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RESUMEN 

Aunque la artrosis (OA) es una patología reumática caracterizada por una larga fase 

inicial clínicamente silente de deterioro articular, generalmente la enfermedad no se 

diagnostica hasta etapas muy avanzadas, donde la única solución posible es un 

reemplazamiento protésico. Esto es mayormente debido a las limitaciones y a la baja 

sensibilidad que presentan las técnicas de diagnóstico actuales, basadas en la descripción 

subjetiva de los síntomas del paciente y en pruebas radiológicas. En los últimos años, el 

uso de técnicas proteómicas ha dado lugar a una larga lista de marcadores solubles 

asociados con la patología artrósica, que podrían tener cierto potencial para el diagnóstico 

precoz y/o la predicción de la enfermedad. Sin embargo, ninguno de ellos ha sido 

suficientemente validado para su uso en la rutina clínica, debido principalmente a la falta 

de estudios prospectivos en un gran número de muestras procedentes de pacientes que 

hayan sido seguidos durante largos períodos de tiempo.  

En esta tesis se han empleado técnicas proteómicas rápidas y económicas, basadas 

en microarrays de proteínas en suspensión, para la validación y posterior cualificación 

como marcadores de predicción de incidencia de OA de un panel de seis proteínas 

seleccionadas en base a resultados previos de nuestro grupo de investigación.  

Así mismo, a pesar de que no se conoce la causa exacta que inicia el proceso 

artrósico, es bien sabido que el sistema inmune, entre otros, tiene un papel fundamental. 

La producción de anticuerpos frente a antígenos propios del cuerpo, o autoanticuerpos 

(AAbs) es una de las principales características de la actuación de dicho sistema. Por ello, 

durante la realización de esta tesis doctoral, se llevó a cabo una fase de descubrimiento 

de biomarcadores mediante arrays de proteínas en formato plano, con el fin de definir un 

perfil de inmunoreactividad propio de las etapas clínicamente silentes de la OA que 

permitiera identificar un panel de AAbs con posible potencial como marcadores de 

predicción.   

Los resultados obtenidos mediante el análisis de un amplio set de muestras de suero 

a tiempo cero de individuos sin evidencia ni radiográfica ni sintomática de OA de rodilla, 

procedentes de la cohorte de la Osteoartrhritis Initiative, han demostrado la asociación de 

distintos biomarcadores protéicos con la futura aparición de la enfermedad. Por otro lado, 

el uso de pruebas estadísticas multivariantes ha dado lugar a la generación de dos posibles 

modelos para predecir la incidencia de OA radiográfica de rodilla, formados por la 
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combinación de marcadores protéicos y clínicos asociados con el desarrollo de la 

enfermedad. Además, mediante el empleo de análisis de supervivencia, se ha demostrado 

que los niveles en suero a tiempo cero de estos biomarcadores solubles se asocian con el 

tiempo de aparición de la misma: a mayores niveles del biomarcador, antes se desarrolla 

la OA. 
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RESUMO 

Aínda que a artrose (OA) é unha patoloxía reumática caracterizada por unha longa 

fase inicial clinicamente silente de deterioración articular, xeralmente a enfermidade non 

se diagnostica ata etapas moi avanzadas, onde a única solución posible é un  

reemplazamiento protésico. Isto, é maiormente debido ás limitacións e á baixa 

sensibilidade que presentan as técnicas de diagnóstico actuais, baseadas na descrición 

subxectiva dos síntomas do paciente e en probas radiolóxicas. Nos últimos anos, o uso de 

técnicas proteómicas deu lugar a unha longa lista de marcadores solubles asociados coa 

patoloxía artrósica, que poderían ter certo potencial para o diagnóstico precoz e/ou a 

predición da enfermidade. Con todo, ningún deles foi suficientemente validado para o seu 

uso na rutina clínica, debido principalmente á falta de estudos prospectivos nun gran 

número de mostras procedentes de pacientes que fosen seguidos durante longos períodos 

de tempo.  

Nesta tese empregáronse técnicas proteómicas rápidas e económicas, baseadas en  

microarrays de proteínas en suspensión, para a validación e posterior cualificación como 

marcadores de predición de incidencia de OA dun panel de seis proteínas seleccionadas 

en base a resultados previos do noso grupo de investigación.  

Así mesmo, a pesar de que non se coñece a causa exacta que inicia o proceso  

artrósico, é ben sabido que o sistema inmune, entre outros, ten un papel fundamental. A 

produción de anticorpos fronte a antíxenos propios do corpo, ou  autoanticorpos (AAbs) 

é unha das principais características da actuación devandito sistema. Por iso, durante a 

realización desta tese doutoral, levou a cabo unha fase de descubrimento de 

biomarcadores mediante arrays de proteínas en formato plano, co fin de definir un perfil 

de  inmunoreactividad propio das etapas clinicamente silentes da OA que permitise 

identificar un panel de AAbs con posible potencial como marcadores de predición.   

Os resultados obtidos mediante a análise dun amplo set de mostras de soro a tempo 

cero de individuos sen evidencia nin radiográfica nin sintomática de OA de xeonllo, 

procedentes da cohorte da Osteoartrhritis Initiative, demostraron a asociación de distintos 

biomarcadores protéicos coa futura aparición da enfermidade. Doutra banda, o uso de 

probas estatísticas multivariantes deu lugar á xeración de dous posibles modelos para 

predicir a incidencia de OA radiográfica de xeonllo, formados pola combinación de 
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marcadores protéicos e clínicos asociados co desenvolvemento da enfermidade. Ademais, 

mediante o emprego de análise de supervivencia, demostrouse que os niveis en soro a 

tempo cero destes biomarcadores solubles asócianse co tempo de aparición da mesma: A 

maiores niveis do biomarcador, antes desenvólvese a  OA.  
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ABSTRACT 

Although osteoarthritis (OA) is a rheumatic pathology characterized by a long 

clinically silent early phase of joint degeneration, the disease is generally diagnosed at 

advanced stages, when the only possible solution is prosthetic replacement. This is mainly 

due to the limitations and low sensitivity of the actual diagnostic techniques, which are 

based on the patient’s subjective description of the symptoms and radiological tests. In 

the last years, the use of proteomic technologies have defined a large list of potential OA 

soluble biomarkers, which may have a putative utility for the early diagnosis and/or 

prediction of the disease. However, none of them has been sufficiently validated for their 

use in the daily clinical routine, mostly due to the lack of prospective studies in a large 

number of individuals who have been followed for long periods of time.  

In this thesis project, a high-throughput proteomic technique based on suspension 

protein arrays has been employed for the validation and subsequent qualification as 

prognostic markers of incident OA of a panel of six proteins selected based on previous 

findings from our research group.  

Likewise, despite the exactly mechanism involving the onset of the osteoarthritic 

pathogenesis remains still unknown, the fundamental role of the immune system, among 

others, is well documented. The production of antibodies against self-antigens, or 

autoantibodies (AAbs) is one of the main features of the humoral response. Therefore, as 

part of this thesis, a biomarker discovery phase using planar protein arrays was carried 

out in order to detect a specific immunoreactivity signature of the very early stage of the 

disorder, which might determine a panel of OA-associated AAbs with potential use as 

prognostic biomarkers. 

The results obtained by the analysis of a large set of sera at baseline from participants 

without evident radiological or symptomatic knee OA, belonging to the Osteoarthritis 

Initiative cohort, have proved the association of different protein biomarkers with the 

future appearance of radiographic knee OA. On the other hand, the use of multivariable 

logistic regression analysis has resulted in the generation of two potential prognostic 

models to predict the incidence of knee OA, which combine protein and clinical markers 

associated with the development of the disease. In addition, using survival analysis, it has 

been demonstrated that the baseline serum levels of these biochemical markers are 
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associated with the time of occurrence of the disease: the higher the levels, the sooner the 

disease appears.
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1. OSTEOARTHRITIS  

1.1. Definition  

Osteoarthritis (OA) is the most prevalent rheumatic disorder in the occidental world 

and can impact any joint, being the most affected the hands, knees, hips and spine. It is a 

complex chronic disease originated as a consequence of a dysfunction in a complete 

organ, which is the joint (Figure 1), leading to the appearance of illness, understanding 

“disease” as the abnormalities of joint structure and function, and “illness” as the possible 

clinical manifestations (Kraus et al., 2015). The structures that integrate the joint include 

periarticular muscles, ligaments, bursae, synovial membrane, cartilage and subchondral 

bone. In OA, commonly the disease does not coincide with illness, being even possible 

(and often do) to occur in the absence of symptoms, or in contrast to find definite 

radiographic features in the joints of a person without symptoms.  
 

 

 

Recently, the Osteoarthritis Research Society International (OARSI) has endorsed a 

new definition of OA as a “disorder involving movable joints characterized by cell stress 

and extracellular matrix degradation initiate by micro- and macro-injury that activates 

maladaptive repair responses including pro-inflammatory pathways of innate immunity. 

The disease manifests first as a molecular derangement (abnormal joint tissue 

Figure 1. Structure of the human diarthrodial joint.   
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metabolism), followed by anatomic and/or physiologic derangements (characterized by 

cartilage degradation, bone remodelling, osteophyte formation, joint inflammation and 

loss of normal joint function), that can culminate in illness” (Kraus et al., 2015). The 

Figure 2 shows the main alterations occurring in the arthritic process.  

 

 

OA is very often seen by the rheumatologist at advanced-stages. The disorder is 

typically develops over decades in a clinically silent phase, offering a wide window of 

opportunity to potentially alter its course (Migliore et al., 2017). Therefore, an 

identification of the earlier phases in OA is really important to properly treat patients 

when there might still be some regenerative ability of the articular cartilage, which is the 

tissue most characteristically affected in this disease (Madry et al., 2016). 

 

1.1.1. Definition of early knee OA 

It is thought that OA may be manifested by a prolonged period of musculoskeletal 

tissue abnormalities at a molecular and clinically silent level, which can precede the 

anatomic organ system disease (Kraus et al., 2015). Defining early knee OA is more 

complicated than established OA, as the signs and symptoms may be limited and 

sporadic, being manifested only under certain conditions, such as sport activities that 

Figure 2. Representation of the main joint structures of the knee and the most important 
degenerative processes taking place in OA. Image from: Hunter et al. (2006) (Hunter et 
al., 2006). 
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involve long-term loading (Luyten et al., 2012). Thus, a very early OA would be 

characterized by an asymptomatic disease state. 

 
Classification criteria of early knee OA, although are certainly challenging, are 

obviously based on the combination of symptoms, signs, and structural changes. Unlike 

established OA, radiographic criteria defined only by Kellgren and Lawrence (KL) grade 

will not be enough to identify an early population, and therefore, other methods such as 

arthroscopy or magnetic resonance imaging (MRI) have been proposed (Luyten et al., 

2012).  

 
To be classified as early knee OA, a patient need to fulfill the present criteria:  

• Pain in either knee. 

• Standard radiographs KL grade 0–1 or 2 (osteophytes only).  

• At least one of the following two structural criteria: Arthroscopic findings 

of cartilage lesions, and/or MRI findings demonstrating damage in the articular 

cartilage and/or subchondral bone marrow lesions (BMLs).  

 

1.2. Epidemiology and socioeconomical impact 

OA can affect to any diarthrodial joint, which are fundamental components for the 

mobility and autonomy of people. Therefore, any dysfunction on these joints can cause 

dependence of the individual, and in many cases, permanent disability. 

 
Estimations of OA prevalence are highly variable and depend on the definition of 

OA, i.e. taking into account the symptoms and/or the radiographic manifestation, the 

specific joint(s) being evaluated, and other distinctive factors (e.g. age or sex) of the 

population being studied (Vina et al., 2018). Although all of these reasons lead to a 

difficult establishment of a global OA prevalence, many data reflect the importance and 

the socioeconomical impact of this disease. According to the World Health Organization 

(WHO) Global Burden of Disease (GBD) Study, the global prevalence of 

radiographically confirmed symptomatic knee and hip OA was estimated at 3.8% (95% 

confidence interval (CI): 3.6–4.1%) and 0.85% (95% CI: 0.74–1.2%) respectively, ranked 

both as the 11th highest contributor to global disability in 2010 (Cross et al., 2014). An 

epidemiological study, called EPISER, carried out by the Spanish Society of 

Rheumatology (in Spanish, SER) in 2016 showed a prevalence of  7.9%, 5.2%, and 13.9% 



INTRODUCTION 

46 
 

for symptomatic hand, hip, and knee OA, respectively, in a population over 65 years old 

(Seoane-Mato et al., 2018). 

 
The lack of data on the incidence of the disease is a consequence of the difficulty to 

identify the time at which it begins. However, a recent Spanish study with more than 3 

million subjects reported incidence rates (IRs) for knee OA of 6.5/1000 person-years 

overall, and 8.3 and 4.6/1000 person-years for females and males, respectively. IRs for 

hip and hand OA were 2.1, and 2.4/1000 person-years overall, 2.4 and 3.5 for females, 

and 1.7 and 1.3 for males, respectively (Prieto-Alhambra et al., 2014) (Figure 3). This 

study also showed that knee and hip OA rates increased with age, and females had higher 

ratios than males, especially over the fifties.  
 

 
 

 

OA, together with cancer, is the second pathology that generates the highest 

healthcare expenditure, only behind cardiovascular diseases. Its global cost is estimated 

as the 2% of the gross domestic product (GDP) for the developed countries (Dunlop et 

al., 2003). According to the ArtRoCad study, the treatments of knee and hip OA involve 

a direct cost (social cost) and indirect cost (health cost) of almost 5,000 million per year, 

which means an average cost per patient of 1,500 euros per year (Loza et al., 2009). 

Figure 3. Age and gender-specific IRs (per 1000 person-years) of knee (black color), hip 
(red color), and hand OA (green color). Solid, short dash, and long dash line refers to all 
population, women, and men, respectively. Image from: Prieto-Alhambra et al. (2014) 
(Prieto-Alhambra et al., 2014). 
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As mentioned above, OA is associated with aging. The increase in live expectancy, 

together with the lack of preventive and therapeutic measurements, anticipate that the 

prevalence and socioeconomical impact of the disease will increase in the next years. 
 

1.3. Physiopathology 

Articular cartilage is a highly specialized visco-elastic tissue that covers the end of 

the bones of the diarthrodial joints. It acts as a low-friction and load-bearing surface, 

experiencing different static and dynamic forces, such as shear, compression and tension 

(Madry et al., 2012). Among its main properties, it should be noted that the articular 

cartilage is an avascular, alymphatic and aneural tissue, where oxygen and nutrients are 

principally provided by diffusion from the synovial space (SER, 2010).  

 

 

 

Articular cartilage is composed by the extracellular matrix (ECM) and a unique cell 

type, the chondrocytes, which are responsible of the synthesis and maintenance of the 

ECM (Figure 4). The biomechanical properties of the articular cartilage are guaranteed 

Figure 4. Structure of the hyaline articular cartilage, showing the four structured zones: 
the superficial zone, the middle zone, the deep zone and the calcified zone. Adapted from: 
Elsevier.Inc.Netterimagenes.com 
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due to the particular organization of the ECM, whose main constituents are collagens (VI, 

IX, XI, XII and XIV), proteoglycans and hyaluronic acid (Madry et al., 2012).  

 
OA is a multifactorial disease whose pathogenesis includes an overall insufficiency 

of the entire joint, especially the interaction between the articular cartilage, subchondral 

bone and synovial membrane (Man et al., 2014). The failure of the repair process of 

damaged cartilage is the key episode in the pathological process of OA (Bijlsma et al., 

2011). It is caused by the contribution of biomechanical and biochemical factors, which 

alter the tissue homeostasis. In a physiological normal cartilage, chondrocytes are 

responsible of preserving the ECM homeostasis with a low renewal capacity. However, 

in a damaged cartilage the repairing attempts fail and determine the predominance of 

destructive (catabolism) over productive (anabolism) processes (Iannone et al., 2003) 

(Figure 5). Activation of different pro-catabolic factors, such as tumor necrosis factor 

alpha (TNF-a) or interleukin-1b (IL1b), lead to an enzymatic degradation of the cartilage 

matrix by different proteases: collagenases (MMP (matrix metalloproteinase)-1, -13, -8), 

aggrecanases (MMP3, MMP14, ADAMTS (a desintegrin and metalloproteinase with 

thrombospondin motifs)-1, -4, -5) or gelatinases (MMP2, MMP9) (Aigner et al., 2007).  
 

 

 

There are three different theories to explain the imbalance between the catabolism 

and anabolism in articular cartilage. The simplest theory is based on the apoptosis or loss 

of viability of the chondrocytes. A reduction in the number of these cells limit the tissue 

capacity to maintain cartilage homeostasis and to repair damage (Aigner et al., 2007). 

Figure 5. Biological processes involved in the imbalance of the cartilage metabolism in 
OA. 
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However, the role of programmed cell death in inducing cartilage damage is a matter for 

debate, prevailing the idea that apoptosis is a pathway for removing damaged 

chondrocytes rather than initiating the osteoarthritic process (Iannone et al., 2003). The 

second theory is referred to cell senescence. Here, oxidative stress cause the premature 

aging of the chondrocytes, limiting their normal capacities to finally give rise to the 

destruction of the cartilage (Aigner et al., 2007). Finally, the last theory refers to a 

dysfunction in the cartilage homeostasis is due to a failure in the ability of the 

mesenchymal stem cells to differentiate into chondrocytes. This would disable tissue 

regeneration processes (Michigami, 2013).  

 
Furthermore, in the pathogenesis of OA there is also an additional and integrated role 

of the bone. During OA, subchondral bone shows specific anatomical changes 

characterized by thickening, sclerosis and formation of osteophytes. The sclerosis of the 

subchondral bone causes a loss of its loads absorption capability. An increase in bone 

stiffness could be one part of a bigger widespread bone disorder, leading to an enhanced 

mineralization and/or volume of the affected joint (SER, 2010). In this context, a local 

increase in growth factors, such as insulin-like growth factors (IGF) 1 and 2 and 

transforming growth factor beta (TGF-b) (Dequeker et al., 1993), lead to an increment of 

type I collagen production (Mansell et al., 1998), which stimulates osteoblast metabolism 

and enhances the synthetic activity of bone tissue.  

 
Finally, another of the key structures involved in the osteoarthritic process is the 

synovial membrane (Goldring et al., 2011; Hunter et al., 2008; Malemud, 2015; 

Scanzello, 2017; Sellam et al., 2010). Inflammatory changes of synovium occur in up to 

50% of OA patients (Ayral et al., 2005). This affects decisively in the pathogenesis and 

the degree of clinical manifestations of the disease, including joint pain, swelling and 

stiffness. On the one hand, the inflamed synovial membrane releases pro-inflammatory 

cytokines, such as IL1, IL6, Il17, IL18, TNF-a, prostaglandins (PGs) and nitric oxide 

(NO), which disturb the balance of cartilage matrix degradation and repair (Yuan et al., 

2003). Cartilage degradation in turn amplifies synovial inflammation, creating a vicious 

circle.  

 
On the other hand, although OA is not considered an autoimmune disease, several 

studies show that cell stress and extracellular matrix degradation may activate 

maladaptive repair responses, including pro-inflammatory pathways of innate immunity 
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(Kraus et al., 2015) (Figure 6). In fact, the presence of B and T lymphocytes, macrophages 

and dendritic cells in the synovial membrane is now considered to be a common finding 

in OA synovial tissue (Benito et al., 2005; Klein-Wieringa et al., 2016; Li Y. S. et al., 

2017; Lopes et al., 2017; Mathiessen et al., 2017). The presence of mediating cells of the 

immune response in the synovium suggests that different fragments released from the 

ECM as a consequence of cartilage degradation may act as damage-associated molecular 

patterns (DAMPS) (Foell et al., 2007). In this sense, DAMPS may activate the 

complement system of the humoral immunity, acting as autoantigens. This usually 

involves the production of immunoglobulins against self-proteins or autoantibodies 

(AAbs), perpetuating the catabolic processes and the inflammation in the joint 

(Alsalameh et al., 1990).  
 

 

 

Based on this theory, several studies have identified different AAbs against proteins 

derived from the cartilage, such as cartilage intermediate layer protein (CILP) (Tsuruha 

et al., 2001), osteopontin (OPN) (Sakata et al., 2001), chitinase-3-like protein 2 (YKL-

39) (Tsuruha et al., 2002), fibulin-4 (Xiang et al., 2006) and cyclic citrullinated peptides 

(Du et al., 2005). Elevated titters of AAbs have been also detected in serum (Austin et al., 

1988; Henjes et al., 2014) and synovial fluid (Goldberg et al., 1987) from OA patients. 

Considering the fact that AAbs can often be detected at the asymptomatic stage, all of 

these authors suggest that these molecules might have the potential to identify susceptible 

individuals or populations and facilitate prognosis.  

Figure 6. Scheme of the role of the immune system in OA. 
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Summarizing all the processes described above, it is clear that OA is a complex and 

heterogeneous disease. However, in the main pathogenic driver in OA is still a question. 

It has been traditionally thought that OA is initiated by cartilage degradation. 

Nevertheless, several of bone changes also take place at the disease onset (Intema et al., 

2010), supporting the idea that they occur at least simultaneously or even before than 

cartilage degradation and thus may be responsible for the initiation of cartilage damage 

(Nguyen et al., 2017).  
 

1.3.1. Changes in the articular cartilage in early OA. 

Early events in OA involve the disruption of the ECM, linked to an abnormal 

activation of cell surface receptors (Madry et al., 2016). The alteration in the synthesis of 

lubricin and other superficial proteins lead to an impaired surface lubrication and an 

increase of friction (Neu et al., 2010; Sakata et al., 2015). The proteoglycan content is 

also reduced, resulting in the exposition and subsequent erosion of the collagen network. 

Small collagen fragments are released, activating an inflammatory cascade within the 

cartilage and triggering the inflammation of the synovial membrane (Scanzello et al., 

2012). The increment of catabolic activities causes biochemical changes in the 

composition of the ECM, leading to a reduced mechanical strength that provokes a higher 

deformation of the cartilage (Ryd et al., 2015). Early changes also involve a progressive 

thinning in the subchondral plate (Intema et al., 2010), subarticular subchondral 

spongiosa thickness (Orth et al., 2014), and synovial inflammation (Ene et al., 2015). In 

most of the cases, this tissue-related phenomena lead to an established OA. 
 

1.4. Risk factors 

The WHO defines risk factor as any attribute, characteristic or exposure of an 

individual that increases the likelihood of developing a disease or injury (WHO). There 

are several risk factors described in the literature influencing the prevalence and 

progression of OA, which can be divided in two different categories: person-level factors 

and joint-level factors. 

 

1.4.1. Person-level risk factors 

1.4.1.1. Sociodemographic  

Age. – Although OA is not considered a consequence of aging, older age is probably 

the best known risk factor for the disease (Allen et al., 2015; Felson et al., 2000; Johnson 
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et al., 2014; Neogi et al., 2013). The mechanism under the association between age and 

established OA is poorly understood, but is probably multifactorial (anatomical, 

structural and biochemical changes) (Litwic et al., 2013).  

 
Gender. – Compared with men, the prevalence of hip, knee and hand OA is higher in 

women (Palazzo et al., 2016), unlike cervical spine OA (Johnson et al., 2014). Since it is 

known that incidence rates of knee OA increase in women around menopause (Maleki-

Fischbach et al., 2010), several authors have suggested a role of the loss of estrogen levels 

with the development and severity of OA. However, results are still conflicting (Cirillo 

et al., 2006; de Klerk et al., 2009; Hanna et al., 2004; Nevitt et al., 2001; Wluka et al., 

2001).  

 
Race. – There are known racial and ethnic differences in OA radiographic features 

(Zhang et al., 2010). Compared with other races, African-American individuals seem to 

be more likely to develop symptomatic knee and hip OA (Allen et al., 2015; Vina et al., 

2018; Zhang et al., 2010). 

 

1.4.1.2. Genetic 

The genetic contribution to OA has been strongly supported by many studies, being 

estimated that around 30-65% of the risk of OA is genetically determined (Allen et al., 

2015); Johnson et al.Johnson et al. (146); (Neogi et al., 2013). To date, 21 independent 

susceptibility loci have been related with OA by genome-wide associated scan (GWAS) 

studies (Warner et al., 2017).  
 

1.4.1.3. Obesity 

Obesity, defined as body mass index (BMI) over 30 kg/m2, is a well-known risk 

factor for knee OA (Allen et al., 2015; Johnson et al., 2014; Lane et al., 2017; Neogi et 

al., 2013; Silverwood et al., 2015). Accordingly, there is a strong relationship between 

BMI and radiographic and/or symptomatic knee OA: for every 5-unit increase in BMI, 

the associated increased risk of knee OA is 35% (Jiang et al., 2012). The contribution of 

BMI for hip OA has been also stablished, but in this case, the association is not as strong 

as for the knee (Allen et al., 2015; Johnson et al., 2014; Karlson et al., 2003). However, 

recent studies from Japan (Ohfuji et al., 2016) and Spain (Reyes et al., 2016) found an 

independent association between weight gain and hip OA diagnosis.  
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Although it is thought that obesity increases the likelihood of OA appearance because 

the load over the joint is greater in an obese individual, the role of the fat in OA incidence 

is still unclear. As the relationship between obesity and hand OA is less evident, there is 

a tendency to believe that the body fat is affecting the development of the disease in 

another way (Yusuf et al., 2010), and relate obesity with the inflammation and metabolic 

effects that occur in the joint (Berenbaum et al., 2013; Sandell, 2009).  

 

1.4.1.4. Diet 

A lack of vitamin C, D and K has been suggested to increase OA risk (Felson et al., 

2007; McAlindon et al., 2013). However, further studies are needed to improve 

understanding on the role of the dietary factors in OA development, as there are 

conflicting results (Arden et al., 2016; Wang X. et al., 2017). In addition to vitamins, 

research of the role of specific diets has also been published, such as dietary fibre intake 

using data from different prospective studies (Dai et al., 2017). 
 

1.4.1.5. Bone density and mass  

Alteration at the bone level is one of the main features in OA, since they trigger the 

appearance of both osteophyte formation and bone sclerosis. Because of this, the role of 

the bone mineral density (BMD) has been deeply studied in the incidence (Neogi et al., 

2013) and prevalence (Allen et al., 2015) of the disease. The results suggest that high 

BMD is a risk factor for OA (Edwards et al., 2017; Gregson et al., 2017; Teichtahl et al., 

2017). 
 

1.4.2. Joint-level risk factors 

1.4.2.1. Bone shape 

Recent evidences describe that patients with acetabular dysplasia (Bouyer et al., 

2016) or cam deformity (Saberi Hosnijeh et al., 2017) have doubled the risk of developing 

hip OA compared with those without deformities. On the other hand, several authors are 

also exploring the contribution of the changes in the bone area and shape in the 

development of knee and ankle OA (Hunter et al., 2016; Lu et al., 2017; Nelson et al., 

2017).  
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1.4.2.2. Muscle strength 

The association between muscle strength and OA may vary depending of the muscles 

and joints being studied (Vina et al., 2018).  
 

1.4.2.3. Joint loads 

Abnormal loading due to repetitive joint use has been associated with knee, hip and 

hand OA (Croft et al., 1992; Johnson et al., 2014). In this sense, particular occupations, 

such as firefighting, construction works, and sports participation have been long 

associated with greater risk of OA (Cameron et al., 2016; Johnson et al., 2014; Neogi et 

al., 2013). Specifically regarding sport activities, it is still unclear if the positive 

association is due to the sport participation itself, or to consequences of injuries that may 

occur with the practice of the sport (Alentorn-Geli et al., 2017; Driban et al., 2017; Lo et 

al., 2017). On the other hand, abnormal alignment has been associated with increased 

structural degradation in the compartment under the greatest compressive stress (Palazzo 

et al., 2016). Different studies showed that progression of knee OA is associated with 

varus or valgus alignment (Sharma et al., 2017; Sharma et al., 2001), but not with OA 

onset (Johnson et al., 2014; Sharma et al., 2017). 

 

1.4.2.4. Injury/surgery 

The rupture of the anterior cruciate ligament (ACL) is related with a 13% of cases of 

early-onset knee OA. Furthermore, the prevalence of knee OA increases between 21–

40% when such rupture is associated with cartilage damage, subchondral bone, collateral 

ligaments or/and menisci (Oiestad et al., 2009; Sanders et al., 2017; Slauterbeck et al., 

2009).  

 
Surgery has been postulated to confer risk to develop knee OA (Suter et al., 2017), 

even if it is just a partial meniscectomy (Han et al., 2016). 
 

1.4.2.5. Pre-radiographic lesions 

The predictive value of pre-radiographic lesions may be detected only by MRI. New 

studies have shown the association between synovitis (Atukorala et al., 2016), BMLs, 

cartilage damage and menisci extrusion (Sharma et al., 2017; Sharma et al., 2016) with 

the development of knee OA.  
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1.5. Clinical features and diagnosis 

OA is a heterogeneous disease with a variety of potential pathophysiological drivers. 

This leads to multiple phenotypes that may represent different mechanisms of the disorder 

(Dell'Isola et al., 2016). According to the OA phenotype, many of which can overlap in 

the patients, the specific clinical manifestations of the disease are likely to differ. Thus, 

each phenotype may be treated and targeted differently, allowing patient stratification and 

the development of precision medicine strategies for OA  (Mobasheri et al., 2017).  

 
Intermittent pain is the first and main symptom that cause patients to visit their family 

doctor. In early knee OA is suggested that pain should be present at least in two episodes 

for more than 10 days in the last 12 months (Luyten et al., 2012). During the course of 

the disease, patients can also describe mild swelling after excessive stress, typically after 

the practice of sport, light crepitation, inflammatory flames, stiffness, and loss of 

movement and function (Madry et al., 2016). Taking together, OA symptomatology result 

in a limitation of the patients’ day-to-day activities, causing depression and disturbed 

sleep, finally diminishing their quality of life (Bijlsma et al., 2011).  

 
Currently, OA diagnosis depends of several items, including clinical history, physical 

examination of pain and function, structural measures by imaging technologies, and other 

analysis such as biomarkers –in the form of molecules or molecular fragments released 

to the biological fluids as a result of joint tissue metabolism– (Bijlsma et al., 2011). There 

are different diagnosis criteria in the literature, but in all cases the disease is confirmed 

when OA is stablished and more than 30% of the joint has been destroyed. To date, the 

most employed criteria to diagnose hand, hip and knee OA have been proposed by the 

American College of Rheumatology (ACR), and include clinical manifestations, 

radiological signs and biological parameters (Felson et al., 2011) (Table 1). Although 

structural abnormalities are part of the diagnosis criteria, imaging techniques are more 

useful to establish the severity of joint damage and to monitor progression rather than to 

confirm diagnosis (Bijlsma et al., 2011). Current imaging methodologies include 

radiography, MRI, position emission technologies (PET), ultrasound or arthroscopy.  
 

Plain radiography is the gold standard in studies involving diagnosis and progression 

of the OA since is inexpensive, fast, easily available and widely interpretable (Finan et 

al., 2013; Guermazi et al., 2013; Hayashi et al., 2017). It is accepted by the regulatory 

agencies as a primary objective to demonstrate the efficacy of the disease-modifying 
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osteoarthritis drugs (DMOADs) (SER, 2010). However, radiographic measures entail 

ionic radiation exposure and are less than adequate for assessing diagnosis and 

progression of the disease for many reasons (Eckstein et al., 2015): (I) they provide an 

indirect measure of the cartilage thickness, as they only indicate changes in the bone; (II) 

the measurement of the joint space, performed in a sole plain, is highly variable depending 

on the position of the joint when performing the radiography; (III) the cartilage changes 

may be confounded by meniscal cartilage lesions and meniscal extrusion; (IV) soft tissues 

abnormalities in the synovial tissue or bone marrow are undetected; and (V) plain 

radiography is usually poorly correlated with joint function. All of this features make this 

methods not sensible enough either to detect early stages of OA (Raynauld et al., 2004) 

or in the assessment of changes in the progression of the disease (Guermazi et al., 2013).  
 

Table 1. ACR criteria to diagnose hand, hip, and knee OA. 

Hand 

Hand pain plus, at least, 3 of the following criteria: 

• Thickening of bony structures of more than 2 to 10 interphalangeal joints of 

both hands. 

• Thickening of 2 or more distal interphalangeal joints. 

• Inflammation of 2 or more interphalangeal joints. 

• Deformation of at least 1 of 10 selected joints of both hands. 

Hip 

Hip pain plus, at least, 2 of the following criteria:  

• Globular sedimentation rate < 20 mm/h. 

• Presence of osteophytes. 

• Joint space narrowing (JSN). 

Knee 

Knee pain plus any of the following criteria: 

• Age > 50 years. 

• Morning stiffness less than 30 min. 

• Crepitation in the active mobilization of the knee. 

• Thickening of the bone structures in the clinical exploration. 

• No increase in the cutaneous temperature of the knee 
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Assessment of the radiological definition of OA is based on the reduction of the joint 

space, subchondral sclerosis, presence/absence of osteophytes, cystic geodes, and joint 

dislocations. Different punctuation scores of radiological assessment have been 

developed, such as the KL classification (Kellgren et al., 1957) and the Outcome 

Measures in Rheumatology (OMERACT)-OARSI atlas (Altman et al., 2007). The KL 

score is considered to date the gold standard for radiographic OA despite it lacks 

precision, especially for early OA. It considers a sequence of four different items for OA 

grading: height of the joint line, presence/absence of osteophytes, JSN and bone sclerosis 

(Kellgren et al., 1957) (Table 2). On the other hand, the OMERACT-OARSI Initiative 

published an atlas in 1996, which was updated in 2007, where medial and lateral 

compartment are assessed separately (Altman et al., 2007). In this regard, the atlas 

pretends to improve the interpretation of radiographs of joint tissues and to assist in 

grading individual radiographic features of the hand, hip and knee for clinicians and 

clinical trials.  

 

Table 2. KL grading for knee OA. 

KL grade Description 

0  
(Healthy) No radiographic features of OA 

1 
(Doubtful) 

Doubtful JSN and possible osteophytic lipping 

2  
(Mild) Definite osteophytes and possible JSN 

3 
(Moderate) Multiple osteophytes, definite JSN, sclerosis, possible bony deformity 

4  
(Severe) 

Large osteophytes, marked narrowing of the joint space, severe sclerosis, and 
definite deformity of bone ends 

 

In the last years, the scientific community has shown a growing interest to search and 

develop more sensitive indicators of OA, which could be used in conjunction or as a 

substitute for the traditional plain radiography. In that respect, ultrasound has the 

advantage of imaging the synovial tissue without contrast agents and allowing the 

visualization of movements (Hayashi et al., 2017). However, the use of this technology 

is dependent on the experience and skills of the operator. Arthroscopic procedures is an 

available imaging technique which allows the visualization of the exterior of the cartilage, 
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but this procedure is sometimes contraindicated because it involves invasive techniques 

and there are doubts on the reliability of the assessments (Hutt et al., 2015).  

 
Since 2010, there is a slightly increase in the number of studies using MRI in the OA 

field (Boesen et al., 2017). This is due to the fact that it might detect subtle changes in the 

joint, providing objective quantitative assessment of the volume, area, thickness and 

quality of the articular cartilage. Moreover, advanced MRI techniques (T1r, T2, sodium 

MRI, or gadolinium-enhanced MRI) allow more sensitive analysis and scoring systems 

to improve assessment of cartilage quality and identify cartilage degeneration at an earlier 

stage (Guermazi et al., 2015). The advantage of MRI is that it provides information about 

the cartilage quality with good quantitative analyses. Unfortunately, the cost, analytical 

time, complexity and time for whole-organ analyses restrict its use in research settings 

and daily clinical practice.  

 
In most individuals, the earlier stages of the disease are clinically silent, and therefore 

extensive deterioration of cartilage already exist at the time of diagnosis (Blanco, 2014). 

Thus, identifying individuals at the early stages of OA is not possible by the existing 

diagnostic tests. In this sense, there is a tendency to believe that a molecular level of 

interrogation to detect disease-specific biological markers by omics technologies 

(genomics, proteomics, metabolomics, etc.) is the only way to facilitate the identification 

of the disease process before changes in joint structure are evident (Kraus et al., 2015). 

The research community suggests that this search for one or more biomarkers will be 

essential in the future to identify OA at its earlier stages, or even predict the disease 

development, characterize the abnormal joint of a given individual to predict the course 

of the disease and to assess therapeutic response, which might reduce the cost of treatment 

for patients.  

 

1.6. Protein biomarkers in OA 

The advances that the field of proteomics has undergone in the last decade have 

opened new perspectives in clinical research, mainly in the search for biomarkers. 

 

1.6.1. Definition and generation process  

A biomarker is defined as “a characteristic that is objectively measured and evaluated 

as an indicator of normal biological processes, pathogenic processes, or pharmacological 
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responses to a therapeutic intervention” (Glyn-Jones et al., 2015; Kraus et al., 2011), 

which can be objectively evaluated since a qualitative (presence/absence) or quantitative 

point of view. Biomarkers might include soluble analytes (genetic or biochemical 

molecules) measured in biological fluids, imaging parameters (features), detected by 

radiography and MRI, or even physiological and histological measurements, such as gait 

analysis or synovitis biopsy, respectively (Kraus et al., 2015).  

 
The generation process of new biomarkers represents a challenge that requires a 

strong combination of basic and clinical research (Henrotin et al., 2015). In such context, 

a general pathway for developing disease-related biomarkers has been stablished, and 

includes four different phases (Kraus, 2018) (Figure 7): discovery, analytical validation, 

qualification and establishment of clinical utility or implementation.  
 

 

 

Biomarker discovery typically starts with the analysis of a large number of analytes 

in a small number of samples. This step can rely in the combination of many different 

technologies, such as imaging, omics technologies and biophysical measurements of 

organ function. Following discovery, validation of a biomarker is the assessment of the 

assay or measurement performance characteristics to ensure that the biomarker test is 

reliable, reproducible and of adequate sensitivity and specificity for the proposed use, 

Figure 7. Framework for biomarker development. The generic process of biomarkers 
generation begins with the analysis of a large number of biomarkers in a small number of 
sample and culminates with the analysis of a small number of biomarkers in a large 
number of samples. Samples employed included different biofluids or tissue extracts. 
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which is a necessary component to deliver high-quality research data necessary for its 

effective use (Wagner, 2002). The clinical relevance of the biomarker in a particular 

context is confirmed in the qualification phase. This qualification phase is necessary to 

link a biomarker with a clinical endpoint, defined as a clinically meaningful measure of 

how a patient feels, functions, or survives, such that it can be used as a surrogate endpoint, 

defined as a biomarker that is intended to serve as a substitute for a clinical endpoint 

(Hunter et al., 2010). Finally, the utilization of a biomarker is dependent of their clinical 

utility, which is established by evaluation of biomarker performance in the context of 

specific procedures, such as disease diagnosis and staging, determination of the need for 

treatment, selection of a specific treatment, treatment monitoring and dose adjustment. 

 
In 2014, the European Medicines Agency (EMA), in parallel with the Center for 

Drug Evaluation and Research (CDER) of the US Food and Drug Administration (FDA), 

published different guidelines for the qualification of biomarkers in the development of 

new drugs (Bay-Jensen et al., 2016). According with these, biomarkers for drug 

development are divided in four categories, based on the degree of association with the 

pathophysiological state or the clinical outcome: exploration (for hypothesis generating 

research), demonstration (biomarker linked to clinical outcomes), characterization 

(biomarker reproducibility linked to a clinical outcomes), and surrogacy (biomarker 

substitution for a clinical end point) (Wagner et al., 2007). However, in OA research, 

biomarkers can be used not only for drug development, but also for treatment monitoring 

and as a basis for personalized evidence-based action plans, to facilitate the early 

diagnosis of OA, evaluate disease progression, and improve disease prognosis (Kraus et 

al., 2015). 

 
To describe the clinical uses for biomarkers, the Osteoarthritis Biomarker Network, 

funded by the National Institute of Health (NIH), and the National Institute of Arthritis, 

Musculoskeletal and Skin Disease (NIAMS) proposed a biomarker classification scheme 

represented by the acronym BIPEDS to connote six categories of markers: Burden of 

Disease (B, biomarkers associated with the extent or severity of disease among 

individuals with OA), Investigative (I, biomarkers not yet meeting criteria for another 

category), Prognostic (P, predict the future onset or progression of OA), Efficacy of 

Intervention (E, provides information about the efficacy of treatment among those 

individuals with high risk of developing OA or existing OA), Diagnostic (D, classify 
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individuals as either diseased or non-diseased), and Safety (S, indicate presence or extent 

of toxicity related to an intervention) (Bauer et al., 2006). Based on this classification 

systems more than one category can describe the current status of a particular biomarker 

as long as they meet the requirements (van Spil et al., 2010).  
 

1.6.2. Existing biomarkers in the OA disease 

In OA, the search for biomarkers has caught the attention of researchers in the last 

years. This is due to the lack of complete understanding of the disease process, which 

turns challenging the early diagnosis of the disorder (Ruiz-Romero et al., 2013).  

 
Despite of strong efforts and although interesting biomarker candidates have been 

identified in OA to date, none of them have been sufficiently validated and qualified to 

assist diagnosis or prognosis of the disease, nor as clinical outcome in clinical trials or 

gold standard in the clinical routine. Among these, structural molecules or fragments, 

such as proteins, linked to a unique type of joint tissue (cartilage, bone or synovium) or 

common to all of them, are currently the most promising biomarkers in the OA field 

(Blanco, 2014). They are released into the biological fluids from the ECM turnover and 

cellular metabolism of the articular cartilage, subchondral bone or synovial tissue 

(Bijlsma et al., 2011), reflecting the derangements in joint remodelling and therefore, 

disease progression (Madry et al., 2016).  

 
From this perspective, protein biomarkers can be categorized, according to the OA 

process that is targeted, as biomarkers of cartilage turnover, bone resorption and 

formation, synovial inflammation and fibrosis, and inflammatory and metabolic 

processes (Bay-Jensen et al., 2018). Table 3 lists some of these reported biomarkers that 

have been associated with diagnosis, prognosis and treatment response. In addition, there 

are emerging studies on micro-ribonucleic acids (miRNAs) (Nguyen et al., 2017) or AAbs 

(Henjes et al., 2014) as potential markers of OA.  
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Table 3. Most studied biomarkers showing association with OA diagnosis, prognosis and 
treatment response. (SF, synovial fluid; S, sera; P, plasma; U, urine). 

Type Biomarkers Sample BIPEDS 
Biomarkers of 

cartilage 
turnover 

Aggrecan fragment 
Cartilage oligomeric matrix protein (COMP) 
Neoepitope of COMP  
Propeptide of type II collagen, isotype A 
(PIIANP) 
Collagenase-mediated degradation fragment of 
type II collagen (C2C) 
C-terminal telopeptide of collagen type-II (CTXII) 

SF 
SF/S 
SF 
S 
 

U 
 

S/U 

D/B 
B/P 
B 
P 
 

D/P 
 

P/E 

Biomarkers of 
bone 

resorption and 
formation 

Osteoprotegerin (OPG) 
OPN 
C-terminal telopeptide of collagen type-I (CTXI, 
CTXIa, CTXIb) 
Croslinked N-telopeptide of collagen type-I 
(NTXI) 

S 
P 

S/U 
 

S 

D/B 
B 
P 
 

P 

Biomarkers of 
synovial 

inflammation 
and fibrosis 

Fragment of type-I collagen generate by MMP 
Fragment of type-III collagen generated by MMP 
Metabolite of C-reactive protein (CRP) generated 
by MMP 

S 
 

S 
 

S 

E 
 

E 
 

D/P 

Biomarkers of 
inflammatory 
and metabolic 

process 

Adipokines (Adipsin and leptin) 
CXC chemokine ligand-12 (CXCL12) 
Hipoxia-inducible factor 1a (HIF1a) 
IL (IL1b, IL21, IL6, IL8) 
Irisin 
TGF1b 
TNFa 

S 
P/SF 
SF 
S/P 

S/SF 
S 
S 

B 
D/B 
D/B 

D/B/P 
D/B 
D 
D 

 

1.6.3. Sources for biomarkers 

Blood, plasma and/or serum and urine are the main biological sources of biomarkers, 

due to its easy acquisition. However, molecules released by the articular cartilage may be 

highly diluted and become undetectable in these biofluids, or even more important, as 

systemic biomarkers, they may be confounded by other physiological or pathological 

processes originating from other tissues (Blanco, 2014). Therefore, in OA there is an 

inclination towards an “inside-out” approach from synovial fluid-based discovery to 

serum verification (Kraus). In this sense, synovial fluid is more proximal to the disease 

process, providing an ideal source of direct biomarkers for OA. Nevertheless, the 
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difficulty to obtain this biological fluid in the clinical practice and the small amounts that 

can be extracted are important issues that limited its used (Blanco, 2014).  

 

1.7. Treatment  

Currently, the American Academy of Orthopaedic Surgeons (AAOS) (Jevsevar, 

2013), the OARSI (McAlindon et al., 2014), and the ACR (Hochberg et al., 2012), have 

developed different guidelines to standardize and recommended the available treatment 

options. In general terms, the OA treatment is focused in the control of symptoms and the 

improvement of the functional capacities of the patients (Mora et al., 2018).  

 
There are three main treatment modalities: non-pharmacological, pharmacological, 

and surgical (Vargas Negrín et al., 2014).  In many patients these modalities may be 

combined or adapted to individual needs (Bijlsma et al., 2011). Patients with OA should 

receive at least some treatment from the first two categories, reserving surgical 

management for those who do not improve with the prior modalities SinusasSinusas 

(269).  
 

1.7.1. Non-pharmacological treatment 

Non-pharmacological therapies entail self-management interventions, which should 

be patient-centred, considering their needs and preferences to promote their active 

participation in the management of the disease (Bijlsma et al., 2011).  They are considered 

as the first line of treatment, as they constitute the basic pillar of treatment, especially in 

hip and knee OA, presenting few or no adverse effects. 

 
Non-pharmacological interventions involve patient education to change his/her 

lifestyle (Gay et al., 2016). Regarding this, exercise has been widely proved to have a 

positive effect in patients suffering OA, but it is unclear if particular practices are more 

effective than others and they have to be adapted depending on the specific joint that is 

affected and the patient’s features and capacity. Weight reduction, biomechanical 

intervention, and other treatment modalities (acupuncture, transcutaneous electrical nerve 

stimulation (TENS), ultrasound, electrotherapy, insoles or lasers) are also key elements 

to promote wellbeing and to manage symptoms (Bijlsma et al., 2011; Fibel et al., 2015; 

Newberry et al., 2017). 
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1.7.2. Pharmacological treatment 

Pharmacotherapy should be used in combination with the non-pharmacological 

therapy and just in those patients who fail to respond at this first line of treatment to 

reduce pain and maximize functioning (Majeed et al., 2018). As OA patients are mainly 

in the elderly and will have multiple comorbidities, special attention should be paid in the 

adverse effect that systemic medication can cause in this population (Mora et al., 2018).  

 
Betwixt the pharmacological treatment there are three main groups of drugs: 

traditional analgesics, such as paracetamol, Non-Steroidal Anti-Inflammatory Drugs 

(NSAIDs), including acetaminophen, duloxetine, capsaicin, and opioids; Symptomatic 

Slow Action Drugs for OA (SYSADOAs), involving chondroitin, glucosamine, intra-

articular steroids, hyaluronic acid, platelet-rich plasma; and biological agents based on 

genetically engineering proteins that target specific locations of the immune system, in 

particular monoclonal antibodies against nerve growth or different cytokines (Majeed et 

al., 2018).  
 

1.7.3. Surgical treatment 

Since it is the most invasive and expensive treatment, surgical approaches must be 

only considered for patients whose symptoms did not responded to conservative 

treatments or in advanced OA, when there is no other possible procedure (Sinusas, 2012). 

The surgical treatments are carried out in order to preserve or restored joint surfaces, 

replace joints with artificial implants, and fuse joints .  

 
The most common surgical procedures are fusion and joint lavage, osteotomy, 

arthroscopy and arthroplasty . 

 

2. STUDY COHORTS 

In the last years, the lack of knowledge about the course of clinical symptoms and 

radiographic changes in OA have resulted in an increased interest in developing 

prospective cohort studies with an adequate follow-up time and a well-characterized 

population, based on the underlying mechanism that is intended to be understood. In this 

sense, different public and/or private partnerships have launched several study cohorts, 

including:  
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The Cohort Hip and Cohort Knee (CHECK) study (Wesseling et al., 2016). – 

Includes over 1,000 participants followed for 10 years with early symptomatic knee and 

hip OA to evaluate clinical, radiological and biochemical variables in order to stablish 

the course, prognosis and underlying mechanisms of early symptomatic OA. 

 
The Multicenter Osteoarthritis Study (MOST) (Thorlund et al., 2016). – Enrolled 

3,026 participants with OA disease or at increased risk of developing it followed for 84 

months. 

 
The Framingham Osteoarthritis Study (FOS). – Consists of the active (surviving and 

those not lost during the follow-up) descendants of the original Framingham Heart Study 

cohort, that were invited to participate in a OA study between 1992-1995 (Hunter et al., 

2008; Niu et al., 2017). This original study cohort was assembled in 1948 to examine risk 

factors for heart disease. In the early 1980s, Felson and collaborators found this aging 

cohort as an ideal target population to study knee OA, and its participants were evaluated 

for OA of the knee during the 18 biennial examination by history, physical examination 

and a weight-bearing anteroposterior radiograph of the knee (Felson et al., 1987).  

 
The Prospective Cohort of Osteoarthritis A Coruña (PROCOAC) study. – Contains 

clinical, radiographic, demographic, anthropometric, analytical and genetic data, as well 

as biological samples from 1161 participants with diagnosis of hip, knee and/or hand OA 

who have been followed each 2 years since the beginning of the study in 2006. This 

prospective cohort is registered in the “Registro Nacional de Biobancos” (Code: NRB 

C.0000424) as part of the “Colección de Muestras para la Investigación en Enfermedades 

Reumáticas” created by Dr. Francisco J. Blanco García, from the “Grupo de Investigación 

en Reumatología” (GIR) at the “Hospital Universitario de A Coruña” (CHUAC).  

 
The Osteoarthritis Initiative (OAI) study cohort. – This cohort will be described in 

depth in the subsection bellow (4.1.), as it is the cohort of patients that has been employed 

in this doctoral thesis. 

 

2.1. The OAI study 

The OAI is a multi-centre, 10-year longitudinal and observational study cohort 

designed with the ultimate purpose of improving public health through the prevention or 

alleviation of pain and disability from primarily knee OA (Rego-Perez et al., 2018). The 
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OAI consortium includes public funding from the NIH and private funding from several 

pharmaceutical company partners managed by the Foundation for the National Institutes 

of Health. It counts with the approval of the Institutional Review Board (IRB) of the OAI 

Coordinating Center at the University of California, San Francisco and the IRBs of each 

center. 

 
The OAI developed a research resource available to a broad spectrum of scientists 

and clinicians for its use in the scientific evaluation of biomarkers in OA. It supports 

investigation of the natural history of, and risk factors for, knee OA onset and progression 

using both traditional measures of disease as well as data on novel biomarkers developed 

from the study. To date, 4,796 men and women with or at risk for knee OA aged 45-79 

have been enrolled between February 2004 to May 2006 at four centers across the United 

States (Halilaj et al., 2018):  

• Ohio State University (Columbus). 

• University of Maryland School of Medicine and Johns Hopkins University 

School of Medicine (Baltimore). 

• University of Pittsburgh School of Medicine (Pittsburgh).  

• Brown University School of Medicine and Memorial Hospital of Rhode 

Island (Pawtucket).  
 
The baseline assessment consisted of an initial eligibility assessment by telephone, a 

screening clinic visit and an enrolment clinic visit. Participants were followed for changes 

in the clinical status of the knee, including worsening and onset of symptoms and 

disabilities, for structural abnormalities, and for the identification of imaging and 

biochemical markers. Data on the clinical and joint status of all subjects and on risk 

factors for the development and progression of knee OA were collected at baseline and 

at the yearly follow-up clinical visits. Clinical assessments were evaluated by 

questionnaires assessing knee pain, aching and stiffness, and physical disability, which 

include the Western Ontario and McMasters Osteoarthritis Index (WOMAC), the Knee 

Outcomes in Osteoarthritis Survey (KOOS) and the Medical Outcomes Study Short Form 

12, an examination for knee swelling, tenderness and limited motion, assessment of pain 

and arthritis in other joints, and questions about use of medications for joint pain and 

arthritis. The assessed risk factors include examinations and questions evaluating OA in 

other joints, history of knee injury and surgery, abnormal biomechanics stresses due to 
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knee alignment abnormality, obesity and heavy physical activities, several nutritional 

factors and use of certain medications. Materials for the identification of biomarkers 

include MRI and radiograph images (for imaging biomarkers), and blood and urine (for 

biochemical and genetic markers), which were collected at baseline and at all follow-up 

visits. Blood was processed for serum and plasma. An extended overview of cohort study 

design, together with all collected data over time, is summarized and available in a public 

archive online (https://data-archive.nimh.nih.gov/oai). 

 
Consistent with the emphasis of the OAI on the onset and progression of knee OA, 

the study comprises a very well clinically characterized population of individuals divided 

in two primary subcohorts: (I) those with clinically significant knee OA at baseline 

(progression subcohort) followed for worsening of disease, and (II) those without 

clinically significant knee OA at baseline, but selected on the basis of having specific 

characteristics which give them an increased risk of developing incident symptomatic 

knee OA during the study (incidence subcohort). In addition, the study also include a 

third subcohort or reference control group whose participants did not have either 

symptomatic knee OA or risk factors at baseline (non-exposed control group), with the 

purpose to provide normal reference data in subjects recruited and evaluated using the 

same methods as the rest of the OAI participants.  

 
This study design carried out by the OAI positions this cohort as an ideal target 

population to evaluate relevant biomarkers across the initial onset of symptoms and 

structural abnormalities, progression of subclinical to clinically overt disease, and 

worsening of clinically overt disease.  

 

3. PROTEOMIC APPROACHES FOR BIOMARKER PROFILING  

3.1. Definition of proteomics 

The term “proteomics” was first used in 1996 (Wilkins et al., 1996) by Mark Wilkins 

referred to the “PROTein complement of a genOME”. Today, proteomics evolve a wide 

range of methodologies allowing the global-scale characterization of the complete set of 

proteins in a biological system, including their functionality, structure, modifications, and 

localization (Hixson et al., 2017). The overall set of proteins expressed by an organism is 

called proteome. 
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Therefore, proteome is an expression of the organism’s genome. However, the 

proteome of a cell presents some features that make it more complex than the genome: 

(I) the genome is identical in all cells from a particular pluricellular organism and the 

proteome is characteristic for each cell type (SEprot, 2014), and (II) unlike the stability 

presented by the genes, the proteins in an organism (together with their structure, function 

and localization) are continuously fluctuating from time to time and cell to cell in 

response to different factors, such as organism’s developmental stage, as well as to 

internal or external signaling events (Nature). The wide dynamic range of the proteome 

lead to a single individual presenting infinite different proteomes through his entire life.  

 
Due to the complexity of the proteome, challenges in proteomics include not only 

the identification of all the proteins expressed under health or disease conditions, but also 

the characterization of protein modifications, interactions and structure (Hixson et al., 

2017). With the creation of the Human Proteome Project (HPP), the quantity and 

complexity of the data derived from the sequencing and mapping of the human proteome 

has been estimated to be at least three times greater than that involved in the Human 

Genome Project (HUPO, 2010), which entails that the acquisition, analyses and 

interpretation of the complete set of data requires well-integrated, high-throughput 

technologies. 
 

3.2. Applications of proteomics 

Advanced proteomics has been a revolution for the systematic analysis of proteins, 

going from the analysis of a single protein to proteomes, from static to dynamic measures 

and from the population level to single cells (Breker et al., 2014). According to the main 

challenges of the proteomic field, there are three main areas of study (Lau et al., 2003): 

Descriptive or structural proteomic (identification and characterization of all the proteins 

in a biological condition), differential or comparative proteomic (identification of the 

alterations in protein expression related with a determined biological condition), and 

functional proteomic (study of subcellular localization and distribution of proteins, as 

well as their interactions).  

 
In the biomarkers field, proteomics is particularly important for early diagnosis, 

prognosis, and to monitor the disease development (Aslam et al., 2017). Most diseases 

are manifested at the level of protein activity, since proteins are the essential building 
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blocks of life (Thul et al., 2018) and the only ones able to reflect the physiological state 

of cells (Hsu et al., 2009). Among the different types of proteomics, comparative 

proteomics have a particular interest in biomedicine here since it makes possible to 

identify and quantify potential protein biomarkers whose abundances will determine the 

disease onset or progression. 
 

3.3. Proteomic strategies for biomarker detection 

In proteomics, biochemical markers include one or more (panels) proteins or 

peptides. As described above, generation of new biomarkers involves a long and 

challenging number of steps from discovery to clinical application, and the approaches 

used in each phase should be carefully selected. 

 
As protein expression by itself is extraordinarily complex (considering post-

translational modifications, isoforms and truncations), acquisition of a high number of 

false data that are technology-dependent is one of the major challenges in the generation 

process of protein biomarkers. To prevent this, candidate biomarker discovery typically 

encompasses a set of different high-throughput technologies that allow the analysis of 

hundreds, or even thousands, of proteins and peptides in the same assay in a small number 

of samples (Kraus, 2018). These can involve different fraction steps, as well as top-down 

and bottom-up proteomics strategies, depletion of high abundance proteins, enrichments 

of low abundance proteins, mass spectrometry technologies and data analysis (Boschetti 

et al., 2018). Nowadays, the most important analytical approaches for proteomic studies 

are liquid chromatography coupled to mass spectrometry (LC-MS/MS)-based techniques 

and affinity arrays. If data converge, the chances of having a potential panel of biomarker 

candidates become solid, and the study continues on larger cohorts and controls.  

 
For the analysis of the few potential biomarkers reaching the validation phase, 

western blotting and Enzyme-Linked ImmunoSorbent Assay (ELISA) continues being 

the gold standard in the vast majority of the laboratories. However, advances in 

proteomics have created a demand for miniaturized and multiplexed assays displaying 

higher or at least the same sensitivity, selectivity and specificity. In this sense, diverse 

mass spectrometry approaches such as Multiple Reaction Monitoring (MRM) (Gillet et 

al., 2012), or multiplexed protein arrays (Gonzalez-Gonzalez et al., 2012) are becoming 

the techniques of choice in the validation of biomarker candidates of a disease process.  
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4. AFFINITY ARRAYS FOR PROTEIN DETECTION 

4.1. Definition and history  

Historically, the beginnings of affinity arrays for protein detection lie in the 

development of immunoassays. Shortly, protein arrays can be defined as a miniaturized 

immunoassay that allows high-throughput studies for the analysis of hundreds to 

thousands of different proteins presented in small volumes of complex mixtures on a 

single experiment.  

 
After antibodies were used from 1929 in the serological field to precipitate antigens 

for subsequent quantification, the analytical immunoassay technology has greatly 

advanced (MacBeath, 2002). The first immunoassay was born in 1959 from the hands of 

Rosalyn Sussman Yalow and Solomon Aaron Berson (Yalow et al., 1959), who described 

the concept of competitive radioactive isotope-labelled antigen detection method, namely 

radioimmunoassay (RIA), for the detection of insulin in plasma. Despite its great 

reception by the scientific community, the concerns regarding to the use of radioactive 

substances led to search for non-radioactive alternatives. Even with the initial scepticism, 

Eva Engvall and Peter Perlmann (Engvall et al., 1971) developed in 1971 the ELISA 

immunoassay, demonstrating the feasibility of quantitative measurements of 

immunoglobulins (Igs) of class G in sera using alkaline phosphatase as the reporter 

molecule. Then, after the introduction of the hybridoma technology for production of 

monoclonal antibodies, Uotila and collaborators (Uotila et al., 1981) proposed for the first 

time the “sandwich ELISA” concept, referred to the use of two monoclonal antibodies 

with different specificities, one as a capture antibody and another enzyme-labelled one as 

detection antibody.  

 
The conceptual foundation for producing immunoassays in a “microspot” fashion 

was first introduced by George Feinberg in 1961 (Feinberg, 1961). But it was not until 

two decades later when the basic principles of this “microspot-based immunoassays” was 

moved forward by Roger Eikins through the introduction of the mass action law in his 

“Ambient Analyte Theory” (Ekins, 1989). Low amounts of certain capture molecules 

immobilized as microspots on a solid surface can capture a small proportion of analyte, 

and this fraction would reflect its concentration regardless both the capture molecule 

concentration and the sample volume. Therefore, this technology would result in 

maximum fractional occupancy of the capture molecule (Ekins et al., 1992), leading to a 
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miniaturized assay format that allows the possibility for measuring hundreds or thousands 

of analytes in parallel, namely multi-analyte or multiplex analysis (Ekins et al., 1994). 

Indeed, in the latter part of the 1990s the project began to materialize with the introduction 

of DNA (Deoxyribonucleic Acid) microarrays (Diez et al., 2012). 

 
In the beginning of 2000s, protein arrays evolved from this microspots-based multi-

analyte immunoassay as the proteomic alternative to the DNA microarrays (Haab et al., 

2001; MacBeath et al., 2000). Right now, they are considered as an innovative, versatile 

and high-throughput strategy, which entails simultaneously and massively the analysis of 

hundreds to thousands of proteins of different nature –from purified proteins, such as 

enzymes, peptides, antigens or antibodies, to complex protein mixtures, as e.g. cell lysates 

and biological fluids– in a small volume of sample. However, several molecular 

properties of proteins make printing and building protein microarrays more challenging 

than DNA microarrays (LaBaer et al., 2005). First, there is no similar amplification 

process like polymerase chain reaction (PCR), capable of simply and rapidly amplifying 

and generating a large quantities of protein. Second, proteins are notoriously more 

unstable than DNA, which decreases the half-life of protein microarrays, making their 

storage and long-term use more difficult. Third, unlike the simple hybridization 

techniques of nucleic acids, proteins have demonstrate a wide variety of chemistries, 

affinities and specificities, which greatly complicates the studies of reactivity, 

functionality and interaction. Lastly, the production, expression and purification systems 

of recombinant proteins are difficult to automate and are unpredictable in terms of 

performance, not guaranteeing the functional integrity of the protein.  

 
Due to the need to maintain protein integrity, accessibility to their binding sites, and 

activity on the surface of the array for its correct functioning, immobilization processes 

also represent a great challenge in the field. Currently there are two different approaches 

that are usually employed for capturing protein to the array surface (Ramachandran et al., 

2004): random or uniform. For a random immobilization of proteins, aldehyde, epoxy, or 

amine groups, among others, are used. Proteins interact through their amine or carboxyl 

groups allowing a number of different orientations. On the other hand, proteins can be 

tagged at the amino- or carboxyl- termini and immobilized to the array by an anti-tag 

reagent to assure a uniform orientation of all the proteins. In contrast with the uniform 

approach, the random approach ensures that many faces of the protein are exposed for 
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potential interactions, but it tends to hold proteins close to the array surface. The uniform 

immobilization not only holds away proteins from the surface, but also tagging provide 

an added level of selectivity for the binding of the protein of interest. 

 
Proteins arrays take advantages over the conventional techniques for protein analysis, 

such as ELISA, western blot or mass spectrometry, because of their ability to detect low 

abundance proteins in complex milieus without requiring any sample fractioning and 

without losing test sensitivity and specificity. Furthermore, they allow to multiplex 

protein detection, which entails the reduction in the time of the analysis and reduces the 

cost associated to the small reagent and sample volume consumption.  

 

4.2. Applications 

In a review from 2012, Zhu and Qian referred to protein arrays as a powerful 

technology platform that will become one of the leading technologies in proteomics and 

diagnostic fields in the next decades (Zhu et al., 2012).  

 
To date, the number of applications for protein arrays has dramatically increased for 

basic research (to elucidate the network of protein interactions or identify substrates for 

enzymes), clinical research (to search for biomarkers which might facilitate the diagnosis, 

treatment monitoring, etc. of a certain disease) and pharmacological research (to identify 

different proteins or peptides as drug targets) (SEprot, 2014). Thus, this technology is 

perfectly suitable to fill in the gap between biomarker discovery to diagnosis, due to the 

fact that disease signature can be identified, validated, and finally used for routine 

diagnostics on the same platform (Cretich et al., 2014). 

 

4.3. Formats  

In a protein array, the proteins are immobilized on solid surfaces in a planar or bead-

based format. The use of one format or another will depend on the requirements of the 

study. In this thesis, both planar and bead-based formats have been employed.  

 

4.3.1. Planar array 

Planar arrays are generated by immobilization of large amounts of proteins in 

microspots on a planar solid surface, generally at a special density of at least 2,000 

proteins/square centimetres (cm2) (Wingren et al., 2007). Only 50-500 pl (picolitres) of 
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protein volume are usually spotted, resulting in a spot size of 100-300 µm (micrometres) 

depending of the solid surface properties and sample viscosity (Espina et al., 2003).  

 
Proteins can be immobilized on the solid support by two different printing strategies: 

contact printing and non-contact or inkjet printing (Fuentes et al., 2016). Other printing 

such as µ-contact printing (µCP) and nanobiolithography also exist, but they are of minor 

commercial importance (Sauer, 2017). Contact spotters use pins that catch the sample by 

capillarity, which will be subsequently deposited by physical contact with the surface of 

the solid support (MacBeath et al., 2000; Zhu et al., 2000). This strategy is a relatively 

simple and flexible system with regards to both substrate type and hydrophobicity, and 

probe composition and viscosity. On the other hand, non-contact printing devices form 

droplets onto the support through jetting systems, such as piezoelectric micropumps 

(which are the most widely used), a continuous stream controlled by valves or thermal 

inkjet technology (McWilliam et al., 2011). This is a more complex strategy, but offers a 

higher printing speed and the droplets formation is consistent and reproducible between 

array batches (Sauer, 2017). However, unlike contact printing strategy, the non-contact 

devices are limited by the sample viscosity range.  

 
Besides the printing devices, selection of the solid surface and the surface 

immobilization strategy are the most important parameters to consider for building planar 

arrays. There are many different solid support options available (Banuls et al., 2016; 

Kusnezow et al., 2003), such as inorganic materials (silicon and its derivates), oxide of 

elements (tantalum, indium, and aluminium), metals (gold or silver), carbon and its 

composite, synthetic polymers and plastics (polycarbonate, polymethylmethacrylate, 

nylon or polystyrene), or more sophisticated substances such as nanocrystals. The nature 

of the solid support may determine probe immobilization strategy, bioreceptor properties 

and detection mode. Regarding to the surface immobilization strategy, it can be 

categorized as non-covalent or covalent attachment (Jonkheijm et al., 2008). In the non-

covalent strategy, proteins are immobilized onto surfaces by absorption through ionic 

bonds, electrostatic interaction, hydrophobic and polar interactions. Here, the resulting 

absorbed protein layer is likely to be random orientated, causing a partial or complete lost 

in the immobilized protein properties. The second strategy is based on the use of 

functional groups to covalent couple proteins to the surface by a range of different 

reactions. As no single solid surface or chemistry meets the assay needs for all microarray 
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users, a considerable amount of time needs to be spent to find the right surface chemistry 

and optimize the assay protocols according to each individual purpose (Romanov et al., 

2014). Here, several aspects need to be considered, such as the optimal buffer 

composition to block the array surface –e.g. bovine serum albumin (BSA) or milk 

powder– prior to application of proteins in order to minimize non-specific unions, the 

buffer composition in which the sample will be resuspended prior to be printed to ensured 

protein stability, or humidity conditions during the printing process to avoid, as much as 

possible, sample evaporation (Kusnezow et al., 2003).  

 
To date, the signal generation on planar affinity arrays includes label-based methods, 

such as fluorescence, chemiluminescence, quantum dots, gold nanoparticles, or surface 

enhanced Raman scattering, and label-free methods, such as carbon nanotubes, 

nanowires, and microcantilevers (Chandra et al., 2011; Gonzalez-Gonzalez et al., 2012). 

Both strategies have their advantages and disadvantages (Ray et al., 2010). Labelling 

strategies are laborious and lengthy processes which often alter surface characteristics 

and natural activities of the query protein. However, they are usually the strategy of 

choice due to simple instrument requirements. Among these label-based methods, 

fluorescence is the most used, not only because the signal offers high sensitivity and wide 

dynamic range, but also due to the fact that the laser scanners developed for DNA 

microarrays compatible with fluorescent dyes, such as cyanine (Cy3 and Cy5), Alexa 

Fluor or the R-phycoerythrin (R-PE) complex, were directly implemented into the protein 

array field at its birth.  

 
In the beginning of 2000’s, MacBeath and Schreider (MacBeath et al., 2000) 

demonstrated that planar microarrays were useful for both the screening for protein-

protein interactions, and the identification of the substrates for protein kinases and protein 

targets of small molecules.  To date, planar arrays have been widely used in different 

fields, from basic research to industrial applications. However, there are still some 

obstacles which need to be overcome to implement this technology in daily clinical 

practice, such as low reproducibility and sensitivity, long periods of time to obtain the 

results, heavy and big instruments with low capacity to system integration and high 

production costs (Sauer, 2017). In addition, planar array platforms theatrically allows to 

spot a large number of proteins within one slide for a highly multiplex analysis, but this 

advantage lead at the same time to a low sample throughput capacity. Because all of this, 
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planar arrays are considered perfect tools for the discovery and identification of a large 

number of potential biomarker candidates, and they have been widely used for whole 

proteomes detection (Phizicky et al., 2003; Zhu et al., 2001; Zhu et al., 2000). Results 

should be then validated on other technological platforms offering higher sample 

throughput capacity, such as the bead-based arrays that will be discussed next. 

 

4.3.2. Bead-based array 

The basic principle of bead-based arrays, sometimes defined as “suspension” or 

“liquid” array, relies on immobilization of capture reagents on individual and 

distinguishable microsphere sets as solid support, which are subsequently separated and 

identify by means of a flow cytometry read-out system.  

 
The concept of utilizing microspheres as a solid support was described 42 years ago 

by Horan and Wheeless (Horan et al., 1977), in order to immobilize antigens allowing the 

identification of antigen-specific antibodies in serum. A decade later, the first attempt of 

multiplexing bead-based arrays was carried out by McHugh and collaborators (McHugh 

et al., 1988) by immobilizing diverse antigens from Herpes simplex and cytomegalovirus 

on microsphere sets with different diameters. Towards the end of 1990´s, a group of 

interdisciplinary scientist created Luminex Corporation with the idea to generate a high-

throughput bioassay platform, enabling rapid, cost effective and simultaneous analysis of 

multiple analytes within a single biological sample. It was the beginning of the multiplex 

microsphere array technology under the name of xMAPÒ (MAP = Multi-Analyte 

Profiling) technology (Kettman et al., 1998). 

 
Today, xMAPÒ technology is the most prominent stablished bead-based 

multiplexing platform to develop protein arrays (Hsu et al., 2009). This technology is 

built on the use of microsphere sets that are internally dyed with different fluorochromes. 

Although these dyes contain similar excitation properties, they have a unique emission 

profile, which provides a unique spectral signature for each individual microsphere set 

and allows each set to be distinguishable from all others in a multiplex analysis (Graham 

et al., 2019). In this sense, different microsphere sets can be linked to a certain protein 

and be combined within a single array to measure multiple analytes simultaneously (Lin 

et al., 2015). At the beginning, the combination of two different fluorophores lead to the 

production of a 100-member array of spectrally distinct microspheres. Nowadays, the 
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addition of a third internal dye has allowed to analyze up to 500 analytes in the same 

sample (FLEXMAP 3D (3-Dimensions) by Luminex) (Jun et al., 2012). 

 
Nowadays there are several types of xMAP microspheres available, and their 

selection depends on the type of instrumentation used for detection and the particular 

analyte of interest (Reslova et al., 2017). The basic microspheres (MicroplexÒ 

microspheres) are 5.6 µm polystyrene beads whose surface is coated with carboxyl 

groups, which after being activated allow for covalent immobilization of capture 

molecules via their primary amine groups. Currently, the most widely used xMAP 

microspheres are the MagPlaxÒ microspheres. These microspheres differ with the 

previous ones in size (6.5 µm diameter) and structure, through the addition of a magnetic 

layer, but they are functionalized by the same carboxyl groups covering the surface. These 

later microspheres allow for an automated plate washing or magnetic bead transfer, which 

are very important aspects contributing for both recovery and assay reproducibility.  

 
The signal generation in the flow cytometer-like analyzers is in general performed 

by two lasers (Reslova et al., 2017): a 635 nm (nanometre) laser beam (red classification 

laser/light-emitting diodes (LED)), which excites the internal fluorescent dyes in each 

microspheres allowing for the identification of the spectral address; and a 532 nm laser 

beam (green classification laser/LED), which excites the fluorescent reporter (typically 

R-PE) bound to the captured analyte (direct assay) or the detection reagent (usually a 

secondary antibody, in case of sandwich bead-based assays). This enables for read-out in 

terms of median fluorescence intensity (MFI) across each distinct microsphere sets. The 

detection can be performed in different instruments, which differ by their mechanism of 

fluorescence capture and by the maximum number of analytes and samples that can be 

analyzed (Graham et al., 2019; Reslova et al., 2017).  

 
FlowMetrix was the first Luminex platform consisting in 64 bead sets that were 

detected on a conventional flow cytometer. Nowadays, the most basic detection reader, 

namely MAGPIX, utilizes a flow cell and CCD (charge-coupled device)-basic optics only 

compatible with magnetic microspheres (Figure 8). The principle of microsphere analysis 

is based on their magnetic immobilization into an imaging chamber where they are hold 

for optical analysis. The MAGPIX instrument has a low cost and a compact size, 

providing up to a 50-plex solution in 96-well-plates. On the other hand, the Luminex 
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100/200 and FLEXMAP 3D are advanced detection instruments based on flow cytometer 

principles. Here, microspheres are focused into a rapidly flowing fluid stream, passing 

through an imaging cuvette where each microsphere is individually interrogated. 

Luminex 100/200 reader operates on 96-well-plate and a maximum of 100 microsphere 

regions. The capacity of the 3D platform is further increased by the possibility of 

analyzing up to 500 microspheres on 384-well plates. 
 

 

 

Although planar arrays allow a greater degree of multiplexing –hundreds to 

thousands of analytes per cm2– than that offered by the bead-based platform, their 

facilities requires scanners, image analysis software and sophisticated printing devices 

that need for experienced users. A facility based on bead-based arrays are established in 

less time-frame due to the more user-friendly nature of this array technology. Thus, bead-

based arrays have prevailed over the flat surface arrays because of their ease of 

preparation and use, including no requirement for laborious image analysis and direct 

collection of data, greater sample throughput, and more flexible and customizable array 

content.  
 
In order to evaluate the reliability and sensitivity of this strategy, several studies have 

compared in the last years the bead-based technology with the gold standard assay for 

biomarker validation, the ELISA technique. In general, these studies reported very high 

correlations and similar or even better detection sensitivities for bead-based multiplex 

measurements of cytokines (de Jager et al., 2003; dupont et al., 2005; Elshal et al., 2006) 

or AAbs (Martins et al., 2004; Martins et al., 2008). Bead-based immunoassays offer less 

Figure 8. Principle of analysis by the MAGPIX instrument. Image from Reslova et al. 
(2017) (Reslova et al., 2017). 
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sample processing time and multiplex capacity than the ELISA technique, leading to less 

consumption of sample, without compromising analytical sensitivity and accuracy. 

 

4.4. Classification 

Protein microarrays may be classified in three main categories (Figure 9): analytical 

arrays, reverse-phase arrays (RPA), and functional arrays. 

 

 

 

4.4.1. Analytical arrays 

Analytical arrays, also called capture, antigen or protein-detecting microarrays, use 

agents of different nature and affinity properties (e.g.: recombinant protein, aptamers or 

antibodies), which are immobilized on the solid support of the array (planar or bead-based 

array) and used as a capture reagent of a certain target protein present in a complex 

mixture. The captured proteins are subsequently detected and quantified in a relative or 

absolute fashion. Such approach is typically used for the study of protein expression 

levels and for measuring parameters such as binding affinity and specificity 

(Büyükköroğlu et al., 2018; Chandra et al., 2011; Diez et al., 2012), to monitor differential 

expression profiles, such as protein patterns in response to environmental stress or 

differences among a healthy tissue respect to a pathological sample, and in clinical 

Figure 9. General categories of protein arrays according to their applicability. Adapted 
from Romanov et al. (2014) (Romanov et al., 2014). 
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applications (Hall et al., 2007) (e.g.: biomarker discovery and profiling antibody 

repertories in autoimmunity, cancer, infection or following vaccination).  

 
Antibody-coated analytical arrays represent one of the very early protein array 

systems, and they are still being one the most used analytical arrays. Their more attractive 

feature is their capacity of profiling proteins without fractioning biological samples, 

which allows the detection of a wide concentration range of analytes in a high-throughput 

and multiplex fashion. The inconveniences of antibody arrays include the possibility of 

cross-reactivity and the loss of protein activity upon immobilization (Gonzalez-Gonzalez 

et al., 2012). Antibodies against a specific region may recognized a wrong protein sharing 

a similar amino acidic sequence or union domain with the target protein, triggering false 

positive signals and leading to unreliable results and erroneous conclusions. Thus, 

accuracy and reliability of this type of arrays depends on the affinity and specificity of 

the selected antibodies.   

 

4.4.1.1. Antibodies: definition and classification 

Antibodies, also known as Immunoglobulins (Igs), are roughly Y-shape proteins 

produced by the B cells of the immune system in response to and counteracting a specific 

foreign agent, name as antigen. They are large glycoproteins (approximately 1,300 amino 

acids) consisting of two identical light and two identical heavy polypeptide chains (Figure 

10) linked by inter- and intra-chain disulphide bonds.  
 

Figure 10. Antibody structure of type IgG, consisting in two identical light and heavy 
chains. 
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Both chains, light and heavy, are composed of constant and variable regions 

(Janeway et al., 2001). The variable region of the heavy and light chains contain three 

regions with extremely variable amino acid sequences, called complementary-

determining regions (CDRs), limited to approximately the first 100 amino acids. 

Together, the variable region of both chains constitute the binding surface of the antigen, 

so-called paratope, which confers the ability to recognize and bind a specific fragment of 

the antigen (epitope) and determines the specificity of the antibody. These epitopes can 

be divided in two classes: lineal epitopes (LE), which recognize a consecutive amino 

acidic sequence, and conformational epitopes (CE), which recognize amino acid residues 

that are separated in sequence, but are spatially near each other in the tertiary structure of 

the protein (Figure 11). The remaining proportions of the light and heavy chains are called 

the constant region, and make up the C region of the antibody.  
 

 

 

The antibody molecule can also readily be cleaved into two functionally distinct 

fragments: the Fab fragment (Fab= Fragment Antigen Binding), which contains the 

antigen-binding activity, and the Fc fragment (Fc = fragment crystallizable), involved in 

many effector functions, such as binding to proteins of the complement systems or cell 

surface receptors. 

 
There are two types of light chains, k and l, and five types of heavy chains, denoted 

a, d, e, µ and g. Whereas there are yet not known functional differences between k and 

l-containing antibodies, the five types of heavy chains determine five different classes of 

immunoglobulins, named as IgA, IgD, IgE, IgM and IgG classes, respectively, which are 

Figure 11. Epitope’s types: A. Lineal epitope; B. Conformational epitope. The type of 
epitope determines whether the protein required (LE) or not (CE) previous 
denaturalization. 
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closely related but have different structural and functional characteristics. The main 

functions of the different antibody classes can be briefly summarized as follows: IgA 

provides localized protection against pathogens in several mucosal surfaces, such as the 

gut, and the urogenital and respiratory tract; IgD functions as an antigen receptor on B-

cells membrane that have not been exposed to antigens yet; IgE is bound to basophiles 

and mast cells or in low concentration in blood serum and is associated with 

hypersensitivity and allergic reactions in addition to anti-parasitic activity; IgM is the first 

immunoglobulin expressed during a primary immune response against an antigen and 

constitutes 5-10% of the total serum immunoglobulins; and lastly, IgG has the longest 

half-live in serum (approximately 23 days) and is the predominant antibody in serum 

during the secondary immune response (80% of the total serum immunoglobulin), namely 

upon subsequent encounter with the antigen. IgG, as well as IgM, can lead to opsonization 

of the antigen for destruction and can activate the complement system. 
 

4.4.1.2. Antibody array formats 

As shown in the Figure 12, there are two main strategies (Yuan et al., 2017) for 

antibody microarrays depending on the number of antibodies employed and the labelling 

and hybridization processes of the samples to be analyzed: 

 
Single-antibody method. – Proteins are captured by an antibody coupled to the solid 

surface, and its signal is detected by direct or indirect labelling of the sample with 

different reporter molecules. For direct labelling, proteins are typically labelled with Cy3 

or Cy5. The use of intermediate molecules, such as biotin or digoxigenin, indirectly labels 

proteins within a biological sample, which will be subsequently detected by fluorescent 

compounds with high affinity for the intermediate reagent. This later strategy lead to the 

amplification of the target protein’s signal. The single-antibody method allows for 

competitive assays where proteins of two distinct labelled samples are simultaneously 

incubated and compete to join the antibody. However, it does not allow for absolute 

quantification of the proteins, and the low label stability might limit signal detection as 

well as test specificity.  

 
Sandwich-based method. – A pair of antibodies with different specificity against the 

target protein are used. One of the antibodies is immobilized on the surface of the solid 

surface to capture the protein from the test sample. Then, the captured protein will be 
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detected by a labelled secondary antibody, which after recognizing the protein 

immobilized by the capture antibody will give rise to a fluorescent or chemiluminescent 

signal, among others, leading to the assessment of the target protein abundance in the 

sample. The use of two antibodies recognizing different epitopes on the same protein 

increases test specificity in comparison to direct assays. This increase is also reflected in 

an increment of the test sensibility by a reduction of the sing-to-noise ratio (Haab, 2005). 

Moreover, this methodology admit absolute quantification analysis of a certain protein in 

a sample through the construction of standard calibration curves by serial dilutions of the 

purified recombinant protein. Challenges developing this strategy include the availability 

of a functional pair of antibodies and the number of proteins that can be measured within 

the same assay (Haab, 2005). 
 

 

 

4.4.2. Reverse-phase arrays  

In case of RPA, cellular and tissue lysates or even serum samples are immobilized, 

usually onto a nitrocellulose slide, for further detection through an antibody against the 

target protein. In most of the cases, a fluorochrome-conjugated secondary antibody is 

used to reveal the antigen-antibody interaction, achieving a higher fluorescence signal 

Figure 12. Antibody array formats in planar arrays (above) and suspension-based arrays 
(below). 
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(Ehrlich et al., 2008) and ensuring the signal intensity is directly related with the steric 

accessibility, the specificity and the binding affinity of the antibody to the target protein 

(Büyükköroğlu et al., 2018; Diez et al., 2012; Gonzalez-Gonzalez et al., 2012). 

 
RPA were firstly described by Paweletz in 2001 (Paweletz et al., 2001) and today it 

has become an useful platform in several research fields (Gagaoua et al., 2018; Kuang et 

al., 2018; Li J. et al., 2017; Macleod et al., 2017; O'Farrell et al., 2019; Zhang et al., 2018). 

 

4.4.3. Functional arrays 

Functional protein arrays are composed by arrays containing full-length functional 

proteins, peptides or protein domains printed onto the array surface in their active state 

after synthesis and purification using cell-based methods or cell-free expression system 

(Casado-Vela et al., 2013). Using cell-based strategies, proteins are expressed in vivo by 

cloning the Open Reading Frames (ORFs) –coding region of the protein– in diverse 

cellular systems, such as bacteria, yeast, plant or mammalian cells (Festa et al., 2013). 

The expressed proteins are then purified and printed on the surface of the array. The first 

library, containing almost 6,000 yeast proteins, was developed by Zhu and collaborators 

in 2001 (Zhu et al., 2001). Nowadays there are several companies that distribute arrays 

of human recombinant proteins in flat format, such as ProtoArrayTM Human Protein 

Microarray, which contains over 9,000 unique human proteins GST (Glutathione S-

transferase)-tagged in its latest version (v5.1), or HuProtTM Human Proteome Microarray 

v4.0, which contains the world’s largest number of unique human proteins encoded by 

17,374 genes, covering approximately 87% of the proteome.  

 
However, despite all these initiatives and commercial platforms, cell-based protocols 

for protein production, purification, spotting and storage can be laborious, costly, time-

consuming, and do not guarantee either the protein integrity on the array, or batch-to-

batch reproducibility. To overcome the drawbacks associated to protein arrays generated 

by cell-based methodologies, an alternative system to express proteins in situ –at the time 

of the assay– was developed (Chandra et al., 2011). Here, proteins are synthesized from 

their corresponding messenger RNA (mRNA) or complementary DNA (cDNA) 

templates directly on the surface of the array using in vitro cell-free expression systems. 

Such systems provide the transcriptional and translational machinery necessary for 

protein synthesis in a cell-independent manner, consisting of RNA polymerases, 



INTRODUCTION 

84 
 

ribosomes, transfer RNA (tRNA) and amino acids, enzymatic cofactors, an energy 

source, and cellular components essential for proper protein folding (Diez et al., 2015). 

In this sense, different cellular systems have been successfully used to express the 

proteins of interest, such as Escherichia coli, wheat germ, rabbit reticulocytes lysates or 

human ribosomes from a HeLa cell line (Festa et al., 2013).  

 
Until recently, rabbit reticulocyte lysates were the most used extracts for protein 

expression, in spite of being the systems with the lowest yield of recombinant protein 

(Spirin, 2004) and having a significant problem with batch-to-batch variation. This was 

mainly due to the fact that not only the protein production with this system is very fast 

and allows to create post-translational modifications in the expressed proteins, but also 

the rabbit reticulocyte lysate contains chaperones allowing to express the proteins in their 

three-dimensional conformation (Casado-Vela et al., 2013). Today, however, proteins are 

typically expressed by human ribosomes and in presence of human chaperones from a 

HeLa cell line because of its higher efficiency for protein expression and protein levels 

(more than 10 times higher that rabbit reticulocytes lysate), and a more robust lot-to-lot 

reproducibility (Festa et al., 2013). 

 
Functional protein arrays provide a flexible platform that allows the development 

and detection of native proteins, peptides and protein domains, and to study their 

biochemical characteristics and functions. To date, they have been widely use to examine 

numerous protein-ligands interactions, including protein-protein, protein-peptide, 

protein-DNA, protein-RNA, protein-phospholipids, and protein-small molecule 

interaction, and to identify substrates of various classes of enzymes and post-translational 

modifications (Zhu et al., 2012). In the clinical research field, functional arrays have been 

applied for biomarker identification and the analysis of pathogen-host interactions. 

 
Many different functional protein arrays have been developed in the last years, such 

as Protein In Situ Array (PISA), DNA Array to Protein Array (DAPA), Puromycin 

Capture Protein Array (PuCa) and Nucleic Acid Programmable Protein Array (NAPPA). 

Although all of these share their ability to express in situ proteins directly on the surface 

of the array, the processes undergoing in each type of array are different. The processes 

involved in the NAPPA technology are described next, as it has been the technique of 

choice in the second study of this thesis project.  
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4.4.3.1. NAPPA 

NAPPA was designed and developed in 2004 by Ramachandran and collaborators 

(Ramachandran et al., 2004) and has become today one of the most relevant protein arrays 

in the field (Diez et al., 2012). This technology is based on immobilizing full-length 

cDNA –not purified proteins– encoding the proteins of interest with a tag, typically GST, 

in the C termini. 

 
In NAPPA, cDNA templates are shuttled into expression vectors, typically using the 

Gateway recombinant cloning system that adds a transcriptional promoter, a polypeptide 

capture tag and an ampicillin resistance vector, and is hosted in bacteria cultures (Diez et 

al., 2015). The transformed bacteria are grown on a large-scale and selected on the basis 

of their resistance to ampicillin. Cloning DNA in a specialized expression vector requires 

a greater time investment than PCR, but presents several advantages: (I) once the clone 

is generated and storage correctly, it becomes an exhaustible source of plasmid, which 

can be shared with other laboratories, (II) the clone sequence is stable and valid for long 

periods of time since it is verified, and (III) the consecutive expression of the polypeptide 

tag in the vector makes the epitope stable and functional at the time of the expression 

(Ramachandran et al., 2008). 

 
After lysing the bacteria, the plasmid DNA is purified and printed onto the activated 

ester surface of the array together with a homo-bifunctional crosslinker (typically 

bis(sulfosuccinimidyl)suberate (BS3)), BSA, and the anti-tag antibody. The use of BSA 

dramatically improves DNA binding efficiency and reduces the unspecific interactions 

(Ramachandran et al., 2008), while the homo-bifunctional crosslinker helps to the correct 

orientation of the capture antibody on the array. To express the target proteins, a cell-free 

coupled in vitro transcription and translation (IVTT) system is added to the array, and the 

nascent protein is immobilized in situ through the C termini by the anti-tag antibody 

printed simultaneously with the expression plasmid, thus assuring the complete 

translation of the protein. This approach produces an average of about 10 fmols 

(femtomoles) of protein (LaBaer et al., 2005). The endpoint detection method is based on 

the use of chemiluminescent molecules or, most frequently, fluorescent dyes (Figure 13). 

 
Advantages of NAPPA platform over the conventional methods include: printing of 

cDNA instead of proteins, which is more reliable and cheap, avoid the need of expression, 

purification and storage of proteins, as well as the low half-live of the array since DNA 
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is a more stable molecule, and guarantees protein integrity by using a mammalian cell-

free expression systems and chaperones for its synthesis and folding. 

 

 

 

In 2008, Ramachandran and colleagues updated a new version of NAPPA 

(Ramachandran et al., 2008) with 1,000 human genes, and demonstrated that over 96% 

of these genes showed a detectable protein signal regardless of protein type –from soluble 

to membrane proteins–. They also demonstrated that this platform is unbiased in relation 

to protein size, expressing 98% and 88% of proteins below 50 kilodaltons (KDa) and 

above 100kDa respectively. To date, more than 16,000 proteins can be displayed on a 

single slide with reduced inter-feature spacing by ultra-high density NAPPA, avoiding 

the diffusion of expressed proteins to neighbouring spots (Manzano-Roman et al., 2019). 

 
The NAPPA technology shows an enormous potential in multi-dimensional analysis 

towards basic and translational research. Up to 2018, almost 1800 papers have been 

published based on this technology (Manzano-Roman et al., 2019). They describe 

protein-protein interactions, vaccine development and the evaluation of the autoimmune 

response (Diez et al., 2015) to search for autoantibodies as a new source of biomarkers in 

several diseases such as cancer (Katchman et al., 2017), Crohn’s disease (Wang H. et al., 

2017), type I diabetes (Bian et al., 2017), ankylosing spondylitis (Wright et al., 2012), 

juvenile arthritis (Gibson et al., 2012), and OA (Henjes et al., 2014). 

Figure 13. Diagram of NAPPA. Purified template DNAs encoding the proteins of interest 
with a tag molecule (GST) are printed on the surface of the array together with an 
antibody that recognizes the specific tag. When the cell extract is added, the transcription 
and translation are initiated and the expressed protein is captured by the anti-tag antibody. 
Adapted from Diez et al. (2015) (Diez et al., 2015). 
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Based on this background, the research was focused on two main objectives, which 

resulted in four specific objectives.  
 

Main objectives: 

A. To validate a panel of proteins previously associated with OA as prognostic 

markers to predict incident radiographic knee OA. 

B. To discover an OA-associated AAbs profile that may be useful as potential 

prognostic biomarkers of disease incidence.  

 

Specific Objectives: 

1. To develop and optimize a custom multiplex sandwich immunoassay with the 

bead-based xMAP technology to validate and qualify a panel of six potential 

biomarkers in serum as prognostic biomarkers of incident radiographic knee OA.  

2. To discover a profile of AAbs in serum associated with the incidence of 

radiographic knee OA. 

3. To assess whether the inclusion of potential protein biomarkers in a clinical 

prognostic model improves the predictive capacity of incident radiographic knee 

OA.  

4. To investigate whether the baseline serum levels of the selected biomarkers have 

any impact in the time of appearance of radiographic knee OA. 
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1. BIOLOGICAL SAMPLES 

All sera analyzed in this thesis were proportioned by the OAI and belong to 

Caucasian participants from the OAI cohort at the baseline visit. In the case of the 

validation of a panel of 6 proteins as potential prognostic biomarkers, sera were randomly 

selected from the incident and progression subcohorts, and the non-exposed control 

group. For the discovery and validation of AAbs as potential prognostic biomarkers, sera 

were randomly selected from the incident subcohort and the non-exposed control group.  

 
Patients were not involved during the development of this research, as they were not 

invited to comment on the study designs and were not consulted to develop patient 

relevant outcomes or interpret the results.  
 

2. DEFINITION OF INCIDENT RADIOGRAPHIC KNEE OA 

The final purpose of this thesis was to validate potential biomarkers that may be used 

in the clinical routine to predict the incidence of radiographic knee OA. To achieve this 

purpose 2 main outcomes group, with one study knee per subject, named as target knee, 

were defined: the incident and the not-incident group. Participants included in both 

groups were selected on the basis of not having relevant radiographic knee OA (KL grade 

= 0–1) at the beginning of the OAI study (baseline visit) in the target knee. Incident 

radiographic knee OA was defined by KL grade ³ 2 at some point between 12 and 96 

months of follow-up. 
 

3. VALIDATION OF PROTEINS AS PROGNOSTIC BIOMARKERS.  

3.1. Study design 

With the aim of validating the putative ability of the serum concentrations at baseline 

of different proteins as potential biomarkers to predict the appearance of radiographic 

knee OA, six proteins were selected from a panel of 20 potential protein biomarkers 

included in the research project PI16/02124 “Determinación de índices predictivos de 

diagnóstico y pronóstico de artrosis de rodilla mediante la validación de biomarcadores 

protéicos” funded by the Fondo de Investigación Sanitaria-ISCIII. This panel was 

generated based on thorough mining of experimental evidence in the literature and 
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previous in-house efforts by proteomic discovery approaches. Proteins included in this 

study were the retinol binding protein 4 (RBP4), chitinase-3-like protein 1 (CHI3L1), 

alpha-2-HS-glycoprotein (AHSG), thrombospondin 1 (TPS1), serum amyloid P-

component (APCS) and COMP. 

 
The prognostic capacity to predict incident radiographic knee OA of these 6 proteins 

was blindly validated in 540 individual sera (331 not-incidents and 209 incidents) by 

sandwich immunoassays using the bead-based xMAPÒ technology, which were 

previously generated and optimized. The experimental workflow of the study is 

represented in the Figure 14.  

 

 

 

Figure 14. Experimental workflow for biomarker validation. After selection of the 
potential biomarkers, a capture monoclonal antibody, a detection biotin-labelled 
polyclonal antibody and a recombinant protein for each analyte were acquired. Assay 
conditions were optimized for each biomarker in singleplex assays and cross-reactivity 
of antibodies with the non-target analyte was assessed between those proteins requiring 
the same sample dilution, in order to generate multiplex sandwich immunoassays. Finally, 
the analytical characteristics of the tests were evaluated and the custom sandwich 
immunoassays were used to quantify the selected biomarkers in a large number of sera. 
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Finally, different clinical variables were combined alone or with the potential 

biomarkers analyzed in this study to define the best prognostic model of radiographic 

knee OA prediction by multivariate stepwise logistic regression analysis. The association 

between the total amounts of these proteins in sera with the relative risk to develop the 

disorder in time was assessed by survival analysis. 
 

3.2. Antibody pairs and recombinant proteins 

The list of all the antibodies and recombinant proteins used in this project is shown 

below (Table 4), all together with their corresponding catalog numbers as well as the 

name of the supplier companies.  

 

Table 4. List of antibodies and recombinant proteins. 

Reagent Catalog number Company 
Monoclonal antibody to human AHSG MAB11841 R&D Systems 
Monoclonal antibody to human TPS1 MAB3074 R&D Systems 
Biotin-linked polyclonal antibody to human 
AHSG BAF1184 R&D Systems 

Biotin-linked polyclonal antibody to human 
TPS1 BAF3074 R&D Systems 

Recombinant AHSG human protein RPA178Hu02 Cloud Clone 
Corp. 

Recombinant TPS1 human protein 3074-TH-050 R&D Systems 
Human COMP DuoSet ELISA DY3134 R&D Systems 
Human RBP4 DuoSet ELISA DY3378 R&D Systems 
Human APCS DuoSet ELISA DY1948-05 R&D Systems 
Human CHI3L1 DuoSet ELISA DY2599 R&D Systems 

 

3.3. Generation of individual antibody suspension bead arrays 

Each monoclonal antibody was coupled to an activated bead region to generate the 

corresponding suspension bead array (SBA) according to the following protocol: 

 
A. Activation of the beads. 

The development of each individual SBA with xMAPÒ microspheres requires the 

formation of covalent bonds between the primary amines on the monoclonal antibodies 

and the activated carboxyl groups on the surface of each microsphere. To activate the 

surface of the beads, the protocol was as follows:  



MATERIAL AND METHODS 

 96  
 

• Eight colour-code magnetic microspheres (MagPlexÒ, Luminex Corp.) 

regions were selected; 6 regions to be coupled with each monoclonal antibodies 

and 2 additional regions to act as negative quality control (QC) beads. 

• For each region, a total amount of 500.000 beads was placed on 1.5 mL 

(millilitre) Protein LoBind Tubes (Eppendorf, catalog number: 0030108116) 

and washed with 80 µL (microlitre) of phosphate buffer (100mM (millimolar) 

Monobasic Sodium Phosphate, pH 6.2) on a magnetic stand (Millipore 

LSKMAGS08).  

• Then, 50 µL of the phosphate buffer was added offmagnet to the beads.  

• The carboxyl groups on the bead surface were activated by addition of 0.5 

mg (milligrams) 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC, 

Sigma-Aldrich 3449-1G) and 0.5 mg N-Hydroxysuccinimide (Sulfo-NHS, 

Life technologies 24510) in a final concentration of 10 mg/mL in 50 µL of the 

phosphate buffer, followed by 20 minutes (min) incubation at room 

temperature (RT) in the dark under permanent shaking. To avoid hydrolysis 

and loss of activity of the activation solution, it was prepared right before use 

and the procedure was not interrupted until EDC/NHS had been added to the 

microspheres.  

• When the incubation was finished, the activated beads were washed twice 

with 100 µL 0.1 M MES (2-[N-Morpholino]ethanesulfonic acid, pH 4.5) buffer 

on the magnet.  
 
B. Coupling of antibodies to the beads. 

• Per a half million bead, 1.6 µg (micrograms) of each capture antibody 

were diluted in 100 µL MES buffer in a 1.5 mL Protein LoBind Tube and saved 

on ice until use. In addition to the antibodies, two negative QCs were also 

prepared: 1.6 µg of purified mouse IgG (mIgG, Biorad, catalog number: 

PMP01X) diluted in 100 µL MES buffer and 100 µL MES buffer without 

dilution of any antibody (bare beads). 

• The 100 µL of each pre-diluted capture antibody and QCs were added to 

one of the functionalized bead regions and incubated during 2 hours (h) at RT 

protected from light. The table below (Table 5) reflects the number of the 
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selected bead regions, their catalogue numbers and the capture molecules 

coupled to each of them. 

• After incubation with the corresponding capture molecule, coupled beads 

were washed once with 100 µL Phosphate Buffered Saline (PBS) with 0.05% 

Tween20 (PBST) on magnet. 

• Finally, 50 µL storage buffer (Blocking reagent for ELISA (Roche 

Applied Science 11112589001) supplemented with 0.1% ProClin (Sigma-

Aldrich 48912-U) was added to each vial and stored overnight at 4°C to block 

the antibody-coupled beads from binding further proteins. 
 

Table 5. List of bead regions used in this work and capture molecules coupled to each 
of them. 

Bead region Catalogue number Capture molecule 
12 MC10012-ID Anti-human APCS monoclonal antibody 
13 MC10013-ID Anti-human RBP4 monoclonal antibody 
18 MC10018-ID Anti-human AHSG monoclonal antibody 
20 MC10020-ID Purify mIgG 
21 MC10021-ID Bare bead 
22 MC10022-ID Anti-human CHI3L1 monoclonal antibody 
26 MC10026-01 Anti-human TPS1 monoclonal antibody 
66 MC10066-01 Anti-human COMP monoclonal antibody 

 

3.3.1. Coupling efficiency test 

After 24 h, the coupling efficiency for each antibody on the beads was confirmed as 

follows: 

• Two SBA, 50 µL each, were generated by mixing an equal numbers of the 

corresponding antibody-coupled beads and negative QC-coupled beads in a 

final dilution 1:50 in storage buffer:  

o SBA 1, containing antibody-coupled beads against COMP, RBP4, 

AHSG, TPS1, APCS plus both QC beads (mIgG and bare beads). 

o SBA 2, containing antibody-coupled beads against CHI3L1 and the 

bare beads control. 

• 5 µL SBA –containing a total amount of 1,000 antibody-coated beads per 

region– was dispensed into 3 wells per each bead-stock on clear-bottom, black 

96-well plates (Sigma-Aldrich M5686-40EA). 
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• 50 µL 1:1000 R-PE-conjugated goat anti-mouse IgG (Abcam ab97024) 

dilute in 0.05% PBST and 50 µL 1:1000 R-PE-conjugated goat anti-rat IgG 

(BD PharmigenTM 550767) were incubated with the SBA 1 or SBA 2, 

respectively, for 20 min at RT in dark.  

• Each well was washed 3 times with 100 µL 0.05% PBST on a handheld 

magnetic separator block for 96-well plates (Millipore, 40-285). 

• 100 µL of 0.05% PBST were added to each well and the assay was run on 

a MAGPIX reader (Luminex Corp.). To obtain accurate results, the bead count 

should be more than 50 for each region. 
 

To evaluate if the coupling was successful, MFI values were checked. A coupling 

signal higher than 5,000 MFI was considered as saturated or near to saturation.   
 

3.4. Luminex sandwich immunoassay procedure 

The protocol carried out for the absolute quantification of the 6 proteins selected as 

potential biomarkers was as follows: 

• For each immunoassay, equal numbers of the corresponding antibody-

coupled beads and the QC beads were properly combined in a bead mixture 

diluted to 1/50 in storage buffer.  

• From the previously prepared suspension bead array, 5 µL were 

distributed into the wells of clear-bottom, black 96-well plates. 

• The SBA was incubated with 25 µL of the diluted standards or sera in 

0.05% PBST during 2 h, protected from light while shaking at RT. 

• Wells were washed 3 times with 100 µL 0.05% PBST on a magnetic plate 

separator.  

• Then, the specific union of the target protein with the capture antibody 

was detected by adding 25 µL per well of the proper biotin-label detection 

antibody (alone or in a mixture when running multiplex sandwich 

immunoassays) diluted to 1 µg/mL in 0.05% PBST for 1 h covered to avoid 

the light in constant shaking at RT. 

• Wells were washed 3 times with 100 µL 0.05% PBST on a magnetic plate 

separator.  
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• To amplify the signal intensity, wells were incubated with 25 µL 1:500 

phycoerythrin-streptavidin (SAPE, Invitrogen SA10041) for 20 min while 

shaking at RT protected from light.   

• Wells were washed 3 times with 100 µL 0.05% PBST on a magnetic plate 

separator. 

• Finally, 100 µL 0.05% PBST were added to each well and the MFI signal 

for each bead population was obtained on a MAGPIX detection reader.  
 

3.4.1. Optimization and generation of multiplex assays 

In a first approach, assay conditions related to the standard curve range and sera 

dilution were assessed for each analyte separately –running singleplex assays– by 

analysing duplicates of 2 sera randomly selected from the OAI cohorts. The selection of 

the top standard concentration and sera dilution for each analyte was based on previous 

results obtained in our group using different antibody pairs and serum samples (Table 6). 

Twelve -point standard curves were performed by 2-fold serial dilutions. In order to verify 

that the signal from the serum samples fits within the range of the standard curve, two 

further dilutions were procured in addition to the dilution selected from the previous test: 

one double- and one half-concentrated. In the case of RBP4 and AHSG, dilutions to 

1:10000 were tested instead of 1:5000, since the signal was lost in these analytes at the 

latest dilution.  
 

Table 6. 12-point standard curve ranges and dilutions from previous tests. 

Analyte Standard curve range Sera dilution 
CHI3L1 18–0.009 1:40 
COMP 20-0.010 1:40 
RBP4 40–0.020 1:10000 
AHSG 300–0.146 1:100000 
TPS1 80–0.040 1:10000 
APCS 8–0.004 1:10000 

 

For those biomarkers requiring the same sample dilution, cross-reactivity between 

the antibody pairs with the non-target analyte was evaluated using a cocktail of its capture 

antibody-coated beads and a cocktail of its detection antibodies (Figure 15). The highest 

concentration in the standard curve of each recombinant protein included in the multiplex 
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assay was individually tested against the proper antibody mixture. Cross-reactivity was 

determined to be an off-target reactivity ³ 5% of the MFI observed for the cognate ligand.  

 

 

 

Finally, in order to confirm that most of the sera fitted within a final 9-point standard 

curve range at the final serum dilution, 29 serum samples randomly selected from the 

OAI cohort were analyzed by the developed sandwich immunoassay. 
 

3.4.2. Analytical characteristics of the assay  

To assure that all generated sandwich immunoassays were reliable for research use, 

the analytical performance characteristics and meeting requirements for accuracy, 

precision, lower limit of detection (LLOD) and lower limit of quantification (LLOQ) 

were assessed either in the monoplex or multiplex assays.  
 
Accuracy. – It was evaluated following the FDA guidelines for pharmacokinetic 

immunoassays (Findlay et al., 2000), which describes the closeness of mean test results 

obtained by the method to the true concentration of the analyte. In this thesis, accuracy 

was determined by triplicates of 2 known amounts of the analyte. The mean value should 

be within 70–130% to meet the FDA criteria. 

 

Figure 15. Cross-reactivity test design. Mixed coupled beads sets, individual antigens 
and multiplexed detection antibodies were used to determine if the antibody pair cross-
reacted with non-target analytes.   
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(%) = 	
𝑜𝑏𝑠𝑒𝑟𝑏𝑒𝑑	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑎𝑛𝑎𝑙𝑦𝑡𝑒
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑎𝑛𝑎𝑙𝑦𝑡𝑒 ∗ 100 

 

Precision. – Describes the closeness of individual measures of the same analyte in 

multiple replicates when the procedure is applied repeatedly. It is determinated by the 

coefficient of variation (CV), which is defined as the standard deviation (SD) of a set of 

measurements divided by the mean of the set (Urbanowska et al., 2006). As accepted by 

the FDA, assay precision should be less than 30% (Findlay et al., 2000). Here, precision 

was determined by the mean %CV of 3 independent measurements of 2 known amounts 

of the analyte.  

 

𝐶𝑉% =
𝑆𝐷
𝑚𝑒𝑎𝑛 ∗ 100 

 

LLOD and LLOQ.- LLOD refers to the lowest amount of the analyte that can be 

detected but not quantified as an exact value. On the other hand, the LLOQ refers to the 

lowest amount of the analyte that can be quantified with an acceptable level of statistical 

significance. In this research, LLOD and LLOQ were calculated according to the IUPAC 

(International Union of Pure and Applied Chemistry) definition (Hsu et al., 2009), as the 

mean of 8 independent measurements of the zero standard signal plus 3 or 10 times, 

respectively, the SD obtained on the zero standard signal. 

 
𝐿𝐿𝑂𝐷 = 𝑚𝑒𝑎𝑛CDEF	GHIJKIEK + (3 ∗ 𝑆𝐷CDEF	GHIJKIEK 

 

𝐿𝐿𝑂𝑄 = 𝑚𝑒𝑎𝑛CDEF	GHIJKIEK + (10 ∗ 𝑆𝐷CDEF	GHIJKIEK) 
 

3.4.3. Intra- and inter-assay %CV 

In larger studies with many samples to be tested, where it is necessary to run multiple 

assay plates, intra- and inter-assay %CV should be determined in order to assess the 

reliability of the results. In this thesis, we decided to run triplicates of a pooled serum 

sample (control pool) placed in 3 different wells randomly selected for each plate.  

 
Intra-assay %CV. – It was determined by the mean %CV of independent control 

pool’s measurements in a single assay. 
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Inter-assay %CV. – It was determined by the mean %CV of independent control 

pool’s measurements in independent assays running in 3 consecutive days. 

 
According with the FDA criteria, intra- and inter-assay variation should be less than 

10% and 20%, respectively. The control pool was prepared by mixing equal volumes of 

3 individual sera from the OAI cohort. 
 

4. DISCOVERY AND VERIFICATION OF AUTOANTIBODIES  

4.1. Study design 

A two-stage discovery approach was designed to analyze the presence and putative 

usefulness of OA-associated AAbs to predict the incidence of the disorder in sera, and is 

illustrated in Figure 16: In a first screening phase, reactivity levels of AAbs against 2125 

proteins were evaluated in 10 pooled serum samples at baseline per study group (incident 

and not-incident) using the NAPPA platform. Each pool was prepared by mixing equal 

volumes of 10 individual sera. In a second stage, a verification phase was carried out with 

one selected AAb candidate among those detected as modulated between the incident and 

not-incident group by NAPPA-based immunoassay in a total of 327 individual sera at 

baseline: 181 not-incidents and 146 incidents, which included the same set of samples 

used at the screening. All assays were run blinded to the clinical information.  
 

 

 

Figure 16. Design of the two-stage discovery approach to analyze the presence and 
putative utility of AAbs to predict radiographic knee OA. 
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Finally, a suitable prognostic model to predict OA development in the clinical routine 

was defined combining different clinical variables alone or with the potential biomarker 

by multivariate stepwise logistic regression analysis. The levels of reactivity of the 

selected AAb were associated with the relative risk to develop the disorder in time by the 

Cox proportional hazards model.  

 

4.2. NAPPA profiling of serum autoantibodies 

The NAPPA core CPD (Centre for Personalized Diagnostics) at the Biodesign 

Institute (Arizona State University, USA) had printed and stored all human genes 

available at the DNASU (www.dnasu.org) on 6 different array sets; HC1 to HC6. The 

HC5 set was selected for the screening, on the basis of having the greatest number of 

genes that could be related with OA pathogenesis according existing bibliography (Annex 

1).  

 

4.2.1. Array quality assessment 

Prior to the functional experiments, QC assays were performed to ensure the 

reproducibility of protein display on a set of HC5 slides stored since January 2015 (QC 

experiments). The protocol followed to verify that protein display was universal through 

the whole array was the Standard Operation Procedure (SOP) from the Biodesign 

Institute:  

• Three HC5 slides were blocked in 30 mL PierceTM SuperBlockTM blocking 

buffer (Thermo Fisher Scientific, catalogue number: 37535) at RT for 1 h on 

rocking shaker.  

• Slides were rinsed 6 times with Milli-Q water and dried by filtered 

compressed air.  

• HybriWell (Grace Bio-Labs, catalogue number: HBW2160-1LA) gaskets 

were applied to each slide to the side that has the array printed on it, placing 

the end of the HybriWell that has more negative space towards the bottom of 

the array.  

• The proteins on the array were expressed in situ by injecting into the 

HybriWell 150 µL human HeLa cell lysate-based IVTT expression system, 

which was previously prepared using the 1-Step Human Coupled IVT kit 

(Thermo Fisher Scientific, catalogue number: 88881) at 60% lysate. Briefly, 
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all provided reagents were thawed on ice immediately before its use. Once 

defrosted, 45 µL HeLa lysate, 15 µL accessory proteins and 30 µL reaction 

mix per slide were mixed in 60 µL nuclease-free water in the order listed by 

gently mixing and saved on ice until use. Enough volume for one extra slide 

was prepared. The mix was added slowly from the non-label end and each 

HybriWell was gently massaged to spread out the IVTT mix and cover all the 

area of the array. 

• After removing as many bubbles as possible using a wooden stick to push 

out the air from the holes, port seals were applied to both ports on HybriWell.  

• Slides were then placed on a bioassay dish covered with Milli-Q water to 

preserve humidity and incubated at 30°C for 1.5 h for protein expression 

followed by 30 min at 15°C for protein capture.  

• After removing the HybriWell, slides were rinsed twice with 0.02% PBST 

and immersed in 5% milk 0.02% PBST to be washed 3 times, 5 min each.  

• To avoid unspecific binding, slides were blocked with 5% milk 0.02% 

PBST on rocking shaker at RT for 30 min. Then, the excess of blocking buffer 

was removed by gently tapping the edge of the slide onto a paper tower.  

• To apply the primary antibody, the slides were placed in a Corning 

Hybridization Chamber and incubated with 2 mL of anti-GST monoclonal 

antibody (Cell Signaling technology, catalogue number: 2624) diluted to 1:300 

in 5% milk 0.02% PBST for 1 h at RT on a rotator. 

• Before the incubation with the secondary antibody, slides were placed out 

on a bioassay dish and washed with 5% milk 0.02% PBST 3 times on a rocking 

shaker, 5 min each.  

• Specific unions of the primary antibody with the expressed proteins were 

detected by incubating the slides in the Corning chamber with 2 mL of diluted 

Direct Labelled Alexa Fluor 647 goat anti-mouse IgG antibody (Life 

TechnologiesTM, catalogue number: A21235) diluted to 1:500 in 5% milk 

0.02% PBST for 1 h at RT on a rotator.  

• Finally, slides were washed 3 times with 0.02% PBST, 5 min each, rinsed 

thoroughly with deionized water and dried with compressed air.  
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• The image of the array was obtained by scanning each slide using a Tecan 

PowerscannerTM (Tecan Group LTD) with the following scan settings: 

Resolution 10, Channel 2/647 nm, Gain 50%, and Intensity 50%. 

 

4.2.2. Serum autoantibody profiling 

To detect the presence of autoantibodies in sera, proteins were first expressed on the 

array, following the same protocol described above. Serum autoantibodies were profiled 

on the HS 4800 Pro hybridization station (Tecan) following the SOP from the Biodesign 

Institute:  

• The machine was turned on and the “NAPPA Manual expression 16 Hr” 

protocol was opened on the HSPro software. 

• Before starting, nitrogen was tuning on, buffers were loaded into the 

corresponding containers and the proper channel tube was inserted in each of 

them (0.02% PBST in channel 1 and 5% milk 0.02% PBST in channel 2). 

• The expressed slides were placed into the HSPro hybridization chambers 

without any label or barcode, with the array facing up. Once all the slides were 

loaded, the module was slowly closed and the machine was primed with each 

buffer, priming last 0.02% PBST. 

• Then, the run was started with 1 h of blocking with 5% milk 0.02% PBST. 

• When the machine was ready for the primary injection, the injection cap 

of the first chamber was unscrewed and 150 µL 1:20 diluted serum in 5% milk 

0.02% PBST were slowly injected with the pipette and tips that are specifically 

designed for the HSPro machine. An extra slide with no serum injection (150 

µL 5% milk 0.02% PBST) was also run as negative control. The incubation 

was programmed 16 h at 4°C, to ensure that the run was going to cover all 

night. To set up the optimal serum dilution, 1:20 and 1:50 serum were 

previously tested using one pool randomly selected. Serum dilution was 

determined by the optimal sensitivity with minimum diffusion, through visual 

analysis of one experimented researcher.  

• 150 µL of Direct Labelled Alexa Fluor 647 goat anti-human IgG (Life 

Technologies, catalog number: A21445) diluted to 1:500 in 5% milk 0.02% 

PBST were injected into each hybridization chamber, repeating the same steps 
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as injection of the sera and incubating with the slides for 1 h at RT covered 

with black shields to keep the light out.  

• When the run was finished, modules were carefully opened and the slides 

were rinsed 3 times with deionized water, dried by centrifugation at 1,200 

revolutions per minute (rpm) for 3 min, and scanned by Tecan 

PowerscannerTM, maintaining the scan settings as the QC experiments.  
 

4.3. NAPPA-ELISA assay 

ELISA-based NAPPA immunoassays were performed following the SOP from the 

Centro de Investigación del Cáncer-IBMCC de Salamanca: 
 

A. Coating and blocking of 96-well plates. 

• 40 mL of 4 µg/mL polyclonal anti-GST antibody (GE Healthcare, 

catalogue number: 27-4577-01) were diluted in carbonate/bicarbonate buffer 

pH 9.6.  

• Four 96-well plates (Costar, catalogue number: 3915) were coated with 

100 µL of the diluted antibody at 4°C overnight. 

• The excess of the antibody solution was eliminated by turning the plate 

over a paper tower, and blocked with 200 µL 5% milk 0.02% PBST for 4 h at 

RT. 
 

B. Expression of the recombinant protein. 

For all the assays, eight 1-Step Human Coupled IVT kits (Thermo Fisher Scientific, 

catalog number: 88882) were used, each containing sufficient reagents to perform 40 

reactions. A total of 320 reactions from the HeLa cell lysate-based protein expression 

system were prepared following the manufacturer’s instructions:   

• The components of the kit (HeLa Lysate, accessory proteins and reaction 

mix) and plasmid cDNA encoding human full-length methionine-

adenosyltransferase II subunit b (MAT2b) fused to GST recombinant protein 

were thawed on ice immediately before use.  

• All reagents were gently mixed in nuclease-free water in a 1.5 mL vial at 

RT. Among all the reactions required to carry out the assays, 312 reactions 

(divided in 8 vials: 7 of 40 reactions and 1 of 32 reactions) were mixed with 20 
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µg/mL of plasmid cDNA (Target Protein reaction mix). The remaining 8 

reactions were free of the plasmid cDNA and acted as negative controls of the 

assay (no cDNA control reaction mix). The order in which the reagents should 

be mixed and the required volumes for one reaction mix are listed below in 

Table 7.The reaction mix was incubated for 3 h at 30°C and straight away put 

on ice to stop the reaction. 
 

Table 7. Components of the IVT for one reaction mix. 

Components 
Target Protein 

(µL) 
No cDNA control 

(µL) 
HeLa Lysate 500 100 
Accesory Proteins 100 20 
Reaction Mix 200 40 
Clone DNA 87 - 
Nuclease-free water 143 40 
TOTAL volume per reaction (vial) 1030 200 

 

C. Coating 96-well plates with the expressed recombinant protein. 

• Blocking solution was retired and wells were washed 5 times with 200 µL 

PBS 1X by turning the plate over and removing the excess on a paper tower.  

• Each well was incubated with 20 µL of the expressed recombinant human 

protein overnight at 4°C on a rocking shaker. Two wells per plate were 

incubated with 20 µL of the no-cDNA control mix.  

• Wells were washed 5 times, repeating the same steps as before with 200 

µL PBS 1X. 

 

D. Incubation with sera. 

• Each well was incubated with 100 µL of the corresponding sera diluted to 

1:20 in 5% milk 0.02% PBST at 4°C overnight on a rocking shaker. Control 

wells without cDNA were incubated with 100 µL of anti-GST monoclonal 

antibody (Cell Signaling technology, catalogue number: 2624) diluted to 

1:1000 in 5% milk 0.02% PBST.  

• Wells were washed 3 times with 200 µL 5% milk 0.02% PBST as 

previously described.  
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E. Revelation of the 96-well plates. 

• The presence of specific autoantibodies against human MAT2b protein in 

sera was detected by incubation with 100 µL HRP (horseradish peroxidase)-

linked anti-Human IgG (Jackson ImmunoResearch Laboratories, catalogue 

number: 109-035-098) diluted 1:1000 in 5% milk 0.02% PBST, for 1 h at RT 

on a rocking shaker. The negative control wells were incubated with 100 µL 

1:1000 diluted HRP-linked anti-mouse IgG (Amersham, catalogue number: 

NA931).  

• Wells were washed 3 times with 200 µL PBS 1X by turning the plate over 

and removing the excess on a drying paper. 

• 100 µL 1-StepTM Ultra Tetramethyl-benzidine (TMB)-ELISA substrate 

solution (Thermo Fisher Scientific, catalogue number: 34028) were added to 

each well and incubated on a rocking shaker preserving from light until the 

reaction turned to blue colour.  

• The reaction was then stopped by adding 50 µL of sulfuric acid per well, 

and the absorbance signals at 450 nm were read on the Synergy 4 plate reader 

(BioTek).  
 

5. STATISTICAL TREATMENT OF THE DATA 

5.1. Validation of proteins as potential biomarkers 

A 9-point standard curve was run by duplicate for each analyte present on the 

sandwich immunoassay in all the plates analyzed. For all the analytes, an asymmetrical 

(five-parameter (5PL)) logistic standard curve was generated from each plate using 

GraphPad Prims in its 6.0 version for Mac. The MFI signal of the analyte in each 

individual sera analyzed within the same plate was extrapolated to its corresponding 

standard curve in order to obtain the total amount of the analyte at baseline in the sample. 

 
For the incident and not-incident groups the mean, SD, median and range of the 

serum concentrations for each protein, expressed ng/mL or µg/mL, were obtained, and 

the presence of statistical differences between the two outcome groups were assessed by 

non-parametric Mann-Whitney U test. Participants whose concentration of the proteins 

in serum was below the LLOQ were eliminated from the analysis. The Kolmogorov-



MATERIAL AND METHODS 

 109  
 

Smirnov normality test was previously applied to examine if they were normally 

distributed. A value of p < 0.05 was used to determine significance of the test. In addition, 

a putative correlation between the different biomarkers was evaluated by the Spearman’s 

coefficient (Rho).  

 
To look for atypical data, an extreme outlier was defined as a value above 5 times 

the interquartile range. The mean with or without outliers was calculated using the 

“outlierKD script” created by Klodian Dhana in RStudio, which is available online in the 

DataScience+ website (https://datascienceplus.com/). 

 
Furthermore, to determine whether the baseline serum concentration of each analyte, 

alone or in combination with others included in the same multiplex assay, may be 

associated with the incidence of radiographic knee OA, the odds ratio (OR) was assessed 

by univariate logistic regression. Here, the OR represents the odds for knee OA 

development associated with a one-unit increase in the concentration of the analyzed 

biomarker (Szumilas, 2010). To estimate the precision of the OR, the 95%CI was used. 

The effectiveness of each biomarker-only model for the prediction of knee OA 

development was assessed by the receiver operating characteristic (ROC) curve and the 

predictive capacity was quantified using the c-statistic (area under the curve (AUC)). The 

diagnostic performance of each biomarkers-only model in terms of sensitivity, specificity 

and predictive values (positive predictive value (PPV) and negative predictive value 

(NPV)) were also estimated by the Youden Index (J), which defines the maximum 

potential effectiveness of a biomarker (Youden, 1950). Sensitivity is the percentage of 

subjects with the clinical outcome who have a positive test result. Alternatively, 

specificity is the percentage of individuals without the clinical outcome who have a 

negative test result. The predictive values refer to the proportion of individuals with a 

positive (PPV) or negative (NPV) test result who truly have the case status or who do not 

have it, respectively (Parikh et al., 2008).  

 
Biomarker assessment was performed using the IBM SPSS (Statistic Package for the 

Social Sciences, IBM Corporation) software package in its version 25.0 for Mac 

(Copyrightã IBM Corporation 1989, 2017). All metrics related to the sensitivity, 

specificity, PPV, NPV and AUC were calculated using the pROC package in RStudio 

statistical software for Mac in its version 1.1.456 (Copyrightã RStudio Inc, 2009-2018).  
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5.2. Discovery and verification of autoantibodies as potential biomarkers  

Spot intensities in the scanned slides were measured using the ArrayPro Analyzer 

(MediaCybernetics) software in its 6.3 version. Raw intensity values expressed in 

arbitrary units (a.u.) of absorbance were normalized at the statistical department of the 

Biodesign Institute by subtracting the background signal of the slide, which was estimated 

by the first quartile of signal intensity in spots with no printed DNA, and divided by the 

median of background-subtracted intensity from non-control spots. 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑣𝑎𝑙𝑢𝑒 =
𝑅𝑎𝑤	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 − 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝑀𝑒𝑑𝑖𝑎𝑛	𝑜𝑓	𝑁𝑜𝑛𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑠𝑝𝑜𝑡𝑠 − 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑑	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 

 

For the incident and not-incident groups the mean value and SD of the baseline 

immunoreactivity levels were obtained for all the proteins expressed in the array. To 

quantitatively determine the positive AAb response, a cut-off level was calculated by the 

median intensity absolute deviation rule from all the spots through all the pooled sera. In 

addition, AAb candidates were qualitatively examined by one experimented researcher 

to capture diffused signals that cannot be quantified by the image analysis software, in 

order to identify and confirm positive responses. The researcher examined all the slides 

by adjusting an identical black and full colour threshold scale. The antigens that did not 

exhibit intensities over the cut-off were eliminated, and a differential spot analysis was 

performed with the remaining antigens by Wilcoxon Rank-Sum test. Significance was 

determined by p<0.05.  

 
Among the final panel of candidate AAbs, one of them was selected to enter the 

verification phase based on its relationship with the OA pathology in the existing 

literature. The biological context network of the selected candidate was analyzed with the 

STRING (https://string-db.org/) bioinformatics webtool, using the K-means clustering 

method. For the baseline levels of the analyzed AAb the mean, SD, median and range, 

expressed in a.u. of absorbance, were obtained for the incident and not-incident groups, 

and the Kolmogorov-Smirnov normality test was applied to examine if they were 

normally distributed. To assess if the levels of the AAb were equal (H0; null hypothesis) 

or different (H1; alternative hypothesis) between the two outcome groups, the non-

parametric Mann-Whitney U test was carried out. A level of significance of p < 0.05 was 

determined. All analyses were performed using the IBM SPSS 25.0. 
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The association of the baseline levels of AAb with the incidence of radiographic knee 

OA and its predictive ability in a biomarker-only model were assessed by the OR and the 

proper AUC, respectively. In the same way as described above, sensibility, specificity 

and positive and negative predictive values (PPV and NPV) were also estimated to 

determine the validity and security of the models using the pROC package. 

 

5.3. Generation of clinical prognostic models 

In the statistical analysis carried out to generate a suitable prognostic model of knee 

OA prediction, incident radiographic knee OA at 96 months of follow-up was defined as 

the dependent or responding variable (DV).  

 

5.3.1. Univariate regression analysis 

Clinical data at the baseline visit related to the participants included in this thesis 

were obtained from the OAI database (https://data-archive.nimh.nih.gov/oai). Among all 

of them, no-radiographic clinical variables were defined as independent variables (ID) to 

determine a clinical prognostic model of OA that avoids exposing patients to radiation. 

These variables, named as covariates throughout this manuscript, are listed in the 

Annexed 2. They were selected from the specific OAI eligibility risk factor criteria for 

the incident subcohort (e.g. age, gender, BMI, history of knee injury, etc.) as well as from 

both the WOMAC and KOOS pain questionnaires. For all variables concerning the joint, 

knee-value predictors were recoded to indicate they were for the target knee. When 

neither or both knees have incident knee OA, one of them was randomly selected and 

used in the analysis. The variable referring to the frequency of pain was recoded to 

indicate presence (whether it was frequent or infrequent) or absence of pain.  

 

Categorical variables data were determined as percentages and continuous variables 

were determined by the mean and the SD of the mean value. In order to assess association 

with the incidence of radiographic knee OA, each covariate was individually analyzed by 

univariate logistic regression analysis. To avoid redundancies in the logistic regression 

model, the different subscales from the WOMAC and KOOS questionnaires were 

evaluated by Spearman’s correlation. All the analysis were performed using IMB SPSS 

25.0. 
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5.3.2. Multivariate regression analysis 

Using those covariates showing significant association with the development of the 

disorder in the target knee, prognostic covariates-only models to predict incident 

radiographic knee OA were defined by stepwise logistic regression analysis. In this 

method, the choice of predictive variables is carried out by a combination of the forward 

and backward automatic procedures, where in each step a variable is considered for 

addition to or subtraction from, respectively, the set of predictive variables based on some 

pre-specified criteria. Sometimes, both the forward and backward methods define a single 

model, and sometimes they do not. In these cases in which more than one model is 

defined, the most parsimonious should be selected, i.e., the model that generates a precise 

and valid prediction of the evaluated response with the lower number of possible 

covariates. All the regression analyses were performed using SPSS version 25.  

 
To evaluate the utility of the biomarkers (alone or in combination when they are 

included in the same sandwich immunoassay) as putative prognostic markers to predict 

incident radiographic knee OA in the clinical routine, different prognostic models were 

generated by combining the biomarkers-only model with the covariates-only model. For 

all the models generated (covariates-only model and biomarkers plus covariates models) 

the predictive accuracy was evaluated based on the ROC curve, the AUC and 

performance characteristics (sensitivity, specificity and predictive values). The 

superiority of one model over another was estimated by comparing the AUC for each 

model and the DeLong test was applied to determine the significance of the differences 

in the AUC of the covariates-only model after the inclusion of one or more biomarkers. 

Significance was defined as p < 0.05. All metrics were calculated using the pROC 

package in R.  

 

5.4. Association of the proposed biomarkers with the time of incidence 

With the aim of knowing whether the baseline levels of biomarkers could be 

associated with the time in which the disorder will develop, survival analyses were 

performed. A survival analysis is defined as a set of methods for analysing data where 

the outcome variable is the time until the occurrence of an event of interest, named as 

time to event or survival time. In our case, the survival time is given by the time to 

radiographic knee OA development.  
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To perform the survival analysis, a cut-off value (tertiles) for each biomarker was 

assessed to categorise the participants into high-, intermediate- and low-level groups. 

Subjects were followed during 96 months, focusing on the time at which the disorder 

appeared. For those participants whose information about their time to OA development 

was incomplete, the survival time was considered as the time of their last visit. For those 

subjects who did not experience the event during the follow-up period, the survival time 

was considered to be as long as the duration of the study. Kaplan-Meier (KM) curves 

were used to estimate and visualize survival probabilities, which determine the 

probability to develop the disorder in a specific period of time, depending on whether the 

participants presented high, medium or low levels of the biomarker. Statistical differences 

between the outcome groups were assessed by the Long Rank test and the level of 

significance was determined by a p < 0.05. In addition, the Cox proportional hazards 

regression model was performed to evaluate the impact of the biomarker’s levels in the 

relative risk (hazard ratio (HR)) for the development radiographic knee OA in time, 

adjusting for the covariates present in the proposed prognostic model from the logistic 

regression analysis. All calculations were performed using IBM SPSS 25. 
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1. PROTEINS AS POTENTIAL PROGNOSTIC MARKERS OF KNEE OA 

1.1. Generation of suspension bead arrays 

1.1.1. All capture antibodies were efficiently coupled to the beads 

Before starting to generate the sandwich assays, we verified that all capture 

antibodies acquired have been efficiently coupled to the magnetic microspheres. For that, 

beads coupled to antibodies generated in mouse, together with the mIgG-bead were mixed 

in the same array (SBA1). Coupling efficiency of monoclonal anti-human CHI3L1 was 

evaluated in a different SBA (SBA2) since it was generated in rat. The bare bead was 

included in both SBA as negative control of the coupling efficiency. In Figure 17 it can 

be observed a MFI signal higher than 5000 for all the capture molecules.  

 

 

 

1.1.2. Running singleplex assays to set up the standard curve range and serum 

dilution 

The top standard concentration to generate a 12-point standard curve for each analyte 

was selected based on previous experiments of the research group using different 

antibody pairs and recombinant proteins and the adjustment to an 5PL-asymmetrical 

logistic standard curve were evaluated running singleplex assays (Figure 18). Standard 

curves for COMP, RBP4, AHSG and CHI3L1 recombinant proteins were still in the 

exponential phase at the top standard concentration. In the curves for APCS and TPS1 

recombinant proteins, the typical S-shape of the sigmoidal response curves in which the 

X-axis is the logarithm of the concentration, could be intuited.  

 

Figure 17. MFI showing the coupling efficiency of the captured antibodies to the beads 
surface.  
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With respect to the dilutions evaluated (Figure 19): 

CHI3L1.- all sera diluted to 1:20 fitted in the linear range of the standard curve. 

The MFI for the serum sample 1 diluted to 1:40 was also situated at the linear range, but 

not for the serum sample 2. None of the analyzed sera obtained a MFI that would fit in 

the linear range of the curve when a 1:80 dilution was used.  

 COMP.- all dilutions analyzed in both sera showed an average fluorescence 

intensity that was between points eight and eleven of the standard curve, coinciding with 

the linear range of the curve. 

 RBP4.- only when the sera were diluted to 1:10000 the MFI could fitted in the 

linear range of the standard curve. Higher dilutions to 1:100000 and 1:200000 showed 

MFI signals too low to trust that the quantification will be reliable. 

 AHSG.- both sera diluted to 1:10000 showed a MFI inside the linear range of the 

standard curve, while dilutions of 1:100000 and 1:200000 were below the linear range. 

 APCS.- the MFI obtained for the most concentrated dilutions, 1:5000 and 1:10000 

were, in both sera, above the MFI signal given by the top standard concentration. In case 

of 1:20000 dilution, only one of the sera was slightly above this signal. 

 TPS1.- sera dilute to 1:5000 and 1:10000 showed a MFI signal which fitted in the 

linear range of the standard curve, although the signals at the latest dilution were situated 

Figure 18. 12-point 5PL-standard curves for each biomarker running in singleplex 
assays.  
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in the lower limit of the linear range in both analyzed sera. Samples at the highest dilution 

showed a MFI outside the linear range of the curve.   

 

 

 

1.1.3. Cross-reactivity test on multiplex assays 

Based on the required serum dilution, we develop 2 custom multiplex sandwich 

immunoassays: a duplex sandwich immunoassays including COMP and CHI3L1 proteins 

at 1:20 dilution, and a triplex sandwich immunoassays including RBP4, AHSG and TPS1 

protein at 1:10000 dilution. To determine the optimal procedure for the multiplex assay 

cross-reactivity of the antibody pairs was evaluated.  
 

 

Figure 19. Serum MFI for each biomarker in the different tested dilutions. S1, serum 
sample 1; S2, serum sample 2. 

Figure 20. Cross-reactivity test in the duplex (A) and triplex (B) sandwich immunoassay. 
Values in the tables refers the percentage of the off-target MFI divided by the MFI 
observed for the cognate ligand. RP, recombinant protein. 
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None of the cases showed an off-target MFI was ³5% of the cognate ligand (Figure 

20), which confirm the specificity of the antibodies to recognized it target antigen. 
  

1.1.4. A final standard curve range and serum dilution was evaluated 

Finally, based on the result showed above, a final 9-point standard curve range and a 

serum dilution was determine (Table 8). The validity to quantify the baseline 

concentration of each analyte was verified in 29 sera randomly selected from the OAI 

cohorts.  

 

Table 8. Final standard curve range and serum dilution for each biomarker. 

Assay Biomarkers 
Standard 

curve range 
(ng/mL) 

Serum 
dilution 

Nº of samples 
below the lower 
standard MFI 

Duplex 
CHI3L1 18–0.070 1:10 0 
COMP 20–0.078 1:10 0 

Triplex 
RBP4 40–0.156 1:10000 2 
AHSG 300–1.172 1:10000 2 
TPS1 40–0.156 1:10000 3 

Monoplex APCS 8–0.031 1:20000 0 
 

A graphic representation of the 5PL-standard curve obtained for the analytes in the 

multi- or mono-plex sandwich immunoassay could be observed in the Figure 21. Only 

one of the sera analyzed showed a positive MFI signal for TPS1 below the obtained MFI 

for the lower standard concentration (MFI 530 vs 607, respectively). The remaining sera 

that could not be quantified was due to the fact that they showed a negative MFI for these 

analytes, which was very close to QC beads signals (MFI ≈ 80).  
 

 

 

Figure 21. Standard curve for the multiplex and monoplex sandwich immunoassays. 
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1.1.5. Analytical performance of the assays 

Finally, for each sandwich immunoassay, the analytical characteristics in terms of 

accuracy, precision and LLOD and LLOQ were evaluated and they are summarized in 

the Table 9.  

 
LLOD and LLOQ of the assay for each analyte were evaluated as the mean value of 

8 independent measures of the zero standard plus 3 or 10 times, respectively, the SD 

obtained on the zero standard signal. On the other hand, precision and accuracy were 

determined by the mean %CV or the mean %closeness of 3 independent measures of 2 

known amounts of the analyte, respectively. All analytes met with the established 

criterion by the FDA for accuracy (70–130%) and precision (CV < 10%).  
 

Table 9. Analytical performance of the developed immunoassay. 

Assay Biomarkers LLOD 
(ng/ml) 

LLOQ 
(ng/ml) 

Precision 
(%CV) 

Accuracy 
(%) 

Duplex CHI3L1 0.016 0.019 5.1 103.7 
COMP 0.058 0.058 2.9 110.9 

Triplex 
RBP4 0.060 0.062 4.6 109.0 
AHSG 3.422 3.923 2.4 101.4 
TPS1 0.153 0.176 2.6 111.8 

Monoplex APCS 0.002 0.004 1.7 91.4 
 

1.2. Validation of six proteins as potential prognosis marker of OA incidence 

All of the proteins selected in this project had been previously associated with the 

OA disease in different proteomic discovery approaches throughout the existing 

bibliography as well as in house efforts.  

 
With the aim of validate this association and evaluate the putative ability of these 

potential biomarkers to predict the incidence of radiographic knee OA, 749 individual 

sera at baseline from the OAI cohorts that were followed for 96-months were blindly 

analyzed. Among these 749, only 540 meet the KL radiographic knee OA criterion. From 

the 540 participants, 209 develop knee OA in the target knee during the study and were 

classified as incident patients, whereas 331 did not develop the disease in the target knee 

and were classified as not-incident. Baseline serum concentrations of the biomarkers were 

quantified by sandwich immunoassays on bead-based arrays.   
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In a first step, before to evaluate if exist significant differences in the baseline serum 

concentration of the six potential selected proteins between the study groups, the incident 

and the not-incident group, intra- and inter- assay %CV and the number of extreme 

outliers were assessed. As it is shown in Table 10, both, the intra- and inter-assay %CV 

was bellow 10% for the six analytes assessed, complying with the acceptance criterion 

established by the FDA and confirming the reliability of the results.  

 
On the other hand, the number of extreme outliers was relatively low for all the 

analytes, being CHI3L1 protein the one showing the highest percentage (1.31%). In 

addition, the differences between the mean of the baseline serum concentration with or 

without outliers for all the analyzed proteins were of minor importance. 
 

Table 10. Inter- and intra-assay %CV. 

Biomarker intra-CV 
(%) 

inter-CV 
(%) 

Number of 
extreme outliers 

(%) 

mean with vs 
without outliers 

CHI3L1 4.2 8.4 7 (1.3) 14.50 vs 13.66 

COMP 6.9 9.9 0 (0.0) 47.11 

RBP4 4.0 6.3 1 (0.2) 40.24 vs 39.50 
AHSG 4.5 6.2 1 (0.2) 532.39 vs 529.54 

TPS1 2.8 5.1 3 (0.6) 7.62 vs 6.33 

APCS 3.7 6.0 0 (0.0) 46.13 
 

The biomarkers characteristics related with the mean, SD, median and range were 

obtained for each biomarker for the incident and the not-incident group and they are 

summarized in Table 11. As none of the analytes were normally distributed (p < 0.05), 

the Mann-Whitney U test was applied to contrast the H0: baseline serum concentration 

of the target analyte was equal between the outcomes group. For all the potential 

biomarkers, serum concentration at baseline was significant higher in those patients who 

will develop knee OA in the follow-up period (Figure 22).  

 
Although none of the biomarkers showed Rho > 0.7, correlation level between RBP4 

and TPS1 was close (Rho= 0.6) and highly significant (p= 5.464E-65).  (Annexed 3). 
 

 



RESULTS 

123 
 

Table 11. Concentrations of the panel of soluble biomarkers analyzed in the study. 

Biomarkers 
(unit) 

Incident 
Baseline mean (SD) 

Median (range) 
(n=209) 

Not-incident 
Baseline mean (SD) 

Median (range) 
(n=331) 

Number of 
samples 
bellow 
LLOQ 

CHI3L1 
(ng/ml) 

19.49 (20.29) 
12.19 (0.45–107.94) 

11.38 (14.18) 
7.26 (0.45–116.54) 

5 

COMP 
(ng/ml) 

59.15 (34.79) 
52.55 (6.63–175.17) 

39.56 (20.37) 
36.14 (0.34–165.50) 3 

RBP4 
(µg/ml) 

50.28 (33.48) 
39.30 (4.69–233.44) 

33.93 (31.27) 
28.68 (3.42–437.79) 4 

AHSG 
(µg/ml) 

597.04 (213.82) 
570.11 (137.55–1543.89) 

491.71 (245.86) 
434.72 (82.12–2054.08) 4 

TPS1 
(µg/ml) 

8.50 (15.65) 
6.94 (1.32–226.85) 

7.06 (24.77) 
5.21 (0.98–451.03) 8 

APCS 
(µg/ml) 

56.56 (26.48) 
53.18 (5.16–155.28) 

39.56 (23.16) 
34.28 (4.49–174.97) 2 

 

 

Figure 22. Box-plots comparing baseline serum concentration of the 6 potential 
biomarkers between the incident and not-incident group (p values over the brackets). 
For each sample group, the box- plot represent concentration values within the 
interquartile range (box), the median (horizontal line within box), lowest and highest 
concentration values in the data (horizontal line outside the box). 
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Finally, the OR of each biomarker was evaluated in order to know its association 

with the risk of knee OA development (Table 12). TPS1 was the only biomarker that did 

not show a significant association when it was evaluated alone (OR= 1.00 (95%CI: 1.00–

1.00), p= 4.820E-01). When the individual predictive capacity of the potential biomarkers 

was individually analyzed, the lowest AUC was reached by CHI3L1, yielding 0.66 

(95%CI: 0.62–0.71) and the highest AUC was reached by APCS , yielding 0.70 (95%CI: 

0.66–0.75), however, this difference was not significant (p= 0.247).  
 

Table 12. Biomarker assessment in the validation phase. 

 CHI3L1 COMP RBP4 AHSG TPS1 APCS 

OR 
(95%CI, p 
value) 

1.03 (1.02–
1.04, 1.000E-

06) 

1.03 (1.02–
1.04, 1.773E-

12) 

1.02 (1.01–
1.03, 5.225E-

08) 

1.00 (1.00–
1.00, 2.000E-

06) 

1.00 (1.00–
1.00, 4.829E-

01) 

1.03 (1.02–
1.04, 4.311E-

12) 
AUC 
(95%CI) 

0.66 (0.62–
0.71) 

0.68 (0.63–
0.72) 

0.67 (0.62–
0.72) 

0.68 (0.63–
0.72) 

0.67 (0.63–
0.72) 

0.70 (0.66–
0.75) 

Specificity 
(95%CI) 

0.63 (0.57-
0.68) 

0.78 (0.74-
0.83) 

0.60 (0.55–
0.65) 

0.53 (0.48–
0.58) 

0.67 (0.62–
0.72) 

0.65 (0.60–
0.70) 

Sensitivity 
(95%CI) 

0.66 (0.59-
0.72) 

0.53 (0.46-
0.60) 

0.65 (0.58–
0.71) 

0.79 (0.73–
0.84) 

0.61 (0.55–
0.68) 

0.69 (0.62–
0.75) 

PPV 
(95%CI) 

0.53 (0.48-
0.57) 

0.61 (0.55-
0.67) 

0.51 (0.47–
0.55) 

0.51 (0.48–
0.55) 

0.54 (0.49–
0.59) 

0.55 (0.51–
0.60) 

NPV 
(95%CI) 

0.74 (0.71-
0.78) 

0.73 (0.70-
0.76) 

0.73 (0.69–
0.77) 

0.80 (0.75–
0.85) 

0.73 (0.70–
0.77) 

0.77 (0.73–
0.81) 

 

In order to try to improve the diagnostic accuracy of the biomarkers, all possible 

combinations between the analytes quantify in the same multiplex sandwich 

immunoassay were assessed. The AUC obtained with the combination between CHI3L1 

and COMP yielded an AUC 0.70 (95%CI: 0.65–0.75), which was not a significant 

increment compared with the AUC obtained by the biomarkers, individually (p= 0.278 to 

CHI3L1, and p= 0.483 to COMP). A similar case was found after assessing all possible 

combinations between the biomarkers analyzed in the triplex sandwich immunoassay, 

where the highest AUC was obtained in the combination of RBP4 with AHSG (AUC 0.69 

(95%CI: 0.65–0.74)), which was close to the one obtained for AHSG alone. Differences 

between the AUCs of all of the combinations in these multiplex sandwich immunoassay 

were not significant, excepting the comparison between AHSG+TPS1 with the 

combination of the three analytes in the array (AUC 0.66 (95%CI: 0.62–0.71) vs 0.68 

(95%CI: 0.64–0.73), p= 4.500E-02). Results from the regression analysis and all metrics 

related with sensitivity, specificity, PPV and NPV for the combinations of the biomarkers, 
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together with the DeLong test p values from the comparison between their AUC are 

summarized in the Annexed 4. 

 

1.3. A combination of clinical variables and proteins improve the prediction of OA 

development 

To generate the best covariates-only model a serie of clinical variables related with 

the risk of OA development was selected and evaluated in all the participants included in 

this study (Annexed 2). The mean and SD for quantitative characteristics, and the number 

and percentages for qualitative characteristics at baseline of the participants included 

could be observed in the Table 13 bellow. In general, both outcome groups included 

middle-aged women with baseline BMI levels above the overweight level, which carry 

out daily activities that required frequent bending of the knees and who complain of pain 

in either knee.  
 

Table 13. Baseline characteristics of the participants included in the study. 

Covariates Incident 
(n=209) 

Not-incident 
(n=331) 

Age, mean years (SD) 60.77 (8.65) 57.60 (8.68) 
Sex, n (%) female 131 (62.7) 156 (47.1) 
BMI, mean kg/m2 (SD) 29.22 (4.62) 26.64 (4.04) 
Family history of knee replacement, n (%) 
yes 36 (17.2) 49 (14.8) 

Frequent knee bending activity, n (%) yes 151 (72.2) 207 (62.5) 
History of knee injury, n (%) yes 47 (22.5) 52 (15.7) 
History of knee surgery, n (%) yes 42 (20.1) 54 (16.3) 
Pain in either knee, n (%) 187 (89.5) 226 (68.3) 
WOMAC index:   

    WOMAC Total score 10.41 (12.44) 5.07 (8.84) 
    WOMAC Disability score 7.06 (9.05) 3.31 (6.32) 
    WOMAC Stiffness score 1.40 (1.43) 0.79 (1.20) 
    WOMAC pain score 1.97 (2.70) 0.96 (1.93) 
KOOS index:   

    KOOS Symptoms score 88.98 (11.60) 93.50 (8.98) 
    KOOS pain score 86.41 (14.99) 92.59 (11.31) 

 

Significant association was found in all the variables (Table 14), excepting for family 

history of knee OA (OR 1.22 (95%CI: 0.76–1.95), p= 4.162E-01) and history of knee 
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surgery (OR 1.28 (95%CI: 0.82–2.00), p= 2.776E-01). Referring to the face validity of 

these associations, both scores from the KOOS questionnaires were inversely associated 

with knee OA incidence. The rest of the clinical variables were all positively associated 

with knee OA incidence. The highest OR was found in the variable related with the 

presence of pain in either of the knees, yielding 3.95 (95%CI: 2.40–6.50), followed by 

the fact of being a female, with an OR 1.88 (95%CI: 1.32–2.68).  

 

Table 14. Univariate analysis of the selected clinical variables. 

Covariates p value OR 95% CI 
Age, year 5.600E-05 1.04 1.02–1.06 
Sex, female 4.490E-04 1.88 1.32–2.68 
BMI, kg/m2 2.787E-10 1.15 1.10–1.20 
Family history of knee replacement, yes 4.162E-01 1.22 0.76–1.95 
Frequent knee bending activity, yes 2.132E-02 1.56 1.07–2.29 
History of knee injury, yes 4.609E-02 1.57 1.01–2.43 
History of knee surgery, yes 2.776E-01 1.28 0.82–2.00 
Pain in either knee, yes 6.752E-08 3.95 2.40–6.50 
WOMAC Total score (range= 0–62) 1.310E-07 1.05 1.03–1.07 
WOMAC Disability score (range= 0–47) 2.585E-07 1.07 1.04–1.09 
WOMAC Stiffness score (range= 0–6) 5.232E-07 1.41 1.23–1.62 
WOMAC pain score (range= 0–13) 3.000E-06 1.22 1.12–1.32 
KOOS Symptoms score (range= 43–100) 2.000E-06 0.96 0.94–0.98 
KOOS pain score (range= 28–100) 4.765E-07 0.96 0.95–0.98 

 

Excepting the WOMAC total and WOMAC disability scores, which were eliminated 

because of their high level of correlation with all the WOMAC subscales (Rho > 0.8, p < 

0.001) (Annexed 3), the remaining significant variables were used in a stepwise logistic 

regression analysis to define the best covariates-only model to predict radiographic knee 

OA development. The WOMAC stiffness and pain scores also showed a correlation 

above 0.7 with the KOOS symptoms (Rho= -0.825, p= 3.135E-135) and KOOS pain 

scores (Rho= -0.896, p= 1.9363E-191), respectively. However, all of them were 

introduced in the analysis because they belong to different questionnaires. For the set of 

participants included in this study, the regression analysis defined 2 different covariates-

only models (Table 15): model 1, including the age, gender, BMI, frequent bending 

activity, presence of pain in either knee and the KOOS symptoms score; and model 2 

including these same variables plus the history of knee injury. As there was not statistical 
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differences between their predictive capacity in terms of AUC (0.77 (95%CI: 0.73–0.81) 

vs 0.77 (95%CI: 0.73–0.81), p= 9.000E-01) we selected the covariates-only model 1 since 

it was the most parsimonious. 
 

Table 15. Covariates-only models defined by stepwise regression analysis. 

 Covariates-only model 1 Covariates-only model 2 
 OR (95%CI) p value OR (95%CI) p value 
Age 1.05 (1.03–1.08) 6.000E-06 1.06 (1.03–1.08) 2.000E-06 
Gender, female 2.36 (1.58–3.54) 3.100E-05 2.39 (1.58–3.61) 3.400E-05 
BMI 1.16 (1.10–1.22) 3.046E-09 1.16 (1.11–1.22) 2.613E-09 
Frequent bending 
activity 1.72 (1.12–2.65) 1.304E-02 1.61 (1.04–2.50) 3.114E-02 

History of knee 
injury 

  1.57 (0.95–2.59) 7.983E-02 

Pain in either 
knee 2.47 (1.40–4.33) 1.686E-03 2.57 (1.43–4.61) 1.611E-03 

KOOS symptoms 
score 0.97 (0.95–0.99) 7.431E-03 0.98 (0.96–1.00) 2.324E-02 

AUC (95%CI) 0.77 (0.73–0.81) 0.77 (0.73–0.81) 
Specificity 
(95%CI) 0.79 (0.75–0.83) 0.77 (0.72–0.81) 

Sensitivity 
(95%CI) 0.66 (0.59–0.72) 0.68 (0.61–0.74) 

PPV (95%CI) 0.67 (0.62–0.72) 0.65 (0.60–0.70) 
NPV (95%CI) 0.78 (0.75–0.82) 0.79 (0.76–0.83) 

 

We evaluated if the combination of any of the biomarkers-only model to the 

covariates-only model 1 lead to a significant improvement of the capacity to predict the 

incidence of radiographic knee OA. The highest AUC were obtained with the inclusion 

of COMP (AUC 0.82 (95%CI: 0.78–0.85)) or CHI3L1+COMP (AUC 0.82 (95%CI: 

0.79–0.86)) to the covariate-only model. However, only the CHI3L1+COMP plus 

covariates model showed significant higher AUC than the covariates-only model (p= 

4.400E-02). In the Figure 23 could be observed the results from the multivariate logistic 

regression analysis, all together with the metrics and ROC curves comparing both, the 

covariates-only model with the CHI3L1+COMP plus covariates model. For the remaining 

biomarkers plus covariates model, metrics and ROC curves are summarized in the 

Annexed 4. 
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Our definition of radiographic knee OA is being made on the basis of having at least 

one knee with a KL grade 0–1 (target knee) at baseline, which was followed during a 

period of 96 months regardless the diagnostic of the other knee. Among all the patients 

involved in this study, the 50.7% from the incident group and the 24.8% from the not-

incident group had already develop at baseline radiographic knee OA in the off-target 

knee (KL > 2), which was highly associated with the fact of develop radiographic knee 

OA in the followed knee, yielding an OR 3.22 (95%CI: 2.22–4.66, p = 5.949E-10). 

However, the addition of the presence of contralateral OA to the proposed 

CHI3L1+COMP plus covariates prognostic model did not improve the predictive 

capacity (p= 0.597). The Figure 24 reflects the ROC curves of the biomarkers plus 

covariates model with and without adjusting by contralaterality.  
 

Figure 23. Prognostic model for incident radiographic knee OA. A) Metrics for the model 
comparing the covariates-only model 1 with the CHI3L1+COMP plus covariates model. 
B) ROC curves for the biomarker-only model (blue line), covariates-only model 1 (orange 
line), and CHI3L1+COMP plus covariates model (purple line). 

Figure 24. ROC curves for the 
prognostic model combining both, 
biochemical and clinical markers with 
or without the addition of having 
contralateral knee OA at the baseline 
visit. 
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1.4. High levels of CHI3L1 and COMP are associated with the earlier appearance 

of the disease 

In order to assess if different baseline concentrations in sera of CHI3L1 and COMP 

grouped by tertile were significant associated with the probability to knee OA 

development sooner in time KM survival analysis were performed (Figure 25). The mean 

time to incident OA was 57.63 ± 2.79 (95%CI: 52.16–63.10), 71.84 ± 2.63 (95%CI: 

66.69–76.99), and 79.80 ± 2.31 (95%CI: 75.28–84.32) months for the high-, medium- 

and low-levels group, respectively.  
 

 

 

When applying the Log Rank test, significant differences were found for CHI3L1 

between the high-levels group (range= 13.15–277.22 a.u.)  with either, the medium-levels 

(range= 5.75–13.07 a.u., p= 1.350E-04) or the low-levels group (range= 0.88–5.70 a.u., 

p= 9.229E-10), as well as between the medium-levels group with the low-levels group 

(p= 0.019).  

 
In case of COMP, the mean to incident knee OA was 54.24 ± 2.77 (95%CI: 48.81–

59.66), 75.18 ± 2.52 (95%CI: 70.23–80.13), and 79.79 ± 2.30 (95%CI: 75.30–84.29) 

months for the high-, medium-, and low-levels group, respectively. Differences between 

the high-levels group (range= 51.21–164.80 a.u.) were found significant when it was 

compared with both, the medium-levels (range= 32.23–50.98 a.u., p= 2.198E-08) or the 

low-levels group (range= 5.61–32.01 a.u., p= 4.600E-12). However, in the comparison 

between the medium-levels group with the low-levels group, the differences found were 

not statistically significant (p= 0.183). 

Figure 25. KM curve for CHI3L1 (A) and COMP (B) in the OAI participants included in 
this study. X-axis refers the times at which the appearance of the event (to have 
radiographic knee OA) was evaluated. Y-axis refers the percentage of individuals who 
did not have radiographic knee OA at the end of a specific period of time. 
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Defining low-levels group as the group of reference, the impact of the serum 

concentration of CHI3L1 and COMP biomarkers was assessed adjusting by all the 

covariates included in the logistic regression model defined to predict radiographic knee 

OA in this study. As it can be observed in Table 16, the hazard of incident radiographic 

knee OA was only significant increased with higher baseline serum CHI3L1 (1.74 

(95%CI: 1.19–2.55), p= 4.345E-03) and COMP (HR 2.76 (95%CI: 1.91–3.99), p= 

6.916E-08) levels when compared with the corresponding low-levels group.  
 

Table 16. Cox proportional hazards regression model. 

Covariates HR (95%CI) p value 
Age 1.02 (1.00–1.04) 2.085E-02 
Gender, female 1.69 (1.26–2.28) 5.450E-04 
BMI 1.08 (1.05–1.11) 4.608E-07 
Frequent bending activity 1.53 (1.12–2.09) 8.260E-03 
Pain in either knee 2.35 (1.45–3.82) 5.360E-04 
KOOS symptoms score 0.98 (0.97–0.99) 2.382E-03 
Levels of CHI3L1  1.713E-02 
    Medium- vs low-levels 1.45 (0.97–2.16) 6.976E-02 
    High- vs low-levels 1.74 (1.19–2.55) 4.345E-03 
Levels of COMP  2.440E-08 
    Medium- vs low-levels 1.36 (0.90–2.04) 1.443E-01 
    High- vs low-levels 2.76 (1.91–3.99) 6.916E-08 

 

2. AABS AS POTENTIAL PROGNOSTIC MARKERS OF KNEE OA 

2.1. Determination of serum dilution  

Because the arrays used in this project had been stored for two years at the NAPPA 

core at CPD, we decided to run a first assay analysing three replicates of one pooled 

serum sample randomly selected from the incident group, to test the standardized dilution 

at 1:50 and a more concentrated dilution at 1:20. Through visual analysis of one 

experimented researcher, 1:20 dilution showed the optimal sensitivity with minimum 

diffusion (Figure 26).  
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2.2. Identification of autoantibodies associated with the incidence of knee OA 

To search for AAbs in the serum that could be associated with a future development 

of knee OA, a comprehensive AAb profiling against 2125 full-length proteins fused with 

GST was performed by the NAPPA technique at the Biodesign Institute. It was carried 

out comparing pools of serum samples at baseline from two outcomes groups: the incident 

group (n= 100, 10 pools), which contains participants belonging to the incidence 

subcohort from the OAI study who did develop radiographic knee OA during the 96 

months follow-up, and the not-incident group (n= 100, 10 pools), which contains 

participants from the non-exposed subcohort. 
 
For each outcomes group, the mean values and SD of the immunoreactivity levels of 

all the proteins expressed in the array are summarized in the Annexed 1. The analysis of 

the normalized data using the median intensity absolute deviation rule from all the spots 

through all the pooled serum determined a signal cut-off > 1.1 to assure a sufficient 

margin between positive and negative AAbs reactivities. From the 2215 proteins screened 

in the array, immunoreactivity levels over the cut-off was detected against 1031 proteins 

(Annexed 1). Among these, a panel of 6 AAbs (Table 17) was found significant 

modulated between the outcome groups by the Wilcoxon Rank-Sum test (p < 0.05).  

 

Figure 26. Visual comparison of the serum AAb profile in a representative array image 
diluted at 1:20 and 1:50. 
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Table 17. Candidate autoantibodies identified in the screening phase of this study. 

Protein name 
Incident 

Mean (SD) 
(n= 10 pools) 

Not-incident 
Mean (SD) 

(n= 10 pools) 
AUC 

Ankyrin repeat and SOCS box 
protein 7 (ASB7) 1.37 (0.23) 1.06 (0.16) 0.002 

Methionine adenosyltransferase 2 
subunit beta (MAT2b) 

2.82 (0.47) 2.24 (0.35) 0.005 

Diphosphomevalonate decarboxylase 
(MVD) 1.85 (0.27) 1.38 (0.62) 0.002 

Ras-related C3 botulinum toxin 
substrate 3 (RAC3) 1.02 (0.16) 1.28 (0.13) 0.003 

UDP-glucuronosyltransferase 1-7 
(UGT1A7) 2.19 (0.32) 1.86 (0.24) 0.015 

Vacuolar protein sorting-associated 
protein 4B (VPS4B) 1.78 (0.30) 1.42 (0.15) 0.005 

 

In addition, AAbs showing reactivity over the cut-off were qualitatively analyzed by 

an experimented researcher (Figure 27). The visually discernible differences for the 

antigens MAT2b, UGT7A1, RAC3, MVD, and ASB7, demonstrated that the 

normalization criteria employed did neither create signal differences that do not exist, nor 

destroy true signal differences. 
 

 

Figure 27. Visual comparison of immunoreactivity between the incident and not-incident 
group of the panel of 6 AAbs identified by statistical analysis in a representative array 
image. Intensity scale = red > orange > yellow > green. 
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2.3. MAT2b-AAb levels as potential prognosis marker of OA incidence 

In order to confirm the putative ability of any of these AAbs to predict the incidence 

of OA, MAT2b protein was selected to enter the verification phase. This selection was 

based on its role in the formation of S-adenosylmethionine (SAM) as the regulatory 

subunit of the enzyme in charge of the catalysis, S-adenosylmethionine synthetase 2. In 

addition, the biological context network (Figure 28) suggests a bottleneck role of this 

protein in metabolic pathways that are known to be related with OA pathogenesis. 
 

 

 

The results of the baseline levels of AAbs against MAT2b protein in those patients 

who will develop knee OA during the follow up was verified by analysing 354 individual 

sera from the incident subcohorts and non-exposed control group of the OAI study. From 

these 354, 327 did not have relevant radiographic knee OA (KL= 0–1) at the beginning 

of the study in at least one knee and they were include in the statistical analysis; 146 

classified as incident patients (KL > 2) and 181 classified as not-incident patients (KL= 

0–1). Levels of AAb reactivity against MAT2b protein were quantify using the NAPPA-

ELISA technique.  

 

Mean, SD, median and range for both outcome groups were obtained and they are 

summarized in the Figure 29. As the baseline levels of MAT2b-AAbs were not normally 

Figure 28. Biological context network of MAT2b protein by STRING clustering K-
means. 
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distribute (p < 0.05), the Mann-Whitney U test was used to contrast if there were 

significant differences between the two outcomes groups. The differences in the baseline 

levels of this AAb were statistically significant (p= 3.140E-04) being the incident group 

the one who presented the highest reactivities (0.58 ± 0.22 vs 0.49 ± 0.23 a.u.).  

 

 

 

Although the baseline levels of MAT2b-AAb showed a strong association with the 

risk of incident radiographic knee OA (Table 18), yielding an OR 5.99 (95%CI: 2.16–

16.63), this proposed biomarker had a modest capacity to predict the development of knee 

OA by its own, yielding an AUC 0.62 (95%CI: 0.56–0.68).  
 

Table 18. Biomarker assessment in the verification phase. 

 Estimate value 95% CI 
OR (p value) 5.99 (1.000E-03) 2.16 16.63 
AUC 0.62 0.56 0.68 
Specificity 0.39 0.31 0.46 
Sensitivity 0.86 0.81 0.92 
PPV 0.53 0.50 0.57 
NPV 0.78 0.70 0.85 

 

2.4. A MAT2b-AAb plus covariates model to predict incidence of knee OA  

To generate a prognostic covariates-only model we evaluated the same clinical 

variables included in the previous study (Annexed 2). As we can see in the Table 19 

below, participants were also mostly females on its middle age (exceeding the sixties) 

Figure 29. Immunoreactivity levels (a.u.) against MAT2b protein in serum at baseline in 
the incident and not-incident group (A), and box-plot (B) showing the median (horizontal 
line within the box), interquartile range (box), and minimum and maximum value 
(horizontal line outside the box) for each groups (p value over the bracket). 
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with overweight (BMI > 25 kg/m2), whose daily routine include frequent knee bending 

activities. In this study, the proportions of individuals who complain of pain in either 

knees reach almost the double in the incident to the not-incident group. 
 

Table 19. Baseline characteristics of the participants included in this study. 

Covariates Incident 
(n=146) 

No incident 
(n=181) 

Age, mean years (SD) 60.65 (8.51) 56.61 (8.57) 
Sex, n (%) female 98 (67.1) 102 (56.4) 
BMI, mean kg/m2 (SD) 28.93 (4.59) 25.88 (4.14) 
Family history of knee replacement, n (%) yes 21 (14.4) 17 (9.4) 
Frequent knee bending activity, n (%) yes 110 (75.3) 106 (58.6) 
History of knee injury, n (%) yes 39 (26.7) 23 (12.7) 
History of knee surgery, n (%) yes 22 (15.1) 15 (8.3) 
Pain in either knee, n (%)  124 (84.9) 86 (47.5) 
WOMAC index:   

   WOMAC Total score 9.04 (10.96) 2.94 (6.96) 
   WOMAC Disability score 6.06 (7.92) 1.77 (4.93) 
   WOMAC Stiffness score 1.38 (1.48) 0.56 (1.10) 
   WOMAC pain score 1.63 (2.36) 0.61 (1.63) 
KOOS index:   

   KOOS Symptoms score 89.58 (11.17) 95.11 (8.22) 
   KOOS pain score 82.13 (13.51) 95.24 (9.28) 

 

Excepting the family history of knee OA and the history of knee surgery, all 

covariates showed significant association with the incidence of radiographic knee OA 

(Table 20), being the KOOS questionnaires inversely associated with the incidence of 

knee OA, whereas the others were positively associated. The presence of pain in either 

knee showed the highest OR, yielding 6.16 (95%CI: 3.59–10.57), which present a large 

distance with the second OR 2.57 (95%CI: 1.45–4.55) for history of knee injury. These 

significant variables were used to define a covariates-only model by stepwise regression 

analysis. Because the WOMAC total and WOMAC disability subscales showed a Rho 

value > 0.8 (p < 0.05) between them and with the other WOMAC subscales (Annexed 3), 

we decided not to take them into account for the selection of the model. The WOMAC 

stiffness and pain scores also showed a high correlation with the KOOS symptoms (Rho= 

-0.812, p=4.931E-78) and KOOS pain scores (Rho= -0.876, p= 1.057E-104), 
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respectively. However, the four of them were introduced in the regression analysis since 

they are different questionnaires.  

 
Table 20. Univariate analysis of the selected clinical variables 

 

The final covariates-only model included the age, gender, BMI, frequent bending 

activity, history of knee injury, presence of pain in either knee and the WOMAC stiffness 

score as predictive variables, which yielded an AUC 0.83 (95%CI: 0.79–0.87). When we 

evaluated if the inclusion of the levels of MAT2b-AAb to this clinical model improved 

its predictive capacity, we found that the AUC for the MAT2b-AAb plus covariates 

model yielded 0.86 (95%CI: 0.81–0.90), which showed significant differences when it 

was compared with the covariates-only model (p= 1.321E-02). In the Figure 30 could be 

observed the results from the multivariate logistic analysis, together with the metrics and 

ROC curve comparing the covariates-only model with the biomarker plus covariates 

model.  
 

Although in a lower percentage than in the case of the first study presented in this 

thesis, patients included in the incident group for the verification of the reactivity levels 

of MAT2b-AAb, also presented contralateral OA (42.5%). However, the number of 

participants with contralateral OA in the not-incident group was almost inexistent (1.7%), 

Covariates p value OR 95% CI 
Age, years 4.700E-05 1.06 1.03–1.08 
Sex, female 4.757E-02 1.58 1.01–2.49 
BMI, kg/m2 1.439E-08 1.17 1.11–1.24 
Family history of knee replacement, yes 1.414E-01 1.67 0.84–3.30 
Frequent knee bending activity, yes 1.543E-03 2.20 1.35–3.58 
History of knee injury, yes 1.235E-03 2.57 1.45–4.55 
History of knee surgery, yes 5.985E-02 1.95 0.97–3.92 
Pain in either knee, yes 2.972E-11 6.23 3.63–10.68 
WOMAC Total score (range= 0–62) 1.771E-07 1.10 1.06–1.13 
WOMAC Disability score (range= 0–47) 3.749E-07 1.13 1.08–1.19 
WOMAC Stiffness score (range= 0–6) 2.230E-07 1.64 1.36–1.98 
WOMAC pain score (range= 0–13) 4.200E-05 1.35 1.17–1.56 
KOOS Symptoms score (range= 43–100) 4.000E-06 0.94 0.92–0.97 
KOOS pain score (range= 23–100) 7.819E-07 0.94 0.92–0.96 
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leading to a 44.86 (95%CI: 13.68-147.14) times greater risk of radiographic knee 

incidence in the target knee for those patients with contralateral OA.  

 

 

 

Despite this strong association with the future appearance of the disease in the 

followed knee, the AUC yielded after the addition of this variable was 0.90 (95%CI: 

0.87–0.94), which had no significant impact in the predictive capacity in comparison with 

the proposed prognostic model, which combined the reactivity levels of MAT2b-AAb 

with the clinical variables (p = 0.093). The ROC curves of each model is represented in 

the Figure 31.  
 

 
Figure 31. ROC curves for the prognostic model combining both, biochemical and 
clinical markers with or without the addition of having contralateral knee OA at the 
baseline visit. 

 

Figure 31. ROC curves for the prognostic model combining both, biochemical and 
clinical markers with or without the addition of having contralateral knee OA at the 
baseline visit. 

Figure 30. Prognostic model for incident radiographic knee OA in the verification phase. 
A) metrics for the model comparing the covariate-only model with the MAT2b-AAb plus 
covariates model. B) ROC curve for MAT2b-AAb-only model (blue line), covariates-
only model (orange line), and MAT2b-AAb plus covariates model (purple line). 
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2.5. Levels of MAT2b-AAb are associated with the time to OA incidence. 

Finally, the association between the baseline levels of MAT2b-AAb in sera and the 

survival probability to OA incidence in a certain period of time was inferred by survival 

analysis. The mean time to OA incidence was 55.93 ± 3.61 (95%CI: 48.85–63.01), 62.30 

± 3.40 (95%CI: 55.62–68.97), and 79.01 ± 3.18 (95%CI: 72.78–85.24) months for the 

high-, medium-, and low-levels group.  
 

 

 

As represented in Figure 32 above, individuals with low levels (range= 2.00E-3–0.39 

a.u.) had a significantly lower risk to develop knee OA sooner in time than those with 

high (range= 0.60–1.58 a.u., p= 5.000E-06)  or medium (range= 0.39–0.60 a.u., p= 

2.510E-04) levels of MAT2b-AAb. In contrast, there was not significant differences in 

the time to OA incidence when the high- and medium-level group were compared (p= 

0.263). 

 
In addition, this significant impact of the high (p= 2.680E-04) and medium (p= 

7.440E-04) reactivity levels in sera of this AAb in the time to incident knee OA was 

maintained when compared to the low-levels group, adjusting for all the covariates 

included in the proposed prognostic model. As it can be observed in Table 21, the relative 

risk to develop the disorder sooner in time of those participants with high or medium 

levels of MAT2b-AAb was 2.53 (95%CI: 1.56–4.10) or 2.37 (95%CI: 1.46–3.84) times 

higher than the participants with low levels of the AAb. In this regression model, where 

Figure 31. Association of the MAT2b-AAb levels at baseline with the time for 
radiographic knee OA incidence by KM curves in the OAI participants included in the 
study. 
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the time was taken into account, the gender does not have a significant impact in the 

appearance of radiographic knee OA (HR 1.32 (95%CI: 0.91–1.91), p= 1.422E-01).  

 

Table 21. Cox proportional hazards regression model. 

Covariates Hazard ratio (95%CI) p value 
Age 1.04 (1.012–1.06) 2.600E-04 
Gender, female 1.32 (0.91–1.91) 1.422E-01 
BMI 1.08 (1.04–1.12) 2.400E-05 
Frequent bending activity 1.64 (1.10–2.45) 1.583E-02 
History of knee injury 2.74 (1.64–4.57) 1.250E-04 
Pain in either knee 1.51 (1.03–2.22) 3.593E-02 
WOMAC stiffness score 1.15 (1.02–1.30) 2.250E-02 
Levels of MAT2�-AAb  3.700E-04 
    Medium- vs low levels 2.37 (1.46–3.84) 4.690E-04 
    High- vs low levels 2.53 (1.56–4.10) 1.650E-04 
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OA is the one of the most common form of arthritides and one of the major cause of 

chronic pain, stiffness and disability in the elderly. However, due to the current diagnosis 

methods, OA is usually diagnosed when destruction of joint tissue is irreversible. 

Although today there are no drug available which reverse the damage in the cartilage, 

large efforts are ongoing to develop such agents for targeted interventions in pre-

radiological OA. This reinforce the need to improve the existing diagnostic methods, 

which allow a prompt earlier treatment or even detect who is in a risk for OA development 

before the onset of the disease to develop preventive strategies. In this sense, the 

measurement of biochemical markers in blood, urine or synovial fluid samples have been 

shown a great value to detect the asymptomatic molecular phase (pre-radiographic or 

early knee OA) of the disease (Lotz et al., 2014).  

 
Over the years, proteomics has demonstrated its ability to identify proteins with 

potential marker of disease, allowing for the identification of an extensive list of potential 

biochemical biomarkers which may provide an early warning of the initiation of structural 

alterations occurring in the joint allowing an earlier treatment to prevent the joint 

destruction that leads to disability (Kraus et al., 2011). Despite the active research in the 

field, none of this biomarkers stands out as the gold standard or is sufficiently well 

validated and recognized for systematic use in the clinical routine to allow the prediction 

of patients who are at risk of knee OA (Bay-Jensen et al., 2016; Hosnijeh et al., 2015). 

This is mainly due to the lack of validation and qualification studies in large and long 

prospective cohorts, which makes the findings questionable to be considered as robust 

biomarkers for OA (Hunter et al., 2010). 

 
Thus, the first study of this thesis project has focused on the validation of potential 

OA biomarkers by proteomic techniques based on protein arrays in a large number of sera 

from the OAI cohorts. In addition, sera from the OAI cohorts were also used to carried 

out a discovery phase using protein arrays in order to assess the putative utility of AAbs 

as prognostic biomarkers of knee OA. The results from the screening were verified in one 

selected candidate by ELISA-based NAPPA immunoassay.  

 

Protein arrays in the generation process of protein biomarkers 
 

Contemporary quantitative ELISA immunoassays have long been the primary tool 

for the detection of analytes of interest in biological samples for both, life science research 
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and clinical diagnostics since they are be able to accurate diagnose diseases whereby 

characterization of a single analyte is sufficient (Tighe et al., 2015). However, it is 

increasingly known that the measurement of a single biomarker may not be sufficiently 

specific and sensitive to provide accurate information in complex diseases, where 

multiple biological networks become perturbated, such as OA (Guo et al., 2018).  

 
Therefore, in the last years there is a tendency to identify and develop panels of 

specific-biomarkers showing higher sensitivity and specificity than current diagnostic 

methods, especially using body fluid samples as a non-invasive and convenient test, 

which for the case of OA may supplant e.g. the radiological diagnostic techniques, 

avoiding the patient’s exposure to radiation. In fact, the FDA have approved different 

multiplexed proteomics test which are actually integrated in the clinical practice to 

complement clinical assessment of different cancer types: the OVA1 test for assessing 

ovarian cancer risk in women previously diagnosed with a pelvic mass by analyzing the 

serum levels of five proteomic biomarkers (Nolen et al., 2013), and the Xpresys® Lung 

and PreTRM® test for evaluating the cancer risk of lung nodules using selective reaction 

monitoring (SRM)-MS (Kearney et al., 2018).  

 
In the field of rheumatic diseases a multi-biomarker disease activity (MBDA) test 

was develop as a novel index based on 12 serum proteins to complement currently 

available disease activity measures and improve patient care and outcomes in rheumatoid 

arthritis (RA) (Centola et al., 2013), although it clinical usefulness is still being evaluated. 

In addition, Garcia-Moreno and collaborators have published, in the middle of the present 

year, a multiplex assay based on chimeric citrullinated peptides as proof of concept for 

diagnosis of RA (Garcia-Moreno et al., 2019). Here, they prove the suitability to detect 

anti-citrullinated peptide/protein antibodies (ACPAs) –the most specific serological 

biomarkers for RA– in serum samples using a multiplex protein array platform composed 

of eight chimeric citrullinated peptides derived from human proteins which is known that 

abound in the rheumatoid synovial.  
 

Customization of multiplex sandwich immunoassays for xMAP technology 

Recently, bead-based xMAP technology has become, in the protein biomarkers field, 

the most widely adopted multiplexing platform for translating biomarker candidates 

discovered into multiplex protein-based assays for clinical use (Boja et al., 2011). To 
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date, there are a vast selection of proteomic assays for the analysis of cytokines and other 

protein commercially available (Graham et al., 2019). One of the most attractive 

characteristic that contribute to the success of this technology is that it offers a high-

throughput, flexible and open platform allowing users to construct their own custom 

immunoassays to simultaneous detection and quantification of different secreted proteins, 

with equal or higher reproducibility, accuracy and sensitivity than ELISA immunoassays, 

thereby minimizing assay costs, time and sample volume (Tighe et al., 2015). Since in 

1999, Carson and Vignali (Carson et al., 1999) developed one of the earliest multiplex 

capture sandwich immunoassay for the simultaneous quantitation of 15 cytokines on the 

FlowMetrix systems (Luminex Corp.), numerous multiplex sandwich immunoassays 

have been successfully developed to simultaneously detected multiple analytes using 

different Luminex instruments (Hsu et al., 2008; Huang et al., 2019; Urbanowska et al., 

2006; Wu et al., 2018; Xiao et al., 2019).  

 
The first study presented in this thesis focused on the development of a sixplex 

sandwich immunoassay to blinded validate the serum concentrations at baseline of 6 

proteins, previously associated with the osteoarthritic process, as prognostic markers to 

predict the future development of radiographic knee OA among a large number of subject 

included at the OAI cohorts.  

 
From a panel of 20 proteins, integrated in a research project financed by the Fondo 

de Investigación Sanitaria-ISCIII, we selected 6 proteins for validation: CHI3L1 (Mateos 

et al., 2012), which belongs to glycohydrolase family 18 and has been suggested as a 

surrogate marker of synovial inflammation and joint destruction in OA (Huang et al., 

2009); COMP (Fernandez-Puente et al., 2011; Mateos et al., 2012), which plays a role in 

cartilage degradation and it has been highly correlated with different OA processes 

(Tseng et al., 2009); AHSG (Fernández-Costa et al., 2012), which has been related with 

the negative regulation of bone mineralization; RBP4 (Fernandez-Puente et al., 2011), a 

member of the lipocalin family which has recently proven to be produced within OA 

joints (Scotece et al., 2018); TPS1 (Calamia et al., 2014; Calamia et al., 2011), a trimeric 

glycoprotein involved in cell-matrix interactions of various tissues, particularly in 

cartilage (Pfander et al., 2000); and APCS (Fernandez-Puente et al., 2017; Lourido et al., 

2014), which is a member of the pentraxin family of proteins involved classical 

complement pathway of the innate immunity, a key component in the pathogenesis of the 
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disease (Wang et al., 2011). These proteins were selected based on the availability of 

commercial monoclonal and biotin-labeled polyclonal antibodies as well as recombinant 

proteins.  

 
In previous in-house efforts, different monoclonal, biotin-label polyclonal antibodies 

against the target analytes and human recombinant proteins (standard) for each of the 

potential biomarkers were purchased from different sources and tested in singleplex 

assays to work in the xMAP technology. However, the results obtained were not 

satisfactory: for the most of the cases the antibody pairs detected the recombinant protein 

but not the native analyte in the sera or vice versa, neither denaturing the sample nor 

without denaturing. For those cases in which the antibody pairs detected both, the 

standard and the native protein, the obtained MFI signals were lower than desirable and 

it was not reproducible between different test running in distinct days. The difficulty of 

finding suitable antibody pairs and recombinant proteins is a challenge with which we 

knew we were going to face. It is highly known by the Luminex users that the main 

limitation when customizing their own sandwich immunoassay is to find the right 

combination of commercial available antibodies or recombinant proteins, since the 

method of antibody generation and purification can have serious impact on the assay 

(Marx, 2013).  

 
Harold and collaborators demonstrated how a typical capture ELISA immunoassay 

could be converted to the xMAP platform for multiplexing assays using the Human TNF-

a DuoSet ELISA kit and three other antibody pairs from different sources (Baker et al., 

2012). The results of their study indicated that the antibody pair from the DuoSet kit 

performed best with a resulting response of more than 6000 MFI units. Based on it, we 

decided to purchase R&D system DuoSet ELISA kits containing the antibody pairs and 

the recombinant proteins when they were available for the analytes of interest. For those 

cases in which no DuoSet ELISA kits were developed, a monoclonal antibody, biotin-

label polyclonal antibody and recombinant protein previously tested to work as capture 

antibody, detection antibody and standard, respectively, in ELISA immunoassays were 

purchased.  

 
In a first approach, we generate 12-points standard curves and assessed different sera 

dilution for each analyte separately. The top standard concentration used was the one in 

which we obtained the best response in the test prior to the acquisition of the new reagents. 
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Then, two-fold serial dilutions were performed from this top standard concentration up 

to generate a 12-point standard curve for each analyte. In addition, we analyzed in the 

same run duplicates of 2 sera randomly selected from the OAI cohorts to test three 

different dilutions of the sample. To choice the dilutions, we decided first to selected for 

each analyte a dilution in which it had previously seen that the obtained MFI signal for 

the sera was below the MFI for the top standard concentration, and then we performed a 

double concentrated and a double diluted sample dilution. In the case of RBP4 and 

AHSG, downward dilution of the sample was done by diluting up to 1:10000 instead 

1:5000 since in the previous studies it had shown that at this dilution the protein was so 

concentrated in the sample that the signal was lost. The serum dilution for each analyte 

was determined by the best fits the linear range of the curve. Based on this results, we 

limited each standard curve range to 9-point. Although CHI3L1, COMP, RBP4 and 

AHSG standard curves were still found in the exponential phase, we decided to continue 

with the same top standard concentration and not to increase the range because at least 

one of the tested dilution of the sera fit the linear range for all the analytes, which was: 

1:10 for CHI3L1 and COMP, 1:10000 for RBP4, AHSG and TPS1, and 1:20000 for 

APCS. At this point, it is necessary to point out that the dilution of the sera determined 

for the quantification of TPS1 was not the best fitting the linear range of the curve, which 

would have been the 1:5000 dilution. Many of the MFI signals obtained for the sera 

diluted at 1:10000 were found in the lowest part of the linear range, corresponding with 

the area of the curve where the MFI began to be exponentially linear. However, the 

decision to measure this analyte at a dilution not entirely appropriated was based on 

minimizing as much as possible the number of different sandwich immunoassay.  

 
One of the advantages of the bead-based assays over ELISA is the multiplex capacity, 

which reduce the time of the assay and the sample consume by analysing large number 

of analytes in a unique assay. The aim of this study was to develop a sixplex to validate 

simultaneously all the potential biomarkers. However, the differences between the 

required sample dilution for each analyte was too large to include all of them in the same 

multiplex sandwich assay. In that respect, we included CHI3L1 and COMP in a duplex 

sandwich assay, and RBP4, AHSG and TPS1 in a triplex sandwich assay. APCS was 

assessed alone in a singleplex assay. One of the most important requirements in a 

multiplex assay is to address interferences of analytes within the panel (Jani et al., 2016). 

Thus, the specificity of the capture antibodies for its cognate ligand has to be evaluated 
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using mixed coupled beads, individual antigens and mixed detectable antibodies (V., 

2014-2014). Here, we showed that the MFI signals of the cross-reactivity test in each 

multiplex sandwich immunoassay was below 5%. Hence, no significant unspecific 

binding of the off-target analyte to the antibody-coupled beads was observed, supporting 

the great specificity of the capture antibody to recognize the cognate ligand.  

 
Before to start running the immunoassays it should be taken into account that the 

variability in the serum concentration of the proteins between patients may be very wide.  

Thus, we decided to analyze a set of 29 sera randomly selected from the OAI cohorts in 

order to confirm that the selected 9-point curve range was adequate to quantify all the 

analytes at the determined sample dilution in all or the most of the samples. In our case, 

we did not need to make any readjustment in the curve ranges, since for the most of the 

cases, the analyte signal in the sample could be perfectly extrapolated. We only found 

one patient in whom the concentration of RBP4 in serum could not be quantified, because 

it showed a MFI signal outside the curve range. The rest of the patients who were 

excluded was because they showed a negative signal, very close to the background (QC 

beads). 

 
Finally, when evaluating a quantitative assay it is important to assess the LLOD and 

LLOQ and the analytical performance characteristics described in terms of 

reproducibility or precision and  accuracy (FDA, 2018). A multiplex assay requires that 

all analytes meet the analytical-performance criteria. In this context, our results showed 

a precision below 10 % and an accuracy between the 70–130 % for all the analytes, which 

meet the acceptance criteria established by the FDA for the validation of immunoassays 

(Findlay et al., 2000).  
 

NAPPA strategy for the serum autoantibody profiling 

Planar protein arrays have also showed an enormous potential in both, basic and 

translational research for the study of protein interactions, immune profiling, vaccine 

development, clinical diagnostics, and the one in which the second study of this thesis 

was focused, biomarker discovery (Casado-Vela et al., 2014; Diez et al., 2015; Lee et al., 

2013; von der Heyde et al., 2016; Wang D. et al., 2017; Yang et al., 2016; Yu et al., 2016; 

Zhang et al., 2015). For example, Anderson et al. used planar proteins arrays for the 

discovery of a 28-autoantibody biomarker signature of early stage breast cancer 
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(Anderson et al., 2011), which were later used in combination with several protein 

biomarkers to develop Videssa® Breast, the first protein-based blood test for early breast 

cancer detection (Henderson et al., 2016). 

 
Among the different types of planar arrays, the NAPPA technology offers a high-

throughput miniaturized small-volume detection platform in which cDNA molecules 

encoding the desired protein fused with a GST tag are directly printed onto the array 

instead printing proteins (Miersch et al., 2011). This allow proteins to be transcribed and 

translated by a cell-free system directly on-chip and capture in situ by an anti-tag antibody 

just-in-time for assay, avoiding the delicate task and concerns associated with the 

expression of recombinant proteins in heterologous systems, including protein 

purification and stability during storage (Qiu et al., 2011). In fact, in the last years the 

number of studies which have been published based on NAPPA strategy yield almost 

1800 papers (Manzano-Roman et al., 2019).  

 
Among all the applications of the NAPPA technology, one of the most interesting is 

the identification of disease immunosignatures (Sibani et al., 2011), where it has been 

successfully proven in cancer (Anderson et al., 2015; Ewaisha et al., 2016; Fortner et al., 

2017; Katchman et al., 2017), type I diabetes (Bian et al., 2017; Miersch et al., 2013), or 

crohn’s disease (Wang H. et al., 2017). Thus, the second study presented in this thesis 

was focused in the screening of pooled serum samples at baseline from the incident 

subcohorts and the non-exposed control group of the OAI to identify antibody immune 

responses that could be associated with an early stage of the disease using the NAPPA 

strategy. This study was carried out during a three months-visiting fellowship at the 

Virginia G. Piper Center for Personalized Diagnostics (Biodesign Institute), under the 

supervision of Dr. Joshua LaBaer, one of the fathers of the NAPPA technology 

(Ramachandran et al., 2004). Here, the NAPPA protein array core had stored a series of 

each set of arrays (HC1 to HC6) for two years. To select one of the sets to carried out the 

sera screening, we analyzed the list of genes printed on each slide, which was provided 

by the NAPPA core facility. Among all of them, the HC5 was chosen because it was the 

array showing a greater number of encoding protein genes previously related with OA 

(Annexed 1).  

 
Although the printing of cDNA instead of proteins provides a more stable array (Da 

Silva-Baptista et al., 2006), it was the first time in that an array that had been printed and 
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stored for such a long period of time was used. Because of this, we decided to test first 

whether reactivity obtained at 1:50 serum dilution (determined in the SOP from the 

Biodesign Institute) was enough to be detected. Despite the arrays showed a low protein 

display, we were be able to overwhelm this limitation using a more concentrating dilution 

of the sera (1:20). Among the 2,125 proteins captured on the surface of the array, we 

found 6 autoantibodies which showed significant differences in the levels of reactivity 

against their target proteins between the incident and the non-exposed control pooled sera. 

At this point, a characteristic of this approach should be taken into consideration when 

interpreting the findings presented herein: The low sera dilutions employed in this work 

lead to the primary detection of IgM, which, in contrast to IgGs, have no immune 

memory. However, IgMs are not subjected to immunoregulation (Díaz-Zaragoza et al., 

2015) and are formed early in the immune response. Therefore, specific antibodies of the 

IgM class might be important in the diagnosis of chronic diseases (Burrell et al., 2017). 
 

Biochemical markers to predict pre-radiological knee OA by proteomics techniques 

 
Protein as potential prognostic markers  

Despite a large number of proteins have been proposed as potential biomarkers of 

OA, none of them are already being used in the clinical routine to predict the future 

occurrence of the disease, which allow preventive treatment. This is mainly because OA 

is a very complex disease whose pathogenic course can last during decades in a molecular 

silent level. Therefore, the generation process of prognosis biomarkers to predict knee 

OA incidence requires its validation and qualification in large and long prospective trial 

to ensure biomarker test are reliable, reproducible and adequately specific and sensitive, 

as well as to make possible a robust evaluation of its association with the incidence of the 

disease (Kraus, 2018).  

 
To date, the relationship between protein biomarker levels and incident radiographic 

knee OA has been poorly investigated (Henrotin, 2012). Among the most studies 

biomarkers, only the urine CTX-II and serum COMP have been studied in sufficient 

number of studies to draw robust conclusions. In this sense, Dahaghin and collaborators 

(Dahaghin et al., 2005) while studying the risk of hip or knee OA in subjects with hand 

OA from the Rotterdam Study founded that the presence of high levels of CTX-II in urine 

at baseline was independently associated with the risk of the future development of the 
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disease (OR 2.7 (95%CI: 1.5–4.9) for future knee OA and OR 1.8 (95%CI: 0.9–3.6) for 

future hip OA). On the other hand, high serum concentrations of COMP at baseline were 

also associated with incident knee OA (relative risk (RR) 2.87 (95%CI: 1.20–6.89)) in a 

subset of Causasian females from the Chingford cohort (Blumenfeld et al., 2013) and in 

a large cohort from African American and Caucasian men and women (HR 1.39 (95%CI: 

0.90–2.13)) (Golightly et al., 2011). In addition, in a recent study including individuals 

from four different cohorts (Chingford study, TwinsUK, GARP study and Rotterdam 

study), elevate levels of both, CTX-II (log10 OR 2.29 (95%CI: 1.55–5.07)) and COMP 

(log10 OR 9.92 (95%CI: 3.12–89.70)), have also been significant associated incident 

radiographic knee OA even after adjustment for age, gender and BMI (Valdes et al., 

2014).  

 
To carried out this doctoral thesis, we have been fortunate to be able to access sera 

at baseline from participants belonging to the OAI cohorts. This is a very detailed and 

comprehensive longitudinal study were clinical analysis, imaging and biospecimens 

collection have been conducted over a 96-months period, leading to new ways to detect 

and validate relevant biomarker characteristics for assessment the risk for OA (Poole, 

2016). By blindly analysis of 540 sera at baseline from the OAI cohorts that meet with 

the determine incidence criterion, we found significant higher concentrations of COMP, 

CHI3L1, RBP4, AHSG, TPS1 and APCS in those participants classified as incident 

patients, validating the previous results obtained in the discovery phases where these 

analytes were found related with the osteoarthritic disease.  

 
Based in univariable models, five biomarkers were significant associated with case 

status reflecting radiographic knee OA consisting in the increment of a KL grade 0–1 to 

2 or more, in some point of the follow-up period in at least one knee (target knee); these 

included serum COMP, CHI3L1, RBP4, AHSG and APCS. Underscoring the face 

validity of these associations, all of them were positively associated with OA incidence. 

In this study, CHI3L1, COMP and APCS yielded the highest OR for predicting incident 

radiographic knee OA: OR 1.03 for being a case compared with the not-incident group, 

followed by RBP4 (OR 1.02) and AHSG (OR 1.00). These ORs indicate that for every 1 

unit increase in the biomarkers, the odds of incidence in the target knee increased 3%, 2% 

and 0%, respectively. These results suggest that the differences on the order of 1 unit do 

not appear clinically meaningful for these biomarkers. However, on the order of 10 units, 
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the odds of knee OA incidence rise up to ≈ 30% for COMP, CHI3L1 and APCS, and 20% 

for RBP4, and it reached more than 70% and 40%, respectively, per 20-unit increase. For 

AHSG, the odds in the order of neither, 10 nor 20 units still appear clinically 

unmeaningful, and even per 100-unit increase, this biomarkers showed an odds of have 

incident knee OA of only 21%.  

 
In addition, the biomarkers were further evaluated for their ability to predict incident 

knee OA development. Based in the analysis of the AUC, all of this five analytes were 

individually able to predict the future occurrence of the disease in the target knee, 

although none of them reached a clinical usefulness (AUC < 0.7) (Wians, 2009). The 

highest predictive capacity was found in serum APCS, yielding an AUC 0.70, followed 

by COMP and AHSG (AUC 0.68), RBP4 (AUC 0.67) and finally, CHI3L1 (AUC 0.66). 

As far as we know, this is the first study that report a ROC analysis to characterize 

individual biomarker performance in the prediction of incident knee OA. In the literature 

exist different studies that assess the capacity of specific biomarkers to predict incidence 

in several diseases, in which it can be observed higher values of the AUC than we have 

obtained here, reaching levels of 0.85 in case of the protein carbonyl for detecting type II 

diabetes mellitus (T2DM) with associated vascular complications (Goycheva et al., 

2019), and 0.83 for the heat shock protein 70 (HSP70) to predict autism spectrum disorder 

(ASD) (Hamed et al., 2019). However, this findings are hindered by the somewhat small 

sample size (72 and 187, respectively), and should be, therefore, carefully interpreted.  

 
In the OA field, the modest predictive capacity found in the analyzed biomarkers in 

this project is in agreement with the obtained predictive capacity of different biomarkers 

evaluated to predict relevant OA progression. For example, Eckstein and collaborators 

examined the relationship of 15 molecular markers with structural progression based on 

femorotibial cartilage loss assessed by subregional MRI was evaluated in 152 women 

from the A9001140 study (Eckstein et al., 2011). The relatively strongest predictors of 

longitudinal thinning were serum sCTX-I and plasma N-terminal propeptide of type II 

procollagen (pNPII), yielding an AUC 0.65 and 0.64, respectively. The remaining 

biomarkers, including serum concentrations of COMP, showed an AUC < 0.60. In the 

meta-scale published by Valdes and collaborators (Valdes et al., 2014), urine CTX-II also 

showed a poor predictive capacity (AUC ≤ 0.63) for the 4 cohorts focused on progression 

of knee OA. Recently, Kraus and collaborators have investigated a target set of 18 
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biochemical markers (baseline and time-integrated concentrations (TICs) over 12 and 24 

months) as predictors of symptomatic and radiographic knee OA progression (Kraus et 

al., 2017). Among all of them, the best single biomarkers was the 24 M TIC CTX-II 

measured in urine, yielding an AUC 0.58.  

 
In terms of sensitivity and specificity, the potential biomarkers analyzed in the study 

published by Kraus et al. (Kraus et al., 2017) were found to be ≈ 60%. Only COMP 

showed a specificity close to 80%, but also a sensitivity of 53%, i.e. although the number 

of false positives is low, there are many false negatives. In the other way, AHSG showed 

the less number of false negatives, with a specificity of 79%, but the number of false 

positives was high, showing a sensitivity of 53%. This findings were similar to those 

published by Goycheva et al. (Goycheva et al., 2019), where sensitivity and specificity 

of the analyzed proteins ranged from 60% to 70%. Also Hamed et al. (Hamed et al., 2019) 

found specificities around the 60% for HSP70 and H-PGDS (hematopoietic prostaglandin 

D2 synthetase) and 45% for TGFb-2. However, the sensitivity for all of them exceed the 

80%. 

 
Several studies have shown that the combination of two biomarkers were more 

effective for predicting disease progression than a single biomarkers in hip OA (Garnero 

et al., 2006; Mazieres et al., 2006), but also in knee OA (Cahue et al., 2007; Dam et al., 

2009; Sharif et al., 2007). For example, Bedkowska and collaborators have published one 

study this year in which they determined the diagnostic power of non-invasive ovarian 

cancer tumor markers by analysing 140 postmenopausal ovarian cancer patients and 140 

participants including both, benign ovarian cancer and healthy controls (Bedkowska et 

al., 2019). Among all the studied biomarkers, they found that the combination of CA125 

(carbohydrate antigen 125) plus HE4 (human epididymis protein 4) with MMP7, MMP9 

or VEGF (vascular endothelial growth factor) resulted in the best diagnostic capacity with 

the highest AUC value, up to 0.92. In this sense, we also analyzed the predictive capacity 

of the combination of those biomarkers that were quantified in a unique multiplex 

sandwich immunoassay. However, in our case, the combination of 2 or 3 biomarkers did 

not results in a significant increase of the predictive accuracy obtained by a single 

biomarker. Here, the highest AUC was found in the combination of COMP with CHI3L1, 

yielding 0.70, which entail an insignificant difference with the AUC of the independent 

biomarkers.  
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Autoantibodies as a new source of potential biomarkers  

Although OA is not considered an autoimmune disorder, the immune system has 

been related with early disease (Ene et al., 2015). One of the main feature of many 

diseases involving the humoral immune response is the production of AAbs (Gibson et 

al., 2012), which can often be detected at asymptomatic stages (Leslie et al., 2001), having 

the potential to identify susceptible individuals or populations and facilitating prognosis. 

In fact, this idea that AAbs can be used to predict a disease state has been extensively 

studied in different disorders, such as cancer (Chen et al., 2017; Kunizaki et al., 2018; Qi 

et al., 2015; Tan et al., 2009) or type 1 diabetes (Bonifacio et al., 1995; Fabris et al., 

2015), and also in the field of rheumatic diseases, where AAbs have a fundamental value 

in the diagnosis of those with an autoimmune pathogenesis, such as systemic lupus 

erythematosus (SLE) (Putterman et al., 2016) and RA (Aletaha et al., 2010). However, 

existing literature related to the presence of AAbs in OA patients is limited (Du et al., 

2005; Henjes et al., 2014; Jasin, 1985; Ruthard et al., 2018) . Indeed, we present in this 

thesis the largest screening of AAbs as a new source of potential biomarkers performed 

to date in the OA field, and the first study that evaluates the usefulness of OA to stratify 

patients who are at risk of radiographic knee OA development.  

 
Among the panel of 6 AAbs as potential prognostic biomarkers, we selected MAT2b-

AAb to be verified on individual samples at baseline from the OAI cohort, which provides 

a robust evaluation of its ability to classify patients at baseline as incident or not-incident 

during a 96-months period. MAT2b is the regulatory subunit responsible of enhancing or 

inhibiting the synthesis of SAM. This latter compound plays a vital role in methylation, 

transsulfuration and aminopropylation pathways Hosea BlewettHosea Blewett (127), and 

it has been employed as dietary supplement for OA management (adomet) (Hosea 

Blewett, 2008; Kim et al., 2009; Najm et al., 2004; Soeken et al., 2002). Although there 

is no evidence of the direct involvement of MAT2b in OA, its fundamental role in key 

biological processes for the pathogenesis of this disease (Figure 28) turns it into a 

potential marker of interest. 

 

The measurement of the reactivity levels at baseline of MAT2b-AAb in 327 sera 

revealed the presence of significant higher levels in the incident group, compared with 

the not-incident group (0.58 ± 0.22 a.u. vs 0.49 ± 0.23 a.u., p= 3.140E-04). This finding 
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goes in concordance with the results obtained from the discovery phase, were the 

reactivity levels of MAT2b-AAb were also significant higher in the pooled samples from 

the incident subcohorts at baseline of the OAI (p= 0.005).  In addition, this study also 

demonstrates that the presence of AAbs against MAT2b was significant associated with 

the incidence of radiographic knee OA development, which confers an odd 5.99 higher 

to incise per one-unit increase. The predictive capacity of this proposed biomarker was 

lowest than the one founded in the previous study, yielding an AUC 0.62, with 39% 

specificity and 86% sensitivity. In a study analysing 149 patients with esophageal 

squamous cell carcinoma (Chen et al., 2017), the diagnostic accuracy of the levels of 

AAbs against Fascin were as modest as the one showed by MAT2b-AAb, yielding an 

AUC 0.63 with 99% and 24.8% specificity and sensitivity, respectively. Also low AUC 

were found in a meta-analysis for the diagnostic capacity of a panel of 6 tumor-associated 

AAbs (AUC 0.52), although it raised up to 0.90 in a different panel of 7 AAbs   (Tang et 

al., 2017). However, it should be take into account that among the 327 samples analyzed 

by NAPPA-ELISA, 200 were already used as pools in the discovery phase of the study. 

Thus, since the clinical utility of prognostic models hinges on their ability to make 

predictions on new data, a further validation of these results in a different cohort of OA 

incidence would be very valuable to confirm these results. 
 

OA prediction models by combining clinical variable and biochemical biomarkers  
 

It has been postulated that combining biochemical markers with other markers, such 

as imaging, genetic and clinical markers, may facilitate the prognostic of who is in a high 

risk for developing OA (Saberi Hosnijeh et al., 2019). Because of this, for both studies 

presented in this thesis, different clinical factors related with risk of incident OA have 

been analyzed by univariate logistic regression analysis to look for significant predictors 

of radiographic knee OA development which can define a clinical prognostic model of 

OA prediction. The putative utility of biochemical markers to predict knee OA 

appearance was evaluated by comparing the AUC from the covariates-only model with 

the biomarker plus covariate model. It is important to specify that this study is based on 

a Caucasian US population, which may not comprise all the factors that enhance 

predisposition to OA.  
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As shown herein, using stepwise logistic regression with significant predictors 

resulted in 2 different prognostic models of OA incidence in the first study, yielding AUC 

0.77, and a single prognostic model in the second one, yielding AUC 0.83. The difference 

between the covariates including in the models from the first study lies in the absence  

(model 1) or presence (model 2) of the history of knee injury in the target knee, which do 

not cause a significant effect in the predictive accuracy of the model. Therefore, the 

covariates-only model 1 was selected as the best clinical prognostic model for the 

population of study because it matched the same predictive capacity as model 2 with a 

smaller number of variables. The clinical prognostic model defined in the second study, 

also count with the age, gender, BMI, frequent bending activity, history of knee injury, 

pain in either knee as covariates, however, instead the KOOS symptoms score, this model 

included the WOMAC stiffness score. The generation of the models was carried out by 

an forward and backward automatic procedures of the statistic package SPSS, which 

using an algorithm based in prespecified criteria select the variables in function of its 

impact in the population of the study and the prevalence of the clinical outcome.  

 
There are several studies in which different clinical variables are combined to 

generate an OA incidence model in large prospective cohorts. For example, using data 

from individuals in the Rotterdam Study-I, different prediction models using clinical 

factors, questionnaires variables and genetic factors were defined. The model including 

only age, gender and BMI resulted in an AUC of 0.66, and the inclusion of the others 

variables did not improve the model (AUC 0.67) (Kerkhof et al., 2014). In another study, 

Zhang and collaborators defined a model of incidence of radiographic knee OA using 

data from the Nottingham cohort, the OAI cohort and the Genetics of Osteoarthritis and 

Lifestyle (GOAL) study (Zhang et al., 2011). This model, including variables such as age, 

gender, BMI, occupational risk, family history and knee injury yielded the greatest AUC 

in the GOAL population (AUC 0.74), compared to the OAI (AUC 0.60) and the 

Nottingham population (AUC 0.69). Also an AUC of 0.74 was obtained in a prognostic 

model to predict radiographic knee OA analysing individuals from the CHECK cohort, 

which include different demographic and clinical characteristics as well as radiographic 

features (Kinds et al., 2012). In our case, the remarkably high ability to predict the 

appearance of radiographic knee OA using the covariates-only model defined in the 

second study (AUC 0.83) could be due to the high prevalence of the disease in our target 
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population (45% of incident participants). Indeed, the application of this model into the 

whole OAI database yielded a lower AUC (AUC 0.69).  

 
Finally, the putative utility of this biomarkers in a prognostic model of knee OA 

prediction was evaluated. Using the DeLong test we could observe that, despite the 

modest predictive capacity of the biomarkers, the inclusion of CHI3L1 together with 

COMP, and MAT2b-AAb to their corresponding covariates-only models led in both 

cases to an increase in their discriminative ability, yielding AUCs of 0.82 for the 

CHI33L1+COMP plus covariates-model, and 0.86 for the MAT2b-AAb plus covariates 

model. Remarkably, the addition of this biomarkers to the corresponding clinical model 

provides a statistically significant increase in the AUC for both models (p= 0.045 and p= 

0.013, respectively). In a similar study, where the incidence of OA was defined as a KL 

score < 2 at baseline and a KL ≥ 2 at follow-up, addition of urine CTX-II levels in a 

clinical prediction model for knee OA led to an improvement in the AUC of the model, 

but in this case, it was not significant (Kerkhof et al., 2014).  

 
In this latest study, the authors only included individuals with unilateral knee OA. 

However, we found that among the 540 individuals included in the first study, the 35% 

of them showed contralateral OA, as well as the 20% from the 327 participants included 

in the second study. Thus, the presence of contralateral knee OA was included in both, 

the MAT2b-AAb plus covariates model and the CHI3L1+COMP plus covariates model 

in order to evaluate whether the inclusion of this information was really necessary to 

improve the predictive capacity of the models. In both cases it was seen that introducing 

this variable to the model did not improve the predictive capacity of the previous model, 

supporting the idea that it is not necessary to know the patient’s radiographic information 

in order to accurately predict the risk of OA incidence and strengthens the utility of these 

biomarkers to predict incidence of knee OA at the very early stage.  

 
However, the use of patient which already developed radiographic knee OA to 

generate a prognostic model to predict radiographic knee OA development is a huge 

limitation from a clinical point of view and it has to be taken into account. For this reason, 

we also evaluate whether the prognostic ability of these biomarkers were maintained after 

removing all subjects with contralateral OA at baseline. For both cases, the 

CHIL31+COMP-only model and MAT2b-AAb-only model, the prognostic ability 



DISCUSSION 

 158  
 

remaining the same (AUC 0.71 and AUC 0.61, respectively). Nevertheless, although a 

similar increment of the AUC was observed when CHI3L1+COMP were introduced to 

the proper clinical model 1, the difference was not significant (AUC 0.83 vs 0.79, p= 

0.329). Following the same line, no significant increase was found after the inclusion of 

MAT2b-AAb to the clinical model (AUC 0.84 vs 0.83, p= 0.217).  

 
In order to discern whether the loss of significant differences between the clinical 

models, with or without the biomarkers, is due to the elimination of more that 20% of the 

patients in the analysis (the most of them belonged to the incident group) rather than the 

fact to these high serum concentrations of the analytes are linked to the presence of knee 

OA in the off-target knee, a more exhaustive analysis should be done by in a large number 

of subjects with unilateral knee OA.  
 

Survival analysis 
 

Nowadays, KM curves and estimates of survival data have become a familiar way of 

dealing with differing times-to-event, especially when not all the subjects continue in the 

study. To understood KM analysis, it is necessary to know that the lengths of the 

horizontal lines along the X-axis of serial times represent the time until the occurrence of 

the event of interest (death, occurrence of a disease, divorce, etc.) for that interval. On the 

other hand, the vertical distance between horizontals illustrated the change in cumulative 

probability of not having the event as the curve advance (Rich et al., 2010). Horizontal 

lines and attendant probabilities are only constructed based in participants who reached 

the event of interest (known time-to-event). Subjects for who the required data are not 

available (e.g. they drops out) or who not present the event at the end of the study, are not 

appropriated to consider as indicators of the time-to-event and they are indicated in the 

curve as tick marks. 

 
This statistical approach has been widely used in cancer biomarkers (Aguirre-

Gamboa et al., 2013; Albertus et al., 2008; Rinaldetti et al., 2018). For example, Aguirre 

and collaborator have developed a cancer-wide gene expression database, named 

SurvExpress, with clinical outcomes and a web-based tool that provides survival analysis 

and risk assessment of cancer dataset, and they had proved its utility in two biomarkers 

applications (predict recurrence or survival) for breast and lung cancer (Aguirre-Gamboa 

et al., 2013). Recently, the use of KM curve has been also introduced in the rheumatology 
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field to predict mortality in RA by developing a multivariate predictive model using the 

machine learning method Random Survival Forests (RSF) (Lezcano-Valverde et al., 

2017), and to describe the functional outcome of surviving high tibial osteotomy10–20 

years after surgery (van Wulfften Palthe et al., 2018).  

 
Here, we applied KM curves in order to investigate the impact of CHI3L1 and COMP 

serum concentrations, and MAT2b-AAb reactivity levels on the time to OA incidence. 

Our findings show that, using the Log Rank test, CHI3L1 was able to significant separate 

3 different risk groups characterized by their serum concentrations of the biomarker. 

However, both COMP was only able to significant differentiate the risk to develop sooner 

the disease depending on whether they present high or either, medium and low serum 

concentrations. In a similar way, MAT2b-AAb reactivity levels was able to significant 

differentiate between either, the high- or medium-levels group versus the low-levels 

group.  

 
Another method of comparing KM curves is using the HR, which gives a relative 

event rate in the groups at the time that allows adjusting for several variables. The hazard, 

per 1-unit increase, of sooner incidence knee radiographic OA outcome was significant 

elevated in those patients with high, but not medium, baseline CHI3L1 (HR 1.72, p= 

5.189E-03) and COMP (HR 2.81, p=3.600E-08) concentrations after adjustment by all 

the covariates including in the proper covariates-only model, which are: age, gender, 

BMI, frequent of knee bending, pain in either knee and the KOOS symptoms score. The 

HR of incident knee OA based on KL grade between serum levels of COMP and 

incidence of radiographic knee OA in a large cohort has been evaluated before (Golightly 

et al., 2011). In this sense, Golightly et al. investigated the HR of incident radiographic 

knee OA based in the KL grade (n= 542), osteophyte formation (n= 353) and JSN (n= 

446). In concordance with our findings, they also found that the hazard of incident knee 

OA also increased with higher baseline COMP levels, expressed in Napierian logarithm 

(ln), although these associations were only significant in both knee osteophyte and JSN 

outcomes.  

 

With regards to MAT2b-AAbs, we found that both, high (HR 2.34, p= 2.680E-04) 

and medium (HR 2.17, p= 7.440E-04) reactivity levels at baseline in sera of this AAb 

was significant associated with the time when the disorder was manifested after the 
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adjustment for all the variables included in the corresponding clinical model (age, gender, 

BMI, frequent bending activity, history of knee injury, pain in either knee and the 

WOMAC stiffness score), supporting our hypothesis “the higher the levels, the sooner 

the disease appears”.  
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Conclusions related to specific objective 1: To develop and optimize a custom multiplex 

sandwich immunoassay for the bead-based xMAP technology to validate and qualify a panel of 

six potential biomarkers in sera as prognostic biomarkers of incident radiographic knee OA. 

 
1.1. Individual sandwich ELISA immunoassays against COMP, CHI3L1, RBP4, 

AHSG, TPS1 and APCS were successfully converted to the Luminex xMAP 

platform, leading to the development of three different sandwich immunoassays: 

a duplex sandwich immunoassays including CHI3L1 and COMP, a triplex 

sandwich immunoassays including RBP4, AHSG, and TPSI, and a singleplex 

sandwich immunoassays for APCS. 

1.2. Increased baseline serum concentration of CHI3L1, COMP, RBP4, AHSG, and 

APCS were significant associated with the future occurrence of radiographic 

knee OA, which showed a moderate predictive capacity, both individually and 

combined with others in the case of multiplexed immunoassays. 
 
Conclusions related to the specific objective 2: To discover a serum AAbs profile associated 

with the incidence of radiographic knee OA. 

 
2.1.  Serum AAb profiling using the NAPPA technology allowed for the 

identification of a panel of 6 AAbs with significant different baseline reactivity 

levels between incident and not-incident subjects. 

2.2. In the verification phase, baseline reactivity levels of MAT2b-AAb showed a 

moderate predictive capacity as prognostic biomarker of incident radiographic 

knee OA.  
 
Conclusions related to the specific objective 3: To assess whether the inclusion of potential 

protein biomarkers in a clinical prognostic model improve the prediction capacity of incident 

radiographic knee OA.  

 
3.1. In the first study, the inclusion of CHI3L1 together with COMP caused a 

significant increase in the predictive capacity of the corresponding clinical 

prognostic model to predict incident radiographic knee OA. 

3.2. In the second study, the inclusion of MAT2b-AAb in the corresponding clinical 

prognostic model resulted in a significant increase of the predictive capacity of 

incident radiographic knee OA.   
 



CONCLUSIONS 

164 
 

Conclusions related with the specific objective 4: To investigate whether the baseline serum 

levels of the selected biomarkers have any impact in the time at radiographic knee OA appear. 

 
4.1. Both, baseline serum concentrations of two proteins, CHI3L1 and COMP, and baseline 

reactivity levels of MAT2b-AAb showed a significant association with the time of 

radiographic knee OA development, even after the adjustment for all variables included 

in the corresponding clinical prognostic model: the higher the levels of the biomarker, 

the sooner the disease appeared.  
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ANNEXED 1 

 
Table 1. List of genes printed in the HC5 microarray employed in the screening phase of 

the second study in this research (file included in the attached CD). 

 

Table 2. Mean and SD (expressed in arbitrary units (a.u.) of fluorescence) of the 

immunoreactivity levels against all the proteins expressed in the array for the incident 

and not-incident group (file included in the attached CD).  

 

Table 3. Median intensity absolute deviation rule for each protein through all the pooled 

serum (file included in the attached CD).
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WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index; KOOS, Knee injury and Osteoarthritis Outcome Score.

Table 1. Selected clinical variables as predictors of incident knee OA. 

Variable name Description Recoded to target knee 

V00AGE Age (calc, used for study eligibility) NO 

P02SEX Gender, male or female NO 

P01BMI Body mass index (calc) NO 

P02FAMHXKR Mother, father, sister, or brother (blood relative) had knee replacement surgery where all/part of knee replaced (used for 
study eligibility) 

NO 

P02ACTRISK Engage in at least one frequent knee bending activity (calc, used for study eligibility initially) NO 

P01INJR Right knee, ever injured badly enough to limit ability to walk for at least two days YES 

P01INJL Left knee, ever injured badly enough to limit ability to walk for at least two days YES 

P02KSURG Either knee, history of knee surgery (incl. arthroscopy, ligament repair, meniscectomy; used for study elig.) NO 

P02IKPRISK Either knee symptom status at IEI (calc, used for study eligibility) NO 

V00WOMKPR Right knee: WOMAC Pain Score (calc) YES 

V00KOOSKPR Right knee: KOOS Pain Score (calc) YES 

V00WOMSTFR Right knee: WOMAC Stiffness Score (calc) YES 

V00KOOSYMR Right knee: KOOS Symptoms Score (calc) YES 

V00WOMADLR Right knee: WOMAC Disability Score (calc) YES 

V00WOMTSR Right knee: WOMAC Total Score (calc) YES 

V00WOMKPL Left knee: WOMAC Pain Score (calc) YES 

V00KOOSKPL Left knee: KOOS Pain Score (calc) YES 

V00WOMSTFL Left knee: WOMAC Stiffness Score (calc) YES 

V00KOOSYML Left knee: KOOS Symptoms Score (calc) YES 

V00WOMADLL Left knee: WOMAC Disability Score (calc) YES 

V00WOMTSL Left knee: WOMAC Total Score (calc) YES 
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Table 1. Spearman’s correlation between the baseline concentration of the six potential biomarkers selected in the first study of 

this thesis. 
  

CHI3L1 COMP RBP4  AHSG TPS1  APCS 
CHI3L1 Rho 1 0.239** 0.325** 0.309** 0.210** 0.362**  

p value . 2.326E-08 1.452E-14 2.955E-13 1.000E-06 5.749E-18 
COMP Rho 

 
1 0.234** 0.058 0.276** 0.181**  

p value 
 

. 4.615E-08 1.817E-01 1.006E-10 2.500E-05 
RBP4  Rho 

  
1 0.549** 0.649** 0.625**  

p value 
  

. 1.636E-43 5.464E-65 1.593E-59 
AHSG Rho 

   
1 0.419** 0.594**  

p value 
   

. 4.915E-24 2.074E-52 
TPS1  Rho 

    
1 0.516**  

p value 
    

. 1.60E-37 
APCS Rho 

     
1  

p value 
     

. 
 

** Correlation is significant at the 0.01 level. 
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Table 2. Spearman’s correlation between the baseline WOMAC and KOOS subscales for the participants included in the first study of this 

thesis.  

  
WOMAC 
total score 

WOMAC 
disability score 

WOMAC 
stiffness score 

WOMAC knee 
pain 

KOOS 
symptoms 

score 
KOOS knee 
pain score 

WOMAC total 
score  

Rho 1 0.952** 0.832** 0.855** –0.783** –0.877** 
 

p value . 5.643E-277 1.578E-139 3.254E-155 8.946E-113 8.067E-173 
WOMAC 
disability score  

Rho  1 0.731** 0.785** –0.701** –0.816** 
 

p value  . 6.067E-91 1.742E-113 1.417E-80 1.080E-129 
WOMAC 
stiffness score 

Rho   1 0.631** –0.825** –0.679** 
 

p value   . 2.220E-61 3.135E-135 2.266E-74 
WOMAC knee 
pain  

Rho    1 –0.630** –0.896** 
 

p value    . 5.060E-61 1.936E-191 
KOOS 
symptoms score  

Rho     1 0.699** 
 

p value     . 2.673E-80 
KOOS knee pain  Rho      1  

p value      . 
 

** Correlation is significant at the 0.01 level. 
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Table 3. Spearman’s correlation between the baseline WOMAC and KOOS subscales for the participants included in the second study of this 

thesis. 
  

WOMAC total 
score 

WOMAC 
disability score 

WOMAC 
stiffness 

score 
WOMAC 
knee pain 

KOOS 
symptoms 

score 
KOOS knee pain 

score 
WOMAC total 
score  Rho 1 0.944** 0.835** 0.843** –0.782** –0.849** 
 p value . 3.213E-158 4.647E-86 1.845E-89 1.627E-68 6.384E-92 
WOMAC 
disability score Rho  1 0.722** 0.790** –0.683** –0.802** 
 p value  . 7.544E-54 1.088E-70 4.512E-46 1.827E-74 
WOMAC 
stiffness score  Rho   1 0.618** –0.812** –0.658** 
 p value   . 8.969E-36 4.931E-78 6.587E-42 
WOMAC knee 
pain  Rho    1 –0.612** –0.876** 
 p value    . 5.656E-35 1.057E-104 
KOOS 
symptoms score  Rho     1 0.679** 
 p value     . 1.643E-45 
KOOS knee pain Rho      1 
 p value      . 

 

** Correlation is significant at the 0.01 level.

 

 
  



 

 
 

  



 

 
 

205 

Table 1. Regression analysis and metrics for the models generated by combining those biomarkers analyzed at the baseline visit in 

the duplex or triplex sandwich immunoassay. 

 CHI3L1 + COMP RBP4 + AHSG RBP4 + TPS1 AHSG + TPS1 
RBP4 + AHSG + 

TPS1  
OR 

(95%CI) p value 
OR 

(95%CI) p value 
OR 

(95%CI) p value 
OR 

(95%CI) p value 
OR 

(95%CI) p value 

CHI3L1 1.02 
(1.01–1.04) 

2.020E-
04 

1.02 
(1.01–1.02) 

5.600E-
05 

      

COMP 1.03 
(1.02–1.03) 

4.368E-
10 

1.00 
(1.00–1.00) 

9.534E-
03 

      

RBP4     1.03 
(1.02–1.03) 

5.251E-
10 

  1.02 
(1.01–1.03) 

9.031E-
07 

AHSG       1.00 
(1.00–1.00) 

1.000E-
06 

1.00 
(1.00–1.00) 

5.733E-
03 

TPS1     0.98 
(0.97–0.99) 

1.360E-
04 

1.00 
(0.99–1.00) 

2.984E-
01 

0.98 
(0.97–0.99) 

9.500E-
05 

AUC 
(95%CI) 0.70 (0.65–0.75) 0.69 (0.65–0.74) 0.66 (0.62–0.71) 0.68 (0.63–0.72) 0.68 (0.64–0.73) 

Specificity 
(95%CI) 0.70 (0.65-0.75) 0.69 (0.62–0.72) 0.59 (0.54–0.65) 0.51 (0.45–0.56) 0.64 (0.59–0.69) 

Sensitivity 
(95%CI) 0.64 (0.58-0.71) 0.63 (0.56–0.69) 0.64 (0.57–0.70) 0.82 (0.77–0.87) 0.63 (0.57–0.70) 

PPV 
(95%CI) 0.57 (0.52-0.62) 0.54 (0.50–0.59) 0.50 (0.45–0.54) 0.51 (0.48–0.54) 0.53 (0.48–0.69) 

NPV 
(95%CI) 0.76 (0.72-0.79) 0.74 (0.70–0.78) 0.72 (0.68–0.77) 0.82 (0.77–0.86) 0.74 (0.70–0.78) 
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Table 2. Regression analysis and predictive accuracy for the models generated by the combination of baseline serum concentrations of CHI3L1 

or COMP with the covariates-only model 1. 
 

CHI3L1 + covariates model 1 COMP + covariates model 1  
OR (95%CI) p value OR (95%CI) p value 

Age 1.05 (1.02–1.07) 2.630E-04 1.04 (1.01–1.07) 2.147E-03 
Gender, female 2.39 (1.59–3.62) 3.300E-05 2.56 (1.65–3.96) 2.500E-05 
BMI 1.15 (1.10–1.21) 2.716E-08 1.18 (1.12–1.24) 9.056E-10 
Frequent bending activity 1.60 (1.03–2.47) 3.527E-02 1.86 (1.17–2.94) 8.717E-03 
Pain in either knee 2.48 (1.39–4.43) 2.125E-03 3.25 (1.74–6.08) 2.240E-04 
KOOS symptoms score 0.97 (0.95–0.99) 6.245E-03 0.97 (0.95–0.99) 8.619E-03 
CHI3L1 1.02 (1.01–1.03) 9.330E-04   
COMP 

  1.03 (1.02–1.04) 3.229E-12 
AUC (95%CI) 0.79 (0.75–0.83) 0.82 (0.78–0.85) 
Specificity (95%CI) 0.68 (0.63–0.73) 0.67 (0.62–0.72) 
Sensitivity (95%CI) 0.78 (0.73–0.84) 0.84 (0.79–0.89) 
PPV (95%CI) 0.61 (0.57–0.65) 0.61 (0.58–0.65) 
NPV (95%CI) 0.83 (0.80–0.87) 0.87 (0.83–0.91) 
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Table 3. Regression analysis and predictive accuracy for the models generated by the combination of baseline serum concentrations of RBP4, 

AHSG or TPS1 (alone or combined) with the covariates-only model 1. 
 

RBP4 + covariates 
model 1 

AHSG + covariates 
model 1 

TPS1 + covariates  
model 1 

RBP4+AHSG + 
covariates model 1 

AHSG+TPS1 + 
covariates model 1 

RBP4+AHSG+TPS1 + 
covariates model 1  

OR 
(95%CI) p value OR 

(95%CI) p value OR 
(95%CI) p value OR 

(95%CI) p value OR 
(95%CI) p value OR 

(95%CI) p value 

Age 1.05  
(1.02–1.07) 7.200E-05 1.05  

(1.03–1.08) 1.000E-05 1.05  
(1.03–1.08) 1.500E-05 1.05  

(1.03–1.08) 6.000E-05 1.05  
(1.03–1.08) 1.600E-05 1.05  

(1.02–1.07) 1.230E-04 

Gender, 
female 

2.35  
(1.55–3.55) 5.300E-05 2.39  

(1.59–3.61) 3.100E-05 2.30  
(1.53–3.45) 5.700E-05 2.37  

(1.57–3.59) 4.500E-05 2.39  
(1.58–3.60) 3.400E-05 2.44  

(1.60–3.72) 3.300E-05 

BMI 1.15  
(1.10–1.21) 1.310E-08 1.15  

(1.09–1.20) 6.375E-08 1.16  
(1.10–1.22) 5.327E-09 1.15  

(1.09–1.21) 4.789E-08 1.14  
(1.09–1.20) 1.109E-07 1.15  

(1.09–1.21) 8.869E-08 

Frequent 
bending 
activity 

1.61  
(1.04–2.49) 3.454E-02 1.64  

(1.07–2.54) 2.460E-02 1.70  
(1.11–2.62) 1.553E-02 1.60  

(1.03–2.48) 3.773E-02 1.65  
(1.07–2.55) 2.379E-02 1.60  

(1.03–2.50) 3.880E-02 

Pain in either 
knee 

2.23  
(1.25–3.96) 6.482E-03 2.16  

(1.22–3.82) 8.539E-03 2.38  
(1.36–4.19) 2.575E-03 2.14  

(1.20–3.83) 1.026E-02 2.12  
(1.20–3.77) 9.992E-03 2.12  

(1.18–3.82) 1.208E-02 

KOOS 
symptoms 
score 

0.97  
(0.95–0.99) 6.175E-03 0.97  

(0.95–0.99) 6.333E-03 0.97  
(0.95–0.99) 6.610E-03 0.97  

(0.95–0.99) 6.178E-03 0.97  
(0.95–0.99) 7.359E-03 0.97  

(0.95–0.99) 1.033E-02 

RBP4 1.02  
(1.01–1.02) 5.000E-05     1.01  

(1.01–1.02) 1.057E-03   1.02  
(1.01–1.03) 2.400E-05 

AHSG   1.00  
(1.00–1.00) 2.245E-03   1.00  

(1.00–1.00) 2.206E-01 1.00  
(1.00–1.00) 2.046E-03 1.00  

(1.00–1.00) 1.850E-01 

TPS1     1.00  
(0.99–1.01) 6.245E-01   1.00  

(0.99–1.01) 4.931E-01 0.98  
(0.97–0.99) 1.103E-03 

AUC (95%CI) 0.79 (0.75–0.83) 0.78 (0.74–0.82) 0.76 (0.72–0.80) 0.80 (0.76–0.83) 0.78 (0.74–0.82) 0.79 (0.75–0.83) 
Specificity 
(95%CI) 0.64 (0.59–0.69) 0.76 (0.71–0.80) 0.61 (0.55–0.66) 0.74 (0.69–0.79) 0.76 (0.71–0.80) 0.62 (0.57–0.68) 

Sensitivity 
(95%CI) 0.83 (0.77–0.88) 0.70 (0.64–0.76) 0.82 (0.76–0.87) 0.74 (0.68–0.80) 0.70 (0.63–0.76) 0.84 (0.79–0.89) 

PPV (95%CI) 0.59 (0.56–0.63) 0.64 (0.60–0.69) 0.57 (0.53–0.61) 0.64 (0.59–0.69) 0.64 (0.59–0.69) 0.58 (0.55–0.62) 
NPV (95%CI) 0.86 (0.82–0.89) 0.80 (0.77–0.84) 0.84 (0.80–0.89) 0.82 (0.78–0.85) 0.80 (0.77–0.83) 0.87 (0.83–0.90) 
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Table 4. p values from the comparison between the biomarkers plus covariates model 1 with the covariates-only model 1. 
 

Covariates-only model 1 
CHI3L1 + covariates model 4.797E-01 
COMP + covariates model 7.426E-02 
CHI3L1+COMP + covariates model 4.476E-02 
RBP4 + covariates model 3.614E-01 
AHSG + covariates model 7.059E-01 
TPS1 + covariates model 8.946E-01 
RBP4+AHSG + covariates model 3.213E-01 
AHSG+TPS1 + covariates model 7.419E-01 
RBP4+AHSG+TSP1 + covariates model 3.654E-01 
APCS + covariates model 3.540E-01 
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Figure 1. (A) ROC curves for CHI3L1 (orange line) or COMP (purple line) plus covariates model 1; (B) Biomarkers plus covariates model 1 

generated from the triplex sandwich immunoassay. RBP4 (orange line), AHSG (purple line), TPS1 (green line), RBP4+AHSG (yellow line), 

AHSG+TPS1 (pink line) or RBP4+AHSG+TPS1 (grey line) plus covariates model 1; (C) APCS plus covariates model 1 (orange line). In all the 

graphics, the blue line represents the ROC curve for the covariates-only model 1. 
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RESUMEN 

Las articulaciones diartroidales son las más numerosas y perfeccionadas del cuerpo 

humano, tanto desde el punto de vista fisiológico como anatómico, y poseen gran 

movilidad, permitiendo el movimiento y autonomía de las personas. Están formadas por 

diversas estructuras: los huesos, los músculos y tendones (encargados del mantenimiento 

de la estabilidad articular), la bursa o bolsa sinovial (encargada de disminuir la fricción 

del hueso con los músculos, tendones y la piel que envuelven la articulación), la capsula 

articular y el cartílago hialino. La cápsula articular cierra la cavidad articular mediante 

dos capas: una capa externa que es fibrosa y una interna sinovial, la cual se encarga de la 

secreción del líquido sinovial que lubrica la articulación y nutre el cartílago, un tejido 

altamente especializado que recubre las superficies de los huesos en la articulación, 

facilitando el movimiento del esqueleto sin la aparición del dolor. En esencia, el cartílago 

hialino es un tejido alinfático, aneural y avascular que está compuesto por una abundante 

matriz extracelular (MEC) y única población celular altamente escasa (1–2% del volumen 

total), los condrocitos, encargados de sintetizar y mantener los distintos componentes de 

la MEC, entre los que se encuentran principalmente, el colágeno tipo II, los 

proteoglicanos y los glucosaminoglucanos.  

 
Una de las enfermedades que afectan a las articulaciones diartroidales es la artrosis (OA), 

la cual se define como una enfermedad que afecta a toda la articulación y se caracteriza 

por estrés celular y degradación de la MEC iniciada por micro y macro lesiones que 

activan respuestas de reparación maladaptativas, incluyendo rutas pro-inflamatorias de la 

inmunidad innata. La enfermedad se manifiesta primero como alteraciones a nivel 

molecular debidas al metabolismo anormal de la articulación (predominancia de los 

procesos catabólicos destructivos sobre los procesos anabólicos productivos), a las que 

siguen alteraciones anatómicas y fisiológicas caracterizadas por la degradación del 

cartílago articular, remodelamiento óseo, formación de osteofitos, inflamación sinovial y 

pérdida de la función normal de la articulación, dando finalmente lugar a la aparición de 

la sintomatología típica de dolor crónico y pérdida de movilidad de la OA. 

 
La OA es la enfermedad musculoesquelética más prevalente a nivel mundial, siendo la 

principal causa de discapacidad entre la tercera edad. Se estima que aproximadamente un 

10% de la población adulta occidental (mayores de 60 años) presenta algún tipo de grado 

de OA, siendo mayor la prevalencia entre la población femenina. A pesar de la gran 



 

212 
 

importancia de la enfermedad, la elevada complejidad de la OA, que incluye diversos 

subtipos y fenotipos donde los síntomas pueden aparecer sin signos radiográficos o 

viceversa, hacen que sea muy difícil conocer la etiología exacta de la enfermedad.   

 
En la actualidad, el diagnóstico de la OA se lleva a cabo mediante exploración física del 

paciente, y si es necesario con radiografía convencional (RC), resonancia magnética 

(RM) nuclear o artroscopia. Sin embargo, estos métodos de diagnóstico no son lo 

suficientemente sensibles como para detectar la enfermedad en las etapas iniciales, que 

son asintomáticas y pueden tener lugar durante décadas, y como consecuencia, el 

diagnóstico se produce en etapas muy avanzadas. Además, la OA no tiene cura. A pesar 

de los esfuerzos en desarrollar fármacos modificadores de la enfermedad (FAME), los 

tratamientos farmacológicos accesibles en la actualidad son sintomáticos, limitándose a 

controlar el dolor sin ser capaces de frenar la evolución de la misma, siendo el reemplazo 

de la articulación por prótesis la única solución en los estados avanzados. Todo esto, 

resalta la importancia de contar con métodos de diagnóstico molecular de la OA en su 

fase más temprana y asintomática, que permitan establecer lo antes posible estrategias 

preventivas.  

 
En este sentido, la irrupción de la proteómica en la última década ha permitido grandes 

avances en la búsqueda de marcadores bioquímicos, secretados por el cartílago, hueso o 

compartimento sinovial, que reflejen los cambios en el metabolismo o degradación de la 

articulación. Empleando muestras de fluidos corporales como suero, plasma u orina, de 

pacientes con OA y controles, varios estudios proteómicos han conducido a la 

identificación de una larga lista de proteínas diferenciales que pueden tener potencial 

utilidad biomarcadora para el diagnóstico precoz, pronóstico y desarrollo de fármacos 

para el tratamiento de la OA. Sin embargo, ninguno de estos candidatos han sido 

validados en la clínica, principalmente debido a la ausencia de estudios de validación que 

incluyan grandes números de muestras de pacientes que cuenten con un extenso 

seguimiento tanto clínico, como de imagen, permitiendo estratificar a los pacientes y 

definir de manera precisa el valor del biomarcador encontrado en la OA. Por lo tanto, no 

es de extrañar la aparición, en los últimos años de distintos estudios de cohortes, como es 

el caso de la cohorte de la Osteoarthritis Initiative (OAI), un estudio multicéntrico, 

observacional longitudinal y prospectivo que posee datos clínicos de evaluación, 

imágenes y un repositorio de muestras biológicas de un elevado número de pacientes, 
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reclutados entre 2004 y 2006, y cuyo seguimiento continúa en la actualidad. Este estudio 

divide a los pacientes en tres subcohortes: de progresión, donde los participantes 

presentan OA desde el inicio del estudio; de incidencia, con participantes que no tienen 

OA sintomática ni radiográfica desde el inicio pero escogidos en base a la presencia de 

ciertos factores de riesgo de la enfermedad; y no expuestos, un grupo control. Este diseño 

de estudio hace de la OAI una población ideal para estudios de incidencia y progresión 

de la enfermedad. En nuestro grupo de investigación contamos con muestras de suero de 

las tres subcohortes. 

 
Actualmente, existe una tendencia a creer que en enfermedades tan complejas y 

heterogéneas como la OA, la identificación de un único biomarcador es insuficiente para 

obtener información fiable sobre la enfermedad. Es por eso que hoy en día, el interés se 

centra en la realización de ensayos múltiplex para validar paneles de proteínas en amplias 

cohortes de pacientes, con el fin de avanzar en el flujo de desarrollo de nuevos 

biomarcadores y cualificar su uso en función de la clasificación BIPEDS, desarrollada 

como marco para el uso de estas moléculas en la rutina clínica: de alcance de la 

enfermedad (Burden of disease), de investigación (Investigative), de pronóstico 

(Prognosis), de eficacia de la intervención (Efficacy of intervention), de diagnóstico 

(Diagnosis) o de seguridad (Safety). Para ello, tienen gran valor las tecnologías de 

proteómica dirigida, tales como la tecnología de esferas de Luminex, no solo debido a su 

capacidad para analizar simultáneamente múltiples analitos, sino también por su 

aplicabilidad en estudios de altos rendimientos, tales como los ensayos clínicos.  

 
La Unidad de Proteómica del Grupo de Investigación de Reumatología (GIR) ha 

trabajado en el campo de los biomarcadores de OA aplicando dos pilares esenciales del 

proyecto proteoma humano (HPP) para la identificación y análisis de estos candidatos: la 

espectrometría de masas, mediante ensayos de monitorización de reacción múltiple 

(MRM) y la proteómica de afinidad o microarrays de proteínas. El resultado global de 

estos análisis ha sido una lista de 20 proteínas candidatas con potencial biomarcador para 

la OA. Una vez identificadas estas proteínas, el siguiente paso lógico es su validación y 

cualificación en un gran número de muestras, que permita finalmente materializar este 

conocimiento en un producto de utilidad clínica. Este salto de la investigación básica a la 

posible aplicación clínica es el foco principal de esta tesis doctoral. 

 



 

214 
 

El objetivo de la primera parte de este proyecto se focaliza en la validación de seis de las 

proteínas incluidas en el panel anteriormente mencionado, mediante su cuantificación 

absoluta a través de técnicas de immunoensayos múltiples basadas en  tecnología de 

esferas de Luminex, para su uso como marcadores de pronóstico de OA que permitan 

predecir la aparición futura de la enfermedad entre personas que no la padecen. Las seis 

proteínas seleccionadas fueron: COMP (cartilage oligomeric matrix protein), CHI3L1 

(chitinase-3-like protein 1), RBP4 (retinol binding protein 4), AHSG (alpha-2-HS-

glycoprotein), TPS1 (thrombospondin 1), y APCS (serum amyloid P-component). El 

análisis se realizó directamente en muestras de suero procedentes de pacientes de la 

cohorte de la OAI, facilitando así su aplicabilidad en la práctica clínica mediante una 

intervención que permita:  (1) evitar métodos actuales más invasivos (p.ej. biopsias) o 

perjudiciales para la salud (p.ej. radiografías) y (2) que minimice el coste del test. 

 
Para el desarrollo de los immunoensayos cuantitativos se adquirieron kits preparados para 

ensayos tipo ELISA (acrónimo del inglés Enzyme-Linked ImmunoSorbent Assay), que 

incluían un anticuerpo monoclonal de captura, un anticuerpo policlonal de detección 

marcado con biotina y una proteína recombinante para usar como estándar, frente a las 

proteínas COMP, CHI3L1, RBP4 y APCS . Como no existían estos kits frente TPS1 y 

AHSG, se adquirieron por separado una pareja de anticuerpos y una proteína estándar que 

hubieran sido previamente testadas para su uso en ensayos ELISA.  

 
En un principio, la optimización de la curva estándar y dilución necesaria de la muestra 

se llevó a cabo en ensayos individuales. Así, se generó para cada analito una curva 

estándar asimétrica de nueve puntos, en la que el eje “X” representaba el logaritmo de la 

concentración, y el eje “Y” la intensidad media de fluorescencia (IMF). La dilución 

optima de suero que se seleccionó para la cuantificación del analito en la muestra fue 

aquella cuya IMF se encontrara en el rango lineal de la curva. Una vez optimizados estos 

parámetros, se agruparon en un mismo array en suspensión aquellas proteínas que 

coincidían en la dilución necesaria de la muestra, quedando por un lado, un array dúplex 

que incluía a COMP y CHI3L1 (dilución de suero 1:10), un array tríplex que incluía 

RBP4, AHSG y TPS1 (dilución de suero 1:10000), y un array individual para APSC 

(dilución de suero 1:20000). Analizando de manera individual la concentración más alta 

de estándar utilizada en la curva, frente al mix de anticuerpos de captura y al mix de los 

anticuerpos detección, encontramos que las señales de fluorescencia para los analitos no 
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diana estaban, tanto para el caso del ensayo dúplex como el tríplex, por debajo del 5% de 

la señal obtenida para el analito diana, demostrando la especificidad de la pareja de 

anticuerpos frente a su ligando connato y permitiendo el análisis simultáneo de dichas 

proteínas.  

 
Por otro lado, hay que tener en cuenta que uno de los inconvenientes inherentes en el 

campo de los biomarcadores es la gran variabilidad que puede haber entre los pacientes. 

En nuestro caso, el análisis de 29 muestras de suero escogidas al azar de la cohorte de la 

OAI demostró que las condiciones seleccionadas para cada una de las proteínas permitían 

cuantificar la concentración de las mismas en todas, o la mayor parte de las muestras. 

Además, tras analizar las características analíticas de los tres immunoensayos generados 

se comprobó que dicha cuantificación se llevaba a cabo con una precisión por debajo del 

10% y una exactitud que oscilaba entre el 90% y el 112%, cumpliendo con los criterios 

que establece la Administración de Alimentos y Medicamentos o FDA (acrónimo del 

inglés Food and Drug Administration).  

 
Una vez generados los ensayos y comprobado su aplicabilidad, se analizaron a ciegas 749 

muestras de suero a tiempo cero procedentes de pacientes de la cohorte de la OAI. De 

estos 749, solo 540 cumplían el criterio establecido de incidencia de OA radiográfica de 

rodilla, el cual se basaba en la no presencia de OA radiográfica evidente (grado 0–1) en 

al menos, una rodilla, que sería establecida como rodilla diana y seguida durante 96 meses 

para evaluar el desarrollo de la enfermedad (aumento a grado 2 o más en algún punto del 

seguimiento). Una vez clasificados los individuos como incidentes o no incidentes, se 

llevó a cabo el análisis de los datos mediante el uso de técnicas estadísticas no 

paramétricas, las cuales revelaron la existencia de concentraciones basales 

significativamente mayores (p < 0.05) en aquellas personas que habían incidido durante 

el seguimiento para los seis candidatos analizados. Además, de estos seis candidatos, 

COMP, CHI3L1, RBP4, AHSG y APCS demostraron una asociación significativa con la 

futura aparición de la enfermedad, donde el aumento de 10 unidades de concentración de 

dichas proteínas confería un riesgo de incidir del 30% más en el caso de COMP, CHI3L1 

y APCS, del 20% en el caso en el caso de RBP4, y del 3% en el caso de AHSG. Sin 

embargo, la capacidad individual que mostraron estos marcadores para predecir el 

desarrollo de OA de rodilla fue modesta (entre 0,66–0,68), siendo APCS la única proteína 

que alcanzó un área bajo la curva (AUC) de 0,70. Con la finalidad de intentar mejorar 
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dicha capacidad de predicción se combinaron en un mismo modelo los marcadores que 

fueron simultáneamente analizados, pero ninguna de las combinaciones dio lugar una 

mejora significativa.  

 
Aun así, y a pesar de la modesta capacidad predictiva que mostraron todos los potenciales 

marcadores, incluso cuando se combinaban entre sí, quisimos evaluar si incluirlos, 

individualmente o combinados, en un modelo pronóstico para predecir la incidencia de 

OA de rodilla, formado por variables clínicas, producía un aporte significativo en el AUC. 

Tras seleccionar distintas variables relacionadas con el riesgo de desarrollar OA, se 

realizó un análisis de regresión logístico por pasos para definir el mejor modelo 

pronóstico clínico para el conjunto de pacientes que se habían incluido en el análisis. Este 

modelo quedó finalmente formado por la edad, el sexo, el índice de masa corporal (IMC), 

participar en alguna actividad que conlleve flexiones frecuentes de las rodillas, presencia 

de dolor en al menos una rodilla, y la subescala “symptoms” del cuestionario KOOS 

(acrónimo del inglés Knee injury and Osteoarthritis Outcome Score) referida a la rodilla 

diana. De todos los modelos generados al incluir los biomarcadores solubles, solo aquel 

que contaba con la combinación de COMP y CHI3L1 mostró una capacidad de predicción 

que superaba de manera significativa a la obtenida en el modelo con solo las variables 

clínicas (AUC 0,82 vs 0,77, p= 0,044).   

 
Como el panel formado por CHI3L1 y COMP parece tener cierta utilidad en la rutina 

clínica, decidimos investigar si los niveles basales en suero de estos marcadores, al 

dividirlos en terciles, tenían alguna relación con el tiempo en el que aparecía la OA 

utilizando las curvas de Kaplan-Meier (KM). El análisis reveló que niveles altos de ambos 

analitos se asociaban significativamente con un desarrollo más temprano de la OA de 

rodilla. Además realizando un análisis de regresión de Cox, que permite el ajuste por las 

variables clínicas anteriormente mencionadas, se pudo observar que el riesgo de 

desarrollar la enfermedad con anterioridad en el tiempo, cuando se presentan niveles 

basales altos de estos marcadores, es de 1,74 veces mayor por cada unidad de 

concentración incrementada en CHI3L1, y 2,76 veces mayor por cada unidad de 

concentración incrementada en COMP.  

 
Tal y como se ha mencionado al inicio de este resumen, la OA es una enfermedad que 

afecta a toda la articulación y que está caracterizada, generalmente, por el deterioro del 

cartílago articular. Sin embargo, y aunque se conocen muchos de los procesos implicados 
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en el desarrollo de la patología, las causas exactas por las cuales se inicia permanecen aún 

desconocidas. Una de las teorías que en los últimos años está tomando gran importancia, 

a pesar de que la artrosis no es considerada como una enfermedad autoinmune, es la que 

implica a la sistema inmune como uno de los componentes principales que desencadenan 

todo el proceso patológico. Entre las principales características de la respuesta humoral 

innata, se encuentra la producción de anticuerpos patogénicos que reconocen antígenos 

propios del cuerpo o autoanticuerpos (AAbs). En un trabajo llevado a cabo por nuestro 

grupo de investigación, se demostró la presencia de AAbs en suero de pacientes con OA. 

En base a esto, y a que, como ya se ha demostrado en otras patologías, los AAbs pueden 

ser detectados en los estadios asintomáticos de la enfermedad, confiriéndoles cierto 

potencial para identificar individuos susceptibles, decidimos evaluar la presencia de un 

perfil de AAbs asociado la incidencia de OA de rodilla. 

 
Para cumplir con este objetivo se diseñó un estudio de descubrimiento de biomarcadores 

en dos fases, una fase de screening y una fase de verificación. En la primera fase se evaluó 

un perfil de AAbs frente a 2125 proteínas humanas distintas mediante la tecnología 

NAPPA (del inglés Nucleic Acid Programmable Protein Array) utilizando pooles de 

muestras de suero a tiempo cero de la cohorte de la OAI pertenecientes a pacientes que 

desarrollarían (incidentes, n=10) o no (no incidentes, n=10) OA radiográfica de rodilla 

durante los 96 meses de seguimiento. Cada pool de muestras se construyó mezclando 

volúmenes idénticos de 10 sueros individuales. Este análisis llevó a definir un panel de 

seis AAbs que estaban diferencialmente modulados frente a seis de las proteínas 

expresadas en el array entre los individuos incidentes y no incidentes, entre las cuales 

escogimos la proteína MAT2b (del inglés, methionine adenosyltransferase II subunit 

betha) para llevar a cabo la fase de verificación analizando individualmente 354 muestras 

de la cohorte OAI, 200 de las cuales ya se habían utilizado en la fase anterior. De los 354 

participantes seleccionados, el análisis mediante pruebas estadísticas no paramétricas de 

los 327 individuos que cumplían con el criterio de OA radiográfica definido arriba 

verificó que aquellos que desarrollaron la enfermedad durante el tiempo de seguimiento 

mostraban niveles basales significativamente elevados de AAbs frente a MAT2b frente a 

los que no incidieron.  

 
La capacidad predictiva de estos AAbs fue también moderada (AUC 0,62), a pesar de que 

su asociación con la aparición de OA de rodilla reveló que el riego de incidir era 5,99 



 

218 
 

veces mayor por cada incremento en una unidad, expresada en unidades arbitrarias (u.a.) 

de fluorescencia. Sin embargo, al introducir este AAb en un modelo clínico definido 

mediante un análisis de regresión por pasos, compuesto por edad, sexo, IMC, participar 

en alguna actividad que conlleve flexiones frecuentes de las rodillas, historia previa de 

lesión en la rodilla diana, presencia de dolor en al menos una rodilla, y la subescala 

“stiffness” del cuestionario WOMAC (acrónimo del inglés Western Ontario and 

McMaster Universities Osteoarthritis Index) referida a la rodilla diana, la capacidad 

predictiva del modelo se vio significativamente aumentada, reforzando la hipótesis de 

que los niveles de AAb frente a la proteína MAT2b tienen cierto potencial biomarcador 

en la rutina clínica para identificar aquellos pacientes susceptibles de desarrollar OA de 

rodilla.  

 
Por otro lado, y visto el potencial de este marcador, también se llevaron a cabo análisis 

de supervivencia con la finalidad de conocer si los niveles basales de este AAb se 

asociaban con el tiempo de aparición de la enfermedad. Del mismo modo que en el caso 

de CHI3L1 y COMP, a medida que los niveles basales de AAb frente a MAT2b 

aumentaban, también lo hacía el riesgo de desarrollar OA de rodilla, siendo éste 2,53 

veces mayor cuando los niveles eran altos (tercer tercil) y 2,37 veces cuando los niveles 

eran medios (segundo tercil). 

 
Con este trabajo hemos podido demostrar que medir los niveles basales en suero de las 

proteínas COMP y CHI3L1, así como de AAbs frente a MAT2b aumentan de manera 

significativa la capacidad predictiva de un modelo clínico para la identificación de 

pacientes con riesgo de incidir en OA radiográfica de rodilla. Sin embargo, hay una 

limitación bastante importante de este estudio que debe ser tomada en cuenta, y es que un 

alto porcentaje de los participantes que se incluyeron en los estudios aquí presentados 

tenían un grado radiográfico de 2 o más en la rodilla no diana. Nosotros aquí hemos 

demostrado que incluir una variable que tenga en cuenta si el individuo tiene OA 

contralateral no proporciona información adicional al modelo formado por las variables 

clínicas y los biomarcadores solubles, siendo la capacidad de predicción de estos 

estadísticamente similar. Aun así, y aunque desde un punto de vista epidemiológico este 

diseño sería adecuado, pues la rodilla que se analiza es sana, desde el punto de vista 

clínico, los individuos que ya desde el inicio ya tiene una rodilla con OA, no serían sujetos 

adecuados para incluir en un estudio que analiza la incidencia de la enfermedad. Es por 
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eso que decidimos replicar el análisis eliminando los participantes con OA contralateral.  

Cuando incluimos los marcadores en el modelo de predicción clínica pudimos observar 

que a pesar de producirse un aumento el AUC, este ya no era significativo. Este hecho no 

tiene porqué significar que los niveles aumentados de estos biomarcadores se deban a la 

presencia de OA en la rodilla no diana, ya que puede deberse a la pérdida de información 

al reducir el número de individuos en el estudio. Para poder discernir la causa y cualificar 

correctamente estos marcadores sería necesario replicar el análisis en un número mayor 

de individuos completamente sanos, en los que no haya signos radiográficos de OA en 

ninguna de las dos rodillas. Además, con respecto a los niveles de AAb frente a MAT2b, 

la fase de verificación se llevó a cabo en un set de muestras que en su mayor parte ya 

habían sido analizadas en el screening, lo que hace que su potencial como marcador de 

incidencia deba ser validado en un conjunto de pacientes distinto.
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Themethods currently available for the diagnosis andmonitoring of osteoarthritis (OA) are very limited and lack
sensitivity. Being the most prevalent rheumatic disease, one of the most disabling pathologies worldwide and
currently untreatable, there is a considerable interest pointed in the verification of specific biological markers
for improving its diagnosis and disease progression studies. Considering the remarkable development of targeted
proteomicsmethodologies in the frame of the Human Proteome Project, the aim of this workwas to develop and
apply aMRM-basedmethod for themultiplexed analysis of a panel of 6 biomarker candidates for OA encoded by
the Chromosome 16, and another 8 proteins identified in previous shotgun studies as relatedwith this pathology,
in specimens derived from the human joint and serum. Themethod, targeting 35 different peptides, was applied
to samples from human articular chondrocytes, healthy and osteoarthritic cartilage, synovial fluid and serum.
Subsequently, a verification analysis of the biomarker value of these proteinswas performed by single pointmea-
surements on a set of 116 serum samples, leading to the identification of increased amounts of Haptoglobin and
vonWillebrand Factor in OA patients. Altogether, the present work provides a tool for the multiplexed monitor-
ing of 14 biomarker candidates for OA, and verifies for the first time the increased amount of two of these circu-
lating markers in patients diagnosed with this disease.
Significance:Wehavedeveloped anMRMmethod for the identification and relative quantification of a panel of 14
protein biomarker candidates for osteoarthritis. This method has been applied to analyze human articular
chondrocytes, articular cartilage, synovial fluid, and finally a collection of 116 serum samples from healthy con-
trols and patients suffering different degrees of osteoarthritis, in order to verify the biomarker usefulness of the
candidates. HPT and VWF were validated as increased in OA patients.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The Spanish Chromosome 16 Consortium is integrated in the global
initiative Human Proteome Project, which aims to develop an entire
map of the proteins encoded following a gene-centric strategy (C-
HPP) [1]. Framed in this consortium, our group aims to specifically ana-
lyze proteins encoded in Chr 16 that might be associated with the path-
ogenesis of rheumatic diseases [2]. Among these, osteoarthritis (OA) is
the one causing the highest socioeconomic impact worldwide. This is
due to its high prevalence, the important disabling consequences that
its incidence and progression causes in the patients, and the lack of

effective therapeutic treatments, which are currently limited to relieve
pain but are unable to slow or reverse the pathogenic process.

OA is a common slowly progressive condition associated with aging,
which may affect the structure of all joint tissues, although is primarily
characterized by articular cartilage degradation. There is a complexity of
processes underlying its pathogenesis [3] leading to a high diversity in
its clinical presentation, rate of disease progression, pattern of joint in-
volvement, and joint tissue affected [4]. A definition for OA has been re-
cently described taking into account all these facts by the OARSI
(Osteoarthritis Research Society International) [5]. Currently, its diag-
nosis is based on radiographic criteria (such as joint space narrowing
or width) and clinical symptoms, which are insensitive to detect small
changes and do not allow the visualization of articular cartilage. The
limited knowledge about OA etiopathogenesis and the absence of spe-
cific and sensitive biomarkers impedes its early diagnosis, the perfor-
mance of prognosis studies and also the development of new efficient
disease-modifying osteoarthritis drugs (DMOADs). The discovery and
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application of novel, noninvasive, specific biochemical markers of OA
remain to be achieved. These biomarkers would allow carrying out
screenings for early diagnosis, thus enabling the beforehand settlement
of procedures directed to slow disease progression [6]. To solve this
problem, there is an essential need of novel technological tools for eas-
ing the existing bottleneck inmoving novelmarker candidates fromdis-
covery phases into clinical applications.

In this field and after two decades of basic research, a number of bio-
chemical markers for OA have been evaluated essentially by performing
ELISA on blood-derived samples, urine or synovial fluid. Unfortunately,
none of themarkers that have been described to date is sufficiently well
validated, qualified and accepted for systematic use in diagnostic or
monitoring tests for this disease [7]. Proteomics technologies, enabling
themultiplexed analysis of severalmolecules in a high throughput fash-
ion have nowmatured to the point that their use in clinic appears prac-
tical and helpful [8]. Targeted proteomics strategies either based on MS
– such as selected/multiple reactionmonitoring assays [9] – or antibod-
ies – such asmultiplex bead array assays [10] are increasingly being ap-
plied for biomarker verification also in the field of OA. Therefore, in the
present work we aimed to apply the MRM technology to detect a panel
of OA protein biomarker candidates in different specimens from the
human joint, and then verify their putative marker value in a set of
serum samples from OA patients and healthy controls. These proteins
were selected either because they were found altered in sera from OA
patients by a shotgun proteomic analysis [11], or because they are
encoded by Chromosome 16 and have a reported relationship with
this pathology.

2. Materials and methods

2.1. Chondrocytes, cartilage, synovial fluid and serum samples

An immortalized chondrocyte cell line (Tc28A2) was employed in
this study. This cell line was obtained by transfection of primary rib
chondrocytes with SV40 [12]. The cell line was cultured in DMEM sup-
plemented with 100 U/mL penicillin, 100 mg/mL streptomycin and
10% FBS, and were incubated at 37 °C in a humidified gas mixture con-
taining 5% CO2 balanced with air. For protein extraction, 1 × 106 cells
were recovered and washed twice with PBS.

Human knee articular cartilage samples were obtained from adult
donors undergoing joint surgery, after informed consent and Institu-
tional Ethics Committee approval. All tissue samples were provided by
the Tissue Bank and the Autopsy Service at Hospital Universitario de A
Coruña. Full thickness cartilage or cartilage slices were snap frozen in
liquid nitrogen and stored at −80 °C. For protein extraction, the sam-
ples were pulverized in a freezer mill and the powder was transferred
to Eppendorf tubes and dissolved in 6MUrea and 2% SDS. Then, samples
were vortexed and sonicated three times for ~1 s, and agitated at 4 °C
overnight. Extracted material was centrifuged at 4 °C for 20 min at
14,000 rpm. Supernatants containing cartilage proteins were trans-
ferred to fresh tubes and the sampleswere precipitatedwith ice cold ac-
etone overnight at−20 °C. Protein was collected by centrifugation and
the protein pellet was washed once with ice cold acetone and air-dried.
Finally, the pellets were dissolved in 25 mM ammonium bicarbonate
(AB).

Synovial fluid (SF) samples were collected after informed consent
from osteoarthritic knee joints by arthrocentesis in the Rheumatology
Department atHospital Universitario de A Coruña, following our institu-
tional regulations and procedures for sample collection. The study was
approved by the local Ethics Committee (Galicia, Spain). The SF samples
were visually inspected for blood contamination and stored in liquid ni-
trogen. A 1 mL aliquot from each pool was treated with 4 mg/mL of hy-
aluronidase (Sigma-Aldrich, St. Louis, (MO), USA) at 37 °C for 1 h to
reduce viscosity and then centrifuged for 5 min at 1000 × g.

The sera used for this study were obtained from OA patients and
controls with no history of joint disease, after written informed consent.

The study was approved by the local Ethics Committee (Galicia, Spain).
All experiments were carried out in accordance with the approved
guidelines. The patients were diagnosed with OA according to the
American College of Rheumatology (ACR) criteria [13]. Knee radio-
graphs from all individuals were classified from grade I to grade IV ac-
cording to the Kellgren and Lawrence (K/L) scoring system, which
assesses the severity of the disease by the radiographic evaluation of
joint space narrowing, presence of osteophytes, sclerosis and bone de-
formity [14].

2.2. Protein digestion and peptide clean-up

The protein concentrations of the Tc28A2 cells and cartilage were
determined by the Bradford assay [15]. The SF and serum samples
were quantified using the nanoDrop instrument at 580 nm [16]. For
in-solution digestion, 10 μg of proteins from chondrocytes, cartilage, sy-
novialfluid and serum sampleswere dissolved in denaturing and reduc-
ing buffer (6 M Urea/2 M Thiourea, 25 mM ammonium bicarbonate,
10 mM Dithiothreitol (DTT)) for 1 h at 37 °C, and cysteins were
alkylated with 50 mM iodoacetamide (IA) for 45 min in the dark. Sam-
ples were diluted with 25 mM ammonium bicarbonate to a final con-
centration of 1 M Urea and Promega Grade Trypsin (Promega) was
added at a 1:25 ratio (enzyme:protein) for 16 h at 37 °C. Samples
were acidified with TFA and a fixed amount of a mixture of stable iso-
tope–labeled peptides was added before the digested peptides were
desalted using in-house made stage tips (3M Empore SPE-C18 disk,
47 mm, Sigma Aldrich) and finally samples were dried under speed-
vacuum (Thermo, USA).

2.3. Labeled peptides

Heavy stable synthetic isotope-labeled peptides (SIS peptides, crude
purity)with a C-terminal 15N- and 13C-labeled arginine or lysine residue
andmatched light versionswere purchased from JPT (Germany). Heavy
peptides incorporated a fully atom labeled 13C and 15N isotope at the C-
terminal lysine, (13C6,15N2-Lys) (K) or arginine (13C6,15N4-Arg) (R) posi-
tion of each (tryptic) peptide, resulting in amass shift of+8 or+10 Da,
respectively.

2.4. Design of multiple reaction monitoring (MRM) methods

To generate an empirical data set for selecting target analytes for
MRM assay development, two strategies were followed. First, a label-
free analysis doing Enhanced Mass and Enhanced Resolution (EM ER)
was performed in unfractionated and digested serum samples using a
nanoLC-5500 QTRAP to detect the peptides from any of the target pro-
teins. Each MS/MS fragmentation from the 5500 QTRAP was used to
search for protein candidates using ProteinPilot software (AB Sciex, ver-
sion 4.0). Due to the lack of accurate fragments generated in the QTRAP
system, the searchwas conductedwith low confidence settings. Second,
for those proteins that were not identified in the EM ER, amore detailed
strategy was followed using the Skyline software v1.3 (MacCoss Lab
Software, Seattle,WA, USA) [17] to build and optimize the best peptides
for the target proteinswith several filters. Proteotypic peptideswith the
highest spectral counts, only fully tryptic peptides, with no missed
cleavages, with a length between 8 and 30 amino acids and devoid of
methionine and cysteine residues, if possible, were chosen for MRM as-
says development. In addition, sequences thatmay cause incomplete di-
gestion, such as continuous sequences of arginine (R) or lysine (K) and a
proline (P) at theC-terminal side of R or K,were also excluded since par-
tial tryptic hydrolysis at the peptide bond is often observed in MS/MS.
The top transitions were selected for method development on the
basis of the presence of abundant y ions at m/z greater than that of the
precursor. In the absence of high-m/z y ions, the most abundant frag-
ment b ions were selected. The initial transitions selected for each pep-
tide included both the MS/MS spectra observed in the LC-MS/MS
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analysis of serum samples, predictions derived from the sequences, and
data available from databases. The Global Proteome Machine database
[18] was used to select peptides from target proteins that were fre-
quently detected (multiple experiments). Then, a Consensus spec-
tral library constructed from the 177 public data sets in Human
Plasma PeptideAtlas (Human) from the ion trap instrument
(NIST_human_IT_2012-05-30_7AAs) was downloaded to the Skyline
program. Several peptide precursors and fragment ionmasses were se-
lected per each protein and assayed for MRM analysis. MRM results
from the approaches described above were pooled, and a set of opti-
mized MRM methods covering a total of 14 proteins was assembled. It
was divided into two methods of acquisition: one including the six
Chromosome-16 encoded proteins, which targeted 16 peptides (118
transitions), and the other for the 8 other OA-related biomarker candi-
dates, targeting 19 peptides (148 transitions). Table 1 shows the list of
peptides screened in this work, whereas Supplementary Table S1 lists
all transitions and settings for their analysis.

2.5. Liquid chromatography-multiple reactionmonitoring mass spectrome-
try analysis

An enhancedMS and enhanced resolution (EMER)with a linear gra-
dient of 120 min and MRM with a linear gradient of 70 min were per-
formed injecting 1 μg of digested samples onto the nanoLC-5500
QTRAP. Protein digests with and without added labeled peptides were
analyzed by LC-MS/MS using a nanoLC system (TEMPO) coupled to a
5500-QTRAP instrument (AB Sciex). After precolumn desalting using a

C18 column (5 μm, 300A, 100 μm∗2 cm, Acclaim PepMap, Thermo
Scientific, USA) at a flow of 3 μL/min during 10 min, tryptic digests
were separated on C18 nanocolumns (75 μm id, 15 cm, Acclaim PepMap
100, Thermo Scientific, USA) at a flow rate of 300 nL/min. The gradient
for the EM ER method start with 5% buffer B (0.1% Formic acid in 95%
acetonitrile) for 3 min, from 3 until 90 min 30% of buffer B, from
10 min until 40% of buffer B, 1 min at 95% buffer B, hold for 10 min,
and finally, equilibration of the column for 15 min with 5% of buffer B.
The gradient for the MRM method start with 5% buffer B (0.1% Formic
acid in 95% acetonitrile) for 3 min, from 3 until 45 min 35% of buffer B,
1 min at 95% buffer B, hold for 10 min, and finally, equilibration of the
column for 15 min with 5% of buffer B. The mass spectrometer was
interfaced with a nanospray source equipped with an uncoated fused
silica emitter tip (20 μm inner diameter, 10 μm tip, NewObjective,
Woburn,MA) andwas operated in the positive ionmode.MS Source pa-
rameterswere as follows: ion spray voltage (IS) 2600V, interface heater
temperature (IHT) 150 °C, ion source gas 2 (GS2) was 0, curtain gas
(CUR) was 20 and ion source gas 1 (GS1) was 25 psi, and collision gas
(CAD) high. MS compound parameters were set to 10 for the entrance
potential (EP) and to 15 for the Collision cell exit potential (CXP). Sky-
line was used to predict and optimize collision energies for each pep-
tide, both analyte and IS [17]. Q1 and Q3 were set to unit/unit
resolution (0.7 Da) and the pause between mass ranges was set to
3 ms. In order to confirm the identity of the peptides, a MRM Informa-
tion Dependent Acquisition (IDA) experiment was performed for each
peptide. The mass spectrometer was instructed to switch from MRM
to enhanced product ion (EPI) scanning mode when an individual
MRM signal exceeded 1000 counts. Each precursor was fragmented a
maximum of twice before being excluded for 10 s and the mass were
scanned from 250 to 1000 Da. MRM analysis was conducted with up
to 118 transitions per run (dwell time, 15 ms; cycle time or 2.5 s). The
rolling collision energy (CE) option was employed to automatically
ramp up the CE value in the collision cell as the m/z value increased.
The best transitions were pooled in one scheduled SRM method with
a 45-min gradient, using retention times extracted during the assay re-
finement. A target scan time of 3 s and a MRM detection window of
480 s (time window of ±4 min) were used.

2.6. Data analysis

TheMS/MS data generatedwere analyzedwith the ProteinPilot soft-
ware. The Paragon algorithm in ProteinPilot software served as the de-
fault search program for protein identification, with trypsin as the
digestion agent and iodoacetamide as a fixed modification of cysteine.
Biological modifications were programmed in the algorithm. The
searches for peptide mass fingerprints and tandem MS spectra were
performed using the SwissProt knowledge base (2015_05 release ver-
sion), by searching in the UniProtKB/Swiss-Prot (http://www.expasy.
ch/sprot) database, containing 547,599 sequences and 195,014,757 res-
idues, with taxonomy restriction (Homo sapiens).

Data analysis of the best peptides for the target proteins was per-
formed using Skyline for method refinement, optimization and peak in-
tegration. Raw files were imported to Skyline and integration was
manually inspected to ensure correct peak detection, absence of inter-
ferences, and accurate integration. MRM signal was defined as the de-
tection of all the transitions from the endogenous peptide exactly
coeluting with all the transitions from the stable isotope–labeled pep-
tide. Reports of peak area ratios between the light and heavy peptide
of each peptide in the serum samples were exported by Skyline to MS
Excel. All subsequent data analyses were performed inMS Excel to gen-
erate themean, the standard deviations, and % coefficient of variation (%
CV) of the mean peak ratio area and retention time (RT) for all sample
replicates, and also the relative quantitation comparing samples with
different grades of OA to controls. An interference screeningwas carries
out based on the fragment-ion ratios of the transitions and using the
exported responses from the heavy and light peptides. With this aim,

Table 1
Proteins and peptides analyzed in the MRMmethod developed in this work.

Gene
name

Protein UniProt Peptide sequence Ref.

ALDOA Fructose-bisphosphate
aldolase A

P04075 #1 GILAADESTGSIAK [20]
#2 FSHEEIAMATVTALR

ALS Insulin-like growth
factor-binding protein
complex acid labile
subunit

P35858 #1 LAYLQPALFSGLAELR
#2 VAGLLEDTFPGLLGLR

C1S Complement C1s
subcomponent

P09871 #1 TNFDNDIALVR [11]

CFAD Complement factor D P00746 #1 ATLGPAVRPLPWQR [11]
#2 RPDSLQHVLLPVLDR

CLC3A C-type lectin domain
family 3 member A

O75596 #1 EIQALQTVCLR [21]
#2 LWTEVNALK
#3 GGILVIPR
#4 HFHEANEDC[CAM]ISK

CO6 Complement
component C6

P13671 #1 DLHLSDVFLK [11]
#2 ALNHLPLEYNSALYSR

CO9 Complement
component C9

P02748 #1 TSNFNAAISLK [11]
#2 TEHYEEQIEAFK
#3 LSPIYNLVPVK

HPT Haptoglobin P00738 #1 TEGDGVYTLNNEK [23]
#2 VTSIQDWVQK

LUM Lumican P51884 #1 SLEYLDLSFNQIAR [11]
#2 ISNIPDEYFK
#3 FNALQYLR

MMP2 72 kDa type IV
collagenase

P08253 #1 FPFLFNGK [21,24]
#2 QDIVFDGIAQIR
#3 VDAAFNWSK

PEDF Pigment
epithelium-derived
factor

P36955 #1 TVQAVLTVPK [11]
#2 LQSLFDSPDFSK
#3 KTSLEDFYLDEER

SAMP Serum amyloid
P-component

P02743 #1 VGEYSLYIGR [11]
#2 IVLGQEQDSYGGK

VASN Vasorin Q6EMK4 #1 NLHDLDVSDNQLER [24]
#2 SLTLGIEPVSPTSLR
#3 YLQGSSVQLR

VWF Von Willebrand Factor P04275 #1 YTLFQIFSK [11]
#2 AHLLSLVDVMQR
#3 LLDLVFLLDGSSR

[CAM]: cysteine carbamidomethylation.

218 P. Fernández-Puente et al. / Journal of Proteomics 152 (2017) 216–225

http://www.expasy.ch/sprot
http://www.expasy.ch/sprot
uniprotkb:P04075
uniprotkb:P35858
uniprotkb:P09871
uniprotkb:P00746
uniprotkb:O75596
uniprotkb:P13671
uniprotkb:P02748
uniprotkb:P00738
uniprotkb:P51884
uniprotkb:P08253
uniprotkb:P36955
uniprotkb:P02743
uniprotkb:Q6EMK4
uniprotkb:P04275


the SISmixture standardwas first analyzed to confirm that therewas no
signal due to contamination from theheavy peptide synthesis at them/z
transitions for the light peptides. Then, the pool of serum sample used as
a backgroundwas analyzed without spiked light or heavy peptide stan-
dards, to prove that there was not signal at the m/z transitions for the
heavy peptide.

Quantitationwas conducted by single pointmeasurements. Themo-
lecular weight of the protein was used to calculate protein concentra-
tions (ng/mL), as previously described [19]. Kruskal–Wallis and
Mann–Whitney U test and the box plot graphs were performed using
GraphPad Prism 5.01 software (La Jolla, CA, USA). The clustering analy-
sis and heatmap graphic were made with the Multiple Experiment
Viewer MeV 4.9 (GitHub, San Francisco, CA, USA).

2.7. Suspension bead array analysis

A quantitative protein analysis by magnetic suspension bead array
technology was performed according manufacturer's recommendation
(MILLIPLEX;HCVD3MAG-67 K) for the detection of vonWillebrand Fac-
tor. The study was carried out on an independent set of 38 serum sam-
ples (12 OA GIV, 13 OA GII, and 13 non-OA individuals). A lyophilized
standard of the recombinant protein tested, included in the kit, was
reconstituted and diluted at seven serial concentrations (standard
curve). All serum samples were diluted 1:4000 in assay buffer, and
25 μL of each diluted sample was bound for overnight incubation at
4 °C in a 96-well plate with shaking. Then, the wells were washed
three timeswithwash buffer and incubatedwith 50 μL of detection sec-
ondary antibodies mix for 1 h at room temperature (RT). 50 μL of
streptavidin-phycoerythrin were subsequently added to each well and
incubated 30min at RT to label the target analyte in the samples. Finally,
wells were washed again three times and 100 μL of Sheath Fluid was
added per well. The MAGPIX System (Luminex Europe, Oosterhout,
TheNetherlands)was used to detect thefluorescence signal. Concentra-
tion of VWF was obtained by interpolating fluorescence intensities to
the standard curve, and calculated by the MILLIPLEX Analyst 5.1Soft-
ware (Millipore).

3. Results and discussion

3.1. Selection of proteins related with OA

In the last years, shotgun proteomics analyses in the field of osteoar-
thritis have led to panels of proteins whose abundance is altered in OA
compared to healthy controls or other rheumatic diseases. In this area,
our group performed these differential studies on human articular
chondrocytes (the only cell type resident in mature cartilage) [20], car-
tilage [21], synovial fluid [22] and serum [11]. Therefore, we aimed in
the present work to develop targeted assays to verify the putative bio-
marker value for OA of some of these candidates, with a special focus
on those encoded by Chromosome 16. Based on the previous knowl-
edge from our group, referenced above, and also after bibliographic re-
vision of all Chr. 16 proteins with known function, a panel of six Chr. 16
proteinswas selected for verification (Table 1): Haptoglobin (HPT) [23],
Fructose-bisphosphate aldolase A (ALDOA) [20], Insulin-like growth
factor-binding protein complex acid labile subunit (ALS) (Mateos J. et
al., unpublished work 2016), C-type lectin domain family 3 member A
(CLC3A), matrix metallopeptidase 2 (gelatinase A, 72 kDa type IV colla-
genase, or MMP2) [21,24] and vasorin (VASN) [24]. We added to the
panel another 8 proteins previously identified by our group as putative
circulatingmarkers for OA [11]: vonWillebrand Factor (VWF), Pigment
epithelium-derived factor (PEDF), Lumican (LUM), Complement Factor
D (CFAD), Complement C1s subcomponent (C1S), Complement compo-
nent C9 (CO9), Complement component C6 (CO6) and Serum amyloid
P-component (SAMP). It has been suggested that complement compo-
nents play an important role in OA, since dysregulation of complement
in synovial joints has shown to be key in the pathogenesis of this disease

[25]. Therefore, in the present work we aimed to explore the putative
marker value of complement components for OA.

3.2. Selection of the best peptides and development of MRM methods

An enhanced MS and enhanced resolution (EM ER) analysis was per-
formed in the samples using a nanoLC-5500QTRAPworkflow. TheMSMS
spectra generated was launched against a uniprot_sprot_human.fasta
using the Protein Pilot software, leading to a list of 104 proteins in
which several of the targets were included such as Haptoglobin, von
Willebrand Factor, most of the complement components and SerumAm-
yloid P. For the proteins that are at minor concentrations in the serum
samples and were not identified with the EM ER screening, transitions
were selected based on data available from databases on ion trap MS/
MS spectra with further optimization, although it has been reported the
intensity order of transitions is well correlated between ion trap CID
and SRM [26]. In the present approach, each target peptide was quanti-
fied by measuring at least three different SRM/MRM transitions. Stable
isotope-labeled internal standardswere employed to provide the highest
level of detection confidence and measurement precision in the experi-
ments, increasing the selectivity for the target peptides by monitoring
the chromatographic co-elution of six or eight transitions of the target
and internal standard peptides, thereby ensuring the reliable identifica-
tion of signal peaks.

Another issue taken into account was the effect of the ion suppres-
sion in the biological samples employed in this work (fluids, tissues
and cells), since other matrix component different from the target pro-
teins (lipids and other small molecules, salts, etc.) co-elute and compete
for ionization, resulting in a decrease in the ion current detected for the
same amount of protein analyzed in different samples [27]. According to
this, we found that the same amount of spiked internal standard gave
different signal depending on the matrix sample. In our case the same
amount of heavy peptide was spiked to the different digested samples
(chondrocytes, cartilage, synovial fluid and serum) before the cleaning
step, and the signal was quite different. Ideally, the internal standard
has the same structure as the analyte and coelutes with it, thereby
experiencing the same matrix-induced suppressive effects [28]. Fur-
thermore, sensitivity correction using SIS peptides is important for the
accurate quantification of target proteins [29]. The precursor/product
ion pairs used were selected and prioritized by ion intensity and lack
of interferences. Importantly, the selected transitions were tested in
the presence of digested, undepleted serum to account for interferences
from the sample matrix or from the standards themselves. Supplemen-
tary Table S1 shows the retention times and peak areas obtained for all
the transitions analyzed in the differentmatrices thatwere employed in
this work by triplicate. The final results of this interference screening,
based on the fragment-ion ratios of the transitions, are summarized in
Supplementary Table S2. According to previously established require-
ments [30,31], peptideswere considered interference-freewhen the ex-
tracted ion chromatogram (XIC) traces of the candidate SIS and NAT
peptides co-elute in retention time, exhibit similar peak symmetry
and width, and had a coefficient of variation (CV) below 25% of the
peak area ratios calculated on a per-transition basis in the SIS and/or
NAT peptide MRM channels [32]. All transitions not accomplishing
these requirements (marked in red in Supplementary Table S2) were
removed from further data analysis. An example is presented in Fig. 1,
which shows the XICs corresponding to three peptides that were moni-
tored from VWF. The co-elution of the transitions from all endogenous
and heavy peptides was analyzed in crude serum without the spiked
heavy internal standard (upper row), and serum spikedwith the internal
light and heavy standards (bottom row). As shown in the Figure, a very
high signal at the m/z heavy transitions (Q1/Q3) was detected for the
peptide LLDLVFLLDGSSRwithout the addition of any SIS, and this peptide
was thus removed from the panel. The peptide ATLGPAVRPLPWQR from
CFAD was also removed, since the order of co-elution of the transitions
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Fig. 1. Representative extracted ion chromatograms (XICs) of 3 peptides from the protein VWF. The endogenous proteotypic peptides LLDLVFLLDGSSR, YTLFQIFSK, and AHLLSLVDVMQR were screened in A) crude serum (upper row) and B) crude
serumwith the addition of heavy peptides (bottom row). The endogenous peptides (light) are displayed in red,whereas the SIS (heavy peptides) are displayed in blue. The amount of SIS spiked into each samplewas kept constant. As shown in the top
left graphic, a high interference was found for the peptide LLDLVFLLDGSSR.

220
P.Fernández-Puente

etal./JournalofProteom
ics

152
(2017)

216–225



from the endogenous peptide (NAT)was different from the SIS standards
in all the matrices analyzed.

The use of at least six transitions per peptidemade possible the accu-
rate determination of chromatographic retention time. Retention times
on the LCplatformwere observedusing serum samples and amixture of
the SIS peptides in a non-scheduled fashion (IDA experiments), and
employed for scheduling to reduce the number of concurrent transi-
tions enabling a shorter cycle time and thus a sufficient number of
points per peak for proper peak integration [33]. Altogether, the 14 dif-
ferent proteinswere quantified by single pointmeasurements targeting
35 peptides and 244 transitions. The final transitions and settings for
their analysis are listed in Supplementary Table S3.

3.3. Application of the SRMmethods to different specimens from the human
joint

In order to evaluate the performance of thesemethods for the targeted
analysis of the 14-protein panel in samples derived from the human joint,
we analyzed digested extracts from a cell line of articular chondrocytes,
humanhealthy and osteoarthritic articular cartilage, synovial fluid obtain-
ed by knee arthrocentesis and serum as reference. Three replicates were

performed for each type of sample. Supplementary Table S4 lists the
mean retention times, mean peak area ratios and % CVs obtained in this
analysis for each peptide in each of the samples analyzed. The concentra-
tion of the peptides (ng/mL) was calculated using single point measure-
ment-derived quantitation values. Fig. 2 shows representative examples
of proteins encoded by Chromosome 16: ALDOA was identified
with two peptides (GILAADESTGSIAK and FSHEEIAMATVTALR) but
displaying the best signal in chondrocytes, as expected being a cyto-
plasmic protein. Interestingly, in all sample types the signal was bet-
ter for the GILAADESTGSIAK peptide, whereas FSHEEIAMATVTALR
was only detected in chondrocytes. In contrast, the secreted protein C-
type lectin domain family 3member A (CLC3A),which has been reported
to be restricted to cartilage and breast [34], was identified only in carti-
lage (Fig. 2). From the several peptides screened for this protein, the
best signal was found for EIQALQTVCLR and LWTEVNALK. From the
other proteins from the panel, LUM, HPT and VASN were detected in all
samples, whereas ALS, PEDF, CO6, CO9, C1S, CFAD and SAMP failed to
be detected in chondrocytes, VWF was only identified in serum, and
MMP2 only in cartilage. The heatmap shown in Fig. 3 summarizes the re-
sult of this analysis, and Supplementary Fig. S1 illustrates representative
XICs obtained for each target peptide in the different samples. In all

Fig. 2. Representative XICs of peptides belonging to the Chromosome 16-encoded proteins ALDOA and CLC3A in different human samples. Fructose-bisphosphate aldolase A (ALDOA) and
C-type lectin domain family 3 member A (CLC3) were searched in five different types of samples: chondrocytes, normal (N) and osteoarthritic (OA) knee cartilage, synovial liquid and
undepleted serum. The natural peptides (light) are displayed in red, whereas the heavy peptides (SIS) are displayed in blue. The amount of SIS spiked into each sample was kept
constant. Representative XICs of all peptides analyzed on these samples are shown in Supplementary Fig. S1.
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cases, some peptides showed lower signals or interferences than others
in a specific type of samples, highlighting the importance of the matrix
background for achieving a good identification/quantification of the tar-
get proteins. Retention times were very reproducible for all peptides (%
CV b 5) in this analysis, while the reproducibility of the peak area ratios
was highly dependent on the target peptide, being their % CV b 15 in
most cases if the peptide was well identified. Regarding the differences
in peptide measurements for the same target protein, we observed
some proteins showing a high agreement in the peptide concentrations
(such as PEDF, with fold changes approaching unity between the three
peptides analyzed), whereas in other cases the ratio comparing the pep-
tide with the highest signal to the lowest increases up to around 3 (CO9,
LUM, VASN). This discrepancy has been commonly observed before in
serum samples [32,35], as well as in other biofluids and cells [31,36].
The most widely accepted hypothesis for the larger fold changes ob-
served for specific proteins are likely due to the variability in denaturation
or digestion efficiency, steric hindrance of modified residues, or post-
translational modifications [37,38].

3.4.MRM-based verification of biomarker candidates relatedwith OA in se-
rum samples

TheMRMmethodwas then applied to verify the putative biomarker
value of this panel of 14 proteins in serum samples fromOApatients and
controls without history of joint disease. The demographic characteris-
tics of the samples included in this study (n = 116) are detailed in
Table 2. Three technical replicates were measured, leading to peak
area ratios between the endogenous and heavy peptide (SIS) with
good coefficients of variation (% CVs b 20) and area counts N5000 for
most peptides. Kamiie and collaborators [39] have validated that pro-
tein expression levels that yield % CV of b20 when determined from
three peakswith area counts N5000 and are detected at the same reten-
tion time (±0.10min) as an IS peptide are defined as positive. As shown
in Supplementary Table S2, peptides from HPT, ALS, VWF, PEDF, LUM,
C1S, CO9, CO6, SAMP and VASN showed a good reproducibility between
replicates (% CV b 20). Two proteins, CLC3A andMMP2, and the peptide
FSHEEIAMATVTALR from ALDOA were removed from the data analysis
of the serum samples as the detectability of the NAT peptide was ham-
pered by the inherently low protein concentrations present in this sam-
ple matrix.

Results from the relative quantitation of the proteins between the
early and late OA and control serum samples are presented as average
values of the peak areas out of all transitions and peptides per protein,
after an intensity normalization step with their corresponding heavy
isotope–labeled standard references. Quantification data (in ng/mL)
was then obtained by single point calibration measurements with an
equimolar mixture of SIS peptides (20 fmol/μL). All the results obtained
per sample and target protein are summarized in Supplementary Table
S5, and their scatter plot representation is illustrated in Supplemen-
tary Fig. S2. Two proteins were found increased in OA compared to
control samples with a significant p-value (p b 0.05): Haptoglobin
[23] and von Willebrand Factor [11] (Fig. 4A). Interestingly, when
the two different grades of OA (K/L II and K/L IV) were analyzed inde-
pendently, both proteins show statistically significant differences in
early OA (K/L II) compared to controls (Fig. 4B) suggesting a putative
utility in diagnostic and prognostic strategies. Although the relation-
ship of Haptoglobin polymorphisms with diseases such as cancer or
rheumatoid arthritis has been largely studied due to the antioxidant
[40], anti-inflammatory [41] and immunomodulatory properties
[42] of this protein that is encoded in Chromosome 16, the first
time an alteration of the HPT protein pattern was reported in OA cor-
responds to a DIGE-based proteomic study in which the alpha and
beta chains of HPT displayed different alterations in abundance
[23] in pooled serum samples from OA patients compared to con-
trols. In this work, we could confirm by MRM on individual samples
the increased amount of the HPT beta chain, two of whose peptides
were included in the method. Further analyses are currently ongoing
to establish the role of the different HPT chains in OA (Fernández-
Costa, unpublished results).

Apart from VWF and HPT, from the 14-protein panel only Serum
Amyloid P (SAMP) was found altered with significant p-value (p =
0.0496) in this verification screening, in this case showing a decrease
in advanced stages of the disease (K/L GIV) compared to GII (Supple-
mentary Fig. S2) and has therefore putative marker value, although
only for disease severity.We did not find any statistically significant dif-
ferences in OA serum samples vs healthy controls on the other proteins

Fig. 3. Heatmap showing the quantification of the panel of peptides in the different
matrices analyzed in this work. Peptide names and numbers are shown according to
Table 1. The mean area ratios obtained in the MRM analysis were used to calculate the
protein concentrations in ng/mL for each peptide, using one point calibration curves
with an equimolar mixture of internal standards (SIS, 20 fmol/μL).

Table 2
Demographic characteristics of the individuals included in this study to compare patients
with different K/L grades of OA and control donors using the MRM method developed.

K/L grade Gender Age (mean ± SD)

Control = 39 Female (35.9%), male (64.1%) 70.4 ± 7.6
Grade II = 38 Female (63.15%), male (36.8%) 73.1 ± 6.4
Grade IV = 39 Female (87.2%), male (12.8%) 75.6 ± 7
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included in the panel (Supplementary Fig. S2), hence results that were
previously reported in shotgun studies failed to be verified [11]. There
are several possible explanations for this limited success in the verifica-
tion step: first, shotgun proteomics analyses are usually performed in
sera depleted from their high abundance proteins, thus the sample
preparation procedures might have an effect on the proteins targeted
in the present analysis. Second, splicing isoforms or post-translational
modifications may also have been involved in these variations because
iTRAQ ratios are calculated as the average of all contributing peptides
from a protein,whereas SRM ratios are obtained bymeasuring a specific
target peptide [39,43]. Third, pooling of samples in the discovery phase
of proteomic studies could potentially mask meaningful discrepancies
among the different individuals, which were individually analyzed in
the present work. Finally, results obtained for ALS, LUM and PEDF are
in agreement with previous data reported by MRM analysis of plasma
samples from an observational knee OA cohort [44]. In that work,
proteotypic peptides of nine proteins (including these three) were
evaluated, and authors found that the levels of two peptides repre-
sentative of clusterin and lubricin in plasma are as predictive of OA
progression as age. However, neither ALS nor PDF were associated
with joint space narrowing, and LUM showed only a preliminary ev-
idence of association in this study. Although an increased amount of
LUMwas previously detected by SRM in synovial fluid from osteoar-
thritic patients compared to healthy [9], this difference is not de-
tected neither in plasma [44] nor in serum, as shown in the
present study. Apart from these two studies and the present work,
no other analysis using isotope-labeled standards have been carried
out for OA analysis by mass spectrometry [45].

3.5. Confirmation of the increase of VWF in an independent analysis

The von Willebrand Factor (VWF) is a protein best known from its
critical role in hemostasis, but that is also involved in several pathologic
processes including angiogenesis, cell proliferation, inflammation, and

tumor cell survival. The 250 kDa-subunit structure of VWF contains
four different types of domains, each of them being characterized by
its specific type of folding. This diversity provides VWF the potential
to interact with awide spectrum of structures and, indeed, a large num-
ber of its protein ligands have been identified [46]. Some of these

Fig. 4.MRM quantitation data of OA biomarker candidates in serum. A, Verification of the increase of Haptoglobin (HPT) and von Willebrand Factor (VWF) in sera from OA individuals
compared to controls. B, HPT and VWF are increased in early stages of radiographic OA (GII) compared to controls. Data were normalized against the internal standard. Scatter plots
show the normalized peak area on the y-axes. Horizontal lines depict the mean, and vertical lines the standard deviation.

Fig. 5. Absolute quantification of VWF in independent serum samples. 13 samples from
OA GII, 12 from OA GIV and 13 healthy individuals were analyzed using Luminex beads.
Horizontal bars in each data set indicate the mean serum level (ng/mL) of VWF. The
quantitative results and samples used in this analysis are listed in Supplementary Table S6.
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proteins are galectin-1,3 [47], thrombospondin 1 [48], and β-glycopro-
tein,whichwere foundup-regulated togetherwith VWF in our previous
study for the discovery of OA biomarkers in serum [11]. Therefore, we
decided to confirm the detected increase of VWF in sera from OA pa-
tients using an independent set of samples and an orthogonal approach.
An assay based on Luminex beads coupled to anti-VWF antibodies was
carried out on a group of 38 serum samples (13 OA GII, 12 OA GIV and
13 healthy controls). Demographic data of the individuals included in
this analysis and the absolute quantification values obtained for VWF
are shown in Supplementary Table S6, and graphically represented in
Fig. 5. As illustrated in the Figure, a statistically significant increase of
VWF in OA samples was confirmed (p = 0.0023), and was already de-
tected in patients with K/L Grade II of the disease (Fig. 4B). Amean con-
centration of 4201 ng/mL of VWF (range of concentrations 1040–
6000 ng/mL) was detected with this assay. This amount is higher than
the one determined by SRM (mean concentration of 1115,4 ng/mL)
for the peptide AHLLSLVDVMQR (range 214,11–9726,18 ng/mL),
whichmay be explained by the use of single point calibration measure-
ments in our SRM approach and the higher specificity of this method in
comparison to antibody-based strategies [49]. Nevertheless, ratios
found between patients and controls were comparable (OA GIV/
Ctrl = 1,65 by Luminex and 1,23 by SRM, and OA GII/Ctrl = 1,7 by
Luminex and 1,29 by SRM).

This is the first time VWF has been verified as increased in the
serum from OA patients compared to healthy controls. Interesting-
ly, a large number of proteins that are known to be involved in OA
pathogenesis, such as collagens, thrombospondins, a bone mor-
phogenetic protein (BMP) regulator, integrins and matrilins, con-
tain von Willebrand domains. Regarding this issue, a recent work
demonstrated that the VWA1 domain of matrilin-3 (a protein
expressed by cartilaginous tissues that has been extensively relat-
ed with OA [50]) is primarily responsible for the induction of IL-6
release in primary human chondrocytes, promoting cartilage ca-
tabolism [51]. Furthermore, mutations in the double von
Willebrand Factor A domains (DVWA) gene were reported as asso-
ciated with susceptibility to knee OA [52], a fact that has been re-
cently confirmed in two independent meta-analyses [53,54]. In
addition, high levels of VWF have been found in rheumatoid arthri-
tis (RA) as associated with cardiovascular risk prediction [55] and
with other chronic synovitis syndromes [56]. Altogether, our find-
ing of increased VWF in OA patients provides impetus for further
investigations in larger cohorts and also on the role of this protein
in the diverse pathogenic mechanisms that contribute to OA devel-
opment and progression.

4. Conclusions

Amultiplexed method for the relative quantification by single point
measurements of a panel of fourteen OA protein biomarker candidates
(6 of them encoded by Chromosome 16) has been developed, based
on liquid chromatography-multiple reaction monitoring (LC-MRM)
mass spectrometry. We demonstrate how this method can be readily
applied to any type of joint-derived specimens, such as cells, cartilage,
synovial fluid and serum for the evaluation of these biomarker candi-
dates putatively useful for diagnosis or therapeutic targets. The applica-
tion of this method on a set of 116 crude serum samples from patients
suffering different grades of OA and healthy controls led to the verifica-
tion of von Willebrand Factor, and Haptoglobin as increased in OA, al-
ready in early stages, while Serum Amyloid P was found decreased in
advanced OA (grade IV). The increase of VWF in OA was confirmed by
a Luminex-based assay in an independent set of samples. Further qual-
ification studies will be necessary to establish the usefulness of these
proteins for OA diagnosis and progression studies.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jprot.2016.11.012.
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