal error

RI-1 The API should not have bugs in its functioning. • The functioning of the API should be correct and not include catastrophic bugs. For
example:

o Arithmetic bugs (i.e. Division by zero).
o Logic bugs (i.e. infinite loops).
o Resource bugs (i.e. null pointer dereference, using uninitialized variables).
o Multi-threading bugs (i.e. deadlocks).

Robustness – Robustness to improper use / third-party abuse

RU-1 The API should allow detecting and managing errors without
breaking the execution or leaving the error undetected.

• Exceptions should be handled near to where they occurred.
• The API should generate an error as soon as possible after an improper use is detected.
• The error messages should convey sufficient information.
• Exceptions should be used when exceptional processing is demanded.
• Prefer standard exceptions over own exceptions and specific exceptions instead more
generic ones.
• User input should be validated as it is entered.
• Code assertions should be used to avoid an invalid state to occur.
• Use mechanisms (if available) to detect errors at compile time and not at runtime
(concrete data types, generics, strong typing, etc.).

[13]
[26]
[40]
[33]
[45]
[46]
[53]

RU-2 The API should facilitate managing non common but correct
situations without generating exceptions or forcing users to catch
them.

• The API should not demand unnecessary exceptional processing: For example, do not
return null values, use instead a zero-length array, an empty collection or an "optional"
value if supported by the language.
• The API should not use exceptions for non-exceptional situations (e.g. reaching the end
of a list).

[13]
[46]
[53]

RU-3 The API should not expose vulnerabilities that would allow users to
make errors.

• Class members should be private unless there is good reason to expose them.
• Objects that are building blocks / data types should be immutable objects.
• The API should limit the state-space of mutable objects keeping it small and well-
defined.
• The API should take into account concurrent access if multiple threads are needed.
• The API should not leave the tasks of memory management and garbage collection to
the user because this is less usable and prone to error.

[13]
[53]

Table 6
Safety heuristics.

Id. Heuristics Guidelines Sources

Safety – User safety / Third-party safety – Legal

SUL-1 The API should not put the user into legal trouble. • The API should not grant access to data you have no permission to access (e.g. copyright
protected content, confidential content, etc.).
• If third-party elements are used, their license should explicitly state what you are allowed to do
with them, e.g. CODECs.
• Third-party safety (e.g. kids) should be assured.

SUL-2 The API should clearly state its license of use. • For example, stating whether it is open source, a GPL-type license, etc.

Safety – User safety / Third-party safety – User confidentiality

SUC-1 The API should not compromise the confidentiality of the
users' personal information.

• It should be clear what personal data is being accessed (name, address, spatial geolocation,
etc.) and obtain access only after asking for permission.
• The API should not access other data stored in the user computer that is not necessary for its
functioning.
• The API should not give your personal data to third-parties without asking for permission.
• There should be a balance between the security checks that are activated by default in the API
and the flexibility of allowing deactivating these checks.

Safety – User safety / Third-party safety – Safety of user assets

SUA-1 The API should not compromise the security of the users'
assets.

• For example: deleting files on your hard drive, making you lose money, compromising your
intellectual property, etc.
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these extra minutes are not very significant.
Therefore, after the heuristic analysis and the interpretation of its

results with the data of the context of use, we decided to modify the API
focusing mainly on the knowability problems that were easy to solve at
this stage of development and that would be much more costly to solve

later. Nevertheless problems in other categories were also addressed.

5.4. Subjective analysis

The existing API was modified to address the problems found during
the heuristic evaluation. This modified API was used as input for the
subjective analysis.

The usability engineers converted the heuristics and guidelines from
Tables 2 to 7 into a questionnaire that could be easily filled out by the
API users, and in which an attempt was made to simplify or clarify the
more technical or confusing aspects so that they could be easily inter-
preted. This usability questionnaire completes the input to the sub-
jective analysis.

Once the new API and the questionnaire had been developed the
subjective analysis of the usability of the sleep medicine API was car-
ried out in situ at the Medical Center of The Hague, The Netherlands
(Haaglanden Medisch Centrum or HMC) where a prototype of the deci-
sion support system under analysis is currently in use.

The head of the computer service at the sleep center department
played the role of API user and was the one in charge of carrying out

Table 7
Subjective satisfaction heuristics.

Id. Heuristics Guidelines Sources

Subjective satisfaction – Interest/Aesthetics

SI-1 Using the API
should be
satisfying.

• The API should be sufficiently engaging to
avoid users losing interest in its use.

• The API should not be aesthetically
displeasing, e.g. having weird names, using
special characters in an inappropriate way,
etc.

Fig. 3. Use case diagram identifying the main functionalities of the API under study.

E. Mosqueira-Rey et al. Information and Software Technology 97 (2018) 46–63

59

118 5. Building an API for Sleep Medicine



this analysis with the assistance of one of the API developers. It is im-
portant to emphasize that this subjective analysis was an initial eva-
luation to try to detect errors in the initial stages of the API design and
that it is planned to make new subjective analyses with more users
before setting the final design.

Once the API user had completed the questionnaire, the user had an
interview with API developers to try to clarify any questions that could
have had when filling the questionnaire. For example, the user an-
swered several questions with a “Not Enough Information” answer. This
is reasonable in part because some aspects like Efficiency or Robustness
cannot be analyzed by the user easily without using extensively the API
in real production environments. Other reason for having a Not Enough
Information answer is that, in some questions, the questionnaire as-
sumes that you have access to the source code of the API and this is
something that is not always true. Nevertheless, a few answers of this
type where due to possible ambiguities or misunderstandings that were
clarified during the interview.

The answers of the questionnaire were analyzed by the usability
engineers to obtain the final results of this analysis. A summary of them
can be seen in Fig. 5.

As we can see, most of the heuristics within Knowability that were
not fulfilled before the heuristic evaluation are now considered met by
the user, if not completely at least partially. The only one considered
unfulfilled was KHS-5: “The API documentation should include code
samples for the most common scenarios”. But it is something that is rea-
sonable because in the current initial state of development im-
plementing code samples was postponed until the API reaches a more
stable state.

As we can see in Fig. 5, Efficiency aspects are still pending. For
example, the user indicated as “No” in the questionnaire for heuristics
EH-1: “The level of abstraction of the API should be adequate for the users
and the domain” and EH-3: “If the API is complex it should provide layers of
complexity through progressive disclosure”. After the heuristic evaluation
it was decided to raise the level of abstraction of the API to simplify the
process for the users of the API and to eliminate some layers of com-
plexity that previously existed (although only partially). But it turns out
to be too high a level because the user was missing the access to some
implementation details. This is an aspect in which it would be necessary
to work more and also to gather the opinions of more users since it is a
trade-off between simplicity and access to lower-level functionality.

Another question that was answered as a “No” by the user was SUL-
2: “The API should clearly state its license of use”. In the heuristic eva-
luation this questions was marked as a N/A because, since the software
was an internal prototype, its license of use was not relevant for the
development. Now, although the software is used under the shelter of a
research project, since third parties are involved in the use and devel-
opment of the software, the context of use has changed so now a clear
software license should be included. As can be seen, context has a great
importance when assessing usability. A situation that could be classified
as a “minor problem” in a research prototype evolves to a “main con-
cern” when that prototype evolves to a production stage.

Finally, we can see that there are still areas for improvement, for
example, trying to identify and reduce heuristics that were classified as
“Partially” or developing successive rounds of subjective analysis with
new users, trying to involve them in the design of the API.

6. Discussion and conclusions

The heuristics and guidelines presented in this paper are the result
of synthesizing a diverse set of publications from the literature on API
usability. This process was guided and structured by a comprehensive
usability taxonomy, and yielded the following findings about the lit-
erature:

• The literature is formally heterogeneous. Some authors present
their criteria as attributes, whereas others simply offer re-
commendations (at different levels of specificity). Similarly, the
literature comes from a great variety of sources (academic journals,
magazines, websites, etc.) that are aimed at different audiences
(researchers, developers, etc.). Synthesizing all this information is
not necessarily trivial.

• Content-wise, the literature is superficially more consistent.
After mapping the authors' criteria to the usability taxonomy, we
conclude that all the authors tend to focus on the same main us-
ability attributes, namely, knowability, operability, and efficiency.
This consistency is only superficial, however. The criteria by Zibran
and Grill are more comprehensive than the ones by Clarke, which
omit important aspects related to, for example, documentation and
data type precision. On the other hand, careful examination shows
that Clarke also covers things that others do not. Zibran and Gill also

Fig. 4. Results of the heuristic evaluation (N/A: Not Applicable).
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differ from other authors in that they attach importance to robust-
ness. Classifying all this information according to the usability tax-
onomy simplified the task of integrating the work of these authors,
identifying deficiencies at the finer levels of detail, and resolving
contradictions.

• The literature does not cover the full range of usability. In
particular, none of the authors has anything to say about safety or
subjective satisfaction. The absence of the latter is especially note-
worthy, as it is historically one of the main attributes of any us-
ability model (see ISO 9241-11, [29]). It is true that, because us-
ability is inherently subjective, most usability attributes also have a
subjective component. But subjective satisfaction requires a cate-
gory of its own because a user can like the aesthetics of a product
but dislike everything else about it. We conclude that the literature
on API usability is very technically-minded and tends to neglect the
subjective component of usability. Our goal is to offer a more
complete view of usability and to show how it is possible to syn-
thesize the literature in a comprehensive list of heuristics and
guidelines.

• Metrics should be complemented with subjective aspects. This
technical vision of the usability is clear on those works that intend to
analyze API usability through metrics. The idea of using metrics has
some advantages, as you get objective values that can be obtained
automatically and that allows you to measure the usability of your
API without the need of experienced evaluators. But it has also
several drawbacks, as you measure only aspects that are measur-
able, and you are leaving out subjective aspects that are inherent to
every usability study. We think that our approach is not contra-
dictory but complementary with metrics. Our taxonomy-derived
criteria ease the always necessary usability assessment with human
evaluators and users.

• The literature neglects the context of use. The context of use has
a great significance in every usability analysis, but this aspect is only
taken into account by a few authors. Our methodology includes a
comprehensive analysis of the context of use that is used along with
a comprehensive taxonomy of usability.

In light of these limitations, we proposed a new set of heuristics and
guidelines. Some of these are a synthesis and refinement of the existing

literature, whereas others address usability aspects that are neglected
by the literature. These neglected aspects, classified according to the
attributes of the usability taxonomy, would include:

• Universality (e.g., the API should avoid the use of elements that are
not universally recognized).

• Efficiency in tied-up resources (e.g., the API should not excessively
occupy resources that are limited).

• Efficiency in economic costs (e.g., the economic costs derived from
using the API, if any, should be reasonable).

• Robustness to internal error (e.g., the API should not have bugs in its
functioning).

• User safety (e.g., the API should neither cause the user legal pro-
blems nor compromise personal information and assets).

• Subjective satisfaction (e.g., it should be satisfying to work with the
API).

Our heuristics and guidelines were integrated into a usability study
of an API for a decision support system in the field of sleep medicine.
This usability study included activities such as heuristic evaluation and
subjective analysis, and yielded the following results:

• With the help of the heuristics and guidelines, we were able to
identify 17 main usability problems during the heuristic evaluation
(those marked with a “No” answer).

• The majority of these usability issues were resolved after the heur-
istic evaluation. Only one of these issues identified as “No” in the
heuristic analysis (the lack of code samples) was still identified as
“No” in the subjective evaluation and it was not fixed due to the
early stage of development of the API.

• The questionnaire and subsequent interview with API users helped
us to identify areas that we think that were OK after the heuristic
evaluation but the API users did not agree. So we obtained “No”
answers to questions that were not identified in that way in the
heuristic analysis. For example, those questions related with the
level of abstraction of the API.

• Some of these usability issues might not have been detected using
the previously existing heuristics and guidelines in the literature.
More specifically, those related to Efficiency, Robustness, Safety and

Fig. 5. Results of the subjective evaluation (N/A: Not Applicable. N.E.I.: Not Enough Information).
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Subjective Satisfaction. For example, we detected that the original
API was excessively occupying limited resources (ER-1) and the
users complained about the API not clearly stating its license of use
(SUL-2).

• Our analysis of context of medical sleep applications helped us to
highlight which positive or negative results were more relevant to
our domain of application. This analysis can be also generalized to
similar applications in the same domain.

To conclude, we can say that developing an API is a difficult task,
and assessing if an API is usable is therefore also a complicated task.
The literature on API usability is very heterogeneous and we consider
that the study presented in this paper will contribute to a more global
and comprehensive view of the usability of APIs since it is based on a
comprehensive taxonomy of usability, which has allowed us to identify
aspects of the usability of APIs traditionally neglected by other authors.

Moreover, involving users in the assessment of an API at early stages
facilitates its development. Many of the decisions that we have to make
are trade-offs, and the opinions of users are fundamental to decide to
which side we must tip the balance.

As future work, we are thinking of expanding this study with new
users trying to involve them in the development of the API. Also we
want to analyse how these heuristics and guidelines work in different
environments and tools, not only restricting ourselves to a traditional
way of programming but also trying to embrace new ways of pro-
gramming such as, for example, the development of RESTful APIs for
the implementation of Web Services. RESTful APIs are different from
traditional APIs because they represent a stateless client/server com-
munication using the HTTP protocol. Since our heuristics were devel-
oped for traditional APIs based on object-oriented programming, in
which objects represent an encapsulated state, we may have to adapt
these heuristics, but always using the taxonomy of usability and the
taxonomy of context of use as our working framework.

Also, we are considering adding new usability techniques to our
methodology of evaluation of APIs (incorporating quantitative metrics
into the heuristics, using different subjective analysis methods, asking
users to write actual code with the API under analysis, etc.). An inter-
esting idea would be comparing our methods to other methods pub-
lished to evaluate API usability and to see the different conclusions that
can be obtained.
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Appendix A

EEG: wave patterns

Electroencephalogram (EEG) is the signal that monitors the brain electrical activity,

placing electrodes over multiples areas of the scalp, generally in a bipolar setting

where one extreme is attached to a specific region and the other to a reference one. It

is the most complex of the neurophysiological signals involved in the characterization

of sleep as it is non-linear, non-stationary, and has a low signal-to-noise ratio. When

studying the EEG, some signal frequencies are important:

• Delta is the frequency range up to 4 Hz. It tends to be the highest in amplitude

and the slowest waves. It is seen normally in adults in slow-wave sleep. It is

also seen normally in babies.

• Theta is the frequency range from 4 Hz to 7 Hz. Theta is seen normally in

young children. It may be seen in drowsiness or arousal in older children and

adults; it can also be seen in meditation.

• Alpha is the frequency range from 7 Hz to 13 Hz. It emerges with closing

of the eyes and with relaxation, and attenuates with eye opening or mental

exertion.

• Beta is the frequency range from 14 Hz to about 30 Hz. Beta activity is closely

linked to motor behavior and is generally attenuated during active movements.

Low-amplitude beta with multiple and varying frequencies is often associated

with active, busy or anxious thinking and active concentration.

• Gamma is the frequency range approximately 30–100 Hz. Gamma rhythms
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are thought to represent binding of different populations of neurons together

into a network for the purpose of carrying out a certain cognitive or motor

function.

• Mu range is 8–13 Hz and partly overlaps with other frequencies. It reflects

the synchronous firing of motor neurons in rest state.



Appendix B

Publications

Included in this thesis

Isaac Fernández-Varela, Elena Hernández-Pereira, Diego

Alvarez-Estevez, Vicente Moret-Bonillo. Combining machine

learning models for the automatic detection of EEG arousals.

Neurocomputing, 268, 100-108, 2017.

Isaac Fernández-Varela, Diego Alvarez-Estevez, Elena

Hernández-Pereira, Vicente Moret-Bonillo. A simple and

robust method for the automatic scoring of EEG arousals

in polysomnographic recordings. Computers in Biology and

Medicine, 87, 77-86, 2017.

Diego Alvarez-Estevez, Isaac Fernández-Varela. Large-scale

validation of an automatic EEG arousal detection algorithm

using different heterogeneous databases. Sleep Medicine, 57,

6-14, 2019.

125



126 B. Publications

Elena Hernández-Pereira, Isaac Fernández-Varela, Vicente

Moret-Bonillo. A Comparison of Performance of Sleep Spin-

dle Classification Methods Using Wavelets. Innovation in

Medicine and Healthcare 2016, 60, 61-70, 2016.

Isaac Fernández-Varela, Dimitrios Athanasakis, Samuel Par-

sons, Elena Hernández-Pereira, Vicente Moret-Bonillo. Sleep

Staging with Deep Learning : A convolutional model. Eu-

ropean Symposium on Artificial Neural Networks, Computa-

tional Intelligence and Machine Learning, 367-372, 2018.

Isaac Fernández-Varela, Elena Hernández-Pereira, Diego

Alvarez-Estevez, Vicente Moret-Bonillo. A Convolutional

Network for the Classification of Sleep Stages. XVIII Confer-
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C.1 Introducción

El sueño es un estado de reposo en el que el cerebro no está consciente. Normalmente

el cuerpo está tumbado, no se producen movimientos musculares y no se responde a

los est́ımulos externos. Además, su duración es limitada en contraposición con otros

estados fisiológicos como el coma o la hibernación. Durante el sueño se disparan

diversos mecanismos incluyendo cambios hormonales, procesos de termorregulación

o biomecánicos. Aún desconocemos todas las funciones y consecuencias de un sueño

reparador, pero śı hemos podido demostrar que es una actividad fundamental para

la supervivencia.

Desgraciadamente, las enfermedades relacionadas con el sueño (trastornos del

sueño) afectan a una parte importante de la población. Por ejemplo, entre el 30

y el 40% de la población adulta se queja de insomnio y entre un 5 y un 15% de

somnolencia diurna. La especialidad médica que diagnostica y trata estos trastornos

es la medicina del sueño. Se considera que esta especialidad surge en la segunda

mitad del sigo XX, pese a ello no se ofrece como las especializaciones clásicas y, por

ejemplo, no hay consenso sobre que material debe tener una unidad del sueño o que

entrenamiento debe seguir el especialista.

Los especialistas pueden diagnosticar los trastornos del sueño analizando los

datos obtenidos durante un estudio de sueño, que normalmente se realiza en una

unidad del sueño. Los datos se analizan para caracterizar la macro estructura (fases

de sueño) y la microestructura (eventos como micro despertares o husos de sueño).
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Gracias al análisis se pueden diagnosticar los trastornos para, posteriormente, pro-

poner un tratamiento.

La principal dificultad a la hora de realizar este análisis es la gran cantidad de

datos que involucra. Antiguamente, el estudio de sueño más habitual (la polisomno-

graf́ıa) generaba, para un paciente y una noche, 500 metros de papel. Además, el

acuerdo entre expertos es inferior al 90%. Para la clasificación de fases de sueño,

Stepnowsky et al. [5] obtuvieron ı́ndices de acuerdo kappa entre 0.46 y 0.89. Para

la clasificación de micro eventos es incluso más bajo. El acuerdo publicado para los

micro despertares, por ejemplo, está en el intervalo 0.47-0.57 [7, 8].

En esta tesis se presentan algoritmos para la caracterización automática de la

macro y microestructura del sueño, utilizando los datos registrado en una polisomno-

graf́ıa. El objetivo es solucionar el cuello de botella actual de las unidades del sueño

y mejorar la cohesión y consistencia de los análisis actuales.

Antes de describir los algoritmos desarrollados describiremos el dominio de nue-

stro problema, centrándonos principalmente en la polisomnograf́ıa, en la macro es-

tructura (fases de sueño) y en dos micro eventos: los micro despertares y los husos

de sueño. En concreto describiremos dos algoritmos para la detección de micro des-

pertares (incluyendo la validación de uno de ellos en un entorno real), uno para

la detección de husos de sueño y dos para la clasificación de las etapas de sueño.

Además, inclúımos un último art́ıculo con un caso de estudio para la construcción

de una API que facilite el uso de nuestras propuestas. Este resumen termina con

las conclusiones obtenidas realizando este trabajo y una breve descripción de los

trabajos propuestos para continuar.

C.1.1 Polisomnograf́ıa

Los estudios del sueño son importantes porque permiten caracterizar patrones para,

comparándolos con patrones normales, diagnosticar los trastornos del sueño. Aunque

existen diversos tipos como la actigraf́ıa o el test múltiple de latencia de sueño, el

más habitual e importante es la polisomnograf́ıa (PSG). Este estudio consiste en

la grabación de múltiples señales neurofisiológicas durante el sueño de un paciente,

colocando sensores en su cuerpo. El número de señales y sensores es variable, se-

leccionándose en función de las sospechas del médico que solicita el estudio. Es

útil para diagnosticar varios tipos de trastornos incluyendo narcolepsia, hipersom-
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nias, desorden de movimiento ĺımbico periódico, desorden del comportamiento REM,

parasomnias y apnea del sueño. Además, es útil para descartar otros y para detec-

tar episodios transitorios como despertares, paseos nocturnos, bruxismo o terrores

nocturnos.

El montaje habitual del PSG registra tres tipos de señales: neumológicas, neu-

rofisiológicas y contextuales.

Señales neumológicas

Son aquellas relacionadas con la actividad respiratoria, la saturación de ox́ıgeno en

sangre y el flujo de aire, siendo éstas dos últimas las más comunes.

Señales neurofisiológicas

Son las señales directamente relacionadas con el sueño y, por tanto, las que utilizare-

mos en nuestros algoritmos. Las más importantes son el electrooculograma (EOG),

el electromiograma (EMG) y el electroencefalograma (EEG).

• Electrooculograma (EOG): es la señal que registra el movimiento de los

ojos. Es importante para distinguir distintos patrones de movimientos oculares

que ocurren durante el sueño.

• Electromiograma (EMG): es la señal que registra la actividad muscular.

Normalmente se registra la actividad de la barbilla porque refleja cambios en

el estado del sueño y la actividad tibial para controlar los movimientos de las

piernas.

• Electroencefalograma (EEG): es la señal que monitoriza la actividad cere-

bral. Sin lugar a dudas la más compleja de las señales relacionadas con el sueño

al ser no lineal, no estacionaria y tener una mala relación señal ruido.

Señales contextuales

Son las señales que no están relacionadas directamente con el sueño del paciente

como los ruidos en la habitación o su postura corporal.
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C.1.2 Estructura del sueño

Para caracterizar el sueño de un paciente es necesario definir tanto su macro estruc-

tura como detectar los distintos eventos pertenecientes a la microestructura. Por

eso en esta tesis proponemos algoritmos para la clasificación de las fases de sueño

(macro estructura) y para la detección de dos de los eventos más importantes: micro

despertares y husos de sueño.

C.1.3 Fases de sueño

Loomis et al. [14] fueron los primeros en observar que el sueño no es un estado

homogéneo y que nuestra actividad cerebral pasa por distintas fases. En 1954,

Aserinsky and Kleitman observaron una fase particular del sueño caracterizada por

movimientos rápidos de los ojos (REM) [13] y como se repet́ıa ćıclicamente el patrón

de fase REM y fase no REM [23]. Ellos mismos dividieron la fase no REM en 4, desde

sueño ligero a profundo, basándose en las diferencias encontradas en la actividad

cerebral. Fueron Rechtschaffen and Kales (R&K) [17] los que estandarizaron la

definición de las fases de sueño basándose en las señales de EOG, EMG y EMG.

El manual que publicaron inclúıa parámetros, técnicas y patrones comunes para

clasificar las fases de sueño a partir de una polisomnograf́ıa. De hecho, el manual

R&K fue el estándar de facto hasta el 2007. Era necesario, sin embargo, un estándar

real que permitiese comparar distintos estudios y mejorar la reproducibilidad de los

resultados de otras unidades de sueño. Siguiendo el manual R&K, que sugeŕıa definir

una fase de sueño para cada ventana de 30 segundos (epoch) y el análisis estructurado

del sueño, en 2007 la Academia Americana de Medicina del Sueño (AASM) publica

una gúıa estandarizada. Las reglas publicadas por la AASM siguen en su mayoŕıa

las propuestas de R&K, incluyendo mejoras propiciadas por los últimos avances y

técnicas. Los cambios más significativos son la fusión de la fase 3 y 4 en una única

fase de sueño profundo y la distinción de las fases para pacientes pediátricos. El

manual de la AASM define un total de cinco fases: Despierto (W), Movimientos

oculares rápidos (REM), Fase 1 (N1), Fase 2 (N2) y Fase 3 (N3).

• Despierto (W): es la fase que representa el estado despierto, desde que esta-

mos totalmente alerta a la somnolencia inicial del sueño.

• Fase 1 (N1): es la fase de sueño más ligero, en la que percibimos la mayoŕıa
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de est́ımulos a nuestro alrededor.

• Fase 2 (N2): es la fase en la que dejamos de responder a est́ımulos y el sueño

empieza a ser reparador, aunque no por completo.

• Fase 3 (N3): es la fase de sueño profundo. Si nos despertamos en esta fase

lo habitual es sentirse desorientado.

• Fase REM: es la fase durante la que soñamos.

C.1.4 Micro despertares

Uno de los eventos de la microestructura del sueño. Se define como un cambio

abrupto de la frecuencia de la señal de EEG incluyendo la banda alpha, theta y

frecuencias superiores a 16 Hz (pero no la banda spindle) que dura por lo menos 3

segundos y viene precedido por 10 segundos de sueño estable. Son una respuesta en

forma de alerta que se produce durante el sueño sin llegar a suponer un despertar

completo, pero que suelen provocar el cambio a una fase de sueño más ligera. Son,

sin duda, un indicador excelente de la calidad del sueño.

C.1.5 Husos de sueño

Los husos de sueño se definen como un tren de ondas con frecuencias entre 11 y 16

Hz (t́ıpicamente entre 12 y 14) que dura por lo menos medio segundo y que alcanza

la máxima amplitud hacia la mitad del evento. Son un claro indicio de que el sueño

está en fase 2 y uno de los pocos eventos que se pueden detectar en la señal de EEG

que únicamente están relacionados con el sueño.

C.2 Detección de micro despertares

El primer método que presentamos sigue la aproximación clásica de clasificar un

vector de caracteŕısticas obtenidas sobre las señales. El segundo intenta superar

algunas de las limitaciones del anterior, reconociendo patrones sobre la señal.
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C.2.1 Combining machine learning models for the automatic detection

of EEG arousals

Este trabajo intenta encontrar el mejor conjunto de caracteŕısticas para la de-

tección de micro despertares y cómo combinar múltiples clasificadores individuales.

Primero, encontramos los segmentos de las señales de EEG y EMG en los que se

podŕıa detectar un micro despertar, buscando cambios en las señales. En el caso

del EEG el cambio se busca estudiando la potencia de la señal mientras que para el

EMG estudiamos la amplitud. Si dentro de un mismo epoch encontramos cambios

para el EEG y para el EMG consideramos que es un epoch relevante. Para cada

epoch relevante construimos un vector de caracteŕısticas, incluyendo las magnitudes

comparadas antes, los parámetros de Hjorth [36] y la fase de sueño del epoch. Uti-

lizando un base de datos de 20 PSG del Sleep Heart Health Study [37] construimos

dos datasets balanceados para entrenamiento y test. Entrenamos seis clasificadores:

discriminante lineal [38], support vector machine, neural network [39], classifica-

tion tree, k-nearest neigbor y naive bayes [41]. Los cuatro clasificadores con mejor

rendimiento los combinamos usando dos aproximaciones. La primera sigue el mod-

elo de factores de incertidumbre de Shortliffe and Buchanan [42] y la segunda una

combinación lineal.

Finalmente, comprobamos el rendimiento de las combinaciones propuestas uti-

lizando un nuevo dataset de 26 registros polisomnográficos. Nuestra propuesta

mejora los resultados de los clasificadores y de ensembles conocidos como random

forest [43] y k-NN [44]. Con el modelo de factores de incertidumbre obtuvimos una

sensitividad de 0.78, especificidad de 0.89 y un error de 0.12. Con la combinación

lineal una sensitividad de 0.81, una especificidad de 0.88 y un error de 0.13.

C.2.2 A simple and robust method for the automatic scoring of EEG

arousals in polysomnographic recordings

El objetivo de este trabajo es simplificar el proceso de detección de micro despertares.

Aśı conseguimos un algoritmo que se puede integrar fácilmente con software ya exis-

tente y, además, una detección de micro despertares que es fácil de explicar. Como

en el algoritmo anterior, empezamos buscando cambios abruptos en la frecuencia

de la señal analizando la potencia de una ventana y comparándola con las anteri-

ores. Cada uno de los cambios encontrados los estudiamos para encontrar patrones
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comunes de los micro despertares.

Reconocemos tres posibles patrones. El primero se basa en la potencia de la señal

de EEG, el segundo se basa en la amplitud de la señal de EEG y el último en la

amplitud de la señal de EMG. Posteriormente descartamos los patrones reconocidos

si son falsos positivos. Para ello comprobamos que la longitud sea adecuada, que

vengan precedido por diez segundos de sueño estable, que no sea un huso del sueño

y que si sucede durante REM venga acompañado por actividad en la señal de EMG.

El método se comprobó utilizando un dataset de 22 registros de PSG obtenido en

la unidad de sueño del Haaglanden Medisch Centrum (HMC) en La Haya, Páıses

Bajos. La precisión obtenida fue de 0.86, con un acuerdo kappa casi perfecto (0.78).

C.2.3 Large-scale validation of an automatic EEG arousal detection al-

gorithm using different heterogeneous databases

En este trabajo mejoramos nuestro algoritmo anterior para para mejorar su capaci-

dad de generalización. Lo adaptamos para se pueda utilizar con montajes diferentes

(conjuntos de señales o frecuencia de muestreo entre otros) y actualizamos algunos

valores para mejorar la capacidad de detectar micro despertares en la banda alpha.

El objetivo del art́ıculo es evaluar el algoritmo utilizando datasets de distintas

fuentes, por lo que incluimos registros del SHHS y del HMC. Para evaluarlo uti-

lizamos dos aproximaciones. Por un lado, comparar el Arousal Index para obtener

coeficientes de correlación entre el algoritmo y la referencia cĺınica. Por otro, med-

imos la confiabilidad entre métodos para la detección (humano vs máquina). Re-

specto al Arousal Index los resultados permiten aceptar que la mediana de las difer-

encias entre métodos es 0 si asumimos una desviación de 0.3. En cuanto a la con-

fiabilidad, los resultados permiten asegurar que el algoritmo se comporta como un

experto más, con ı́ndices de acuerdo máquina contra experto similares a los obtenidos

cuando comparamos dos expertos entre śı.

C.3 Detección de husos de sueño

Para la detección de husos de sueño incluimos un trabajo que, como en el caso de

los micro despertares, utiliza clasificación sobre un vector de caracteŕısticas extráıdo

de la señal.
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C.3.1 A comparison of performance of sleep spindle classification method

using wavelets

En este trabajo encontramos husos de sueño clasificando un vector de caracteŕısticas.

En este caso, el dataset [57] contiene segmentos de señal correctamente anotados.

Las caracteŕısticas que extraemos de cada segmento son los coeficientes de descom-

posición de la señal utilizando una función wavelet [58]. En la evaluación del trabajo

comparamos distintas familias de wavelets y varios clasificadores. Utilizando vali-

dación cruzada la mejor exactitud se consiguió con una wavelet biortognal de orden

1.5 y un random forest. La mejor senstividad también se consiguió con dicha familia

y orden de wavelet pero utilizando como clasificador un proximal support vector

machine.

C.4 Clasificación de fases de sueño

La clasificación automática de fases de sueño es, sin duda, el problema que más veces

se ha tratado de resolver en este campo. Sin embargo, lo más común es encontrar

trabajos que realizan la clasificación de un vector de caracteŕısticas. El problema

es que estas caracteŕısticas suelen estar escogidas por el investigador, basándose en

su conocimiento del dominio y los datos de los que dispone. Indudablemente estas

caracteŕısticas no son imparciales y, por ello, las soluciones propuestas no suelen

generalizar bien.

Los trabajos que presentamos utilizan deep learning para mitigar este efecto.

Este tipo de métodos aprenden por śı solos qué caracteŕısticas de la señal son nece-

sarias para la clasificación, evitando nuestra propia imparcialidad.

C.4.1 Sleep staging with deep learning: a convolutional method

Para nuestra primera aproximación a la clasificación de fases de sueño utilizando

deep learning simplificamos un poco el problema, fusionando las fases N1 y N2 en

una única fase de sueño ligero. Utilizamos una red neuronal que recibe como entrada

un epoch (incluyendo dos derivaciones de EEG, ambos EOG y EMG) y proporciona

como salida la probabilidad de pertenencia a cada fase de sueño, seleccionando la

más alta como resultado.



138 C. Resumen

Utilizamos un dataset de entrenamiento para encontrar la mejor arquitectura de

red neuronal y los mejores valores de hiperparámetros, resultando en un total de tres

capas convolucionales. Al clasificar un dataset de test con 40 registros, la precisión

obtenida para cada fase de sueño estaba entre 0.89 y 0.96, y el acuerdo F1 entre

0.85 y 0.96.

C.4.2 A convolutional method for the classification of sleep stages

Este trabajo es una mejora del anterior. En primer lugar, eliminamos las simplifi-

caciones, clasificando las cinco fases del sueño. Además, mejoramos la selección de

hiperparámetros y de la arquitectura de la red.

Para la selección de la arquitectura y de hiperparámetros utilizamos un estimador

(Tree-structure Parzen Estimator) [81]. Es un modelo de optimización secuencial

que entrena modelos y en función de los resultados selecciona nuevos valores para

el siguiente entrenamiento. Siguiendo este método entrenamos 50 modelos distintos

y seleccionamos los cinco mejores para construir un ensemble. Con el ensemble

clasificamos 500 registros y obtuvimos una precisión media de 0.78, una sensitividad

media de 0.75 y un acuerdo medio (F1 score) de 0.76.

C.5 Construyendo una API para medicina del sueño

Una de las razones para que los algoritmos que analizan la macro y microestructura

del sueño no salgan del ámbito académico es la dificultad de integrarlos con software

existente. Intentado mitigar este problema presentamos un trabajo de usabilidad de

APIs utilizando como caso de estudio la construcción de una API para utilizar los

algoritmos descritos.

C.5.1 A systematic approach to API usability: taxonomy-derived crite-

ria an a case study

En este trabajo se presentan gúıas y heuŕısticas para la usabilidad de una API que

sintetizan estudios de usabilidad previos y cubren puntos inexistentes. Utilizamos

las gúıas y heuŕısticas para mejorar una API para medicina del sueño, corrigiendo

errores que no hubiésemos encontrado siguiendo los trabajos de usabilidad previos.
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Para construir la API analizamos el contexto de uso, consiguiendo una primera

versión sobre la que hicimos una evaluación heuŕıstica. Los resultados se utilizaron

para corregir los errores de la primera versión de la API. La nueva versión se en-

tregó a posibles usuarios para su evaluación subjetiva. La evaluación subjetiva se

realiza con un cuestionario que también le proporcionamos, para recoger las respues-

tas que cubren los puntos de nuestra heuŕıstica. Gracias a la evaluación subjetiva

conseguimos nuevos puntos de mejora para la siguiente iteración.

C.6 Conclusiones y trabajo futuro

La medicina del sueño se podŕıa beneficiar de algoritmos que analicen la estructura

del sueño. Si pudiésemos automatizar esta tarea, evitando el tiempo que consume

en la actualidad, los médicos podŕıan centrarse en el diagnóstico y tratamiento.

Cambiaŕıa por completo el cuello de botella de las unidades del sueño.

Para caracterizar la microestructura del sueño presentamos algoritmos que de-

tectan micro despertares y husos de sueño. El primero de los métodos para las

micro despertares clasifica un vector de caracteŕısticas, incluyendo la fase de sueño

y los parámetros de Hjorth porque mejoran la capacidad de detección. Podemos

incluso mejorar la sensitividad y especificidad de métodos ya publicados utilizando

un ensemble que combina clasificadores individuales siguiendo el modelo de factores

de incertidumbre de Shortliffe y Buchanan. El segundo método para la detección de

micro despertares los encuentra analizando patrones en la señal. Aunque el objetivo

de este método era que fuese sencillo, el acuerdo alcanzado con el experto es mejor

que en trabajos de otros autores. Además, con pequeñas modificaciones mejoramos

su capacidad de generalización. Al ejecutarlo en un entorno real (una unidad de

sueño en un hospital de La Haya, Páıses Bajos) se comporta como uno más de los

expertos que trabajan en dicho entorno. En cuanto a la detección de husos de sueño

demostramos que la caracterización de la señal con wavelets, aunque no se haya uti-

lizado con anterioridad en este problema, permite los mismos resultados que otras

caracterizaciones más habituales.

Para clasificar las fases de sueño utilizamos una aproximación diferente, evitando

nuestra propia imparcialidad. En este caso proponemos el uso de redes convolu-

cionales que puedan aprender por si mismas qué caracteŕısticas son relevantes para

clasificar las fases de sueño. Tras una primera aproximación en la que simplificamos
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el problema (clasificando solo ciertas fases), mejoramos la solución para resolver el

problema real. Configurando la red con algoritmos automáticos la clasificación que

hacemos para ciertas clases (W y N3) es la mejor (comparada con otros trabajos

anteriores) mientras que para el resto de las clases es muy parecida a la que obtienen

otros autores.

Finalmente, intentado facilitar la integración de nuestros algoritmos construimos

una API. Nuestro diseño inicial lo mejoramos utilizando gúıas y heuŕısticas. Después

entrevistamos a posibles usuarios que evaluaban el API de una manera subjetiva.

Aunque la mayor parte de problemas los hab́ıamos corregido gracias a las gúıas y

heuŕısticas, conseguimos información relevante para una próxima mejora.

C.6.1 Trabajo futuro

El trabajo futuro propuesto encaja en dos ĺıneas principales. Por un lado, explicabili-

dad y por otro la mejora de los algoritmos propuestos. Los algoritmos de inteligencia

artificial utilizados actúan como una caja negra. Es dif́ıcil explicar cómo llegan a la

solución y eso complica su análisis y mejora. Además, incrementa la desconfianza

del experto, limitando su aplicación en entornos reales. En cuanto a la mejora de los

algoritmos las propuestas siguen las ĺıneas marcadas por nuestros últimos trabajos.

Aśı, el objetivo será utilizar deep learning para la detección de micro eventos y la

mejora de la clasificación de fases de sueño con redes más compleja que incorporen

memoria al sistema.
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