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Abstract: Making natural language processing technologies available for low-resource languages
is an important goal to improve the access to technology in their communities of speakers. In this
paper, we provide the first annotated corpora for polarity classification for Uzbek language.
Our methodology considers collecting a medium-size manually annotated dataset and a larger-size
dataset automatically translated from existing resources. Then, we use these datasets to train
sentiment analysis models on the Uzbek language, using both traditional machine learning techniques
and recent deep learning models.
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1. Introduction

The advancement of technologies in the field of Natural Language Processing (NLP) over
the past few years has led to achieve very high accuracy results, allowing the creation of useful
applications that play an important role in many areas now. In particular, the adoption of deep
learning models has boosted accuracy figures across a wide range of NLP tasks. As a part of this
trend, sentiment classification, a prominent example of the applications of NLP, has seen substantial
gains in performance by using deep learning approaches compared to its predecessor approaches [1].
However, low-resource languages still lack access to those performance improvements due to the
requirements of significant amounts of annotated training data to work well. The language we focus
on in this paper is Uzbek, which is spoken by more than 33 million native speakers in Uzbekistan as
well as neighbouring countries. Uzbek is a Turkic language that is the first official and only declared
national language of Uzbekistan. Uzbek is a null-subject, highly agglutinative language [2].
The main contribution of this paper is the annotated dataset for sentiment analysis in Uzbek language,
obtained from Google Play Store reviews and a larger dataset by automatically translating an existing
English dataset. Furthermore, we define the baselines for sentiment analyses in Uzbek by considering
both traditional machine learning methods as well as recent deep learning techniques fed with
fastText pre-trained word embeddings [3]. Although all the tested models are relatively accurate and
differences between models are small, the neural network models tested do not manage to substantially
outperform traditional models.

2. Experiments & Results

For data collection, the list of top 100 applications from Google Play App Store used in Uzbekistan
have been selected, retrieving their review texts and related star rating using Google Play Store API.
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Collected text has been cleaned (Removing names, brands, tags, links and emojis) and the reviews
in Cyrillic alphabet have been converted to Latin. For the annotation process, the main task was
binary classification: to label the them as positive or negative, so two authors manually labeled the
reviews. A third score was obtained from the star rating of the review itself: positive if a certain review
has more than 3 stars, otherwise negative (Majority of 3-starred reviews had negative sentiment).
Finally, the review was given a polarity according to the majority label. This process resulted into
2500 reviews annotated as positive and 1800 as negative, 4300 in total.

In order to further extend the resources to support sentiment analysis, another larger dataset
was obtained through machine translation. An available English dataset of positive and negative
reviews of Android apps, containing 10,000 reviews of each class, was automatically translated using
MTRANSLATE, an unofficial Google Translate API from English to Uzbek. We manually went through
the translation results quickly and examined a random subset of the reviews, large enough to make
a reasonable decision on overall accuracy. Although the translation was not clear enough to use for
daily purposes, the meaning of the sentences was preserved, and in particular, the sentiment polarity
was kept (except for very few exceptional cases). As a result, we have obtained almost 20,000 translated
reviews, balances between polarity classes. Both obtained datasets have been split into a training and
a test set with a 90:10 ratio, for the experiments.

To introduce the baseline models for Uzbek sentiment analysis, we chose various classifiers
from different families, including different methods of Logistic Regression (LR), Support Vector
Machines (SVM), and recent Deep Learning methods, such as Recurrent Neural Networks (RNN) and
Convolutional Neural Networks (CNN). The standard parameters as well as the performance metric
were chosen for all methods [4]. We implemented LR and SVM models by means of the Scikit-Learn [5]
machine learning library in Python with default configuration parameters. In the case of Deep Learning
models, we used Keras [6] on top of TensorFlow [7].

Table 1 shows the classification accuracy obtained in three different configurations: a first one
working on the manually annotated dataset (ManualTT), a second one on the translated dataset
(TransTT) and a third one in which training was performed on translated dataset while testing was
performed on the manually annotated dataset.

Table 1. Accuracy results with different training and test sets. ManualTT—Manually annotated
Training and Test sets. TransTT—Translated Training and Test sets. TTMT—Translated dataset for
Training, Annotated dataset for Test set.

Methods Used ManualTT TransTT TTMT

Support-vector Machines based on linear kernel model 0.8002 0.8588 0.7756
Logistic Regression model based on word ngrams 0.8547 0.8810 0.7720
Recurrent + Convolutional neural network 0.8653 0.8864 0.7850
Recurrent Neural Network with fastText pre-trained word embeddings 0.8782 0.8832 0.7996
Logistic Regression model based on word and character ngram 0.8846 0.8956 0.8145
Recurrent Neural Network without pre-trained embeddings 0.8868 0.8832 0.8052
Logistic Regression model based on character ngrams 0.8868 0.8945 0.8021
Convolutional Neural Network (Multichannel) 0.8888 0.8832 0.8120

We achieved our best accuracy (89.56%) on the translated dataset using a logistic regression model
using word and character n-grams. The modern deep learning approaches have shown very similar
results, without substantially outperforming classic ones in accuracy as they tend to do when used for
resource-rich languages.

Although the results obtained have been good in general terms, those obtained for deep learning
models have not clearly surpassed the results obtained by traditional classifiers. This is mainly due to
the highly agglutinative aspect of Uzbek language, which it harder to rely on word embeddings.
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