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Abstract

The huge amount of information stored in audio and video repositories makes search on speech (SoS) a priority area
nowadays. Within SoS, Query-by-Example Spoken Term Detection (QbE STD) aims to retrieve data from a speech
repository given a spoken query. Research on this area is continuously fostered with the organization of QbE STD
evaluations. This paper presents a multi-domain internationally open evaluation for QbE STD in Spanish. The
evaluation aims at retrieving the speech files that contain the queries, providing their start and end times, and a score
that reflects the confidence given to the detection. Three different Spanish speech databases that encompass
different domains have been employed in the evaluation: MAVIR database, which comprises a set of talks from
workshops; RTVE database, which includes broadcast television (TV) shows; and COREMAH database, which contains
2-people spontaneous speech conversations about different topics. The evaluation has been designed carefully so
that several analyses of the main results can be carried out. We present the evaluation itself, the three databases, the
evaluation metrics, the systems submitted to the evaluation, the results, and the detailed post-evaluation analyses
based on some query properties (within-vocabulary/out-of-vocabulary queries, single-word/multi-word queries, and
native/foreign queries). Fusion results of the primary systems submitted to the evaluation are also presented. Three
different teams took part in the evaluation, and ten different systems were submitted. The results suggest that the
QbE STD task is still in progress, and the performance of these systems is highly sensitive to changes in the data
domain. Nevertheless, QbE STD strategies are able to outperform text-based STD in unseen data domains.
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1 Introduction
The huge amount of information stored in audio and

and Query-by-Example Spoken Term Detection (QbE
STD) [19-26] tasks.

audiovisual repositories makes it necessary to develop
efficient methods for search on speech (SoS). Signifi-
cant research has been carried out in this area from
spoken document retrieval (SDR) [1-6], keyword spot-
ting (KWS) [7-12], spoken term detection (STD) [13-18],
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STD aims to find terms within audio archives. It is based
on a text-based input, commonly the word/phone tran-
scription of the search term, and hence, STD is also called
text-based STD. Query-by-Example Spoken Term Detec-
tion also aims to search within audio archives but is based
on an acoustic (spoken) input. This is a highly valuable
alternative for visually impaired people or when using
devices that do not have a text-based input (such as smart
speakers), and consequently, the query must be given in
another format such as speech.

STD systems typically comprise three different stages:
(1) the audio is decoded into word/subword lattices using
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an automatic speech recognition (ASR) subsystem trained
for the target language; (2) a term detection subsystem
searches the terms within those word/subword lattices to
hypothesize detections; and (3) confidence measures are
computed to rank detections. The STD systems are nor-
mally language-dependent and require large amounts of
resources to be built.

On the other hand, QbE STD has been tradition-
ally addressed using three different approaches: meth-
ods based on the word/subword transcription of the
query, methods based on template matching of features,
and hybrid approaches. These approaches are described
below.

1.1 Methods based on the word/subword transcription of
the spoken query

In these methods, first, the spoken query is decoded using
an ASR system and then a text-based STD approach is
employed to hypothesize detections. The errors produced
in the transcription of the query can lead to significant
performance degradation. In [21] and [27], the authors
employ a Viterbi-based search on hidden Markov mod-
els (HMMs). In other works [19, 28-30] dynamic time
warping (DTW) or variants of DTW are applied (e.g.,
non-segmental dynamic time warping (NS-DTW)) to
align phone sequences. More sophisticated approaches
[20, 31-33] employ word and syllable speech recogniz-
ers. In [34], the authors employ a phone-based speech
recognizer and weighted finite state transducer (WFST)-
based search, whereas in [35], they apply multilingual
phone-based speech recognition from supervised and
unsupervised acoustic models and sequential dynamic
time warping for search. The works [36—38] propose the
discovery of unsupervised acoustic features (e.g., bot-
tleneck features) and unsupervised acoustic units for
query/utterance representation, and [39] and the work
by (Lopez-Otero et al.: Probabilistic information retrieval
models for query-by-example spoken document retrieval,
submitted to Multimed. Tools Appl.) make use of infor-
mation retrieval models for QbE STD employing ASR.

1.2 Methods based on template matching

In these methods, sequences of feature vectors are
extracted from both the input spoken queries and the
utterances, which are then used in the search stage
to hypothesize detections. Regarding the features used
for query/utterance representation, Gaussian posterior-
grams are employed in [22, 29, 40, 41]; an i-vector-based
approach for feature extraction is proposed in [42]; phone
log-likelihood ratio-based features are used in [43]; poste-
riorgrams derived from various unsupervised tokenizers,
supervised tokenizers, and semi-supervised tokenizers
are employed in [44]; and posteriorgrams derived from
a Gaussian mixture model (GMM) tokenizer, phoneme
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recognition, and acoustic segment modeling are used in
[45]. Phoneme posteriorgrams have been widely used
[34, 41, 46—54] and bottleneck features as well 34, 55-60].
Posteriorgrams from non-parametric Bayesian models are
used in [61], articulatory class-based posteriorgrams are
employed in [62], intrinsic spectral analysis is proposed in
[63], unsupervised segment-based bag of acoustic words
is employed in [64], and [65] is based on the sparse sub-
space modeling of posteriorgrams. An exhaustive feature
set is proposed in [66], which includes Mel-frequency cep-
stral coefficients (MFCCs), spectral entropy, fundamental
frequency, among others.

All these studies employ the standard DTW algorithm
for query search, except for [40], which employs the NS-
DTW algorithm, [41, 50, 51, 53, 56, 59, 61, 66] which
employ the subsequence DTW (S-DTW) algorithm, [22]
which presents a variant of the S-DTW algorithm, and
[52] which employs the segmental DTW algorithm. An
interesting alternative is [54] which proposes the use of
hashing of the phone posteriors to speed-up search and to
enable searching on massively large datasets.

These template matching-based methods were found
to outperform subword transcription-based techniques in
QbE STD [67] and can be effectively employed to build
language-independent STD systems, since prior knowl-
edge of the language involved in the speech data is not
necessary.

1.3 Hybrid methods

These methods take advantage of the text-based STD
approach and the approaches based on template match-
ing by combining them to hypothesize detections. A
powerful way of enhancing the performance relies on
building hybrid (fused) systems that combine the two
individual methods. Logistic regression-based fusion of
acoustic keyword spotting and DT W-based systems using
language-dependent phoneme recognizers is presented in
[68-70]. An information retrieval technique to hypothe-
size detection and DTW-based score detection are pro-
posed in [39]. Logistic regression-based fusion on DTW
and phone-based systems is employed in [71-74]. DTW-
based search at the HMM state-level from syllables
obtained from a word-based speech recognizer and a deep
neural network (DNN) posteriorgram-based rescoring are
employed in [75], and [76] adds a logistic regression-based
approach for detection rescoring. Finally, [77] employs a
syllable-based speech recognizer and dynamic program-
ming at the triphone state level to output detections and
DNN posteriorgram-based rescoring.

2 Methods

Research carried out in a certain area may be difficult to
compare in the absence of a common evaluation frame-
work. In QbE STD, research also suffers from this issue
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since the published systems typically employ different
acoustic databases and different lists of queries that make
system comparison impossible. In this context, interna-
tional evaluations provide a unique framework to measure
the progress of any technology, such as QbE STD in this
case.

ALBAYZIN evaluation campaigns comprise an interna-
tionally open set of evaluations supported by the Spanish
Thematic Network on Speech Technologies (RTTH!) and
the ISCA Special Interest Group on Iberian Languages
(SIG-IL?), which have been held biennially since 2006.
These evaluation campaigns provide an objective mech-
anism to compare different systems and are a powerful
way to promote research on different speech technolo-
gies [78-87].

Spanish is a major language in the world, and signifi-
cant research has been conducted on it for ASR, KWS,
and STD tasks [88-94]. The increasing interest in SoS
around the world and the lack of SoS evaluations deal-
ing with Spanish encouraged us to organize a series of
QbE STD evaluations starting in 2012 and held biennially
until 2018, aiming to evaluate the progress in this tech-
nology for Spanish. Each evaluation has been extended
by incorporating new challenges. The main novelty of
the fourth ALBAYZIN QbE STD evaluation is the addi-
tion of a new data domain, namely broadcast television
(TV) shows, with the inclusion of shows from the Span-
ish public television Radio Televisién Espafola (RTVE). In
addition, a novel conversational speech database has also
been used to assess the validity of the submitted systems
in an unseen data domain. Moreover, the queries used in
one of the databases (MAVIR) in the ALBAYZIN 2016
QbE STD evaluation were kept to enable a straightforward
comparison of the systems submitted to both evaluations.

The main objectives of this evaluation can be summa-
rized as follows:

e Organize the first Spanish QbE STD multi-domain
evaluation whose systems are ranked according to
different databases and different domains

® Provide an evaluation and benchmark with increasing
complexity in the search queries compared to the
previous ALBAYZIN QbE STD evaluations

This evaluation is suitable for research groups/companies
that work in speech recognition.

This paper is organized as follows: First, Section 3
presents the evaluation and a comparison with other
QbE STD evaluations. Then, Section 4, the different sys-
tems submitted to the evaluation, along with a text-based
STD system, are presented. Evaluation results and dis-
cussion are presented in Section 5, which includes the
corresponding paired ¢ tests [95] as statistical significance
measure for system comparison. The Section 6 presents a
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post-evaluation analysis based on some properties of the
queries and the fusion of the primary systems submitted
to the evaluation. The last section outlines the main con-
clusions of the paper.

3 ALBAYZIN 2018 QbE STD evaluation

3.1 Evaluation overview

This evaluation involves searching queries given in spo-
ken form within speech data, by indicating the appropriate
audio files with the occurrences and timestamps that
contain any of those queries.

The evaluation consists in searching different query lists
within different sets of speech data. Speech data comprise
different domains (workshop talks, broadcast TV shows,
and 2-people conversations), for which individual datasets
are given. The ranking of the evaluation results is based
on the average system performance on the three datasets
in the test experiments.

Two different types of queries are defined in this evalu-
ation, in-vocabulary (INV) and out-of-vocabulary (OOV)
queries. The OOV query set was defined to simulate the
out-of-vocabulary words of a large vocabulary continu-
ous speech recognition (LVCSR) system. In case partici-
pants employ LVCSR for processing the audio, these OOV
words must be previously removed from the system dic-
tionary, and hence, other methods have to be used for
searching OOV queries. On the other hand, the INV
queries could appear in the LVCSR system dictionary.

Participants could submit a primary system and up to
four contrastive systems. No manual intervention was
allowed for each developed system to generate the final
output file, and hence, all the systems had to be fully
automatic [96].

About 3 months were given to the participants for sys-
tem development, and therefore, the QbE STD evaluation
focuses on building QbE STD systems in a limited period
of time. The training, development, and test data were
released to the participants at different times. Training
and development data were released by the end of June
2018. The test data were released by the beginning of
September 2018. The final system submission was due by
mid-October 2018. Final results were discussed at Iber-
SPEECH 2018 conference by the end of November 2018.

3.2 Evaluation metrics

In QbE STD, a hypothesized occurrence is called a detec-
tion; if the detection corresponds to an actual occur-
rence, it is called a hit; otherwise it is called a false
alarm (FA). If an actual occurrence is not detected,
it is called a miss. The actual term-weighted value
(ATWYV) metric proposed by the National Institute of
Standards and Technology (NIST) [96] has been used
as the main metric for the evaluation. This metric inte-
grates the hit rate and false alarm rate of each query
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into a single metric and then averages over all the

queries:
1 NK, NK
ATWY = > (NK , ey

KeA true

P TN
where A denotes the set of queries and |A| is the number
of queries in this set. N{fit and Nﬁ represent the numbers
of hits and false alarms of query K, respectively, and NX .
is the number of actual occurrences of K in the audio. T
denotes the audio length in seconds, and g is a weight fac-
tor set to 999.9 as in [97]. This weight factor causes an
emphasis placed on recall compared to precision with a
ratio 10:1.

ATWYV represents the term-weighted value (TWV) for
a threshold given by the QbE STD system (usually tuned
on development data). An additional metric, called max-
imum term-weighted value (MTWYV) [96], can also be
used to evaluate the performance of a QbE STD system.
MTWYV is the maximum TWYV obtained by the QbE STD
system for all possible thresholds, and hence does not
depend on the tuned threshold. Therefore, MTWV rep-
resents an upper bound of the performance obtained by
the QbE STD system. Results based on this metric are also
presented to evaluate the system performance regardless
of the decision threshold.

In addition to ATWYV and MTWYV, NIST also proposed
a detection error tradeoff (DET) curve [98] to evaluate
the performance of a QbE STD system working at various
miss/FA ratios. Although DET curves were not used for
the evaluation itself, they are also presented in this paper
for system comparison.

In this work, the NIST STD evaluation tool [99] was
employed to compute MTWV, ATWYV, and DET curves.

3.3 Databases

Three different databases that comprise different acoustic
conditions and domains have been employed for the eval-
uation: (1) MAVIR database, which was employed in all
the previous ALBAYZIN QbE STD evaluations, is used for
comparison purposes; (2) RTVE database, which consists
of different programs recorded from the Spanish public
television (Radio Television Espafiola) and involves differ-
ent broadcast TV shows; (3) COREMAH database, which
contains conversational speech with two speakers per
recording. For MAVIR and RTVE databases, three sepa-
rate datasets (i.e., training, development, and test) were
provided to the participants. For COREMAH database,
only test data were provided. This allowed measuring the
generalization capability of the systems in an unseen data
domain. Tables 1, 2, and 3 include some database fea-
tures such as the division into training, development, and
test data of the speech files; the number of word occur-
rences; duration; the number of speakers; and average
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Table 1 Characteristics of the MAVIR database. Number of word
occurrences (#occ.), duration (dur.) in minutes (min), number of
speakers (#spk.), and average MOS (Ave. MOS)

File ID Data #wordocc. dur.(min) #spk. Ave. MOS
Mavir-02  train 13432 74.51 7 (7 ma.) 2.69
Mavir-03 dev 6681 38.18 2 (1 ma.1fe) 2.83
Mavir-06  train 4332 29.15 3(2ma.1fe) 2.89
Mavir-07 dev 3831 21.78 2(2ma) 3.26
Mavir-08  train 3356 18.90 1 (1 ma) 313
Mavir-09  train 11179 70.05 1(1 ma) 2.39
Mavir-12  train 11168 67.66 1(1 ma.) 232
Mavir-04  test 9310 57.36 4 (3 ma.1fe) 2.85
Mavir-11  test 3130 20.33 1(1 ma) 246
Mavir-13  test 7837 43.601 1(1 ma.) 248
ALL train 43467 260.27 13(12ma.1fe) 256
ALL dev 10512 59.96 4 (3ma.1fe) 2.64
ALL test 20277 1213 6 (5ma.1fe) 2.65

ma. male, fe. female. These characteristics are displayed for training (train),
development (dev), and testing (test) datasets

mean opinion score (MOS) [100] as a way to get an
idea of the quality of each speech file in the different
databases.

3.3.17 MAVIR

MAVIR database consists of a set of Spanish talks
extracted from the MAVIR workshops® held in 2006,
2007, and 2008.

The MAVIR Spanish data consist of spontaneous speech
files from different speakers from Spain and Latin Amer-
ica, which amount to about 7 h of speech. These data
are then divided for the purpose of this evaluation into
training, development, and test sets. The data were also
manually annotated in an orthographic form, but times-
tamps were only set for phrase boundaries. To prepare the
data for the evaluation, the organizers manually added the
timestamps for the roughly 1600 occurrences of the spo-
ken queries used in the development and test evaluation
sets. The training data were made available to the partic-
ipants including the orthographic transcription and the
timestamps for phrase boundaries?.

The speech data were originally recorded in sev-
eral audio formats (pulse-code modulation (PCM) mono
and stereo, MP3, 22.05 kHz, 48 kHz, among others).
The recordings were converted to PCM, 16 kHz, sin-
gle channel, 16 bits per sample using the SoX tool°.
All the recordings except one were made with the
same equipment, a Digital TASCAM DAT model DA-
P1. Different microphones were used, which mainly con-
sisted of tabletop or floor standing microphones, but
in one case, a lavalier microphone was used. The dis-
tance from the speaker’s mouth to the microphone var-
ied and was not controlled at all, but it was smaller
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Table 2 Characteristics of the RTVE database. Number of word
occurrences (#occ.), duration (dur.) in minutes (min), number of
speakers (#spk.), and average MOS (Ave. MOS)

File ID Data #word occ. dur. (min) #spk. Ave. MOS
LN24H-20151125 dev2 21049 123.50 22 337
LN24H-20151201 dev2 19727 11243 16 327
LN24H-20160112 dev2 18617 11040 19 3.24
LN24H-20160121 dev2 18215 120.33 18 293
millennium-20170522 dev2 8330 56.50 9 3.61
millennium-20170529 dev2 8812 5795 10 324
millennium-20170626 dev2 7976 5568 14 3.55
millennium-20171009 dev2 9863 58.78 12 3.60
millennium-20171106 dev2 8498 59.57 16 340
millennium-20171204 dev2 9280 60.25 10 3.29
millennium-20171211  dev2 9502 59.70 12 2.95
millennium-20171218 dev2 9386 5555 15 2.70
EC-20170513 test 3565 2213 N/A - 312
EC-20170520 test 3266 21.25 N/A 338
EC-20170527 test 2602 17.87 N/A 342
EC-20170603 test 3527 23.87 N/A 390
EC-20170610 test 3846 2422 N/A 331
EC-20170617 test 3368 21.55 N/A 336
EC-20170624 test 3286 22.60 N/A 365
EC-20170701 test 2893 2252 N/A 347
EC-20170708 test 3425 23.15 N/A 358
EC-20170715 test 3316 22.55 N/A 382
EC-20170722 test 3929 2740 N/A 388
EC-20170729 test 4126 2745 N/A - 361
EC-20170909 test 3063 21.05 N/A 364
EC-20170916 test 3422 24.60 N/A 340
EC-20170923 test 3331 22.02 N/A 324
EC-20180113 test 2742 19.02 N/A  3.80
EC-20180120 test 3466 2197 N/A 328
EC-20180127 test 3488 22.52 N/A 356
EC-20180203 test 3016 21.60 N/A~ 390
EC-20180210 test 3214 2320 N/A - 3.71
EC-20180217 test 3094 2033 N/A 357
EC-20180224 test 3140 20.78 N/A 356
millennium-20170703 test 8714 55.78 N/A - 1.10
millennium-20171030 test 8182 57.05 N/A 344
ALL train - 3729924 27729 N/A  3.04
ALL devl 545952 374288  N/A 290
ALL dev2 149255 930.64 N/A 325
ALL test 90021 605.48 N/A 332

These characteristics are displayed for training (train), development (dev), and
testing (test) datasets. Results for train and dev1 are not reported per file due to the

large number of files (about 400 for train and about 60 for dev1)
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Table 3 Characteristics of the COREMAH database (only for
testing). Number of word occurrences (#occ.), duration (dur.) in
seconds (sec), number of speakers (#spk.), and average MOS (Ave.

MOS)

File ID #word occ. dur. (sec) #spk. Ave. MOS
49-50-rejection 343 109 2(1ma.1fe) 1.90
49-50-compliment 470 126 2 (1 ma,1fe) 2.35
49-50-apology 585 191 2 (1 ma,1fe) 217
51-52-rejection 227 57 2 (2fe) 2.82
51-52-compliment 244 54 2 (2fe) 3.28
51-52-apology 283 59 2(2fe) 4.02
53-54-rejection 183 47 2(2fe) 3.26
53-54-compliment 152 44 2 (2fe) 258
53-54-apology 224 57 2 (2fe) 3.20
55-56-rejection 202 62 2 (1 ma,1fe) 254
55-56-compliment 261 74 2 (1 ma,1fe) 281
55-56-apology 337 82 2 (1 ma,1fe) 246
57-58-rejection 509 153 2 (1 ma,1fe) 262
57-58-compliment 328 89 2(1 ma, 1fe) 1.65
57-58-apology 566 177 2(1ma,1fe) 2.79
59-60-rejection 146 51 2 (2fe) 279
59-60-compliment 166 49 2 (2fe) 2.19
59-60-apology 167 41 2(2fe) 3.54
61-62-rejection 286 74 2 (1 ma,1fe) 2.27
61-62-compliment 192 46 2 (1 ma,1fe) 2.99
61-62-apology 206 52 2(1ma,1fe) 232
63-64-rejection 324 103 2(1ma,1fe) 3.1
63-64-compliment 379 99 2(1ma,1fe) 2.56
63-64-apology 437 128 2(1ma,1fe) 262
65-66-rejection 252 60 2 (1 ma,1fe) 291
65-66-compliment 188 47 2 (1 ma,1fe) 246
65-66-apology 198 53 2 (1 ma,1fe) 3.13
67-68-rejection 201 59 2(2fe) 2.14
67-68-compliment 166 50 2(2fe) 4.06
67-68-apology 218 63 2(2fe) 312
69-70-rejection 99 33 2 (2fe) 4.07
69-70-compliment 89 30 2 (2fe) 243
69-70-apology 127 46 2(2fe) 430
71-72-rejection 360 110 2 (1 ma,1fe) 2.17
71-72-compliment 257 72 2 (1 ma,1fe) 261
71-72-apology 328 93 2(1ma,1fe) 2.06
ALL 9700 2740 24 (7ma, 17fe) 246

ma.male, fe. female

than 50 cm in most of the cases. The recordings were
made in large conference rooms with capacity for over
a hundred people and a large amount of people in the
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conference room. This poses additional challenges includ-
ing background noise (particularly babble noise) and
reverberation.

3.3.2 RTVE

RTVE database belongs to the broadcast TV program
domain and contains speech from different TV shows
recorded from 2015 to 2018 (Millenium, La tarde en 24H,
Comando actualidad, Espana en comunidad, to name a
few). These comprise about 570 h in total, which were
further divided into training, development, and test sets
for the purpose of this evaluation. To prepare the data
for the evaluation, organizers manually added the times-
tamps for the roughly 1400 occurrences of the spoken
queries used in the development and test evaluation sets.
The training data were available to participants with the
corresponding subtitles (note that subtitles are not lit-
eral transcriptions of speech data). The development data
were further divided into two different development sets:
the devl dataset consists of about 60 h of speech mate-
rial with human-revised word transcriptions without time
alignment and the dev2 dataset, the one that was actu-
ally employed as real development data for QbE STD
evaluation, consists of 15 h of speech data. The record-
ings were provided in Advanced Audio Coding (AAC)
format, stereo, 44.1 kHz, and variable bit rate. As far
as we know, this database represents the largest speech
database employed in any SoS evaluation in Spanish lan-
guage. More information about the RTVE database can be
found in [101].

3.3.3 COREMAH

COREMAH database contains conversations about dif-
ferent topics such as rejection, compliment, and apology.
It was recorded in 2014 and 2015 in a university envi-
ronment® [102]. This database contains about 45 min of
speech data from speakers with different levels of flu-
ency in Spanish (native, intermediate B1, and advanced
C1). Since the main purpose of this database is to evalu-
ate the submitted systems in an unseen data domain, only
the Spanish native speaker recordings are employed in the
evaluation in order to recreate the same conditions of the
other databases. To prepare the data for the evaluation,
organizers manually added the timestamps for the roughly
850 occurrences of the spoken queries used in the test
evaluation set.

The original recordings are videos in Moving Pic-
ture Experts Group (MPEG) format. The audio of
these videos was extracted and converted to PCM,
16 kHz, single channel, and 16 bits per sample
using the ffimpeg’ tool. It is worth mentioning the
large degree of overlapped speech in the recordings,
which makes this database very challenging for the
evaluation.
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3.3.4 Query list selection

The selection of queries for the development and test sets
aimed to build a realistic scenario for QbE STD by includ-
ing high-occurrence queries, low-occurrence queries, in-
language (INL) (i.e., Spanish) queries, out-of-language
(OOL) (i.e., foreign) queries, single-word and multi-word
queries, in-vocabulary and out-of-vocabulary queries, and
queries of different length. A query may not have any
occurrence or appear one or more times in the devel-
opment/test speech data. Table 4 presents some relevant
features of the development and test lists of queries such
as the number of INL and OOL queries, the number of
single-word and multi-word queries, and the number of
INV and OOV queries, along with the number of occur-
rences of each type in the corresponding dataset. It must
be noted that a multi-word query is considered OOV in
case any of the words that form the query is OOV.

3.4 Comparison to other QbE STD international
evaluations

The QbE STD evaluations that are the most similar to

ALBAYZIN are MediaEval 2011 [103], 2012 [104], and

2013 [105] Spoken Web Search (SWS) evaluations. How-

ever, these evaluations differ in several aspects:

¢ The most important difference is the nature of the
audio content used for the evaluations. In the SWS
evaluations, the speech was typically telephone
speech, either conversational or read and elicited
speech, or speech recorded with in-room
microphones. In the ALBAYZIN QbE STD
evaluations, the audio consisted of microphone
recordings of real talks in workshops that took place
in large conference rooms in the presence of an
audience. In addition, ALBAYZIN 2018 QbE STD
evaluation also contains live-talking conversational
speech and broadcast TV shows and explicitly defines
different in-vocabulary and out-of-vocabulary query
sets.

e SWS evaluations dealt with Indian- and
African-derived languages, as well as Albanian,
Basque, Czech, non-native English, Romanian, and
Slovak languages, while the ALBAYZIN QbE STD
evaluations only deal with Spanish language.

These differences make it difficult to compare the
results obtained in ALBAYZIN and SWS QbE STD
evaluations.

In 2014, the Query-by-Example Search on Speech Task
(QUESST) held at MediaEval differed from the previous
evaluations in that it was a spoken document retrieval task
(i.e., no query timestamps had to be output) [106]. In 2015,
QUESST was similar to that of 2014, but the acoustic con-
ditions of the speech data were much more complicated
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Table 4 Characteristics of the lists of development and test queries for MAVIR, RTVE, and COREMAH databases

Query list dev-MAVIR dev-RTVE test-MAVIR test-RTVE test-COREMAH
#IN-LANG queries (occ.) 96 (386) 81 (464) 99 (1163) 89 (808) 89 (849)
#OUT-LANG queries (occ.) 6(39) 22(110) 7(29) 19(72) 2(8)

#SINGLE queries (occ.) 93 (407) 101 (544) 100 (1180) 105 (861) 90 (840)
#MULTI queries (occ.) 9(18) 2 (30) 6(12) 3(19) 1017)

#INV queries (occ.) 83 (296) 76 (480) 94 (979) 87 (750) 81 (800)

#OOV queries (occ.) 19(129) 27 (94) 12(213) 21(130) 10 (57)

dev development, IN-LANG in-language queries, OUT-LANG foreign queries, SINGLE single-word queries, MULTI multi-word queries, INV in-vocabulary queries, OOV

out-of-vocabulary queries, occ. occurrences

(e.g., reverberation, different kinds of noise), and there
were different types of queries (exact queries, queries with
lexical variations, queries with changes in the word order,
to name a few) [107].

In addition to the MediaEval evaluations, other QbE
STD evaluations were organized with the NTCIR-11 [108]
and NTCIR-12 [109] conferences. The data used in these
evaluations contained spontaneous speech in Japanese
provided by the National Institute for Japanese Language,
and spontaneous speech recorded during seven editions
of the Spoken Document Processing Workshop. As addi-
tional information, these evaluations provided the partic-
ipants with the results of a voice activity detection (VAD)
system for the speech data, the manual transcription of
the speech data, and the output of an LVCSR system.
Although ALBAYZIN QbE STD evaluations are somehow
similar in terms of speech nature to the NTCIR QbE STD
evaluations (i.e., the speech was recorded in real work-
shops), ALBAYZIN QbE STD evaluations make use of a
different language and define disjoint development and
test query lists to measure the generalization capability of
the systems.

Table 5 summarizes the main characteristics of SWS,
NTCIR, and ALBAYZIN QbE STD evaluations.

Table 5 Comparison of the different QbE STD evaluations

4 Systems

Three teams submitted ten different systems to
ALBAYZIN 2018 QbE STD evaluation, as listed in
Table 6. The systems belong to three of the categories
described above: text-based STD, template matching, and
hybrid systems.

4.1 A-Hybrid DTW+LVCSR system

This system (Fig. 1) consists of the fusion of four different
QbE STD systems. Three of them are based on DTW, and
the other on LVCSR.

4.1.1 Feature extraction in DTW-based systems
Each DTW-based system employs a different speech rep-
resentation:

e Phoneme posteriorgrams [67], which represent the
probability of each phonetic unit at every time
instant. The English phone decoder developed by the
Brno University of Technology (BUT) [110] is used to
obtain phoneme posteriorgrams, and then a Gaussian
softening is applied in order to have
Gaussian-distributed probabilities [111].

e Low-level descriptors (Table 7) obtained using the
OpenSMILE feature extraction toolkit [112]) are

Evaluation Language/s Type of speech # queries dev./test Primary metrics
MediaEval 2011 English, Hindi, Gujarati, and Telugu Tel. 64/36 ATWV

MediaEval 2012 2011 + isiNdebele,Siswati, Tshivenda, and Xitsonga Tel. 164/136 ATWV

MediaEval 2013 ALB, BAS, CZE, NN-ENG, ISIX, ISIZ, ROM, SEP, and SET  Tel. and mic. > 600/> 600 ATWV

MediaEval 2014 ALB, BAS, CZE,NN-ENG, ROM, and SLO Tel. and mic. 560/555 Chxe

NTCIR-11 2014 Japanese mic. workshop 63/203 F-measure

NTCIR-12 2016 Japanese mic. workshop 120/1620 F-measure ATWV MAP
ALBAYZIN 2012 Spanish mic. workshop 60/60 ATWV

ALBAYZIN 2014 Spanish mic. workshop 94/99 ATWV

ALBAYZIN 2016 Spanish mic. workshop+parliament 102/106+95 ATWV

ALBAYZIN 2018  Spanish

mic. workshop+BNews+conv. 102 + 103/106 + 108 + 91  ATWV

Tel. telephone, mic. microphone, BNews broadcast news, conv. conversational, dev. development, ATWV actual term-weighted value, Ce normalized cross entropy cost, MAP
mean average precision, ALB Albanian, BAS Basque, CZE Czech, NN-ENG non-native English, ISIX Isixhosa, ISIZ Isizulu, ROM Romanian, SEP Sepedi, SET Setswana, SLO Slovak
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Team ID Research institution Systems Type of system
GTM-IRLab AtlantTIC Research Center + Information Retrieval Lab. A-Hybrid DTW+LVCSR LD hybrid
Universidade de Vigo + Universidade da Corufa, Spain
B-Fusion DTW LI template matching
C-PhonePost DTW LI template matching
D-LVCSR LD LVCSR
AUDIAS-CEU Universidad Auténoma de Madrid + Universidad CEU E-DTW LI template matching
San Pablo, Spain
GTTS Universidad del Pais Vasco, Spain F-Combined DTW LI template matching

G-Super-BNF DTW

H-Multilingual-BNF DTW

I-Monoph.-BNF DTW
J-Triph.-BNF DTW

LI template matching
LI template matching
LI template matching

LI template matching

LD language-dependent, L/ language-independent

extracted every 10 ms using a 25-ms window, except
for FO, probability of voicing, jitter, shimmer, and
harmonics-to-noise ratio (HNR), for which a 60-ms
window is used. These features are augmented with
their delta coefficients.

® (aussian posteriorgrams [113], which represent the
probability of each Gaussian in a GMM at every time
instant. Feature extraction and Gaussian
posteriorgram computation are performed using the
Kaldi toolkit [114]. The GMM is trained employing
MAVIR and RTVE training as well as RTVE dev1
data, using 19 MFCCs plus energy, and their delta
and delta delta coefficients.

4.1.2 Query detection

From each feature set described above, a search procedure
is followed to hypothesize query detections. The search is
based on the S-DTW algorithm [115], which is a variant

of the standard DTW search. In S-DTW, a cost matrix
M € R"™*" must first be defined, in which the rows and
the columns correspond to the frames of the query (Q)

and the utterance (U), respectively:

c(gi, u))
Ml"/' =

if

c(qiw) + M1 if
c(gi, uj) + M*(i,j) otherwise,

i=0
i>0,j=0 (2)

where c(q;, 4;) is a function that defines the cost between
the query vector q; and the utterance vector u;, and

M*(l!}) = min (Mi—l,j! Mi—l,j—]: Mi,j—l) ) (3)

which implies that only horizontal, vertical, and diagonal
path movements are allowed.

Feature extraction

Fig. 1 Architecture of A-Hybrid DTW-+LVCSR system. “transcr.” denotes transcription

English Brno features i
[ S_DTW =2 rCh Scores+dEtecnons
phoneme posteriorgram
query features tecti LOgIStIC
utterance Low-level descriptors »[ S-DTW search Scoresdefections .
. . features scores+detections
Gaussian posteriorgram »  S-DTW search -pase
soes | fUSION
utterance LVCSR | word lattice word-to- | phone lattice =
> » : » ... | detections
system phone-lattice Probabilistic
Retrieval
query LVCSR 1-best word | cotovia phone transcr. ) Model '
system output
detections
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Table 7 Acoustic features used in the A-Hybrid DTW+LVCSR QbE
STD system

Description Number of features

Sum of auditory spectra 1
Zero-crossing rate 1
Sum of RASTA style filtering auditory spectra 1
Frame intensity 1

Frame loudness 1

Root mean square energy and log-energy 2
Energy in frequency bands 250-650 Hz 2
(energy 250-650) and 1000-4000 Hz

Spectral Rolloff points at 25%, 50%, 75%, 90% 4

Spectral flux 1
Spectral entropy 1
Spectral variance 1
Spectral skewness 1
Spectral kurtosis 1
Psychoacoustical sharpness 1
Spectral harmonicity 1

Spectral flatness 1

Mel-frequency cepstral coefficients 16
MFCC filterbank 26
Line spectral pairs 8
Cepstral perceptual linear predictive 9
coefficients

RASTA PLP coefficients 9

Fundamental frequency (FO) 1
Probability of voicing 1
Jitter 2
Shimmer 1
log harmonics-to-noise ratio (logHNR) 1
LCP formant frequencies and bandwidths 6
Formant frame intensity 1
Deltas 102
Total 204

PLP perceptual linear predictive, LPC linear predictive coding

Pearson’s correlation coefficient » [116] is used as a cost
function by mapping it into the interval [0,1] applying the
following transformation:

1- V(qi: u])

5 (4)

c(qi, uj) =

Once the matrix M is computed, the end of the best
warping path between Q and U is obtained as follows:

b* = argmin M(n, b). (5)

bel,...m
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The starting point of the path ending at b*, namely a*,
is computed by backtracking, hence obtaining the best
warping path.

A query Q may appear several times in an utterance U,
especially if U is a long recording. Therefore, not only
must the best warping path be detected, but also others
that are less likely. One approach to overcome this issue
consists in detecting a given number of candidate matches
ne: Every time a warping path that ends at frame b* is
detected, M(n, b*) is set to oo to ignore this element in the
future.

A confidence score must be assigned to every detection
of a query Q in an utterance U. Firstly, the cumulative cost
of the warping path M, ;+ is length-normalized [68] and
then z-norm is applied so that all the confidence scores of
all the queries have the same distribution [70].

4.1.3 LVCSR-based QbE STD

This strategy follows a probabilistic retrieval model for
information retrieval [117] that is applied in this evalu-
ation for the QbE STD task. This model consists of the
following stages:

e Indexing: A DNN-based LVCSR system built with
the Kaldi toolkit [114] is employed. The utterances
are converted into phone-level n-best lists to store
different phone transcriptions (50) for each
utterance. Then, these are indexed in terms of phone
n-grams of different size [39, 118]. The minimum
and maximum sizes of the n-grams are set to 1 and 5,
respectively, according to [39]. With respect to the
probabilistic retrieval model, each utterance is
represented by means of a language model
(LM) [117]. The start time and duration of each
phone are also stored in the index.

e Search: The DNN-based LVCSR system is employed
to obtain the word transcription of each query. Then,
it is converted to phone transcription using the
dictionary created with Cotovia software [119] and
searched within the different indices. Finally, a score
for each utterance is computed following the query
likelihood retrieval model [120]. It must be noted that
this model sorts the utterances according to how
likely it is they contain the query, but the start and
end times of the match are required in this task. To
obtain these times, the phone transcription of query
Q is aligned to that of utterance U by computing the
minimum edit distance (MED) MED(Q, U). This
allows the recovery of the start and end times since
they are stored in the index. In addition, the MED is
used to penalize the score returned by the query
likelihood retrieval model (Lopez-Otero et al.:
Probabilistic information retrieval models for
query-by-example spoken document retrieval,
submitted to Multimed. Tools Appl.):
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score(Q, U) = scorer(Q, U) - scorepmep(Q, U), (6)
where scorepep (Q, U) is a score between 0 and 1
derived from MED(Q, U) and computed as:
no — MED(Q, U)
scorepMep(Q, U) = - (7)

K

where nq is the number of phonemes of the query,
and K is the length of the best alignment path.

Indexing and search were performed using Lucene.®

4.1.4 Calibration and fusion

Discriminative calibration and fusion [121] are applied
in order to combine the outputs of the three DTW sys-
tems and that of the LVCSR system. The global mini-
mum score produced by the system for all the queries is
used to hypothesize the missing scores. After normaliza-
tion, calibration and fusion parameters are estimated by
logistic regression on the development datasets to obtain
improved discriminative and well-calibrated scores [122].
Calibration and fusion training are performed using
Bosaris toolkit [123].

The decision threshold, weight of the LM in the DNN-
based LVCSR system, and number of n-best lists in the
LVCSR-based QbE STD system are tuned from the com-
bined ground truth labels of the MAVIR and RTVE devel-
opment data. The rest of the parameters are set based on
preliminary experiments.

4.2 B-Fusion DTW system
This system combines the DT'W-based systems presented
in A-Hybrid DTW+LVCSR system.

4.3 C-Phoneme-posteriorgram DTW system
(C-PhonePost DTW)

This system only employs DTW search on the phoneme

posteriorgrams presented in the A-Hybrid DTW+LVCSR

system, and hence does not make use of the calibration

and fusion stage.

4.4 D-LVCSR system

This system only employs the LVCSR approach described
in the A-Hybrid DTW+LVCSR system to hypothesize
query detections.
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4.5 E-DTW system
This system (Fig. 2) integrates two different stages: feature
extraction and query detection, which are explained next.

4.5.1 Feature extraction

The English phoneme recognizer developed by BUT [110]
is employed to compute phoneme posteriorgrams that
represent both the queries and the utterances and is very
similar to the posteriorgram features of the former sys-
tems, except for the Gaussian softening stage.

4.5.2 Query detection

First, a cost matrix that stores the similarity between
every query/utterance pair is computed. The Pearson cor-
relation coefficient r(qy,, u,,) [116] is employed to build
the cost matrix, where g, represents the query phoneme
posteriorgram frames and u,, represents the utterance
phoneme posteriorgram frames.

The final cost used in the search stage is modified as
follows: c(qn, u) = 1 — max(0,r(qy, Uy,)). Therefore,
for all the Pearson correlation coefficient values lower
or equal to 0, the cost will be maximum. The S-DTW
algorithm explained in the A-Hybrid DTW+LVCSR sys-
tem is employed to hypothesize detections from this cost
matrix. Finally, a neighborhood search is carried out so
that all the paths (i.e., query detections) which overlap
more than 500 ms from a previously obtained optimal
path are rejected in the final system output.

Parameter tuning is carried out using MAVIR develop-
ment data and then applied to the other datasets.

4.6 F-Combined DTW system

This system (Fig. 3) is based on the combination of differ-
ent search processes, each employing a different feature
set.

4.6.1 Voice activity detection

The spoken queries and the utterances are first pro-
cessed with the VAD system developed by Google for
the WebRTC project [124], which is based on Gaussian
distributions of speech and non-speech features.

4.6.2 Feature extraction

The feature extraction module performs stacked bot-
tleneck feature (sBNF) computation following the
BUT/Phonexia approach [125], both for queries and
utterances. To do so, three different neural networks are

query

J English Brno
utterance

phoneme posteriorgram

output
S-DTW | detections _

search

features
>

Fig. 2 Architecture of E-DTW system
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Las utterance

Fig. 3 Architecture of F-Combined DTW system
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applied, each trained to classify a different set of acoustic
units and later optimized for language recognition tasks.
The first network is trained on telephone speech from the
English Fisher corpus [126] with 120 monophone state
targets, referred to as FisherMono. The second one is
also trained on the Fisher corpus but with 2423 triphone
tied-state targets and is referred to as FisherTri. The third
network is trained on telephone speech in 17 languages
taken from the Intelligence Advanced Research Projects
Activity (IARPA) Babel program [127], with 3096 stacked
monophone state targets for the 17 languages involved
(BabelMulti for short). Given that the sSBNF extractors are
trained using 8 kHz speech signals, the queries and the
utterances are downsampled to 8 kHz.

The architecture of the sSBNF networks consists of two
stages. The first one is a standard bottleneck network
fed with low-level acoustic features spanning 10 frames
(100 ms), the bottleneck size being 80. The second stage
takes as input five equally spaced bottleneck features of
the first stage, spanning 31 frames (310 ms), and is trained
on the same targets as the first stage, with the same bot-
tleneck size (80). The bottleneck features extracted from
the second stage are known as stacked bottleneck features
and comprise the output of the feature extraction module.
Alternatively, instead of sBNFs, the extractor can output
target posteriors.

The operation of BUT/Phonexia sBNF extractors
requires an external VAD module providing speech/non-
speech information. If no external VAD is provided, a
simple energy-based VAD is computed internally. This
system employs the WebRTC VAD module.

The first aim for the feature extraction stage was
to employ the BUT/Phonexia posteriors, but the huge
size of FisherTri (2423) and BabelMulti (3096) targets
requires some kind of selection, clustering, or dimen-
sionality reduction approach. Therefore, given that—at
least theoretically—the same information is conveyed by
sBNFs, with a suitably low dimensionality (as 80 in this
case), sBNFs are employed.

4.6.3 Dynamic time warping-based search

This system follows the DT W-based approach presented
in [128]. Given the two sequences of sBNFs correspond-
ing to a query and an utterance, a VAD system is used
to discard non-speech frames, but keeping the timestamp
of each frame. To avoid memory issues, utterances are

split into chunks of 5 min with 5-s overlap and processed
independently. This chunking process is key to the speed
and feasibility of the search procedure.

Let Q = (q[1],9[2],...,9[m]) be the sequence of
VAD-filtered sBNFs of length m corresponding to a query
and U = (u[1],u[2],...,u[n]) be those of an utterance
of length 7. Since sBNFs (theoretically) range from —oo to
400, the distance between a pair of vectors ¢[ i] and u[ ]
is defined as follows:

qli] -ulj]
lqlil | - lul/]]

Note that d(v,w) > 0, with d(v,w) = 0 if and only if
v and w are aligned and pointing in the same direction,
and d(v,w) = +oo if and only if v and w are aligned and
pointing in opposite directions.

The distance matrix computed according to Eq. 8 is
normalized with respect to the utterance U as follows:

_ d(glil,ulj]) — dmin(@)

d(glil,ulj)) = —log (1 + )+log 2 ®)

dnom @i}, ulj)) = = AT 0)
where

dmin(i) = min d(qli),ulj]) (10)

(11)

Amax (i) = ]irllaxn d(q[ i, u[]] ).

In this way, matrix values are in the range [0,1], and a
perfect match would produce a quasi-diagonal sequence
of zeroes. This can be seen as test normalization since,
given a query Q, distance matrices take values in the same
range (and with the same relative meaning), no matter the
acoustic conditions, the speaker, or other factors of the
utterance U.

Note that the chunking process described above makes
the normalization procedure differ from that applied
in [128], since dpin(i) and dmax (i) are not computed for
the whole utterance but for each chunk independently. On
the other hand, considering chunks of 5 min might be ben-
eficial, since normalization is performed in a more local
fashion, that is, more suited to the speaker(s) and acoustic
conditions of each particular chunk.

The best match of a query Q of length m in an utterance
U of length 7 is defined as that minimizing the average
distance in a crossing path of the matrix dnorm. A cross-
ing path starts at any given frame of U, k1 €[1,#], then
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traverses a region of U which is optimally aligned to Q
(involving L vector alignments), and ends at frame ky €
[ k1, n]. The average distance in this crossing path is:

L
1
davg(Q: uy = I Z dnorm (gl i), ulji]), (12)
I=1

where i; and j; are the indices of the vectors of g and u
in the alignment /, for / = 1,2,...,L. Note that i; = 1,
i = m, j1 = k1, and ji = k. The optimization procedure
is O(n - m - d) in time, where d is the size of the feature
vectors and O(n-m) in space. Readers are referred to [128]
for more details.

The detection score is computed as 1 — dayg(Q, U), thus
ranging from O to 1, being 1 only for a perfect match.
The starting time and the duration of each detection are
obtained by retrieving the time offsets corresponding to
frames k; and ky in the VAD-filtered utterance.

This procedure is iteratively applied to find not only the
best match, but also less likely matches in the same utter-
ance. To that end, a queue of search intervals is defined
and initialized with [1, #]. Given an interval [a, b], and
assuming that the best match is found at [ 4/, b'], the inter-
vals [a,a’ — 1] and [b' + 1,D] are added to the queue
(for further processing) only if the following conditions
are satisfied: (1) the score of the current match is greater
than a given threshold T (T = 0.85); (2) the interval is
long enough (half the query length: m1/2); (3) the num-
ber of matches (those already found plus those waiting in
the queue) does not exceed a given threshold M (M = 7).
An example is shown in Fig. 4. Finally, the list of matches
for each query is ranked according to the scores and
truncated to the N highest scores (N = 1000, though it
effectively applied only in a few cases).
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Four different DTW-based searches are carried out.
Three of them employ the three sBNF sets computed in
the feature extraction module (FisherMono, denoted as
sBNF; in Fig. 3; FisherTri, denoted as sBNF; in Fig. 3;
and BabelMulti, denoted as sBNF3 in Fig. 3). The other
DTW search employs the concatenation of the three sSBNF
sets (denoted as sBNF, in Fig. 3), which leads to 240-
dimensional sBNF vectors. Each DTW search produces
different query detections that are next fused in the fusion
stage.

4.6.4 Calibration and fusion

The scores produced by the different searches are trans-
formed according to a discriminative calibration/fusion
approach commonly applied in speaker and language
recognition [129].

First, the so-called g-norm (query normalization) is
applied, so that zero-mean and unit variance scores are
obtained per query. Then, if # different systems are fused,
detections are aligned so that only those supported by k
or more systems (1 < k < n) are retained for further
processing (k = 2). To build the full set of trials (poten-
tial detections), a rate of one trial per second is chosen
(which is consistent with the evaluation script provided by
the organizers). Given a detection of a query Q supported
by at least k systems, and a system A that did not provide
a score for it, there could be different ways to fill up this
hole. The minimum score that A has output for query Q
in other trials is selected. In fact, the minimum score for
the query Q is hypothesized for all target and non-target
trials of query Q for which system A has not output a
detection score. When a single system is considered (n =
1), the majority voting scheme and the filling up of missing
scores are skipped. In this way, a complete set of scores

length(u[k,+1.n]) < m/2
not searched

1 ks k utterance (U) ke K, |

1 T IIO000OOOO00 00000 OOO0O0] 1T
& { HHRaaamammAmaaNnEs. i
o Normalized
g distance matrix
= . T HHH

m : Haimaaasamasmasasman. H

. / 7/

Second best match
score(Q,u[k,,k,]) < T
u[1.ks-1] and ulk+1.k,-1]
not searched

Fig. 4 Example of the iterative DTW procedure. (1) The best match of Qin u[ 1,n] is located in u[ k1, ky]. (2) Since the score is greater than the

&'

Best match
score(Qulk ,k,]) > T
u[1.k,-1] and ulk,+1.n] searched
for other query matches

established threshold T, the search continues in the surrounding segments u[ 1, k1 — 1], and ulk, + 1,nJ; (3) ulky + 1, n] is not searched, because it is
too short. (4) The best match of Qin u[ 1,k; — 1] is located in ul k3, ka]. (5) Its score is lower than T, so the surrounding segments u[ 1, k3 — 1] and
ulks + 1,ky — 1] are not searched. The search procedure outputs the segments u[ ki, k2] and ul ks, k4]
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is prepared, which besides the ground truth (target/non-
target labels) for a development set of queries, can be used
to discriminatively estimate a linear transformation.

The calibration/fusion model is estimated on the devel-
opment set and then applied to both the development and
test sets using Bosaris toolkit [123].

The calibration/fusion parameters and optimal decision
threshold are obtained from the corresponding develop-
ment set for each database (MAVIR and dev2 for RTVE).
Since the evaluation organizers did not provide any devel-
opment data for the COREMAH database, the optimal
calibration/fusion parameters tuned on MAVIR data are
employed, and the optimal decision threshold is chosen
so that 15% of the detections with the highest scores are
assigned a YES decision. The parameters involved in the
feature extraction and search procedures are set based on
preliminary experiments.

4.7 G-Super bottleneck feature DTW system
(G-Super-BNF DTW)

This system is the same as the F-Combined DTW system,

except that only DT W-based search on the concatenation

of the three sBNFs as features is used to hypothesize query

detections.

4.8 H-Multilingual bottleneck feature DTW system
(H-Multilingual-BNF DTW)

This system is the same as the G-Super-BNF DTW system,

except that DTW-based search on the BabelMulti sBNF

set is used for query detection.

4.9 I-Monophone bottleneck feature DTW system
(I-Monoph.-BNF DTW)

This system is the same as the G-Super-BNF DTW system,
except that DTW-based search on the FisherMono sBNF

set is used for query detection.

4.10 J-Triphone bottleneck feature DTW system
(J-Triph.-BNF DTW)

This system is the same as the G-Super-BNF DTW system,

except that DT'W-based search on the FisherTri sSBNF set

is used for query detection.
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411 K-Text STD system

This system (Fig. 5) does not compete in the evalua-
tion itself, but it is presented in order to examine the
upper bound limits of QbE STD technology. This sys-
tem employs the correct word transcription of the query
to hypothesize detections and the same ASR approach as
that used in the LVCSR-based QbE STD system.

The ASR subsystem is based on the Kaldi open-source
toolkit [114] and employs DNN-based acoustic models.

The data used to train the acoustic models of this
Kaldi-based LVCSR system are extracted from the Span-
ish material used in the 2006 TC-STAR automatic speech
recognition evaluation campaign® and the Galician broad-
cast news database Transcrigal [130]. It must be noted that
all the non-speech parts as well as the speech parts cor-
responding to transcriptions with pronunciation errors,
incomplete sentences, and short speech utterances are
discarded, so in the end, the acoustic training material
consists of approximately 104.5 h.

The LM employed in the LVCSR system is constructed
using a text database of 150 million word occurrences,
composed of material from several sources (transcriptions
of European and Spanish Parliaments from the TC-STAR
database, subtitles, books, newspapers, online courses,
and the transcriptions of the MAVIR sessions included
in the development set provided by the evaluation orga-
nizers'® [131]). Four-gram LMs have been built with the
SRILM tooolkit [132]. The final LM is an interpolation
between a LM trained on RTVE data and another one
trained on the rest of the text corpora. The LM vocabu-
lary size is limited to the most frequent 300K words, and
for each evaluation dataset, the OOV words are removed
from the LM. Grapheme-to-phoneme conversion is car-
ried out with the Cotovia software [119].

The STD subsystem integrates the Kaldi term detec-
tor [114, 133, 134], which searches for the input
terms within the word lattices obtained in the previous
step [135]. The Kaldi decision-maker conducts a YES/NO
decision for each detection based on the term-specific
threshold approach presented in [136]. To do so, the score
for each detection is computed as follows:

INV queries

Kaldi STD system

speech
INV words

Proxy words

OO0V queries

Fig. 5 Architecture of K-Text STD system

detections

Kaldi decision maker outputidetections,
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N, true

% + %Ntrue

where p is the confidence score of the detection, Niye is
the sum of the confidence score of all the detections of the
given term, § is set to 999.9, and T is the length of the
audio in seconds.

The proxy words strategy in the Kaldi open-source
toolkit [137] is employed for OOV query detection. This
strategy consists in substituting each OOV word of the
search query with acoustically similar INV proxy words so
that the OOV query search can be then carried out using
the obtained INV query.

The decision threshold and the weight of the LM in the
ASR subsystem for MAVIR and RTVE development data
are tuned for each dataset from the individual develop-
ment dataset. However, for all the test data (i.e., MAVIR,
RTVE, and COREMAH), these parameters are tuned
from the combined ground truth labels of the MAVIR
and RTVE development data, aiming to avoid overfit-
ting issues. The rest of the parameters are set based on
preliminary experiments.

5 Evaluation results and discussion

This section presents the overall evaluation results and the
results obtained for each individual database on develop-
ment and test data.

5.1 Overall results

The overall evaluation results are presented in Table 8 for
development and test data, along with a comparison with
the text STD system presented above. These show that the
best performance for the ATWV metric on test data is
for the A-Hybrid DTW+LVCSR system, which highlights
the power of hybrid systems for QbE STD. However, two
findings arise: (1) the ranking of the evaluation results for
development and test data differs and (2) the K-Text STD
system, which relies on a DNN-based ASR subsystem and
the correct word transcription of the query, obtains better
results than any of the QbE STD systems in development
data, but its performance is similar to that of the best
QbE STD system on test data. Calibration threshold issues
may be causing these differences in performance, since the
K-Text STD system also obtains the best MTWV in test
data.

5.2 Development data

5.2.1 MAVIR

Evaluation results for MAVIR development data are pre-
sented in Table 9. By comparing the QbE STD systems,
the best performance is obtained with the B-Fusion DTW
system. Paired ¢ tests show that the difference in perfor-
mance is statistically significant (p < 0.01) compared
with all the QbE STD systems except for the A-Hybrid
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Table 8 Overall system results of the ALBAYZIN 2018 QbE STD
evaluation on development and test data (average of the results
on the two development and three test corpora)

Development Test
System ID MTWV ATWV MTWV ATWV
A-Hybrid DTW+LVCSR 0.5085 04717 03260 0.2084
B-Fusion DTW 04955 0.4863 0.3082 —04185
C-PhonePost DTW 0.4558 04412 0.2891 — 04434
D-LVCSR 0.2962 0.2779 0.2080 01172
E-DTW 0.1094 0.1070 0.0995 0.0948
F-Combined DTW 03758 0.3406 0.1657 0.1413
G-Super-BNF DTW 03776 0.3668 0.1460 —0.0489
H-Multilingual-BNF DTW 0.3379 0.3266 0.1570 —0.2018
I-Monoph.-BNF DTW 0.3621 03342 0.1689 0.0422
J-Triph.-BNF DTW 03527 03382 0.1628 —0.0264
K-Text STD 0.6817 0.6480 04427 0.2012

DTW+LVCSR and D-LVCSR systems. B-Fusion DTW
employs a fusion of DTW-based systems with different
feature sets, which suggests that different features convey
different patterns that enhance the performance. The A-
Hybrid DTW+LVCSR system, which integrates an LVCSR-
based system in the fusion, does not outperform the
B-Fusion DTW system, probably due to some threshold
calibration issues (better MTWYV and worse ATWYV) in
medium-quality and highly spontaneous speech domains
as MAVIR. The K-Text STD system, which employs the
correct word transcription of the query and an LVCSR
approach, performs the best. This best performance is
statistically significant for a paired ¢ test (p < 0.01) com-
pared with the rest of the systems. This is due to the use
of the correct transcription of the spoken query in the
DNN-based speech recognition system, which plays an

Table 9 System results of the ALBAYZIN 2018 QbE STD
evaluation on MAVIR development data

System ID MTWV ATWV p(FA) p(Miss)
A-Hybrid DTW+LVCSR 0.2896 0.2470 0.00010 0.606
B-Fusion DTW 0.2699 0.2649 0.00003 0.701
C-PhonePost DTW 0.1971 0.1742 0.00000 0.799
D-LVCSR 0.2383 0.2029 0.00005 0.716
E-DTW 0.1823 01774 0.00002 0.801
F-Combined DTW 0.1512 0.0938 0.00005 0.803
G-Super-BNF DTW 0.1629 0.1524 0.00005 0.804
H-Multilingual-BNF DTW 0.1299 0.1076 0.00004 0.828
[-Monoph.-BNF DTW 0.1566 0.1173 0.00002 0.823
J-Triph-BNF DTW 0.1411 0.1234 0.00001 0.846
K-Text STD 0.6544 0.6042 0.00012 0.229
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important role in query detection for highly spontaneous
and medium-quality speech domains.

On the other hand, the worst systems are those that
employ stacked bottleneck features, which suggests that
the use of the sBNFs, as proposed by the authors of those
systems, is less powerful than other features for QbE
STD in medium-quality and highly spontaneous speech
domains.

5.2.2 RTVE

The evaluation results for RTVE development data are
presented in Table 10. They show that the best perfor-
mance among the QbE STD systems is obtained with
the C-PhonePost DTW system. A paired ¢ test shows
that the difference in performance is statistically sig-
nificant (p < 0.01) compared with all the QbE STD
systems except for the A-Hybrid DTW+LVCSR and B-
Fusion DTW. This best performance does not corre-
spond to the best system on MAVIR development data,
maybe due to the RTVE data comprising higher-quality
and better-pronounced speech data than MAVIR, and
hence, the best performance may not correspond to the
same system. Two more remarked differences can be
seen on these data compared to the MAVIR develop-
ment data: (1) the systems that rely on sBNFs obtain
much better performance, and (2) the K-Text STD system
obtains similar results to that obtained with the A-Hybrid
DTW+LVCSR, B-Fusion DTW, and C-PhonePost DTW
systems. These differences highlight the power of sBNFs
and QbE STD systems when addressing query detec-
tion in high-quality and well-pronounced speech domains
as RTVE.

Due to threshold calibration issues, the A-Hybrid
DTW+LVCSR system, which obtains the best MTWYV,
does not perform the best for ATWYV, as in MAVIR devel-
opment data.

Table 10 System results of the ALBAYZIN 2018 QbE STD
evaluation on RTVE development data
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The E-DTW system obtains the worst overall perfor-
mance. This can be due to the fact that the optimal
parameters obtained with the MAVIR development data
have been applied on these data without adjustment.
Since RTVE data convey many different properties (i.e.,
high-quality and well-pronounced speech), the parameter
tuning is not effective across changes in the data domain.

5.3 Testdata

5.3.1 MAVIR

The results corresponding to MAVIR test data are pre-
sented in Table 11. They show that the best performance
for QbE STD is obtained with the B-Fusion DTW system,
which is consistent with the results in MAVIR develop-
ment data. This best performance is statistically signifi-
cant for a paired ¢ test (p < 0.01) compared to all the
QbE STD systems except for the C-PhonePost DTW sys-
tem, for which the difference is weakly significant (p <
0.04). The performance gap between MTWYV and ATWV
for the best system suggests that the threshold has been
well-calibrated. The rest of the findings observed from the
development results also arise: (1) the worst systems are
those that employ the sBNFs for feature extraction; (2)
the A-Hybrid DTW+LVCSR system, which integrates an
LVCSR approach in the fusion of the B-Fusion DTW sys-
tem, obtains worse performance than the B-Fusion DTW
system, due to the low performance of the LVCSR system.
This indicates that parameter tuning on the development
data is not generalizing well on test data; (3) the K-Text
STD system performs better than any QbE STD system,
with all the performance gaps statistically significant for a
paired ¢ test (p < 0.01).

5.3.2 RTVE
Evaluation results for RTVE test data are presented in
Table 12. They show that the best performance for QbE

Table 11 System results of the ALBAYZIN 2018 QbE STD
evaluation on MAVIR test data

System ID MTWV ATWV p(FA) p(Miss) System ID MTWV ATWV p(FA) p(Miss)
A-Hybrid DTW+LVCSR 0.7273 0.6964 0.00002 0.254 A-Hybrid DTW+LVCSR 0.2226 0.1243 0.00017 0.606
B-Fusion DTW 0.7211 0.7076 0.00001 0.270 B-Fusion DTW 0.2851 0.2810 0.00007 0.649
C-PhonePost DTW 0.7145 0.7081 0.00003 0.258 C-PhonePost DTW 0.2436 0.2361 0.00003 0.730
D-LVCSR 0.3540 0.3528 0.00008 0.565 D-LVCSR 0.1508 0.1101 0.00008 0.774
E-DTW 0.0365 0.0365 0.00000 0.963 E-DTW 0.1550 0.1550 0.00001 0.840
F-Combined DTW 0.6003 0.5874 0.00006 0339 F-Combined DTW 0.1227 0.1157 0.00002 0.860
G-Super-BNF DTW 0.5922 0.5812 0.00005 0357 G-Super-BNF DTW 0.1055 0.0296 0.00002 0.875
H-Multilingual-BNF DTW 0.5458 0.5455 0.00007 0.387 H-Multilingual-BNF DTW 0.1277 -0.0026 0.00006 0814
I-Monoph.-BNF DTW 0.5676 0.5511 0.00008 0.351 I-Monoph.-BNF DTW 0.1289 0.0809 0.00002 0.846
J-Triph.-BNF DTW 0.5642 0.5530 0.00004 0.397 J-Triph.-BNF DTW 0.1196 0.0626 0.00004 0.838
K-Text STD 0.7591 0.6918 0.00006 0.184 K-Text STD 0.5345 05178 0.00010 0.364
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STD corresponds to the A-Hybrid DTW+LVCSR system.
The performance gap between MTWYV and ATWV on
this system indicates that the threshold presents some
calibration issues. The best performance is statistically
significant for a paired ¢ test (p < 0.01) compared to the
rest of the QbE STD systems. This highlights the power
of the hybrid systems for QbE STD systems on high-
quality and well-pronounced speech data, and for which
considerable amount of resources are available. For devel-
opment data, A-Hybrid DTW+LVCSR, B-Fusion DTW,
and C-PhonePost DTW systems obtain equivalent per-
formance. Nevertheless, when test data are given to the
hybrid systems, these are able to generalize better than
the other systems, due to the complementary information
integrated by hybrid systems.

As in development data, the E-DTW system performs
the worst, due to the fact that no additional tuning on
RTVE data has been carried out, whereas the systems
that employ sBNFs for feature extraction enhance their
performance with respect to the MAVIR test data.

The K-Text STD system performs better than any other
QbE STD system. This best performance is statistically
significant (»p < 0.01) compared to all the QbE STD
systems.

5.3.3 COREMAH

Evaluation results for COREMAH test data are presented
in Table 13. For the QbE STD systems, the best perfor-
mance is obtained with the E-DTW system. This best
performance is statistically significant for a paired ¢ test
(p < 0.01) compared to the rest of the QbE STD sys-
tems. Remind that no development data were provided
for COREMAH, and hence, parameter tuning must be
carried out with some other data. The E-DTW sys-
tem was tuned with the MAVIR optimal parameters,
which indicates that MAVIR data convey properties which

Table 12 System results of the ALBAYZIN 2018 QbE STD
evaluation on RTVE test data

System ID MTWV ATWV p(FA) p(Miss)
A-Hybrid DTW+LVCSR 0.6201 0.5699 0.00008 0.301
B-Fusion DTW 04372 03856 0.00004 0.524
C-PhonePost DTW 04178 03399 0.00002 0.564
D-LVCSR 0.4695 0.3975 0.00008 0.447
E-DTW 0.0000 -0.0141 0.00000 1.000
F-Combined DTW 03224 0.3059 0.00003 0.648
G-Super-BNF DTW 0.3029 0.3000 0.00004 0.655
H-Multilingual-BNF DTW 0.2919 0.2868 0.00005 0.662
I-Monoph.-BNF DTW 03239 03237 0.00005 0.625
J-Triph.-BNF DTW 03117 0.2960 0.00003 0.653
K-Text STD 0.6969 0.6685 0.00008 0.226
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Table 13 System results of the ALBAYZIN 2018 QbE STD
evaluation on COREMAH test data

System ID MTWV ATWV p(FA) p(Miss)
A-Hybrid DTW+LVCSR 0.1354 —0.0689 0.00006 0.804
B-Fusion DTW 0.2022 —1.9221 0.00000 0.798
C-PhonePost DTW 0.2059 —1.9062 0.00000 0.794
D-LVCSR 0.0037 —0.1559 0.00000 0.996
E-DTW 0.1436 0.1436 0.00003 0.828
F-Combined DTW 0.0521 0.0023 0.00000 0.948
G-Super-BNF DTW 0.0295 —04763 0.00000 0.970
H-Multilingual-BNF DTW  0.0514 —0.8895 0.00000 0.949
[-Monoph.-BNF DTW 0.0538 —02779 0.00002 0.930
J-Triph.-BNF DTW 0.0572 —04379 0.00000 0939
K-Text STD 0.0966 —0.5828 0.00007 0.835

are similar to the conversational speech in COREMAH
data. However, the parameters of the rest of the sys-
tems employed RTVE data for tuning (except for the
F-Combined DTW, G-Super-BNF DTW, H-Multilingual-
BNF DTW, I-Monoph.-BNF DTW, and J-Triph.-BNF DTW
systems, which employed MAVIR data as well), which
leads to a worse performance due to higher data mis-
match. For those systems, the low performance may be
due to the type of tuning carried out.

The K-Text STD system obtains worse performance than
the best QbE STD system, although the performance gap
is weakly significant for a paired ¢ test (p < 0.03). This
could be due to the data mismatch between COREMAH
data and the RTVE data, which were used, along with
MAVIR data, for parameter tuning in this case.

5.4 Analysis of development and test data DET curves
DET curves of the QbE STD systems submitted to the
evaluation and the text-based STD system are presented
in Figs. 6 and 7 for MAVIR and RTVE development data,
respectively, and Figs. 8, 9, and 10 for MAVIR, RTVE, and
COREMAH test data, respectively.

On MAVIR development data, the B-Fusion DTW sys-
tem performs the best for low FA rates, and the A-Hybrid
DTW+LVCSR system performs the best for moderate and
low miss rates. This indicates that the hybrid system is
suitable for cases in which a miss is more important than
an FA. On RTVE development data, the B-Fusion DTW
system performs the best for low and moderate FA rates,
and the A-Hybrid DTW+LVCSR system performs the best
for low miss rates. This confirms the power of hybrid
systems for low miss rate scenarios.

On MAVIR test data, the C-PhonePost DTW system
performs the best for very low FA rates, the B-Fusion
DTW system performs the best for low and moderate
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Fig. 6 DET curves of the QbE STD systems and text STD system for

MAVIR development data

FA rates, and the A-Hybrid DTW+LVCSR system per-
forms the best for low miss rates. On RTVE test data,
the B-Fusion DTW system performs the best for low FA
rates, and the A-Hybrid DTW+LVCSR system performs
the best for low miss rates. On COREMAH test data, the
C-PhonePost DTW system performs the best for low FA
rates, the B-Fusion DTW system performs the best for
moderate FA rates, and the A-Hybrid DTW+LVCSR per-
forms the best for low miss rates. However, according to
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Fig. 7 DET curves of the QbE STD systems and text STD system for
RTVE development data
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Fig. 8 DET curves of the QbE STD systems and text STD system for
MAVIR test data

the results in Table 13, the best performance is obtained
with the E-DTW system, since it outputs less number of
FAs (although the number of hits is also lower) than those
three other systems so that more hits are ranked in top
positions, enhancing the MTWV/ATVW performance
measure.

In summary, B-Fusion DTW and A-Hybrid DTW+
LVCSR systems obtain the best figures in the DET curves
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Fig. 9 DET curves of the QbE STD systems and text STD system for
RTVE test data
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Fig. 10 DET curves of the QbE STD systems and text STD system for
COREMAH test data

and make them more appropriate for search on speech
from spoken queries.

The DET curves also show that the K-Text STD system
performs the best for all data, except for RTVE devel-
opment data on all the operating points, and MAVIR
and COREMAH test data on low FA rates. Results on
COREMAH test data suggest that QbE STD may outper-
form text-based STD on unseen data domains, at least on
some scenarios (as low FA rates in this case).

6 Post-evaluation analysis
After the evaluation period, an analysis based on some
query properties and fusion of the primary systems
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submitted from the different participants has been car-
ried out. This section presents the results of this
analysis.

6.1 Performance analysis of QbE STD systems for
in-language and out-of-language queries

An analysis of the QbE STD systems and the K-Text
STD system for in-language and out-of-language queries
has been carried out, and the results are presented in
Tables 14, 15, and 16 for MAVIR, RTVE, and COREMAH
databases, respectively. On MAVIR data, QbE STD sys-
tem performance is, in general, better on OOL than on
INL queries. We consider this is due to the fact all the
systems that employ template matching techniques rely
on a language-independent approach, for which English
language is largely used for feature extraction. Since the
OOL queries are in English, this is clearly giving better
performance. The systems that employ template matching
approaches and obtain better performance on INL than
on OOL queries are the F-Combined DTW, G-Super-BNF
DTW, I-Monoph.-BNF DTW, and J-Triph.-BNF DTW sys-
tems, for which the better MTWYV performance on OOL
queries indicates some threshold calibration issues. The
D-LVCSR system, which is based on subword unit search
from word-based ASR, performs better on OOL queries
than on INL queries. We consider this could be due to the
larger OOV rate of the INL queries (18.2%) compared to
that of the OOL queries (14.2%), which could affect the
word-based ASR performance.

On RTVE data, the systems that only employ template
matching approaches obtain, in general, better perfor-
mance on OOL queries than on INL queries, which is due
to the use of the query language (i.e., English). The only
exceptions are the F-Combined DTW and G-Super-BNF
DTW systems, for which the better MTWV performance

Table 14 System results of the ALBAYZIN 2018 QbE STD evaluation on MAVIR test data for in-language (INL) and out-of-language

(foreign) (OOL) queries

INL OO0L
System ID MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)
A-Hybrid DTW+LVCSR 0.2099 0.0997 0.00009 0.704 04918 04722 0.00008 0430
B-Fusion DTW 0.2758 0.2714 0.00006 0.663 04836 04176 0.00016 0359
C-PhonePost DTW 0.2322 0.2239 0.00003 0.740 04079 04079 0.00002 0.572
D-LVCSR 0.1454 0.1019 0.00008 0.778 0.2464 0.2268 0.00004 0.714
E-DTW 0.1458 0.1458 0.00001 0.849 0.2847 0.2847 0.00000 0.715
F-Combined DTW 0.1227 0.1165 0.00002 0.861 0.1643 0.1036 0.00016 0.679
G-Super-BNF DTW 0.1035 0.0324 0.00003 0.863 0.1554 —0.0089 0.00006 0.786
H-Multilingual-BNF DTW 0.1298 —0.0063 0.00005 0.817 0.2071 0.0500 0.00008 0.714
I-Monoph.-BNF DTW 0.1307 0.0848 0.00002 0.846 0.1429 0.0250 0.00000 0.857
J-Triph.-BNF DTW 0.1193 0.0658 0.00004 0.836 0.1429 0.0179 0.00000 0.857
K-Text STD 0.5647 0.5469 0.00011 0.327 0.1911 0.1071 0.00006 0.750
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Table 15 System results of the ALBAYZIN 2018 QbE STD evaluation on RTVE test data for in-language (INL) and out-of-language

(foreign) (OOL) queries

INL OoL
System ID MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)
A-Hybrid DTW-+LVCSR 0.6502 0.5887 0.00008 0.268 05017 04821 0.00013 0.368
B-Fusion DTW 04126 0.3603 0.00004 0.549 0.5765 0.5043 0.00002 0.406
C-PhonePost DTW 03972 03175 0.00002 0.586 05319 0.4447 0.00000 0464
D-LVCSR 0.5289 0.4560 0.00008 0.391 0.2155 0.1236 0.00007 0.719
E-DTW 0.0000 —0.0126 0.00000 1.000 0.0000 —0.0207 0.00000 1.000
F-Combined DTW 03193 0.3059 0.00002 0.658 0.3484 0.3058 0.00002 0.629
G-Super-BNF DTW 0.3026 03012 0.00003 0.665 03077 0.2946 0.00004 0.655
H-Multilingual-BNF DTW 0.2909 0.2841 0.00005 0.664 03104 0.2996 0.00013 0.555
I-Monoph.-BNF DTW 03179 03176 0.00005 0.629 03593 03519 0.00003 0.607
J-Triph.-BNF DTW 03123 0.2959 0.00003 0.654 03252 0.2968 0.00001 0.669
K-Text STD 0.7341 0.7189 0.00004 0.221 0.5924 04324 0.00008 0.326

on OOL queries indicates some threshold calibration
issues, and the E-DTW system, for which the performance
(ATWYV < 0) is meaningless. For the systems that employ
ASR (i.e., A-Hybrid DTW+LVCSR and D-LVCSR systems),
the performance is better on INL queries, since the ASR
language matches that of the query.

On COREMAH data, systems obtain, in general, bet-
ter MTWV performance on OOL queries than on INL
queries, which is due to the use of the English language
for system construction. Threshold calibration issues lead
to higher ATWYV for INL queries in some cases. For the
D-LVCSR system, which is based on ASR, the MTWV
performance is better on INL queries than on OOL

queries, which is consistent with the match between the
language of the ASR system and the queries. However,
threshold calibration issues produce a worse ATWV on
INL queries.

As expected, the K-Text STD system, which is language-
dependent and relies on the search in word lattices output
by a Spanish ASR system, obtains better performance on
INL queries than on OOL queries, since the query lan-
guage matches the ASR target language. The only excep-
tion is the COREMAH data, for which a better MTWV
performance on INL queries suggests threshold calibra-
tion issues in domains for which no development data are
provided.

Table 16 System results of the ALBAYZIN 2018 QbE STD evaluation on COREMAH test data for in-language (INL) and out-of-language

(foreign) (OOL) queries

INL OooL
System ID MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)
A-Hybrid DTW+LVCSR 0.1325 —0.0723 0.00006 0.806 0.2667 0.0840 0.00000 0.733
B-Fusion DTW 0.2008 — 1.8806 0.00000 0.799 0.2667 —3.7685 0.00000 0.733
C-PhonePost DTW 0.2045 —1.8397 0.00000 0.795 0.2667 —4.8663 0.00000 0.733
D-LVCSR 0.0037 —0.1594 0.00000 0.996 0.0000 0.0000 0.00000 1.000
E-DTW 0.1512 0.1512 0.00002 0.828 0.0000 —0.1989 0.00000 1.000
F-Combined DTW 0.0532 —0.0014 0.00000 0.947 0.1667 0.1667 0.00000 0.833
G-Super-BNF DTW 0.0302 — 04908 0.00000 0.970 0.1667 0.1667 0.00000 0.833
H-Multilingual-BNF DTW 0.0526 —0.9091 0.00000 0.947 0.1667 —0.0160 0.00000 0.833
I-Monoph.-BNF DTW 0.0512 —02715 0.00002 0.932 0.1667 —0.5640 0.00000 0.833
J-Triph.-BNF DTW 0.0585 —04515 0.00000 0.937 0.1667 0.1667 0.00000 0.833
K-Text STD 0.0988 —05918 0.00007 0.831 0.0000 —0.1828 0.00000 1.000
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6.2 Performance analysis of QbE STD systems for single
and multi-word queries

A similar analysis has been carried out for single and
multi-word queries, and the results are presented in
Tables 17, 18, and 19 for MAVIR, RTVE, and COREMAH
databases, respectively. They show that system perfor-
mance on multi-word queries is always better than on
single-word queries for MAVIR and RTVE databases. We
consider this is due to the fact that multi-word queries are
longer than single-word queries, and hence produce less
FAs so that the final performance gets improved.

On COREMAH data, for which no development data
were provided, the performance drops dramatically. In
addition, there is just one multi-word query, for which
no detections are given by any system. The single-
word query detection fails in threshold calibration in
most of the cases, hence obtaining an ATWV <0.
The only system that obtains an ATWV >0 is the E-
DTW system due to a perfect threshold calibration.
This perfect calibration may be due to the fact that
MAVIR development data were used for parameter tun-
ing in the experiments using COREMAH data. MAVIR
data present highly spontaneous and medium-quality
speech data, which matches in some extent the speech
of COREMAH data. On the other hand, RTVE data,
which were used for parameter tuning in the rest of
the systems (except for the F-Combined DTW, G-Super-
BNF DTW, H-Multilingual-BNF DTW, I-Monoph.-BNF
DTW, and J-Triph.-BNF DTW systems, which employed
MAVIR data as well), present well-pronounced and high-
quality speech, which do not match COREMAH data,
and hence degrades the performance. For those systems,
the low performance may be due to the type of tuning
carried out.
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6.3 Performance analysis of QbE STD systems for INV and
OO0V queries

An analysis of the QbE STD systems and the K-Text STD
system for in-vocabulary and out-of-vocabulary queries
has been carried out, and the results are presented in
Tables 20, 21, and 22 for MAVIR, RTVE, and COREMAH
databases, respectively. They show that, for MAVIR and
RTVE databases, the performance on INV queries is bet-
ter than on OOV queries. Although many of the QbE STD
systems presented do not rely on ASR (the only excep-
tions are the D-LVCSR and the A-Hybrid DTW+LVCSR
systems), system performance is, theoretically, better on
INV queries than on OOV queries, due to the different
properties INV and OOV queries convey. However, on
COREMAH data, the MTWV obtained on OOV queries
is in general, better than on INV queries. Since no devel-
opment data were provided for this database, INV and
OOV query detection must rely on parameter tuning
that does not match the data domain, making INV query
detection more difficult. The performance gaps between
MTWYV and ATWYV metrics suggest some threshold cal-
ibration issues on COREMAH data, due to the lack of
development data for this domain.

As expected, the K-Text STD system obtains better per-
formance on INV queries for all the databases due to the
match in the target language and the presence of the query
terms in the vocabulary of the ASR system.

6.4 System fusion

After the evaluation, we have tried to combine all the pri-
mary systems developed by the participants by fusing the
scores they produced. System fusion consists of two dif-
ferent stages: (1) pre-processing and (2) calibration and
fusion. These are explained next.

Table 17 System results of the ALBAYZIN 2018 QbE STD evaluation on MAVIR test data for single-word (Single) and multi-word (Multi)

queries
Single Multi

System ID MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)
A-Hybrid DTW+LVCSR 0.1905 0.0919 0.00017 0.637 0.7562 0.6646 0.00016 0.083
B-Fusion DTW 0.2586 0.2543 0.00007 0.673 0.7500 0.7271 0.00000 0.250
C-PhonePost DTW 0.2146 0.2052 0.00003 0.759 0.7500 0.7500 0.00000 0.250
D-LVCSR 0.1239 0.0800 0.00008 0.795 0.6437 06125 0.00002 0333
E-DTW 0.1356 0.1356 0.00000 0.860 0.5000 04771 0.00000 0.500
F-Combined DTW 0.0945 0.0872 0.00004 0.863 0.7271 0.5896 0.00002 0.250
G-Super-BNF DTW 0.0788 0.0112 0.00008 0.839 0.7271 03375 0.00002 0.250
H-Multilingual-BNF DTW 0.0995 —0.0244 0.00003 0.872 0.6437 0.3604 0.00002 0333
I-Monoph.-BNF DTW 0.0958 0.0545 0.00002 0.882 0.7271 0.5208 0.00002 0.250
J-Triph.-BNF DTW 0.0886 0.0475 0.00004 0.873 0.7042 0.3146 0.00005 0.250
K-Text STD 0.5316 0.5139 0.00011 0361 0.7500 0.5833 0.00000 0.250
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Table 18 System results of the ALBAYZIN 2018 QbE STD evaluation on RTVE test data for single-word (Single) and multi-word (Multi)

queries
Single Multi

System ID MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)
A-Hybrid DTW+LVCSR 06122 0.5651 0.00008 0310 0.9531 0.7374 0.00005 0.000
B-Fusion DTW 04369 0.3849 0.00004 0.523 0.4656 0.4093 0.00000 0.534
C-PhonePost DTW 04167 0.3374 0.00002 0.565 0.4562 0.4281 0.00001 0.534
D-LVCSR 0.4565 0.3854 0.00008 0.460 0.9906 0.8218 0.00001 0.000
E-DTW 0.0000 —0.0145 0.00000 1.000 0.0000 0.0000 0.00000 1.000
F-Combined DTW 0.3066 0.2904 0.00003 0.664 0.8860 0.8485 0.00002 0.095
G-Super-BNF DTW 0.2879 0.2849 0.00004 0.670 0.8672 0.8290 0.00004 0.095
H-Multilingual-BNF DTW 0.2765 0.2724 0.00005 0677 0.8478 0.7915 0.00001 0.143
[-Monoph.-BNF DTW 0.3073 0.3070 0.00005 0.642 0.9055 0.9055 0.00005 0.048
J-Triph.-BNF DTW 0.2960 0.2808 0.00004 0.668 0.8583 0.8302 0.00001 0.132
K-Text STD 0.6917 0.6625 0.00008 0.229 0.8783 0.8783 0.00000 0.122
6.4.1 Pre-processing corresponding development sets and then applied to their

First, scores for each query and system are normalized to
mean 0 and variance 1. All the detections given by the
fused systems are taken into account to generate the out-
put of the fusion system. Given a certain query detection
output by a certain system A, in case some other fused
system B does not detect it (and hence, the correspond-
ing score does not exist for it), the score generated for that
detection is the minimum global score for system B.

6.4.2 Calibration and fusion

Calibration and fusion are carried out with the Bosaris
toolkit [123]. To do so, a linear model based on logis-
tic regression trained from the scores of the detections
of development queries is employed. MAVIR and RTVE
data parameters are optimized independently from their

corresponding test sets. For COREMAH data, the model
trained for MAVIR data is employed.

Fusion employs the three primary systems
corresponding to the three participants in the evaluation
(i.e., E-DTW, A-Hybrid DTW+LVCSR, and F-Combined
DTW systems).

6.4.3 Fusion results

The results of the primary system fusion are presented
in Table 23 for development data and Table 24 for test
data. They show that system fusion enhances the per-
formance of the best individual QbE STD system on
MAVIR and COREMAH data, and the opposite stands for
RTVE data. A paired ¢ test shows that the best perfor-
mance of the Fusion system is statistically significant (p <

Table 19 System results of the ALBAYZIN 2018 QbE STD evaluation on COREMAH test data for single-word (Single) and multi-word

(Multi) queries

Single Multi
System ID MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)
A-Hybrid DTW-+LVCSR 0.1363 —0.0580 0.00006 0.803 0.0000 0.0000 0.00000 1.000
B-Fusion DTW 0.2038 —1.9448 0.00000 0.796 0.0000 0.0000 0.00000 1.000
C-PhonePost DTW 0.2075 — 19184 0.00000 0.792 0.0000 0.0000 0.00000 1.000
D-LVCSR 0.0037 —0.1454 0.00000 0.996 0.0000 0.0000 0.00000 1.000
E-DTW 0.1445 0.1445 0.00003 0.827 0.0000 0.0000 0.00000 1.000
F-Combined DTW 0.0526 0.0023 0.00000 0.947 0.0000 0.0000 0.00000 1.000
G-Super-BNF DTW 0.0299 — 04707 0.00000 0.970 0.0000 0.0000 0.00000 1.000
H-Multilingual-BNF DTW 0.0520 —0.8796 0.00000 0.948 0.0000 0.0000 0.00000 1.000
I-Monoph.-BNF DTW 0.0544 —0.2688 0.00002 0929 0.0000 0.0000 0.00000 1.000
J-Triph.-BNF DTW 0.0578 — 04231 0.00000 0938 0.0000 0.0000 0.00000 1.000
K-Text STD 0.0977 —0.5893 0.00007 0.833 0.0000 0.0000 0.00000 1.000
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Table 20 System results of the ALBAYZIN 2018 QbE STD evaluation on MAVIR test data for in-vocabulary (INV) and out-of-vocabulary

(OQV) queries
INV ooV

System ID MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)
A-Hybrid DTW+LVCSR 0.2529 0.1586 0.00017 0.580 0.0709 —0.1441 0.00007 0.860
B-Fusion DTW 0.3057 03011 0.00006 0.636 0.2063 0.1239 0.00000 0.794
C-PhonePost DTW 0.2531 0.2439 0.00003 0.719 0.1811 0.1749 0.00003 0.784
D-LVCSR 01716 0.1335 0.00007 0.757 0.0680 —0.0728 0.00002 0.909
E-DTW 0.1673 0.1673 0.00000 0.830 0.0583 0.0583 0.00002 0918
F-Combined DTW 0.1323 0.1261 0.00004 0.827 0.0735 0.0337 0.00006 0.869
G-Super-BNF DTW 0.1122 0.0367 0.00002 0.866 0.0749 —0.0257 0.00001 0914
H-Multilingual-BNF DTW 0.1352 0.0074 0.00006 0.800 0.0688 —0.0807 0.00001 0.920
I-Monoph.-BNF DTW 0.1417 0.0941 0.00002 0.835 0.0459 —0.0228 0.00001 0.943
J-Triph.-BNF DTW 0.1308 0.0694 0.00004 0.825 0.0451 0.0094 0.00001 0.943
K-Text STD 0.5639 0.5542 0.00010 0.338 0.3582 0.2327 0.00022 0424

0.01) compared to the best QbE STD system on MAVIR
test data (A-Hybrid DTW+LVCSR), and weakly signifi-
cant (p < 0.08) compared to the best QbE STD system
on MAVIR development data (A-Hybrid DTW+LVCSR).
This highlights the power of fused systems in QbE STD
in challenging domains that include medium-quality and
highly spontaneous speech data. The drop in performance
of the Fusion system compared to the best QbE STD sys-
tem on RTVE test data (A-Hybrid DTW+LVCSR) is not
statistically significant for a paired ¢ test.

The K-Text STD system performs better than the Fusion
system for MAVIR and RTVE data. This improvement
in performance is statistically significant for a paired ¢
test (p < 0.01) for both development and test sets of

MAVIR data and for the test set of RTVE data. However,
on COREMAH test data, the Fusion system outperforms
the K-Text STD system. This improvement in performance
is statistically significant for a paired ¢ test (p < 0.02),
which indicates that fusing QbE STD systems that are
based on different strategies can outperform text-based
STD technology on unseen data domains.

DET curves of the fusion systems along with the rest of
the primary systems and the K-Text STD system are pre-
sented in Figs. 11, 12, 13, 14, and 15 for development/test
MAVIR, RTVE, and COREMAH data. Comparing the
QbE STD systems on MAVIR development and test data,
it can be seen that (1) the Fusion system performs the
best, except for very low FA rates, for which the E-DTW

Table 21 System results of the ALBAYZIN 2018 QbE STD evaluation on RTVE test data for in-vocabulary (INV) and out-of-vocabulary

(OQV) queries
INV ooV

System ID MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)
A-Hybrid DTW+LVCSR 0.6948 0.6449 0.00007 0.233 0.3401 0.2590 0.00005 0.608
B-Fusion DTW 04525 0.3969 0.00004 0.507 0.3879 0.3388 0.00001 0.603
C-PhonePost DTW 04277 0.3540 0.00002 0.555 0.3837 0.2814 0.00002 0.595
D-LVCSR 0.5527 0.4920 0.00008 0.369 0.1674 0.0061 0.00003 0.800
E-DTW 0.0000 —0.0175 0.00000 1.000 0.0000 0.0000 0.00000 1.000
F-Combined DTW 0.3303 0.3091 0.00004 0.633 03072 0.2927 0.00010 0.591
G-Super-BNF DTW 0.3057 0.3033 0.00003 0.661 0.2932 0.2865 0.00003 0.672
H-Multilingual-BNF DTW 0.2970 0.2918 0.00004 0.661 0.2812 0.2663 0.00003 0.689
I-Monoph.-BNF DTW 0.3427 0.3424 0.00005 0.606 0.2737 0.2461 0.00009 0.637
J-Triph.-BNF DTW 0.3092 0.2956 0.00003 0.657 03218 0.2979 0.00004 0.638
K-Text STD 0.7896 0.7733 0.00003 0.179 04391 0.2344 0.00011 0451
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Table 22 System results of the ALBAYZIN 2018 QbE STD evaluation on COREMAH test data for in-vocabulary (INV) and
out-of-vocabulary (OOV) queries

INV ooV
System ID MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)
A-Hybrid DTW+LVCSR 0.1265 —0.0821 0.00006 0.810 0.2215 0.0383 0.00004 0.742
B-Fusion DTW 0.1953 — 1.8954 0.00000 0.805 0.2580 —2.1382 0.00000 0.742
C-PhonePost DTW 0.1994 —1.9037 0.00000 0.801 0.2580 —1.9260 0.00000 0.742
D-LVCSR 0.0071 —0.1616 0.00002 0.975 0.0000 —0.1096 0.00000 1.000
E-DTW 0.1458 0.1458 0.00002 0.832 0.1256 0.1256 0.00007 0.801
F-Combined DTW 0.0461 —0.0139 0.00000 0.954 0.1333 0.1333 0.00000 0.867
G-Super-BNF DTW 0.0301 — 04915 0.00000 0.970 0.0885 —0.3533 0.00004 0.875
H-Multilingual-BNF DTW 0.0454 — 09151 0.00000 0.955 0.1000 —0.6821 0.00000 0.900
I-Monoph.-BNF DTW 0.0440 —03012 0.00002 0.938 0.1333 —0.0897 0.00000 0.867
J-Triph.-BNF DTW 0.0519 — 04771 0.00000 0.944 0.1833 —0.1205 0.00000 0.817
K-Text STD 0.1085 —0.3436 0.00008 0.814 0.0000 —2.5204 0.00000 1.000

system performs the best, and (2) the K-Text STD sys-
tem performs better than any QbE STD system for all the
operating points. On RTVE development data, the Fusion
system performs the best, except for very low miss rates,
for which the A-Hybrid DTW+LVCSR system performs
the best. Comparing the QbE STD systems on RTVE test
data, it can be seen that (1) the Fusion system performs
the best, except for very low FA rates and low miss rates,
for which the A-Hybrid DTW+LVCSR system performs
the best, and (2) the K-Text STD system performs better
than any QbE STD system for all the operating points.
Comparing the QbE STD systems on COREMAH test
data, it can be seen that (1) the Fusion system performs
the best for all the operating points, except for very low
FA rates, for which the F-Combined DTW system per-
forms the best, and for very low miss rates, for which the
A-Hybrid DTW+LVCSR system obtains the best perfor-
mance, and (2) the K-Text STD system outperforms any
QbE STD system in low miss rates.

These results highlight the power of fusing systems in
QbE STD since the Fusion system obtains, in general,
the best performance across the different datasets, and in

some scenarios, QbE STD outperforms text-based STD
using textual queries.

6.5 Comparison to the ALBAYZIN 2016 QbE STD
evaluation

The evaluations carried out in 2016 and 2018 share
the MAVIR data (queries and utterances). Therefore,
a comparison between the best system submitted to
both evaluations can be carried out. On MAVIR test
data, the best result obtained in the 2018 evaluation is
ATWYV = 0.2810, which is higher than that obtained
in the previous ALBAYZIN 2016 QbE STD evaluation
(ATWYV = 0.2646). The best performance in 2016 cor-
responded to a combined system that integrated DTW
search on different feature sets. However, in the 2018
evaluation, the detections obtained from the different
feature sets are added the detections from a text STD
approach (hence resulting in a hybrid QbE STD sys-
tem). This hybrid system, which integrates two standard
approaches for QbE STD, is clearly giving a better perfor-
mance than systems that only integrate template matching
approaches.

Table 23 Fusion system results of the ALBAYZIN 2018 QbE STD evaluation on development data

MAVIR RTVE
System ID MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)
A-Hybrid DTW+LVCSR 0.2896 0.2470 0.00010 0.606 0.7273 0.6964 0.00002 0.254
E-DTW 0.1823 0.1774 0.00002 0.801 0.0365 0.0365 0.00000 0.963
F-Combined DTW 0.1512 0.0938 0.00005 0.803 0.6003 0.5874 0.00006 0.339
Fusion 0.3354 03124 0.00012 0.540 0.7198 0.6489 0.00003 0.253
K-Text STD 0.6544 0.6042 0.00012 0.229 0.7591 06918 0.00006 0.184
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Table 24 Fusion system results of the ALBAYZIN 2018 QbE STD evaluation on test data

MAVIR RTVE
System ID MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)
A-Hybrid DTW+LVCSR 0.2226 0.1243 0.00017 0.606 0.6201 0.5699 0.00008 0301
E-DTW 0.1550 0.1550 0.00001 0.840 0.0000 —0.0141 0.00000 1.000
F-Combined DTW 0.1227 0.1157 0.00002 0.860 03224 0.3059 0.00003 0.648
Fusion 0.2769 0.2700 0.00007 0.649 06216 0.5564 0.00004 0340
K-Text STD 0.5345 05178 0.00010 0.364 0.6969 0.6685 0.00008 0.226
COREMAH
A-Hybrid DTW+LVCSR 0.1354 —0.0689 0.00006 0.804
E-DTW 0.1436 0.1436 0.00003 0.828
F-Combined DTW 0.0521 0.0023 0.00000 0.948
Fusion 0.1779 0.1730 0.00001 0.810
K-Text STD 0.0966 —05828 0.00007 0.835

6.6 Towards alanguage-independent STD system

Due to the intrinsic language independence of vari-
ous QbE STD systems submitted to this evaluation (see
Table 6), the feasibility of language-independent STD
systems can be examined. From the overall evaluation
results (see Table 8), it can be seen that language-
independent STD systems are still far from obtaining
better or even similar performance to that obtained
with language-dependent STD systems. The performance
obtained with the best language-independent system (i.e.,
B-Fusion DTW) is ATWYV = 0.3082, and the performance

obtained with the K-Text STD system is ATWV = 0.4427,
which suggests that language-independent STD still rep-
resents a challenge. This is clearer for domains in which
training/development data are given in advance for sys-
tem training and tuning (see Tables 11 and 12). When
the data domain changes (as COREMAH data in this
evaluation), the performance of language-dependent STD
systems drops dramatically so that language-independent
STD systems may obtain similar or even better perfor-
mance compared to language-dependent STD systems
(see Table 13). Therefore, it can be claimed that language-
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independent STD systems are feasible for out-of-domain
data.

7 Conclusions

This paper has presented a multi-domain international
QbE STD evaluation for SoS in Spanish. The amount of
systems submitted to the evaluation has made it pos-
sible to compare the progress of QbE STD technology
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Fig. 14 DET curves of the fusion, primary QbE STD systems, and text
STD system for RTVE test data

under a common framework. Three different teams par-
ticipated in the evaluation and ten different systems were
submitted. Additionally, a text-based STD system has also
been presented to compare STD and QbE STD technolo-
gies. Systems belong to three well-known QbE STD cat-
egories: text-based STD, template matching, and hybrid.
Among those systems, A-Hybrid DTW+LVCSR and D-
LVCSR systems, which include a probabilistic retrieval
model for information retrieval and a query likelihood
retrieval model, and F-Combined DTW, G-Super-BNF
DTW, H-Multilingual-BNF DTW, I-Monoph.-BNF DT'W,
and J-Triph.-BNF DTW, which employ stacked bottleneck
features for signal representation, can be considered novel
from a QbE STD perspective.

Results have shown a high variability with regard to
domain change. On the one hand, systems have obtained
the best performance on RTVE data, for which a large
amount of training data are available for system con-
struction and present high-quality and well-pronounced
speech. For these data, hybrid systems are typically the
best choice due to those afore-mentioned characteristics.
On the other hand, systems have obtained the worst per-
formance on COREMAH data, for which only test data
were provided. This indicates that domain change is quite
challenging in QbE STD. On MAVIR data, which are
also quite challenging due to the presence of spontaneous
speech, system performance was between those for RTVE
and COREMAH data.

We have also shown that template matching systems
for which the language of the foreign queries is employed
in development (e.g., for feature extraction) obtained
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better performance on OOL query detection than on
INL query detection. Systems have obtained better per-
formance on multi-word query detection than on single-
word query detection because lower FA rates are generally
obtained on longer queries. Systems have obtained bet-
ter performance on INV queries than on OOV queries
for domains for which development data are provided,
since OOV queries convey, in general, more diverse prop-
erties. However, for out-of-domain data, system perfor-
mance on OOV queries may be better than on INV
queries since the change in the data domain is more
critical, especially for the systems based on template
matching.

Given the best overall result obtained in the evalua-
tion (ATWV = 0.3260), which comes from the average
of the three domains, there is still an ample room for
improvement. Specifically, it has been observed that QbE
STD systems degrade to a great extent in unseen data
domains, for which language-independent STD systems
(ATWV = 0.1436) outperformed language-dependent
STD systems (ATWV = —0.5828). This encourages us
to maintain the QbE STD evaluation in the next years,
focusing on multi-domain QbE STD.

Endnotes

Lhttp://www.rthabla.es/

Zhttp://www.isca-speech.org/iscaweb/index.php/sigs?
layout=edit&id=132

3 http://www.mavir.net

*http://cartago.lllf.uam.es/mavir/index.pl?m=videos

®http://sox.sourceforge.net/

¢ http://www.lllf.uam.es/coremah/

7 https://ffmpeg.org/

8 http://lucene.apache.org

9 http://www.tc-star.org

0 http://cartago.lllf.uam.es/mavir/index.pl?m=
descargas
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