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Abstract

We present a parallel algorithm for the QR fac-
torization with column pivoting of a sparse matriz
by means of Guwens rotations. Nonzero elements of
the matrix M to be decomposed are stored in a one-
dimensional doubly linked list data structure. We will
discuss a strategy to reduce fill-in in order to gain me-
mory savings and decrease the computation times. As
an application of QR factorization, we will describe
the least squares problem. This algorithm has been
destgned for a message passing multiprocessor and we
have evaluated it on the Cray T3D supercomputer using
the Harwell-Boeing sparse matrix collection.

1. Introduction

QR factorization is a direct method in matrix alge-
bra which involves the decomposition of a matrix M
of dimensions A x B (A > B) into the product of
an orthogonal matrix @ (Q7 = @Q~!) and an upper
triangular matrix R. QR factorization has many appli-
cations in numerical linear algebra to solve linear sys-
tems of equations, least squares problems, linear pro-
grams, eigenvalue problems, coordinate transforma-
tions, projections and optimization problems. It is ne-
cessary to solve these problems in many scientific fields,
such as fluid dynamics, molecular chemistry, aeronau-
tic simulation . ..

This factorization can be computed by several possi-
ble ways [6, Chapter 5]: using plane rotations (Givens
method), the Modified Gram-Schmidt procedure or
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Householder reflections. Since these sequential algo-
rithms have a high arithmetic complexity, the deve-
lopment of parallel algorithms is of considerable in-
terest. Several parallel orthogonal factorization algo-
rithms have been designed for various machines. We
cite just a few: [3] for the Intel iPSC/1, [5] for the
nCUBE 10, [9] for a network of transputers, [1] for the
nCUBE 2, [2] for the CM-200, all of them for dense
matrices; and [14] (CM-2), [13] (Fugitsu AP1000), [12]
(Cray T3D) for sparse matrices.

We have implemented the Givens method with co-
lumn pivoting for sparse matrices on the Cray T3D
MIMD distributed memory computer. Although a
sparse problem could be treated with a parallel pro-
gram for dense factorization, the storage and time cost
of ignoring sparsity would not benefit from parallel pro-
cessing.

This paper is organized as follows. In §2 we describe
the sequential and parallel Givens algorithm, as well as
a strategy to reduce fill-in. The least squares problem,
an application of QR factorization, is shown in §3 and
experimental results are discussed in §4.

2. QR through Givens rotations

We obtain matrices @ and R of dimensions A x A
and B x B, respectively, using Givens rotations. We
do not calculate matrix @) because this matrix is not
explicitly necessary in order to solve the least squares
problem, described in §3. Matrix M is overwritten by
matrix R (in-place algorithm). We present the sequen-
tial algorithm with column pivoting in order to consider
those cases in which the rank of matrix M is not maxi-
mum. The use of orthogonal transformations is nume-
rically stable and, in practice, the rank of the matrix
can be determined accurately when column permuta-
tions are performed during factorization.



rank = B;
for (7=0; ]<B ]++)

norm; = Zm (1)

for (ca=0; ca<B; cx++){
Obtain pz, cx < pxr < B, such that

norMpe = cxn<1]a§B norm;; (2)
if (normye <¢) { (3)
rank = cr;
cx =B ;
else {
swap (normey, coly, of M) and
(normyg, colyy of M); (4)

for (i=A-1; i>cx; i--)
Apply Givens rotation to subrows
-1 and i from col,, to colg_; (5)

for (j=ca+1; j<B; j++)

norm; = norm; — m2, ;; (6)

In (1) the squares of the euclidean norms of the
columns of matrix M are calculated and stored in vec-
tor norm. Then, a procedure of B iterations (if the
rank of M is maximum) is performed. Tt consists of the
following actions: the pivot column (pz) and the pivot
element (normy,) are selected (2). The pivot element
i1s the maximum of the norms of the columns whose
index is >cz. If pivot is close to 0 (¢ is the required
precision), the rank of the matrix is given by the value
cz and the factorization ends (3). Otherwise, a swap of
column cz with the pivot column of matrix M, as well
as a swap of their norms, are performed (4).

Givens rotations are applied in (5) to zero the sub-
diagonal elements of column cz. A Givens rotation
involving two rows «, 3 of matrix M consists of calcu-
lating the following product:

7 7 7
My co m;)zcx+1 m;)zB—l
0 Mgeg+1 -7 Mgp_1
1 (7)
gcos  —gsin o Mace Macr4l My B-1
gsin  gcos Mpew  MPootl mg B—1

Mo cx ; —Mpgex

where geos = ——ase—  gsin = —(—LE
VAL s T MZ cxtMp

Givens rotations are clearly orthogonal and it is
not necessary to perform inverse trigonometric func-
tions. Figure 1 shows the sequential QR factorization
by means of Givens rotations. It can be observed how
zeros are introduced in matrix M to achieve the upper
triangular matrix R. Finally, the norms of the updated
columns are calculated in (6).
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Figure 1. Sequential Givens rotations

Once the algorithm has ended, what we really get is
a M x II = x Rfactorization. II 1s a permutation
B x B made up by the product of rank elementary
permutations, Il = 7o X T X ... X Tpranr—1, each 7;, with
j=0,...,rank-1, being the identity matrix or a matrix
resulting from swapping two of its columns. This is
due to the pivoting carried out in (2).

2.1. Fill-in control

When working with sparse matrices an additional
problem arises, which is the fill-in. The factors that in-
fluence the fill-in of a sparse matrix are the following:
the dimensions and rank of the matrix, the sparsity
degree (number of null elements) and another factor
of great importance, but difficult to model, which is
the matrix pattern or the location of the nonzero ele-
ments. Thus, fill-in may vary significantly for two ma-
trices with the same dimensions, rank and sparsity de-
gree, depending on how nonzero elements are placed.
A high fill-in is an undesirable situation due to the in-
crease in the storage cost and computation time. It
would be of interest to implement a simple method
to reduce fill-in. The most common heuristic strategy
employed in LU factorization to maintain the sparsity
degree is the Markowitz criterion [7, Chapter 7]. More-
over, numerical stability must be ensured in the LU
factorization, by avoiding the selection of pivots with a
low absolute value. A row ordering strategy for Givens



I Matriz | Origin | Ax B | Elem(M) | % Elem(M) ||
JPWH991 Circuit physics modelling | 991 x 991 6027 0.61%
BCSSTK14 Structural engineering 1806 x 1806 32630 1.00%
SHERMANAH Oil reservoir modelling | 3312 x 3312 20793 0.19%

Table 1. Harwell-Boeing sparse matrices
) e=10 ex1
Matriz Elem(R) | %PElem(R) | Elem(R) | %Elem(R) AiReduc.
JPWH991 308149 62.69% 140610 28.61% 54.37%
BCSSTK14 | 1224979 75.07% 254841 15.62% 79.20%
SHERMANS | 481439 8.78% 377134 6.87% 21.67%

Table 2. Fill-in reduction

rotations based on pairing rows to minimize fill-in is
presented in [15].

We have implemented a method to reduce fill-in in
the QR factorization by taking advantage of column
pivoting. Instead of expression (2), we use a new cri-
terion to select the pivot column:

Obtain pz, cx < pr < B, such that

ZEr0pg _ norMpe
€ max zeroj + (1 6) max norm; (8)
cx<j<B cx<j<B

1S maximum

where zero; is the number of nonzero elements in sub-
column j (from row cz to row A-1), and ¢, 0 < e < 1,
is a prefixed parameter. The first term refers to fill-in
reduction, while the second one relates to numerical
stability. Obviously, for € = 0, the pivot column selec-
tion criterion is equivalent to the one described in (2).
The strategy is to choose a pivot column with many
zeroes in the subcolumn from row cz to A-7 in order
to perform fewer rotations. Although we try to reduce
fill-in as much as possible (e = 1), we shall always keep
a minimum degree of numerical stability in the algo-
rithm by discarding as pivot columns those with norm
close to zero.

With the aim of testing this strategy, we have chosen
three matrices from the Harwell-Boeing sparse matrix
collection [8]. A description of these matrices is pre-
sented in table 1, where A x B are the dimensions
of the matrix, Elem(M) is the number of nonzero ele-
ments of M and %FElem(M) is the percentage of these
elements. Table 2 shows fill-in in matrix R after the
factorization; Elem(R) and %FElem(R) are the number
and percentage of nonzero elements, for e = 0 and e &~ 1
in expression (8); %Reduc. is the percentage of reduc-
tion in the number of nonzero elements obtained with
e 1 (e =0.999). As we can see, fill-in has decreased

by 50% on the average for this set of sparse matrices,
which is a substantial reduction.

2.2. Parallel Givens Rotations

The parallel algorithm developed has been generali-
zed for any number of processing elements (PEs) and
any dimension of matrix M. We find parallel Givens
algorithms in [2] and [14].

Matrix M is distributed onto a mesh with m x n
PEs. FEach PE is identified by coordinates (idz,idy),
with 0 < idz < nand 0 < «dy < m. Nonzero elements of
M are mapped over PEs using a Block Column Scatter
(BCS) scheme [10], but these elements are stored in
doubly linked lists instead of vectors. This distribu-
tion provides data and load balancing. The algorithm
requires access both by rows and by columns; a data
structure such as a two-dimensional doubly linked list
(used in [11] for a LU factorization) would be suita-
ble. But this structure is costly to manage and a great
amount of memory is required. Therefore, we use one-
dimensional doubly linked lists; each one represents one
column of the matrix and each item of the list stores the
row index, the matrix element and two pointers. These
lists are arranged in growing order of the row index and
they provide efficient access by columns. Row access
is achieved using an auxiliary pointer vector with as
many components as columns in the matrix. We go
with this pointer vector through the linked lists corres-
ponding to the columns of the matrix from bottom to
top to get row access.

Let us consider the sequential algorithm to see how
it can be executed in parallel. First, each PE obtains
the local norms corresponding to the column segments
(local lists) it contains. By means of a reduction ins-
truction (sum by columns), the vector norm of each
column of PEs will contain the norms of the corres-
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Figure 2. Buffer for sending local lists

ponding global columns (1). Then, the local maximum
norm of each PE is obtained (this value is the same
for each column of PEs). The global maximum is ob-
tained by means of a reduction instruction which finds
the maximum norm by rows of PEs. As a result, the
pivot element, as well as pz (the index of the pivot
column (2)), will be contained in all the PEs. The pa-
rallelization of the strategy to reduce fill-in (8) requires
more communications than (2), but it is not very costly
from the computational point of view. In order to per-
form the pivoting described in (4), if columns ¢z and pz
are located in different PEs, we use a packed vector [7,
Chapter 2] that acts as a buffer for exchanging data.
As figure 2 shows, information of the lists is placed in
consecutive memory positions; the corresponding co-
lumn of M and the square of its norm are sent in a
single message.

If the rotations are parallelized according to the
sequential algorithm, neither the outer loop, which
goes through the columns of the matrix, nor the in-
ner loop (5), which annihilates each element of the
column, could be executed in parallel due to data de-
pendencies. Thus, the parallel algorithm would need
B(2A-B-1)/2 iterations. Nevertheless, a Givens rota-
tion can be applied to any two rows, not necessarily
consecutive; therefore, each row of PEs can, indepen-
dently and in parallel, apply the rotations to the M
rows which they store and, thus, reduce the execution
times. Figure 3a illustrates how this is done for a ma-
trix 16x 4 distributed on a mesh 4x 1. In this example,
the four PEs apply Givens rotations in parallel to the
first column of the matrix, but the first row of each PE
is not rotated. This is solved as shown in figure 3b.
The PE containing the row cz (in this example, row 0)
sends it to the southern PE (i), and then a Givens ro-
tation 1s applied to row cz and to the non-rotated row
of this PE in order to zero the corresponding element.
The new row cz is sent again to the southern PE (4ii)
and we proceed in the same way as in (i). Once all

the rows are rotated, row cz is updated (vii); the final
result is shown in 3c. We have chosen this approach
because it is easy to generalize for any dimension of the
mesh.
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Figure 3. Parallel Givens Rotations

Rows are rotated to zero the corresponding ele-
ments. Clearly, it is not necessary to rotate those rows
whose first element is zero. As our matrix is sparse and
null elements are not stored in the lists, we go through
the elements of list (column) ¢z and rotate the rows of
those elements; fill-in may appear at this stage.

3. The least squares problem

The least squares problem calculates a vector z of
length B that minimizes ||Mz — z||2, where zis a vector
of length A. If the rank of M is maximum (B), the



least squares problem has one unique solution (zrg).
Otherwise, 1t has an infinite number of solutions zso7y,
one of which has a minimum norm and which we will
also denote as #rs, xrs = #sor such that ||zsorl|2 is
mintmum. If A=B, the least squares problem is equiva-
lent to solving a linear equation system Mz = z, since
[|Mz — z||2 = 0.

This problem can be solved adapting the parallel
algorithm that carries out the Givens QR factorization
of matrix M. In particular, the least squares problem
is equivalent to solving the upper triangular system
RI"z = QT~. This approach is adequate due to the
good numerical stability of the QR factorization. If
rank(M) = B, this algorithm calculates the one unique
solution to the least squares problem. If rank(M) < B,
only one of the infinite solutions is obtained, the one
called basic solution, which has a maximum of rank
nonzero elements and that, in general, will not coincide
with the minimum norm solution zrg.

3.1. Calculation of Q7%

Product QT z is obtained at the same time that
QR factorization is performed (we assume vector z is
dense). First, vector z is stored in a vector called ¢z,
which is distributed in each column of PEs, so that
the global component [ of ¢tz is replicated in the row
of PEs with idy=I mod m. Then, Givens rotations
are applied to the corresponding elements of ¢iz at the
same time we apply the rotations to the rows of matrix
M. For instance, if rows « and 3 are being processed,
this product is calculated (it is similar to (7)):

qtz? . ( geos —gsin ) . ( qtzo ) 9)
qtzﬁ gsin  gcos qtzg

Once all the rotations of the factorization have
ended, vector ¢tz stores the product Q7 z from index
0 to the global index B-1. As we can see, matrix @ is
not necessary.

3.2. Back-substitution and permutation

The upper triangular system Rz = Q72 is solved
by means of a back-substitution. The corresponding
sequential algorithm is as follows:

for (i=rank-1;2>0;i--)

rank—1

;= (qtz; — Z Tij '73]')/7“2'2'; (10)

j=i+l

This loop has data dependencies, and thus it must
be maintained in parallel code without any possibility
of being distributed among the PEs. In addition, it is
necessary to access the elements of matrix R by rows
(matrix R is stored by columns). This is solved by
using an auxiliary pointer vector as we saw in §2.2.
Another option is to apply the column version of back-
substitution [6, Chapter 3]. Once the back-substitution
is carried out we get the solution vector z of length
B distributed in each row of PEs; so that the global
component J of vector z is replicated in the column of
PEs with ida=J mod n.

Due to the column pivoting carried out in the QR
factorization, II permutation must be applied to the
components of vector z, so that z 1s overwritten with
vector Ilxz. All the PEs contain a vector called permut
of length B. It is the only vector whose components
are not distributed among the PEs. This vector stores
the index of the column swapped in each iteration (pz)
and, by applying these swaps starting from the end,
elements of vector z are obtained in the correct order.

4. Experimental results and conclusions

The algorithm has been implemented on a Cray T3D
supercomputer [4] with a Cray Y-MP host and 320
DEC-Alpha processors connected by a tridimensional
torus topology, using C'language and P VM routines for
message passsing. The parallel code is SPMD (Simple
Program Multiple Data). We have used low latency
communication functions, such as pvm_fastsend and
pvm_fastrecv (non-standard PVM functions) for messa-
ges of length less than 256 bytes. We have also deve-
loped reduction instructions suitable for our algorithm
to reduce communications.

We have tested the performance of our parallel algo-
rithm using the Harwell-Boeing matrices described in
table 1. Table 3 shows the execution times (in seconds)
for 1,4, 16, 64 and 128 PEs without taking into account
our strategy to reduce fill-in (¢ = 0) and applying the
fill-in control approach (e & 1). These times include
the QR factorization as well as the resolution of the
least squares problem. The time required for data dis-
tribution and collection of results is not included be-
cause we assume that this program is a possible sub-
problem within a wider program.

Execution times are substantially reduced with
€~ 1 because fewer nonzero elements appear and,
therefore, computations savings are achieved. For
instance, execution times decrease for matrices
JPWHY91, BCSSTK14 and SHERMANS using 64 PEs
by 60%, 87% and 67%, respectively. These times de-

crease even further as the number of PEs increases,



. 1 4 16 64 128
Matrix e=0 | el e=0 | el e=0 | el e=0 |€%1 6:0|€%1
JPWH991 614.55 | 180.85 | 208.72 63.73 68.13 23.31 24.56 9.79 | 18.23 | 10.32
BCSSTK14 | 5724.35 | 326.60 | 1593.82 | 101.73 | 466.84 | 34.01 | 129.50 | 17.25 | 79.21 | 17.08
SHERMANDS | 5308.59 | 815.49 | 1370.68 | 292.32 | 389.38 | 107.50 | 139.07 | 45.24 | 93.17 | 40.21

Table 3. MGS: execution times (in seconds) fore=0and e~ 1

due to the fact that, when data are distributed among

on a Massively Parallel Computer.

Parallel Compu-

more PEs, the number of computations that each PE
carries out is lower, whereas the number of communi-
cations tends to increase. Since many communications
are required to update the non-rotated row of each PE
in each step of the algorithm (see figure 3b), even the
running time is higher using 128 PEs than with 64 PEs
for matrix JPWHY91.

1
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Figure 4. Efficiencies for e = 0
Figure 4 shows the efficiencies for ¢ = 0 attained

for each matrix. For example, the efficiencies for
JPWH991, BCSSTK14 and SHERMANS using 128
PEs are 0.26, 0.56 and 0.45, respectively. As we can
see, the algorithm scales rather well. It is clear that effi-
ciencies will be lower for € &~ 1 because the execution of
the algorithm with fill-in reduction has lower running
times and therefore the communication term is a re-
latively more significant fraction of the running time.
Nevertheless, better efficiencies could be achieved with
larger matrices.
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