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Gastrointestinal Spatiotemporal 
mRNA Expression of Ghrelin vs 
Growth Hormone Receptor and New 
Growth Yield Machine Learning 
Model Based on Perturbation 
Theory
Tao Ran1,2,*, Yong Liu1,3,*, Hengzhi Li1,2, Shaoxun Tang1, Zhixiong He1, Cristian R. Munteanu3, 
Humberto González-Díaz4,5, Zhiliang Tan1 & Chuanshe Zhou1

The management of ruminant growth yield has economic importance. The current work presents 
a study of the spatiotemporal dynamic expression of Ghrelin and GHR at mRNA levels throughout 
the gastrointestinal tract (GIT) of kid goats under housing and grazing systems. The experiments 
show that the feeding system and age affected the expression of either Ghrelin or GHR with different 
mechanisms. Furthermore, the experimental data are used to build new Machine Learning models 
based on the Perturbation Theory, which can predict the effects of perturbations of Ghrelin and GHR 
mRNA expression on the growth yield. The models consider eight longitudinal GIT segments (rumen, 
abomasum, duodenum, jejunum, ileum, cecum, colon and rectum), seven time points (0, 7, 14, 28, 42, 
56 and 70 d) and two feeding systems (Supplemental and Grazing feeding) as perturbations from the 
expected values of the growth yield. The best regression model was obtained using Random Forest, 
with the coefficient of determination R2 of 0.781 for the test subset. The current results indicate that 
the non-linear regression model can accurately predict the growth yield and the key nodes during 
gastrointestinal development, which is helpful to optimize the feeding management strategies in 
ruminant production system.

Ghrelin has been drawing researchers’ attention due to its multiple functions since it was discovered by Kojima  
et al. in the rat stomach extracts in 19991, and it has been widely studied in human and rodents since then2. 
Ghrelin, a 28-amino acid peptide, is post translationally octanoylated by the ghrelin-O-acyl transferase to bind 
and activate its cognate receptor, the growth hormone secretagogue receptor-1a (GHSR-1a)3. Ghrelin has been 
initially validated as an endogenous ligand for the GHSR-1a (also known as Ghrelin receptor), and it plays a role 
in regulating the growth hormone (GH) release1. GH regulates numerous cellular functions by direct binding to 
its receptors, growth hormone receptors (GHR), in various tissues4. In the case of the gastrointestinal tracts (GIT), 
it has been proven that GH has proliferative effects on the intestinal epithelium, and it influences enteroendocrine 
cell secretion, calcium absorption, and intestinal amino acid and ion transport5. However, a series of studies have 
provided compelling evidence to shift the focus to ghrelin as a regulator energy homeostasis6–8, accomplished by 
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affecting appetite9, food intake10, and body weight11,12. Over the past decades, Ghrelin has been viewed as a cen-
tral modulator of energy homeostasis, due to its ability of increasing GH secretion and stimulating food intake12. 
Nowadays, Ghrelin’s role in energy homeostasis is generally perceived as its most important function11,12.

Ghrelin has also been proven to be secreted in the stomach of domestic ruminant animals (cow and goat) 
shortly after the discovery of Ghrelin13. Until recently, Ghrelin has been purified and characterized from the 
stomach of Caprinae, a 27 amino acid peptide that lacks Gln14. Some studies have focused on possible roles 
Ghrelin played in ruminants13,15–20. The GHR has also been widely studied in ruminants, and it has been sug-
gested as a preferential target for genetic breeding because it is significantly associated with growth traits, such as 
milk yield, meat production and growth21–24. As stated in a previous study25, the Ghrelin pathway (which includes 
Ghrelin, GHSR-1a, and ghrelin-O-acyl transferase) is a potential target for the improvement of ruminants’ pro-
duction. This could be achieved through the modification of feeding behavior, body composition, immune and 
reproductive functions.

The growth of young goats is generally separated into three phases according to the rumen development 
process: pre-rumination (0–3 weeks), transition (3–8 weeks) and rumination phases (from 8 weeks ahead)26. 
Nowadays, two predominant feeding patterns (supplemental feeding and grazing) are widespread throughout 
the world in ruminant production: in intensive farming, supplemental feeding is a preferred method of providing 
nutrients with emphasis on offering young ruminants a solid starter concentrate at a relative early age; however, 
ruminant production is based primarily on grazed pastures with limited supplemental feeding in many under-
developed areas of the world27. Accordingly, young ruminants face a transition in feed supply from milk, during 
the pre-ruminant suckling phase, to supplemental feeding of starter concentrate in intensive farming or to poorly 
digestible grazing pastures in traditional farming during the transitional phase. Unfortunately, there is a lack of 
knowledge on Ghrelin and GHR mRNA expression under supplemental feeding and grazing conditions. Since 
the Ghrelin axis plays important roles in energy homeostasis, it is of interest to study the dynamic developmental 
changes of Ghrelin and GHR mRNA expression during different stages of development under Supplemental feed-
ing vs Grazing (S vs G) feeding systems.

Perturbation Theory (PT) is a mathematical method used to search for an approximate solution of a problem, 
by dividing a complex problem into smaller “solvable” and “perturbation” parts. In other words, PT deals with a 
specific problem by adding corrections or “perturbations” according to the variations of different experimental 
conditions (cj). In general, this theory is described as a function f(δ​i) for outputs of the predictive model that con-
structed using variables/features/properties (δ​i) in a system under a set of experimental conditions (cj)28. In our 
previous studies, Moving Average (MA) has been used to measure the deviations of the different input variables in 
PT models for molecular bio-systems29–31, as well as binary micelle nanoparticles32. Thus, MA makes a time series 
stationary using these deviations as differences. The combination of PT and MA/Box-Jenkins Operators was 
found to be useful in making predictive models for growth yield, Y(ζ​k). This model is based on the expression of 
Ghrelin and GHR under S vs G feeding systems. There are three objectives of the current study: (1) to investigate 
the tissue distribution and sequential dynamic developmental changes of Ghrelin and GHR mRNA expression 
during different stages of development; (2) to determine the effect of S vs G feeding systems on the mRNA expres-
sion of Ghrelin and GHR; (3) to build a new machine learning model of Y(ζ​k) based on the expression of Ghrelin 
and GHR under S vs G feeding systems.

Results and Discussion
Spatiotemporal mRNA expression of Ghrelin and GHR.  During all the three stages of development, 
Ghrelin was expressed throughout the GIT of kid goats, with a greater expression of Ghrelin (P <​ 0.01) observed 
in the abomasum than those in the other remaining segments (Table 1). This was in accordance with a previous 
study in sheep18. The predominant expression of Ghrelin mRNA in the abomasum was consistent with the find-
ings observed in humans and rats. As the abomasum of ruminants is functionally like the stomach of non-ru-
minants, the predominant expression of Ghrelin mRNA in the abomasum of ruminants was also consistent with 
the greater expression of Ghrelin in the stomach of non-ruminants (humans and rodents)1,33,34. This implied 
that similar organs evolved according to similar working mechanisms. The Ghrelin was moderately expressed 
in the duodenum and jejunum. This was consistent with the results of Ghrelin expression in the small intestine 
of humans and rats34,35. Meanwhile, the expression of Ghrelin in the abomasum was increased (P <​ 0.001) with 
age (from pre-rumination phase to rumination phase); however, the mRNA expression of Ghrelin in the other 
segments was almost unchanged (P >​ 0.05) with age (Table 1). A more intuitional predicted presentation of spati-
otemporal mRNA expression of Ghrelin throughout the GIT of kid goats is shown in Fig. 1A. A similar sequential, 
dynamic, and developmental change of Ghrelin was also observed in sheep by Huang et al.18, in whose study the 
Ghrelin mRNA levels were gradually increased in the abomasum in accordance with growth curve during early 
developmental periods.

Like Ghrelin, GHR was expressed throughout the GIT of kid goats during three developmental stages (Table 2), 
and a more intuitional predicted presentation of spatiotemporal mRNA expression of GHR is shown in Fig. 1B. 
These results are in agreement with previous studies carried out in the GIT of humans and rats36,37. The wide-
spread expression of GHR in the GIT suggested the regulatory roles of GH on digestive and immune functions, 
including metabolism, growth, or differentiation5,38. During pre-rumination phase, the expression of GHR in 
the abomasum, duodenum and jejunum was greater (P <​ 0.01) than those in the other GIT segments; similarly, 
GHR tissue distribution pattern was observed during transition and rumination phases, with relatively greater 
expression in the abomasum, followed by the duodenum, colon and rectum. Furthermore, the expression of GHR 
in major segments of GIT (except for the colon and rectum) was reduced (P <​ 0.05) with age (Table 2). In porcine 
gastric tissue, the gastric GHR mRNA expression was found to be significantly correlated with the relative gastric 
weight (r =​ 0.541)39.
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Effects of feeding systems on mRNA expression of Ghrelin and GHR.  During time interval d 
28–70, the mRNA expression of Ghrelin in the abomasum, duodenum and jejunum was affected (P <​ 0.01) by 
both feeding system and age, with relatively greater expression in the G group than those in the S group (Table 1). 
The expression of GHR at mRNA level was affected by the feeding system (P ≤​ 0.001) in all segments of the GIT 
and by age (P <​ 0.05) in major segments of GIT (except for the jejunum and rectum), with greater expression in 

Item System

Age (d) Development stage (age), day

SEM1 SEM2 SEM3

P value1 P value for Age2

P 
value30 7 14 28 42 56 70

pre-
rumination 

(d 0–14)
Transition 
(d 28–42)

rumination 
(d 56–70) System Age

System× 
Age L Q

Rumen
S

0.004 0.003 0.002
0.002 0.004 0.000 0.002

0.003a 0.003a 0.002a 0.001 0.001 0.0004 0.1402 0.1178 0.8144 0.6250 0.5293 0.690
G 0.002 0.004 0.003 0.004

Abomasum
S

1.80 31.15 49.92
61.64 252.26 438.34 567.67

27.62Ab 176.76Ab 549.96Bb 48.901 46.67 73.207 0.0107 <​0.0001 0.5194 <​.0001 0.0002 <​0.001
G 85.12 308.01 564.58 629.26

Duodenum
S

1.00 1.11 1.33
2.22 0.74 1.46 0.99

1.15a 2.04a 1.33a 0.286
0.293

0.202 0.0002 0.0006 <​0.0001
0.7773 0.0094

0.168
G 2.20 2.98 1.30 1.57 0.258 0.0045 <​0.0001

Jejunum
S

0.13 0.21 0.36
0.31 0.16 0.17 0.18

0.23a 0.31a 0.23a 0.064 0.073 0.029 0.0006 0.0141 0.5978 0.6901 0.0009 0.493
G 0.43 0.34 0.33 0.24

Ileum
S

0.03 0.02 0.001
0.00 0.01 0.01 0.02

0.02a 0.01a 0.01a 0.003
0.005

0.003 0.3724 0.0004 0.0048
0.1017 <​0.0001

0.386
G 0.01 0.01 0.01 0.01 0.005 0.0012 0.0005

Cecum
S

0.01 0.03 0.05
0.02 0.01 0.01 0.01

0.03a 0.02a 0.02a 0.011 0.014 0.004 0.2033 0.2826 0.3089 0.0592 0.1091 0.341
G 0.03 0.01 0.03 0.01

Colon
S

0.02 0.04 0.03
0.05 0.05 0.05 0.05

0.03a 0.05a 0.05a 0.012 0.012 0.003 0.5923 0.4484 0.4493 0.0066 0.5921 0.121
G 0.05 0.04 0.04 0.06

Rectum
S 0.02 0.01 0.02 0.03 0.06 0.04 0.02

0.02a 0.05a 0.09a 0.022
0.011

0.014 0.0002 0.0161 0.0017
0.0734 0.0048

0.138
G 0.05 0.04 0.15 0.14 0.025 <​0.0001 0.0953

SEM4 2.389 12.439 32.948

P value4 0.012 <​0.001 <​0.001

Table 1.   The effect of Supplemental vs Grazing feeding system on the mRNA expression of Ghrelin and 
tissue distribution and dynamic developmental changes of Ghrelin mRNA expression during different 
stages of development. SEM1 represents standard error of mean for System ×​ Age (from 28 to 70 d of age) on 
Ghrelin expression; P value1 represents P value for both treatment groups from 28 to 70 d of age on Ghrelin 
expression; SEM2 and P value for age2 represent SEM and P value for age from 0 to 70 d; SEM3 and P value3 
represent SEM and P value for relative Ghrelin expression values at different development stages; SEM 4 and  
P value4 represent SEM and P value for different tissues at each developing stage. A,BMeans in the same row not 
bearing a common superscript letter differ (P <​ 0.05); a–cMeans in the same column not bearing a common 
superscript letter differ (P <​ 0.05); S, supplemental feeding; G, grazing; L =​ Linear effect of age, Q =​ Quadratic 
effect of age.

Figure 1.  The predicted spatiotemporal mRNA expression of Ghrelin (A) and GHR (B) throughout the 
gastrointestinal tract (GIT) of kid goats.
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the S group than in the G group in all GIT segments (Table 2). This suggested that the expression of Ghrelin and 
GHR was reversely affected by feeding type and age. Sugino et al.15 reported that the expression of Ghrelin can be 
modified by the feeding regimen in sheep; the Ghrelin secretion levels before prandium are higher in animals fed 
twice daily than those in animals fed four times daily40. Since Ghrelin usually acts as a starvation signal, it was 
reasonable that reduced Ghrelin mRNA expression was observed in the S group supplemented with concentrates 
in the current study. It has long been accepted that the GHR abundance is submitted to a developmental and 
nutritional regulation in a tissue-specific manner4. However, few works studied the GHR expression in the GIT 
under different nutritional status. The present results implied that supplemental feeding could increase the GHR 
mRNA expression in the GIT. However, there were no feeding system ×​ age interactions (P >​ 0.05) in the GIT 
segments on either Ghrelin or GHR expression, except for Ghrelin expression in the duodenum (P <​ 0.01) and 
GHR expression in the rumen (P <​ 0.001) and jejunum (P <​ 0.05). This further implied that feeding system and 
age affected the expression of either Ghrelin or GHR with different mechanisms. Furthermore, from time points 
d 0 to 70, the expression of Ghrelin in the abomasum was quadratically increased. The same increase pattern in 
Ghrelin expression was also observed in the duodenum (both S and G groups) and jejunum. The expression of 
GHR in the rumen and duodenum was affected by age, with a linear decrease for both S and G groups (P <​ 0.01), 
as well as a quadratic decrease for the G group (P <​ 0.01). In the abomasum, jejunum, ileum and cecum, the 
expression of GHR at mRNA level was affected by age linearly (P <​ 0.01); the quadratic decrease was observed in 
the jejunum, ileum, cecum and colon (P <​ 0.05).

Model construction
Dataset.  The present study first uses reported data of the Ghrelin and GHR gene mRNA expression through-
out the GIT of kid goats, and our previous work data27 of Live weight vs Carcass weight (Lw vs Cw) that were 
employed as a dataset for Y(ζ​k) model construction. Different experimental conditions such as the longitudinal 
GIT segments (s), the postnatal time (t), and the feeding method (m) were defined as deviations or perturbations 
of the Y(ζ​k) model (where ζ​ =​ s, t, and m). Each perturbation had several levels (k), expressed as k′​, k″​ and k″′​,  
respectively. In detail, sk′​ represents 8 different segments of the GIT (k′​ =​ 1, 2, 3, 4, 5, 6, 7 and 8; 1 =​ rumen, 
2 =​ abomasum, 3 =​ duodenum, 4 =​ jejunum, 5 =​ ileum, 6 =​ cecum, 7 =​ colon and 8 =​ rectum). tk″ represents 7 
different sampling time points ranging from d 0 to 70 postnatal (k″​ =​ 1, 2, 3, 4, 5, 6 and 7, and represents d 0, 7, 
14, 28, 42, 56 and 70 postnatal). mk″′ means 2 different feeding systems (k″​′​ =​ 1 and 2, and refers to Supplemental 

Item System

Age (d) Development stage (age), day

SEM1 SEM2 SEM3

P value1 P value for Age2

P 
value30 7 14 28 42 56 70

pre-
rumination 

(d 0–14)
Transition 
(d 28–42)

rumination 
(d 56–70) System Age

System× 
Age L Q

Rumen 
S

0.26 0.31 0.46
0.37 0.15 0.03 0.11

0.34Ba 0.15Aa 0.06Aa 0.058
0.057

0.048 <​0.0001 0.0014 0.0008
<​0.0001 0.0886

0.030
G 0.03 0.03 0.03 0.05 0.017 <​0.0001 <​0.0001

Abomasum
S

0.85 1.08 1.16
1.12 0.64 0.47 0.46

1.03Bb 0.67ABb 0.38Ac 0.157 0.184 0.101 0.0002 0.0004 0.1193 <​0.0001 0.2788 0.014
G 0.52 0.41 0.33 0.24

Duodenum
S

1.00 0.75 1.02
0.97 0.47 0.49 0.45

0.92Bb 0.47ABab 0.31Abc
0.106 0.152

0.106 <​0.0001 0.0002 0.0366
0.0004 0.7664

0.039
G 0.28 0.15 0.17 0.11 0.131 <​0.0001 0.0093

Jejunum
S

1.21 0.73 0.77
0.22 0.36 0.31 0.27

0.90Bb 0.21Aa 0.23Aab 0.053 0.086 0.106 <​0.0001 0.0703 0.2069 <​0.0001 <​0.0001 0.001
G 0.11 0.13 0.16 0.16

Ileum
S

0.89 0.55 0.25
0.15 0.15 0.27 0.12

0.56Bab 0.13Aa 0.15Aab 0.047 0.055 0.075 0.0010 0.0285 0.1185 <​0.0001 <​0.0001 0.017
G 0.10 0.10 0.11 0.09

Cecum
S

0.43 0.17 0.33
0.19 0.11 0.10 0.12

0.31Ba 0.11Aa 0.09Aa 0.028 0.046 0.037 <​0.0001 0.0214 0.2815 <​0.0001 0.0005 0.011
G 0.08 0.05 0.06 0.07

Colon
S

0.49 0.33 0.44
0.80 0.52 0.41 0.33

0.42a 0.52ab 0.30bc 0.121 0.139 0.049 0.0005 0.0016 0.1871 0.1233 0.0423 0.169
G 0.38 0.36 0.29 0.16

Rectum
S

0.39 0.45 0.31
0.40 0.57 0.34 0.33

0.38a 0.37ab 0.29bc 0.082 0.103 0.032 0.0007 0.3017 0.0959 0.1571 0.8832 0.483
G 0.29 0.20 0.22 0.26

SEM4 0.065 0.048 0.025

P value4 <​0.001 0.004 0.001

Table 2.   The effect of Supplemental vs Grazing feeding system on the mRNA expression of growth 
hormone receptor (GHR) and tissue distribution and dynamic developmental changes of GHR mRNA 
expression during different stages of development SEM 1 represents SEM for System ×​ Age (from 28 to 70 d  
of age) on GHR expression; P value1 represents P value for both treatment groups from 28 to 70 d of age on GHR 
expression; SEM2 and P value for age2 represent SEM and P value for age from 0 to 70 d; SEM3 and P value3 
represent SEM and P value for relative GHR expression values at different development stages; SEM4 and  
P value4 represent SEM and P value for different tissues at each developing stage. A,BMeans in the same row not 
bearing a common superscript letter differ (P <​ 0.05); a–cMeans in the same column not bearing a common 
superscript letter differ (P <​ 0.05); S, supplemental feeding; G, grazing; L =​ Linear effect of age, Q =​ Quadratic 
effect of age.
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feeding and Grazing). A total of samples Ns =​ 352 collected from 44 (Na =​ 44, Na =​ number of experimental ani-
mals) kid goats were studied for the mRNA expression of Ghrelin and GHR. The detailed full dataset was provided 
in online supplementary material SM0141. In order to carry out a perturbation theory analysis, a pair-wise anal-
ysis of query samples vs reference samples was done by using a previous dataset of Ns to construct a two-block 
dataset (see SM0141), with the number of perturbation cases Nc =​ 123 872 pairs of query and reference samples 
selected randomly from the 352 samples. The details about PT models could be found in our previous works28,42.

Regression models.  The schematic diagram of the present work aimed at developing a new Expected 
Measurement Moving Average–Machine Learning (EMMA-ML) model to predict growth yield Y(ζ​k) is presented 
in Fig. 2. Box-Jenkins Operators and PT were used to handle the deviations or perturbations in the current study. 
In addition, Moving Average (MA) was also used to account for the “small” deviations of different growth stages, 
the spatiotemporal factors on the Ghrelin and GHR mRNA expression.

Several types of predictive model were presented in the study for growth ratio–yield Y(ζ​k) based on the pertur-
bation or variations of different experimental conditions (ζ​k =​ sk′, tk″, mk″′). In the first step, Y(ζ​k)exp was defined 
as the expected Y(ζ​k) values under a set of given experimental conditions (ζ​k =​ sk′, tk″, mk″′). Then, MA was used 
to define the “small” deviations under the different conditions (ζ​k). Finally, a general formula of EMMA models 
for predicted growth yield Y(ζ​k)pred. Eq. 1 showed the linear model constructed by setting the mRNA expression 
of Ghrelin and GHR as variables input.

∑ ∑ζ = + ⋅ ζ + ⋅ ζ + ⋅ ∆ ζ
= =

Y( ) e a Y( ) a V ( ) b V ( )
(1)

k pred 0 0 k exp
g 1

2

g g k
g 1

2

g g k

Y(ζ​k)pred represents the predicted value of Y(ζ​k). The coefficients for each input variables in this general equation 
are e0, a0, ag and bg. The subscript “g” refers to two input variables: the mRNA expression of Ghrelin (g =​ 1) and 
GHR (g =​ 2). The expected value of Y(ζ​k), Y(ζ​k)exp, is the first class of input variables. Vg(ζ​k) represents the mRNA 
expression of Ghrelin or GHR, the second class of input variables. Δ​Vg(ζ​k) are the perturbation values and the 
third class of input variables. In Eq. 2, the general equation was expanded according to a set of experimental 
conditions (ζ​k).

∑

∑ ∑

∑

ζ = + ⋅ ζ + ⋅ ζ

+ ⋅ ∆ + ⋅ ∆

+ ⋅ ∆

′′

′′′

=

= =

=

′

Y( ) e a Y( ) a V ( )

b V (s ) c V (t )

d V (m )
(2)

k pred 0 0 k exp
g 1

2

g g k

g 1

2

g g k
g 1

2

g g k

g 1

2

g g k

e0, a0, ag, bg, cg and dg are the coefficients for the corresponding input variables and Y(ζ​k)exp represents the 
expected values of Y(ζ​k) in a set of reference experimental conditions. Vg(ζ​k) represents the input variables in a 
query (set of conditions) (ζ​k =​ sk′, mk″, or tk″′, respectively). Another class of input variables, Δ​Vg(sk′), Δ​Vg(tk″) 
and Δ​Vg(mk″′), refers the perturbation values in a set of experimental conditions sk″, tk″ and mk″′ for each Vg(ζ​k).  
<​Vg(ζ​k)>​ is the MA/Box-Jenkins Operator for variable Vg(ζ​k) (Eq. 3), which can be calculated with all the per-
turbation cases under the same experimental conditions28,43.

Figure 2.  Flow chart of experimental and theoretical sections for Y(ζk) predictive models. 
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∆ ζ = ζ − 〈 ζ 〉V ( ) V ( ) V ( ) (3)g k g k g k

Thus, Y(ζ​k)exp, Vg(ζ​k) and Δ​Vg(ζ​k) were employed as input variables to develop a new Machine Learning predic-
tive model using Statistica 6.044 and RRegrs package45,46.

Mapping Ghrelin/GHR vs Yield.  The first tested method was the General Multilinear Regression (GRM) 
from STATISTICA. The model predicted the effects of spatiotemporal perturbations of Ghrelin and GHR mRNA 
expression on Y(ζ​k) and it is presented in Eq. 4. For the sake of simplicity, the output/features have the compacted 
notations in the model analysis: Ypred =​ Y(ζ​k), Yexp =​ Y(ζ​k)exp, V1 =​ V1(ζ​k), dV2sk =​ Δ​V2(sk′), dV2tk =​ Δ​V2(tk″), 
and dV2mk =​ Δ​Vg(mk″′). This model was trained/validated with a total of Nc =​ 123 872 cases of perturbations 
(supplementary material SM0247). The full dataset of input variables and output values used to develop the new 
model were published in online supplementary material SM0348.

= . + . ⋅ + . ⋅

− . ⋅ − . ⋅
+ . ⋅

Y 0 1049 0 4347 Y 0 0042 V
0 0020 dV sk 0 0049 dV tk
0 0068 dV mk (4)

pred exp 1

2 2

2

The statistics of this model are N =​ 123872, R =​ 0.733, R2 =​ 0.537, SS Residual =​ 920.012, df =​ 5, F =​ 21520.084 
with P <​ 0.0001. The P-values for only the first two features (Yexp and V1) are less than 0.05. The rest of the fea-
tures are less important for the model (see details in SM0348). R represents the regression coefficient; R2 is the 
coefficient of determination; SS Residual is the residual sum of squares. The model obtained significant values 
(P <​ 0.05) with a low R value that could be considered as acceptable49.

There are five input variables of GRM model: the expected value of growth yield Yexp for a set of given condi-
tions, the levels of mRNA expression of Ghrelin gene V1 and three variables accounted for perturbations of GHR 
mRNA (dV2sk), deviations due to the changes of animal management (dV2mk), and postnatal time dV2tk. This 
model indicated that all the experimental conditions played different roles in Ypred. Additionally, all the expected 
values of mRNA expression of GHR gene <​V2(ζ​k)>​ (different segments, growth stages and feeding systems) 
influenced the growth yield. More specifically, the growth yield Ypred was increased with the increasing mRNA 
expression of expected values <​V2(sk′)>​ and <​V2(tk″)>​ for different GIT segments and age, but the growth yield 
was decreased with the expected values of <​V2(mk″′)>​ for different types of feeding management. Expected val-
ues <​V2(ζ​k)>​ of GHR mRNA expression corresponding to the growth yields are shown in Table 3. In addition, 
the mRNA expression of GHR in the abomasum and duodenum could positively increase the growth yield. This 
was in accordance with previous reports claiming that GH has proliferative effects on the intestinal epithelium, 
and influences enteroendocrine cell secretion, calcium absorption, and intestinal amino acid and ion transport5. 
The P-values of the features show that only Yexp and V1 are important for the linear model. Thus, the linear model 
shows that mRNA expression of Ghrelin is more important for the growth yield compared to the perturbations of 
GHR mRNA expression. Thus, it can be stated that the perturbations of GHR mRNA expression need non-linear 
modelling for the growth yield production.

In addition to the GLM method from STATISTICA, two types of neural networks were tested with the nor-
malized dataset (see Table 4): Linear Neural Network (LNN, no hidden layers) and Multilayer Perceptron (MLP, 
with at least one hidden layer). Both models presented R2

test values between 0.529 and 0.539. The models have 
the same problem as the GRM one; the perturbations improve a little the model performance: LNN −​ >​ MLP 
with 1 hidden layer −​ >​ MLP with 2 hidden layers (with the same number of inputs). The best MLP model was 
MLP 5:5-15-12-1:1: 5 inputs, 15 neurons in the hidden layer 1, 12 neurons in the hidden layer 2, R2

test =​ 0.539. As 
expected, LNN 5:5–1:1 is the linear combination of the input features and it showed similar results to GRM with 
R2 =​ 0.534 (see details in SM0348).

In order to test different complex regression methods, seven regression RRegrs methods45,46 were used to build 
prediction models: Multiple Linear regression (LM), Generalized Linear Model with Stepwise Feature Selection 
(GLM)50, Partial Least Squares Regression (PLS)51, Lasso regression (Lasso)52, Elastic Net regression (ENET)53, 
single hidden layer Neural Networks regression (NN)54, and Random Forest regression (RF)55. Table 5 shows 
RMSE and R2 values for the training and test subsets. LM, GLM PLS, Lasso and ENET provided models close 
to the GLM from STATISTICA: R2

test =​ 0.533–0.534 and RMSEtest =​ 0.0992–0.0994. Lasso is not able to provide 
a model that includes the system perturbations and it used only one feature, Yexp. ENET was based on only two 
features (Yexp and V1) with the same R2

test as LM/GLM.
The feature importance analysis for GLM (Fig. 3A) pointed out the natural importance of Yexp and the prefer-

ence of using Yexp and V1, obtaining similar results to those obtained with MLP in STATISTICA. Similar Yexp fea-
ture importance is presented by Lasso and ENET. NN with one hidden layer provided a very small improvement, 
but with the same power as MLP 5:5-15-12-1:1 with 2 hidden layers from STATISTICA. Figure 3B shows the NN 
feature importance. Several parameters were tested to find the optimal topology of NN (see Fig. 3C): number of 
neurons =​ [1,5,10,15,20,50], weight decay =​ [0.0, 0.1, 0.001]. The optimal NN model 5-15-1 with the minimum 
RMSEtest value has all 5 input features, 15 neurons hidden layer neurons, a weight decay of 0.001, a higher R2

test 
value of 0.540 and lower RMSEtest of 0.0986 (see SM0348).

The best regression performance was obtained with the RF regression method: R2
test of 0.629 and RMSEtest of 

0.0886 using five trees and all features. The variation of the RMSEtest with the number of features selected as inputs 
for the trees (RF parameter mtry) is presented in Fig. 3D. Thus, two features were used as input for each tree.

These statistics show the difficulty of the linear models to establish a relationship between the output and the 
features. The strong preference for Yexp is natural because it was calculated based on the observable output values. 
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Thus, the linear models have difficulty to include perturbation of V2 (GHR mRNA expression) in the model and 
only RF method was able to improve the regression model performance with R2

test >​ 0.60 (still low performance).

Table 3.   Expected values <V2(ζk)> of GHR mRNA expressions corresponding to growth yields. aLactation 
represents the suckling periods of the goats (0–20 d), Housing refers to the goat with housing feed management, 
Grazing refers to the goats with grazing feed management. bThe green color means the strong/positive effect 
on growth yields, whereas, red color represents the poor/negative effect on growth yields. *​The mark *​means 
the mRNA expression of GHR under this condition corresponds to the higher growth yields. L, lactation; S, 
supplemental feeding; G, grazing.

Model Error Mean
Error 
S.D.

Abs E. 
Mean

S.D. 
Ratio Rtest R2

test*
LNN 2:2–1:1 0.0005 0.0992 0.0617 0.6827 0.731 0.534

LNN 5:5–1:1 0.0005 0.0992 0.0617 0.6828 0.731 0.534

MLP 2:2-7-1:1 −​0.0290 0.0993 0.0634 0.6837 0.730 0.534

MLP 5:5-5-1:1 0.0084 0.0990 0.0636 0.6810 0.733 0.537

MLP 2:2-10-9-1:1 −​0.9935 0.0998 0.9935 0.6868 0.727 0.529

MLP 5:5-15-12-1:1 −​0.3918 0.0997 0.3918 0.6861 0.734 0.539

Table 4.   Best regression models using neural network regression from STATISTICA with the normalized 
dataset. Note: LNN =​ Linear Neural Network; MLP =​ Multilayer perceptron; Rtest =​ regression coefficient for 
test subset from STATISTICA; R2

test =​ coefficient of determination, calculated using Rtest.
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The results obtained with STATISTICA and RRegrs for the linear and non-linear regression models demon-
strated the relatively moderate prediction power of the models using the original dataset, with a maximum of 
0.629 for R2

test (RF): the model explains only 62.9% of the response data variability around its mean. For this 
reason, a pre-processing of the original datasets was used to improve the dataset quality by removing the outliers. 
Calculating the Pearson residuals for the fitted values, a filter was used for the cases with residuals which are twice 
(0.4) as high as the maximum residual of the majority of data (0.2). Therefore, only 2.3% of the cases were filtered, 
resulting in a new dataset of 121,056 cases. The raw and normalized corrected datasets were the inputs for the 
same linear and non-linear regression methods from STATISTICA and RRegrs tools.

In the first step, STATISTICA neural networks were tested for the normalized filtered dataset (see Table 6 and 
SM0348 for details). LNN and MLP (one and two hidden layers) predictors demonstrated improved regression 
performance. LNN 5:5-1:1 is the equivalent of a linear model using all five features and it provided improved R2

test 
of 0.774, only slightly superior to the non-filtered dataset (R2

test 0.534). MLP 2:2-11-1:1 with two features (Yexp, V1),  
2 neurons in the first hidden layer and 11 neurons in the second hidden layer presents R2

test of 0.704. This perfor-
mance is superior to the non-filtered dataset results such as MLP 5:5-15-12-1:1 with R2

test =​ 0.539, and RF with 
R2

test =​ 0.629.

RRegrs 
Method

No. of 
Features

Model 
Features RMSEtrain R2

train RMSEtest R2
test Rtest

LM 5 Pool 0.0995 0.537 0.0992 0.534 0.731

GLM 5 Pool 0.0995 0.537 0.0992 0.534 0.731

PLS 5 Pool 0.0996 0.536 0.0993 0.533 0.730

Lasso 1 Yexp 0.0998 0.537 0.0994 0.534 0.731

ENET 2 Yexp +​ V1 0.0995 0.537 0.0992 0.534 0.731

NN 5 Pool 0.099 0.541 0.0986 0.540 0.735

RF 5 Pool 0.0881 0.638 0.0886 0.629 0.793

Table 5.   Best regression models using RRegrs package with normalized dataset. Note: LM =​ Multiple 
Linear regression; GLM =​ Linear Model with Stepwise Feature Selection; PLS =​ Partial Least Squares 
Regression; Lasso =​ Lasso regression; ENET =​ Elastic Net regression; NN =​ Neural Networks regression; 
RF =​ Random Forest; Pool =​ all five features, RMSE =​ root-mean-square error; R2 =​ coefficient of 
determination; R =​ regression coefficient, calculated as sqrt(R2); train =​ training subset; test =​ test subset.

Figure 3.  Statistical analysis of GLM, NN and RF models for the normalized dataset: (A) GLM feature 
importance, (B) NN feature importance, (C) NN parameter analysis, and (D) RF parameter analysis.
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In the second step, the filtered dataset was processed with seven RRegrs methods: LM, GLM, PLS, Lasso, 
ENET, NN, and RF (Table 7). In addition, Fig. 4 presents the pairwise model comparisons of R2

test (A) and 
RMSEtest (B). The average performance value (dot) with two-sided confidence limits was computed using 
Student’s t-test with Bonferroni multiplicity correction. Even if the LM, GLM, PLS and ENET improve the model 
performance with over 0.04 of R2

test compared to the non-filtered dataset; the results are still moderate with the 
R2

test very close to 0.60. Lasso failed to select the system perturbation, in agreement with the previous results.
NN model makes a clear difference with R2

test of 0.702 and RMSEtest =​ 0.117. NN has the topology of 5-20-1 (5 
inputs, 20 neurons in one hidden layer, weight decay =​ 0.005). Figure 5A presents the NN parameter study using 
5, 10, 15, 20 and 50 hidden layer neurons and weight decays of 0.0, 0.0001, 0.001 and 0.005. This performance is 
similar to the one obtained with MLP from STATISTICA (R2

test =​ 0.704).
The best model to predict growth yield (Ypred) was provided by RF method based on all features and five 

trees, with R2
test of 0.781 and RMSEtest of 0.101. By decreasing the number of trees to one, R2

test is lower (0.749) 
and RMSEtest is higher (0.109). Thus, the increase of the RF model complexity from one to five trees is needed to 
improve the regression performance. If the number of trees is increased to 10, R2

test becomes higher, with a value 
of 0.783 and RMSEtest lower (0.100). The difference between our best RF model with five trees and the one with 
ten trees is not in agreement with the increase of the model complexity. Thus, no further numbers of trees were 
tested with RF. The model can be downloaded from Figshare (SM0456).

Thus, the prediction regression model is constructed using mRNA expression in different parts of the GIT 
(spatial variation) and at different time-points (time variation). These are the spatiotemporal variations of the 
mRNA expression. The model input variables are MA values that are calculated as differences of the original 
values and the averages of the variables in eight different segments of the GIT, seven different sampling time 
points and two different feeding systems. The best final model could be used to predict the growth yield using new 
Ghrelin and Growth mRNA expressions measured under the model experimental conditions: one of the eight 
segments of the GIT, one of the seven sampling time points and one of the two feeding systems. The model input 
features as MA values will be calculated using the model averages of Ghrelin and Growth mRNA expressions from 
the training dataset. Introducing these MA values in the RF model, the growth yield can be predicted.

In conclusion, the current study investigated the tissue distribution and sequential dynamic developmental 
changes of Ghrelin and GHR mRNA expression. The factors of spatiotemporal development of GIT were taken 
into account, along with Supplemental feeding vs Grazing feeding systems, and new Machine Learning models 
were developed in order to predict the growth yield depending on the mRNA expression of Ghrelin and GHR 
after perturbations/variations of different conditions. Using linear and non-linear Machine Learning methods, 
it was found that the Random Forest method provided the best regression prediction model with R2

test >​ 0.78. In 
addition, this model also revealed that the mRNA expression of GHR could positively reflect the rate of growth 
yield, and it is crucial during the processes of growth and development in ruminants.

Model Error Mean Error S.D.
Abs E. 
Mean S.D. Ratio Rtest R2

test*
LNN 2:2-1:1 −​0.001159 0.136078 0.105028 0.632973 0.774 0.599

LNN 5:5-1:1 −​0.001160 0.136079 0.105029 0.632978 0.774 0.599

MLP 2:2-11-1:1 0.026576 0.117859 0.096420 0.548228 0.839 0.704

MLP 5:5-6-1:1 −​0.307728 0.117102 0.307728 0.544707 0.839 0.703

MLP 2:2-5-6-1:1 −​0.035073 0.117304 0.087202 0.545646 0.838 0.702

MLP 3:3-10-6-1:1 −​0.004027 0.124694 0.094062 0.580020 0.815 0.664

Table 6.   The best regression models using STATISTICA with filtered normalized dataset. Note: 
LNN =​ Linear Neural Network; MLP =​ Multilayer perceptron; Rtest =​ regression coefficient for test subset from 
STATISTICA; R2

test =​ coefficient of determination, calculated using Rtest.

RRegrs 
Method

No. of 
Features

Model 
Features RMSEtrain R2

train RMSEtest R2
test Rtest

LM 5 Pool 0.136 0.598 0.136 0.599 0.774

GLM 5 Pool 0.136 0.598 0.136 0.599 0.774

PLS 5 Pool 0.136 0.596 0.136 0.598 0.773

Lasso 1 Yexp 0.136 0.598 0.137 0.599 0.774

ENET 2 Yexp +​ V1 0.136 0.598 0.136 0.599 0.774

NN 5 Pool 0.118 0.698 0.117 0.702 0.838

RF 5 Pool 0.102 0.775 0.101 0.781 0.884

Table 7.   RRegrs models using filtered normalized dataset. Note: LM =​ Multiple Linear regression; 
GLM =​ Linear Model with Stepwise Feature Selection; PLS =​ Partial Least Squares Regression; Lasso =​ Lasso 
regression; ENET =​ Elastic Net regression; NN =​ Neural Networks regression; RF =​ Random Forest; Pool =​ all 
five features, RMSE =​ root-mean-square error; R2 =​ coefficient of determination; R =​ regression coefficient, 
calculated as sqrt(R2); train =​ training subset; test =​ test subset.
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Materials and Methods
Experimental Animal and Management.  All procedures for animal experimentation were carried out 
in accordance with the guidelines approved by the Animal Care Committee (Approval Number: 20130108), 
Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China. The principles of lab-
oratory animal care were met and slaughter procedures were conducted according to the guidelines of Chinese 
national standards of cattle and goat slaughtering by reducing the animal suffering as much as possible. All exper-
imental protocols were also approved by Institute of Subtropical Agriculture, the Chinese Academy of Sciences, 
Changsha, China.

A number of 44 newly born male and female kids (weighing an average of 1.35 ±​ 0.12 kg) were used as exper-
imental animals to investigate the effect of age and feeding system (Supplemental vs Grazing, S vs G) on the 

Figure 4.  RRegrs pairwise model comparisons of R2
test and RMSEtest. The average performance value (dot) 

with two-sided confidence limits as computed by Student’s t-test with Bonferroni multiplicity correction.
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expression of Ghrelin and GHR in the GIT of kid goats. After birth, the kids were separated from the dams and 
trained to suckle milk from nipple pails. Detailed feeding management, ingredients of concentrate starter and for-
age (mainly Miscanthus) have been described in our previous parallel study27. All goats had free access to water.

Sample Collection.  Mucosa samples of different GIT longitudinal segments (i.e., rumen, abomasum, duo-
denum, jejunum, ileum, colon, cecum, and rectum) were collected immediately after slaughter. The collected 
samples were wrapped with sterilized tinfoil and snap-frozen in liquid nitrogen and stored at −​80 °C until RNA 
isolation.

RNA Isolation and cDNA Preparation.  Total RNA was extracted from collected mucosa samples using 
TRIZOL (Invitrogen, California, USA) according to the manufacturer’s instructions. After genomic DNA was 
eliminated by digestion with DNase I (Thermo Scientific, Waltham, USA), the RNA quality and quantity were 
determined. Afterwards, 1 μ​g of the extracted RNA was reverse-transcribed to synthesize tissue specific cDNA 
using PrimeScript™​ RT reagent Kit (Takara, Dalian, China) immediately. Briefly, a 20 μ​L reverse transcrip-
tion mixture that contained 1 μ​g of total RNA, 2 μ​L 5 ×​ gDNA Eraser Buffer, 4 μ​L 5 ×​ PrimeScript Buffer, 1 μL 
PrimeScript RT Enzyme Mix, 1 μ​L RT Primer Mix and 10 μ​L RNase Free dH2O was prepared. This reaction 
mixture was incubated for 2 min at 42 °C, followed by a reverse transcription step for 15 min at 37 °C, and a final 
heating step at 85 °C for 5 s to stop the reaction. The prepared cDNA samples were stored at −​20 °C until subse-
quent quantitative real-time PCR analysis.

Primer Design.  Primers for quantitative real-time PCR analysis were designed according to Ghrelin 
(Accession No.: AB089200) and GHR (Accession No.: NM_001285648) gene sequences of Capra hircus reported 
online. β​-Actin (Accession No.: NM_001009784.1) was used as a housekeeping gene in quantitative real-time 
PCR analysis. All primers were synthesized by Sangon Biotech (Sangon Biotech, Shanghai, China), and the 
primer sequences are shown in Table 8.

Quantitative Real-Time PCR Analysis.  The quantitative real-time PCR was performed on an ABI-
7900HT qPCR system (Applied Biosystems, Foster City, CA, USA) using FG POWER SYBR GEREEN 
PCR MASTER MIX (Applied Biosystems, Foster City, CA, USA). The quantification of the PCR products of 
Ghrelin and GHR genes was evaluated in comparison with the PCR products of β​-actin. The relative changes 

Figure 5.  Variation of RMSE of two models with (A) the number of hidden layer neurons & weight decay of 
NN and (B) the number of features to feed the trees in RF.
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in mRNA expression levels determined from qPCR were calculated according to the 2−△△CT method57, where  
−​Δ​Δ​CT =​ −​(Δ​CT other tissue samples − Δ​CT duodenum sample at d0) and Δ​CT =​ CT samples −​ CT β-actin.

Statistical Analysis.  The effect of the feeding system (S vs G) on the expression of GHR and Ghrelin was 
examined from time points d 28 to 70. The data were analyzed as a completely randomized design with the 
MIXED procedures of SAS (SAS Inst. Inc., Cary, NC) with a model that included the fixed effect of feeding sys-
tem, age, and the feeding system ×​ age interaction, with an individual animal as the experiment unit, as described 
in our previous study27. Orthogonal contrasts were used to test the linear and quadratic effects of age. The effects 
of age was tested with animal nested within age as the random effect and individual animal as the experimental 
unit. Statistical significance was defined as P <​ 0.05. The advantage of MIXED from general linear model (GLM) 
is it can handle correlated data and unequal variances, and it encompasses all models in the variance components 
procedure. In the linear mixed-effects model, the responses from a subject are the sum of fixed and random 
effects. The fixed effect affects the population mean and the random effect is associated with a sampling proce-
dure. Another difference between MIXED and GLM is that MIXED is based on maximum likelihood (ML) and 
restricted maximum likelihood (REML) methods, while GLM uses the analysis of variance (ANOVA) methods. 
ANOVA can deal with balanced designs, whereas ML and REML are efficient with balanced and unbalanced 
designs (modeling real data). The full dataset with the experimental results is available as SM0141.

Machine Learning Models.  In the first step, the raw dataset was used to create the corresponding normal-
ized dataset and the training and test sub-sets (using an R script): 75% training set (train) and 25% test set (test) 
(SM0247). The datasets and the R script are available in Figshare (SM04)56.

Two pieces of software were used to build regression models: STATISTICA and RRegrs. With STATISTICA 
multilinear and neural network regressions were used. The resulting models were characterized by the Rtest values 
(regression coefficient for test subset). In addition, the corresponding R2

test values were added to the standard 
STATISTICA outputs using Rtest.

RRegrs is an R integrated framework used to create ten linear and non-linear regression models45,46. Due to 
the computational limitations generated by the big datasets, only seven RRegrs methods were used: Multiple 
Linear regression (LM), Generalized Linear Model with Stepwise Feature Selection (GLM)50, Partial Least 
Squares Regression (PLS)51, Lasso regression (Lasso)52, Elastic Net regression (ENET)53, Neural Networks regres-
sion (NN)54, and Random Forest (RF)55 (SM0348). In general, default values of specific parameters were used for 
the regression methods. For some procedures, particular variations of the method parameters were studied in 
order to provide the best possible regression model. The standard RRegrs call is not prepared for big datasets. 
Thus, individual RRergrs methods were used with only one training/test split, without several RRegrs features  
(Y randomization, RRegrs plotting, data scaling, near-to-zero variance filtering, feature correlation removal), and 
using specific method calls (RRegrs::Method, where Method is the name of the regression function in RRegrs). 
The graphics were constructed externally by saving the generated model objects. The criteria to find the best 
model are the same as for RRegrs: maximum R2

test and minimum RMSEtest. The dataset splitting and the RRegrs 
results can be reproduced by using the same parameters and values of the seeds in the scripts. The best model 
available as Figshare item can be downloaded and studied with R for other statistics (SM04)56.

In order to compare them with the STATISTICA results, additional R.ts values were calculated as sqrt(R2
test). 

Thus, in the results from STATISTICA and RRegrs, both R and R2 values have been reported. The importance of 
the features for the RRegrs models was calculated with caret functions varImpPlot(fited.model) and varImp(fited.
model), where “fited.model” is the fitted model for the regression methods. The residual plot to remove the outli-
ers and the best model (RF) are available in Figshare (SM04)56.
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