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Abstract

Efficient testing and wvalidation of software com-
ponents for highly automate vehicles is one of the
key challenges to be solved for their massive de-
ployment. The number of driving situation and
environment variables makes validation almost in-
tractable with real vehicles in open roads, and the
testing reproducibility can only be achieved via
simulation. This manuscript presents a frame-
work and preliminary results for motion predic-
tion of vehicles in a simulation environment that
is being currently developed by the AUTOPIA Pro-
gram.

Keywords: Driving corridors, Simulation en-
vironment, Autonomous vehicle, LCM, Motion
Prediction, Probabilistic Reachable Sets.

1 INTRODUCTION

Autonomous vehicles need a lot of hours of test-
ing before going into the market. For example,
Google self driving cars drive 10.000 - 15.000 miles
a week to collect data for testing their software
[19]. These requirements are very difficult to meet
with the legal restrictions of autonomous vehicles
in public roads [21]. A robust simulation frame-
work would allow to test the control algorithms of
autonomous vehicles safely and to improve wrong
behaviors when special conditions are met. In [7],
the authors propose a simulation tool of cooper-
ative maneuvers among autonomous vehicles in
which virtual and real vehicles can conjunctively
interact. Another work found in literature use real
data collected from autonomous vehicles for creat-
ing new simulation scenarios and improve driving

behaviors [10].

One of the main expectations regarding au-
tonomous vehicles is to reduce the number of acci-
dents. In order to to that, it is necessary to predict
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the motion of the surrounding vehicles and people
for a safe navigation of the ego-vehicle. To do this
verification, the set of states reachable within a fi-
nite or infinite time interval needs to be computed.

Reachable sets are the union of all possible states a
system can reach when starting within a bounded
set of initial states and subject to a set of possible
input and parameters values [3].

Except for a few cases, the exact computation of
the reachable sets is impossible to perform. For
this reason, the computation must be done using
abstraction methods or computing an approxima-
tion of the reachable sets of the system [11].

Reachable sets have been used for motion predic-
tion, in a deterministic way, in [5, 13]. The former
used abstractions to model the reachable states
of other vehicles and to verify if the planned tra-
jectory of the ego vehicle is safe. The later used
Hamilton-Jacobi reachability analysis for the de-
termination of prediction sets for human driven
vehicles in a lane changing scenario.

The probabilistic reachability analysis in the same
context appeared, for example, in [2] where the
authors used Markov chains to predict the future
behavior of traffic participants, considering their
dynamics, their interactions with one another and
also the limitation of driving maneuvers due to the
road geometry resulting in crash probabilities for
the possible paths of the ego vehicle.

In this work, we propose a way to compute the
probabilistic reachable sets for motion prediction
using probabilistic zonotopes and a linear system
model. We also propose a simulation framework
for testing and validation, which bring us the pos-
sibility of creating new scenarios that would be
very difficult to obtain with an autonomous vehi-
cle on the street or with pre-recorded logs on a
human-driven vehicle.

The remainder of the paper will be as follows:
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Section 2 describes the modules of the devel-
oped framework, including: the simulation envi-
ronment, map creation, the design of a testing
scenario for validation purposes and the naviga-
ble lanes generation. Section 3 presents a review
of the probabilistic zonotopes, the system model
and how the reachable sets are generated. Section
4 presents the results for the developed framework
and section 5 concludes.

2 FRAMEWORK

2.1 SIMULATION ENVIRONMENT

This chapter describes the software architecture
implemented to facilitate the interaction between
the high-level software for autonomous vehicles
and SCANeR Studio simulator [20].

2.1.1 Vehicle software architecture

The autonomous vehicles from the AUTOPIA
Program [6] use a multi-process architecture for
handling all the input/output modules, by sharing
messages using Lightweight Communications and
Marshalling (LCM) API [15]. This API provides a
set of libraries and tools for inter-process commu-
nication in real-time systems, which is based on
a publish-subscribe message passing model using
UDP multicast as underlying transport layer [14].

Fig. 1 shows all modules used in the instrumented
vehicles from the AUTOPIA Program, intercon-
nected with the LCM APT [9].
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Figure 1: Architecture of autonomous vehicles of
AUTOPIA Program
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2.1.2 Simulator description

SCANeR studio is a software suite for automotive
simulation, addressing both testing and driving for
autonomous vehicles, human machine interactions
or driving assistance systems. This tool provides
all the necessary modules to build a realistic vir-
tual world: road environment, vehicle dynamics,
traffic, sensors, real or virtual drivers, headlights,
weather conditions and scenario scripting [20].

This simulator provides an API which allows users
to customize their interaction with it, by develop-
ing their own specific modules that may access and
modify data from a running simulation. This API
also offers the possibility of controlling vehicles
and pedestrians, modify the scenario’s conditions
or access sensory data. In order to handle all this
information, SCANeR Studio uses a network pro-
tocol that allows the user to be informed of state
changes in the simulation and to send messages to
specific modules to control them. One of the ad-
vantages of this methodology is that the user can
develop his own modules in any language that can
load the provided dynamic libraries, which will
trigger the transmission and reception of SCANeR
Studio Ethernet network messages.

2.1.3 Interaction with the simulator

A software module was implemented to handle the
simulated vehicle as if it were the real one, so we
could use the same decision-making software to
control both. This was possible through the imple-
mentation of two independent software processes:
the first for handling the perception and the sec-
ond for handling the actuators of the simulated
vehicle. This architecture is shown in Fig. 2.
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Figure 2: Software architecture to interact with
the simulator

The perception process receives messages from
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SCANeR Studio and transmits them through
LCM periodically, with the same frequency as
the modules in the real vehicle. This module
transmits information about the vehicle dynamics
(speed and acceleration), the steering wheel state,
the GPS location and the bounding boxes of the
near obstacles. Fig. 3 displays the perception data
from the vehicle in the middle of a simulation.

Figure 3: Reading information from simulated ve-
hicle

The actuator process, on the other hand, receives
messages from the LCM API and sends them to
SCANeR Studio network in order to control the
vehicle. This module also emulates the behavior
of the actuators implemented in the real vehicle for
moving the steering wheel and the breaking pedal.
The throttle pedal does not have this problem be-
cause it is an electric signal in the real vehicle. Fig.
4 shows the comparison of the real and simulated
actuators in different scenarios.

Fig. 4a shows the steering wheel angle for differ-
ent control inputs with the car standing still. The
continuous blue line is the behavior of the real ve-
hicle, and the dotted magenta line is the behavior
of the simulated car. Fig. 4b shows the longitu-
dinal speed (blue) and acceleration (orange) for a
30% throttle pedal during 100m and then stopping
with 0.3 breaking command. Continuous lines are
for the real vehicle and dotted lines are for simu-
lated vehicle.

2.2 MAP CREATION

Maps have become a very important component
of autonomous driving systems [18]. High defini-
tion maps provide a lot of information about the
surrounding environment of the vehicle, helping in
some vital processes such global route calculation
and local path planning. They also contain data
about regions that cannot be observed by the sen-
sors, allowing to compensate inadequacies in the
sensory data and to have a more reliable behavior
in autonomous vehicles.

We choose to use the Lanelet2 framework [18] for
map creation. It is an open-source map framework
implemented in C++ which has different advan-
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Figure 4: Comparison of the steering wheel angles
for real and simulated vehicle (a) and comparison
of longitudinal behavior of real and simulated ve-
hicle (b)

tages such as interactions between lanes and re-
gions, information on different areas, implications
of traffic rules and software modularity. At the
moment, AUTOPIA Program uses Open Streets
Map data for generating driving corridors auto-
matically [12]. This technique expands the orig-
inal map representation, replacing polylines by
polynomial-based roads, whose sections are de-
fined using cubic Bezier curves. This approach
was adopted after performing an exhaustive com-
parison with different curve primitives [8]. The
representation of the map using Bezier curves pro-
vides a better fit of the road shape, but it is
only implemented for single-lane roads. Lanelet2
framework eases the handling of multi-lane roads,
as seen in section 2.4.

Fig. 5 shows an example of a simple map repre-
sented using lanelets standard. The left side of
the figure presents the physical layer of the map,
which contains observable information such as ge-
ographic location, border-lines of the road, or the
center-lines of the lanes. The right side of the fig-
ure shows the relational layer of the map in which
the elements of the physical layer are connected
and converted to lanes, roads or areas.

The combination of both, physical and relational
layers, will be used for generating the navigable
corridors for the autonomous vehicle.
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Figure 5: Map representation of a simple road bi-
furcation using lanelets

2.3 SCENARIO DESIGN FOR
TESTING

The scenario for validating our framework consists
in a four double-lane intersection located in Ar-
ganda del Rey, Spain. We placed 3 vehicles in
the scene, all approaching to the main intersection
from different directions. This scenario is shown
in Fig. 6.

Figure 6: Urban scenario representation using
lanelets (a) and SCANeR Studio testing Scenario

(b)

Fig. 6a shows the scenario map created using
lanelets and Fig. 6b shows the same scenario cre-
ated in SCANeR Studio. Both environments have
the same Geo-location. As seen in Fig. 6b, the ve-
hicle coming from the left is the ego vehicle; and
the vehicles coming from the bottom and from the
left are the dynamic obstacles. Table I shows the
initial state configured in the simulator for each
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vehicle in the scene.

Table 1: Initial states of vehicles in the scenario

ID Dist. to intersection Init. speed
EV 30m N/A
01 50m 50km/h
02 15m 20km /h

The proposed experiment consists in obtain the
possible navigable corridors for each obstacle,
compute the reachable sets for a 3 second
time-horizon and compare the final position of
the simulated vehicles with the prediction us-
ing reachable sets. Each simulation is going
to be run 3 times with different accelerations:
—0.5 m/s%, 0 m/s? and 1 m/s>.

Next sections will be based on the scenario de-
scribed in this chapter.

2.4 DYNAMIC GENERATION OF
NAVIGABLE CORRIDORS

There are different techniques for representing the
navigable space of an autonomous vehicle. In [16],
the authors compare some of them. Autonomous
vehicles from the AUTOPIA Program use naviga-
ble corridors to represent the near surroundings
and to calculate the optimum path to follow [6].

We propose to use the relational and physical layer
of the lanelets map in order to obtain all the nav-
igable corridors for the vehicles in the scene. The
length of these corridors is equal to the maximum
distance that the car can reach with its current
speed in a specified time, assuming a constant
maximum acceleration.

First, we obtain the current lanelet(s) where the
vehicle is located, comparing the position and the
orientation in the physical layer. Next, we per-
form a graph search for surrounding lanelets start-
ing from the vehicle lanelet(s) to create a lanelet-
sequence for each corridor. Each lanelet-sequence
must comply three conditions:

e [t cannot be longer than the search horizon;

e It cannot contain any loops;

e It cannot intersect the vehicle-lanelet(s);
Fig. 7a and 7b show the navigable corridors for
the obstacles using a 3.0 s horizon and a maximum
acceleration of 3 m/s%. In the case of the obsta-

cle 1, the length of the corridors is 30.16m. For
obstacle 2, the length of the corridors is 55.16m.

We implemented a C++ application that com-
putes the navigable corridors. It obtains the state
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of the vehicles (location, orientation, and speed)
through LCM messages, and uses Lanelet2 frame-
work for generating the corridors, their centerlines
and their boundaries in less than 40 ms.

(b)

Figure 7: Navigable corridors for bottom Obstacle
(a) and Navigable corridors for right Obstacle (b)

3 REACHABLE SETS AND
SYSTEM MODEL

In this section we present the methodology that
we implemented to generate the reachable sets.

3.1 PROBABILISTIC ZONOTOPES

In this work, we use probabilistic zonotopes for the
motion prediction. Probabilistic zonotopes were
proposed in [4] and they can be defined as a mixed
list of generators of a zonotope and a Gaussian
zonotope [3].

Zonotopes are a special case of convex polytopes
and can be interpreted as the Minkowski sum of
finite line segments [11]. A zonotope Z is a set

p
Z={xeR"z=c+) Bigim—1<pBi>1}
i=1

with ¢ being the center and g;... g, the generators
of the zonotope.

Gaussian zonotopes (G-zonotopes with certain
mean) are zonotopes that have the intervals ; €
[-1,1] replaced by independent Gaussian dis-
tributed random variables N;(0, 1) [3], and can be
characterized by:
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Probabilistic zonotopes (G-zonotopes with uncer-
tain mean) are defined as a G-zonotope Z, where
the center is uncertain an can have any value
within a zonotope Z [4]:

ZF=7ZHZ

The operator [] combines the Gaussian zonotope
Z with the zonotope Z. The resulting probabilis-
tic zonotope £ is neither a set nor a random vec-
tor, hence there does not exist a probability den-
sity function describing 2 [4]. However, 2 can
be represented by an enclosing probabilistic hull
(Definition 4.3 from [3]).

3.2 SYSTEM MOTION MODEL

The linear system model used in this paper is de-
fined by the stochastic differential equation (1) [3].

% = Ax(t) + Bu(t) + C¢ (1)
x(0) e R", u(t) e U C R", £ € R™
This model includes a stochastic input &, repre-

sented by a white Gaussian noise that is mixed
with the uncertain input u.

The state variable x is a probabilistic zonotope
that contains the position (s, s,) and the veloc-
ity v,. It is represented by enclosing hulls which
include all possible probability density functions
for the time interval [4].

The matrices A, B and C for the simulated model
are described below.

0 0 1 02 0 0
A=10 0 0|,B=[1],C=|0 0 0
0 0 0 0 0 02

The input wu(t) of the system is the acceleration
and it is contained in the interval below

0, 0
u(t) € 0,0
~0.5, 3.0

which means that a minimum and maximum ac-
celeration of -0.5 and 3.0 m/s?, respectively, can
be applied to the vehicles.
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3.3 GENERATION OF THE
REACHABLE SETS

For every simulated obstacle, we find all the possi-
ble navigable corridors it may follow and for each
of these corridors, a road-based grid is created.
The reachable sets are then calculated based on
the model from (1) using a combination of the
libraries SPOT [17] and CORA [1], both imple-
mented in Matlab. Fig. 8a shows the enclos-
ing probabilistic hull (EPH) for one time interval.
This probabilistic hull is then projected into a grid
(Fig 8b) that is applied to every road-based grid
previously created (Fig. 9a).

This reshaping is necessary because the current
model does not take into account the paths the
vehicle can follow, considering motion only in the
z-axis.

Besides the model from (1), the Acceleration-
Based Occupancy from [5], already implemented
in SPOT, is intersected with the solution of each
time interval. This abstraction considers that an
over-approximated reachability for a time interval
can be described by a polygon which includes the
circles, with center and radius calculated by (2),
for two consecutive time intervals. The polygon
and the resulting reachable set for a time interval
can be seem in Fig 9b.

4 RESULTS

The model from Section 3 was applied to the ve-
hicles described in Table 1 in the testing scenario
from Section 2.3.

The resulting reachable sets for the 2.9-3.0 s time
interval are shown in Fig. 10 for both obstacles.

In order to have a way to validate the results, some
simulations were made in SCANeR Studio. The
dots in Fig. 10 represent the results from these
simulations varying the final velocity and the path
the vehicles could take. The different colors rep-
resent the possible lanes from Fig. 7.

It can be seem in Fig. 10b that one of the red dots
is outside of the reachable sets computed for the
time interval. The reason for this is that the simu-
lated vehicle was not able to perform the turn for
the dynamic parameters of the scenario. Fig. 11
shows the acceleration profile for this specific sim-
ulation. For the other points, Table 2 presents the
average probability of the simulated car landing in
one of the most probable cells at 3 seconds.
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Figure 8: Enclosing Probabilistic Hull (EPH) for
a time interval (a) and its projection on a 2D grid

(b)

Table 2: Average probability of landing in the
most probable cells

Obstacle Average probability
Obstacle 1 88.44% + 17.41
Obstacle 2 89.84% =+ 17.50

The computed reachable sets from the obstacles
are necessary for a safe navigation of the ego-
vehicle, so it is necessary to create a grid from
its the point of view that includes all this infor-
mation. Instead of being a road-based grid, it is
a vehicle-based grid, which does not take into ac-
count the lanes and includes all the reachable sets
from the other vehicles. The resulting interpola-
tion for the 2.9-3.0 s time interval is displayed in
Fig. 12.

5 CONCLUSION AND FUTURE
WORK

The developed framework allowed the communica-
tion between a control software and the SCANeR
Studio simulator through the LCM middleware.
It uses a lanelet-based map structure for analyz-
ing information in relational and physical layers,
in order to generate navigable corridors for the
autonomous vehicle.

This work also served to introduce the frame-
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(b)

Figure 9: Reshape of the EPH projection from
Fig. 8b into the possible lanes (a) and the resul-
tion reachable sets with the intersection with the

polygon (b)

work being used by the AUTOPIA Program for
the implementation of the probabilistic reachabil-
ity analysis for the motion prediction of vehicles.
Using simulations, we could validate the results
obtained so far, proving the system is correct.

In the future, the simple linear motion model will
be changed for a more complex hybrid one, where
we can take into account velocity constraints and
also consider the interaction between different ve-
hicles/obstacles.
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