
proceedings

Proceedings

Fast Algorithm for Impact Point Selection in
Semiparametric Functional Models †

Silvia Novo 1,* , Germán Aneiros 1 and Philippe Vieu 2

1 MODES Research Group, CITIC, Universidade da Coruña, 15071 A Coruña, Spain
2 Institut de Mathématiques, Université Paul Sabatier, 31062 Toulouse, France
* Correspondence: s.novo@udc.es; Tel.: +34-981-167-000-1301
† Presented at the 2nd XoveTIC Conference, A Coruña, Spain, 5–6 September 2019.

Published: 31 July 2019
����������
�������

Abstract: A new sparse semiparametric functional model is proposed, which tries to incorporate
the influence of two functional variables in a scalar response in a quite simple and interpretable
way. One of the functional variables is included trough a single-index structure and the other one
linearly, but trough the high-dimensional vector of its discretized observations. For this model, a new
algorithm for impact point selection in the linear part and for the model estimation is proposed.
This procedure is based on the functional origin of the linear covariates. Some asymptotic results
will ensure the good performance of the method. The computational efficiency of the algorithm,
without loss of predictive power, will be showed trough a simulation study and a real data application,
by comparing its results with those obtained trough the standard PLS method.
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1. Introduction

In the BIG data era, it is more and more frequent having observations of variables measured in a
continuous support (data are curves, images). This informative richness provided by the functional
variables makes very usual found them in regression problems. In many situations, we have a scalar
variable of interest and we want to know which points of a functional variable are the most influential
(points of impact) on this scalar variable (see [1]). The problem is that the functional variables usually
are observed in many points and standard variable selection methods in the multidimensional context
can provide inadequate results. On the one hand, these procedures are affected by the dependence
between observations, which in this case is directly derived from its functional origin. On the other
hand, the great quantity of observations makes difficult obtaining results in reasonable amount of time.

In this work, we are going to focus on a regression model with scalar response which incorporates
the influence of two functional variables: one of them is included trough a single-index type structure
(see for details [2,3]) and the other one, linearly, but trough a high-dimensional vector formed by its
discretized observations (see [1,4] for details and motivation of this structure). In this way we obtain
a very flexible model, which combines interpretable estimations with dimension reduction. For this
model, the so-called Multi-functional Partial Linear Single-Index Model (MFPLSIM), we work in the
framework where we have a very big number of linear covariates but only a few of them have a real
influence in the response (sparse context). Accordingly, we are going to develop an efficient algorithm
for impact point selection in the linear part and for the estimation of the model (the Fast Algorithm for
Sparse Semiparametric Multifunctional Regression- FASSMR), which takes advantage of the functional
origin of these scalar variables included in the linear part. The good practical behaviour of the proposed
methodology will be showed trough a simulation study and a real data application. In both cases,
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we will show its computational efficiency, without loss of predictive power, by comparing its results
with the standard PLS procedure. Furthermore, some asymptotic results will support theoretically
the FASSMR.

2. The Model

The MFPLSIM is defined by the relationship

Y =
pn

∑
j=1

β0jζ(tj) + m (〈θ0,X 〉) + ε, (1)

where Y is a real random response, X denote a random curve defined on some Hilbert space
H with inner product 〈·, ·〉 and ζ denote another random curve defined on some interval [c, d].
The curve ζ is observed in the points c ≤ t1 < · · · < tpn ≤ d and denote by ζ(tj), j = 1, . . . , pn,

its discretized observations;
(

β01, . . . , β0pn

)> is a vector of unknown coefficients, m is an unknown
link function and θ0 denotes an unknown curve in H. Finally, ε is the random error, which verifies
E
(
ε|ζ(t1), . . . , ζ(tpn),X

)
= 0. In model (1), we assume that only a few points of the curve ζ have an

effect on the response Y. Then, we denote Sn = {j = 1, . . . , pn, such that β0j 6= 0}, and it is verified
that ]Sn = sn = o(pn).

3. The FASSMR

Our procedure is based on the fact that the variables ζ(tj), j = 1, . . . , pn, come from the
discretization of the functional variable ζ. Then, when tj is close from tk, the two corresponding
variables ζ(tj) and ζ(tk) roughly contain the same information on the response. As consequence,
some variables can be discarded before applying the variable selection procedure.

For presenting the FASSMR, let us assume that we have a statistical sample of size n,
{(ζi,Xi, Yi), i = 1, . . . , n} i.i.d. as (ζ,X , Y). We will consider, without lost of generality, that pn can
be factorized in the following way: pn = qnwn with qn and wn integers. The previous considerations
allow us present the following set of variables

R111
n = {ζ(t111

k) = ζ(t[(2k−1)qn/2]), k = 1, . . . , wn},

where [z] denotes the smallest integer not less than z ∈ R. Note that the correlation between consecutive
variables inside of R111

n is much less important than in the whole set of pn initial linear covariates.
As consequence, the variable selection procedure will be carried out in variables belonging to R111

n.
In other words, we will considerer the following model with only wn linear covariates

Yi =
wn

∑
k=1

β111
0kζi(t111

k) + m111
(〈

θ111
0 ,Xi

〉)
+ ε111

i . (2)

Then, variable selection task can be developed following the standard procedure described in [5]
and detailed in [6], which is based on transforming the model (2) into a linear one and applying

the PLS procedure. We denote by (β̂ββ
111
0, θ̂111

0), the estimation of the parameters of model (2) where

β̂ββ
111
0 = (β̂111

01, . . . , β̂111
0wn

)>. Then, ζ(t111
k) is selected inR111

n if and only if β̂111
0k 6= 0.

Considering the whole set of initial of pn linear covariates, that is, returning to model (1), a variable
ζ(tj) ∈ {ζ(t1), . . . , ζ(tpn)} is selected if and only if it belongs to R111

n and its estimated coefficient,
which can be denoted by β̂111

0kj
, is non null. Then, Ŝn = {j = 1, . . . , pn, such that ζ(tj) = ζ(t111

kj
) ∈ R111

n

and β̂111
0kj
6= 0} and β̂0j = β̂111

0kj
if j ∈ Ŝn and β̂0j = 0 otherwise. Finally, θ̂0 = θ̂111

0 and an estimator of the

function mθ0(·) ≡ m(〈θ0, χ〉), denoted by m̂
θ̂0
(χ), can be obtained by smoothing the residuals from the

parametric fit (see Appendix A).
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4. Theory, Simulation and Real Data Application Conclusions

The good behaviour of the proposed algorithm will be ensured theoretically. Furthermore,
from the simulation study it can be seen that the FASSMR allows us to obtain the variable selection
and estimation of model (1) in a reasonable amount of time, even for very big values of pn. As will be
derived from the simulation study, the developed algorithm clearly overpasses standard PLS procedure
in terms of computational time without loss in prediction power. A real data application will also
illustrate the flexibility and applicability of model (1) together with the FASSMR estimation.
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Abbreviations

The following abbreviations are used in this manuscript:

FASSMR Fast Algorithm for Sparse Semiparametric Multi-functional Regression
i.i.d. Independent and identically distributed
MFPLSIM Multi-functional Partial Linear Single-Index Model
PLS Penalized Least Squares

Appendix A

Denoting by β̂ββ0 the vector of estimated parameters,

m̂
θ̂0
(χ) ≡ m̂

(〈
θ̂0, χ

〉)
=

∑n
i=1

(
Yi − ζζζ>i β̂ββ0

)
K
(

d
θ̂0
(χ,Xi) /h

)
∑n

i=1 K
(

d
θ̂0
(χ,Xi) /h

) ,

where we have denoted ζζζ i =
(
ζi(t1), . . . , ζi(tpn)

)>, h > 0 is a bandwidth, K is a kernel and, for any
θ ∈ H, dθ(·, ·) is the semimetric defined as dθ(χ, χ′) = |〈θ, χ− χ′〉| for each χ, χ′ ∈ H.
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