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Abstract 

Background. We previously reported a microarray-based diagnostic system for heart transplant 

endomyocardial biopsies (EMBs), using either 3-archetype (3AA) or 4-archetype (4AA) unsupervised 

algorithms to estimate rejection. The present study aimed to examine the stability of machine-learning 

algorithms in new biopsies, compare 3AA vs. 4AA algorithms, assess supervised binary classifiers trained 

on histologic or molecular diagnoses, create a report combining many scores into an ensemble of 

estimates, and examine possible automated sign-outs.  

Methods. We studied 889 EMBs from 454 transplant recipients at eight centers: the initial cohort (N=331) 

and a new cohort (N=558). Published 3AA algorithms derived in cohort 331 were tested in cohort 558; the 

3AA and 4AA models were compared; and supervised binary classifiers were created.  

Results. Algorithms derived in cohort 331 performed similarly in new biopsies despite differences in case 

mix. In the combined cohort, the 4AA model, including a parenchymal injury score, retained correlations 

with histologic rejection and DSA similar to the 3AA model. Supervised molecular classifiers predicted 

molecular rejection (AUCs>0.87) better than histologic rejection (AUCs<0.78), even when trained on 

histology diagnoses. A report incorporating many AA and binary classifier scores interpreted by one 

expert showed highly significant agreement with histology (p<0.001), but with many discrepancies as 

expected from the known noise in histology. An automated random forest score closely predicted expert 

diagnoses, confirming potential for automated sign-outs. 

Conclusions. Molecular algorithms are stable in new populations and can be assembled into an 

ensemble that combines many supervised and unsupervised estimates of the molecular disease states. 

(ClinicalTrials.gov NCT02670408). 
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Introduction  

Molecular examination of endomyocardial biopsies (EMBs) presents an opportunity to reclassify 

disease states and improve the precision and accuracy of diagnoses. The current standard for diagnosing 

heart transplant rejection is histology, interpreted with limited reproducibility
1
 using the International 

Society for Heart and Lung Transplantation (ISHLT)
2-6

 guidelines for T cell-mediated rejection (TCMR) 

and antibody-mediated rejection (ABMR). Molecular diagnosis offers the possibility of improved 

quantitation, objectivity, and mechanistic insights. We first reported assessments using gene sets
7
 and 

later assessed EMBs using kidney-derived rejection-associated transcript (RAT) expression. The genes 

associated with ABMR in hearts were highly similar to those in kidney
8
. We reported a first-generation 

centralized microarray-based Molecular Microscope
®
 Diagnostic System (MMDx) for kidney

9
 and heart 

transplants
7;10-12

. For EMBs, rejection was assessed using an unsupervised archetypal analysis (AA) that 

initially assigned three archetype (3AA) scores: S1normal, S2TCMR, and S3ABMR
12

. We explored a 

modification of this approach by a four-archetype (4AA) model that added a parenchymal injury score 

(S4injury)
13

, taking advantage of the fact that molecular features of adaptive immunity (rejection) are shared 

by innate immunity (the inflammatory response to injury)
14-16

.  

In kidney transplant biopsies, we showed the value of supervised classifiers trained on histology 

diagnoses
17;18

 as well as unsupervised archetypal scores
9
. This raised the possibility of incorporating the 

multiple supervised and unsupervised machine learning estimates into one comprehensive report based 

on the principle that multiple estimates improve accuracy
19-21

. With this in mind, the present study had 

four aims: to test whether diagnostic algorithms derived in one biopsy set performed similarly in new 

biopsies despite variations in case mix; to study whether incorporation of injury estimates affected the 

estimates of rejection; to develop new supervised classifier equations trained on rejection diagnoses; and 

to integrate many estimates into an ensemble that reported the molecular and injury phenotype, 

potentially using an automated sign-out. Our strategy is outlined in Supplementary Figure 1.  
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Methods 

Population. This prospective study was approved by the ethics review board of each center 

(Supplementary Table 1) and is registered at ClinicalTrials.gov (NCT02670408). As previously 

described
12

, biopsies were collected prospectively for clinical indications or by protocol, processed for 

histology and HLA antibody testing as per local standard of care. Histology interpretation followed ISHLT 

guidelines
3;22

.  

 

Microarray analysis. As detailed elsewhere
12

, purified total RNA from EMBs including RNA available 

from 97 Edmonton samples used in a previous study
7
 was labeled with the 3' IVT Plus kit (Affymetrix, 

Santa Clara) and hybridized to PrimeView microarrays (Affymetrix) according to manufacturer protocols 

(www.affymetrix.com).  

 

Rejection-Associated Transcripts (RATs). As previously described, RATs were derived as union (after 

eliminating overlaps) of the top 200 probe sets associated with each of three kidney transplant biopsy 

histology comparisons: all rejection vs. everything else, ABMR vs. everything else, and TCMR vs. 

everything else
9;23

.  

 

Pathogenesis-based transcript sets (PBTs). PBTs were previously annotated to reflect biological 

mechanisms in rejection and injury, defined in human cell lines, mouse experimental models, and human 

transplant biopsies (detailed at https://www.ualberta.ca/medicine/institutes-centres-

groups/atagc/research/gene-lists) PBTs are expressed as their mean fold difference in biopsies 

compared to a control group. We focused on PBTs for injury-and-repair transcripts (IRRATs)
24;25

, 

quantitative constitutive macrophage transcripts (QCMATs)
26

, quantitative cytotoxic T cell transcripts 

(QCATs)
27

, T cell burden transcripts (TCBs)
28

, NK cell burden transcripts (NKBs)
28

, IFNG-inducible 

transcripts (GRITs)
29

, DSA-selective transcripts (DSASTs)
30

, and the endothelium-expressed subset of 

DSASTs (eDSASTs). 
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Archetypal analysis (AA). The methods for AA are published
31

, including model 1 for three archetypes 

(3AA)
12

 and model 2 for four archetypes (4AA)
13

. Both were based on RAT expression and assigned each 

EMB a set of scores representing no rejection (S1normal), TCMR (S2TCMR), and ABMR (S3ABMR). The 4AA 

model assigned an additional score for injury (S4Injury).  

 

Rejection diagnoses. To facilitate comparison between MMDx and histology, histologic and molecular 

scores were translated into diagnoses of ABMR, possible ABMR (pABMR), TCMR, possible TCMR 

(pTCMR), mixed ABMR plus TCMR, and no rejection
13

. Histologic ABMR 1H+ and 1I+ were pABMR; 

grades 2 and 3 were ABMR. Histologic TCMR 1R was pTCMR; grades 2R and 3R were TCMR. Using 

4AA scores, 0.3≤S3ABMR<0.5 constituted pABMR, S3ABMR≥0.5 constituted ABMR, 0.2≤S2TCMR<0.3 

constituted pTCMR, and S2TCMR≥0.3 constituted TCMR. S4Injury≥0.2 constituted possible injury. Cut-offs 

were derived arbitrarily from examination of the data. 

 

Binary rejection classifiers. The binary classifiers comparing a positive class to a negative class were 

derived to predict the probability of histologic or molecular diagnoses of ABMR, TCMR, or any rejection 

(using the above nomenclature). For features they used the top 20 transcripts (selected using Bayesian t-

tests of all possible transcripts) associated with the relevant diagnosis, either histologic or molecular, 

compared to all other biopsies. They were constructed using linear discriminant analysis using 10-fold 

cross-validation. The top transcripts and the classifiers were derived from scratch in each fold of cross-

validation, yielding test set predictions for all biopsies and preventing overfitting. 
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Results 

Biopsy population. Clinically indicated, protocol and follow-up EMBs from 454 patients were collected in 

two cohorts: cohort 331 (N=331) from the earlier study
12

 and a new cohort of 558 biopsies (Table 1 and 

Supplementary Table 2). Cardiomyopathy and coronary artery disease were the common primary 

diseases.  

Histology grades and molecular scores were translated to a common nomenclature
13

 (see 

Methods): TCMR, pTCMR, ABMR, and pABMR. Frequencies of the histologic classes in cohort 331 and 

558 are in Table 2 and Supplementary Table 3. As expected, in cohort 558 ABMR was less frequent than 

in cohort 331, (3% vs. 10%) particularly in the late biopsies, and no rejection was more frequent (44% vs. 

27%) than in cohort 331. Case mix differed between cohorts because cohort 331 was enriched in high 

risk heart transplants performed in Paris, whereas cohort 558 was intended to be more representative of 

the prevalent international heart transplant population.  

At their latest biopsy, 35% percent of patients in cohort 331 and 37% of patients in cohort 558 

were DSA positive (Table 2). 

 

Performance of machine learning algorithms in a new cohort. We studied whether the previously 

published 3AA model for classification of rejection in cohort 331
12

 would detect rejection in a new cohort 

558. Relationships between S1normal, S2TCMR, and S3ABMR scores and the corresponding histologic classes 

were similar in both cohorts: S1normal scores were highest in no rejection, S2TCMR scores were highest in 

TCMR increasing through no rejection and pTCMR, and S3ABMR scores were highest in ABMR increasing 

through no rejection and pABMR (Figure 1, Supplementary Table 4). Thus, unsupervised machine 

learning algorithms derived in one population performed as expected in new biopsies despite differences 

in case mix and participating centers. 

 

Does incorporating injury estimates affect the assessment of rejection? We compared relationships 

between histologic diagnoses and molecular scores in the 3AA and 4AA models (Figure 2, 

Supplementary Table 5). Because the 4AA model was developed in the combined population
13

, we re-

derived the 3AA model in the 889 population to permit comparison of the 3AA and 4AA scores.  
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Relationships between histologic diagnoses and S1normal, S2TCMR, and S3ABMR scores (Figure 2 A-

D) were similar in both models: highest S2TCMR scores in TCMR and mixed, highest S3ABMR scores in 

ABMR, and a gradient in scores from normal to definite TCMR and ABMR. Adding the S4Injury score 

separated no rejection biopsies into injured and normal. The S4Injury scores were elevated in histologic 

TCMR and mixed compared to no rejection (Figure 2 E-F), more so than in ABMR. Moving from a 3AA to 

a 4AA model preserved the relationship of the molecular scores to histologic rejection. 

Histologic classes were studied in RAT-based principal component analysis (PCA) 

(Supplementary Table 6). TCMR and ABMR had higher PC1 scores than no rejection. ABMR had high 

PC2 scores and TCMR had low PC2 scores. There were no significant differences among rejection 

classes in median PC3 scores, as expected since PC3 reflects abnormalities unrelated to rejection, 

collectively termed injury 
13

. However, among rejection classes the highest PC3 was in TCMR/mixed 

biopsies, reflecting parenchymal injury due to TCMR. This presumably reflects the fact that TCMR is an 

interstitial inflammatory process adjacent to the parenchyma whereas ABMR is primarily an intercapillary 

process and usually has little effect on the parenchyma until late.  

 The fold differences in 3AA and 4AA scores between DSA positive and DSA negative patients 

were calculated. S3ABMR scores were higher and S1normal scores were lower in biopsies from DSA positive 

patients (Supplementary Table 7). 

  

Developing binary molecular rejection classifiers. Supervised binary molecular classifiers comparing 

a positive histology class to a negative class have proven useful in kidney transplant biopsies
17;18

. To see 

if this approach would be useful for heart biopsies, we developed binary molecular classifiers trained 

using either histologic or molecular EMB diagnoses (see Methods).  

Table 3 shows the areas under the receiver-operating characteristic curves (AUCs) for predicting 

histologic or molecular diagnoses of rejection with the new binary molecular classifiers, compared to the 

4AA S1normal, S2TCMR, and S3ABMR scores. The AUCs for the 4AA scores’ ability to predict histology 

diagnoses of any rejection, ABMR, or TCMR were 0.72, 0.69, and 0.67, similar to our previous report 

using cohort 331
12

. 
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The molecular classifiers trained on molecular diagnoses also had low AUCs for predicting 

histology diagnoses (0.69, 0.75, and 0.70) and high AUCs for predicting molecular diagnoses (0.98, 0.98, 

and 1.00). Their AUCs for predicting molecular diagnoses made according to AA score cut-offs are 

expected because this is what these classifiers were trained to predict using many of the same features 

(transcripts) that defined the training labels. Of interest, the molecular classifiers trained on histology had 

low scores for histology diagnoses (0.73, 0.77, and 0.74) but higher scores for molecular diagnoses (0.88, 

0.89, and 0.92), albeit not as high as classifiers trained on molecular diagnoses.  

Thus, whether unsupervised, trained on molecular diagnoses, or trained on histologic diagnoses, 

molecular estimates of rejection gave relatively low scores for predicting histology diagnoses, compatible 

with the limitations imposed by the inter-observer disagreement within histology diagnoses 
1
. 

 

Developing a molecular report using an ensemble of algorithms. Because diagnoses are more 

reliable when they include multiple independent estimates, we prepared a new report incorporating 3AA 

(model 1) scores, 4AA (model 2) scores, binary classifiers trained on molecular diagnosis labels from 

model 1 or model 2, and PCA scores (Figure 3). The report visualizes the new biopsy (based on its RAT 

expression) projected into PCA of the 889 biopsy reference set. Page 2 lists scores for some relevant 

PBTs and single genes.  

One expert (PFH) assigned molecular diagnoses to all 889 biopsies taking into account model 1 

and model 2 scores, the binary classifier scores, and PBT scores available on the MMDx-Heart report. 

Table 4 compares agreement of 885 available histologic diagnoses with the corresponding molecular 

expert diagnoses, broken down by reason for biopsy, with statistical analyses in Supplementary Table 8. 

The overall relationship between MMDx and histology was significant (Chi-square test on 7x7 matrix for 

all biopsies is p=1x10
-49

). Most histologic pTCMR cases (61%) were molecular no rejection, and only 10% 

were molecular TCMR-related (pTCMR 4%, TCMR 5%, or mixed 1%), indicating that histology grade 1R 

seldom reflects true TCMR. Conversely, 49% of histologic pABMR cases were signed out as molecular 

ABMR-related (pABMR 14%, ABMR 32%, or mixed 3%), indicating that pABMR is often ABMR-related. 

Treating pTCMR as no rejection and pABMR as ABMR-related, MMDx and pathology were 4.1 times 

more likely to agree than disagree on a diagnosis of rejection vs. no rejection (Fisher’s exact p=9x10
-21

), 
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5.4 times more likely to agree on ABMR vs. no ABMR (p=1x10
-22

), and 8.1 times more likely to agree on 

TCMR vs. no TCMR (p=1x10
-11

) (Supplementary Table 8). The MMDx-histology relationships were 

preserved when all available protocol and indication/follow-up biopsies were analyzed separately (Table 

4) despite the lower frequency of rejection in protocol biopsies. The relationship of MMDx to histology was 

also similar across post-transplant intervals: first year; Year 2-5 and beyond 5 years (Supplementary 

Table 9). 

We also examined the frequencies of rejection in indication/follow-up vs protocol biopsies when 

one biopsy per patient was selected randomly. Using one random biopsy per patient from 162 patients 

biopsied for cause or follow-up, the estimated frequencies were molecular ABMR 20% (5% by histology), 

TCMR 11% (12% by histology), and no rejection 52% (35% by histology). This is similar to our cohort of 

kidney transplant indication biopsies where the frequencies of molecular ABMR and TCMR were 

approximately 20-29% and 7-9% respectively
9;32

. In 306 patients who underwent protocol EMBs, the 

frequencies were molecular ABMR 9% (5% by histology), TCMR 4% (8% by histology), and no rejection 

68% (40% by histology). 

Automated sign-out that predicts expert sign-out. Because it would be useful to make automated 

sign-outs, we used all archetype, classifier, and PBT scores available on the report in random forest 

analyses that ranked the ability of each score to predict the expert’s molecular diagnoses by 

bootstrapping thousands of decision trees (Figure 4). The random forest models predicted the expert’s 

diagnoses of ABMR 98% of the time and TCMR 99% of the time. Model 2 S3ABMR and the model 2 ABMR 

binary classifier score were most predictive of MMDx expert ABMR diagnoses. Model 2 S2TCMR, T cell 

burden transcripts (TCB) score, and the model 2 binary TCMR classifier score were most predictive of 

MMDx expert TCMR diagnoses. 

PBT scores on the report were not the main predictors of the MMDx expert’s sign-out in random 

forests when all scores on the report were used as inputs, but they add confidence to molecular 

diagnoses nonetheless. In random forest analyses using only PBTs as variables, DSASTs and NKBs 

were most important for predicting molecular ABMR, and TCBs and QCATs were most important for 

predicting TCMR (Supplementary Figure 2). The PBT random forests predicted the expert’s diagnoses of 

ABMR 95% of the time and TCMR 98% of the time. 
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Discussion 

Having found value in molecular EMB assessment (especially after incorporating injury 

estimates)
13

, the present study aimed to develop an ensemble of estimates into a biopsy report and 

examine automated sign-out. We established that machine-learning algorithms trained in one cohort 

perform similarly in future biopsies despite differences in case mix. We showed that model 2 incorporating 

injury demonstrated similar relationships to histologic rejection as model 1 and correlated with DSA 

status. We then developed supervised binary classifiers to complement the unsupervised model 1 and 2 

scores. We found that binary molecular classifiers trained on histology diagnoses predicted molecular 

diagnoses better than histology diagnoses. As expected, the classifiers trained on molecular diagnoses 

gave better predictions of molecular diagnoses than those trained on histology diagnoses. Indeed, no 

molecular score predicted histology diagnoses with an AUC>0.78, which is expected given the limits 

imposed by inter-observer disagreements in histology diagnoses reported in CARGO II
1
. We assembled a 

molecular report signed out by an expert, and found significant agreement with histology but also 

extensive discrepancies. An automated random forest estimate accurately predicted MMDx expert sign-

out of molecular rejection. We conclude that an ensemble of supervised and unsupervised molecular 

estimates of rejection can form a stable reporting system that avoids undue reliance on single methods, 

and that combining all scores into an ensemble using random forest assessment makes automated sign-

outs feasible for central reporting of EMBs. 

The results present a picture of the distribution of rejection phenotypes in the prevalent heart 

transplant population. In both indication and protocol biopsies, MMDx diagnosed ABMR and no rejection 

more frequently than histology. Histology diagnosed pTCMR much more frequently than MMDx, but these 

histology TCMR biopsies often bore little resemblance to TCMR in molecular terms. The molecular results 

suggest that histologic pTCMR (i.e. grade 1R) in heart transplant is seldom true TCMR, as pathologists 

and clinicians have long suspected. MMDx shows some positive TCMR and ABMR in biopsies where 

histology is negative, and vice versa. Such discrepancies are the subject of ongoing and detailed 

analyses in the extension of the INTERHEART study. 

While no diagnostic system is perfect, we consider molecular assessment a more accurate 

reflection of the true disease state than histology. Molecular assessment utilizes precise measurements 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

11 

 

of features expressed as continuous numbers, not semi-quantitative or binary scores like histology, and 

has high technical and biological reproducibility
33

. MMDx machine learning algorithms are purely data-

driven rather than derived through a consensus of opinions. Molecules outperform histology when 

predicting phenotypes with accurate gold standards e.g. survival
18;34

, and simulations show that molecular 

classifiers can outperform flawed gold standards over a wide range of sample labeling errors. Thus, 

classifiers trained on molecules associated with histology are probably more accurate than the histologic 

diagnosis because machine learning can overcome noise in histology. MMDx analysis has provided 

evidence for updating the Banff guidelines for kidney transplants with C4d-negative ABMR
15;16

. The 

biological relevance of the gene expression measured by microarrays can often be established
23

. 

The observation that binary molecular classifiers, whether trained on histology diagnoses or 

molecular diagnoses predict molecular diagnosis but could not predict histologic diagnoses with AUCs 

>0.78 probably reflects the limitations posed by the known noise in histology, including some 

misclassification caused by injury-induced inflammation masquerading as rejection
13

. This is lower than 

the agreement between MMDx and histology in kidney, as expected given that CARGO II reported lower 

agreement between pathologists assessing EMBs (Cohen’s kappa 0.28)
1
 than is usually seen with kidney 

transplant biopsies
17

, probably because EMBs are more challenging to assess histologically than kidney 

core biopsies. Nevertheless, all machine learning molecular estimates, including unsupervised archetype 

scores and supervised binary classifiers trained on histology or MMDx diagnoses, were significantly 

associated with histology diagnoses, confirming that there is substantial truth in histology.  

Caution is warranted in benchmarking the performance of a new molecular system against a 

standard with known problems such as histology. Seeking maximum agreement between molecular tests 

and a flawed conventional test would generate a molecular system that retains the errors of the 

conventional test. The MMDx phenotype is real and reproducible, and analysis of discrepancies with 

histology will improve understanding. We propose that the MMDx system and the histology system can 

develop reciprocally, each offering a platform to help develop the other. With this in mind, a detailed 

analysis of the MMDx-histology discrepancies is in progress, with the goal of eventually improving both 

systems. One limitation of this study is that the clinical implications need to be further explored, and will 

be addressed in the ongoing extension of the INTERHEART study. 
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Figure Legends 

 

Figure 1. Comparison of molecular scores between histologic classes in cohort 331 and cohort 

558 using the 3-archetype model scores derived by supervised archetype analysis in cohort 331. 

The plots on the left-hand side (A, C, E) compare relationships between histology classes and 3AA 

S1normal (A), S2TCMR (C), and S3ABMR scores (E) in cohort 331.The plots on the right-hand side (B, D, and 

F) compare these same relationships in cohort 558. The S1normal, S2TCMR, and S3ABMR scores in both 

cohorts were taken from 3AA models trained on cohort 331. Mixed rejection was included in the TCMR 

and ABMR histology groups; possible mixed rejection was included in the pTCMR and pABMR groups. 

Asterisks below the plot labels indicate the significance of the Mann-Whitney U test between the pairs: ns 

– not significant, * - p<0.05, ** - p<0.01, *** - p<0.001. 

 

Figure 2. Comparison of molecular scores between histologic classes using the 3-archetype (3AA) 

and 4-archetype (4AA) model scores derived from algorithms trained in cohort 889. Results are 

shown for cohort 889. Panels A and B compare TCMR histology classes with S2TCMR scores in 3AA (A) 

and 4AA (B). Panels C and D compare ABMR histology classes with S3ABMR scores in 3AA (C) and 4AA 

(D). 4AA S4Injury scores are compared with TCMR histology classes in panel E and with ABMR classes in 

panel F. Mixed rejection was included in the TCMR and ABMR histology groups; possible mixed rejection 

was included in the pTCMR and pABMR groups. Asterisks below the x-axis labels indicate the 

significance of the Mann-Whitney U test between the indicated pairs of histology groups: ns – not 

significant, * - p<0.05, ** - p<0.01, *** - p<0.001. 

 

Figure 3. Molecular Microscope
®
 Report for heart transplant biopsies (MMDx-Heart). The new 

biopsy (yellow triangle) is compared to the reference set of 889 endomyocardial biopsies and given a 

series of molecular scores and assigned a molecular interpretation. Patient information has been 

redacted. Archetype scores S1normal, S2TCMR, S3ABMR, and S4Injury from the 3-archetype model (3AA/Model 

1) and the 4-archetype model (4AA/Model 2) are given for the new biopsy, in addition to corresponding 

binary classifier scores predicting the probability of molecular non-rejection, TCMR, and ABMR, trained 
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on the molecular assessments. The report visualizes of the new biopsy projected into the rejection-

associated transcript-based principal component analysis of the 889 reference set biopsies. Biopsies in 

the reference set are colored according to their highest 4AA archetype scores: grey for S1normal; red for 

S2TCMR; blue for S3ABMR; and cyan for S4Injury. Page 2 of the report (right side of the figure) provides 

additional molecular data including pathogenesis-based transcript (PBT) set scores and transcript 

expression scores relating to all rejection, ABMR, TCMR, and injury. Score are represented as the log 

fold change in the new biopsy vs. normal biopsies (i.e. reference set biopsies with S1normal>0.7). For each 

score a normal limit is given, defined as the 95
th
 percentile score in the normal biopsies. Scores in the 

95
th
-99

th
 percentile are labeled “slightly abnormal” and scores in the 99

th
 percentile are labeled 

“abnormal.”  

 

Figure 4. Relative predictive value of molecular scores used as variables in random forest 

predictions of molecular diagnoses assigned by an expert. Random forest analyses used molecular 

scores available on the report and time of biopsy post-transplant as features. Random forests were built 

using 2000 trees. Error rates with 2000 trees were stable. Model 1 corresponds to the RAT-based 3-

archetype model trained in 889 hearts, and model 2 corresponds to the 4-archetype model. The 

classifiers refer to the binary classifiers trained on biopsy diagnoses assigned using model 1 or model 2 

based on score cut-offs of S3ABMR≥0.5 for ABMR and S2TCMR≥0.3 for TCMR. (A) Relative importance of 

variables in predicting expert-assigned molecular ABMR diagnoses. (B) Relative importance of variables 

in predicting expert-assigned molecular TCMR diagnoses.  

 

Supplementary Figure 1. Outline of the strategy in present study. 

 

Supplementary Figure 2. Relative predictive value of PBT scores used as variables in random 

forest predictions of molecular diagnoses assigned by an expert. Random forest analyses used PBT 

scores available on the report. Random forests were built using 2000 trees. Error rates with 2000 trees 

were stable. (A) Relative importance of variables in predicting expert-assigned ABMR diagnoses. (B) 

Relative importance of variables in predicting expert-assigned TCMR diagnoses. 
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Table 1. Characteristics of patients and biopsies 

Biopsy Characteristics Cohort 331 (331 Biopsies) Cohort 558 (558 Biopsies) 

Days to biopsy post-transplant (TxBx)   

Mean 984 750 

Median (range) 337 (8 – 10150) 197 (6 – 9745) 

Days to most recent follow-up after biopsy   

Mean 1522 358 

Median (range) 1282 (13 – 3854) 299 (1 – 3713) 

Indication for biopsy   

Clinical (% of known) 62 (19%) 92 (17%) 

Follow-up (% of known) 19 (6%) 89 (16%) 

Protocol biopsy (% of known) 238 (75%) 375 (67%) 

Not recorded (% of total) 12 (4%) 2 (<1%) 

Patient Characteristics* Cohort 331* (210 Patients) Cohort 558* (273 Patients) 

Mean patient age at first biopsy (range) 49 (2 – 78) 53 (16 – 76) 

Mean donor age (range) 40 (6 – 66) 41 (15 – 68) 

Patient sex   

Male (% of known) 147 (70%) 192 (73%) 

Female (% of known) 63 (30 %) 71 (27%) 

Not available (% of total) 0 10 (4%) 

Donor sex   

Male (% of known) 138 (68%) 155 (66%) 

Female (% of known) 65 (32%) 81 (34%) 

Not available (% of total) 7 (3%) 37 (14%) 

Patient had a previous failed heart transplant 5 (2%) 8 (3%) 

Transplant status   

Alive at last follow up (% of known) 173 (82%) 247 (90%) 

Deceased (% of known) 36 (18%) 22 (9%) 

Failed and retransplanted (% of known) 1 (<1%) 3 (1%) 

Not available (% of total) 0 1 (<1%) 

Primary disease†   

Dilated cardiomyopathy (% of known) 96 (46%) 134 (55%) 

Hypertrophic cardiomyopathy (% of known) 11 (5%) 21 (9%) 

Restrictive cardiomyopathy (% of known) 3 (1%) 5 (2%) 

Other cardiomyopathy (% of known) 21 (10%) 18 (7%) 

Congenital heart defect (% of known) 17 (8%) 14 (6%) 

Coronary artery disease (% of known) 50 (24%) 35 (14%) 

Other (% of known) 28 (13%) 18 (7%) 

Not recorded (% of total) 1 (<1%) 28 (10%) 

* Some patients were part of both cohorts because biopsies were taken from them during both legs of the INTERHEART study. The total number of 
unique patients between both cohorts is 454. 
† Some patients fell under multiple categories 

 
 
  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T 

23 

 

Table 2. Histology and DSA 

Histology diagnoses* 
(% of known diagnoses) 

Cohort 331
 

(331 biopsies) 
Cohort 558 

(558 biopsies) 

TCMR Related 
TCMR 36 (11%) 48 (9%) 

pTCMR 90 (27%) 183 (33%) 

ABMR Related 
ABMR 33 (10%) 18 (3%)§ 

pABMR 44 (13%) 19 (3%)§ 

Other 
ABMR/TCMR (Mixed) 5 (2%) 4 (1%) 

pABMR/pTCMR 34 (10%) 37 (7%) 

No Rejection 89 (27%) 245 (44%)§ 

Missing 0 (0%) 4 (1%) 

DSA Status 
Cohort 331

†
 

(210 patients) 
Cohort 558

†
 

(273 patients) 

DSA status at most recent biopsy
‡
   

Positive 69 (35%)  94 (37%) 

Negative 130 (65%)  161 (63%) 

Unknown 11 (5%)  18 (7%) 

* Biopsies in the 889 cohort were labeled as follows: 
 
pAMR0........................................................................................... No ABMR; 
pAMR1, pAMR1I+, pAMR1H+ ........................................................ Possible ABMR (pABMR); 
pAMR2, pAMR3 ............................................................................. ABMR; 
TCMR0R ........................................................................................ No TCMR; 
TCMR1R ........................................................................................ Possible TCMR (pTCMR); 
TCMR2R, TCMR3R ....................................................................... TCMR 
 
† Some patients were in both cohorts because biopsies were taken from them during both legs of the 
INTERHEART study. The total number of unique patients between both cohorts is 454. 
 
‡ The most recent DSA status at time of most recent biopsy was used, if known. DSA statuses dated more than 14 
days after the biopsy were not considered. If the most recent DSA status at time of biopsy was not known, but the 
patient was most recently PRA negative, the DSA status was presumed negative. 
 
§ p-value<0.001 by Chi-square test of rejection vs no rejection between cohort 331 and cohort 558 
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Table 3. Ability of binary molecular classifiers trained on histology or MMDx diagnoses to predict histologic or molecular 
diagnoses, compared to unsupervised 4AA S1

normal,
 S2

TCMR
, and S3

ABMR
 scores 

Algorithms Prediction tested 

Areas under the receiver-operator characteristic curve (AUCs) for 
classifiers predicting the diagnosis of: 

All Rejection*,† 
(ABMR, TCMR, 

Mixed) 

ABMR* 
(ABMR, Mixed) 

TCMR* 
(TCMR, Mixed) 

Control: unsupervised 4AA Scores  
S1normal, S2TCMR, and S3ABMR† 

Histologic diagnoses 0.72 0.69 0.67 

 

Supervised classifiers trained on: Prediction tested 
All Rejection*,†

 

(ABMR, TCMR, 
Mixed) 

ABMR* 
(ABMR, Mixed) 

TCMR* 
(TCMR, Mixed) 

Histologic diagnoses*,‡ 
Histologic diagnoses 0.73 0.77 0.74 

Molecular diagnoses 0.89 0.88 0.92 

Molecular diagnoses*,§ 
Histologic diagnoses 0.69 0.75 0.70 

Molecular diagnoses 0.98 0.98 1.00 

* All rejection = ABMR, TCMR, Mixed (ABMR/TCMR), ABMR/pTCMR, and pABMR/TCMR vs all other biopsies. ABMR = ABMR, Mixed, and ABMR/pTCMR vs all 
other biopsies. TCMR = TCMR, Mixed, and pABMR/TCMR vs all other biopsies. 
†
 Molecular scores derived from the RAT-based four-archetype model of rejection. For classification purposes, we used cut-offs of S2TCMR≥0.3 for TCMR, S3ABMR≥0.5 

for ABMR, and either cut-off for all rejections. 
‡ 
Genes used: top 20 transcripts associated with histologic diagnoses. TCMR included biopsies with histologic TCMR grades > 1R, ABMR included biopsies with 

histologic ABMR grades > 1, and either cut-off for all rejections. 
§
 Genes used: top 20 transcripts associated with molecular diagnoses based on the four-archetype model of rejection using cut-offs of S2TCMR≥0.3 for TCMR, 

S3ABMR≥0.5 for ABMR, and either cut-off for all rejections. 
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Table 4. Comparing expert-assigned MMDx diagnoses with histology diagnoses in 885/889 endomyocardial biopsies, 259 for cause/follow-up endomyocardial 
biopsies, and 612 protocol endomyocardial biopsies with available histology assessments 

885/889 endomyocardial biopsies with available histology assessments 

 Expert diagnoses (% of row)* 

Histology diagnoses† 
TCMR 
(N=51) 

pTCMR 
(N=33) 

ABMR 
(N=106) 

pABMR 
(N=120) 

ABMR/TCMR 
(Mixed) 
(N=11) 

pABMR/pTCMR 
(N=11) 

No Rejection 
(N=553) 

TCMR
 
(N=84) 18 (21%) 9 (11%) 8 (10%) 4 (5%) 1 (1%) 0 (0%) 44 (52%) 

pTCMR (N=273) 14 (5%) 10 (4%) 27 (10%) 47 (17%) 2 (1%) 6 (2%) 167 (61%) 

ABMR
 
(N=51) 0 (0%) 1 (2%) 23 (45%) 15 (29%) 0 (0%) 0 (0%) 12 (24%) 

pABMR (N=63) 5 (8%) 4 (6%) 20 (32%) 9 (14%) 2 (3%) 2 (3%) 21 (33%) 

ABMR/TCMR (Mixed) (N=9) 6 (67%) 0 (0%) 1 (11%) 1 (11%) 1 (11%) 0 (0%) 0 (0%) 

pABMR/pTCMR (N=71) 3 (4%) 1 (1%) 13 (18%) 21(30%) 2 (3%) 1 (1%) 30 (42%) 

No rejection (N=334) 5 (1%) 8 (2%) 14 (4%) 23 (7%) 3 (1%) 2 (1%) 279 (84%) 

259 for cause/follow-up endomyocardial biopsies with available histology assessments 

 Expert diagnoses (% of row)* 

Histology diagnoses 
TCMR 
(N=26) 

pTCMR 
(N=11) 

ABMR 
(N=51) 

pABMR 
(N=30) 

ABMR/TCMR 
(Mixed) 
(N=6) 

pABMR/pTCMR 
(N=5) 

No Rejection 
(N=130) 

TCMR
 
(N=26) 8 (31%) 2 (8%) 3 (12%) 1 (4%) 0 (0%) 0 (0%) 12 (46%) 

pTCMR (N=74) 7 (9%) 3 (4%) 12 (16%) 15 (20%) 0 (0%) 4 (5%) 33 (45%) 

ABMR
 
(N=16) 0 (0%) 1 (6%) 7 (44%) 4 (25%) 0 (0%) 0 (0%) 4 (25%) 

pABMR (N=27) 2 (7%) 3 (11%) 13 (48%) 1 (4%) 0 (0%) 1 (4%) 7 (26%) 

ABMR/TCMR (Mixed) (N=7) 4 (57%) 0 (0%) 1 (14%) 1 (14%) 1 (14%) 0 (0%) 0 (0%) 

pABMR/pTCMR (N=18) 2 (11%) 0 (0%) 7 (39%) 5 (28%) 2 (11%) 0 (0%) 2 (11%) 

No rejection (N=91) 3 (3%) 2 (2%) 8 (9%) 3 (3%) 3 (3%) 0 (0%) 72 (79%) 

612 protocol endomyocardial biopsies with available histology assessments 

 Expert diagnoses (% of row)* 

Histology diagnoses 
TCMR 
(N=25) 

pTCMR 
(N=22) 

ABMR 
(N=50) 

pABMR 
(N=88) 

ABMR/TCMR 
(Mixed) 
(N=5) 

pABMR/pTCMR 
(N=6) 

No Rejection 
(N=416) 

TCMR
 
(N=58) 10 (17%) 7 (12%) 5 (9%) 3 (5%) 1 (2%) 0 (0%) 32 (55%) 

pTCMR (N=198) 7 (4%) 7 (4%) 15 (8%) 31 (16%) 2 (1%) 2 (1%) 134 (68%) 

ABMR
 
(N=30) 0 (0%) 0 (0%) 11 (37%) 11 (37%) 0 (0%) 0 (0%) 8 (27%) 

pABMR (N=35) 3 (9%) 1 (3%) 7 (20%) 7 (20%) 2 (6%) 1 (3%) 14 (40%) 

ABMR/TCMR (Mixed) (N=2) 2 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

pABMR/pTCMR (N=53) 1 (2%) 1 (2%) 6 (11%) 16 (30%) 0 (0%) 1 (2%) 28 (53%) 

No rejection (N=236) 2 (1%) 6 (3%) 6 (3%) 20 (8%) 0 (0%) 2 (1%) 200 (85%) 

* Diagnoses assigned by expert following individual review of molecular assessments. Diagnoses were translated from the “pure molecular interpretation” text on the report based on the following 
phrases: 
 
“low probability of” ............................................................................................ possible rejection (pABMR and/or pTCMR); 
“possible” .......................................................................................................... possible rejection (pABMR and/or pTCMR); 
“cannot exclude” ............................................................................................... possible rejection (pABMR and/or pTCMR); 
“[ABMR/TCMR]-like changes” .......................................................................... possible rejection (pABMR and/or pTCMR); 
 “probable” ........................................................................................................ rejection (ABMR and/or TCMR); 
“mild/moderate/extensive/severe” .................................................................... rejection (ABMR and/or TCMR) 
 
† Chi-square test on 7x7 matrix is p=1.3x10

-49 
 

 


