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Abstract 

Bayesian techniques, as an alternative method of statistical analysis in rehabilitation studies, have some 

advantages such as handling small sample sizes, allowing incorporation of previous experience of the 

researchers or clinicians, being suitable for different kinds of studies, and managing highly complex models. 

These characteristics are important in rehabilitation research. In the present article, the Bayesian approach is 

displayed through three examples in previously analyzed data with traditional or frequentist methods. The 

studies used as examples have small sample sizes and show that the Bayesian procedures enhance the 

statistical information of the results. The Bayesian credibility interval includes the true value of the 

corresponding parameter diminishing uncertainty about the treatment effect. In addition, the Bayes factor 

value quantifies the evidence provided by the data in favor of the alternative hypothesis as opposed to the null 

hypothesis. Bayesian inference could be an interesting and adaptable alternative statistical method for 

physical medicine and rehabilitation applications. 
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Several conclusions from clinical studies in the rehabilitation field are derived from the 

interpretation of the outcomes from statistical analysis of the obtained data. Such studies are 

usually carried out through inferences about the parameters of the corresponding variables, mainly 

calculating confidence intervals or conducting hypothesis testing (difference of means test, 

analysis of variance, regression analysis, etc.). In most cases, results and conclusions are based on 

P values.
1
 However, common misconceptions about confidence intervals and P values exist.

2,3 
For 

these and other reasons, Bayesian statistics have been applied as a counterpart to frequentist or 

traditional approaches to statistical analyses.
4,5

 The Bayesian approach is based on a complete set 

of statistical methods to gain the benefit of the numerical results of an experiment, for example, by 

means of credibility intervals (CI) and the Bayes factor (BF), and it can provide considerable 

support to the statistical conclusions.
6,7

 Moreover, Bayesian analysis can increase the statistical 

power to acceptable levels,
8
 which is not always achieved in frequentist studies because of the 

difficulty of obtaining large samples.
9
 

 

The aims of this article are to provide an insight into the basics of Bayesian statistics and to 

encourage a pursuit of a deeper understanding of how they can be applied to physical medicine 

and rehabilitation research. This brief introduction is accompanied by examples of clinical data 

previously published in studies about musculoskeletal pain and a new therapeutic strategy for 

people with Parkinson disease. 

METHODS AND CONTENTS 

The Bayesian approach in the evaluation of experimental results has been proposed in the field 

of medicine
6,10

 and has become more common in many fields such as psychology
11,12

 and technical 

disciplines,
13,14

 whereas in other areas, such as nursing
15 

or physical therapy and rehabilitation,
16

 it 

is less common. For example, when key words such as “Bayes,” “Bayesian,” or similar are used in 

searches in the rehabilitation category of the Sciences Citation Index, very few articles are 

obtained. As far as we know, only the recent article of Nuzzo
13

 is directly related to Bayesian 

inference in the setting of the linear correlation coefficient estimation. 

 

Bayesian analysis works under the general assumption that the credibility of a theoretical 

model for describing experimental data can be combined from both objective and subjective 

information. Objective information is based only in the probability provided by the data 

(likelihood). The subjective knowledge or information (prior probability) comes from the 

clinician's own experience and competence, and it is quantified by a prior distribution (prior). 

Bayesian statistics combine both factors in the named posterior probability (posterior). 

 

For example, to test the effect of the same therapy on a different target population to the one 

previously studied, the Bayesian method allows evidence generated from previous studies to be 

taken into account. In this way, inferences about parameters, models, or hypotheses can be updated 

as evidence accumulates, and the posterior probabilities can be used as prior probabilities in a new 

step of the experiment or clinical trial. However, if there is no previous experience to draw from, 

or if the researcher does not have (or does not wish to express) any initial information by means of 

a prior probability, Bayesian analysis can use the named uninformative prior probabilities (which 

consists of assigning the same probability for the possible results of the experiment). This case 

agrees with the frequentist statistical way of thinking,
17

 and the corresponding results can be a 

valuable complement to standard studies and decision-making processes. 
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Bayesian analysis is particularly useful in the rehabilitation field for two reasons. The first 

benefit relates to sample sizes.
18 

In this area, it is common to find small samples in studies 

conducted.
9 

However, in Bayesian analysis, no minimum sample size is required for calculations 

because they do not rely on asymptotic results.
12 

The second reason is that many usual 

assumptions, such as the normality of the variables, do not need be fulfilled. This is because the 

flexibility outlined previously is also transferred to data assumptions (equality of variances, 

symmetry).It is also worth mentioning that some limitations occasionally cited for not using 

Bayesian techniques concern the lack of specialized software and high computer requirements. 

However, the continuous development of open-source libraries (JASP,
19 

R
20

) has made it possible 

to estimate complex models in a Bayesian way, both in personal computers and with big data sets. 

APPLICATIONS IN REHABILITATION RESEARCH 

To introduce the Bayesian perspective in the data analysis of this field, a few studies have been 

considered. For example, a clinical trial featured in Rodríguez-Romero et al.
21 

describes a 

therapeutic exercise program developed by a group of 19 shellfish gatherers. The level of pain, 

trunk muscle endurance, and fear avoidance behavior (FABQ) were tested. After sixteen 80-min 

sessions, the prevalence of lower and upper back pain decreased significantly. A relevant increase 

in the muscular endurance (in seconds) was detected in trunk extensors (TEST_EXT)(67.1 ± 42 

vs. 96.1 ± 55.2, P = 0.005) besides a reduction in FABQ (53.9 ± 18.8) versus48.8 ± 19.7, P = 0.09, 

in a one-tailed Student's t test and 0.18 in the two-tailed test). 

 

To compare Bayesian analysis with traditional or frequentist inference analysis, the 

TEST_EXT variable is used as the first example. Inference processes on results of experiments 

usually begin by obtaining confidence intervals about the parameters of the variables (mean, 

prevalence…). For the mean difference between the muscular endurance (before and after the 

treatment), the frequentist confidence interval is (10.1–47.8). As it is known, the confidence 

interval is a range of values generated by a procedure that, on repeated sampling, has a fixed 

probability of containing the parameter. There is no way of knowing which values have more 

probability, and the interval calculated from a particular sample does not necessarily include the 

true value of the corresponding parameter.
22

 

 

An equivalent Bayesian concept is the CI.
16 

Instead of considering the unknown parameters as 

fixed quantities, the Bayesian approach considers them as random variables. In this way, 

researchers can express their confidence for certain values for a parameter (e.g., the mean pain 

level, the effect size), by considering it as a random variable with some (prior) distribution. This 

can be a totally objective (uninformative) distribution (as in the frequentist case) or may 

incorporate some clinician's prior beliefs based on his/her experience.
13,23

 

 

In our case (example 1), to obtain a Bayesian CI for the mean difference parameter, a totally 

objective prior distribution was considered. Thus, no preference for the value of this parameter 

(which would be possible if we had the results of any previous trial) was expressed (see the 

specific details in Rouder et al.
24

). 

 

The posterior distribution (represented by a histogram and a smoothed polygon of frequencies) 

is displayed in Figure 1, together with the 95% CI of 8.7 to 47.0, where the most probable value 

(the maximum of the function) is near 27. Computations and Figure 1 were done with the free 

software R.
20
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FIGURE 1. Muscular endurance test (example 1): Histogram and density estimation of the posterior distribution of the 

mean differences. The CI with probability 0.95 takes values from 8.7 to 47. This interval is a little bit larger than the 
confidence interval (10.1 to 47.8), but the distribution allows us to see which values have more probability (represented by 

higher values in the curve). Therefore, it is observed that extreme values have a much lower probability. These kinds of 

conclusions cannot be obtained with the classical confidence intervals. 

Figure 1 shows the shape of the distribution of the mean difference and those values that have a 

higher or lower probability. Here, the advantage of the Bayesian analysis is evident because, 

despite not incorporating any subjective information, results are more descriptive than in the 

traditional method. In Table 1, the numerical information of this example and the following ones 

can be consulted for simplifying the comparison. 

TABLE 1. Comparision between frequentist and Bayesian results in the considered examples 

Example Confidence Interval (“Frequentist”) P CI (Bayesian) BF 

     
1 (10.1 to 47.8) 0.005 (8.7 to 47.0) 9.95 

2 (−∞ to +0.07) 0.09 (−0.97 to −0.02) 0.95 

3  0.044−0.018  1.998−4.122 

 
Columns 2 and 3 correspond to confidence intervals and P values, and columns 4 and 5 correspond to Cis and BF 

HYPOTHESIS TESTING 

The following stage, in many statistical analyses, is concerned with hypothesis testing. A null 

hypothesis significance test consists of evaluating whether a treatment has some real effect 

(hypothesis H1), rather than supporting the null hypothesis H0 (i.e., the effect does not exist). A 

null hypothesis significance test has some limitations because, for example, it strongly depends on 

the sample size.
25

 Frequentist tests guide the researcher's decision through P values, which only 

tells us if the null hypothesis can be rejected or not (according to the data observed), and it ignores 

what can be expected if the alternative hypothesis were true. Moreover, the P value has a number 

of theoretical shortcomings producing a lot of misuses and misinterpretations.
2,11
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The direct alternative tool to the P value in a Bayesian statistical test is the named BF,
26,27

 

computed by  

Where P(Data/H1) expresses the probability of the experimental data conditioned to hypothesis 

H1, (the same for H0), that is, the probability of obtaining these data when the corresponding 

hypothesis is true. The BF10 quantifies the evidence provided by the data in favor of one model 

(H1) as opposed to the other (H0). For example, if BF10 = 5, the data are five times more likely 

under H1 than under H0.  

 

Again, Bayesian methods can make use of any initial clinician's experience, by stating prior 

distributions both for the null hypothesis and the alternative, and this information can be updated 

by the obtained data. On the other hand, if no initial information is known, it can be proven that a 

Bayesian test would provide at least the same statistical information as a null hypothesis 

significance test.
11

 Several Bayesian tests have been designed for evaluating classical comparisons 

(Student's t test, analysis of variance, etc.).
5
 Furthermore, some of them allow less restrictive 

conditions about the sample data than the typical procedures (the normality assumption is not 

necessary, and atypical data are allowed).
12

To illustrate these concepts, we use the variable 

muscular endurance test again and the variable FABQ. In the first case, significant differences 

were found before and after the treatment, by means of the classical Student's paired t test for 

checking mean differences (P = 0.005). For this case, a BF10 of 9.95 was obtained. This value is 

close to strong evidence in support of H1 (see the table of Kass and Raftery 
17

 with the 

classification of the values for the BF). Figure 2 shows a descriptive graph of the BF as a function 

of the sample size. This enables us to assess the robustness of this statistical factor providing 

valuable information for the design of future trials. 

 
 

 
FIGURE 2. Example 1: BF as a function of the sample size. Up to a sample size of 10, evidence is approximately 1, and 

next the BF is increasing from anecdotal to almost strong evidence for the alternative hypothesis, indicating that with larger 
sample sizes, the reliability of this hypothesis will become even stronger. 
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The same kind of analysis was developed for the variable FABQ (Example 2). Here, the results 

showed a reduction of the mean value (FABQ) before and after the treatment, but, in this case, the 

hypothesis test for the mean differences threw a P value of 0.09 in a one-tailed Student's t test 

(0.18 in the two-tailed test). Therefore, the statistical significance is not clear, and thus, it does not 

support the practical importance of the treatment. 

 

For a simple way of quantifying the real differences in practice, it is pertinent to perform a 

hypothesis test for the effect size. Formally, the null hypothesis is H0: [delta] = 0, (null effect) and 

the alternative asserts a true effect ([delta] < 0), where [delta] is the mean difference divided by the 

standard deviation. In this case, the BF is BF10 = 0.95 (not producing enough evidence in favor of 

the alternative). However, the 95% CI is (-0.971 to -0.026), which only has negative values, 

because fear avoidance behavior has decreased after the intervention. Therefore, it is expected that 

the effect size could be greater with a larger sample size. On the contrary, the one-sided 95% 

confidence interval for the effect size computed in the frequentist case is (-[infinity], +0.077), 

which is obviously highly inaccurate and contains positive values (Table 1). 

 

In example 3, we consider a different study in the rehabilitation field. This study examined the 

effects of motor imitation training using virtual reality in patients with Parkinson disease.
28

 

Movement features and changes in corticospinal excitability (measured by transcranial magnetic 

stimulation) were evaluated after the therapy in both an experimental (n = 8) and a control group 

(n = 7). A virtual reality-based imitation protocol was applied to a group of patients experiencing 

Parkinson disease. Patients performed a repetitive finger tapping task imitating the avatar during 4 

wks (experimental group), whereas in a control group, the same protocol was performed without 

imitation. The silent period (a pause in electromyographic activity) was measured before (pre-

value), immediately after finishing the 4 wks (post-value) training, and at 2 wks from the end 

(follow-up value). Silent period was elicited by a single transcranial magnetic stimulation pulse 

delivered on the motor cortex during muscle contraction. 

 

An analysis of variance of repeated measures was performed to evaluate the effects between 

groups after the intervention. A significant change in the experimental group toward a more 

physiological profile (increased silent period and amplitude of movement) was observed. For the 

silent period, the observed P value was 0.045, very close to the limit level for rejecting the null 

hypothesis. When a Bayesian analysis of variance was performed, a BF of 1.998 was obtained, 

which supports a model in favor of the treatments' efficacy. Moreover, in the post hoc test, a BF of 

4.122 was obtained in a test comparing the pre-value and the post-value (resulting in substantial 

evidence in favor of the treatment's efficacy, according to Kass and Raftery 
17

). Therefore, 

Bayesian analysis confirms the conclusions obtained with traditional methods in Robles-Garcia et 

al.
28

 

 

CONCLUSIONS 

This article shows some examples in the rehabilitation field, which demonstrate the advantages 

of the Bayesian approach to implement different statistical analysis such as inference, hypothesis 

testing, and a design of repeated measures. Example 1 shows that the Bayesian CI and the 

graphical display of the posterior distribution bring in profits for the statistical information of 

results. Example 2 demonstrates that accurate conclusions of a classical null hypothesis 

significance test by means of a P value closer to 0 can be complemented by a high BF. Moreover, 

the Bayesian CI validates the existence of a practical enhancement with the treatment, whereas the 

classic results could be ambiguous. Finally, example 3, developed in a different context, once 

again supports the results in a study with a small sample size. These cases exemplify specific 

situations in the rehabilitation and physical therapy discipline, but representative ones. In any case, 

more complex situations could also be treated by means of this methodology. Studies such as 
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meta-analyses,
29

 hierarchical,
30

 linear, and nonlinear models
10

 can be also analyzed under a 

Bayesian perspective, supporting the Bayesian methods in the rehabilitation field. 
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