
PARALLEL COMPUTING TECHNOLOGIES IN VIDEO
STABILIZATION FOR TEACHING PURPOSES

Márquez Rodríguez, César Gabriel
Systems Engineering and Automation, University of Vigo, Spain, cmrodriguez17@esei.uvigo.es

García Rivera, Matías

Systems Engineering and Automation, University of Vigo, Spain, mgrivera@uvigo.es

Díaz-Cacho Medina, Miguel
Systems Engineering and Automation, University of Vigo, Spain, mcacho@uvigo.es

Camaño Portela, José Luís

Systems Engineering and Automation, University of Vigo, Spain, cama@uvigo.es

Abstract

In this paper, the development of a video-
stabilization program is described as part of the
training in the subject Parallel Architectures in
the Degree in Computer Engineering of the
University of Vigo. The purpose is to take
advantage of the parallelism methodologies in
processors to teach students about computer
vision and use it in applications like vibration
sensors for maintenance in Industry 4.0 or
computer vision for the autonomous vehicle. The
main tool to implement this program is the C
programming language and the OpenCV library.

Keywords: parallel computing, vector
processing, video and image processing.

1 INTRODUCTION

The Department of Systems and Automation
Engineering of the University of Vigo is
responsible for teaching subjects such as
Computer Architecture or Parallel Architectures
in the Degree in Computer Engineering taught at
High School of Computer Science at the Ourense
campus. These provide theoretical and practical
knowledge about computer hardware, its
evolution and improvements.

In the subject ‘Parallel Architectures’ [1],
students’ knowledge in the area of Architecture
and Computer Technology will be completed,
studying the parallel execution of instructions in
monoprocessor systems, the possibilities offered
by multi-core processors, multiprocessor

systems, vector processors, multicomputers and
computer clusters.

The aim of this subject is to make students
understand the advantages, risks and limitations
of parallelism and concurrency techniques used
by processors in order to reduce execution times.
In addition, it seeks to enable the student to
measure the performance of a processor when
running a program.

With this project and according to some
competences of this subject, students will:

• Know how to apply their knowledge to their
work or vocation in a professional way.
Particularly in this case, the image
stabilization program could be useful to
serve as vibration sensor for maintenance in
Industry 4.0 or even to stabilize images in a
vibrating environment like image sensors for
autonomous driving.

• Have the ability to identify and analyze
problems and design, develop, implement,
verify and document software solutions
based on appropriate knowledge of current
theories, models and techniques.

In this frame, video and image processing are
used as the leitmotiv to teach about parallelism
technique in a practical and attractive way, and to
show how this techniques represents significant
improvement in performance.

2 DESCRIPTION AND APPROACH OF
OF PROJECT AND ALGORITHM

The further presented program will allow you to
remove unwanted movements from a video that

XL Jornadas de Automática Visión por Computador

https://doi.org/10.17979/spudc.9788497497169.836 836

mailto:mgrivera@uvigo.es
mailto:mcacho@uvigo.es

should display a fixed and stable image. The idea
behind the algorithm is to set as a reference the
central point of the first frame, look for it in the
other frames and correct the difference between
them and the first frame.

The user interface is based on the comdlg32.dll
library to display dialog-windows, and basically
it allows the user to select the video which will
be processed. It must have AVI or MPEG format.

The video will be processed in blocks, taking as
reference coordinates of the central block from
the first frame (ctlf, rtlf) and looking for it in the
following ones within pre-established limits.

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≔ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡+𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑡𝑡
2

 (1)

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≔ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ+𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ
2

 (2)

where rtlf is the row to look for and ctlf the
column to look for.

Figure 1. Representation of the displaced central
block from the first frame in the following frames.

In order to find the displaced central block in the
other frames, we must compare this initial block
with the blocks within the pre-established limits
in each frame, looking for the more similar one.
Those limits allow us to be more efficient, as it is
not likely that the image has experienced much
change between consecutive frames.

We can define the difference between two pixels
as the addition of the differences in absolute
value of their RGB components:

𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝1,𝑝𝑝2) ≔ |𝐵𝐵1 − 𝐵𝐵2| + |𝐺𝐺1 − 𝐺𝐺2|
+ |𝑅𝑅1 − 𝑅𝑅2| (3)

Therefore, the difference between two blocks of
𝑛𝑛 ×𝑚𝑚 dimensions will be the addition of the
differences of their pixels:

𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2): = � 𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑘𝑘) (4)
𝑛𝑛×𝑚𝑚

𝑖𝑖=0,𝑘𝑘=0

Once the coordinates (foundCol, foundRow) of
the displaced block have been found, we can
draw some conclusions from the next equalities:

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (5)

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≔ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (6)

• If 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 0, the image has not vertically
moved.

• If 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑖𝑖𝑖𝑖𝑖𝑖 > 0, the image has moved
downwards. We will have to move the image
up as much as 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑖𝑖𝑖𝑖𝑖𝑖 tells us to.

• If 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑖𝑖𝑖𝑖𝑖𝑖 < 0, the image has moved
upwards. We will have to move the image
down as much as 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑖𝑖𝑖𝑖𝑖𝑖 tells us to.

• If 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 0, the image has not
horizontally moved.

• If 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 > 0, the image has moved
rightwards. We will have to move the image
left as much as 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 tells us to.

• If 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 < 0, the image has moved
leftwards. We will have to move the image
right as much as 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 tells us to.

Figure 2. Correction a frame in relation previous one.
The stripped space cannot be reconstructed.

As we can see in Figure 2, stabilize a frame in
relation to the first frame, there are parts of the
image that cannot be reconstructed, because the
information of that newly shown area is not
available. This areas will be painted black.

The previously explained process can be
described by the following pseudocode:

WHILE thereAreFrames DO

minDif ← ∞

FROM r ← rtlf - LIMIT TO foundRow + LIMIT
DO
FROM c ← ctlf - LIMIT TO foundCol + LIMIT
DO

acDif ← compBloq(filBusq, colBusq, f,
c)

IF acDif<minDif THEN

XL Jornadas de Automática Visión por Computador

https://doi.org/10.17979/spudc.9788497497169.836 837

minDif ← acDif
fMin ← f
cMin ← c

END_IF

END_FROM

END_FROM

imageShift(rtlf - fMin, ctlf - cMin)

END_WHILE

It is possible to decompose any movement
suffered by the image in the movements we have
seen before:

• On the vertical axis: upwards or
downwards.

• On the horizontal axis: rightwards or
leftwards.

In order to stabilize the image, we must correct
the displacements on the corresponding axes,
moving the image in the opposite direction to that
of the movement on that axis.

Moreover, we must not forget that the image
cannot be completely reconstructed. In the
solution proposed in this article, as we have
already said, we have chosen to fill in these areas
in black.

This process can be described in the following
way with this pseudocode, where rowShift and
columnShift represent the displacements suffered
on the vertical and horizontal axes, respectively.

IF rowShift>0 THEN
// Correct downwards shift
END_IF

IF rowShift<0 THEN
// Correct upwards shift
END_IF

IF columnShift>0 THEN
// Correct rightwards
END_IF

IF columnShift<0 THEN
// Correct leftwards shift
END_IF

IF rowShift>0 THEN
// Paint the unknown area black
END_IF

IF rowShift<0 THEN
// Paint the unknown area black
END_IF

IF columnShift>0 THEN
// Paint the unknown area black
END_IF

IF columnShift<0 THEN
// Paint the unknown area black
END_IF

So as to correct the shift suffered on an axis in a
concrete direction the process to follow is always
similar: we must establish a correspondence
between the position of the initial image and that
of the displaced image. For example, in the case
of a downward displacement:

IF rowShift>0 THEN

FROM r ← height – rowShift – 1 TO 0 DO

FROM c ← 0 TO width DO

//Coordinates correspondence

copyPixel(r,c,r+rowShift,c)

END_FROM

END_FROM

END_IF

// . . .
IF rowShift>0 THEN

FROM r ← 0 TO rowShift DO

FROM c ← 0 TO width DO

blackPixel(r,c)

END_FROM

END_FROM

END_IF

On the other way, by determining the first
derivative of rowShift and columnShift, the
peaks of the vibration can be found and
combined with the time difference between
them, the energy of the vibration can be
determined and therefore be compared with
reference situations to know maintenance
parameters. Nevertheless, this analysis is out of
the scope of this paper and will be studied in
future works.

3 IMPLEMENTATION

3.1 PROGRAMMING LANGUAGE,

DEVELOPMENT TOOLS AND
LIBRARIES.

For the development of this program the
programming language C was chosen, which is
the one used in the practical part of the subject.
Since C is a structured language [2], it makes it
easier to think of programs in terms of function
modules or blocks, for example, with the
approach described before for the resolution of
the proposed problem. In addition, there are a lot
of libraries supported by the C library, making
the task of programming easier.

XL Jornadas de Automática Visión por Computador

https://doi.org/10.17979/spudc.9788497497169.836 838

NetBeans integrated development environment
has been used as a development tool in its version
8.2. It is used in this subject as in many others in
the degree. This IDE [3] is a useful tool for large
scale projects and makes it easy to bring in new
developers, since its structure is very visible.

To compile our programs, we used the GCC free
compiler [4], GNU Compiler Collection.
However, due to the fact that most PCs use
Windows as an operating system, Cygwin will be
used [5]. Cygwin is a large collection of GNU
and open source tools that provides functionality
similar to a Linux distribution on Windows.

The OpenCV [6] open source library, released
under the BSD 3 clause license, has been used for
the video processing part. It is a library focused
on real time applications, which is also
multiplatform, because it supports different
languages and operating systems. OpenCV is
free for commercial use.

3.2 PERFORMANCE
IMPROVEMENT. USE OF
PARALLELISM TECHNIQUES.

Image and video processing involves operations
on many occasions with high computational load.
When an instruction is executed, it is likely that
it will be run on a large set of data. As a result,
SIMD (Single instruction, Multiple Data)
techniques emerge, with the aim of achieving
data level parallelism.

Consequently, the process explained in the
section 2 of this article can be accelerated using
SIMD. As a first approach, we have chosen the
Intel® SSE2 set of instructions to make these
improvements. The data type __m128i, which is
a 128-bit record, has been used. Among the
functions provided by SSE2 [7], the following
were used:

• __m128i mm_loadu_si128 (__m128i const*
mem_addr), loads 128-bits of integer data
into mem_addr.

• void mm_storeu_si128 (__m128i*
mem_addr, __m128i b), stores 128-bits of
integer data from b into memory.

• __m128i _mm_set1_epi32 (int c), broadcasts
32-bit integer c to dst.

• __m128i _mm_add_epi32 (__m128i b,
__m128i c), adds packed 32-bit integers in b
and c, and stores results in dst.

• int _mm_cvtsi128_si32 (__m128i b), copies
the lower 32-bit integer in b to dst.

• __m128i _mm_srli_si128 (__m128i b, int
imm8), shifts b right by imm8 bytes while
shifting in zeros, and stores results in dst.

The _m128i _mm_sad_epu8 (__m128i a,
__m128i b) function deserves a deeper
explanation. It computes the absolute differences
of packed unsigned 8-bit integers in a and b, then
it horizontally sums each consecutive 8
differences to produce two unsigned 16-bit
integers, and pack these unsigned 16-bit integers
in the low 16 bits of 64-bit elements in dst. This
instruction is perfect to use in our block
comparison function because it allows us to
calculate the differences between two pixel
blocks in parallel, which means an enormous
saving in computational effort.

Figure 3. Representation of SSE2 _mm_sad_epu8.

Figure 4. Block comparison function in SISD (Single
Instruction, Single Data).

XL Jornadas de Automática Visión por Computador

https://doi.org/10.17979/spudc.9788497497169.836 839

Figure 5. Block comparison function in SIMD (Single
Instruction, Multiple Data) with SSE2.

These improvements can also be included in the
image shifting function, since the task of moving
each frame also involves a significant workload.

Figure 6. Correction in the image shifting function of
downward shift, programmed only with SISD.

Figure 7. Correction in the image shifting function of
downward shift, programmed with SIMD

instructions.

Figure 8. Correction in the image shifting function of
the unknown area when downwards shift, SISD.

Figure 9. Correction in the image shifting function of
the unknown area when downwards shift, SIMD.

To further improve the performance of the
program, a version of it has been developed using
instructions from Intel®AVX2 [8], which
doubles the size of the SSE2 records we were
working with: AVX2 has 32 records of 256 bits.

The data type __m256i, which is a 256-bit
record, has been used. Among the functions
provided by AVX2 [7], the following were used:

• __m256i _mm256_loadu_si256 (__m256i
const * mem_addr)

• void _mm256_storeu_si256 (__m256i *
mem_addr, __m256i a)

• __m256i _mm256_set1_epi32 (int a)
• __m256i _mm256_sad_epu8 (__m256i a,

__m256i b)
• __m256i _mm256_add_epi32 (__m256i a,

__m256i b)
• int _mm256_cvtsi256_si32 (__m256i a)
• __m256i _mm256_srli_si256 (__m256i a,

const int imm8)

All these instructions have the same functionality
as their corresponding in SSE2. The difference is
that AVX2 works with 256-bit records instead of
128-bit records.

As shown in this paper, the stabilization program
has been implemented using parallelism tools
and its performance has been measured in order
to compare the level of improvement, both by
applying these techniques and by not doing so.
Such reference implementations have been made
available to the public in the repository
accessible from [11]

3.3 OTHER WAYS TO IMPROVE
PERFORMANCE.

XL Jornadas de Automática Visión por Computador

https://doi.org/10.17979/spudc.9788497497169.836 840

Another way of increasing the performance of
the program could be by using threads which
share the computational load during execution.

In addition, techniques such as loop unwinding,
which allows the microprocessor to better
organize the instructions to be executed, could be
used. On the other hand, we can obtain a more
detailed analysis by using profilers [9]. These are
tools that allow us to obtain:

Information about performance.
Identification of bottlenecks.
Mechanisms of optimization.
Tracking of running threads.
Time lost in subroutines.

The use of this program is not only limited to the
individual sphere. We propose a possible
commercial and industrial utility that it could
have: the program could be used for video
stabilization in surveillance cameras, allowing
their images to remain fixed and sharper against
movements of almost all kinds.

4 CONCLUSIONS

SIMD instruction sets represents a huge
improvement in the performance in a certain
types of applications.

As explained in section 2.2, this improvement is
very noticeable in multimedia applications since
large amounts of data must be handled in the
same way. This is the case of the program
described in this article.

A video stabilization program has been improved
using parallelism techniques with Intel® SSE2
and Intel® AVX2.

5 ACKNOWLEDGMENT

This work has been partially supported by
Spanish Science and Technology Ministry in the
Project DPI2016-79278-C2-2-R, co-financed by
the European Regional Development Fund
(ERDF) and MINECO, and by the European
Project ‘Algerian National Laboratory for
Maintenance Education” Project No 586035-
EPP-1-2017-1-DZ-EPPKA2-CBHE-JP. 2 9.19

2 14.65

Time
SISD 184.56 s
SIMD with SSE2 20.07 s
SIMD with AVX2 12.56 d

Figure 8. Speedups with SSE2 and AVX2 obtained
with a 7th generation Intel® Core i7 processor.

References:

[1] "Guia docente de Arquitecturas Paralelas. ESEI.
Uvigo.", secretaria.uvigo.gal, 2019. [Online].
Available: https://secretaria.uvigo.gal/docnet-
nuevo/guia_docent/index.php?centre=106&ensenyam
ent=O06G150V01&assignatura=O06G150V01401.

[2] H. Soffar, "C programming language features,
advantages and disadvantages", Science online,
2019. [Online]. Available: https://www.online-
sciences.com/programming/c-programming-
language-features-advantages-and-disadvantages/.

[3] "Netbeans vs. Eclipse: Comparing Two Java
IDEs", 2019. [Online]. Available:
https://www.upwork.com/hiring/development/netb
eans-vs-eclipse/.

[4] "GCC, the GNU Compiler Collection- GNU
Project - Free Software Foundation (FSF)",
gcc.gnu.org, 2019. [Online]. Available:
https://gcc.gnu.org/.

[5] "Cygwin", Cygwin.com, 2019. [Online].
Available: https://www.cygwin.com/.

[6] "OpenCV", Opencv.org, 2019. [Online].
Available: https://opencv.org/.

[7] "Intel® Intrinsics Guide", Software.intel.com,
2019. [Online]. Available:
https://software.intel.com/sites/landingpage/Intrins
icsGuide/#techs=SSE2.

[8] “Taxonomía de Flynn”, Parallel Arquitectures
class material, Department of Systems and
Automation Engineering, University of Vigo, Spain.

[9] “Ley de Amdahl”, Parallel Arquitectures class
material, Department of Systems and Automation
Engineering, University of Vigo, Spain.

[10] A. González, M. García, M. Díaz-Cacho,
“Desarrollo de un efecto de mosaico para docencia
en la materia de Arquitecturas Paralelas”, paper
for ‘Jornadas de Automática 2018’.

[11] https:///github.com/cesargmr2107/EstabilizacionD
eVideo/

© 2019 by the
authors. Submitted
for possible open

access publication under the terms and
conditions of the Creative Commons Attribution
CC BY-NC-SA 4.0 license
(https://creativecommons.org/licenses/by-
nc sa/4.0/deed.es).

XL Jornadas de Automática Visión por Computador

https://doi.org/10.17979/spudc.9788497497169.836 841

https://secretaria.uvigo.gal/docnet-nuevo/guia_docent/index.php?centre=106&ensenyament=O06G150V01&assignatura=O06G150V01401
https://secretaria.uvigo.gal/docnet-nuevo/guia_docent/index.php?centre=106&ensenyament=O06G150V01&assignatura=O06G150V01401
https://secretaria.uvigo.gal/docnet-nuevo/guia_docent/index.php?centre=106&ensenyament=O06G150V01&assignatura=O06G150V01401
https://www.online-sciences.com/programming/c-programming-language-features-advantages-and-disadvantages/
https://www.online-sciences.com/programming/c-programming-language-features-advantages-and-disadvantages/
https://www.online-sciences.com/programming/c-programming-language-features-advantages-and-disadvantages/
https://www.upwork.com/hiring/development/netbeans-vs-eclipse/
https://www.upwork.com/hiring/development/netbeans-vs-eclipse/
https://gcc.gnu.org/
https://www.cygwin.com/
https://opencv.org/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=SSE2
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=SSE2

