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In the framework of open-ended learning cognitive architectures for robots, this paper deals with the
design of a Long-Term Memory (LTM) structure that can accommodate the progressive acquisition of
experience-based decision capabilities, or what different authors call “automation” of what is learnt, as
a complementary system to more common prospective functions. The LTM proposed here provides for
a relational storage of knowledge nuggets given the form of artificial neural networks (ANNs) that is
representative of the contexts in which they are relevant in a configural associative structure. It also
addresses the problem of continuous perceptual spaces and the task- and context-related generalization
or categorization of perceptions in an autonomous manner within the embodied sensorimotor apparatus
of the robot. These issues are analyzed and a solution is proposed through the introduction of two new
types of knowledge nuggets: P-nodes representing perceptual classes and C-nodes representing contexts.
The approach is studied and its performance evaluated through its implementation and application to a
real robotic experiment.

Keywords: Long-term memory; cognitive architecture; network memory; perceptual generalization;
context.

1. Introduction

Cognition encompasses a series of behavioral pro-
cesses in animals, involving gathering sensory infor-
mation, converting it into perceptions, making
decisions and producing actions, that allow them
to deal with dynamic or changing environments.1,2

A cognitive architecture is a system that tries to
implement cognition. In Sun’s words, “a cogni-
tive architecture is a broadly-scoped domain-generic
computational cognitive model, capturing the essen-
tial structure and process of the mind, to be used
for broad, multiple-level, multiple-domain analysis of
behavior”.3 Thus, as a generic computational model,
it is a basic operational structure made up of differ-
ent processing elements that is not specific to any
particular task or domain and which can be adapted

to any task or domain through its instantiation with
knowledge.

A particular cognitive architecture is just an
instance of the structures required to support
cognition and their organization. It defines what
components participate, what capabilities they dis-
play in terms of how knowledge is acquired, repre-
sented and acted upon, and how they interact so
that the whole chain, from sensing to acting, can suc-
cessfully operate.4–6 A cognitive architecture’s ulti-
mate function is to provide a means for a motivated
system (a system that has goals) to choose actions
that allow those goals to be fulfilled. Thus, appro-
priately deciding on what actions to choose each
instant of time is what a cognitive architecture is
about.
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These decision processes almost always revolve
around two main concepts: prospection and expe-
rience. Prospection has to do with the anticipation
or prediction of future states so that they can be
evaluated in order to allow for a selection among
the potential actions or policies as a function of the
expected achievement of its goals.7,8 This delibera-
tive process requires performing predictions into the
future, usually carried out by models (world models,
internal models), and evaluations of the predicted
states.

On the other hand, experience has to do with
direct statistical associations or relationships the sys-
tem has found among its knowledge components
or knowledge nuggets (models, policies, perceptual
classes, etc.) when it was successful at achieving a
goal (or, in some cases, even unsuccessful). These
relationships allow the system to directly choose an
action or policy without any prospection or evalu-
ation if it can determine the context it is in, that
is, if it can determine in which world it is operating,
what its goal is and what is its current perception. In
the terminology of many authors, the decision pro-
cess has been automated as it does not require any
prospection for its completion.9

Both of these decision-making approaches call for
the availability of different components or knowledge
nuggets, such as models of the world and the organ-
ism, so that predictions can be made, or representa-
tions of the world or of the different goals, so that
experiential relationships can be established. Thus, a
really adaptive cognitive structure must provide for
the capability of learning what are basically asso-
ciative relationships (among actions and their con-
sequences in state space or among context elements
and the actions that led to achieving goals) as well
as for a way to efficiently structure and store these
components and their relationships so that they can
be easily used.

Traditional general purpose cognitive architec-
tures in the literature such as ACT-R,10 CLAR-
ION,3 EPIC,11 GLAIR,12 4CAPS13 or SOAR,14

implement these decision processes within a set of
internal structures and representations that encode
the different knowledge nuggets as production rules
or other types of externally imposed symbolic
representations. These representations lend them-
selves to very explicit and self-explanatory or self-
descriptive mechanisms to work with this knowledge,

as well as to relatively straightforward computational
indexing mechanisms when storing the knowledge
nuggets in memory. However, they lack flexibility and
robustness when handling perception and present
many problems with respect to grounding and self-
acquisition of the structures themselves from inter-
action with changing environments.

It is for this reason that lately, hybrid approaches
have become quite popular, recent examples are
architectures like OpenCogPrime15 or MLECOG.16

Even leading to the hybridization of some of the tra-
ditional architectures.17,13 They use symbolic rep-
resentations at higher or more abstract processing
levels linking them to lower level behavior like pro-
cedural (or even sometimes declarative) knowledge in
the form of emergent or connectionist paradigms,18

such as artificial neural networks (ANNs). This type
of low level behavior based structures can be directly
obtained by the embodied individual through its sen-
sorial and motor mechanisms from interaction with
the environment, or in developmental processes,19

thus overcoming the grounding problem.
In fact, ANN like representations have become

very popular for many complex processing tasks
in the last decade, especially since the advent
of convolutional networks and other deep learn-
ing approaches.20 This has especially been the case
in complex sensor processing tasks such as vision
related problems21 and others.22

ANNs provide a relatively efficient and homoge-
neous approach to learning and extracting knowl-
edge from complex perceptual streams. However, the
problem with ANN like representations in cognitive
architectures is that they are not easy to manage and
integrate due to their lack of self-descriptive capabil-
ities. That is, it is almost impossible to determine
what an ANN does or represents without running
it over an extensive set of cases. In fact, it is very
difficult to say whether two ANNs do the same or
different things without running them.

As indicated before, a cognitive architecture must
acquire and manage different types of knowledge,
mostly in the form of knowledge nuggets such as
models, behaviors or policies, goals or value func-
tions, perceptual categories, etc. This knowledge has
to be stored and related so that it can be readily
used as required by the system. When these knowl-
edge nuggets are represented in the form of ANNs
or similar structures, approaches based on computer
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like memory indexing mechanisms for the storage
and integration of the nuggets have been shown to
be lacking.23

This paper addresses the problem of designing
an operational mechanism within a robot cognitive
architecture that allows for straightforward experi-
ence based automatic or reactive processing when the
knowledge nuggets the cognitive architecture man-
ages are given in the form of ANNs. This mechanism
is inspired by the concepts of Conceptual Spaces24

introduced by Gärdenfors and of Network Memo-
ries25 as proposed by Fuster. It revolves around the
Long-Term Memory (LTM) and we propose a series
of components and functionalities that allow for the
integrated and task related formation of perceptual
classes as well as context representations. This will
permit progressively obtaining associative relation-
ships among these structures and the rest of the
knowledge nuggets present in LTM (such as mod-
els, policies, goals) in order to facilitate the selection
of the appropriate policy or behavior for each situ-
ation without interference when the robot is faced
with a priori unknown sequences of environments.
That is, in open-ended learning settings.

To achieve this objective, in the following section
we will go back over the neuro-psychological litera-
ture and concepts in order to define a set of charac-
teristics or functions an LTM should provide as well
as to introduce the basic inspiration to our approach.
Section 3 is devoted to the description of the LTM
structure and the components we propose as well as
its operation. In Sec. 4 we describe in detail one pos-
sible implementation of the LTM, which is then used
in a set of tests carried out in Sec. 5 over a real
robotic problem. These tests are designed to show
how the characteristics that were required from the
LTM are met.

2. Background and Inspiration

2.1. Memory

A large amount of work has been carried out in the
identification of individual cognitive structures from
a functional perspective and their purported rela-
tions in the human brain as well as in animals. Even
though there is no consensus on a single unified archi-
tecture, there is a certain amount of agreement on
some of its main structures and their basic relation-
ships.

First of all, a set of memory structures working
at different time scales have been suggested. These
structures include what have been called Short-Term
Memory (STM) and LTM.26,27

Both, STM and LTM, were initially contemplated
as storage facilities where information was kept but
not really processed and, surprisingly, many authors
in the computational realm still implicitly follow this
view. STM holds information for short periods of
time and LTM for very long periods of time. Later,
several authors started to view STM as a process-
ing part of the cognitive system and, to reflect this,
started to refer to it as Working Memory (WM).28

Currently, STM and WM are not always used as
interchangeable synonyms, and some authors con-
sider them two different systems.29

An objective of WM is to retain a limited amount
of information30 for short periods of time31 so that
prospective exploration can take place.7,32 When
prospective exploration is the decision process of
choice, the smaller the exploration space, the higher
the probability of finding a solution. Consequently,
having small capacity WMs favors agile learning pro-
cesses. In fact, humans in general can only learn very
simple relationships in one shot, it is through the pro-
gressive addition of new information that more com-
plex knowledge can be acquired. Thus, a need arises
for a structured or multistep progressive approach to
constructing complex relationships.

This is, where LTM comes into play. Well-learned
material, held in LTM, can be cued as a unit in work-
ing memory and is thus not affected by the limita-
tions imposed by WM.33 This well-learned material
acts as a single component when creating new models
or performing prospective processes.

In many cases, one can even do away with
prospection. When the relationships are well estab-
lished in LTM, a decision on an action can be directly
reached without any prospective process, by just
following the association graph. Some authors call
this the automation of learned material and every-
thing that is learned can, with practice, become
automated. Schneider and Shiffrin demonstrated the
complementarity of prospective and automated or
experiential processing.34,9 Also, Kotovsky and col.35

demonstrated the enormous benefits of automated
processing in problem-solving skills.

The main point here is that, after practice, spe-
cific categories of information can be processed with
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decreasing prospective load, which would require
intensive use of WM, through a different type of asso-
ciative processing that propagates activations in the
association graph linking the different cognitive com-
ponents. This type of processing is what are called
experiential decision processes in this paper and their
implementation leads to a need for an associative
structure that allows the representation of compound
knowledge.

From the previous paragraphs it is easy to see
that LTM is critical for addressing open-ended learn-
ing and cognition,23 but as humans are not conscious
of the contents of LTM except when they are brought
into working memory, its critical role in our cogni-
tive activity is often ignored. Most authors creating
artificial cognitive architectures have paid very little
attention to this system except as a passive storage
container for knowledge with discrete encoding, stor-
age, and retrieval functions.23 A computer architec-
ture like analogy of the mind has been the predom-
inant paradigm in this regards: memory as a hard
disk.

De Groot’s work36 and Chase and Simon’s paper
on chess37 provided the first insights into the pivotal
importance of LTM in higher level cognition. In fact,
some researchers started to see LTM as an integral
component of cognition, including high level prob-
lem solving and other aspects instead of just a mere
storage system.

More recently, authors such as Wood and col.23 or
Fuster25 have argued that in order to achieve prop-
erties such as adaptability, flexibility and robust-
ness, biological system memories, and in particular
LTM, must be a distributed and active component
of cognition situated within the perception-action
cycle of adaptive behavior. Consequently, memory is
proposed as the central component of any cognitive
architecture. Furthermore, authors like Oberauer38

or Fuster25 do not even adhere to the classical divi-
sion of memory into two separate subsystems: STM
and LTM. They take STM as the currently activated
parts of LTM. Anyway, whatever the view, this gen-
eral approach purports that some of the most rele-
vant mechanisms for cognition are those related to
an associative LTM and its operation.

As a consequence, a need arises to establish a
memory structure that can operate as a dynamic
associative mechanism that can handle the conjunc-
tive representations of different knowledge nuggets

and that supports the decision processes required for
the open-ended operation of a cognitive architecture.

When considering conjunctive representations,
one has to go back into the associative learning lit-
erature to understand the extent and nuances of the
topic, as they have a large bearing to the structures
that are necessary for their implementation in artifi-
cial systems.

2.2. Associative learning

Associative learning39–41 is basically defined as the
learning process by means of which an association
is established between two or more stimuli or a
behavior and some stimuli. The idea is that the pre-
sentation of a stimulus can activate or inhibit the
expectation of another and this relationship is learn-
able through the creation and strengthening or weak-
ening of associative links among stimuli or stimuli
and responses.

Many theories of associative learning that explain
a progressively larger number of experimentally
detected phenomena have been proposed.42–48 They
all assume that the repeated presentation of two
events in succession will result in the growth of a con-
nection, or association, between their internal repre-
sentations.

Associative learning theories differ in many
aspects, but one of the most important is on how
they handle the associations that are formed when
the first event is a compound of two or more com-
ponents (stimuli, compound stimuli. . . ). Elemental
theories, provide the opportunity for each element of
the compound to enter into an association with the
representation of the second event.42–44,47,49–52 They
base the response to a set of stimuli using the summa-
tion of the activations provided by the association of
the individual stimuli to the response. This presents
problems when addressing certain situations such as
negative patterning and many others as described by
Wasserman and Miller.53

Configural learning theories arise to solve these
problems. They consider that a representation of the
entire compound pattern of stimulation that consti-
tutes the first event will be formed associated to
the second event. In other words, the whole set of
stimuli become a unit with a single association to
the response, much like if a new pseudo-stimuli were
created and were activated when the set of basic
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stimuli that make it up is present. This approach
started with the work of Gulliksen and Wolfle54

and almost fifty years later, Bellingham and col-
leagues55 demonstrated how a configural version
of the Rescorla–Wagner model42 could be used to
explain patterning discriminations. Pearce proposed
a formal configural theory of associative learning45

applying it to a broad range of learning cases such as
shadowing, blocking, patterning, etc. More recently,
he even suggested a connectionist theory of configu-
ral learning.56

The key here, is to progressively create and
associate different knowledge nuggets in a meaning-
ful and general manner, that is, to provide com-
pact experiential representations so that hypothe-
ses can be made on the actions to take when faced
with similar perceptions under different contexts. As
Mante and col. indicate, “our interactions with the
world are inherently flexible. Identical sensory stim-
uli, for example, can lead to very different behavioral
responses depending on “context”, which includes
goals, prior expectations about upcoming events,
and relevant past experiences. Animals can switch
rapidly between behavioral contexts, implying the
existence of rapid modulation, or “gating”, mech-
anisms within the brain that select relevant sen-
sory information for decision-making and action”.57

Whatever the mechanisms in natural brains, from an
informational perspective, context dependence is an
associative learning problem which is often configu-
ral in its solution and where gating must somehow
be provided by the associative connectivity.

2.3. Constructing a long-term memory

Consequently, when creating a cognitive architec-
ture all of the processes described in the previous
pages must be supported by an underlying opera-
tional structure and now, the problem becomes a
design or organizational problem. That is, how is an
artificial associative LTM to be structured so that it
can provide the capabilities that are required from it.

This work takes inspiration from Fuster’s net-
work memory model.58 According to this model,
memory consists of the modulation of synaptic
contacts between distributed networks of intercon-
nected cortical cells. Memory is achieved through the
potentiation or inhibition of synaptic links between
neural aggregates as a response to perceptual or

other types of activations. These activation patterns,
supported by the connections between neural pop-
ulations, which are acquired through experience, is
what he calls memory networks or cognits.25,7 He
defines a cognit as “a network of neuronal assemblies
of the cortex that represents sensory stimuli and/or
motor actions that have occurred at the same, or
nearly the same, time. It is formed by synaptic modu-
lation according to Hebbian principles and is subject
to modification by subsequent stimuli and/or actions
that are associated with it”.

In terms of organization, Fuster arranges cognits
in a hierarchical manner between two tiers of cortical
association areas: the perceptual tier and the execu-
tive system.59,25 He defines hierarchy in an anatom-
ical manner as the synaptic distance from sensors
and actuators (muscles). The higher the level the
higher the complexity of the cognits and the abstrac-
tion level they represent. On the sensor side (in the
posterior cortex), we have the perceptual hierarchy
of cognits that represent progressively more abstract
categories of sensory-based knowledge. On the execu-
tive side (in the frontal cortex), the executive hierar-
chy of cognits represents progressively more abstract
knowledge of action. Fuster also alludes to the heter-
archical nature of these tiers, linking multiple lev-
els of the same hierarchy and cognits from both
hierarchies.

Cognits may share network nodes as lower level
cognits are nested in several higher level cognits. For
instance, in the sensory side, a cognit may repre-
sent “large size” or “green color” and there are many
higher level cognits that may share one of these fea-
tures such as a “large house” or a “large mountain”
or a “green car” or a “green field” or even a “large
green car”. The same can be extended to the execu-
tive hierarchy where a “raise an arm” cognit may be
associated to “picking up boxes on top of the cup-
board” or to “waving”. In fact, nodes could even be
shared heterarchically. Anyway, this general frame-
work proposed by Fuster, whereby unstructured net-
works conform cognits hierarchically through synap-
tic modulation, is supported by different studies in
primates, including humans (for references to these
studies see Fuster and Bressler).7

A consequence of this model is that memories
can be taken as distributed throughout large areas
of the associative cortex, with nodes correspond-
ing to neural aggregates with particular processing
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functions that are linked through synaptic links that
connect them, much in the same way as graphs. It
follows that, in this view, memory shares the same
neurons and networks used by perception. In other
words, representation and function have the very
same substrate; the latter is the activation of the for-
mer within a given spatiotemporal pattern of neural
activity. In fact, this model leads to the distributed
network structure, hierarchical organization and
relational coding of connectionist cognitive models.

From a computational perspective, this approach
is similar to that of traditional symbolic based
semantic networks, as considered for instance in
ACT-R60 or in CLARION.61 They use symbols as
nodes usually representing declarative knowledge
and use the spread of symbol activations to com-
bine them according to the task. However, apart
from declarative knowledge, LTM contains procedu-
ral knowledge. Both types of knowledge, in order
to be appropriately grounded, should arise from the
interaction of the robot with the world and, thus,
be generally represented in sub-symbolic form (as
ANNs, for instance). Consequently, these types of
approaches must be expanded and re-examined to
allow for autonomously acquired network memories
that grow directly from the embodied perceptual
apparatus of the system all the way to the execu-
tive part of the cognitive architecture, without any
explicit externally imposed symbolic structure. In
this line, Wood and col. indicate that the storage of
semantic information is a “property of the memory
system as embedded in the wider cognitive architec-
ture”23 and not something that is explicitly encoded.
In fact, these ideas become very important in archi-
tectures such as the one we are working on, which
aim at exploiting development as a facilitator of
open-ended learning. In this case, LTM becomes one
of the most important parts of the architecture as it
is where the knowledge the system has acquired, and
upon which it must developmentally construct new
knowledge, is stored and processed.

From all of this, it can be extracted that a cog-
nitive architecture must basically be a motivated
prospection machine that has the capability of pro-
gressively establishing associations among knowledge
nuggets so that regularities in its interaction with
the environment can be “automated”, that is, it can
be converted into an associative experience based
decision machine. This paper concentrates on this

“automation” aspect when the knowledge nuggets
the cognitive architecture handles are represented as
ANNs. It is mostly concerned with the LTM and how
to endow it with straightforward mechanisms that
allow it to operate as an integral and central part
of the cognitive architecture’s experience based pro-
cessing structure without resorting to any externally
imposed symbol structure.

3. Network Memory Based LTM
Structure

As reviewed in the background section, there are sev-
eral characteristics that seem essential for the opera-
tion of a LTM structure within a cognitive architec-
ture:

(1) The LTM should be able to use regularities in
its interaction with environments under differ-
ent motivations to establish associative relation-
ships among the different knowledge nuggets it
has acquired. It must be able to use this relation-
ship structure to effectively decide on an action
without necessarily having to resort to prospec-
tion.

(2) For these relationships to be useful, they should
be able to reflect the contexts in which different
actions or policies must be executed, supporting
configural relationships and processing.

(3) It must also be able to aggregate events into con-
text dependent categories that allow for gener-
alized or more abstract processing. This is espe-
cially relevant in continuous domains.

(4) In perceptual terms, these categories must be
autonomously obtained by the system, mak-
ing use of its embodiment and sensors so that
grounding does not become a problem.

To this end, this paper proposes a LTM struc-
ture designed to accommodate the relationship struc-
ture that would be necessary for experience based
action selection through the introduction of a series
of concepts inspired by the memory network ideas
proposed by Fuster.58

By experience based action selection we mean
that as the system interacts with the world it can
relate a perceptual state Si and a policy πr or action
that was successful (even though initially the policy
could have been chosen at random) and save this
relationship in some type of memory, so that the
policy can be reused when the same state arises. In
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general, this is a bit more complex, as the validity
of a policy to produce a result given an initial per-
ceptual state (its repeatability) also depends on the
desired result (the goal) and on the world the sys-
tem is in (we assume the world includes the agent),
as different worlds may work differently, e.g. it is not
the same to walk on solid ground than on ice.

In general, the world the system is in can be iden-
tified by determining which world model is most suc-
cessful at predicting it or, alternatively, by having a
particular sensor that helps identify worlds. A world
model is just a forward model that given a state and
a policy predicts the next state. In this paper we will
mostly refer to them as forward models (FMs).

Thus, it is necessary to relate into a conjunctive
representation the perceptual state, Si, the goal, Gk,
or its related value function, V Fk, the policy, πr, and
the most successful forward model FMj that have co-
occurred when something relevant was experienced
by the system. As there is no order in the elements,
we will use set notation to represent them. That is, a
set of the type {Si, FM j , Gk, πr} must be identified
and stored. This way, when, for instance, the sub-
set {Si, FMj , Gk} arises, the system can infer that
applying policy πr , should lead to a successful result,
that is, to the same relevant event.

However, just storing this {Si, FMj , Gk, πr} set
does not provide for the coverage of the first charac-
teristic of LTMs as listed above. These type of sets
do not represent regularities, just events. Regular-
ities are a function of the frequency of occurrence
of events. Consequently, they must be associated to
some type of intensity vector (In) that represents
the relative frequency of the different associations
that are present or, at least, that require storage in
order to be able to really remember regularities in
the system’s interaction with the world.

3.1. Association, context and C-nodes

Defining the associative structure is not straightfor-
ward due to the second requirement that has been
set above for LTMs. In fact, and as mentioned in
the introduction, associative learning theories dif-
fer, among other things, in how they handle asso-
ciations between two events when the first event
is a compound of two or more components. Thus,
following elemental theories of association,49,42 one
could hypothesize that associations in LTM should

be made solely among all of the element pairings in
the tuples of the previous section. This would create
an association or intensity matrix that would reflect
the activation frequencies of the different knowl-
edge nuggets as related two by two. That is, it
would provide first-order associations among knowl-
edge nuggets. Obviously, these associations would be
strengthened when those instances of the elements
co-occurred. Some examples following this approach
and using the concept of Network Memory can be
found in Ref. 62.

However, this simple connectivity structure does
not satisfy all of the requirements that were defined
for the type of associative LTM that is being sought.
In particular, it does not satisfy the second require-
ment. The main problem is that only first-order
relationships between components can be directly
reflected. This implies that higher-order relation-
ships or, more precisely, some types of configural
relationships54,45 among several components are not
possible unless they can be constructed as aggrega-
tions of first-order associations, which is not always
the case. In addition, there is no specific structure
that stores the relationships other than the intensity
vector (or matrix), which is constantly being modi-
fied through the co-occurrences of knowledge nuggets
in different contexts as the system interacts with dif-
ferent worlds and tasks (defined by their goals). As a
consequence, as the number of worlds and tasks the
architecture is faced with grows, the intensity vector
tends to drift depending on the sequence in which
the system is faced with the worlds or goals it has
to work with, and on how long it is presented with
each combination (which in real systems cannot be
predicted).

Thus, the associative intensity vector or matrix is
quite local in time and tends to forget co-occurrence
relationships related to world-goal (WG) combina-
tions it has not seen in a while or even get stuck
in associations related to WG combinations it has
been exposed to for too long or that are simpler.
These problems lead to interference based forget-
ting of previously acquired context relationships and,
sometimes, to the inability to exit local minima and
learn new context relationships.

To address these issues, a new type of knowl-
edge nugget or LTM component is proposed here.
This component is a relational element in charge of
encoding relationships among LTM components in a
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more permanent manner when relevant events occur.
In the experiments presented in this paper, relevant
events are taken as those that produce rewards. How-
ever, any other type of event could be considered (e.g.
emotions). The rationale is that whenever a reward
is obtained, it could be useful to remember in a rel-
atively permanent manner the context in which this
occurred.

This relational nugget has been called “context
node” or C-node for short (see Fig. 1 for a depic-
tion of the LTM structure with C-nodes). A context
node is a node that is created when the co-occurrence
of a series of elements within the LTM leads to a
relevant event. All the elements that co-occur are
linked to the newly created C-node through weighed
connections. To make the representation configural,
C-nodes present a product type activation structure,
thus allowing for higher-order relationships among
knowledge nuggets.

The output of a C-node can be written in gen-
eral as

Oi =
∏

partial set

IjiKj,

where the product is over the intensities or
weights of the connections Iji between each element
Kj ε {Sn, FMm, Gk} of the partial set associated to
C-nodei and C-nodei (as shown in Fig. 1) and Oi

denotes the output of C-nodei. This output value is
taken as an activation value, indicating how active

Fig. 1. Conceptual view of C-nodes within the LTM.

the C-node is. It is propagated to those nodes in the
LTM to which the output of the C-node is connected.
We use the term partial set to denote one of the pre-
viously mentioned sets without one of its elements,
which will be the one that is activated by the C-node.
In particular, in this paper we will concentrate on
policy related C-nodes, and thus the partial tuple
would be: {Sn, FMm, Gk}. C-nodes become active
when their outputs surpass a threshold.

This C-node is permanently stored and, there-
fore, new contexts for which it is not relevant (it
is not active and thus will not participate in the
adjustment of the intensities), but that involve some
of its associated knowledge nuggets will not lead to
drifts in the association intensities and the conse-
quent interference related forgetting of the relation-
ship.

Summarizing, C-nodes represent memories in
LTM of contexts in which relevant events occurred.
Thus, in a hypothetical case in which a finite number
of world-goal combinations (domain-task combina-
tions) are considered, once the cognitive architecture
has identified, through interaction with the world, all
of the contexts (world, goal, state space area, policy
{Si, FMj , Gk, πr}) that lead to relevant events, it
will have C-nodes for every one of them. Therefore, in
this extreme case, it would be able to directly choose
or activate the appropriate policy (series of actions)
in order to obtain a reward, or reproduce the rele-
vant event in any case where this is possible, without
resorting to any type of prospection.

3.2. Perception, abstraction and
P-nodes

The cognitive architecture continuously receives
information in the form of a stream of new per-
ceptions. These perceptions can be raw, directly
coming from physical sensors, or more elaborate
re-descriptions of other perceptions. The sensory sys-
tem of a robot encompasses sensors that gather data
from the environment, as well as internal sensors,
which provide information about the state of the
robot itself. In general, all of the raw perceptions can
be processed to produce higher-level perceptual rep-
resentations, that is, perceptual re-descriptions.63,64

An example is when a pixel intensity representation
of an image is transformed into a blob position rep-
resentation. For the discussion in this paper it does
not matter whether a perception is low level or a
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Fig. 2. LTM structure.

higher level re-described representation and, conse-
quently, we will just use the term perception. Never-
theless, in Fig. 2 the basic perceptual layer and the
re-description layer are shown for completeness.

What is important, is that a LTM structure
should contemplate mechanisms to handle continu-
ous perceptual domains, which is the main case con-
sidered in this paper as indicated by the third LTM
requirement. This type of domains present many
problems. In fact, the concept of C-node does not
even make sense in general when considered with
respect to individual perceptions (perceptual points)
in a continuous domain. It is very improbable that
an organism will perceive exactly the same percep-
tual vector twice. Noise, slight changes in the envi-
ronment, and other causes will ensure this. Thus, if
C-nodes were to be associated to a particular per-
ceptual point, they would be almost useless as they
would represent a context that the system will most
probably never see again.

It is also necessary to consider that most of the
knowledge nuggets (forward models, policies, value
functions, C-nodes) that are stored in LTM are not
useful in the whole perceptual or state space. For
instance, a given forward model is only useful (or
reliable) when the robot is operating in a set of per-
ceptual circumstances similar to the ones faced when

the forward model was obtained. In other words, all
the elements in LTM, including C-nodes, are usually
relevant or reliable, that is, they should be activated,
only within a particular area of state or perceptual
space. Thus, to be able to create a LTM opera-
tional structure that can take this into account and
at the same time contribute to solving the problem
of the inadequacy of individual points in continuous
domains as determiners of context, it is necessary
to generalize the concept of perceptual state, Si, or
perception, to that of perceptual class, Ŝj .

A perceptual class, Ŝj , can be defined as an area
of perceptual space for which all of the points share
some common operational trait. This operational
trait may be that a given forward model is reliable
for these points in the case of forward model related
perceptual classes. It may also be, as in the case of
C-node related perceptual classes, that for all of the
points in the perceptual class the response of the
system is the same when faced with the same world
and the same goal. Therefore, a perceptual class is
an abstraction or generalization of perceptions into
a higher level, perhaps discrete, representation that
is linked to a given response of the system.

In the particular case of C-nodes, which are the
focus of this paper, a perceptual class is a task related
abstraction of perception. This concept of abstract
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representations (whether labeled or not) is quite
important in artificial intelligence and developmental
robotics as it provides the link from the sensorimo-
tor space, as perceived by the artificial organism, to
that of traditional planning and decision systems. It
is through successive abstraction and re-description
processes that ever more intelligent organisms are
postulated.

What is really important here is that these
abstractions be constructed in a bottom up fashion
directly and autonomously by the artificial organ-
ism from the perceptions it acquires when interacting
with the environment. This way, all of the abstrac-
tions will be grounded on the embodied sensorimo-
tor interactions of the system with its environment.
Consequently, these ideas can be used to construct
artificial organisms that can autonomously learn the
appropriate abstract representations for the contexts
they are immersed in.

In this work, perceptual classes will be repre-
sented by a LTM component called perceptual nodes
or P-nodes. A P-node, denoted as Pj , is a func-
tional component that is activated when a percep-
tual state Si belongs to a given perceptual class
Ŝj(Pj = 1 ↔ Si ε Ŝj) that is,

pj(Si) =

{
1 if Si ε Ŝj,

0 otherwise.

Basically, a P-node is a function that acts as a fil-
ter over the perceptual state space that allows deter-
mining when points belonging to a given perceptual
class Ŝj are present.

As a first approximation, we will consider that
each C-node will be linked to an associated P-node
that determines the area of perceptual space that
has to do with the particular policy the C-node is
linked to in that specific world and for that concrete
goal. In an ideal world with perfect sensing and no
ambiguities, once learned, a P-node, Pj , will be per-
fectly active when a perception, Sn, belongs to its
corresponding perceptual class Ŝj .

However, the real world is not ideal and,
consequently, a more pragmatic and probabilistic
approach is chosen here. According to this approach,
a P-node will produce as output an activation level
that depends on how confident it is that the current
perception vector Sn belongs to the state space area
it delimits, that is, to its associated perceptual class
Ŝj . This confidence function in perceptual space,

denoted as Γj(Sn), is created through the integration
of the information from all the points the system has
seen and that it has tried to associate to the percep-
tual class Ŝj . In other words, the membership with
regards to a perceptual class Ŝj of a state represented
by P-node Pj is given by

Pj = Γj(Sn)pj(Sn),

where pj denotes the activation of the P-node in an
ideal world.

In the following sections we provide a more algo-
rithmic description of some basic procedures to cre-
ate, maintain and use C-nodes and P-nodes so that
some cognitive experiments can be carried out.

4. An Implementation of the LTM
Structure

Figure 2 displays the structure of the LTM addressed
in this work. It is made up of instances of the knowl-
edge nuggets associatively linked to each other. This
structure evolves in time as the other components of
the architecture (Motivational Engine and Prospec-
tive learning system) send goals, forward models,
value functions, policies and re-description functions
to LTM for their storage. It may start with very few
components (or even none) and grow as it receives
knowledge nuggets from other parts of the architec-
ture or when it creates C-nodes and P-nodes.

The main operational principle of this type of
associative LTM is that all of the knowledge nuggets
that arrive in LTM can be linked to other compo-
nents if they co-occur in a relevant situation (as
stated before, in the experiments presented here, rel-
evant means rewarded). If the system finds itself in
a context or situation it has already experienced or
that is very similar to one it has already experienced,
when these links are followed and the activations
propagated, a final most active policy will result that
should be the most adequate for the situation accord-
ing to the system’s experience.

In terms of operation, the activation flow is con-
ceptually asynchronous. Moreover, activations not
only result from the propagation of other activations
through the associative links of the LTM. They are
also a consequence of the activity of other compo-
nents in the cognitive architecture outside the LTM.
For instance, the Motivational Engine can modulate
the activation of a series of goal LTM nodes. Also for-
ward models in LTM may become activated due to
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their success at predicting the current world. These
additional activations are the way in which other
components of the architecture influence the behav-
ior of the LTM processing structure.

In this paper we are studying the behavior
and possibilities of this type of LTM implementa-
tion, especially in terms of the behavior induced by
C-nodes and P-nodes. Thus, as a first approximation
we will assume that goal node activations are exter-
nally given by the Motivational Engine according to
the goals it wants the system to pursue. We will also
assume that the activation of Forward Models will be
given by their adequateness to the current world. In
other words, in the LTM, forward models are used to
identify the world the system is in. Obviously, in the
prospective component of an architecture, forward
models have another essential function, that of pre-
dicting the consequences of actions, but that is not
relevant to basic experience based LTM operation.

Taking the previous assumptions into account, a
very high level description of the operation of the
LTM is given in Fig. 3.

The first element that can be found in the acti-
vation flow are P-nodes. P-nodes, as indicated in
the previous section, produce a probabilistic out-
put given as an activation value in the range [0:1].
Consequently, every node with an activation value

0. Read ini al percep ons.
1. while alive or last itera on not reached
2. Update ac va on of every node
3. Select most ac ve policy to be executed
4. Execute policy
5. Read new percep ons
6. Get reward
7. If (reward < threshold) then
8. For each ac vated C-Node connected to the policy
9. For each ac vated P-Node connected to the C-Node
10. Add previous percep on to P-Node as an -point
11. else
12. If (there are C-Nodes connected to the policy) then
13. For each ac vated C-Node connected to the policy
14. For each ac ve P-Node connected to the C-Node
15. Add previous percep on as point to P-Node 
16. else
17. Create a new C-Node and P-Node using percep on
18. end if
19. end if
20. end while

Fig. 3. Algorithmic description of the operation of the
LTM.

greater than a given threshold will be as active as its
value.

As commented above, P-nodes are representa-
tions of areas of perceptual space, of perceptual
classes. Generally, the perceptual space considered
by a cognitive architecture can be very high-
dimensional and, therefore, a P-node representation
must involve the definition of some kind of high-
dimensional delimitation within that hyperspace.
Any kind of function that achieves the required res-
olution and precision could conceivably be used to
produce this representation.

Two types of points are defined: activating points
(or just points) and inhibiting points (or anti-points).
Activating points are points the system has experi-
enced in perceptual space where the P-node should
have an activation value of 1.0. Anti-points, on the
other hand, are experienced points in perceptual
space, where the P-node should be inhibited, that is,
where the activation should present a value of −1.0.
In general, points and anti-points are used as the
ground truth information in order to adapt whatever
representation is being used for the P-nodes.

In the examples considered in this paper, and
to make things simple to follow we have resorted
to a very simple point based representation. That
is, a P-node is represented by a set of characteristic
points and some distance rules that delimit the areas
around those points for which the system hypothe-
sizes that the P-node should be active. In particular,
both, points and anti-points that have resulted from
the operation of the P-node are stored in a P-node
related structure and represent it. All of the other
points within the class will present lower confidence
values as a function of their distance to points that
were really experienced by the system.

Other types of structures, such as Artificial Neu-
ral Networks (ANNs) or even Spiking Neural Net-
works (SNNs),65–67 could be used in order to repre-
sent the P-node. In this case, learning stages should
be inserted (lines 10, 15 and 17 of the algorithm
in Fig. 3) during the acquisition of points and anti-
points, (either on-line learning as each point comes
in or a mixture or on-line and batch learning as the
working memory is filled with new points). Most of
the discussion that follows is valid, whatever the rep-
resentation of the P-node.

Given a new perception, Si, the activation of
a given P-node represented by a set of points and
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Fig. 4. Calculation of the activation of a P-node.

anti-points, Pj = {p1, . . . ,pn, a1, . . . ,am}, that cor-
responds to a perceptual class, Ŝj , is calculated using
the algorithm of Fig. 4. This procedure defines an
area in perceptual space for which the P-node should
be active. Obviously, if the P-node was represented
using an ANN, the membership would be given
directly by the output of the trained ANN. Once
a P-node produces an activation value, it is propa-
gated to the rest of the nodes in the LTM structure
graph that are linked to it.

The next elements in the LTM activation flow are
C-nodes. As commented before, a C-Node represents
a context in the LTM. For the examples presented in
this work, and for the sake of simplicity, we are going
to assume Markovian processes and thus we consider
that a context is made up of the current perceptual
point, Si, the current world or environment, repre-
sented by the most activated Forward Model, FMj ,
and the current Goal of the System, Gk. Thus, a
C-node is a product type node that links instances
of these elements that have co-occurred in rewarded
situations to the policy, πr, that was applied in order
to achieve the reward.

In general, the association defined by a C-node is
probably valid for more than a single point in percep-
tual space, but not for the whole perceptual space.
Consequently, C-nodes are not linked to particular
states, Si, but rather to perceptual classes, Ŝj , rep-
resented by P-nodes, Pl, that generalize the areas

of state space for which the C-node is valid. In this
initial implementation each C-Node is connected to
just one P-Node, one forward model, one goal and
one policy. However, there is no reason to think that
a C-node could not be linked to more elements.

The activation of C-nodes is propagated to the
policies to which they are connected. Policies are
nodes that, for a given perception(s), carry out an
action or chain of actions. They are called behaviors
in Evolutionary Robotics. Their activation is calcu-
lated as the sum of the activation values of the con-
nected C-nodes.

Out of all activated policies, the one with the
largest activation is selected for execution. If there
is no sufficiently activated policy, which is some-
thing that can happen during the first iterations of
the system or when it is facing a new environment,
another approach that is not based on experience
must be chosen in order to perform policy selection.
Several approaches could be chosen to achieve this.
For instance, when appropriate models of the world
and value functions exist, prospection based tech-
niques68 could be an adequate mechanism. However
when there are no appropriate models or value func-
tions and the system needs to explore and learn,
intrinsic motivation based techniques may be more
adequate.69–72

In the experiments of the next section, and in
order to dissociate the study of the operation of the
LTM from that of the other components of the cogni-
tive architecture, when no policy is sufficiently acti-
vated, the active policy will be randomly selected
from the set of policies present in LTM. Whatever
the method used to select the policy by the cogni-
tive architecture (experience, prospection, random or
intrinsic motivation) this policy is then applied by
the embodied system in the environment, producing
new information in terms of a new perceptual point
and sometimes a reward, thus closing the perception-
action loop.

Whenever a policy is executed and the results of
its application are sensed, a learning phase is initi-
ated. It is in this phase where P-nodes and C-nodes
arise and change over time.

At system start-up, depending on how the sys-
tem is configured, the LTM may have no previous
information about past experiences, so there are no
P-nodes or C-nodes present. As a result, policies can-
not be selected based on experience and some other
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approach, such as using prospection or following an
intrinsic motivation, may be used until a reward is
achieved. This phase could be called a babbling phase
and to avoid interference from other components of
the cognitive architecture, in the examples we will
use a random policy selection strategy when in this
situation.

As soon as some reward is achieved, the first
C-node and P-node are created. Regardless of
whether the LTM is empty or not, the process for the
creation of C-nodes and P-nodes is always the same.
It starts by determining the reward after applying a
policy. If the value of this reward is below a given
threshold (usually a very small positive number),
the algorithm tries to determine what C-nodes, if
any, out of those connected to the executed policy
were active. If they exist (that is, the policy was not
selected for execution through a mechanism other
than LTM experience), the activated P-nodes con-
nected to those C-nodes are found, and the point in
the input space corresponding to the previous per-
ception is added as an anti-point (value of −1.0) to
all those P-nodes. The rationale is that all those P-
nodes and C-nodes should not have been activated
because the robot did not achieve enough reward. On
the other hand, when the value of the reward is larger
than the threshold, the previous perception is added
to those P-nodes as a point (with a value of 1.0).

In the case of relevant reward, if there are no acti-
vated C-nodes (policies were chosen through a mech-
anism different from LTM experience), a new C-node
is created linking the executed policy, the forward
model with the highest activation value, the goal
with the highest activation value, and a new P-node.
This new P-node is created using the point corre-
sponding to the previous perception (with a value of
1.0) as its first representation.

By continuous interaction with the environment
and using this mechanism, new C-nodes will be cre-
ated whenever new rewarded contexts arise. These
new C-nodes will trigger the creation of new P-nodes,
which are initially represented by a single previously
experienced perceptual point and an area around it
in which the system hypothesizes that this P-node
will be valid. Obviously, how the system hypothe-
sizes the valid area depends on the algorithm used
to learn and represent the P-node and, in the case
of point based algorithms, on the distance rules that
define this area.

What is important here, is that, whatever the
representation, every time a point of anti-point is
determined, the P-node will take it into account
in order to configure and delimit this hypothesis
area until it represents the complete area of percep-
tual space that is relevant to that C-node. Thus, in
the case of point-wise representations, as the system
interacts with the world, if new perceptual points
that confirm this hypothesis are explored, they will
be added to the list of points that represent the
P-node. On the other hand, if these new percep-
tual points contradict the hypothesis, they will be
added to the representation of the P-node as anti-
points.

This approach will progressively tend to evolve
the LTM graph of the system in terms of connec-
tivity and by adding C-nodes and P-nodes. What is
very relevant here is that once a C-node and its cor-
responding P-node have been created, they will be
stored in LTM and will be activated whenever that
context (whether complete in the case of C-nodes or
just perceptual in the case of P-nodes) is found again,
regardless of however many contexts the system may
have experienced between two successive activations
of a given one. In other words, this approach should
allow cognitive architectures to learn multiple world-
goal (WG) settings even when they are experienced
in an interspersed manner. That is, when they are
only partially learnt before the system finds itself in
a different WG setting. Through successive returns
to any given WG setting, this setting can progres-
sively be learnt in full.

5. Results and Discussion

This section aims at showing that an associative
LTM with the structure presented in the previous
sections can achieve the properties required from
a basic LTM. It also seeks to study the behavior
C-nodes and P-nodes within this LTM so as to under-
stand how to use them.

5.1. Experiment design

To this end, the results of a series of experiments
that were carried out using a scenario based on a two
armed Baxter robot in front of a table (see Fig. 5)
are presented. The robot will see on the table either a
large object (a cylinder of 7 cm radius and a height of
14.7 cm) or a small object, (a cylinder of 3 cm radius
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Fig. 5. Scenario (top) and reachable areas (bottom).
The dashed lines delimit the reachable area using one
gripper, continuous lines delimit the reachable area lift-
ing objects using both arms simultaneously.

and a height of 6 cm) as well as a basket. The large
cylinder does not fit in the grippers.

The robot is not able to reach the whole table
(the lines in the bottom image of Fig. 5 display the
reachable area). Consequently, if it wants to pick up
an object that is out of reach it must first ask the
experimenter to bring it closer. Also, if it wants to
put an object in a basket that is out of reach, it must
throw it to the basket.

For actuation, the Baxter has two 7 DOF arms.
The sensors used in the experiments are an RGB
camera on its head and force sensors associated
to all the joint motors. To reduce the dimensions
of the perceptual space to something manageable
that would allow for plotting P-node representations
and discussing them, camera information was re-
described in the form of a distance and angle to the
center of two blobs as well as their radii. One of the
blobs corresponds to the object and the other to the
basket. An additional set of re-description functions
based on the information from the force sensors is
assumed so that a binary representation is provided

on the presence of objects in the grippers or held
between both arms. Consequently, this LTM works
with an eight dimensional perceptual space with six
continuous and two discrete dimensions.

The experiments contemplated the use of the
LTM isolated from the other components of the cog-
nitive architecture in order to discard any uncon-
trolled effects due to their mutual interactions. To
achieve this isolation, it was first assumed that a
given set of basic knowledge nuggets (policies, for-
ward models and goals) from previous interactions
with different worlds and under different goals were
initially present in LTM. Eight policies (shown in
Table 1) were considered. During the tests no new
basic knowledge nuggets were added.

The second assumption that was made was that
the external activation connections to the forward
models (from the prospective component) and to the
goals (from the motivational engine) were discon-
nected and were modulated by hand by the exper-
imenter. This way, the other components of the
cognitive architecture had no influence on the behav-
ior of the LTM which was exclusively under the con-
trol of the experimenter in terms of determining the
task (goal) and domain (world). In fact, and to make
things easier to analyze, while contemplating all pos-
sible cases, the experimenter was only allowed a
choice between two worlds (forward models) and two
goals resulting in four WG combinations. Four WG

Table 1. Policies in LTM.

No. Policy Description

0 Grasp object Use a gripper to grasp an
object.

1 Ask nicely Ask experimenter to bring
something to within
reach.

2 Change hands Move object from one gripper
to the other.

3 Put object in Place an object in a
receptacle.

4 Sweep object Sweep an object to the
central line of the table.

5 Throw object Throw an object to a
position.

6 Hold with two
hands

Use both arms to grasp an
object between their
ends.

7 Put object near Deposit an object close to
the robot base.
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Table 2. All possible C-nodes for the experiment.

C-node World (FM) Goal Policy

0 W 1: Grippers G1: Object in basket Grasp object
1 low friction Ask nicely
2 Change hands
3 Put object in
4 Sweep object
5 Hold with two hands
6 Throw object

7 G2: Object near robot Ask nicely
8 Grasp object
9 Put object near

10 Sweep object
11 Hold with two hands

12 W 2: No grippers G1: Object in basket Ask nicely
13 high friction Sweep object
14 Hold with two hands
15 Put object in
16 Throw object

17 G2: Object near robot Ask nicely
18 Sweep object
19 Hold with two hands
20 Put object in

combinations is the minimum number that permit
all the relevant situations where the world and/or
the goal changes.

One of two goals can be activated by the experi-
menter. The robot may either be required to put an
object (whatever its size or position on the table)
in the basket (G1) or to bring it close to the robot
base (G2). These goals may be active in two differ-
ent worlds. In one of them the robot has grippers and
can pick up small objects with them (W1), and in
the other the robot has no grippers and thus needs
to use both arms to pick up objects (W2). What-
ever the world, the robot can only pick up objects
with both arms when they are right in front of it.
That is, before picking them up it must swipe them
towards the central part of the table. When it does
this with small objects in the first world, they will
tend to overshoot (due to low friction), making it
very difficult to set them in that position. This will
not happen in the second world, as friction is much
higher.

Thus, an experimental setup has been created
where the sequence of policies the robot must apply
depends heavily on the context. Context here is given

by the world the robot is in, its current goal and
what it perceives. Thus, depending on the world, the
robot must apply different sequences of policies to
achieve the same goal. This can be clearly seen in
Table 2, which displays all the possible contexts that
may arise in the experiment and the C-node they
are associated to. Also, it is important to note that
the eight dimensional perceptual space is basically
continuous (it is continuous in six out of its eight
dimensions) and, therefore, for perceptual context to
be meaningful it must be stated in terms of percep-
tual classes. The robot must be able to autonomously
delimit these perceptual space areas from its envi-
ronmental interaction establishing perceptual cate-
gorizations it can use to reason with.

No prospection is allowed during these experi-
ments. Therefore, the cognitive architecture is con-
strained to experience based decisions in order to
achieve its objectives.

The different experiments will first address how
the proposed LTM can effectively store and reuse
configural knowledge. Then, how it reacts when
changes in the environment or goals take place.
Finally, the dynamics of the P-nodes in time, as
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well as the efficiency in their representation will be
analyzed in terms of how good these representations
are at separating and delimiting areas of interest in
perceptual space.

5.2. Single world and goal

The objective of this first very simple experiment is
to determine whether the LTM is able to identify
and store all of the relevant contexts in a particular
controlled WG combination. To this end, the exper-
iment has been set up with the LTM using a single
forward model and a single goal.

Even though this experiment has been carried out
10 times for each of the WG combinations that were
described in the previous subsection, for the sake of
brevity and as the results for all cases lead to the
same conclusions, only the results corresponding to
one WG combination are shown. In particular, the
world corresponds to the robot with grippers (W1)
and the goal is to put the cylinders it sees in the bas-
kets (G1). For this WG combination only 7 relevant
contexts need to be remembered to fully control the
world (see Table 2).

Figure 6(a) displays the results for 10 runs of
the experiment of the experiment in terms of the
number of rewards obtained including the lower and
upper bounds of the 95% confidence interval. Fig-
ure 6(b) displays number of C-nodes that were cre-
ated in three different runes. All of the runs, except
run 1, were provided with different contexts in a ran-
dom manner. In the case of run 1 they were provided
sequentially. Figure 7 displays an image of the final
LTM that was achieved.

For the sake of clarity, nodes (circles) are grouped
by type using boxes, and activation flows from left to
right. The darker the color, the larger the activation
of that node. For instance, in Fig. 7 there are sev-
eral activated C-nodes and, therefore, several acti-
vated policies, being the most activated one “hold
with 2 hands”, which is the one executed at the end
of that iteration. If we focus on perceptions, it can
be seen that the object size perception is very dark
(the object is large) and that the object angle per-
ception is white (that means that it is in front of the
robot at an angle of 0◦), therefore, holding it with
2 hands is the right policy to be executed. As this
experiment involves only one forward model and one
goal, all the C-nodes are connected to them.

(a)

(b)

Fig. 6. (a) Average number of rewards obtained every
20 iterations by 10 runs of the single world and goal
experiment. (b) Detail of the creation of the 7 C-nodes
required for this case for three of the runs.

As shown in Fig. 6(b) as well as in Fig. 7, the
system creates all of the C-nodes that are necessary.
In fact, the speed at which it acquires these C-nodes
is given by how long it takes for the different con-
texts to arise at least once during the experiment.
As shown for Run 1 in Fig. 6(b), if these different
contexts are forced to appear in a sequence, it only
takes the system 15 interactions with the world to
create the corresponding C-nodes.

Obviously, this does not imply that the system is
proficient in this environment, as shown by the low
success rate of its interactions when it has just learnt
the C-nodes (iterations 1–120 in Fig. 6(a)). This is
due to the fact that the P-nodes corresponding to
these C-nodes have experienced very few represen-
tative points (only one each, and one or two anti-
points in some cases, after the 15th iteration of Run
1 in Fig. 6(b)) and, consequently, they represent the
perceptual classes very poorly. The evolution of the
delimitation of perceptual classes and its relation-
ship to the proficiency of the LTM will be discussed
in Sec. 5.4.

1850053-16

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

19
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 D

A
 C

O
R

U
N

A
 o

n 
09

/1
9/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



July 24, 2019 13:47 1850053

Perceptual Generalization and Context in a Network Memory Inspired Long-Term Memory for Artificial Cognition

Fig. 7. Snapshot of the operation of the LTM, corresponding to iteration 3000, of an execution of the experiment with
one world and one goal.

5.3. Multiple world-goal combinations

As shown before, for a given WG combination it is
straightforward for the proposed LTM structure to
produce all of the C-nodes it needs. Now the problem
of changing WG combinations will be considered, as
it is quite important to determine whether and how
much interference occurs among different WG com-
binations in the long-term storage of information.

To ascertain the effects of these changes on
C-nodes, a series of experiments were run in which
WG changes occurred at different time intervals. Fig-
ure 8 displays, in its left column, the results of these
runs in terms of the average of 10 runs as well as the
lower and upper bounds of the 95% confidence inter-
val. The right column provides a power model regres-
sion curve for the probability of rewarded movement
in each case. Figure 9 displays the results for two
particular runs including the C-node/P-node acqui-
sition rate.

These figures show how, for this architecture,
there are actually no interference effects. In Figs. 8
and 9 (bottom), the intervals between WG changes
were so long that the system faced all of the possible
contexts within a WG combination and was able to
produce all of the C-nodes corresponding to each WG
situation before changing into the next one. In fact,
in Fig. 8 bottom it can be appreciated how during
the first 800 iterations, every 200 iterations, as the

system changes WG, there is a large decrease in per-
formance, until it learns the new WG setting. This
is, not the case in the case of a period of 25 itera-
tions. Here, the system is gradually learning all the
WG settings in an interspersed manner and the evo-
lution of performance is smoother. That is, when-
ever the system returns to a given WG, it reuses
previously created C-nodes when they are deemed
relevant for the context. At the same time, it keeps
on correctly detecting new contexts as they appear
and creating their corresponding C-nodes, until all
of them have been experienced and created (Fig. 9).
Thus, a conclusion that is obtained is that due to
the way C-nodes are preserved in LTM, the creation
of new C-nodes corresponding to new WG combi-
nations does not affect others present in LTM. This
process is independent from the WG switch interval,
confirming the nonexistence of interference effects in
a C-node based configural associative LTM. Even
though this could seem quite obvious due to the
design of the C-node structure, it needed to be ascer-
tained in real settings to be completely rigorous.

Figure 10 displays two steps during the growth
of the LTM in one of the runs of this experiment.
All of the C-nodes as well as their corresponding
P-nodes are progressively created and appropriately
linked to their corresponding contexts up to a total
of 21, which is the theoretical number of contexts in
this experiment as shown in Table 2.
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Fig. 8. Results for three world-goal switch periods in the multiple world-goal experiment with (from top) 25, 100 and 200
iterations between changes of world-goal combination (the sequence was always a cyclic W1G1, W1G2, W2G1, W2G2).
The left column shows the results for ten runs of the experiments in each case. The right column displays the probability
of rewarded movement.

Again, the fact that the robot may have detected
all the relevant contexts and created the pertinent
C-nodes and their associated P-nodes does not mean
that it is able to operate proficiently in the WG con-
texts it faces. Initially, it is representing perceptual
classes through P-nodes, without experiencing many
different perceptual situations in that WG combina-
tion, the representation of the perceptual class pro-
vided by the P-node is poor. The hypothesis of the
P-node on what area of state space corresponds to
the class is very sketchy. This is evident in Figs. 8
and 9 which display the number of times the sys-
tem reached the goal every 20 interactions with the

world. It is only after around 1800 iterations, when it
has experienced a relevant number of different cases
corresponding to a given perceptual class, that the
success level starts to improve, reaching a situation
where it mostly achieves the goals between 18 and 20
times out of 20. It never reaches a perfect sustained
20 out of 20, but we will comment on this later, after
studying the evolution of the P-nodes.

5.4. P-node behavior

P-node dynamics are a key factor in understand-
ing how this type of LTM structure operates. It
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Fig. 9. Results for two particular runs of the multiple world-goal corresponding (from top) to 25 and 200 iterations
between changes of world-goal combination.

Fig. 10. Snapshots of the LTM for iterations 400 and 12,000 of an execution of the multiple WG experiment starting
from an LTM with no C-nodes or P-nodes. For the sake of clarity, only connections for C-nodes that are active in that
instant are depicted.

has been shown how C-nodes are progressively cre-
ated and updated as reward is obtained, how this
is not affected at all by context changes, and how
retrieval is instantaneous and effective. Now, the
objective is to analyze in detail how P-nodes are cre-
ated and updated and provide some examples of their
behavior.

As indicated above, in the first implementation
of this LTM structure, the creation of a C-node
entails the creation of an associated P-node. This
P-node is initially represented by a single point cor-
responding to the perception that produced a reward

when the C-node was created. Thus, the P-node is
activated with a value of 1.0 for its only represen-
tative point and with lower values in the hypothesis
area surrounding the point depending on the repre-
sentation used. The hypothesis area is given by the
P-node activation algorithm, but it is just a hypoth-
esis and, consequently, part of the area it encom-
passes may actually not be a part of the percep-
tual class. In this case, eventually, the P-node will
be activated by a point that is in its hypothesis area
but that does not belong to the particular perceptual
class it represents. This will most probably cause the
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activation of a policy that will not lead to reward. As
a consequence, this perceptual point will be classified
as an anti-point and added to the P-node as such,
changing the shape of its hypothesis area. Now, the
P-node will not be activated whenever that particu-
lar perceptual point as well as its surrounding points
are experienced again as the hypothesis area around
the anti-point will also be inhibited.

As time passes, and more interactions with the
world involving the particular P-node take place, it
will be informed by more points (corresponding to
perceptions that activated the P-node and that pro-
duced a reward) and anti-points (corresponding to
perceptions that activated the P-node and did not
produce a reward). This will lead to more defined
hypothesis areas for the P-node and thus a better
correspondence between P-node output and mem-
bership to the perceptual class it represents. Depend-
ing on the rules that are implemented for the P-node
with respect to the distance to known points in the

case of point-wise representations or the training
algorithm in other representations, such as ANNs,
its operation may be quite different.

Here, a highly exploratory strategy has been cho-
sen for the rules. In it, slope of the probability around
a given point in the P-node is very small. This way,
the initial point that generates the P-node basically
assumes as an initial hypothesis that the whole per-
ceptual space belongs to the perceptual class. It is
only by making mistakes, that the system incorpo-
rates anti-points and these, when paired with points,
delimit the real borders of the class.

An important side effect of this choice of
approach is that whenever there is no information on
an area of perceptual space, the hypothesis the sys-
tem makes on the membership of a new point to a
class depends on whether the new point is closer (no
matter how far it is from it) to a point or to an anti-
point. In the first case it will assume positive mem-
bership and in the second one negative membership.

Fig. 11. P-node 18 activation map for iterations 700, 3000, 6000 and 12,000 in an experiment with 12,000 iterations
(crosses are points, circles are anti-points, and the lighter the grey, the larger the activation). This P-node was created at
iteration 605.
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In other words, depending on the side of a border the
new point is in, and independently of how unknown
the area where this new point is located is, a clear
hypothesis is made (even if it is wrong).

Figure 11 displays the evolution in time of a
P-node hypothesis area (P-node 18), including the
representative points the P-node has acquired in
order to construct it (points denoted by crosses and
anti-points by circles). As in this example we are
working with an eight dimensional perceptual space,
the graphs show the activation map (the lighter the
color, the larger the activation) over two dimensional
sections. In fact, we have chosen the two most signif-
icant continuous dimensions (sensors) in each case.
By “more significant sensors” we mean those sensors
that play the most relevant role when calculating the
activation. For instance, in the case of gripping an
object, the most significant sensors are those corre-
sponding to distance and angle to the object. This
representation provides an idea with respect to the
areas of state space in which the P-node will be acti-
vated (lighter areas) and in which it will be inhibited
(darker areas) and it can thus be taken as a map of
the perceptual class (lighter areas correspond to per-
ceptions that are included in the perceptual class).

P-node 18 corresponds to the execution of the
Sweep object policy in the world where the robot has
no grippers and when the goal is to bring the object
as close as possible to the robot. This P-node is very
easy to interpret. As long as the object is reachable,
the robot can sweep the object to the area where it
can pick it up with both arms (the central area), so
the reachable area is full of points except in the area
where it can pick the object up, because the object
is already there. The anti-points are delimiting the
out of reach area, and are located also in the area
where the objects can be picked up with both arms.

It is clear from the time evolution of the images
in the figure that, initially, when the robot has not
interacted with the environment very much and there
are few points and anti-points, the delimitation of
the perceptual class is quite poor. However, as more
points and anti-points are acquired, the delimitation
obtained by the robot is much more detailed and,
consequently, the decisions that can be made based
on it will be much more precise.

In Fig. 12, a similar graph to that of Fig. 11
is shown for some P-nodes at the end of the run.
Table 2 displays the corresponding context for each

P-node, as there is a one-to-one relationship in this
experiment between a given P-node and the C-
node with the same number. The concentration of
points is always larger than the concentration of anti-
points and this is due to how P-nodes are updated.
Whenever, the execution of a policy produces a
reward, the perception becomes a point of the corre-
sponding activated P-node. However, an anti-point
is only added if the policy does not produce reward
and the P-node was activated. If the P-node was
not activated, the anti-point is not created. Thus,
the algorithm reinforces only the activation areas
with points. As time passes this asymmetry leads
to the anti-points delimiting a frontier separating
areas where the P-node should and should not be
activated.

In addition to this, there is an artifact in some
of the graphs that deserves an explanation. In the
graph corresponding to P-node 0, and in some of the
others, such as P-node 1 (anti-points in this case),
which is basically its complementary node, there is
something that may look un-random or un-statistical
and that is that there is an important concentration
of points for a particular value of object distance (a
line can be discerned on the graph). This is because
the value for the distance from the robot at which the
experimenter sets the object after the robot applies
the Ask nicely policy is always the same (although
the angle is not necessarily same).

An interesting graph is the one corresponding to
P-node 2, associated with the Change hands policy
when the goal is to put the object in the box and the
robot has grippers. The most significant sensors in
this case are the angle of the object and the angle of
the basket. To be able to put an object in the basket,
the robot first needs to have this object in the gripper
that is on the same side as the basket. Consequently,
this policy should be activated whenever this is not
the case and inhibited when it is. This is what the
perceptual class shows, when object is in the opposite
side to that of the basket the robot must move it from
its current gripper to the other one.

It is also easy to see that P-node 0 and P-node 1
are complementary. The first one corresponds to the
Grasp object policy, which needs to define an area
in which the object is reachable. The other one is
related to the Ask nicely policy, which requires a def-
inition of the areas in which the object cannot be
reached.
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Fig. 12. Final activation maps for several P-nodes in an experiment with 12,000 iterations.

On the other hand, the case of P-node 5 is a clear
example of the grounding of the P-nodes. This P-
node corresponds to the Hold with two hands policy
for the same goal and in the same world as P-node
0. To be able to grasp the object with its two hands,
the object must be right in front of the robot and,
due to the structure of its arms and the position of
the table, there is a very small window of distances
from the robot and angles with respect to the cen-
tral line of the table where, it is feasible to do it. This
is what the P-node is showing by defining the acti-
vation of the perceptual class in the distance up to
around 0.38 and the angle interval of a maximum

of between around −0.25 to +0.25 in the widest
point.

The main conclusion that can be derived from
these figures is that the approach presented here is
able to identify and clearly define the P-nodes it
requires in order to segment the perceptual space
as a function of the context (domain and task) that
must be addressed. It creates well established bor-
ders delimiting where the P-node should be activated
and, if one looks closely at the resulting distributions,
they actually make a lot of sense in terms of percep-
tual classes from a human point of view. Resorting
to the cases analyzed in the previous paragraphs,
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P-node 0 would correspond to an “objects within
reach” perceptual class, P-node 1, to an “objects out
of reach” perceptual class, P-node 2 to an “object in
the wrong hand” perceptual class, and so on.

Obviously, the LTM does not label the classes (at
least not yet), but that does not mean that they do
not present semantic content. These classes are each
represented by its P-node and, therefore one could
think that these semantics could be attributed to
the P-nodes representing the classes and that higher
level planning and reasoning processes could be car-
ried out based on this segmented context dependent
representation of the perceptual space of the robot.
However, this is the topic of another paper.

Now that we have studied how P-nodes behave,
and how they progressively delimit the perceptual
classes for the different contexts, we can go back and
observe the figures corresponding to the interaction
of the system with the world in terms of goal achieve-
ments in time (Figs. 6 and 8).

As commented previously, it is easy to see that a
relatively fast initial improvement stage takes place
in which the system finds the required contexts,
encodes them into C-nodes and incorporates the first
points into P-nodes representing perceptual classes.
P-nodes allow it to make hypothesis on whether new
points belong or not to the perceptual classes they
represent. Obviously, as we have seen in Fig. 11, these
P-nodes initially make hypotheses that are too gen-
eral and slowly delimit the perceptual class profile
through the exploration of points and anti-points in
their borders.

These initial delimitations of classes, even though
they are far from perfect, allow a very fast increase
in the performance of the system. However, this
increase is full of valleys, as shown in Fig. 9, which
occur when a point is misclassified leading to a mis-
take in the choice of policy. This problem is even
worse when the misclassification leads to no P-node
being activated, as the system will start to ran-
domly test policies until one is found that produces
a reward. This babbling may lead to a whole set
of unrewarded interactions, thus decreasing the per-
ceived performance of the system.

Depending on the dimensionality and complex-
ity of the perceptual space the LTM is operating in,
the delimitation of perceptual classes may be easier
or harder. For instance, some perceptual classes are
characterized along an independent binary sensorial

dimension (ball in gripper or not in gripper). These
classes are very easy to delimit with a very small
number of samples. However, other classes, like
those dealing with higher continuous dimensionali-
ties, where there are dependencies among the differ-
ent dimensions, as in the case of reaching to grasp
an object (P-node 0, for instance), are much more
difficult to learn. In fact, they usually require a very
large number of perceptual instances, trials of the
system in the world, especially in the class extensive
and often tortuous borders, so that they can delimit
these borders with an appropriate resolution. Thus,
there is room for improvement in the algorithms that
characterize P-nodes so that more precise delimita-
tions can be achieved with fewer trials.

Notwithstanding this, the performance of the sys-
tem is quite robust. It is capable of identifying regu-
larities in its interaction with environments under
different motivations to establish associative rela-
tionships among the different knowledge nuggets it
has acquired reflecting and remembering contexts in
configural representations. This allows it to operate
in different contexts without interference effects. It
is also able to aggregate events into context depen-
dent categories, which in the case of perception
means establishing and delimiting the appropriate
task related perceptual classes. In other words, it
fulfils the requirements that were established at the
beginning.

6. Conclusions

This paper proposes a general structure for a LTM
within a cognitive architecture in open-ended learn-
ing settings based on knowledge nuggets represented
as ANNs. It is inspired on the Memory Network con-
cept proposed by Fuster.58 The basic architectural
structure is enhanced by the addition of two new
classes of knowledge nuggets: C-nodes, which allow
for the storage of configural associations in a very
straightforward manner, and P-nodes, which repre-
sent perceptual classes.

A mechanism is proposed for the general oper-
ation of this type of LTM in terms of experience
based decision processes. This mechanism is agnos-
tic to the algorithms used for the delimitation of
P-nodes. However, in order to provide a complete
description and analysis of the operation of the sys-
tem, we have proposed a very simple point-based
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algorithm for the autonomous delimitation of percep-
tual classes by the P-nodes as the system interacts
with the world. P-nodes, together with the deter-
mination of relevant contextual relationships as pro-
vided by C-nodes, allow for the creation of a LTM
capable of learning and performing experience based
or “automatic” decision processes that can help the
system to fluidly interact with the world.

One very important characteristic of this type
of memory that is basic for open-ended learning, is
the lack of memory interference effects with regards
to context, thus allowing for the system to be able
to learn to operate in different worlds under dif-
ferent goals when it experiences them in an inter-
spersed manner, much like living beings do. A second
very important characteristic is that the capability
of autonomously generating perceptual classes asso-
ciated to different worlds and tasks permits segment-
ing the world into semantically loaded categories,
associated to contexts, that can later be used in
higher level reasoning and planning processes.

In this paper we have concentrated mostly on the
perceptual and context related aspects of LTM, tak-
ing the executive component as given. However, the
executive aspects are also quite important in terms
of achieving cognition. In this line, policies may be
parametrized and, consequently, may also define a
continuous parameter space that would require of
its autonomous generalization into executive classes
(E-nodes). Additionally, both P-nodes and E-nodes
may be organized into perceptual and executive hier-
archies, parts of which can be reused for new con-
texts. That is, they are compositional knowledge
nuggets from which we may take advantage. Finally,
as indicated in the paper, different representations
of P-nodes and E-nodes could lead to more pre-
cise delimitations of these areas and, thus, better
performance of the systems that use this approach.
In fact, for the sake of homogeneity, as the rest of
the knowledge nuggets in the architecture are repre-
sented through ANNs, an ANN based representation
of these new structures would make a lot of sense.
These are all problems we are working on now and
that provide good avenues of future research.
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