
 

 

 

Influence of Magnetic Fields and their 

Characteristics on cortical Excitability. 

Study on healthy adults and pathological aging. 

 

Paula Davila-Pérez 

Doctoral Thesis 2018 
 

 

Supervisors:                    Dr. Javier Cudeiro Mazaira 

                     Dr. Álvaro Pascual-Leone 

 

 

International Doctoral School 

Doctoral program in Neurosciences 

 
 
 
            

 



 

 

 

 
  



 

 

 

 

 

Memoria presentada por Paula Davila Pérez (alumna del programa Interuniversitario de 

Neurociencias) en el departamento de Fisioterapia, Medicina y Ciencias Biomédicas para optar 

al título de Doctora con Mención Internacional por la Universidad de A Coruña. 

A Coruña, septiembre 2018 

 

 

Paula Davila Pérez 

 

 

 

 

Dr. Javier Cudeiro Mazaira Dr. Álvaro Pascual-Leone 

 

 

                                



 

 

 

  



 

 

 

 

 

Javier Cudeiro Mazaira, Catedrático de Fisiología del departamento de Fisioterapia, Medicina y 

Ciencias Biomédicas de la Universidad de A Coruña, y Álvaro Pascual-Leone, Catedrático de 

Neurología de la Universidad de Harvard 

 

AUTORIZAN 

La defensa del presente trabajo de Tesis Doctoral titulado “Influence of Magnetic Fields and their 

Characteristics on cortical Excitability. Study on healthy adults and pathological aging.”, que Dña. 

Paula Davila Pérez ha realizado bajo nuestra supervisión y que presenta las condiciones 

necesarias de originalidad y rigor científico para optar al título de Doctora con Mención 

Internacional por la Universidad de A Coruña. 

 
 
 
 
 
 
 
 
 
 
 
 
 
              ______________________                              _______________________ 

F. Javier Cudeiro Mazaira 
Catedrático de Fisiología 

Departamento de Fisioterapia, Medicina 
Y Ciencias Biomédicas 

 

Álvaro Pascual-Leone 
Catedrático de Neurología 

Escuela de Medicina 
Universidad de Harvard 



 

 

 

  



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

A mis padres y mi hermano, 

por su apoyo y su cariño constante. 

Y a David, por estar siempre a mi lado. 

 
 
 
 
 

  



 

 

 

 
  



 

 

 

Acknowledgements 

 

 

A doctoral thesis is a hard personal work that cannot be accomplished without the help of a 

number of people to whom I would like to dedicate this acknowledge section.  

First, I would like to thank my thesis advisors Professor Javier Cudeiro of Universidade de A 

Coruña and Professor Alvaro Pascual-Leone of Harvard Medical School for placing their trust in 

this project and in me. Both my advisors have been excellent mentors guiding me throughout the 

course of this research and more importantly, they have encouraged me to give the best of myself. 

Working with them has been a fascinating experience that hopefully does not end here but rather 

means the beginning of future collaborations and successful scientific projects.  

 

I would also like to acknowledge my dear colleagues and friends from the Berenson-Allen Center 

of Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center – Harvard Medical 

School. Thanks to Dr. Mouhsin Shafi for his guidance, and Krista Grobelny and Margo Bernstein 

for their invaluable help on the experiments with static magnetic fields. And especially, thanks to 

“the three amigos” group, Pete and Ali, who have helped me in so many ways that it is quite 

difficult to list them all, but surely they have been there when things were not what I had in mind. 

They have also been remarkably patient every time I asked them, stubbornly, for “five” more 

minutes of work even though they were starving or willing to go back home. Thank you, for all the 

shared knowledge and the fun during the last four years. 

 

Finally, I would like to thank my parents, my brother and David. They are the ones that have 

endured the consequences of all the stress and the hard work. Even so, they are the best support 

and the most encouraging people I could ever imagine by my side. My sincerest thanks. 



 

 

 

 

 
  



 

 

 VIII 

 

 

TABLE OF CONTENTS 

 

 

 

Abstract .............................................................................................................................. XIV 

 
List of Abbreviations......................................................................................................... XVIII 

 
List of Figures.................................................................................................................... XXII 

 
List of Tables .....................................................................................................................XXV 

 
 
PREFACE: INTRODUCTION, HYPOTHESIS AND OBJECTIVES ...................................... 1 

 
1 General description and importance of Non-invasive brain stimulation ....................... 1 

 
NON-INVASIVE BRAIN STIMULATION TECHNIQUES (NIBS): STATE OF THE ART. ..... 5 

 
2 Transcranial Magnetic Stimulation ................................................................................ 6 

2.1 Fundamentals of Transcranial Magnetic Stimulation ............................................ 7 

2.2 Devices and coils ................................................................................................. 13 

2.3 Of waveforms and current directions. Modeling TMS-brain interactions ............ 17 

2.4 Transcranial Magnetic Stimulation in healthy and pathological aging ................ 21 

2.5 Reliability of Transcranial Magnetic Stimulation.................................................. 23 

2.6 Safety of Transcranial Magnetic Stimulation ....................................................... 30 

 
3 Transcranial Static Magnetic Stimulation .................................................................... 33 

3.1 Fundamentals and mechanisms of action ........................................................... 33 

3.2 Previous studies and background ....................................................................... 35 

3.3 Safety of Transcranial Static Magnetic Stimulation ............................................. 38 

 
 
 
 



 

 

 IX 

 
 
GENERAL METHODOLOGY: THEORETICAL FOUNDATIONS AND  

INSTRUMENTATION .......................................................................................................... 41 

 
4 Transcranial Magnetic Stimulation .............................................................................. 42 

4.1 Motor hotspot and thresholds .............................................................................. 42 

4.1.1 Motor hotspot ................................................................................................... 42 

4.1.2 Motor thresholds .............................................................................................. 46 

4.2 Single-pulse protocols ......................................................................................... 47 

4.2.1 Motor evoked potential .................................................................................... 47 

4.2.2 Cortical Silent Period ....................................................................................... 49 

4.3 Paired-pulse protocols ......................................................................................... 51 

4.3.1 Intracortical inhibition ....................................................................................... 53 

4.3.2 Intracortical facilitation ..................................................................................... 54 

4.4 Repetitive Transcranial Magnetic Stimulation ..................................................... 55 

4.4.1 Theta-burst stimulation .................................................................................... 56 

 
5 Transcranial Static Magnetic Stimulation .................................................................... 60 

 
6 Neurophysiological recording techniques.................................................................... 62 

6.1 Electromyography ................................................................................................ 62 

6.2 Electroencephalography ...................................................................................... 64 

 
FIRST BLOCK OF EXPERIMENTS: RELIABILITY OF TRANSCRANIAL 

MAGNETIC STIMULATION AND INFLUENCING FACTORS. .......................................... 67 

 
7 The effects of waveform and current direction on the efficacy and test-retest reliability 

of transcranial magnetic stimulation .................................................................................... 68 

7.1 Introduction .......................................................................................................... 68 

7.2 Methods ............................................................................................................... 70 

7.2.1 Participants ...................................................................................................... 70 

7.2.2 Electromyography ............................................................................................ 71 

7.2.3 Transcranial Magnetic Stimulation .................................................................. 73 

7.2.4 Statistical Analyses .......................................................................................... 76 

 
 



 

 

 X 

 
7.3 Results ................................................................................................................. 79 

7.3.1 Comparison of the magnitude of response to single- and paired-pulse 

measures across Waveforms and visits ...................................................................... 79 

7.3.2 Efficacy of paired-pulse protocols across Waveforms and visits .................... 83 

7.3.3 Test-retest reliability measures ........................................................................ 83 

7.3.4 Relationship between RMT and other TMS measures ................................... 86 

7.4 Discussion ............................................................................................................ 86 

7.4.1 Effects of pulse waveform/current direction on the response to TMS  

measures ..................................................................................................................... 89 

7.4.2 Effects of pulse waveform/current direction on the reliability of TMS  

measures ..................................................................................................................... 94 

7.5 Conclusions.......................................................................................................... 96 

 
8 Reliability of single-pulse, paired-pulse, and intermittent Theta-Burst TMS measures in 

Healthy Aging, Type-2 Diabetes, and Alzheimer’s Disease ............................................... 98 

8.1 Introduction .......................................................................................................... 98 

8.2 Methods ............................................................................................................. 100 

8.2.1 Participants .................................................................................................... 100 

8.2.2 Electromyography .......................................................................................... 101 

8.2.3 Transcranial Magnetic Stimulation ................................................................ 103 

8.2.4 Statistical Analyses ........................................................................................ 104 

8.3 Results ............................................................................................................... 106 

8.3.1 Reliability of Neurophysiological measures ................................................... 107 

8.3.2 Relationships between the net differences of neurophysiological  

measures ................................................................................................................... 111 

8.3.3 Analyses of the absolute difference between visits ...................................... 112 

8.4 Discussion .......................................................................................................... 114 

8.4.1 Variability in baseline MEP and its role in post-iTBS variability .................... 116 

8.4.2 Impact of Age and Inter-Visit Interval ............................................................ 119 

8.4.3 Influence of BDNF polymorphisms ................................................................ 120 

8.5 Conclusions........................................................................................................ 120 

 
9 Reliability measures in young and older healthy controls. A comparison between 

cohorts from the previous studies...................................................................................... 122 



 

 

 XI 

 
SECOND BLOCK OF EXPERIMENTS: EFFECTS OF TRANSCRANIAL STATIC 

MAGNETIC STIMULATION ON MOTOR CORTEX EXCITABILITY AND BRAIN 

OSCILLATORY ACTIVITY ................................................................................................ 127 

 
10 Effects of transcranial Static Magnetic Stimulation (tSMS) on motor cortex excitability 

and brain oscillatory activity in healthy subjects................................................................ 127 

10.1 Introduction ........................................................................................................ 127 

10.2 Methods ............................................................................................................. 129 

10.2.1 Participants .................................................................................................... 129 

10.2.2 Transcranial Static Magnetic Stimulation ...................................................... 130 

10.2.3 Electromyography .......................................................................................... 131 

10.2.4 Transcranial Magnetic Stimulation ................................................................ 131 

10.2.5 Electroencephalography ................................................................................ 133 

10.2.6 Statistical Analyses ........................................................................................ 136 

10.3 Results ............................................................................................................... 139 

10.3.1 Electromyography results .............................................................................. 139 

10.3.2 Electroencephalography results .................................................................... 148 

10.4 Discussion .......................................................................................................... 151 

10.5 Conclusions........................................................................................................ 159 

 
ADDITIONAL CONSIDERATIONS AND GENERAL CONCLUSIONS ............................ 161 

 
11 Additional considerations ........................................................................................... 161 

 
12 General Conclusions.................................................................................................. 162 

 
Bibliography ....................................................................................................................... 169 

 
APPENDICES .................................................................................................................... 203 

APPENDIX A. Self-reported Medical History. ............................................................... 203 

APPENDIX B. Modified Edinburgh questionnaire. ........................................................ 204 

APPENDIX C. TMS Safety Screening. .......................................................................... 205 

APPENDIX D. tSMS safety screening. .......................................................................... 206 

APPENDIX E. Side Effects Questionnaire. ................................................................... 208 

 
 



 

 

 XII 

APPENDIX F. Resumen de la Tesis Doctoral ............................................................... 209 

Introducción................................................................................................................ 209 

Estudios de reproducibilidad ..................................................................................... 213 

Estudios sobre campos magnéticos estáticos .......................................................... 216 

Conclusiones.............................................................................................................. 218 

 
PUBLICATIONS AND CONTRIBUTIONS TO CONFERENCES ..................................... 219 

Publications .................................................................................................................... 219 

Contributions to conferences ......................................................................................... 220 

 



 

 

 XIII 

  



 

 

 XIV 

 

Abstract 

 

This doctoral thesis intended to answer two questions in relation to the interaction between 

dynamic and static magnetic fields, and the motor cortex. 

During the first two experiments, we studied factors that influence the reproducibility of 

transcranial magnetic stimulation (TMS). These investigations have shown that two types of 

relevant factors impact the effects and the reproducibility of the TMS: (1) technical or modifiable 

factors, in particular the TMS pulse waveform and current direction; and (2) physiological factors, 

specifically the influence of physiological aging and age-related diseases, such as Dementia due 

to Alzheimer's disease and type 2 Diabetes Mellitus. 

In a second type of study, a reduction of motor cortex excitability and reactivity was 

observed after applying transcranial static magnetic stimulation (tSMS). However, this reduction 

was only captured by a specific type of TMS waveform, indicating that the action of the tSMS is 

centered on specific cortical interneuron networks. Electroencephalographic recordings quantified 

an increase in the range of beta frequencies in fronto-central regions, this increase was negatively 

correlated with the reduction in cortical excitability.  

 

 

Resumo 

 

Esta tese de doutoramento pretende responder dúas cuestións relacionadas coa 

interacción dos campos magnéticos dinámicos e estáticos co córtex motor.  

Nos dous primeiros experimentos estudáronse factores que inflúen na reproducibilidade 

da estimulación magnética transcraneal (TMS). Estas investigacións demostraron que tanto os 
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efectos como a reproducibilidade da TMS vense afectados por dous tipos de factores relevantes: 

(1) factores técnicos ou modificables, en particular a forma de onda e a dirección da corrente dos 

pulsos da TMS; e (2) factores fisiolóxicos, en concreto a influencia do envellecemento fisiolóxico 

e as enfermidades relacionadas co envellecemento, coma a demencia por enfermidade de 

Alzheimer e a Diabetes Mellitus tipo 2.  

Nun segundo tipo de estudo observouse que a estimulación magnética estática 

transcraneal (tSMS) produce unha redución da excitabilidade e reactividade do sistema motor. 

Porén, esta redución só puido ser capturada por un tipo específico de forma de onda de TMS, o 

que indica que a acción da tSMS céntrase en redes interneurais específicas. Nos rexistros 

electroencefalográficos cuantificouse un aumento das frecuencias do rango beta nas rexións 

fronto-centrais, que está inversamente correlacionado coa diminución da excitabilidade.  

 

 

Resumen 

 

Esta tesis doctoral pretende responder dos cuestiones relacionadas con la interacción de 

los campos magnéticos dinámicos y estáticos con el córtex motor.   

En los dos primeros experimentos se estudiaron factores que influyen en la 

reproducibilidad de la estimulación magnética transcraneal (TMS). Estas investigaciones 

demostraron que los efectos y la reproducibilidad de la TMS se ven afectados por dos tipos de 

factores relevantes: (1) factores técnicos o modificables, en particular la forma de onda y 

dirección de corriente de los pulsos de la TMS; y (2) factores fisiológicos, en concreto la influencia 

del envejecimiento fisiológico y de enfermedades relacionadas con el envejecimiento, como la 

demencia por enfermedad de Alzheimer y la Diabetes Mellitus tipo 2. 
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En un segundo tipo de estudio se observó que la estimulación magnética estática 

transcraneal (tSMS) produce una reducción de la excitabilidad y reactividad del sistema motor. 

Sin embargo, esta reducción sólo se pudo captar por un tipo específico de forma de onda de 

TMS, indicando que la acción de la tSMS se centra sobre redes interneurales específicas. En los 

registros electroencefalográficos se cuantificó un aumento de las frecuencias del rango beta en 

regiones fronto-centrales, que está inversamente correlacionado con la disminución de la 

excitabilidad.  
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PREFACE: INTRODUCTION, HYPOTHESIS AND OBJECTIVES 

 

 

 

1 General description and importance of Non-invasive brain stimulation 

 

Over the course of history, humans have been inquisitively curious about electrical and 

magnetic phenomena around them. How electric and magnetic forces influence the physiology of 

different biological systems has consequently become a fundamental question with proven 

relevance for medical practice. Widely known examples of the use of electrical fields for the 

diagnosis and treatment of several disorders are techniques as common in medical practice as 

electrocardiography or electroconvulsive therapy.  

During the last decades, this interest has increasingly expanded the application of 

electrical and magnetic fields on humans for clinical and research purposes, both through invasive 

(involving intra-cranial implanted electrodes) and non-invasive methods of administration. Unlike 

invasive techniques such as deep brain stimulation (DBS) or vagal nerve stimulation (VNS), non-

invasive brain stimulation (NIBS) proceedings do not need surgery or other interventions in order 

to reach brain structures. Therefore, and not surprisingly, the use of magnetic and electrical fields 

for medical purposes as part of the so-called NIBS techniques is a growing scientific topic that 

has become a matter of deep interest for the scientific community. Nowadays, many laboratories 

and clinics use NIBS methods as a research, diagnostic, or therapeutic tools. NIBS techniques 

allow to assess and change brain cortical reactivity, excitability, and plasticity processes as well 
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as modulate different brain states. The combination of NIBS with common neurophysiological 

recording tools such as electromyography (EMG), electroencephalography (EEG) or magnetic 

resonance imaging (MRI) allow to assess changes in the nervous system in a quantifiable and 

objective way.  

Notable examples of NIBS are transcranial direct current stimulation (tDCS) that uses 

electrical currents to modulate the central nervous system (CNS); or transcranial magnetic 

stimulation (TMS) where time-varying magnetic fields are able to both modulate and stimulate 

nervous system structures.  

TMS was first described by Barker and colleagues (Barker, Jalinous, & Freeston, 1985) 

over 30 years ago and since then it has become a powerful diagnostic and treatment tool. TMS 

has been used to investigate cortical reactivity and excitability (within a cortical area or the 

interaction between different cortical areas), study brain behavior, and assess neurophysiology 

of healthy brain and neuropsychiatric disorders. In addition, when applied as a train of repeated 

pulses with a certain frequency, thus termed repetitive TMS (rTMS), modulates the activity of 

neural networks lasting beyond the stimulation time. The treatment of drug-resistant depression 

with rTMS is a paradigmatic example of the medical use of TMS, approved by FDA (FDA approval 

K061053) in 2008 and widely used across the world. Besides, FDA approved the use of TMS for 

presurgical motor and language mapping as a diagnostic tool. Ever since, many other protocols 

and applications for different neuropsychiatric diseases have been characterized.  

More recently, new NIBS techniques like transcranial static magnetic stimulation (tSMS), 

have been described and shown to change cortical reactivity and excitability on humans  (Oliviero 

et al., 2011) in a painless, reversible and safe way (Oliviero et al., 2015). Unlike TMS, tSMS uses 

non-time varying magnetic fields in order to modulate cortical areas. 

 Despite the growth and the widespread interest, there is still an important lack of deep 

understanding of the underlying mechanisms of NIBS techniques and their interaction with the 

neural substrate. This is especially relevant for newly reported ways of modulating the brain like 
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tSMS. Although tSMS research field is moving fast both in terms of animal and human 

experiments, there are still plenty of questions to be answered in order to begin to understand 

how static magnetic fields (SMF) interact with the brain. Additionally, to allow the finding of 

meaningful changes in cortical reactivity or excitability following an intervention, the scientific 

community requires reliable neurophysiological evaluations. Several factors may influence the 

response to NIBS methods such as TMS, thereby reducing its trial-to-trial reproducibility and 

influencing any possible outcomes.  

The principal intention of the present thesis is to deepen on the knowledge of the NIBS 

interaction with cortical areas and components by answering two main questions. 

First, we aimed to better understand potentially important elements influencing the 

reliability of TMS, which is world-wide known and the most used NIBS technique. Despite its 

relevance, TMS has a considerable trial-to-trial variability. Determining the influence of different 

factors may help improving the reproducibility and hence the utility of the technique both for 

diagnosis and treatment purposes. We investigated two main groups of factors that we considered 

important and yet to be fully understood. Based on current theoretical models, technical 

parameters, for instance TMS different waveforms and current directions activate and interact 

with different neural components. Therefore, we hypothesized they may play an important role on 

the reproducibility of different TMS protocols that might be driven by specific neural components 

and/or connections. The second group of factors we investigated were physiological and 

pathophysiological factors that have potentially a great effect on brain reactivity and plasticity 

processes, such as age and age-related diseases (i.e. Dementia due to Alzheimer’s disease, AD, 

and one of the most common metabolic disorders with increasing prevalence related to age, type-

2 diabetes mellitus, T2DM). Therefore, we proposed the previous factors will change TMS-cortex 

interactions as well as they will have a considerable impact on the reliability of TMS.  

Second, we intended to further investigate the behavior and changes on excitability of 

motor cortical areas after the exposure to tSMS, a novel and promising NIBS technique. To this 
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effect, we used TMS and EEG as neurophysiology evaluation tools in order to record brain 

reactivity changes that last beyond the time of stimulation. As previously mentioned, specific TMS 

physical parameters may interact with different neural components. We hypothesized that tSMS 

may not equally influence the diverse cortical components. Therefore, as a first goal we used 

different TMS parameters so as to elucidate whether the variations on cortical excitability after 

tSMS are due to the distinct activation or deactivation of particular cortical elements inspected by 

a specific TMS waveform or current direction. A second goal of this study was to evaluate the 

modulation of motor cortex excitatory/inhibitory balance after the exposure to tSMS by using 

specific TMS paradigms that help us to better understand the functioning of inhibitory and 

facilitatory brain circuitry. Moreover, EEG successfully examines electrical changes of the 

convexity of the brain across time in a very precise way. We propose that tSMS will not only 

change cortical reactivity but also brain spontaneous oscillatory activity, as measured by EEG. 

Thus, EEG recordings together with TMS assessments can help us to better comprehend 

physiological changes due to tSMS.  
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NON-INVASIVE BRAIN STIMULATION TECHNIQUES (NIBS):  

STATE OF THE ART. 

 

 

NIBS is a heterogenic group of tools that use electric currents and/or magnetic forces to 

modulate the brain. However, NIBS techniques face a fundamental issue given that they need to 

go through anatomical “barriers”, including scalp, skull, meninges and cerebrospinal fluid, until 

they reach the cortical layers. The most commonly used NIBS techniques ultimately utilize the 

electric properties of the neural components, although they can be divided in two larger groups 

depending on the means by which they reach cortical layers: (1) techniques that use magnetic 

fields to painlessly go through the scalp and reach the brain cortex, such as TMS or low field 

magnetic stimulation (LFMS); and (2) techniques that use electrical fields. In this second group, 

we can include transcranial electric stimulation (TES), tDCS, transcranial alternating current 

stimulation (tACS) or transcranial random noise stimulation (tRNS). Recently, a novel method that 

cannot be classified into any of the two larger groups depicted above, has been described in 

healthy humans (Oliviero et al., 2011). This new NIBS technique uses SMFs, hence it does not 

induce electric fields, to decrease cortical excitability beyond the time of stimulation. The 

mechanisms by which the SMFs reduce cortical reactivity and excitability have not been well 

elucidated yet.  

TES, which uses high voltage electric currents in order to stimulate the cortex, was a 

pioneer method on the brain stimulation field but it is painful and therefore less suitable for the 

stimulation of an awake and conscious human brain. In contrast to the rest of the NIBS techniques 
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described in this manuscript, when TES is applied to motor cortex it has been shown that its high 

voltage electric currents activate the corticospinal tract mainly at a subcortical level partially 

bypassing the cortex. tCS procedures (i.e. tDCS, tACS and tRNS) solved the disadvantage of the 

high discomfort by using lower intensities of stimulation. The lesser amount of energy used in tCS 

is able to modulate the cortex, namely, is able to either depolarize or hyperpolarize a certain area, 

but the depolarization is not sufficient to initiate and action potential. In other words, if applied to 

the motor cortex, tCS techniques cannot elicit registrable responses in the muscles. With the 

arrival of technological development, magnetic fields could be used to pass through the 

anatomical “barriers” and reach the brain creating a suprathreshold current that activates the 

cortical with little to no discomfort, as in the case of TMS.  

For the purposes of the present work we will summarize and deepen on the current 

knowledge and advances of two specific NIBS techniques that were employed during the 

experiments of the thesis, TMS and the novel tSMS.  

 

2 Transcranial Magnetic Stimulation 

 

Transcranial magnetic stimulation is the most commonly used technique among the NIBS. 

This technique not only modulates the brain cortical activity but also activates neural circuits. This 

fact makes TMS a great tool for the in vivo evaluation of brain physiology of health and disease. 

At a research level, this means that we can explore more about how the brain works in a painless 

and safe way. This includes different neurophysiological processes such as brain reactivity, 

connectivity or cortical plasticity. At a clinical level, it allows us to use it as a powerful diagnostic 

(Groppa et al., 2012) and treatment tool (Lefaucheur et al., 2014).  

TMS can be applied using one stimulus at a time (single-pulse TMS), a pair of stimuli 

separated by a given time interval (paired-pulse TMS), or using trains of stimuli with an internal 
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frequency (rTMS). Furthermore, in combination with imaging techniques such as EEG or MRI, we 

can investigate TMS-brain interactions and relationships with behavior and cognitive processes 

in more depth. The different TMS protocols and techniques in combination are described in 

Methodology (Chapters 4 – 6). 

During the following sections of the present chapter we will review the fundamental 

physics and characteristics of TMS as well as the common industrial presentations (devices and 

coils). Furthermore, the outcome and effects of TMS depend on the interaction between the 

physical properties of the TMS equipment, the TMS stimulation parameters as well as the 

physiological factors of the target brain tissue. We will describe the most relevant biophysical and 

physiological factors that might influence TMS-brain interactions and the background of 

theoretical canonical models of neural component activation, that are key for the present work. 

Finally, when dealing with a medical device, reproducibility and safety should always be taken 

into consideration. Hence, as part of this background summary, we will review the latest reports 

on TMS test-retest reliability and discuss the main TMS safety topics.  

 

2.1 Fundamentals of Transcranial Magnetic Stimulation 

 

Transcranial Magnetic Stimulation (TMS) is a powerful technique that utilizes the 

properties of magnetism to effectively stimulate the human brain. A TMS pulse consists of a 

rapidly changing electrical current sent through the wiring of a coil, we will call this the primary 

current or field. In the coil, the generated primary current fluctuates in a very short period of time 

(<1 millisecond (ms)). As we know from Faraday’s principles of electro-magnetism induction, 

these fast time-varying electrical currents are able to induce magnetic fields. Coil-induced 

magnetic fields last for about 100 µs and can reach up to 2-2.5 Tesla (T) with a flux perpendicular 

to the plane of the coil and the primary current. In turn, if the coil is placed tangential to the scalp, 

when the magnetic field reaches tissues with electrical properties, such as the brain cortex, a 
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second electric current is induced parallel to the original electric current but in opposite direction 

(Hallett, 2007). Hence, this second electric current runs parallel to the coil, original current and 

also to the cortex (see Figure 2.1 for a schematic representation). Ultimately this current 

originated within cortical neural components initiates an action potential and therefore, activates 

the pathway (Wagner, Valero-Cabré, & Pascual-Leone, 2007). 

 

 

Figure 2.1. Representation of the primary electric current 

in the coil, the generated magnetic forces and the electric 

current induced in the brain surface. 

From Hallett, 2007. 

 

At a cellular level, TMS activates neural components at their axons and dendritic trees 

rather than at their cell bodies, where the excitation threshold is much higher. Axons and dendritic 

trees are the cell parts with the highest ion density, but their activation highly depends on their 

orientation in relation to the electric current and the magnetic flux. In early studies on in vitro and 

in vivo nerves (Maccabee, Amassian, Eberle, & Cracco, 1993; Maccabee et al., 1998) showed 

that axons are preferentially activated when running parallel to the current. If the currents are not 

totally parallel, then the most effective place is where the axons bend. This phenomenon can be 

explained by Faraday’s and Lenz’s physical laws of electromagnetic induction in which the second 
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electric field is greater in parallel electro-sensitive materials and depends on the electromotive 

force generated by a rapidly changing magnetic flux.  

In terms of cell populations, previous studies have suggested that different TMS 

parameters such as waveform or current direction, may activate different neural components of 

various cortical layers. This means that the TMS electric currents running parallel to the cortex, 

as well as their directionality are of a great relevance to understand where and how the neural 

activation takes place.  

Early studies on animal models (Amassian, Stewart, Quirk, & Rosenthal, 1987; Patton & 

Amassian, 1954), recorded the activation of the corticospinal tract after electric stimuli (i.e. TES) 

over the primary motor cortex by using epidural electrodes over the spinal cord. These epidural 

recordings revealed the existence of a high frequency (approximately 600Hz) complex responses. 

Within the complex response, two distinct groups of waves can be distinguished based on their 

endurance to cortical cooling or cortical ablation. First, D-wave or direct wave that survives cortical 

removal or depression after cooling, and therefore translates the direct activation of the pyramidal 

tract neuron (PTN) at an axonal level. Second, I-waves or indirect waves, a complex group of 

smaller waves that appear at later latencies with the same internal discharge rate of about 600Hz 

(approximately 1.5 ms between waves) (see diagram of primary motor cortex and D- and I-waves 

in Figure 2.2). In order to explain their occurrence, two theoretical models emerged. The first 

model, based on cell membrane oscillatory properties, proposes that I-waves are explained by 

the activation and reverberation of high-frequency excitatory neural circuits in the cortex that end 

up with the stimulation of the PTN (Amassian et al., 1987). Data from later studies (Day et al., 

1989; Sakai et al., 1997) offered a second and, most probably, complementary theoretical frame 

where the main assumption is that motor cortex transcranial stimulation activates different subsets 

of neural components in different cortical layers. This second hypothesis proposes that I-waves 

decode the activation of a network or chain of interneurons that generate synchronous volleys of 

excitatory and inhibitory post-synaptic potentials (EPSP and IPSP) that will finally evoke a PTN 
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response. The first animal-model studies distinguished two groups of I-waves depending on their 

differential depression during cooling of the motor cortex: (1) An early I-wave (the I1-wave), that 

appears about 1.5 ms after the D-wave and persist longer during cooling, and (2) subsequent I-

waves (late I-waves) that are soon affected by the cold. I1-wave is thought to represent the indirect 

monosynaptic activation of the PTN through excitatory interneurons in layers II and III. While the 

late I-waves have been shown to be more easily influenced by processes that change cortical 

excitability and studies have argued that they may reflect the activation of horizontal cortico-

cortical connections in those same cortical layers, that originate from surrounding cortical regions 

or perhaps other brain structures (Di Lazzaro & Ziemann, 2013; Cirillo & Perez, 2015). In 

summary, early and late I-waves translate less or more complex activation of intracortical neural 

circuits that will end up evoking a PTN response.  

 

Figure 2.2. Schematic representation of the neural components that generate the direct wave (D-wave) 

and the indirect waves (I-waves). 

Abbreviations: D- wave, direct wave; I-waves, indirect waves; L1-L5, cortical layers 1 to 5; PTN, 

pyramidal tract neuron. Open circles represent excitatory interneurons, filled circles indicate inhibitory 

interneurons; light-brown dotted lines represent cortico-cortical connections. Bottom right corner:  

Schematic representation of a D-wave followed by 4 I-waves. Inspired by a figure from Di Lazzaro & 

Rothwell, 2014. 
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However, TES and TMS induced currents may not stimulate neural components at the 

exact same locations. In TES, electric field runs from one electrode to another creating a rather 

more perpendicularly field to the cortex activating the PTN at an axonal level close to the cell body 

that leads to quite short-latency D-waves, therefore the peripheral response will also have a 

shorter latency. Soon after the description of the D- and I-waves due to TES application, several 

research groups (Burke et al., 1993; Day et al., 1989; Di Lazzaro, Oliviero, et al., 1998) described 

and compared similar epidural waves and their linked muscle responses after TMS over M1 in 

humans. The aforementioned complex group of evoked epidural waves had an overall slightly 

delayed latency when recorded after TMS pulses. Likewise, peripheral EMG responses to TMS 

at just supra-threshold intensities appear also about 1.5 ms later than TES-evoked responses. 

This difference in latency becomes smaller with increasing TMS intensities translating the 

elicitation of larger waves but also the recruitment of a more complex group of neural cells coming 

from a more extensive cortical area.  

It is important to mention, though, that Burke et al. (Burke et al., 1993) registered the 

epidural waves from patients that were undergoing spinal surgery, and Di Lazzaro and co-workers 

(Di Lazzaro, Oliviero, et al., 1998) performed their experiments on patients that had cervical and 

thoracic epidural stimulating electrodes for chronic pain treatment. Due to the difficulty of exploring 

these processes in healthy humans and in order to better explain the complex current-brain 

interactions and their effect on cortical circuits, lately some international research groups have 

used complex computational models to investigate the generation of D- and I-waves within a 

magnetic field (Rusu, Murakami, Ziemann, & Triesch, 2014; Seo, Schaworonkow, Jun, & Triesch, 

2016; Triesch, Zrenner, & Ziemann, 2015). These studies have contribute to the knowledge of 

how TMS interacts with the brain surface and adding more complexity to the theoretical canonical 

model of Di Lazzaro and Rothwell (Di Lazzaro & Rothwell, 2014). 
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Knowing that the TMS-induced current-brain interaction is intricate, one can anticipate that 

several factors may impact that relationship. In general terms, the effects of the current-brain are 

mainly influenced by (1) physical factors, being factors that depend on the TMS device and its 

physical parameters; and (2) physiological factors.  

With regard to physical properties, the most prominent influencing parameters are TMS 

devices, coil geometry and orientation in relation to the scalp (see Section 2.2 of the present 

chapter for further explanation), as well as TMS-pulse parameters such as pulse shape and 

duration, and the direction of the induced electric current in the brain  (Di Lazzaro et al., 2001; 

Salvador, Silva, Basser, & Miranda, 2011; Sommer et al., 2013; Di Lazzaro & Rothwell, 2014) 

(Section 2.3 of the present chapter deepens on the influence of shape and direction of TMS 

induced currents).  

Relative to brain physiology, some of the major factors known to influence this TMS-brain 

interaction include individual differences in optimal current direction (Balslev, Braet, McAllister, & 

Miall, 2007) and pattern of cortical sulcation (Silva, Basser, & Miranda, 2008; Salvador et al., 

2011), coil-cortex distance (Kozel et al., 2000; McConnell et al., 2001; Stokes et al., 2013), and 

state-dependent factors (Silvanto & Pascual-Leone, 2008; Ridding & Ziemann, 2010). Expanded 

physiological factors that are relevant for this thesis include age, age-related and metabolic 

diseases that potentially change brain excitability and reactivity (Section 2.4 of the present chapter 

extents on this relevant physiological factors).  

The parameters that influence TMS-brain interaction and that are the most representative 

and important for the present work, will be described and discussed throughout the following 

sections.  
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2.2 Devices and coils 

 

A TMS machine consists on a main unit device and a stimulating coil. This makes the 

design of TMS devices quite simple and straight forward. The main TMS unit device is a single or 

a battery of large capacitors triggered by a thyristor switch. This allows to discharge high-voltage 

and high-current rapidly changing electric pulses. Most commercial TMS devices express pulse 

intensity as a percent of the maximal device output, being that output the amount of voltage 

passed through the stimulating coil. The maximal stimulator output (MSO), which reflects the 

maximum power or intensity of the device, as well as the length of the TMS pulse vary between 

devices and therefore the stimulating parameters for a specific protocol with a particular device 

have to be calculated and adjusted accordingly. As the technology advanced, devices also started 

including specific pulse-shape circuitry that allowed TMS machines to generate pulses with 

different waveforms and durations. Today many shapes and durations are available, but the most 

utilized ones are biphasic and monophasic waveforms. Furthermore, most of the commercial 

devices are only able to create pulses with either of these two waveforms. Biphasic and 

monophasic waveforms, their specific properties and influence on the TMS-brain interaction will 

be discussed below in Section 2.3 of the current chapter. To illustrate the differences between 

market-available TMS devices, Kammer and colleagues (Kammer, Beck, Thielscher, Laubis-

Herrmann, & Topka, 2001) studied the influence of two TMS machines [Dantec (MagVenture) 

and Magstim 200 stimulator (Magstim Co. Whitland, Dyfed, UK)] on the stimulation intensity 

threshold for the motor cortex. The authors obtained different results depending on the waveform 

and the device. Magstim monophasic pulses showed greater efficiency than biphasic pulses (i.e. 

lower resting motor thresholds (RMTs) with monophasic than with biphasic pulses) whereas 

MagVenture monophasic pulses were less efficient than biphasic (i.e. lower biphasic thresholds, 

regardless of current direction, than monophasic). From this study we know that depending on 

pulse waveform/current direction that were chosen, different devices may have different total 
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stimulation strengths. How to calculate the stimulation intensity and the precise protocol 

characteristics of the experiments of the present work will be described in Methodology (Chapters 

4 – 6).  

Other physical device features that affect TMS-brain interaction are coil geometry and coil 

orientation in relation with the scalp. Many different types of coil geometries are available 

nowadays. The most commonly used shapes are circular or round coils, and figure-of-eight coils. 

In circular coils, current flows in one direction only, which is active at the edges of the coil 

with minimal activation at the center, and generates a spherical magnetic field. Circular coils 

typically have an outer diameter 90 mm and can stimulate large but shallow areas of the brain 

(Figure 2.3. A). Coil orientation will depend in which side of the coil is in contact with the scalp. 

As an example, when stimulating the motor cortex, preferably stimulated using posterior-to-

anterior (PA) current in the cortex, the coil should be center over the scalp vertex as shown in 

Figure 2.4.  Notice that when a circular coil is centered over vertex, one of the motor cortices will 

be stimulated with PA whereas in the other the current will be anterior-to-posterior (AP). The 

relationship between the current direction of a TMS pulse and the different cells of the motor 

cortex will be discussed in more depth in Chapter 2.3. Nevertheless, it is worth anticipating that 

those neural elements activated by PA or AP currents have distinctive excitability properties and 

latencies. Namely, PA currents are able to activate the motor neuron monosynaptically, whereas 

AP currents initiate a more intricate cascade of activations through cortico-cortical connections. 

This will lead to larger motor evoked potentials (MEPs) in the PA stimulated cortex. The presence 

of a MEP and its amplitude after the stimulation of the cortex with AP will depend on the intensity 

of the pulse. When exploring the contralateral cortex, the side of the coil in contact with the scalp 

is in most cases just reversed.  
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Figure 2.3. Distribution of the electric field induced by a circular coil (A) and a figure-of-eight coil (B). 

Modified from Hallett & Chokroverty, 2005. 

 

 

 

 

Figure 2.4. Axial representation of a head with a circular coil centered over the vertex or Cz. 

The vertex of Cz is located in the intersection of the nasion-to-inion and ear-to-ear lines (red point), the 

light-grey arrows show the direction of the primary current in the coil, whereas the black arrows show 

the directionality of the TMS-induced current in the brain. In the case of Figure 2.4 A the black arrow 

goes counterclockwise which means that the posterior-to-anterior (PA) component will fall over the right 

motor cortex eliciting a response in the left hand (red star). Figure 2.4 B shows the black arrow in a 

clockwise direction; therefore, the PA direction is over the left motor cortex and responses in form of 

motor evoked potentials will be recorded from the right hand (blue star).  
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Nowadays the most commonly used coils both in clinical practice and research are figure-

of-eight coils, probably due to their ability to focally activate a small portion of a targeted cortex. 

Thus, during the experiments of the present thesis, we chose to perform all the TMS protocols 

with this type of coil. A figure-of-eight coil combines two circular coils joined in the middle in a kind 

butterfly-shape conformation, for this reason these coils are also referred as butterfly-coils. In 

figure-of-eight coils current at each wing flows in opposite directions, resulting in summation of 

the currents at the junction of the wings where the summed magnetic field is more focal and 

stronger (Figure 2.3 B). The smaller the diameter of each wing of the coil the more focal the coil 

can be. On the contrary, the larger the diameter is, the deeper the magnetic field can reach. Most 

used coils have an outer diameter of 75 mm for each wing. The coil orientation depends on the 

current direction of the originated electrical field at the center of the coil (point of fields summation) 

and its relation to the scalp and the cortical target. The directionality of the combined current will, 

therefore, depend on the direction of each wing’s current (see Figure 2.5). In the motor cortex, 

several studies have investigated the influence of different scalp positions and their generated 

current directions in peripheral and spinal cord responses (Brasil-Neto, Cohen, Panizza, et al., 

1992; Fuhr, Cohen, Roth, & Hallett, 1991; Mills, Boniface, & Schubert, 1992; Werhahn et al., 

1994). From these studies we can resolve that the consensus for hand motor area is that the 

optimal coil orientation on the scalp is at an angle of 45º away from the midsagittal line (Brasil-

Neto, Cohen, Panizza, et al., 1992) as shown in Figure 2.5. However, coil orientation and position 

relative to scalp, pulse waveform and current direction will influence the outcome of TMS by 

activating particular neural components, as we will argue during the next section of this thesis.  
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Figure 2.5. Axial representation of a head with a figure-of-eight coil over the right (A) or the left (B) 

hemisphere. 

The coils are placed over the hand-representation area of the motor cortices in a 45º angle. The curved 

white arrows represent the TMS-induced currents being the straight white arrow the sum of both currents 

and the direction of the current in the brain. The straight white arrows are posterior-to-anterior in both 

cases (Figure A and B). When TMS coil is placed over right motor cortex, motor evoked potentials 

(MEPs) can be recorded on the left hand (red star). On the contrary, if the stimulated cortex is the left, 

MEPs will be elicited on the right hand (blue star).  

 

 

2.3 Of waveforms and current directions. Modeling TMS-brain interactions 

 

TMS waveform and current direction are parameters of great importance in order to 

understand the TMS-brain interaction and deepen into brain physiology. As we have already 

mentioned, specific waveforms and current directions activate particular neural components. 

Recently, many different pulse shapes or waveforms are available and a number of other 

waveforms have been explored for research purposes, but monophasic and biphasic 
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configurations are still the most common. These two types of waveforms are distinguished based 

on the length and duration of the first and second components of the induced current. Thus, 

biphasic pulses generate two equal phases in opposite directions, that is full positive/negative 

voltage oscillations resembling a cosine waveform. Hence, with a figure-of-eight coil at a 

preferential 45º angle over motor cortex, biphasic waveforms can either be AP-PA (biAP-PA) or PA-

AP (biPA-AP). Whereas monophasic have a strong and sharp first rise in one direction and slow 

and long second component or decay towards baseline. Subsequently, monophasic waveforms 

can either be monophasic PA (monoPA) or monophasic AP (monoAP). Figure 2.6 shows and 

schematic representation of monophasic and biphasic waveforms. While in monophasic shapes 

the first rise is the relevant part in terms of cortical stimulation, in biphasic both phases of the sine 

play an important role activating the cortex depending on stimulus intensity. At threshold 

intensities, the second phase of the biphasic shape is believed to have more impact; however, as 

we increase intensity, the first phase of the waveform becomes more relevant in terms of the cell 

populations that are activated (Di Lazzaro et al., 2011; Barker, 2017). Note that other scalp 

positions may lead to a different direction of the induced current and thus activate neural 

components differently. Since for the experiments of the present work, monophasic and biphasic 

were the shapes chosen with the coil at a preferential 45º angle over motor cortex, we will 

concentrate on the discussion of the influence of the latter configurations.  
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Figure 2.6. TMS pulse waveforms and induced current directions. 

A. Diagram showing monophasic posterior-anterior (PA), monophasic anterior-posterior (AP), 

and biphasic AP-PA TMS pulse waveforms. B. Diagram showing location of the TMS coil over 

the left primary motor cortex with arrows depiction the direction of the induced current(s) in the 

brain. 

 

 

Of particular relevance for the present thesis, some NIBS research groups have studied 

the influence of coil geometry, waveform and current direction on the motor outcome at a 

peripheral and spinal cord level (Amassian et al., 1987; Nakamura, Kitagawa, Kawaguchi, & Tsuji, 

1996; Di Lazzaro et al., 2001; Di Lazzaro et al., 2001; Di Lazzaro et al., 2003; Di Lazzaro et al., 

2004; Di Lazzaro et al., 2003; Di Lazzaro & Rothwell, 2014). During their experiments, the motor 

responses after either TES or TMS were recorded both in the muscle, in form of MEPs, and 

through cervical epidural electrodes. These cervical recordings made possible to quantify the 

impact of the above-mentioned TMS pulse parameters on D- and I-waves (the physiological 

bases of D- and I-waves are described in Section 2.1 of the current chapter). As the results from 

epidural recordings demonstrated, depending on the intensity of the single-pulse TMS, different 
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waveforms and current directions show a selective recruitment of neural components. Figure 2.7 

represents a summary of their main findings. 

 

 

Figure 2.7. Schematic representation of motor cortex neural components and their interaction with TMS 

waveforms and current directions. 

Abbreviations: BiAP-PA, biphasic anterior-posterior—posterior-anterior; BiPA-AP, biphasic posterior-

anterior—anterior-posterior; monoAP, monophasic anterior-posterior; monoPA, monophasic posterior-

anterior; L1-L5, cortical layers 1 to 5; PTN, pyramidal tract neuron. Open circles represent excitatory 

interneurons, filled circles indicate inhibitory interneurons; light-brown dotted lines represent cortico-

cortical connections. Inspired by Di Lazzaro & Rothwell, 2014. 

 

 

 Monophasic waveforms tend to activate the PTNs indirectly. So, monoPA at low stimulus 

intensities elicits an I1-wave (early I-wave) whereas as the intensity increases, later I-waves begin 

to appear in addition to the I1-wave and with an approximate periodicity of 1.5 ms. In contrast, 

monoAP tend to first evoke late I-waves that have longer latencies and are more dispersed than 

the late I-waves elicited by monoPA. In sum, the I1-wave has the lowest threshold with monoPA 



  State of the Art 

   21 

pulses, while on the contrary the late I-waves (I3-wave in particular) have the lowest threshold 

with monoAP.  

Biphasic waveforms have a more complex sinusoidal shape were both PA and AP 

directions are included in a specific order. Therefore, the pattern of elicited D- and I-waves 

becomes more heterogeneous accordingly. Given the complexity of biphasic pulses, stimulus 

intensity is of greater relevance. As previously mentioned, around threshold intensities, the last 

half of the sine wave seems to have larger influence on the stimulation of the motor cortex. With 

increasing intensities, the first phase of the wave starts activating neural elements and hence 

gaining relevance in the overall response. On this basis, biphasic pulses at high intensities tend 

to be less direction-dependent (Di Lazzaro et al., 2003; Barker, 2017) and is the intensity is 

sufficiently high, biphasic pulses are believed to directly activate the PTN. Nevertheless, the TMS-

brain interaction with biphasic pulses is more intricate and the relationship between AP and PA 

components in a suprathreshold pulse is less known. 

 

2.4 Transcranial Magnetic Stimulation in healthy and pathological aging 

 

Once the main biophysical aspects of TMS and their influence in the TMS-brain interaction 

have been discussed, attention should be also paid to factors that are less controllable but of 

special relevance nevertheless. For the purposes of the present work, we will focus on healthy 

and pathological aging processes and their influence on the responses to TMS protocols.  

Today, it is mostly assumed that brain changes across lifespan belong to dynamic, life-

long and continuous developmental processes that imply both a loss in function but also 

neurocognitive benefits (Park & Reuter-Lorenz, 2009; Pascual-Leone & Taylor, 2011). When 

these changes during advancing age are subtle they fall into the context of normal aging. On the 

other hand, if they are severe they may lead to impairment of plasticity mechanisms, 

neuropathological processes, and eventually to certain medical conditions (e.g., AD). In this 
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context, defining plasticity and its mechanisms becomes essential. Plasticity mechanisms refer to 

the ability of the nervous system to adapt to internal and external changing conditions in the 

environment. These physiological mechanisms include both processes that are advantageous 

(e.g., learning and memory), as well as changes related to trauma or disease that represent a 

maladaptive plasticity (e.g., chronic pain, neural reorganization following stroke, etc.). This 

general definition of cortical plasticity includes both synaptic plasticity (i.e., Hebbian learning, long-

term potentiation [LTP] and depression [LTD]), as well as non-synaptic plasticity processes (i.e., 

structural and functional changes in brain networks).  

Related to the physiology of motor pathways with increasing age, neuroimaging studies 

(Ward & Frackowiak, 2003) have shown an association to cortical and subcortical activation of 

the motor system through growing complex compensatory central mechanisms. NIBS techniques 

may also be of great help providing additional information about changes in cortical excitability 

and plasticity across lifespan. There are various approaches to assess the mechanisms of 

plasticity using TMS. The most common approach to characterize cortical reactivity and 

excitability involves the application of blocks of single pulses. Motor thresholds or amplitude of 

MEPs are examples of these measurements. Further information about the usual protocols to 

perform RMT and MEP amplitude will be described in Methodology (Chapters 4 – 6). Among the 

NIBS techniques, of special importance to evaluate brain’s plasticity is rTMS and in particular the 

theta-burst stimulation (TBS) paradigm. A more comprehensive definition of TBS and its 

physiological implications will be explained in Chapter 4 – Section 4.4. TBS protocols have been 

able to demonstrate plasticity mechanisms and cortical excitability changes across lifespan 

showing a progressive and linear reduction in the responses to TBS with age (Freitas et al., 2011). 

Moreover, TBS has revealed altered neuroplastic mechanisms in autism spectrum disorders 

(Oberman et al., 2012), traumatic brain injury (Tremblay, Vernet, Bashir, Pascual-Leone, & 

Theoret, 2015), schizophrenia (McClintock, Freitas, Oberman, Lisanby, & Pascual-Leone, 2011), 

T2DM (Fried et al., 2017), and AD (Koch et al., 2012). 
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2.5 Reliability of Transcranial Magnetic Stimulation 

 

Previous sections of this chapter have characterized the factors that may introduce variability 

in the TMS-brain interaction. As TMS is a quite powerful neurophysiological technique that has 

been increasingly adopted in both the scientific field and the daily clinical practice, it is very 

relevant to identify possible elements that contribute to unstable responses to TMS through time.  

Fortunately, the effects of TMS on motor cortex are easily quantifiable. When applied over the 

primary motor cortex at sufficient intensity, TMS can activate the corticospinal pathway and elicit 

a muscle response. The MEPs represent the activation of a muscle after a single pulse and can 

be easily recorded and measured. Further information about the MEP physiology is provided in 

Chapter 4 – Section 4.2.  

Given the increasing relevance of TMS and the existence of a measure that can be easily 

quantified, the study of the consistency, reliability and variability of TMS responses in form of 

MEPs becomes essential to interpret the experimental and clinical data available today as the 

variability of TMS responses could reduce its sensitivity to detect meaningful changes over time 

or to an intervention. These types of studies are the best source of statistical knowledge that allow 

us to assess the validity of TMS as a technique and evaluate its ability to discriminate between 

subjects or to differentiate between groups.  

Numerous statistical methods are available to investigate the repeatability and reproducibility 

of a technique. To better understand how TMS works and how stable its responses are, we will 

focus on intra-subject reliability studies. These studies evaluate the consistency of the data 

obtained in a group of subjects when the TMS is performed either by one or several raters or in 

one or more visits. The most suitable statistical method is the intra-class correlation coefficient 

(ICC). This coefficient was first suggested by McGraw and Wong (McGraw & Wong, 1996) and 

quantifies how much of the observed variability of a response belongs to the heterogeneity of the 
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sample and how much to visit-to-visit or inter-rater variability. Therefore, ICC values of 1 reflect 

the maximum reliability of a measure, and 0 indicates no reliability. When sample sizes are small, 

ICC values can become negative if the within-group variance exceeds the between-groups 

variance (Kenny, Mannetti, Pierro, Livi, & Kashy, 2002). There is no consensus in the literature 

about a classification of ICC values into categories. Nonetheless, in the present thesis we decided 

to use the most common range in categorizing reproducibility in neurophysiological assessments 

(Portney & Watkins, 2009) as well as in TMS literature:  

 

 

 

 

ICC values: 

> 0.75 high reliability 

0.5 - 0.75 moderate reliability 

0.25 - 0.5 low reliability 

< 0.25 very low / no reliability 

 

 

 

 

According to this range, an excellent reliability translates that less than 25% of the variance 

of the sample comes from random measurement errors (e.g. comparison of different visits, or 

between different raters) and more than 75% of agreement.  

For the purposes of this thesis and in order to understand the state of the TMS field, a 

brief literature review was conducted in relation to TMS and its reliability and/or reproducibility 

emphasizing studies investigating ICC on the most relevant single- and paired-pulse protocols for 

the intrinsic hand muscles, including RMT, MEP latency and amplitude, cortical silent period (cSP) 
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and inhibitory and facilitatory paired-pulse protocols (all of the above are described in depth in 

Methodology (Chapters 4 – 6 )). We found relatively few publications that full filled these criteria 

(Bastani & Jaberzadeh, 2012; Carroll, Riek, & Carson, 2001; Christie, Fling, Crews, Mulwitz, & 

Kamen, 2007; Fleming, Sorinola, Newham, Roberts-Lewis, & Bergmann, 2012; Hermsen et al., 

2016; Hoonhorst, Kollen, Berg, Emmelot, & Kwakkel, 2014; Kamen, 2004; Kimiskidis et al., 2004; 

Liu & Au-Yeung, 2014; Livingston & Ingersoll, 2008; McDonnell, Ridding, & Miles, 2004; Ngomo, 

Leonard, Moffet, & Mercier, 2012; Sankarasubramanian et al., 2015; Schambra et al., 2015). 

Among the found publications, it is important to point out a systematic review of the literature 

carried out by Beaulieu and colleagues (Beaulieu, Flamand, Masse-Alarie, & Schneider, 2017). 

This review addressed the most important methodological issues of different studies in different 

muscle groups. Unfortunately, the authors did not further investigate the results of the articles 

included. Nevertheless, the review concluded that there is very limited evidence of TMS reliability, 

highlighting the need for a greater number of studies on this particular theme. In addition, they 

provided recommendations for future studies not to be affected by the methodological and 

statistical problems that the authors observe in the data published to date. 

With the purpose of illustrating in a clear manner the evidence up to now, Figure 2.8 

shows all the data found after our brief review on reliability coefficients, ICCs. 
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Figure 2.8. The graph shows the results of intra-class correlation coefficients (ICCs) of the studies 

found in the brief literature review. 

These studies evaluated the reliability of single- and paired-pulse TMS protocols over the intrinsic 

hand muscles. Abbreviations: cSP, cortical silent period; ICF, intracortical facilitation; MEP ampl., 

amplitude of the motor evoked potentials; MEP lat., latency of the motor evoked potentials; LICI, 

long-interval intracortical inhibition; RMT, resting motor threshold; SICI, short-interval intracortical 

inhibition. 

 

 

Single-pulse protocols shown in Figure 2.8 include RMT, MEP latency and amplitude, and 

cSP. For paired-pulse paradigms we decided to cover the ones that are more frequently described 

in literature, that means short-interval intracortical inhibition (SICI), long-interval intracortical 

inhibition (LICI) and intracortical facilitation (ICF).  

The intensities of most of TMS protocols are based on RMT values, consequently RMT is 

the variable which is the most studied in literature. As shown in Figure 2.8 reflects RMT is also 
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the most stable and reliable measure of TMS together with MEP latency. However, the evidence 

for cSP and paired-pulse protocols is very scarce and scattered, hence the community will need 

many more studies before being able to reach any conclusions about their consistency and 

reliability. Another important feature to point out is that during the studies of the reviewed articles, 

TMS was mostly performed only with monophasic waveform and PA current direction in the 

cortex. It is noteworthy as well, the broad spread of the data for MEP amplitude. This huge 

variability is of a great relevance given that most of the studies and publications report the mean 

amplitude of a number of MEPs as their baseline.   

The dispersion of reliability data most probably occurs as a consequence of a great 

heterogeneity in the application of TMS across the different studies included in this brief review. 

Even though the diversity of ICC results has multiple sources that are not fully understood 

nowadays, attention should be drawn to several factors that have considerable influence in the 

responses. Overall the factors that may be influencing TMS responses could be divided into 

extrinsic (or technical parameters of TMS) and intrinsic (characteristics of the subject).  

As a reminder, different TMS devices or gadgets have particular maximal output strength 

or pulse characteristics such as pulse width, that have been found to change TMS responses 

(D’Ostilio et al., 2016; Hannah & Rothwell, 2017; Lang et al., 2006). In order to account for some 

of those particularities and calibrate the pulse strength, most researchers have related the 

stimulation intensity of the TMS pulses to a % of the RMT, which is itself a % of MSO. Other pulse 

characteristics including waveform and current direction (previously discussed in detail in Section 

2.3 of the present chapter) are important sources of variability when trying to elucidate reliability 

among different studies. Moreover, different types of coil geometry will influence the 

characteristics of the pulse and the interaction of the electric field with the cortex (see Section 2.2 

of the present chapter). The use of neuronavigation can provide with a stability of a chosen 

location preventing from minor movements around the stimulation spot and consequently less 

variability on MEP responses (Julkunen et al., 2009). Recently, two studies (Chang et al., 2016; 
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Goldsworthy, Hordacre, & Ridding, 2016) have highlighted the importance of the total number of 

pulses when averaging MEP amplitude or latency. Both studies reached to the conclusion that in 

order to get moderate to high reliabilities it is essential to average at least 20 to 30 responses with 

the same pulse characteristics for MEP amplitude. MEP latency showed much lesser variability 

in both studies.  

Physiological or intrinsic factors, in turn, can be classified into non-modifiable (e.g. age, 

gender or genetics) and modifiable (e.g. brain state, cortical activity or metaplasticity). 

Age and gender have been probed to influence the response to specific TMS protocols 

(Pitcher, Ogston, & Miles, 2003; De Gennaro et al., 2003). In particular, age related physiological 

changes such as reduction in the total number of activated motor neurons or a loss of 

synchronous activation may be playing a relevant role in the variability of responses to TMS. 

However, very few studies have investigated the influence of age in TMS reliability including 

subjects over the age of 50 (Fleming et al., 2012; Kimiskidis et al., 2004) and only one study 

exclusively recruited subjects over 65 years (Christie et al., 2007).   

During the last years, genetic polymorphisms have emerged as relevant intrinsic factors 

that might be associated to particular patterns of response after TMS protocols. Regarding the 

present work, Brain-derived neurotrophic factor (BDNF) and its polymorphisms are worth noting. 

BDNF is a growth factor that is greatly expressed in the nervous system, crucial in brain 

development and involved in LTP and LTD (Gottmann, Mittmann, & Lessmann, 2009). The BDNF 

polymorphism (BDNF Val66Met) in humans has been shown to influence learning and memory 

processes and reduce cortical plasticity as well as modify responses to single-pulse TMS (Cirillo, 

Hughes, Ridding, Thomas, & Semmler, 2012). Val66Met carries also show reduced responses to 

repetitive protocols of TMS (Cheeran et al., 2008).  

Studies in patient populations showed that pathologies such as stroke may change the 

reliability of TMS (Cacchio et al., 2011; Schambra et al., 2015) and that the variability of the 

response depends on whether the tested hemisphere is the affected or not. 
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In addition, modifiable factors such as the level of drowsiness or attention (Mirdamadi, 

Suzuki, & Meehan, 2017) and different brain states (Silvanto & Pascual-Leone, 2008) change 

cortical excitability and therefore the response to TMS. Hence, TMS responses may change 

based on the brain state or in other words, the impact of TMS depends not only on the 

characteristics of the pulse but also on the previous cortical activity and the sensitivity of the neural 

networks to the stimulus at a given time. As a practical example, muscle voluntary activation right 

before TBS (see Methodology (Chapters 4 – 6) for a comprehensive description of TBS) change 

the outcome of this rTMS protocol (Huang, Rothwell, Edwards, & Chen, 2008). Metaplastic 

processes, or the history of synaptic plasticity, also influences the effects of TMS as demonstrated 

by Gamboa et al. (Gamboa, Antal, Moliadze, & Paulus, 2010), who obtained paradigmatic results 

after lengthening ordinary TBS protocols. Also related to brain metaplasticity, Siebner and co-

workers (Siebner et al., 2004) applied tDCS prior to low-frequency rTMS changing the outcome 

of the rTMS paradigm probing how homeostatic plasticity (namely intrinsic neural mechanisms 

that regulate the network excitability after a given stimulus) affects TMS-brain interactions.  

Although, we know some of the factors that influence the responses to rTMS protocols, 

very few studies have investigated the reliability of different repetitive protocols. Maeda and 

colleagues (Maeda, Gangitano, Thall, & Pascual-Leone, 2002) studied high- (20Hz and 10Hz) 

and low-frequency (1Hz) rTMS finding that 20Hz had fair reliability but 1 and 10Hz reliability’s was 

poor. The groups of Hinder, Schilberg, Vernet and Vallence studied TBS using its common 

presentations, both intermittent (iTBS) (Hinder et al., 2014; Schilberg, Schuhmann, & Sack, 2017) 

and continuous (cTBS) (Vallence et al., 2015; Vernet et al., 2013) in young healthy controls (age 

under 44 years), showing fair to poor reliability in both cases. Previously identified factors that 

introduce variability to post-TBS measures are prior exercise (McDonnell, Buckley, Opie, Ridding, 

& Semmler, 2013), ongoing voluntary activity (Iezzi et al., 2008), and other state-dependent 

effects (Silvanto & Pascual-Leone, 2008), that can influence the efficacy of TBS and thus increase 

intra-individual variability (for a review, see Ridding & Ziemann, 2010). 
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A series of studies included in this thesis aim to look into some of the physical and 

physiological factors that may affect TMS reliability in scenarios in which attention has not been 

carefully and sufficiently paid. Firstly, we focused on TMS parameters such as waveforms and 

current direction on young healthy volunteers in order to elucidate their influence on single- and 

paired-pulse TMS protocols. Secondarily, and given the limited data on physiological factors such 

as age (i.e. healthy older healthy controls) and age-related diseases (i.e. T2DM and AD), we 

conducted a TMS study on their influence on a single-, paired- and repetitive TMS (i.e. TBS). 

Finally, the cohorts of younger and older healthy controls were compared for specific age-related 

impact on single- and paired-pulse TMS outcomes.  

 

2.6 Safety of Transcranial Magnetic Stimulation 

 

When dealing with a medical device the safety of the procedures must be thoroughly 

investigated. Two consensus conferences have been held to establish a safe use and 

recommendations for TMS both in academic and clinical environments. The publication that came 

out after those conferences still remain the safety guidelines for TMS (Rossi, Hallett, Rossini, 

Pascual-Leone, & Safety of TMS Consensus Group, 2009). Moreover, this safety guidelines 

proposed by The Safety of TMS Consensus Group were the working basis for the TMS safety 

forms that we used to screen possible contraindications and side effects during the experiments 

of the present thesis. 

As described previously in the safety guidelines, TMS is a very safe non-invasive way of 

exploring the brain. Table 2.1 presents the reported side effects. Seizures are the most severe 

side effect and a major safety concern but they are also extremely rare. Theoretically, seizures 

can occur during two time windows, first, during the time of stimulation, and second, post-

stimulation due to the modulation of cortical excitability (i.e. kindling effect). In case of a seizure, 

TMS should be ceased and standard seizure treatment should be started. An important differential 
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diagnosis, and probably an underestimated TMS side effect, is syncope or fainting spells, over all 

if the presentation is in form of convulsive-syncope.  

 

Table 2.1. Potential side effects of TMS. Modified from Rossi et al., 2009. 

Side effect SP TMS PP TMS LF rTMS HF rTMS TBS 

Seizure induction + NR + ++ ++ 

Syncope 
Possible epiphenomenon non-related 

to direct brain effect 
++ 

Headache, local 
pain, neck pain, 
toothache 

++ ++ +++ +++ ++ 

Transient hearing 
changes 

++ NR ++ ++ NR 

Transient acute 
hypomania 
induction 

No No + + NR 

Transient cognitive/ 
neuropsychological 
changes 

NR NR + + + 

Burns from scalp 
electrodes 

NR NR NR + NR 

Induced currents in 
electrical circuits 

Only if close proximity of TMS with an electrical device 

Structural brain 
changes 

NR Inconsistent NR 

Histotoxicity NR Inconsistent NR 

Other biological 
transient effects 

NR NR 
TSH, and 

blood lactate 
level 

NR 

Abbreviations: NR not reported; + rare; ++ possible; +++ frequent. SP, single-pulse; PP, paired-pulse; TMS, 

transcranial magnetic stimulation; LF, low frequency; HF, high frequency; rTMS, repetitive transcranial 

magnetic stimulation; TBS, theta burst stimulation; TSH, transient hormone. 
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Acute mania and psychiatric changes in mood have been reported after rTMS protocols 

for uni- and bipolar depression. Thus, it is important to screen and monitor mood changes as a 

safety routine for TMS exposure.  

Local pain, headache and local discomfort are the most commonly reported side effects 

(up to an estimated 20-40% of the subjects that undergo TMS (Rossi et al., 2009)). Pain and 

discomfort usually do not last much after a TMS session and common analgesic treatment is 

normally enough for headaches that may overlast the time of stimulation. The intensity of the pain 

related side effects depends on individual susceptibility and specific characteristics of TMS 

parameters, such as intensity and frequency, coil type or scalp location.  

Another important common side effect is acoustic trauma due to loud TMS clicking noise 

that can be of the order of 120-140 dBs. This side effect can be easily avoided using earplugs as 

hear protection for both the subject or patient and the technician that applies TMS.  

A second important point of the safety guidelines are contraindications of TMS. Following 

the safety guidelines, the only absolute contraindication is intracranial electrodes when metallic 

hardware is in contact with the TMS coil discharge. The guidelines recommend to avoid using 

TMS or carefully monitor the sessions in people with implanted cranial electrodes (no direct 

contact) or cochlear implants; history of syncope, seizure or epilepsy; cerebral lesions; drug intake 

that may interact with TMS or recent drug withdrawal, and pregnant women or pediatric 

populations.  

Since the disclosure of the safety guidelines in 2009, several studies and reviews have 

been published in relation to some of the previously mentioned contraindications. Deng and 

colleagues (Deng, Lisanby, & Peterchev, 2010) have proposed specific parameters for TMS on 

patients treated with DBS. More recently a Cochrane review has been published (Chen, Spencer, 

Weston, & Nolan, 2016) on TMS as a safe and effective treatment for epilepsy. Several authors 

have studied TMS as a treatment tool for certain cerebral lesions (such as stroke) or drug abuse. 

A recent review on how TMS might affect the brain of children and adolescents has been 
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presented (Hameed et al., 2017). Even though, the authors claim that there is evidence of clear 

and safe therapeutic and neurophysiological potential, more research is still needed considering 

developmental specificities.  

 

 

3 Transcranial Static Magnetic Stimulation 

 

3.1 Fundamentals and mechanisms of action 

 

Magnetic fields can be classified into dynamic magnetic fields (DMF) and static magnetic 

fields (SMF), depending on whether there is a change of the direction or the intensity of the field over 

time that is associated with an induced electric current in accordance with Faraday’s law of induction. 

An example of a NIBS technique that uses time-varying magnetic or DMFs to modify brain physiology 

is TMS, that has been discussed in the previous chapter.  

In relation to magnetic fields that do not change over time, many studies have evidenced that 

SMFs have a great influence on biological systems. For instance, many animals rely on Earth’s 

magnetic field for spatial orientation and navigation. So as to study the SMF and their impact on 

organisms, the scientific community has suggested a classification where weak fields are those 

less than 1mT, moderate are 1mT to 1T, strong include 1 to 5T, and ultrastrong fields are those 

greater than 5T (Rosen, 2003).  

A number of studies have shown that many organisms, including vertebrates, respond 

and have the ability to use geomagnetic fields, which are weak magnetic fields, in order to orient 

themselves in space even in complete darkness as well as having a preferential position towards 

the magnetic north (Holland, Thorup, Vonhof, Cochran, & Wikelski, 2006; Lohmann, 1993; Tian, 

Pan, Metzner, Zhang, & Zhang, 2015).  
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Likewise, strong and ultrastrong fields can alter the preferred orientation of a variety of 

diamagnetic anisotropic organic molecules (Rosen, 2003), they change monkeys’ EEG while 

exposed to fields from 2 to 9T (Beischer & Knepton Jr, 1966) or modify their visual behavior when 

exposed to even stronger fields (4.6-7 T) (Thach, 1968). A widely-known example of a commonly 

used device in clinical practice of strong and ultrastrong fields is MRI equipment. Nonetheless, the 

evidence of the influence of those fields in the human nervous system is less clear. Since the clinical 

use of higher electromagnetic field MRIs has been extended, a number of publications have pointed 

towards transient but significant modifications on cortical excitability at a motor, sensory or cognitive 

levels as well as peripheral activation in form of tingling sensations or pain (Arrubla, Neuner, Hahn, 

Boers, & Shah, 2013; Schlamann et al., 2010; Shellock & Crues, 2004). While others have 

evidenced an increasing number of reported transitory adverse events such as vertigo, nausea, 

phosphenes or metallic taste (Kim & Kim, 2017; Theysohn et al., 2008). 

Moderate SMFs have also been utilized to transiently modify brain ’s reactivity and excitability 

in a controlled manner. The effects of the moderate SMFs are not yet utterly understood, but at a 

cellular level could be explained by the diamagnetic and anisotropic characteristics of the 

phospholipids that alter the ion channels and the calcium ion flux of the membrane (Rosen, 2003), 

the effects of ferromagnetic particles that are present in the brain over ion channels (Dobson & St 

Pierre, 1996), or to the Hall effect on voltage-dependent channels (Balcavage et al., 1996), albeit 

more controversial (St Pierre & Dobson, 2000). Furthermore, different animal experiments have 

shown a variety of electroencephalographic and behavior effects that overcome the time of 

exposure to moderate SMFs. Coots and colleagues have demonstrated inhibition in spinal cord 

conduction of guinea pigs (Coots, Shi, & Rosen, 2004), another study (Aguila, Cudeiro, & 

Rivadulla, 2016) found that direct exposure to SMFs of up to 75 min transiently impaired detection 

of visual stimuli and increased the reaction time in monkeys and decreased visual cortex 

excitability in anesthetized cats when neural spiking activity was directly recorded. Finally, some 

other groups have gone further and investigated the use of the SMFs for pathological conditions 



  State of the Art 

   35 

such as epilepsy in animal models (McLean, Engstrom, Holcomb, & Sanchez, 2003; McLean, 

Engstrom, Qinkun, Spankovich, & Polley, 2008). These studies suggest that SMFs may induce 

temporal plastic changes, specifically, LTD-like plastic changes. In the context of the application of 

moderate SMFs to the nervous system, a novel technique has been recently described for human 

use. The so called tSMS, is a NIBS technique that, unlike TMS that requires a rapid change in an 

electrical field, utilizes moderate SMFs that are not associated with electrical fields. 

 

3.2 Previous studies and background 

 

In 2011 Oliviero and co-workers (Oliviero et al., 2011) demonstrated that the application 

of moderate (45 MGOe; megagauss-oersteds nominal strength 628 N (64 kg) ≈ 0.5 tesla-T) SMFs 

on the primary motor cortex was able to produce a significant attenuation of cortical excitability. 

During their experiments, the authors applied a Neodymium magnet over M1 for 10 minutes and 

the TMS-induced MEPs showed an average decrease of around 25% of peak-to-peak amplitude. 

The reduction lasted for at least 6 minutes beyond the application with posterior complete 

recovery of the MEP amplitudes (Figure 3.1 shows the positioning of the magnets as well as the 

main results of the experiments). They also carried out different experiments where they tested 

whether the polarity (north and south), the size of the magnet (the bigger magnet was 45 mm 

diameter, the smaller was 30 mm diameter), or the time of exposure (exposures of 1, 5 and 10 

min) may influence the effects of SMFs. They conclude that the bigger magnet and at least 10 

min of exposure were required in order to decrease motor cortex excitability, whereas the polarity 

did not play an important role. Finally, the authors also tested the responses measured with TES 

instead of TMS. As briefly mentioned in the introduction of State of the Art (Chapters 2 and 3), 

TES bypasses the cortex and directly activates the subcortical fibers. Therefore, TES has been 

an extensively used NIBS technique to differentiate whether the effects of a given protocol belong 

to cortical or subcortical activation of the corticospinal tract. The authors did not find any changes 
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in stimulation thresholds neither in MEP amplitude when the motor system was evaluated with 

TES, thus confirming the cortical origin of the inhibitory processes after tSMS.    

 

 

 

Figure 3.1. Results on MEP amplitude after the application 10 minutes of transcranial static magnetic 

stimulation (tSMS) on the motor cortex. 

The head representation on the left shows a depiction of the magnet positioning over motor cortex during 

the intervention. The main results after 10 minutes of real or sham interventions are presented on the 

graph on the right. The light grey column symbolizes the time of intervention and the circled time points 

show the significant inhibition of the MEP amplitude after real tSMS. Modified from Oliviero et al., 2011. 

 

 

Few years later, a first independent group (Silbert, Pevcic, Patterson, Windnagel, & 

Thickbroom, 2013) replicated the reduction in motor cortex excitability. They also showed an 

increase of RMT which was related to the decrease in MEP amplitude. Moreover, Nojima and 

colleagues (Nojima, Koganemaru, Fukuyama, & Mima, 2015) further investigated intracortical 

inhibitory processes of the motor cortex. They found that TMS-elicited γ-aminobutyric acid 

(GABA)A-dependent inhibition (i.e. SICI; see Chapter 4 – Section 4.3 for physiological 

connotations) was enhanced after 15 min of tSMS, suggesting that GABA-related interneurons 

were responsible for the depression of cortical excitability. This GABA-dependent effect, though, 

is possibly related to specific cortical neural networks as shown by Arias and coworkers (Arias, 
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Adan-Arcay, Puerta-Catoira, Madrid, & Cudeiro, 2017). The authors did not find increased 

inhibition after two TMS protocols that explore GABA-inhibitory interneuron networks different 

from those evaluated by SICI (i.e. Short and long afferent inhibition, SAI and LAI, respectively). 

In addition to these findings and supporting the idea of an specific local cortical effect, Matsugi 

and Okada (Matsugi & Okada, 2017) applied tSMS to the right hemisphere of the cerebellum and 

evaluated both the M1 excitability and cerebello-brain inhibition (CBI). Their results showed a 

local inhibitory enhancement of CBI with no effects on M1 MEP amplitude.  

Finally, it has been shown that the influence of tSMS is not only limited to motor cortex. 

Several groups have investigated the effects of SMF over visual (Gonzalez-Rosa et al., 2015) 

and parietal (Carrasco-Lopez et al., 2017; Kirimoto, Asao, Tamaki, & Onishi, 2016; Kirimoto et 

al., 2014) cortices with similar inhibitory findings. The application of tSMS increased EEG power 

in the alpha range in both the visual and the parietal cortices. This increase in alpha power was 

also related to an impairment of visual and parietal tasks performance and a reduction of the 

amplitude of somatosensory evoked potentials, specifically the N20 when the tSMS was over the 

somatosensory cortex and the N30 when it was over M1.  

In summary, the easy portability due to its low weight and the low cost of this NIBS 

technique as well as all the findings described above, lead to think that in the near future the 

clinical use might be possible for those pathological conditions where there is an abnormal 

increase of cortical excitability. Aligned with this, two studies have started examining the potential 

use of tSMS in photophobia during migraine (Lozano-Soto et al., 2017) and motor impairment in 

Parkinson Disease (Dileone et al., 2017) with promising results.  
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3.3 Safety of Transcranial Static Magnetic Stimulation 

 

In a publication in 2005, Miyakoshi (Miyakoshi, 2005) reviewed the possible effects of the 

SMFs at a cellular level. The author summarized the results of several studies from different 

research groups conducted on various cells from different parts of the body reaching to the 

conclusion that SMFs do not remarkably affect cell growth or toxicity even though they might 

affect c-Jun gene expression as an anti-apoptotic factor. More importantly, Miyakoshi mentioned 

that the magnetic flux may have effects on the control of intracellular ions (particularly Ca2+) but 

its effects most probably depend on the cell type.   

Soon after the first studies on the application of SMFs on humans, three publications have 

explored both the magnetic fields and their decay with distance, and the safety of tSMS. In the 

first studies (Rivadulla, Foffani, & Oliviero, 2014; Tharayil, Goetz, Bernabei, & Peterchev, 2017), 

the authors modelled the magnetic flux and its effects calculating the amount of magnetic field 

that may reach the cortex (see Chapter 5 for further information). They did their experiments on 

different magnet sizes and configurations in both experimental conditions (Rivadulla et al., 2014) 

and a theoretical human head model (Tharayil et al., 2017). In the third publication (Oliviero et al., 

2015), Oliviero and colleagues evaluated the effects of SMFs in terms of cognitive/motor 

performance tests and biomarkers of brain cellular damage after a long exposure to the magnetic 

fields.  They studied the safeness of a two-hour exposure to static magnetic fields in 17 young 

healthy participants. They measured the serum concentration of neuron-specific enolase (NSE) 

and protein S-100, sensitive markers of neural damage and glial activation respectively. They 

also tested several cognitive and motor performance tasks such as, Mini-Mental status 

examination (MMSE), Verbal fluency test, Nine-hole peg test (NHPT) and two-Choice Reaction 

time test. Neither changes in cognitive and motor tasks nor changes in NSE serum concentration 

were found. On the other hand, tSMS led to a post-exposure reduction of the S-100 that recovered 

after 24h. S-100 is believe to translate glial reactivity and damage, hence in any case tSMS would 
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yield glial protective effects. In consequence, they claimed that tSMS does not produce tissue 

damage or cognitive/motor performance worsening.  

In addition to this last safety report, neither of the human studies already mentioned in 

Section 3.2 of the present chapter, reported any side effects. Henceforth, considering all the data 

available to this date, tSMS seems to be a safe and reversible way of changing brain’s excitability. 

Anyway, further studies will be needed to confirm the safeness of this novel NIBS technique and 

to explore further applicability for human use. 
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GENERAL METHODOLOGY: THEORETICAL FOUNDATIONS  

AND INSTRUMENTATION 

 

 

The experiments of the present thesis were conducted on human adult participants. All 

the studies were carried out in accordance with the Declaration of Helsinki and were approved by 

the local Institutional Review Board. All participants provided written informed consent prior to 

enrollment and received monetary compensation upon completion. 

In the present chapter, we will describe different methods, techniques, and protocols that 

were utilized in this thesis and related experiments. Furthermore, we will expand on their 

fundamentals and physiological implications.  

All parameters used in the study met technical recommended standards by IFCN (Deuschl 

& Eisen, 1999; Nuwer et al., 1994) and were in agreement to current recommended guidelines 

for the safe application of TMS endorsed by the International Federation of Clinical 

Neurophysiology (IFCN) (Rossi et al., 2009; Rossini et al., 2015). In the case of tSMS where no 

published guidelines are available yet, the stimulation was performed following the parameters 

shown as safe in previous literature. 

The specific parameters used in the studies of this thesis as well as the appropriate 

demographics of the samples will be described in the methods section of each particular 

experiment.  
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4 Transcranial Magnetic Stimulation 

 

As mentioned in the Introduction (Chapter 1) of the present manuscript, TMS is a powerful 

technique that allows the study but also the modification of brain dynamics of specific areas of 

the cortex, their neural pathways and brain networks that are functionally and structurally 

connected to those areas. Single- and paired-pulse TMS can be used as a neurophysiological 

tool to evaluate intra- or inter-cortical excitability, integrity of different pathways (e.g. corticospinal 

motor tract) as well as evaluate pathophysiology of several diseases or its progression over time. 

Furthermore, TMS pulses could anticipate therapeutic results or monitor the efficacy of an 

intervention. The motor response of a target muscle after the activation of the corticospinal tract 

by TMS can be recorded by placing EMG electrodes. EMG general description and implication 

will be described in Chapter 6 – Section 6.1. 

In addition, if TMS is applied in form of trains of pulses with an internal frequency, rTMS 

can induce plastic changes that overlast the time of exposure.   

In the following section, we will describe the techniques we performed during the 

experiments of the present thesis using single- and paired-pulses and their physiological 

implications. Additionally, we will comment on TBS, a specific form of rTMS that was used in one 

of the experiments.  

 

4.1 Motor hotspot and thresholds 

 

4.1.1 Motor hotspot 

 

When TMS is applied over motor cortex, the hotspot is the scalp position from where the 

largest and most consistent responses are elicited for a given target muscle. Therefore, the motor 
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hotspot becomes a perfect target for evaluating the corticospinal motor pathway. The identification 

of the motor hotspot can be improved using individual MRI-guided neuronavigation (Julkunen et 

al., 2009). 

 

 

 

Figure 4.1. Hotspot search starting location with neuronavigation. 

Figure 4.1A represents the axial view of the magnetic resonance imaging (MRI) of a reconstructed 

brain. Red lines and arrows mark the bilateral hand knob. Figure 4.1B shows the coil position in relation 

to the scalp and the landmarks for the hand cortical representation on the left hemisphere. 

 

 

If neuronavigation is available, the search starts at the hand knob of the post-central gyrus 

for the hand muscles (see Figure 4.1A). Neuronavigation helps to direct the TMS coil to specific 

places in neuronavigation. MRI scans can be used with neuronavigation systems to both identify 

a brain region and to consistently target that region within and across TMS sessions (Herwig et 

al., 2001; Ruohonen & Karhu, 2010). Furthermore, several studies have investigated the 

anatomical location and definition of the hot spot using neuronavigated TMS (nTMS) (Kantelhardt 

et al., 2010; Niskanen et al., 2010). As argued in Chapter 2 – Section 2.4, using MR-guided 

neuronavigation may reduce improve the reliability of TMS reducing individual variations and 
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eliciting more stable MEPs with greater amplitudes (Ahdab, Ayache, Brugieres, Farhat, & 

Lefaucheur, 2016; Danner et al., 2008; Julkunen et al., 2009). MRI navigated-TMS has been used 

throughout all the experiments of the present work in order to maximize the precision and 

repeatability of TMS. Specific methodology and neuronavigation systems will be discuss in the 

appropriate section of the individual experiments.  

Nevertheless, neuronavigation systems or subject’s individual MRIs might not be 

accessible or possible in every research facility or experiment. In that case, there are some 

recommendations for a comprehensive, reliable and easy way of accomplishing the search of 

motor hot spot. The basic protocol for hotspot search when neuronavigation is not available 

includes starting the search at approximately coordinates C3/C4 of the International 10/20 system 

for EEG electrode placement (Herwig, Satrapi, & Schonfeldt-Lecuona, 2003) and move from there 

to nearby scalp locations creating a grid of search over the motor cortex.  

Even though, neuronavigation was used in all the experiments included in this thesis, 

obtaining the subjects’ individual MRIs was not feasible in some of the studies. In those research 

protocols, we utilized a general MNI template – a detailed description of the studies that included 

the individual MRI and in which we used the template will be incorporated in the specific methods 

section. When an MNI template was used, the participants were asked to wear a swimming cap 

to mark head landmarks. The measures for head landmarks and the procedure to start the search 

of the hotspot for a figure-of-eight coil was as follows (See Figure 4.2 for schematic representation 

of the procedure). First, we found scalp vertex by measuring inion-to-nasion and tragus-to-tragus 

distances, the intersection of both measurements is the vertex or Cz in the International 10/20 

system (marked as an A in Figure 4.2A). From the vertex then we located two points at 5 cm, 

one towards the nasion (named as B2 in Figure 4.2A) and the second towards the ear on 

whichever side was be stimulated – the latter is the starting point and the approximately location 

of coordinate C3/C4 (left/right hemispheres respectively and named as B1 in Figure 4.2A); by 

drawing a dotted line between these two points one can help orient the coil in the optimal 45° 
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angle for motor cortex stimulation. In order to place the center of the coil over C3/C4 to start the 

search, the most common procedure is to measure from the center of the coil to the front and 

mark that distance over the dotted line beginning measuring from C3/C4 (point C of Figure 4.2A).  

 

 

 

Figure 4.2. Hotspot search starting location without neuronavigation. 

Figure 4.2A represents the axial view of a head with a swimming cap with the drawings of the procedure 

for the search of motor hotspot. A, vertex or Cz; B, 5cm spots towards the nasion and the left ear; B
1, 

is 

approximately C3; C, is the position of the front of the coil. Blue dots show a grid that could possibly be 

used during the search. Figure 4.2B presents the coil position in relation to the scalp and the landmarks 

for the hand cortical representation on the left hemisphere. 

 

 

After placing the coil on the correct spot in the scalp (see Figure 4.2B or Figure 4.1B if 

nTMS is used), first we started with subthreshold intensities. Intensities were then increased until 

the point where responses started being elicited in a reproducible way. After, we tried different 

spots following a grid similar to the one formed by the blue dots in Figure 4.2A, we then chose 

the one with larger and more consistent responses and selected that as our hot spot. Once the 

hotspot was determined we proceeded with the search of RMT. 
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4.1.2 Motor thresholds 

 

Motor threshold is defined as the lowest intensity that elicits a MEP in a target muscle 

either at rest (resting motor threshold, RMT) or during a certain voluntary contraction (active motor 

threshold, AMT). Both thresholds reflect the activation of a core of cortical elements that send 

spinal projections down to the target muscle (Hallett, 2007). In the case of AMT, the muscle pre-

activation results in cortical but also spinal cord cells that are closer to firing, this means AMT has 

greater influence of the spinal cord components and is lower than RMT. Motor thresholds 

contribute to find an individual reference of the subject’s corticalspinal excitability at the moment 

of the experiment and provides with a value that can be used to set the appropriate intensity of 

subsequent stimulations. Thresholds are usually expressed as a percentage of the MSO of a 

particular device.  

The RMT, as defined in guidelines (Groppa et al., 2012; Rossini et al., 2015), is calculated 

as the lowest intensity of stimulation that elicits an MEP of at least 50 microvolts (µV) (or a visible 

twitch if electromyography is not used) in at least 50% of trials, commonly five of ten pulses 

delivered to the same region.  

RMT is conditioned by the axonal excitability of corticospinal cells that is regulated by 

voltage-dependent Na+ channels. Several studies have shown that Na+ channel blockers, like 

some antiepileptic drugs (e.g. Carbamazepine), increase the RMT, in other words, these drugs 

decrease corticospinal excitability (for review see Paulus et al., 2008; Ziemann et al., 2015). Other 

factors that may have an effect on RMT are the waveforms and current directions of the TMS 

pulse. MonoPA at threshold intensities translates the activation of neural components that yield to 

the I1-wave. Whereas monoAP at that intensity, tends to elicit disperse and desynchronized late I-

waves (more information about D- and I-waves is explained in Chapter 2 – Section 2.3 of the 

present thesis). For biphasic waveforms, the important part of the wave at threshold intensities 
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seems to be the second half, thus in biAP-PA, the PA component is believed to be more relevant at 

low intensities (Di Lazzaro et al., 2011). 

AMT has been less investigated in drug experiments. Despite the fact that, after monoPA 

stimulation and at maximum voluntary contraction, recordings from spinal cord show that the 

amplitude of all I-waves increase and later I-waves appear (Di Lazzaro et al., 2011), the 

publications cited above (Paulus et al., 2008; Ziemann et al., 2015) agreed that there is no 

experimental evidence to think that RMT and AMT are differentially affected by drugs. AMT was 

defined as the lowest intensity that elicited MEPs of at least 200 µV in at least 50% of the trials 

(typically 5 of 10 pulses) with the target muscle slightly contracted at around 25% of the subject’s 

total strength. 

 

4.2 Single-pulse protocols 

 

4.2.1 Motor evoked potential 

 

Over motor cortex, the application of a single pulse of sufficient intensity evokes a 

response of the corticospinal tract reflecting a poly-synaptic activation via layer-V PTNs. This 

activation leads to a muscle response or MEP that can be recorded from a target muscle by 

placing EMG electrodes (for further information about electromyography see Chapter 6 – Section 

6.1, for electrode placement on Figure 6.1). Latency and amplitude of the MEP are well stablished 

neurophysiological measures that researchers use to determine the integrity and excitability of 

the corticospinal tract (Figure 4.3). Latency is usually measured from the TMS pulse artifact to 

the onset of the MEP and its normal values are around 20-24 ms. MEP latency primarily translates 

the speed conduction of myelinated axons, and hence, it indirectly decodes the preservation of 

the myelin on the activated neurons. MEP amplitude is usually quantified from the negative to the 
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positive peaks, i.e. peak-to-peak amplitude. The amplitude of MEPs changes in a sigmoid fashion 

depending on the TMS pulse intensity. Input-output curves reflect these changes of amplitude in 

relation to intensity (see Figure 4.4 for an idealized input-output curve example). Amplitude highly 

depends on the number of corticospinal axons that have been activated after a TMS pulse. 

Considering that TMS mainly excites PTNs by the activation of a complex network of intracortical 

circuits, the MEP amplitude is very susceptible to different brain states and cortical excitability 

changes of that interneuron network. Studies with CNS drugs also translate the heterogeneity of 

factors that may influence MEP amplitude through a complex circuitry regulated by multiple 

neurotransmitters (Paulus et al., 2008; Ziemann et al., 2015). 

 

 

Figure 4.3. Motor evoked potential (MEP). 

Latency is measured in milliseconds (ms) from the TMS pulse 

artifact (green arrow) to the onset of the MEP. MEP amplitude 

is measured in millivolts (mV) and peak to peak (difference 

between red lines). 
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Figure 4.4. Input / Output curves (I/O curves). 

I/O curves have a characteristic S-shape and are usually 

represented in a graph were x-axis corresponds to TMS intensity 

either as a % of maximal stimulator output (MSO) or % of motor 

threshold, and y-axis is the MEP amplitude. Abbreviations: MEPmax, 

maximal MEP amplitude; ½ MEPmax, half maximal MEP amplitude; 

S50, intensity for ½ MEPmax.  

 

 

4.2.2 Cortical Silent Period 

 

A single TMS pulse at a suprathreshold intensity applied to the motor cortex during tonic 

contraction of a target muscle produces an facilitatory response (MEP) followed by an inhibitory 

effect (suppression of the maintained muscle voluntary contraction) (see Figure 4.5 as an 

example of cSP in a healthy volunteer). Compared to a single-pulse over a relaxed muscle, the 

MEPs elicited during voluntary muscle activation are usually larger and have shorter latencies 

due to an increase in corticospinal tract excitability. This increment in cortical excitability can be 

measured by epidural electrodes showing and enlargement of all the I-waves while the D-wave 

remains intact (Di Lazzaro, Rothwell, & Capogna, 2017). The inhibitory effect of TMS is observed 
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as a suppression of the background EMG activity that follows the MEP. This period of EMG 

silence may last up to hundreds of milliseconds. 

Since the exact point were the inhibitory effects of cSP starts is unknown, most of the 

authors quantify cSP including the active part (i.e. the MEP), therefore the measure of the cSP 

begins at the onset of the MEP and ends with the resumption of muscle activity (Inghilleri, 

Berardelli, Cruccu, & Manfredi, 1993; Orth & Rothwell, 2004). This way of measuring cSP has 

been called “relative cSP”. However, some other publications only include the suppression of the 

voluntary muscle contraction (“absolute cSP”).  

In order to better understand the spinal cord contribution and influence on the duration of 

the cSP, Triggs and coworkers (Triggs et al., 1993) performed broadly used techniques that 

explore the integrity and excitability of the peripheral nervous system up to the spinal cord (i.e. H-

reflexes and F-waves). The authors found that the first 50-75 ms of the EMG suppression are 

most probably due to spinal mechanisms, while the late part of the cSP is related to inhibitory 

processes in motor cortex. In terms of pharmacological effects, different studies have suggested 

that cSP is related to the GABAergic system, mainly GABAB receptor-mediator inhibitory 

processes. Siebner et al. (Siebner, Dressnandt, Auer, & Conrad, 1998) have reported lengthening 

of the cSP duration following continuous intrathecal administration of baclofen in a patient with 

generalized dystonia. GABAA receptor agonists also seem to prolong cSP, but overall when cSP 

is performed at high TMS intensities. In summary, cSP is a suitable technique to assess inhibitory 

processes that takes place in the whole corticospinal track as well as at a cortical level exploring 

GABAergic systems. In fact, cSP was found to be abnormal in some diseases that affect cortical 

excitability, such us Parkinson’s disease (Valls-Solé, 2000), stroke (Liepert, Restemeyer, 

Kucinski, Zittel, & Weiller, 2005) or dystonia (Huang, Trender-Gerhard, Edwards, & Mir, 2006). 
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Figure 4.5. Cortical Silent period (cSP). 

The figure shows ten over-imposed trials that have been rectified. The length of the 

cortical silent period (cSP) was measured from the onset of the MEP to the recovery 

of prior muscle activation (horizontal light blue line), i.e. relative cSP. The green and 

red dots mark how to measure the absolute cSP (from the end of the MEP to the 

resumption of muscle activity). The blue arrow represents the TMS pulse artifact. 

 

 

4.3 Paired-pulse protocols 

 

TMS applied in a series of two pulses or paired-pulse sequence can provide non-invasive 

means to evaluate the balance of inhibition and facilitation as well as cortical interaction, integrity 

and connectivity.  

The effects of paired-pulse TMS depend on the intensity of each pulse as well as the time 

between pulses, the so-called interstimulus interval (ISI). The first pulse of the sequence is 

referred as conditioning pulse (CP) and it pre-sets the reactivity of the target cortical area. The 

subsequent pulse is the test pulse (TP), the pulse given at the target cortex from which we elicit 

a response.  
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Paired-pulse TMS stimulation can be delivered to a single cortical target or different 

cortices intra- and inter-hemispherically, to two different brain regions or by pairing peripheral and 

central nervous systems exploring cortical connectivity activity via circuits of more distal origins. 

More recently real-time EEG has been incorporated to allow the examination beyond non-motor 

cortical areas (Farzan et al., 2010).  

Over the motor cortex, the MEP elicited by a paired-pulse TMS (conditioned MEP) is 

compared to unconditioned MEP (i.e. MEP elicited by a non-conditioned or single-pulse at a 

constant supra threshold intensity) as a % of change.  

Paired-pulse TMS to primary motor cortex allows for assessing the balance between 

inhibitory and facilitatory effects of specific intracortical neural networks as well as the 

corticocortical connections in relation with GABAergic and glutamatergic systems. Different 

protocols have been described depending on the intensity of the pulses and the length of the ISI. 

These techniques had been broadly studied in the motor cortex and we will expand on their 

physiological connotations bellow. The paired-pulse TMS protocols most frequently reported in 

literature have been short-interval intracortical inhibition (SICI) (Kujirai et al., 1993), long-interval 

intracortical inhibition (LICI) (Valls-Solé, Pascual-Leone, Wassermann, & Hallett, 1992) and 

intracortical facilitation (ICF) (Kujirai et al., 1993; Valls-Solé et al., 1992), schematically illustrated 

in Figure 4.6. Conventionally paired-pulse TMS have been performed with monoPA pulses, most 

probably due to historical reasons and technical availability when they were first described.  

For the experiments of this thesis, we chose the most reported paired-pulse TMS applied 

to a single cortical region, primary motor cortex (i.e. SICI, LICI and ICF).  
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Figure 4.6. Schematic representation of single- and paired-pulse protocols. 

This graph presents the responses to single-pulse TMS (unconditioned MEP) and the three 

different paired-pulse protocols used in this thesis. Abbreviations: CP, conditioning pulse 

(presented in blue); ICF, intracortical facilitation; ISI, interstimulus interval; LICI, long-interval 

intracortical inhibition; SICI, short-interval intracortical inhibition; TP, test pulse (presented in red).  

 

 

4.3.1 Intracortical inhibition 

 

During the protocols of intracortical inhibition the amplitude of the MEPs is dramatically 

decreased compared to a MEP elicited by a suprathreshold TMS single-pulse. Both SICI and LICI 

have different characteristics of pulse parameters but they also target particular intracortical and 

neurotransmitters systems.    
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SICI consists in a subthreshold CP followed by a suprathreshold TP with an ISI between 

1 and 6 ms (Kujirai et al., 1993). SICI can be enhance by drugs that increase GABAA activity, 

therefore, it may provide information primarily about the activation of the GABAA-ergic inhibitory 

interneurons in the cortex (Chu, Gunraj, & Chen, 2008; Di Lazzaro et al., 2000, 2006; Paulus et 

al., 2008; Teo, Terranova, Swayne, Greenwood, & Rothwell, 2009; Ziemann, 2013)(Chu et al., 2008). 

At the shorter ISIs, SICI is believed to also reflect neural refractoriness period and synaptic 

inhibitory processes (Cengiz, Murase, & Rothwell, 2013). In the previously described theoretical 

canonical model from Di Lazzaro (Di Lazzaro & Rothwell, 2014) and subsequent studies where 

the authors recorded D- and I-waves after TMS (see Chapter 2 – Sections 2.1 and 2.2), SICI was 

found to inhibit late I-waves (I2 and later I-waves). D- and I1-waves did not decrease after SICI 

(Nakamura et al., 1996; Di Lazzaro, Restuccia, et al., 1998; Di Lazzaro et al., 2002; Ni et al., 

2011). Hence, all together SICI conditioning pulse interacts with chains of inhibitory GABAA 

interneurons in layers II and III of the primary motor cortex probably by producing IPSP in the 

circuits.  

On the other hand, LICI happens when both CP and TP are supra threshold and the ISI 

is from 50 to 200 ms or longer (Valls-Solé et al., 1992).  LICI is believed to be the product of 

postsynaptic GABAB receptor activity (Chu et al., 2008; Paulus et al., 2008; Werhahn, Kunesch, 

Noachtar, Benecke, & Classen, 1999; Ziemann, 2013). As SICI, LICI also inhibits later I-waves 

while D- and I1-waves remain intact (Nakamura et al., 1996; Di Lazzaro, Restuccia, et al., 1998; 

Di Lazzaro et al., 2002; Ni et al., 2011). Therefore, LICI activates inhibitory circuits of GABAB 

interneurons in layers II and III of the motor cortex.  

 

4.3.2 Intracortical facilitation 

 

Facilitatory protocols enhance intracortical circuits and produce larger conditioned MEPs 

when compared to unconditioned MEPs. The most frequently used facilitatory paired-pulse TMS 
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is called ICF. ICF is elicited when the CP is subthreshold followed by a suprathreshold TP. ISI is 

from 8 to 30 ms (Kujirai et al., 1993; Valls-Solé et al., 1992; Ziemann, Rothwell, & Ridding, 1996). 

Even though the exact mechanisms remain unclear, it is largely believed that ICF indicates an 

excitatory neurotransmission mediated by NMDA receptor. This is supported by pharmacological 

studies, which showed a decrease of facilitation by NMDA receptor antagonists (e.g. 

dextromethorphan or memantine) (Paulus et al., 2008; Sohn YH, Jung HY, Kaelin-Lang A, & 

Hallett M, 2002; Ziemann, 2013; Ziemann, Tam, Butefisch, & Cohen, 2002). Unlike inhibitory 

protocols, ICF does not change the amplitude or number of corticospinal waves (Di Lazzaro et 

al., 2006; Ni et al., 2011). Different hypotheses have been proposed, first ICF may result from the 

recruitment of circuits unrelated to those involved in I-wave generation evoking a more 

desynchronized activity not evident in the epidural records. Additionally, despite ICF cortical origin 

(Cash et al., 2017), contributions from other cortices or brain structures as well as of spinal 

mechanisms cannot be entirely excluded  (Di Lazzaro et al., 2006). Following this last assumption 

Wiegel et al. (Wiegel, Niemann, Rothwell, & Leukel, 2018) have studied the possible subcortical 

contribution to ICF by pairing the ICF protocol, and the sub- and suprathreshold TMS pulses to 

H-reflexes. The H-reflexes evaluate the spinal cord excitability by eliciting reflex mechanisms after 

the electrical stimulation of peripheral sensory nerve fibers. By pairing those two protocols the 

authors were able to objectify the modulation of the H-reflex response after a subthreshold TMS 

pulse. This observed facilitation in the H-reflex is related to its facilitation after the ICF protocol 

suggesting that the subthreshold CP is able to trigger subcortical and spinal processes that may 

contribute to the facilitation of MEPs.  

 

4.4 Repetitive Transcranial Magnetic Stimulation 

 

Repetitive transcranial magnetic stimulation (rTMS) refers to a series of TMS pulses 

applied in form of trains with a specific internal frequency. Depending on the particular frequency 
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of rTMS, dynamics of human neural networks can be modified beyond the duration of the 

stimulation by modulating those networks in a selective and maintained way. This repetitive form 

of TMS enables the characterization of the mechanisms of cortical plasticity and has become a 

treatment tool of great value (for review see Rotenberg, Horvath, & Pascual-Leone, 2014; 

Wassermann et al., 2008). 

Nowadays, several rTMS protocols have been described. These rTMS protocols have 

been historically classified into inhibitory or facilitatory depending on their ability to either enhance 

or suppress brain excitability. Among the most frequent rTMS presentations we should point out 

low-frequency rTMS (frequencies equal or under 1Hz, this is a pulse per second), high-frequency 

rTMS (frequencies equal or over 5Hz) and more complex or patterned rTMS paradigms that follow 

intrinsic brain oscillatory activity, like TBS protocols. One of the experiments of the present thesis 

explores the reliability of a specific TBS protocol (i.e. iTBS). iTBS, when evaluated at a population 

level, enhances cortical excitability. The following section will be dedicated to explain TBS and its 

physiological implications. 

 

4.4.1 Theta-burst stimulation 

 

There is an increasing interest in directly measuring the mechanisms of human brain 

plasticity by the use of TMS. In Chapter 2 – Section 2.4 we defined plasticity as the ability of the 

CNS to adapt to different internal and external conditions. At a synaptic level, plasticity results 

from the enhancement or diminution of the strength of the synaptic transmission (i.e. LTP and 

LTD, respectively). In animal models,  LTP and LTD have been long ago explored by the 

application of a repetitive pattern of electrical stimuli on rodent hippocampal slices (Bliss & Lomo, 

1973; Diamond, Dunwiddie, & Rose, 1988; Bliss & Cooke, 2011). Figure 4.7 represents the 

effects of high- and low-frequency stimulation on intracellular recordings. As shown in the figure, 
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high frequencies lead to a potentiation of the EPSP and thus to LTP, while on the contrary, low 

frequencies yielded inhibitory responses and LTD.  

 

 

 

Figure 4.7. Long-term potentiation and depression results in animal model studies. 

Schematic representation long-term potentiation (LTP) and depression (LTD) induction in a pathway after 

high- and low-frequency stimulation (HFS and LFS, respectively). Upper- and lower-right diagrams present 

the results on the excitatory post-synaptic potentials (EPSP) after HFS and LFS compared to controls 

showing LTP and LTD responses. Adapted from Bliss & Cooke, 2011. 

 

 

Following the approach of the animals studies and in vitro preparations, an ultra-high 

frequency patterned rTMS application termed TBS emerged for human use (Huang, Edwards, 

Rounis, Bhatia, & Rothwell, 2004). TBS induces a long-lasting neuromodulation outlasting the 

stimulation time with shorter stimulation durations than standard rTMS. TBS is named after the 

intrinsic basic frequency of the protocol that resembles the theta range of EEG recordings (5-8 

Hz). The basic structure of TBS involves bursts of 3 pulses at a 50 Hz frequency repeated every 
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200 ms (i.e. 5 Hz). Similar to low and high frequency rTMS, TBS can be applied continuously 

during 40 sec (600 pulses in total) reducing the MEP amplitude in a LTD-like effect for about 50-

60 min, or intermittently (2 sec on, 8 sec off) for 190 sec to achieve an LTP-like effect increasing 

MEP amplitude during 60 min after the stimulation (Wischnewski & Schutter, 2015).  

These TBS protocols have been used to identify age-related changes in the mechanisms 

of plasticity across the lifespan in healthy individuals (Freitas et al., 2011), and of particular 

importance for the present thesis, on T2DM (Fried et al., 2017), and AD (Di Lorenzo et al., 2016; 

Koch et al., 2012); among other disorders where TBS revealed altered neuroplastic mechanisms 

such as autism spectrum disorders (Oberman et al., 2012), traumatic brain injury (Tremblay et 

al., 2015) and schizophrenia (McClintock et al., 2011). 

Freitas et al. (Freitas et al., 2011) showed that the inhibitory effect and the time-to-baseline 

of the LTD-like responses after cTBS decrease with advancing age suggesting a progressive 

physiological decline of plasticity cortical processes. In disorders associated with aging, such as 

T2DM and AD, it has been shown a reduction of the LTP-like response after iTBS (Koch et al., 

2012; Di Lorenzo et al., 2016; Fried et al., 2017) when compared to controls. In particular, the 

decrease of LTP-like effects after iTBS in AD may yield  absent responses and, even though the 

impairment of the response is not related to the years from the onset of the disease, AD patients 

presenting more altered LTP-like plasticity have more severe cognitive decline (Di Lorenzo et al., 

2016). Interestingly enough, AD patients showed LTP-like impaired plasticity but preserved or 

more prominent LTD-like effects after cTBS. The comparison between T2DM or AD patients to 

controls is shown in Figure 4.8.  
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Figure 4.8. Effects of iTBS on T2DM and AD patients compared to healthy controls. 

The figure represents the effects of iTBS, known to induce LTP-like plasticity, in patient population and 

age-matched healthy controls. (A) Shows the comparison of the TMS-plasticity measure between Type-

2 Diabetes Mellitus (T2DM) patients and healthy controls (Fried et al., 2017) where at time 5 and 10 

post-iTBS the authors showed a significant difference in MEP amplitude enhancement. (B) Compares 

the LTP-like effects on patients with dementia due to Alzheimer’s Disease (AD) and healthy controls 

(Koch et al., 2012). AD and controls were significant different after 10 min post-iTBS, this study also 

showed a paradoxical inhibitory response in the AD group.  

 

 

Thus, in the near future, TBS as a neuromodulation tool may have a relevant role in the 

diagnosis and prognosis of highly prevalent debilitating diseases associated with increasing age 

such as AD and T2DM. While the effects of TBS on these populations have been tested, the 

reliability of TBS and possible influencing factors has been insufficiently studied (see Chapter 2 – 

Section 2.5 for further information). Consequently, as the popularity of TBS increases, the study 

of the factors that may have an impact on the inter- and intra-subject variability of TBS becomes 

essential.  
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5 Transcranial Static Magnetic Stimulation 

 

Static magnetic fields have been found to modify the excitability of the cortical areas 

subjacent to the point of stimulation as explained in Chapter 2 - Section 3. For the experiments of 

the present work we stimulated the primary motor cortex with a cylindrical neodymium magnet 

(3.8 cm diameter x 3.8 cm height), (NdFeB; 45 MGOe; megagauss-oersteds, nominal strength 65 

kg ≈ 0.5 tesla-T (Model DX8X8 K&J Magnetics, US)) during 15 minutes. A non-magnetic replica 

of identical appearance and weight (i.e., indistinguishable from the magnet) was used for sham 

tSMS. Even though different experiments have shown that the polarity of the magnet do not 

influence the effects over motor cortex, we decided to use south polarity (marked with an “S” in 

both the real and the sham cylinders) as it has been commonly reported in previous studies 

(Oliviero et al., 2011; Silbert et al., 2013; Nojima et al., 2015). Further details on the specific 

features of the methodology are described in Chapter 10.  

Magnetic fields, unlike electric fields, can go through tissues without changing or loosing 

intensity, however all magnetic fields decrease exponentially with the distance. Therefore, 

knowing that the motor cortex might be few centimeters (~2-3 cm) far away from the stimulation 

point over the scalp, the amount of the magnetic flux that effectively stimulates the motor cortex 

is not the same as the nominal strength of the cylindrical neodymium magnet. Rivadulla and 

colleagues (Rivadulla et al., 2014) characterized the decay of the magnetic field (B-field) and the 

reproducibility of the magnet they used in their previous experiments (Oliviero et al., 2011; Silbert 

et al., 2013; Kirimoto et al., 2014). The authors showed that the size of the magnet is relevant for 

cortical stimulation given that at 2-3 cm (calculated distance of motor cortex from the magnet on 

the scalp) the B-field strength is about 120-200mT. More recently, Tharayil et al. (Tharayil et al., 

2017) have modelled the B-field into a realistic 3-D human head adding the magnetic properties 
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of the various tissues. This modelling concluded that the most important factor for the stimulation 

with SMF was the cortex-to-magnet distance and that the strongest B-field was around the edges 

of the magnet.  

Similarly, we have measured the decay of the B-field of the magnet we used in our 

experiments and found a comparable decrease with distance and analogous intensities for the 

cortex at the calculated distance (Figure 5.1). 

 

 

Figure 5.1. Characterization of the magnetic flux (B) and its exponential decay with the distance 

measured from the center of one of the poles (Z). 

Y-axis presents the magnetic flux (B) in Gauss (1T = 10000 Gauss) and the x-axis shows the distance 

from the center of the magnet (Z) in cm. At 2cm, B is over 1200 Gauss (120 mT). 
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6 Neurophysiological recording techniques 

 

The utility of the NIBS techniques can be greatly enhanced by combining stimulation with 

neurophysiological and imaging techniques that allow the objective measurement of the effects 

of magnetic fields on brain’s reactivity and plasticity and can guide us on where and how to 

stimulate. In the present thesis two of the most widely known neurophysiological techniques (i.e. 

EMG and EEG) have been used to evaluate the effects of different factors in TMS reliability 

(experiments of Chapters 7, 8 and 9) but also to explore the effects of tSMS on motor cortex 

excitability (experiments of Chapter 10).  

 

6.1 Electromyography 

 

During the studies of the present thesis we performed surface electromyographic 

recordings of the intrinsic hand muscles using standard cleaning procedures and the belly-tendon 

montages recommended by international guidelines (Deuschl & Eisen, 1999). This means that 

the area where the electrodes were attached was scrubbed with alcohol swipes for skin cleaning 

and preparation. The electrodes were positioned as shown in Figure 6.1 following a conventional 

belly-tendon montage, with the negative electrode (or active electrode) over the belly of the first 

dorsal interosseous (FDI) muscle and the positive electrode (or reference) over first 

interphalangeal joint of the second finger. The ground electrode was placed over the ipsilateral 

ulnar styloid process. Specific features of the montages, targeted muscles, EMG devices, filter 

characteristics, pre- and post-processing methods of the recordings will be described in the 

appropriate methods section of the different experiments.  
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Figure 6.1. Standard belly-tendon montage for first dorsal 

interosseous (FDI) muscle. 

The positive or reference electrode is presented in red and 

positioned over the proximal interphalangeal joint. The black 

electrode represents the negative or active electrode and it is 

over the belly of the muscle or the motor point. The ground 

electrode is over the ulnar styloid in green. 

 

 

Electromyography is a wide-world used technique that detects biological potentials 

generated by an electric volley that activate cells of the central and peripheral nervous systems. 

Therefore, EMG can be a very useful technique for the evaluation and monitoring of the 

somatosensory and motor systems both from a clinical and a research perspective. In the case 

of TMS, EMG can detect the electrical volley that comes from the direct or indirect activation of 

pyramidal tract neurons within the motor cortex. That motor volley travels all the way down through 

the spinal cord and finally activates the muscle, evaluating the integrity of the corticospinal tract 

pathway. Throughout the present work, EMG is used to evaluate the changes in motor cortex and 

spinal tract reactivity and excitability after the exposure to either static or electromagnetic fields 

and the reliability of different TMS protocols.  

 

 

 



  General Methodology  

   64 

6.2 Electroencephalography 

 

Understanding and defining neural networks and their dynamics has become essential to 

disentangle intrinsic brain communication mechanisms. Neural networks translate interactions 

between different brain regions and can explain cognitive and behavioral processes. The 

information transfer in those networks within and across brain regions is believed to occur through 

synchronized oscillatory activity (Bonnefond, Kastner, & Jensen, 2017; Buzsaki, 2005; Fries, 

2005, 2015; VanRullen, 2016). Furthermore, abnormal or desynchronized oscillatory dynamics, 

defective interactions or damaged neural network may lead to neurological and psychiatric 

disorders.  

EEG is a direct and non-invasive way to measure the spontaneous and event-related 

electrical activity generated in the convexity of the CNS. It is an exceptional multidimensional tool 

for studying cerebral electrophysiology and neurocognitive processes given its high-temporal 

resolution. This neurophysiological technique can capture neural signals and brain synchronized 

oscillatory dynamics during the timeframe they are happening. EEG directly measures the 

oscillations which translate biophysical changes at a neural population level. Despite the high-

temporal resolution of EEG, its ability of spatial localization is limited. EEG allows to discriminate 

between changes in brain oscillations at a large scale (e.g. changes in synchronization between 

brain areas of a given network) but it is not very accurate answering questions about specific 

small areas or areas far deep from the cortex.  

Neural oscillations have been conventionally categorized into five frequency bands, which 

are: delta (0.5– 3.5 Hz), theta (4– 7 Hz), alpha (8– 12 Hz), beta (13– 30 Hz) and gamma (> 30 

Hz). The study of brain oscillatory activity is of great relevance in defining those neural networks 

and understanding brain processes and cognition. Nevertheless, the direct relationship between 

frequency bands and cognitive or behavioral processes remains unsolved.    
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Of special relevance for the present thesis is the role of the most important frequency 

bands in terms of behavioral response of the motor cortex. The functional interpretation of 

changes in alpha and beta bands as part of the cortical control of the motor system has been 

largely discussed. The alpha band is believed to be more related to a phasic inhibition (i.e. sudden 

stop of a initiated movement or a suppression of the movement), in other words, a widespread 

general break of the system (Pani et al., 2014). However, what the beta range represents in the 

motor cortex is less well understood.  

The role of beta band has been largely discussed during the last decades. While before, 

most of the scientific community argued that beta was a resting rhythm, nowadays the latest 

investigations have suggested a more intricate relationship. Beta band most probably represents 

the level of motor preparation and is a rhythm of movement prevention. This hypothesis was well 

stablished in different studies were spontaneous (Gilbertson et al., 2005) or entrained (Pogosyan, 

Gaynor, Eusebio, & Brown, 2009) beta activity was highly associated to worse or slowed motor 

performance. This relationship is also supported by the findings of critically enhance beta 

oscillations in diseases affecting the motor system such as Parkinson’s Disease (Little & Brown, 

2014) and a casual relation between this enhancement and akinetic and dyskinetic symptoms.  

In a recent review, Engel and Fries (Engel & Fries, 2010) have also suggested that the 

main role of the beta band is the maintenance of the status quo in the motor system, and not only 

the lack of movement or the prevention of it, reflecting a fine regulation of motor behavior. 

Knowing that EEG recordings can provide a vast amount of physiological information, 

combining NIBS techniques and EEG will allow deeper understanding of the brain and its 

physiological changes, as well as the pathophysiological processes of various diseases. As an 

example, a pulse or a train of TMS pulses over a specific brain area changes immediately the 

oscillatory properties of region under the coil but will be followed by a spread to areas that are 

anatomically but also functionally connected, inducing the modulation of neural networks that 

connect cortical areas with subcortical regions and also connect both hemispheres. Furthermore, 
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NIBS-EEG studies will facilitate the elucidation of brain behavior in non-motor areas through 

objective and quantifiable tools. 
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FIRST BLOCK OF EXPERIMENTS: RELIABILITY OF  

TRANSCRANIAL MAGNETIC STIMULATION  

AND INFLUENCING FACTORS. 

 

 

Test-retest reliability refers to the study of the consistency of the outcome of a given 

technique regardless how many times you perform it o who performs it. The study of the reliability 

of TMS, and notably the study of the factors that may influence it, can help to better understand 

the TMS-brain interaction and the cortical processes that take place following a TMS pulse, but 

more importantly, it will improve the overall performance of TMS for future studies and for eventual 

clinical applications. 

During this first set of experiments, we evaluated factors that we hypothesized would 

influence the reliability of the TMS outcome after different single-, paired-pulse and repetitive TMS 

protocols. As already mentioned in the general introduction to the current state of the NIBS field 

of the present thesis (State of the Art (Chapters 2 and 3)), these factors can be categorized into 

physical – technical (i.e. waveform and current direction) and physiological (i.e. ageing, age-

related and metabolic diseases). 

The first of these group of experiments analyzes the so called physical or technical factors 

in a sample of young and healthy controls (Chapter 7). In other words, those factors that we can 

control by introducing certain parameters in the setup of our devices. More specifically, our work 

was focused on the influence of waveform (biphasic vs monophasic) and current direction (PA vs 

AP) based on previous publications which argued that these TMS pulse parameters activate 
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rather specific neural populations. In a second experiment, we evaluated the impact of aging and 

of the two more prevalent age-related and metabolic diseases, i.e. dementia due to Alzheimer’s 

(AD) and Type-2 Diabetes Mellitus (T2DM), on single- and paired-pulse TMS as well as a 

particular rTMS protocol that is well-known to allow the assessment of cortical plasticity (i.e. iTBS) 

(Chapter 8). Finally, we compared the outcomes of the single- and paired-pulse TMS protocols 

between the young and older healthy controls for those waveforms and current directions that 

were common between the two experiments to discern is age as a factor has any influence 

(Chapter 9).   

 

 

7 The effects of waveform and current direction on the efficacy and test-retest 

reliability of transcranial magnetic stimulation 

 

7.1 Introduction 

 

Despite the substantially growth on the use of TMS, there is still an important lack of 

understanding the underlying mechanisms, especially with regard to the interaction of TMS with 

the neural substrate, and how different parameters influence the efficacy and reliability of TMS-

based neurophysiological assessments. In Chapter 2 of the present thesis we described some of 

the parameters that are known to influence the current-brain interaction. Although we know some 

of these parameters may have an impact on the effects of TMS, a deeper understanding of these 

issues is crucial to assess the utility of TMS measures as possible neurophysiologic biomarkers 

in health and disease. 

The seemingly straightforward account of the mechanisms of TMS belies the complex 

interplay between the various physical parameters and configurations of the induced current and 
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the properties of the individual’s brain where the electro-magnetic induction takes place. In 

particular, factors such as pulse waveform and current direction have not received sufficient 

attention in the literature, despite clear evidence of their importance in shaping the outcome of 

TMS (Mills et al., 1992; Sakai et al., 1997; Kammer et al., 2001). Most TMS stimulators generate 

pulse waveforms that are either biphasic or monophasic (although other shapes such as half-sine 

and square-wave pulses are also available on some machines). These two types of waveforms 

can be distinguished based on the length and duration of the first and second phases of the pulse 

waveform (see Chapter 2 – Sections 2.2 and 2.3 for further information on the distinctive features 

of pulse parameters).  

In addition to pulse shape, the direction of the induced current in the brain is determined 

by the type of coil (e.g., circular or figure-8), the direction of the current through the coil windings 

(e.g., posterior-to-anterior or anterior-to-posterior at the center of a figure-8 coil), the orientation 

of the coil relative to the stimulated cortex (e.g., perpendicular to motor cortex, which is 

approximately a 45 angle relative to the midline), and sulcal geometry (Salvador et al., 2011).  

Previous studies suggest that specific waveforms and current directions preferentially 

stimulate different neural components in different cortical layers. These studies are based on 

invasive epidural recordings of the efferent corticospinal (Di Lazzaro, Oliviero, Mazzone, et al., 

2001; Di Lazzaro et al., 2003, 2011; Di Lazzaro & Rothwell, 2014). A corticospinal volley elicited 

by TMS can be composed of D- and/or I-waves, that translate the direct or indirect activation of 

the PTNs, respectively (Amassian, Cracco, & Maccabee, 1989; Amassian, Quirk, & Stewart, 

1990; Thompson et al., 1991; Burke et al., 1993). In Chapter 2 – Section 2.3 we described these 

studies and their implications in depth. Based on these studies, different theoretical canonical 

cortical models have been proposed in order to better explain the current-brain interaction 

(Ziemann & Rothwell, 2000; Di Lazzaro & Rothwell, 2014; Rusu et al., 2014).  

As with any technique, the outcome of TMS can be assessed in terms of its efficacy and 

consistency. In other words, will a given TMS protocol produce the desired (or expected) outcome, 
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and is this effect reproducible when assessed in the same subjects on different occasions? Both 

of these questions are increasingly relevant as TMS-based neurophysiological measures are 

explored for their diagnostic and prognostic potential. While several studies have examined the 

effects of pulse waveform and current directions on TMS measures (Mills et al., 1992; Sakai et 

al., 1997; Niehaus, Meyer, & Weyh, 2000; Kammer et al., 2001; Orth & Rothwell, 2004; Takahashi 

et al., 2005; Sommer et al., 2006, 2013; Ni et al., 2011; Delvendahl, Gattinger, et al., 2014; 

Delvendahl, Lindemann, et al., 2014; D’Ostilio et al., 2016; Stephani, Paulus, & Sommer, 2016) , 

no study, to our knowledge, has investigated the influence of these parameters on both the 

efficacy and test-retest reliability of several TMS measures including paired-pulse protocols. The 

present study aims to fill this gap through a direct comparison of three widely used TMS pulse 

configurations in the most common single- and paired-pulse TMS measures obtained from 

healthy individuals in two sessions.  

 

7.2 Methods 

 

7.2.1 Participants 

 

Twenty-six healthy adults (age range, 18–35 years, 14 females, 22 right-handed) were 

enrolled in the study.  

All participants completed two identical TMS sessions (intersession interval range 1–70 

days; median = 10.5 days). During both sessions, all participants underwent two TMS safety forms 

to screen for possible contraindications (see appendix C) and side effects (see appendix E). 

These TMS safety screening forms were based on the safety guidelines for TMS by The Safety 

of TMS Consensus Group (Rossi et al., 2009), for more information read Chapter 2 – Section 2.6 

of the present thesis. Handedness was determined in the first visit by revised Edinburgh 
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Handedness Inventory (Oldfield, 1971) (see appendix B). Participants were randomly separated 

into three groups, which differed only in the pulse waveform characteristics: nine subjects 

received monoPA, seven received monoAP, and seven subjects received biAP-PA stimulation. All the 

current directions above are indicated in their relation to motor cortex. One participant from 

monoPA condition was excluded from all analyses because of a prior history of traumatic brain 

injury that was not disclosed during enrollment/screening. Two other participants from monoAP 

group were excluded from the study because their RMT was higher than 83% of MSO and, 

therefore, the stimulation at 120% of RMT was not feasible. None of the remaining participants 

had a history of medical disease or contraindication to TMS (questionnaires of appendix A and C 

screened for any medical records and/or possible TMS contraindications), and all of them had 

normal physical and neurological examinations. Participants’ demographics are presented in 

Table 7.1. 

 

7.2.2 Electromyography 

 

Surface EMG activity was recorded from the dominant hand’s FDI using a PowerLab 

4/25T data acquisition device and Scope software (ADInstruments, Colorado Springs, CO, USA). 

As mentioned in Chapter 6 – Section 6.1, electrodes were placed over the FDI in a belly-tendon 

montage. EMG data were digitized at 1 kHz for 250 ms following each stimulus trigger and 

amplified with a range of ±10 mV (band-pass filter 0.3–1000 Hz). During the silent period trials, 

live EMG was monitored throughout the protocol to provide feedback for continuous muscle 

contraction. MEP peak-to-peak amplitudes (mV) of the non-rectified signal and silent period 

duration (ms) were recorded for individual traces. Participants were also monitored for drowsiness 

and asked to keep their eyes open throughout the experiment. 
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Table 7.1. Participants characteristics. 

Participant 
Waveform/ 

Current 
direction 

Gender 
Handednes

s 
Medications 

Difference between 
visits 

Days Start-time (h) 

1 biAP-PA Male Right – 1 0.5 

2 biAP-PA Female Right birth control 25 0.5 

3 biAP-PA Male Right – 1 1 

4 biAP-PA Female Right – 5 3 

5 biAP-PA Male Right – 7 0 

6 biAP-PA Male Left – 7 0 

7 biAP-PA Male Right – 5 0 

8 monoAP Female Right birth control 36 0 

9 monoAP Male Right – 5 1 

10 monoAP Female Right – 24 5 

11 monoAP Female Right birth control 11 2 

12 monoAP Female Left birth control, cetirizine 
hydrochloride 

36 2 

13 monoAP Female Right birth control, vitamins 70 0.5 

14 monoAP Female Right – 13 0 

15 monoPA Male Right – 16 4.5 

16 monoPA Female Right birth control 16 0 

17 monoPA Male Right vitamins 11 1 

18 monoPA Female Right birth control 4 0 

19 monoPA Female Right birth control 7 0 

20 monoPA Male Left – 10 0.25 

21 monoPA Female Right – 12 5 

22 monoPA Female Right birth control 14 3 

23 monoPA Male Left cetirizine hydrochloride 9 2 

Abbreviations: biAP-PA, biphasic anterior-posterior—posterior-anterior; monoAP, monophasic anterior-

posterior; monoPA, monophasic posterior-anterior. 
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7.2.3 Transcranial Magnetic Stimulation 

 

Each TMS visit was performed by one of three experienced TMS technicians and the 

same technician performed both visits for a given subject. Participants were comfortably seated 

in a chair with their arms rested in a natural ~90º angle on a table in front of them. nTMS was 

performed with a MagPro X100 device using a hand-held Cool-B65 figure-of-eight coil (outer 

diameter 75mm) placed over the primary motor cortex in the dominant hemisphere with the handle 

pointing backwards and at an angle of 45º (MagVenture A/S, Denmark). MagPro X100 devices 

allow to change between waveforms and current directions without needing to change the coil 

position. A Polaris infrared-optical tracking system (Northern Digital Inc., Waterloo, ON, Canada) 

and a Brainsight TMS neuronavigation system (Rogue Research, Inc., Montreal, QC, Canada) 

with a brain MRI template was used to ensure consistent targeting throughout the experiment. 

Each session began by assessing the motor cortex “hotspot” and RMT for FDI muscle. 

The hotspot was identified de novo at each visit, using the C3/C4 method described in Chapter 4 

– Section 4.1, and designated as the neuronavigation target for the remainder of the visit. RMT 

was calculated following the approach we previously described in the general methodology 

(Chapter 4 – Section 4.1) and that has been defined by the International Federation of Clinical 

Neurophysiology guidelines (Rossi et al., 2009; Rossini et al., 2015).   

After assessing RMT, a battery of standard TMS neurophysiological measures were 

acquired in the following order: baseline cortico-motor reactivity; contralateral cSP; and three 

common paired-pulse protocols interleaved in a pseudorandom sequence. Cortico-motor 

reactivity was assessed by applying 10 single pulses at rest at 120% of RMT, averaging the peak-

to-peak amplitude of each MEP (baseline MEP amplitude) and averaging the time from the TMS 

pulse until the onset of the MEPs (MEP latency). Live EMG was recorded in windows of 5 seconds 

for cSP measurements. The cSP was assessed with ten single pulses delivered at 120% of RMT 

during isometric contraction of the FDI at about 25% of their total strength (participants could rest 
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for few seconds between pulses and had constant visual feedback of their performance). The 

cSP was measured from the onset of the MEP to the resumption of pre-TMS EMG activity (i.e. 

relative cSP) (Orth & Rothwell, 2004), and averaged across all 10 trials.     

Paired-pulse protocols included SICI, LICI and ICF using standard parameters (Valls-Solé 

et al., 1992; Kujirai et al., 1993). SICI and ICF consisted of a CP at 80% of RMT, a TP at 120% 

of RMT and an ISI of 3 and 12 ms, respectively. In LICI, CP and TP were 120% of RMT separated 

by an ISI of 100ms. Stimulation consisted of 40 individual trials per protocol (for a total of 120 

trials), administered in a pseudorandom, interleaved order to reduce blocking effects and with 

pseudorandomized inter-trial interval (4, 5 or 6 seconds) to minimize expectation and avoid 

hysteresis. The amplitude of the conditioned MEP for each protocol was averaged across all 40 

trials and expressed as a percentage of baseline MEP amplitude. For each TMS measure (except 

RMT), individual data points > 2.5 SD from the mean were excluded from analysis. For further 

description of the methodology and physiological implications of the single- and paired-pulse 

protocols see Chapter 4 – Section 4.3. The average values for visits A and B (±SD) as well as the 

net difference between Visits A and B (∆B-A) (±SD) and the absolute value of the inter-visit 

difference (|∆B-A|) (±SD) for each of the TMS measures are shown in Table 7.2.  
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Table 7.2. Neurophysiological measures. 

    visit A visit B ∆B-A |∆B-A| 

    Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

RMT (% MSO)         

 biAP-PA 59.7 ± 9.1 59.1 ± 8.8 -0.6 ± 4.2 3.1 ± 2.5 

 monoAP 75.0 ± 7.1 75.0 ± 8.1 0.0 ± 1.4 0.9 ± 1.1 

 monoPA 66.2 ± 4.5 67.0 ± 4.0 0.8 ± 3.5 2.8 ± 2.1 

MEP latency (ms)     

 biAP-PA 25.4 ± 1.3 24.8 ± 1.6 -0.6 ± 0.4 0.6 ± 0.4 

 monoAP 24.4 ± 1.8 24.8 ± 1.9 0.4 ± 1.1 1.0 ± 0.6 

 monoPA 23.5 ± 1.7 23.3 ± 2.0 -0.2 ± 0.8 0.6 ± 0.6 

MEP amplitude (mV)     

 biAP-PA 1.0 ± 0.6 1.0 ± 0.4 0.0 ± 0.8 0.6 ± 0.5 

 monoAP 1.2 ± 0.4 1.2 ± 0.7 0.0 ± 0.5 0.4 ± 0.3 

 monoPA 1.4 ± 1.0 1.0 ± 0.4 -0.4 ± 0.6 0.6 ± 0.4 

cSP (ms)     

 biAP-PA 140.5 ± 27.8 137.3 ± 26.5 -3.3 ± 21.6 16.4 ± 12.8 

 monoAP 129.2 ± 22.2 131.3 ± 37.8 2.2 ± 26.1 17.2 ± 18.4 

 monoPA 122.0 ± 33.8 123.6 ± 30.1 1.6 ± 24.8 18.8 ± 14.9 

LICI (%∆)     

 biAP-PA -77.9 ± 35.7 -81.4 ± 22.3 -3.4 ± 24.9 14.3 ± 19.9 

 monoAP -71.4 ± 55.3 -76.3 ± 38.1 -4.9 ± 18.8 9.1 ± 16.9 

 monoPA -94.9 ± 5.6 -90.00 ± 15.4 4.9 ± 11.3 6.0 ± 10.6 

SICI (%∆)     

 biAP-PA 1.8 ± 85.5 -35.0 ± 75.1 -36.9 ± 80.5 61.7 ± 60.2 

 monoAP -52.4 ± 38.1 -26.8 ± 120.2 25.6 ± 89.4 41.4 ± 82.2 

 monoPA -73.6 ± 18.1 -65.4 ± 29.1 8.2 ± 21.0 19.7 ± 9.0 

ICF (%∆)     

 biAP-PA 243.4 ± 177.4 215.6 ± 318.9 -27.7 ± 184.1 127.6 ± 125.6 

 monoAP 101.3 ± 50.4 191.2 ± 206.9 89.9 ± 186.4 126.5 ± 159.7 

  monoPA 0.5 ± 35.3 60.7 ± 85.6 60.2 ± 94.1 87.5 ± 65.5 

Abbreviations: ∆B-A, net inter-visit difference; |∆B-A|, absolute inter-visit difference; biAP-PA, biphasic 

anterior-posterior, posterior-anterior; cSP, contralateral cortical silent period; ICC, intraclass 

correlation coefficient; ICF, intracortical facilitation; LICI, long-interval intracortical inhibition; MEP 

amp., motor evoked potentials amplitude; MEP lat., motor evoked potentials latency; monoAP, 

monophasic anterior-posterior; monoPA, monophasic posterior-anterior; MSO, maximal stimulator 

output; RMT, resting motor threshold; SICI, short-interval intracortical inhibition; %∆, percent of 

change from baseline. 
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7.2.4 Statistical Analyses 

 

ICC analyses were performed in MATLAB using the Statistics Toolbox (Release 2015b, 

The MathWorks, Inc., Natick, MA, USA, www.mathworks.com). The software packages Stata 

(version 13.1, StataCorp LLC, College Station, TX, USA, www.stata.com) and JMP Pro (version 

12.0; SAS Institute Inc., Cary, North Carolina, USA, www.jmp.com) were used for the remaining 

statistical analyses. All analyses were conducted using a two-tailed 95% confidence interval 

(α=.05). 

Calculation of TMS data for each of the three waveforms/current directions (monoPA, 

monoAP, biAP-PA), hereafter referred to as Waveform, included: RMT (percent of MSO); 

unconditioned MEP amplitude (average peak-to-peak amplitude in µV); unconditioned MEP 

latency (average time in ms from TMS pulse delivery); cSP (duration in ms between the onset of 

the MEP to the resumption of pre-TMS EMG activity); and three paired-pulse measures, SICI, 

LICI, and ICF (average peak-to-peak amplitude of conditioned MEPs, expressed as a percent 

change from baseline; %). 

Shapiro–Wilk tests indicated deviations from normality for MEP amplitude, SICI, LICI, and 

ICF (p’s < 0.05), but not RMT, cSP, and MEP latency did not (p’s > 0.74). To conform to the 

assumptions of our parametric statistical tests, baseline MEP amplitude, %∆ SICI, %∆ ICF, and 

%∆ LICI were transformed as described previously (van Albada & Robinson, 2007). 

 Data were analyzed in terms of efficacy [1] and reliability [2] using the following 

approaches:  

[1a] Comparison of the magnitude of response to TMS measures across conditions. The 

response to each TMS measure was entered as a dependent variable into separate mixed-effects 

analyses of variance (me-ANOVAs) with Waveform (monoPA, monoAP, biAP-PA) as a between-

subjects factor and Visit (Visit-A, Visit-B) as a within-subject factor. For MEP latency, Shapiro–

Wilk tests indicated the residuals were not normally distributed (p < 0.05), so the ANOVA was 



  First block of experiments 

   77 

rerun after transforming the data in the manner indicated above. Tukey’s honestly significant 

difference (HSD) tests were used to conduct planned pairwise comparisons between TMS 

measures obtained with the three Waveforms. To control for the effect of potential confounding 

variables, we added Gender, Inter-Visit Interval (in days), or Time Difference (in minutes) between 

the starting times of the two visits (one at a time) as a covariate to the above models with the 

transformed values of TMS measures as dependent variable. 

[1b] Assessment of the overall efficacy of paired-pulse TMS protocols in inducing inhibition 

(SICI and LICI) or facilitation (ICF) of MEPs. Average MEP amplitudes for each paired pulse 

conditioned were entered into separate mixed-effects ordered logistic regressions (me-OLRs) for 

each waveform, with MEP amplitude as dependent variable, MEP Type (conditioned vs. 

unconditioned) as independent variable and Visit as a within-subject factor.  

[2] Test-retest reliability was compared across conditions by calculating the ICCs of all 

TMS measures for each Waveform using the ICC formula for absolute agreement (ICC(A,1)) 

(McGraw & Wong, 1996). In this study we followed the reliability classification which is most 

commonly adopted in TMS literature, described by Portney and Watkins (Portney & Watkins, 

2009). ICC values were interpreted as high (ICC ≥ 0.75), moderate (0.5 ≤ ICC < 0.75), low (0.25 

≤ ICC < 0.5) or very low to none (ICC < 0.25). ICCs are known as the most suitable statistical 

measurements of reliability (Portney & Watkins, 2009) for continuous quantitative variables, and 

can be calculated with a confidence interval allowing for statistical comparisons of ICCs between 

different conditions. To investigate the effect of pulse parameter on test-retest reliability, ICCs 

were compared across Waveform using mixed-effects F-statistics (McGraw & Wong, 1996). The 

effects of Gender, Inter-Visit Interval, or Time Difference on all the ICCs were assessed by 

including the covariate of interest in the corresponding mixed-effects regression model and 

recalculating the residual intraclass correlation. 

Reliability coefficients, such as the ICCs, can be also used to adjust effect sizes (Baugh, 

2002; Wright, 2014). Using this approach, it is possible to predict how the reproducibility of a given 
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measure might affect a hypothetical effect size, which in turn could be used in a sample size 

calculation that takes into consideration the reproducibility (or lack thereof) of the measure of 

interest. To illustrate this point and provide a resource for future studies, adjustments for each 

measure were made to a hypothetical Cohen’s d effect size of 0.5, which corresponds to a within-

subjects change of half a standard deviation, and is considered a medium effect size (Cohen, 

1992). Only positive ICCs values were used to adjust for effect sizes given the nature of the 

calculations. First, a hypothetical, or idealized, Cohen’s d is converted into an r (Cohen, 1988):  

 

(1) r IDEALIZED = d IDEALIZED / (d2
IDEALIZED + 4)0.5 

 

Then this idealized r is adjusted for unreliability using the ICC (Wright, 2014):  

 

(2) r2
ADJUSTED = r2

IDEALIZED * ICC0.5 

 

Finally, the corrected r is converted back into an adjusted d (Friedman, 1968): 

 

(3) d ADJUSTED = (2 *r ADJUSTED)/ (1 – r2
ADJUSTED)0.5 

 

For between-groups comparisons, the sample sizes in the present study provided 0.80 

power to detect a medium effect size (Cohen’s d = 0.54). 

[3] In addition, we explored the relationship between RMT and the other TMS single- and 

paired-pulse TMS measures included in the study. Each TMS measure was entered into a 

separate mixed-effects linear regression with RMT as a predictor, Waveform as a between-

subjects factor, Visit as a within-subject factor, and Waveform-x-Visit interaction. All linear 

regression analyses were conducted using the transformed values for the TMS measures. For 

each regression analysis, we checked the bivariate normality between RMT and the other TMS 
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measure using the Doornik-Hansen test. There was no significant deviation from bivariate 

normality in any of the regression models (p’s > 0.19). 

 

7.3 Results 

 

7.3.1 Comparison of the magnitude of response to single- and paired-pulse 

measures across Waveforms and visits 

 

The effects of the different TMS measurements in each condition are presented in Figure 

7.1. The results of me-ANOVAs with TMS measures as dependent variables and Waveforms and 

visits as predictors are detailed in Table 7.3.  

In single-pulse measures, there was a significant overall effect of Waveform on RMT (p = 

0.001). Pairwise comparisons conducted with Tukey’s HSD found that RMT was significantly 

higher in the monoAP condition than in both the monoPA condition and the biAP-PA condition (both 

p’s < .05). Furthermore, the monoPA RMT was significantly higher than the biAP-PA RMT (p < .05). 

MEP latency was significantly shorter in the monoPA condition than in both the biAP-PA condition 

and the monoAP condition (both p’s < .05). The cSP duration was significantly shorter with monoPA 

than with biAP-PA pulses (p < .05). The cSP was significantly shorter with monoPA than with biAP-PA 

(p < 0.05). None of the other pairwise differences in single-pulse TMS measures between the 

waveforms were significant (p’s > 0.05).  

Considering the influence of potential confounding variables on single-pulse TMS 

measures, the only observed relationship was that between MEP latency and Gender, which was 

a significant predictor (p = .002), and controlling for Gender, the pairwise differences in MEP 

latency between monoPA and either monoAP (p < 0.05) or biAP-PA (p < 0.05), remained significant. 
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No comparisons of any other single-pulse TMS measure was significantly influenced by Gender, 

Inter-Visit Interval, or Time Difference (p values > .087). 

 

 
Figure 7.1. Magnitude of the response to single- and paired-pulse TMS. 

Results from Tukey’s HSD pairwise comparisons (* p < 0.05) after me-ANOVAs analysis between 

waveforms and current directions for each TMS measure. Means (±SE) are shown for each measure. (A) 

RMT was significantly different between all waveforms and current directions. MonoPA elicited significantly 

longer MEP latencies than in both the biAP-PA condition and the monoAP condition and significantly shorter 

cSP durations than biAP-PA. (B) In paired-pulse protocols, the monoPA condition yielded to significantly 

greater inhibition after LICI and shorter facilitation that the other two waveforms. SICI after monoPA led 

to significantly smaller MEPs than biAP-PA. Abbreviations: biAP-PA, biphasic anterior-to-posterior—posterior-

to-anterior; cSP, cortical silent period; ICF, intracortical facilitation; LICI, long interval intracortical 

inhibition; monoAP, monophasic anterior-to-posterior; monoPA, monophasic posterior-to-anterior; MSO, 

maximal stimulator output; RMT, resting motor threshold; SICI, short interval intracortical inhibition. 
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For the paired-pulse measures, the percent of change of each conditioned MEP from the 

unconditioned MEP was calculated and transformed. The transformed values were entered into 

separate me-ANOVA models, following the same statistical approach as for single-pulse TMS 

effects described above. The results, showed in Table 7.3, indicated that there was a main effect 

of Waveform for ICF (p = 0.001), but not for SICI or LICI (p’s > 0.2). Specifically, Tukey’s HSD 

found that ICF induced a significantly greater facilitation with biAP-PA and monoAP than with monoPA 

pulses (p’s < 0.05). Pairwise comparisons conducted with Tukey’s HSD found that SICI induced 

significantly greater inhibition with monoPA than with biAP-PA pulses (p < 0.05), but all the waveforms 

induced similar inhibition with LICI (p’s > 0.05). The effects of Gender, Inter-Visit Interval, or Time 

Difference were not significant in any of the me-ANOVAs on paired-pulse TMS measures (p‘s > 

0.10). 
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7.3.2 Efficacy of paired-pulse protocols across Waveforms and visits 

 

The me-OLRs found that SICI induced an overall significant inhibition of MEPs (z = –5.83, 

p < 0.001) across all waveforms and visits. Conducting the me-OLR separately for each waveform 

found significant inhibition with both monoPA (z = –4.81, p < 0.001) and monoAP (z = –3.52, p < 

0.001), but not with biAP-PA (z = -1.53, p > 0.12). Similarly, LICI induced an overall significant 

inhibition of MEPs (z = –7.61, p < .001), which was observed across both visits of biAP-PA (z = –

4.81, p < 0.001), monoAP (z = –3.86, p < 0.001), and monoPA (z = –4.11, p < 0.001). ICF induced 

a significant overall facilitation of MEPs (z = 5.39, p < 0.001). ICF induced a significant facilitation 

with both biAP-PA (z = 3.69, p < 0.001) and monoAP (z = 4.10, p < 0.001), across both visits, whereas 

there was no significant facilitation with monoPA (p > 0.31). The effect of Visit was not significant 

in any of the above analyses (p’s > 0.05). These results indicate that monoPA and biAP-PA may 

not be optimal for ICF and SICI, respectively. 

 

7.3.3 Test-retest reliability measures 

 

The ICC values for single- and paired-pulse measures with monoPA, monoAP, and biAP-PA 

conditions are presented in Figure 7.2. After controlling for Gender, Inter-Visit Interval, or Time 

Difference, the ICCs for RMT with biAP-PA (0.73–0.91) and for LICI with biAP-PA (0.65–0.76) varied 

to some extent, but none of the other ICCs for single- or paired-pulse measures for any of the 

waveforms changed noticeably, i.e., they did not cross our pre-defined boundaries for interpreting 

ICC values (see Methods).  
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Figure 7.2. Reliability of single- and paired-pulse TMS measures. 

Intra-class correlation coefficients (ICCs) for the different TMS protocols performed with different waveforms 

and current directions in the healthy young adults (ages 18 – 35). Abbreviations: Amp., baseline MEP 

amplitude; biAP-PA, biphasic anterior-to-posterior—posterior-to-anterior; cSP, cortical silent period; monoAP, 

monophasic anterior-to-posterior; monoPA, monophasic posterior-to-anterior; Lat., baseline MEP latency; 

RMT, resting motor threshold; %∆ LICI, long interval intracortical inhibition percentage of change from 

baseline; %∆ SICI, short interval intracortical inhibition percentage of change from baseline; %∆ ICF, 

intracortical facilitation percentage of change from baseline.  

 

 

Reliability coefficients, pairwise comparisons between the ICC values for TMS measures 

in the three conditions and hypothetical effect sizes adjusted for these ICCs are detailed in Table 

7.4.  
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Table 7.4. Reliability coefficients and corresponding adjusted effect and sample sizes. 

  
 ICC ICC comparisons (p-values) 

Cohen's d 
Additional 
n required   r p 

biAP-PA - 
monoAP 

biAP-PA - 
monoPA 

monoAP - 
monoPA 

RMT (% MSO)        

 biAP-PA 0.90 0.001 

0.983 0.065 0.999 

0.49 1 

 monoAP 0.99 <.001 0.50 0 

 monoPA 0.68 0.016 0.45 7 

MEP latency (ms)        

 biAP-PA 0.89 0.018 

0.384 0.385 0.133 

0.49 1 

 monoAP 0.82 0.004 0.47 4 

 monoPA 0.91 <.001 0.49 1 

MEP amplitude (mV)        

 biAP-PA -0.16 0.621 

0.021 0.009 0.313 

- - 

 monoAP 0.69 0.039 0.45 7 

 monoPA 0.56 0.030 0.43 11 

cSP (ms)        

 biAP-PA 0.71 0.028 

0.557 0.475 0.408 

0.46 6 

 monoAP 0.68 0.041 0.45 7 

 monoPA 0.72 0.012 0.46 6 

LICI (%∆)        

 biAP-PA 0.68 0.038 

0.030 0.776 0.007 

0.45 7 

 monoAP 0.93 <.001 0.49 1 

 monoPA 0.51 0.051 0.42 13 

SICI (%∆)        

 biAP-PA 0.48 0.088 

0.530 0.290 0.633 

0.41 15 

 monoAP 0.51 0.095 0.42 13 

 monoPA 0.62 0.021 0.44 9 

ICF (%∆)        

 biAP-PA 0.77 0.015 

0.040 0.014 0.256 

0.47 4 

 monoAP 0.22 0.276 0.34 36 

 monoPA -0.02 0.535 - - 

Abbreviations: biAP-PA, biphasic anterior-posterior, posterior-anterior; cSP, contralateral cortical silent 

period; ICC, intraclass correlation coefficient; ICF, intracortical facilitation; LICI, long-interval intracortical 

inhibition; MEP, motor evoked potentials; monoAP, monophasic anterior-posterior; monoPA, monophasic 

posterior-anterior; MSO, maximal stimulator output; RMT, resting motor threshold; SICI, short-interval 

intracortical inhibition; %∆, percent of change from baseline. Significant values are shown in bold type. 
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Baseline MEP amplitude was significantly more reliable when obtained with monophasic 

pulses, whether monoPA or monoAP, than with biAP-PA pulses (both p’s < 0.022). LICI was 

significantly more reliable when obtained with monoAP pulses than with either monoPA or biAP-PA 

pulses (both p’s < 0.031), whereas ICF was significantly more reliable when obtained with biAP-PA 

pulses than both monophasic pulses (both p’s < 0.041). The ICCs for other TMS measures were 

not significantly different between the three conditions (all p’s > 0.064). Notably, those protocols 

that were found to have moderate to high reliability, also had a Cohen’s d close to the a priori 

idealized Cohen’s d effect size of 0.5 and very low additional n were required to detect the 

attenuated effects. 

 

7.3.4 Relationship between RMT and other TMS measures 

 

The exploratory mixed-effects linear regressions assessing the relationship between RMT 

and the transformed values of single- and paired-pulse TMS measures across the two visits found 

a significative negative association between RMT and baseline MEP amplitude (p = 0.04). None 

of the associations between RMT and other TMS measures were significant (p’s > 0.23).  

 

7.4 Discussion 

 

In the present experiment, we investigated the influence of specific TMS physical or 

technical factors, i.e. pulse waveform and current direction (monoPA, monoAP, and biAP-PA), on the 

efficacy and test-retest reliability of common single- and paired-pulse TMS measures in young 

healthy adults. Pulse waveform/current direction was observed to exert the greatest influence on 

RMT, MEP latency, cSP and the two of the three paired-pulse protocols that were explored (SICI 

and ICF). MonoAP led to higher RMTs, followed by monoPA and biAP-PA pulses. MonoPA pulses 
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resulted in the shortest MEP latency, shortest cSP duration and the greatest LICI and SICI, but 

the greatest ICF was achieved with waveforms with an AP component (either monoAP or biAP-PA). 

There were also significant effects of waveform/current direction on test-retest reliability of 

baseline MEP amplitude, LICI, and ICF. MonoPA pulses resulted in a more reliable baseline MEP 

amplitude, but less reliable ICF than biAP-PA pulses that showed the greatest reliability. In contrast, 

LICI was more reliable with monoAP than with monoPA pulses.  

The results of the present study can be interpreted using a framework put forth by Di 

Lazzaro and Rothwell (Di Lazzaro & Rothwell, 2014) following a series of experiments performed 

on patients with epidural electrodes implanted at the cervical spinal cord level (Di Lazzaro et al., 

2001, 2003; Di Lazzaro et al., 2011). As described in more depth in Chapter 2 – Section 2.3, the 

authors proposed that different waveforms and current directions interact with stimulation intensity 

to evoke distinct patterns of D- and I-waves by selective recruitment of particular neural 

components of cortical layers. For example, monoPA pulses at threshold intensities elicit an early 

I-wave (the I1-wave), which is thought to reflect indirect monosynaptic activation of layer V PTNs 

through excitatory interneurons in cortical layers II and III. As the intensity of monoPA pulses 

increases, descending volleys begin to include later I-waves, which are thought to reflect 

polysynaptic chains of interneurons in the same layers II and III acting on layer V PTNs. In 

contrast, monoAP pulses tend to evoke late I-waves that are more dispersed and have longer 

latencies. These late I-waves are thought to reflect the activation of horizontal cortico-cortical 

connections in layers II-III that originate from surrounding regions, probably premotor cortex or 

the thalamus, but perhaps other brain structures. As such, monoAP currents typically result in 

higher motor thresholds than monoPA currents. Biphasic pulse waveforms elicit a more complex 

pattern of D- and I-waves and the role of current direction (AP-PA versus PA-AP) has not been 

well elucidated. When using biphasic pulses at threshold intensities, the second phase of the 

waveform seems to be more relevant to stimulating the cortex. Further, it has been reported using 

PA-AP currents that at threshold intensities, the AP and PA phases may be partially antagonistic 
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with respect to polarization of the membrane and opening/closing of Na+ channels necessary to 

generate an action potential (Rothwell, 2017). As the intensity of biphasic pulses increases, 

however, the first phase begins depolarizing sensitive neural elements, adding to the overall 

response (Di Lazzaro et al., 2003; Barker, 2017). One consequence of this complex relationship 

is that biphasic pulses at suprathreshold intensities tend to be less direction-dependent and can 

elicit a combination of D- and I-waves (Di Lazzaro et al., 2001, 2003; Di Lazzaro et al., 2011).  

The present study, to our knowledge, is the first to assess the effects of induced current 

direction and pulse waveform on both the efficacy and test-retest reliability of different TMS 

measures including paired-pulse TMS measures (SICI, LICI, and ICF). These paired-pulse 

measures allow for exploring inhibitory vs. excitatory effects of specific populations of intracortical 

neural components on the final output of PTNs, where inhibitory processes and long-interval 

excitatory effects are mainly mediated by GABAergic and glutamatergic activity, respectively 

(Sohn et al., 2002; Ziemann et al., 2002; Di Lazzaro et al., 2006; Lang et al., 2006; Ziemann, 

2013). 

In Methodology (Chapter 4 – Section 4.3) of the present thesis, we have described in 

depth the physiological processes that take place during TMS-elicited inhibition or facilitation in 

the motor system. As a brief reminder of those processes, epidural recordings of paired-pulse 

TMS protocols have only been conducted with monoPA stimulation, it is unknown how other pulse 

waveforms or current directions would influence the effects of paired-pulse paradigms on the 

descending volleys. With monoPA pulses, both SICI and LICI suppress the I2 and later waves, but 

not the D- or I1-waves (Nakamura et al., 1996; Di Lazzaro, Restuccia, et al., 1998; Di Lazzaro et 

al., 2002; Ni et al., 2011). While SICI is thought to be mediated by GABAA receptor-dependent 

pathways (Di Lazzaro et al., 2000, 2006; Teo et al., 2009; Ziemann, 2013), the longer-interval 

inhibition caused by LICI is thought to reflect the inhibitory post-synaptic potential mediated by 

GABAB receptors (Werhahn et al., 1999; Ziemann, 2013). Unlike SICI and LICI, however, ICF 

does not significantly change the amplitude or number of corticospinal waves (Di Lazzaro et al., 
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2006; Ni et al., 2011), indicating that the ICF-induced increase in MEP amplitude might reflect the 

recruitment of neural circuits unrelated to those involved in the generation of I-waves elicited by 

monoPA. Such recruitment can result in more dispersed activity that is not reflected in epidural 

recordings (Di Lazzaro & Rothwell, 2014). As mentioned in Methodology (Chapter 4 – Section 

4.3), although it is most likely that the origin of ICF is cortical (Cash et al., 2017), a complementary 

theory for the neural source of ICF has been evaluated recently (Wiegel et al., 2018), suggesting 

that the subthreshold conditioning pulse of ICF is able to trigger subcortical and spinal processes 

that may contribute to the facilitation of MEPs. 

 

7.4.1 Effects of pulse waveform/current direction on the response to TMS 

measures 

 

We found significant differences in RMT, MEP latency, cSP, SICI, LICI, and ICF between 

the three conditions. The only TMS measure where the statistical analysis showed no influence 

of the explored waveforms/current directions was baseline MEP amplitude. MonoAP pulses yielded 

the highest RMT followed by monoPA and biAP-PA. These findings are consistent with the results of 

previous studies that compared monoPA and biphasic waveforms (Niehaus et al., 2000; Kammer 

et al., 2001; Sommer et al., 2006; Delvendahl, Gattinger, et al., 2014; Stephani et al., 2016) as 

well as monoPA and monoAP current directions (Sakai et al., 1997; Orth & Rothwell, 2004; 

Delvendahl, Lindemann, et al., 2014). Together, these results support a model of current-cortex 

interactions whereby the corticospinal pathway is most efficiently stimulated with biAP-PA pulse 

waveforms followed by monoPA and monoAP current directions induced orthogonally to the central 

sulcus. 

In contrast with our finding that RMT with biphasic pulses was the lowest among the three 

conditions, Orth and Rothwell (Orth & Rothwell, 2004) found the RMT to be higher with biphasic 

pulses than with either monoAP or monoPA pulses. These different results can be due to two factors: 
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(1) The induced current direction in the Orth and Rothwell study (PA-AP) was opposite to that in 

the present study (AP-PA) and, thus, could have altered the interactions of the phases. While at 

threshold intensities the PA component of the biphasic pulse is likely the primary contributor to 

the MEP, it is possible that the AP component may have an agonistic effect if it is first and an 

antagonistic effect if it is second. Future studies could resolve this by directly comparing the TMS 

measures obtained with biAP-PA and biPA-AP pulses using the same stimulator; (2) We used a 

MagVenture MagPro device, whereas Orth and Rothwell used a Magstim 200 stimulator (Magstim 

Co. Whitland, Dyfed, UK). As previously mentioned in State of the Art (Chapter 2 – Section 2.2), 

Kammer and colleagues (Kammer et al., 2001) compared devices from Magstim and MagVenture 

companies and obtained lower RMTs with monophasic than with biphasic pulses when using 

Magstim, whereas MagVenture led to lower biphasic thresholds regardless of current direction. 

These results suggest that different devices may have different total stimulation strengths 

depending on the waveform. 

Our results are in agreement with prior studies that found the MEP latencies to be shorter 

with monoPA than with monoAP pulses (Mills et al., 1992; Takahashi et al., 2005; Sommer et al., 

2006; Ni et al., 2011; Delvendahl, Gattinger, et al., 2014; Delvendahl, Lindemann, et al., 2014; 

D’Ostilio et al., 2016), probably because different current directions activate different neural 

components with distinct latencies within the corticospinal pathway (Di Lazzaro & Rothwell, 2014). 

Moreover, our results show a difference between monoAP and monoPA latencies of about 1.2 ms. 

This difference is in line with the results from Di Lazzaro (Di Lazzaro et al., 2001, 2003; Di Lazzaro 

et al., 2011) and probably reflects that monoAP pulses elicit later and more dispersed I-waves.  

In contrast, discrepant results have been reported when comparing the latency of MEPs 

obtained with monophasic and biphasic pulses. While some studies found longer latencies with 

monoAP than with biphasic pulses (Sommer et al., 2006; Delvendahl, Gattinger, et al., 2014), other 

studies found no signifcant difference between the three waveform/current directions (Niehaus et 

al., 2000). Following Di Lazzaro and Rothwell’s theoretical model (Di Lazzaro & Rothwell, 2014), 
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we would expect that biphasic pulses elicit MEPs with shorter latencies, since at high-enough 

intensities, a biphasic pulse evokes a D-wave reflecting the direct activation of the PTNs. Our 

results, however, showed that biAP-PA MEP latencies were longer than monoPA, and comparable 

to monoAP, latencies. Although these results may appear contradictory, they could be due to 

several factors: (1) Our data show a difference in MEP latency between monoPA and biAP-PA of 

about 1.7 ms. This may be due to the fact that the neural components activated by biAP-PA had a 

longer latency, similar to the ones activated by monoAP (in our study the difference between 

monoPA and monoAP latencies was 1.2ms). (2) It is possible that the intensity of the biphasic pulse 

was not high enough to reach layer V of the motor cortex or to overcome the PTNs’ firing threshold 

and therefore, the activation of the PTN’s was indirect. Previous studies have shown that biphasic 

pulses at 120% of RMT might not activate the PTNs directly and hence do not elicit D-waves (Di 

Lazzaro et al., 2001) but elicit a complex group of I-waves with longer latencies. (3) At threshold 

levels, the PA phase as second component of the biAP-PA pulse has a greater importance, whereas 

the AP phase gains more relevance as the stimulation intensity is increased to suprathreshold 

levels. Considering that MEP latency was 1.7 ms longer with biAP-PA than with monoPA pulses, it is 

possible that in our study, the AP component played a more relevant role in the activation of the 

motor cortex. Therefore, the PA and AP components could have worked against each other in 

activating the inhibitory and excitatory interneuron networks, hence leading to longer latecies. We 

hasten to add that this hypothesis is based on insufficient evidence in the literature and needs to 

be investigated in future studies, for example by comparing the latencies of MEPs elicited with 

the different waveforms and current directions at different intensities in a input-ouput curve (see 

Chapter 4 – Section 4.2 for the description and diagram of an input-ouput curve). Lastly, when 

controlling for potential confounding factors, we found that gender significantly influenced MEP 

latencies. This relationship has been described in previous studies and is considered to be due 

to a difference in limbs length between genders (Livingston, Goodkin, & Ingersoll, 2010). 
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Contradictory results have also been reported regarding the effects of waveform and 

current direction on MEP amplitude (Mills et al., 1992; Takahashi et al., 2005; Sommer et al., 

2006; Ni et al., 2011; Delvendahl, Gattinger, et al., 2014; Delvendahl, Lindemann, et al., 2014; 

D’Ostilio et al., 2016). As previously argued in State of the Art (Chapter 2 – Section 2.5), an 

additional source of variability is differences in methodology among previous studies: while some 

studies used a fixed portion of MSO to elicit MEPs , other studies used a specific percentage of 

RMT to assess the effect of waveforms/current directions on MEP amplitude (Delvendahl, 

Gattinger, et al., 2014; Delvendahl, Lindemann, et al., 2014). Our finding that MEP amplitudes 

elicited at 120% of RMT were not significantly different between the three conditions is consistent 

with the results of previous studies that used similar TMS parameters (Delvendahl, Gattinger, et 

al., 2014; Delvendahl, Lindemann, et al., 2014). 

With the FDI slightly contracted, biAP-PA yielded longer cSP durations than monoPA, with 

monoAP in between. These results are generally consistent with the findings of previous cSP 

studies (Orth & Rothwell, 2004; Sommer et al., 2006). Moreover, the similarity in cSP duration 

between monoPA and monoAP pulses reflected in our data is consistent with the results reported 

by Sommer and colleagues (Sommer et al., 2006), but contrasts with those reported by Orth and 

Rothwell (Orth & Rothwell, 2004), who observed shorter cSP durations with monoPA pulses than 

with either monoAP or biPA-AP pulses. These different results can be due to several factors: First, 

Orth and Rothwell used a Magstim 200 stimulator for monophasic pulses and a Magstim Super 

Rapid stimulator for biphasic pulses (Magstim Co., Whitland, Dyfed, UK), whereas both we and 

Sommer and colleagues used a MagPro X100 stimulator for all conditions. As mentioned above 

and in State of the Art, it has been shown that the maximal intensities of the induced magnetic 

field vary across stimulators (Kammer et al., 2001) and waveforms, which may influence the cSP 

duration. Second, Orth and Rothwell used 150% of active motor threshold as the stimulation 

intensity, whereas both the present study and that from Sommer and colleagues set the 

stimulation intensity based on RMT. Therefore, our results are in agreement with those of Sommer 
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et al.’s study, in which the technical TMS pulse parameters were mostly similar to ours but differ 

to some extent (cSP was not significantly different between monoAP and monoPA) from those 

studies in which the cSP was performed with a different stimulator and with different stimulation 

parameters. 

In sum, RMT was lowest with biAP-PA and highest with monoAP, latencies were shorter with 

monoPA, whereas MEP amplitudes were comparable in the three conditions. These findings 

indicate that different pulse waveforms/current directions may recruit different subgroups of 

interneurons at different intensities (Di Lazzaro & Rothwell, 2014). For example, biAP-PA pulses 

seem to be more efficient at threshold levels but elicit non-significantly smaller MEPs at higher 

intensities.  

Paired-pulse protocols have been conventionally performed with monoPA pulses, probably 

due to historical reasons and technical availability when they were first described. Our results 

show that monophasic pulses resulted in stronger short intracortical inhibition (SICI), but weaker 

facilitation (ICF), when measured with monoPA. Interestingly, significant facilitation (compared to 

baseline) was only achieved in the two conditions that included an AP component (i.e., monoAP 

and biAP-PA).  

Although the physiological mechanisms responsible for the results of measures of 

intracortical balance of inhibition and facilitation (i.e., cSP and paired pulse TMS) cannot be 

directly inferred from the present study, some hypotheses can be formulated. The results suggest 

that monoPA waveforms may be more efficient in targeting short-interval inhibitory cortical 

mechanisms. Based on invasive epidural recordings showing a reduction of I2- and late I-wave 

amplitudes from LICI and SICI performed with monoPA pulses (Nakamura et al., 1996; Di Lazzaro, 

Restuccia, et al., 1998; Di Lazzaro et al., 2002, 2011), the present results are consistent with the 

hypothesis that monoPA pulses activate interneuron networks in layers II and III of the motor cortex 

that inhibit layer V PTNs. However, no effect on the amplitude of D- or I-waves was observed 

when performing ICF with monoPA. In our study, performing ICF with monoPA pulses induced a 
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small facilitation that was not significantly different from baseline. On the other hand, pulse 

waveforms with an AP component (monoAP and biAP-PA) led to significant facilitation. So far, the 

influence of AP currents on D- and I-waves during facilitatory protocols has only been studied in 

a single subject (Di Lazzaro et al., 2006) showing the influence of ICF on late I-waves (I4- and I5-

waves).  Additional insights to the relationship between AP currents and ICF may come from the 

results of cSP. Even though cSP is an inhibitory protocol conducted with a single suprathreshold 

pulse, it is dependent on voluntary muscle contraction, which may reflect the engagement of 

additional cortical (i.e., premotor or supplementary motor areas) and/or subcortical structures. 

Similar to the results with ICF, cSP seems to be longer with pulses that include an AP component. 

If AP-oriented currents target inputs to primary motor cortex from surrounding cortices or other 

brain structures, the present results support the hypothesis that these cortico-cortical connections 

may subserve the processes that underlie both cSP and ICF. Although, this hypothesis needs to 

be confirmed in future studies with epidural recordings. 

Finally, we examined the associations between RMT and the other TMS measures, and 

found the baseline MEP amplitude to be the only TMS measure that was related to RMT. The 

negative association between these two measures was also observed in the other experiment of 

TMS reliability of the present work (see Chapter 8 for further information). 

 

7.4.2 Effects of pulse waveform/current direction on the reliability of TMS 

measures 

 

Based on Portney et al. (Portney & Watkins, 2009) categorization of reproducibility for 

neurophysiological assessments  as well as in TMS literature, moderate to high reliability was 

observed in all measures across waveforms/current directions with the exception of baseline MEP 

amplitude with biphasic pulses and ICF with monophasic pulses regardless of current direction. 

Waveform/current direction significantly influenced the test-retest reliability of baseline MEP 



  First block of experiments 

   95 

amplitude, LICI, and ICF. The biAP-PA pulses resulted in less-reliable baseline MEP amplitude, but 

more-reliable ICF, than monoPA pulses. In contrast, LICI was more reliable when obtained with 

monoAP than with monoPA pulses.  

The intensities of most TMS protocols are determined based on RMT. In State of the Art 

we reviewed previous publications that studied the reliability of TMS and patterns can be observed 

in Figure 2.8 (Chapter 2 – Section 2.5) of the present thesis. That review pointed out that, not 

surprisingly, RMT (Carroll et al., 2001; Kimiskidis et al., 2004; Livingston & Ingersoll, 2008; 

Fleming et al., 2012; Ngomo et al., 2012; Liu & Au-Yeung, 2014; Schambra et al., 2015; Hermsen 

et al., 2016) is the most studied variable in TMS literature and is also the most reliable TMS 

measure, followed by MEP latency (Livingston & Ingersoll, 2008; Bastani & Jaberzadeh, 2012; 

Hoonhorst et al., 2014). Our reliability results on RMT and MEP latency are in line with those 

reported previously.  

From the brief review, it is also worth noting that the results of previous studies have 

reported a wide range of test-retest reliability of MEP amplitude (Carroll et al., 2001; Kamen, 2004; 

Kimiskidis et al., 2004; McDonnell et al., 2004; Christie et al., 2007; Livingston & Ingersoll, 2008; 

Bastani & Jaberzadeh, 2012; Fleming et al., 2012; Ngomo et al., 2012; Liu & Au-Yeung, 2014; 

Sankarasubramanian et al., 2015; Schambra et al., 2015; Hermsen et al., 2016). This variability 

across studies is of great relevance given that most TMS studies report the mean amplitude of a 

number of MEPs as their baseline and special consideration should be put on factors that may 

play a role on the heterogeneity of the results. Controlling the pulse waveform/current direction, 

optimally monophasic (in either PA or AP direction), may improve the reliability of the MEP 

amplitude.  

The reliability of cSP (Liu & Au-Yeung, 2014; Hermsen et al., 2016) and paired-pulse TMS 

measures (Fleming et al., 2012; Ngomo et al., 2012; Schambra et al., 2015; Hermsen et al., 2016) 

have not been adequately studied and Figure 2.8 of State of the Art shows that the evidence is 

very scarce thus far. Furthermore, both cSP and paired-pulse TMS measures have only been 
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studied with monoPA pulses. Our results on cSP and SICI show moderate reliability regardless of 

the waveform/current direction. In contrast, LICI that has been very poorly studied (Schambra et 

al., 2015), shows greater reliability with monoAP. Particular attention should be paid to ICF given 

that its reliability in the present work was excellent when obtained with biphasic, but not with 

monophasic, pulses. This may partially explain the low reliability of ICF that has been previously 

reported since only monoPA pulse have been used. 

Furthermore, reliability coefficients such as ICC’s can be used to adjust effect sizes to 

account for the fact that those calculations are made under the implicit assumption of perfect test-

retest reliability (Baugh, 2002; Wright, 2014). In other words, detecting a significant change of any 

given size in a longitudinal design is more difficult for an unreliable measure than for a reliable 

one. In turn, an adjusted effect size can be used to provide a more realistic estimate of the sample 

size required to observe the desired effect given the reproducibility of the measure being tested. 

Table 7.4 shows adjustments to a hypothetical Cohen’s d of 0.5, which corresponds to a change 

of half a standard deviation, for each of the measures in the current analysis. Table 7.4 also 

shows the sample sizes required to detect the attenuated effects. The results of the present 

analyses can thus be used to more accurately plan the parameters of single- and paired-pulse 

TMS-based neurophysiological measures more adequately in relation to the specific outcome of 

future studies. 

 

7.5 Conclusions 

 

The results presented above show that pulse waveform and current direction influence the 

efficacy and the reliability of single- and paired-pulse TMS measures and, therefore, should be 

taken into consideration in assessing TMS measures and also when considering those measures 

for future studies. In addition, sample sizes have been proposed to guide future investigators in 

detecting attenuated effects with the analyzed TMS protocols.  
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These pulse parameters are of special relevance for measuring the RMT or the baseline 

MEP amplitude, which are the most important and widely used TMS measures. Pulse waveforms 

and current directions that were not previously studied with paired-pulse measures (monoAP and 

biAP-PA) induced significant inhibition (SICI and LICI) or facilitation (ICF) of MEPs. Monophasic 

pulses induced greater and more reliable inhibition, whereas biphasic pulses induced greater and 

more reliable facilitation in ICF. Thus, biphasic pulses may be better suited for exploring the 

effects of TMS when more than one cortical area or brain structure are involved, as in the case of 

cSP or ICF. These findings can help future studies choose the parameters of the TMS pulse so 

as to maximize the efficacy and reliability of single- and paired-pulse TMS measures and thus 

optimize their utility as potential neurophysiologic biomarkers in health and disease.   
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8 Reliability of single-pulse, paired-pulse, and intermittent Theta-Burst TMS 

measures in Healthy Aging, Type-2 Diabetes, and Alzheimer’s Disease 

 

8.1 Introduction 

 

Thus far we have investigated controllable technical aspects and their influence on the 

reliability of TMS. However, these factors are not the only ones that have an impact on the 

variability of the responses to TMS. Changes in brain’s physiology related to healthy and 

pathological aging more than likely change the effects and the reliability of common TMS 

protocols. As we have already mentioned in State of the Art (Chapter 2 – Section 2.4), several 

studies have proven that plasticity mechanisms are among the most important changes with 

advancing age, moreover those plasticity processes have also been shown to be altered in 

diseases like AD and T2DM (Babiloni et al., 2016; Gispen & Biessels, 2000; Pascual-Leone et 

al., 2011). In the successive experiments we will examine how elements related to changes in 

brain physiology with advancing age or neuropathophysiological processes of common age-

related diseases with impaired cognition or glucose metabolism may change the effects and 

reliability of common TMS protocols. 

In order to investigate this, we have focused our analyses on the protocol that is most 

commonly used for evaluating plasticity with TMS, i.e. TBS. Over the past decade, the so called 

TBS, an ultra-high frequency patterned rTMS (see Chapter 4 – Section 4.4 for further information), 

has emerged as a potential means to generate greater and longer-lasting neuromodulatory effects 

with a shorter duration of stimulation (Huang et al., 2004). Both the continuous and intermittent 

forms of TBS protocols have been used to identify age-related changes in the mechanisms of 

plasticity across the lifespan in healthy individuals (Freitas et al., 2011) and reveal altered 
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neuroplastic mechanisms in several diseases. Of particular importance for the present work, 

these altered mechanisms have been observed in T2DM (Fried et al., 2017), and AD (Koch et al., 

2012).  

While the effects of TBS on healthy and patient population have been tested, the reliability 

of TBS and possible influencing factors has been insufficiently studied (see Chapter 2 – Section 

2.5 Reliability for further information). For example, it has been demonstrated that activation of 

the target muscle prior to (Goldsworthy, Muller-Dahlhaus, Ridding, & Ziemann, 2014), during 

(Huang et al., 2008), or immediately after TBS (Iezzi et al., 2008) can influence its effects on motor 

cortex excitability. In addition, carriers of the BDNF-Met allele may show altered response to 

neuromodulation paradigms including TBS (Cheeran et al., 2008; Lee et al., 2013; Di Lazzaro et 

al., 2015). Despite increased attention, only four studies (Hinder et al., 2014; Vernet et al., 2013; 

Vallence et al., 2015; Schilberg et al., 2017) have directly assessed the reproducibility of TBS 

after-effects, and these largely focused on young healthy individuals. Similarly, while there have 

been more studies investigating the reproducibility of single- and paired-pulse TMS measures, 

only two (Kimiskidis et al., 2004; Fleming et al., 2012) included subjects over the age of 50, and 

only one (Christie et al., 2007) exclusively recruited individuals over 65 years.  

Aging and age-related pathologies most probably have not only an impact on the outcome 

of plasticity measure but also on its reliability. The growth in popularity of TMS techniques and 

their fast expansion throughout the clinical practice as diagnostic and prognostic tools has led to 

an increased focus on the sources of inter- and intra-individual variability. As interest grows in 

using TMS and TBS to assess the intracortical and corticospinal excitability and the efficacy of 

neuroplastic mechanisms in older clinical populations (Freitas et al., 2011; Di Lorenzo et al., 2016; 

Fried et al., 2017), it is critical to understand the reliability of these techniques in the populations 

of interest. Moreover, identifying the factors that impact the reliability of TBS and measuring that 

impact will help the scientific community to elucidate the best clinical and therapeutical use of this 

technique in two of the most prevalent age-related diseases nowadays, T2DM and AD.  
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The present study aims to fill this void through a direct assessment of the reproducibility 

of iTBS after-effects and other common single- and paired- pulse TMS-based neurophysiological 

measurements in older adults, including those with impaired cognition or glucose metabolism. 

The results from this study will serve as a guidepost for understanding how biomarkers of cortical 

reactivity and plasticity change with age or are affected by common diseases such as T2DM and 

AD. 

 

8.2 Methods 

 

8.2.1 Participants 

 

Retrospective data was obtained from 36 adults of mean age 62.9 years (age range, 50 – 

79 years, 17 females), who had participated in a research study between May 2012 and May 

2015. The participants were drawn from different populations: nine participants (4 males, mean ± 

SD age: 67.7 ± 6.9 years) had a probable diagnosis of mild-to-moderate AD (McKhann et al., 

2011) with a clinical dementia rating (CDR) = 1.0 and a MMSE between 18-23; 15 participants (9 

males, mean ± SD age: 63.4 ± 7.3 years) had a clinical diagnosis of T2DM but were otherwise 

cognitively intact (MMSE ≥ 27), and the remaining 12 healthy controls (6 males, mean ± SD age: 

58.6 ± 9.1 years) were both cognitively intact (MMSE ≥ 27) and non-diabetic (hemoglobin A1c < 

6.2%). AD participants consisted of individuals who were randomized to a Sham-control group for 

a proof-of-principle study on the combined impact of daily rTMS and cognitive training (Brem et 

al., under review). T2DM and control participants were recruited for a study on cortical plasticity 

in T2DM (Fried et al., 2017). None of the participants had any unstable medical condition or 

comorbidity. Saliva was obtained from 24 participants (10 controls, 10 T2DM, 4 AD) to assess 

BDNF and apolipoprotein-E (APOE) polymorphisms. All participants underwent anatomical MRI 
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scan, structured neurological exam, medical history review, formal neuropsychological testing, 

and two identical TMS visits. Median time between TMS visits was 14 days (range: 2 – 344 days). 

Average (± SD) start time for the two TMS visits was 10:57 (± 1:07) for Visit-A and 10:37 (± 0:55) 

for Visit-B. Table 8.1 details participants’ characteristics. During both sessions, all participants 

underwent two TMS safety forms to screen for possible contraindications (see appendix C) and 

side effects (see appendix E). These TMS safety screening forms were based on the safety 

guidelines for TMS by The Safety of TMS Consensus Group (Rossi et al., 2009), for more 

information read Chapter 2 – Section 2.6 of the present thesis. Prior to the first visit, a T1-weighted 

anatomical magnetic resonance imaging scan was obtained in all participants and used for 

neuronavigation. Scans were completed on a 3T scanner (GE Healthcare, Ltd., UK) using a 3D 

spoiled gradient echo sequence: 162 axial-oriented slices for whole-brain coverage; 240-mm 

isotropic field-of-view; 0.937-mm x 0.937-mm x 1-mm native resolution; flip angle = 15°; TE/TR ≥ 

2.9/6.9 ms; duration ≥ 432 s. Blood glucose levels were assessed in all T2DM subjects at the 

beginning of each TMS visit for the purpose of establishing that glucose levels were within a 

normative range defined a priori as 80-200 mg/dL. 

 

8.2.2 Electromyography 

 

Surface EMG activity was recorded from the dominant hand’s FDI using a an integrated 

nTMS-EMG Nexstim system (eXimia NBS 4, Nexstim Plc, Finland). As mentioned in Methodology 

(Chapter 6 – Section 6.1), electrodes were placed over the FDI in a belly-tendon montage. Live 

EMG was monitored throughout the protocol to provide feedback of muscle relaxation. MEP peak-

to-peak amplitudes (mV) of the non-rectified signal were recorded for individual traces. 

Participants were comfortably seated with their arms resting in a natural angle, monitored for 

drowsiness and asked to keep their eyes open throughout the experiment. 
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Table 8.1. Participant characteristics. 

Group Gender BDNF APOE Age (y) 
Education 

(y) 

MMSE 

(#/30) 

Difference between visits 

Days 
Time (h) 

(A) 
Time (h) (B) 

Control F Val/Val e3/e4 56 12 30 13 10:50 9:11 

Control M Val/Val e3/e3 53 16 29 7 10:24 9:56 

Control F   51 14 29 15 13:11 10:43 

Control F Val/Val e3/e3 50 17 29 24 9:29 10:44 

Control F Val/Val e3/e3 74 17 30 3 9:27 9:37 

Control F Val/Val e2/e3 56 16 30 14 11:10 11:10 

Control M Val/Val e3/e3 51 16 29 8 10:17 9:58 

Control M Val/Met e3/e4 61 20 30 49 13:19 12:21 

Control M Val/Val e3/e3 77 18 30 48 9:53 9:46 

Control F   50 14 30 13 9:53 9:44 

Control M Val/Val e2/e3 60 12 28 3 9:43 9:17 

Control M Val/Val e3/e4 64 21 30 2 10:09 10:22 

T2DM M Val/Val e2/e3 59 12 28 6 10:13 10:38 

T2DM M Val/Val e3/e3 77 18 30 7 12:24 11:28 

T2DM M Val/Val e3/e3 64 20 28 2 11:41 11:12 

T2DM M Val/Val e3/e4 69 19 30 6 11:25 10:44 

T2DM M   62 14 30 14 8:57 8:18 

T2DM F   50 16 30 7 11:27 11:02 

T2DM F Val/Val e2/e3 71 18 30 28 12:58 10:17 

T2DM F Val/Met e3/e3 67 14 28 4 10:53 10:00 

T2DM M Val/Met e3/e3 53 16 28 3 11:06 10:45 

T2DM M   54 12 27 7 10:17 11:29 

T2DM M Val/Val e3/e3 67 14 30 12 9:58 9:31 

T2DM M   67 16 30 12 9:53 9:11 

T2DM F     66 16 30 18 10:41 8:39 

AD M   69 16 22 49 10:30 11:14 

AD F Val/Met e3/e4 73 16 22 70 11:51 11:33 

AD M Val/Val e3/e3 65 18 18 60 10:33 11:49 

AD F Val/Val e3/e4 64 16 21 67 10:59 11:01 

AD F   70 20 22 73 13:07 11:15 

AD F   66 14 22 77 10:08 10:42 

AD M   69 20 18 52 11:39 11:05 

AD M   54 18 22 65 11:44 11:01 

AD F Val/Val e4/e4 79 13 23 111 12:05 11:20 

Abbreviations: BDNF, brain derived neurotrophic factor; APOE, apolipoprotein E; MMSE, mini-mental 

status exam; T2DM, type-2 diabetes mellitus; AD, Alzheimer's disease. 
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8.2.3 Transcranial Magnetic Stimulation  

 

All parameters used in the study conformed to current recommended guidelines for the 

safe application of TMS endorsed by the IFCN (Rossi et al., 2009; Rossini et al., 2015). At the 

first visit, the integrated nTMS-EMG Nexstim system (eXimia NBS 4, Nexstim Plc, Finland) was 

used to anatomically identify the hand region and the most likely hotspot for FDI in the primary 

motor cortex, which was then marked on the participant’s MRI to ensure consistent targeting 

throughout each TMS visit. The search for the hotspot  and posterior measures of RMT (using 

both monoPA and biphasic pulses) and AMT (using biphasic pulses) followed the approach 

described for nTMS in State of the Art (Chapter 4) and following IFCN guidelines (Rossini et al., 

2015). TMS was applied using a handheld monoPA figure-of-eight focal coil (Nexstim Plc, Finland). 

The hotspot and thresholds were reassessed at the second visit using the first visit hotspot as a 

reference.  

In each visit the participants underwent to equivalent TMS testing protocols in the same 

order. First, block of single monoPA-TMS pulses at 120% RMT provided a measure of 

unconditioned cortico-motor reactivity. Paired-pulse protocols included SICI, LICI and ICF using 

standard parameters (Valls-Solé et al., 1992; Kujirai et al., 1993). SICI and ICF consisted of a CP 

at 80% of RMT, a TP at 120% of RMT and an ISI of 3 and 12 ms, respectively. In LICI, CP and 

TP were 120% of RMT separated by an ISI of 100ms. Conditioned MEPs from SICI, LICI, and 

ICF blocks were averaged and expressed as the percent change from the unconditioned block. 

Detailed information of the physiology and basic protocols of single- and paired-pulse TMS can 

be found in Methodology (Chapter 4 – Sections 4.2 and 4.3). Paired-pulse measures could not 

be performed in two participants in whom RMT exceeded 83% of maximum stimulator output. 

Blocks of single and pairs of TMS pulses were separated by a randomized 5000-6000 ms interval 

to minimize train effects. Each block consisted of 50 trials and individual MEP amplitudes > 2.5 

SD from the mean were excluded.  
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After the paired-pulse TMS neuronavigated iTBS was applied to participants using a 

handheld passive-cooling fluid-filled figure-of-eight coil (MCF-B65; 75 mm outer wing diameter) 

attached to a MagPro X100 stimulator (MagVenture A/S, Denmark). Intensity was 80% of AMT. 

The pattern was a two-second train of biphasic bursts (three pulses at 50 Hz) repeated every 200 

ms (30 pulses per train). Trains were repeated 20 times with an eight-second inter-train interval 

(600 pulses, 192 seconds). As aforementioned in Methodology (Chapter 4 – Section 4.4) this 

protocol has been shown to potentiate cortico-motor reactivity for up to 60 minutes in healthy 

individuals (Huang et al., 2004; Wischnewski & Schutter, 2015). 

Prior to iTBS, participants received three blocks of 30 single TMS pulses at 120% RMT 

using a hand-held biAP-PA figure-of-eight coil (Nexstim Plc). Cortico-motor reactivity was 

reassessed in blocks of 30 biAP-PA TMS pulses at 5, 10, 20, 30, 40, and 50 min post-iTBS. The 

peak-to-peak amplitude of each recorded MEP was measured automatically. For each block, 

individual MEPs > 2.5 SD from the mean were excluded. All 90 pre-iTBS trials were averaged as 

a measure of baseline cortico-motor reactivity. MEP trials were averaged for each post-iTBS block 

and expressed as the percent change from baseline. Due to complications, MEPs were not 

obtained at 30-min post-iTBS in two participants and 50-min post-iTBS in one participant. In those 

participants, the corresponding time-point from the other visit was therefore excluded from 

subsequent analysis. 

 

8.2.4 Statistical Analyses 

 

Neurophysiological data included three motor thresholds (monoPA and biAP-PA RMT and 

biphasic AMT; expressed as percent of MSO), two measures of cortico-motor reactivity 

(unconditioned MEPs elicited with the monophasic coil that was used to assess the effects of the 

paired-pulse paradigms and baseline MEPs elicited with the biphasic coil that were used to 

assess the impact of iTBS), three paired-pulse measures (SICI, LICI, ICF; with the average 
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amplitude of the conditioned MEPs expressed as the percent change the amplitude of 

unconditioned MEPs), and the six post-iTBS time-points (Post05, Post10, Post20, Post30, 

Post40, and Post50; with the average amplitude of MEPs from each time-point expressed as the 

percent change from the pre-iTBS baseline average). From the iTBS modulation, three further 

measures of plasticity were calculated: the maximum facilitation (Max+), or greatest change in 

MEP amplitude across all six time-points; the summed area under-the-curve for the first 20-min 

post-iTBS (AUC0-20), corresponding to the period of peak effect in neurotypical individuals 

(Wischnewski & Schutter, 2015); and the summed area under-the-curve across all post-iTBS 

time-points (AUC0-50). The area under-the-curve was calculated as the summed products of the 

average % of change in MEP amplitude at two consecutive time-points and the time in minutes 

between them. 

For all neurophysiological measures, ICCs were calculated between the two visits to 

assess test-retest reliability using the ICC(A,1) formula (McGraw & Wong, 1996). The ICCs were 

calculated for all subjects together and for each group (AD, T2DM, controls) separately using 

MATLAB using the Statistics Toolbox (Release 2015b, The MathWorks, Inc., Natick, MA, USA, 

www.mathworks.com). In this study we followed the reliability classification which is most 

commonly adopted in TMS literature, described by Portney and Watkins (Portney & Watkins, 

2009). ICC values were interpreted as high (ICC ≥ 0.75), moderate (0.5 ≤ ICC < 0.75), low (0.25 

≤ ICC < 0.5) or very low to none (ICC < 0.25).  

As we already mentioned in statistics description of the previous study (Chapter 7 – 

Section 7.3) reliability coefficients, such as the ICCs, can be used to adjust effect sizes (Baugh, 

2002; Wright, 2014). Using that same approach, we calculated adjustments for each measure 

with a hypothetical Cohen’s d effect size of 0.5, which corresponds to a within-subjects change of 

half a standard deviation, and is considered a medium effect size (Cohen, 1992). Only positive 

ICCs values were used to adjust for effect sizes given the nature of the calculations.  
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To investigate factors associated with intra-individual variability, additional analyses were 

performed in JMP Pro (v12.1.0, http://www.jmp.com) using a normal distribution and a two-tailed 

95% confidence interval. Given the exploratory nature of these analyses, individual p-values were 

not adjusted for multiple comparisons and should be interpreted accordingly. For between-groups 

comparisons, the sample sizes in the present study provided 0.80 power to detect a medium 

effect size (Cohen’s d = 0.54). The first set of analyses concerned correlations between variables 

that were collected at each visit and thus were performed using the net difference between Visits 

A and B (∆B-A) so that the direction of change between visits was taken into consideration. These 

analyses included: [1] how differences in baseline MEP amplitude relate to differences in RMT 

(for both monoPA and biAP-PA pulses); [2] how differences in SICI, LICI, and ICF relate to differences 

in unconditioned monophasic MEP amplitudes and RMT; and [3] how differences in post-iTBS 

measures relate to differences in baseline biphasic MEP amplitudes, RMT, and AMT. The second 

set of analyses concerned factors, such as Group, Gender, Age, Inter-Visit Interval, and BDNF 

and APOE polymorphisms, that were assessed only once per participant. Multiple linear 

regression analyses were performed on the absolute value of the inter-visit difference (|∆B-A|) to 

account for the amount of change between visits in either direction.    

 

8.3 Results 

 

Data on motor thresholds, baseline cortico-motor reactivity measures, changes in MEP 

amplitude from the paired-pulse TMS and post-iTBS plasticity measures are shown in Table 8.2.  
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Table 8.2. Neurophysiological Measures. 

    Visit-A Visit-B ∆B-A |∆B-A| 

    Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Motor threshold (% MSO) 
    

 
RMT monophasic 62.0 ± 12.9 63.9 ± 13.3 1.9 ± 4.7 4.00 ± 3.1 

 
RMT biphasic 44.3 ± 11.6 43.9 ± 10.1 -0.4 ± 5.5 3.91 ± 3.8 

 
AMT biphasic 43.9 ± 11.9 43.7 ± 10.1 -0.2 ± 6.7 4.38 ± 5.1 

Baseline MEPs (mV) 
    

 
Monophasic 0.9 ± 0.9 0.9 ± 1.0 0.0 ± 0.8 0.49 ± 0.6 

 
Biphasic 1.4 ± 1.0 1.3 ± 1.1 -0.0 ± 1.1 0.76 ± 0.8 

Paired-pulse (%∆)† 
    

 
SICI -21.6 ± 65.7 -12.3 ± 60.0 9.3 ± 59.5 41.04 ± 43.5 

 
LICI -49.6 ± 76.2 -67.2 ± 49.0 -17.6 ± 72.1 34.80 ± 65.3 

 
ICF 123.2 ± 204.5 143.4 ± 347.0 20.2 ± 372.5 164.50 ± 333.5 

Post-iTBS (%∆)†† 
    

 
5 min post-iTBS 9.8 ± 48.0 25.9 ± 70.1 16.1 ± 76.6 55.44 ± 54.5 

 
10 min post-iTBS 12.0 ± 47.3 9.8 ± 49.0 -2.2 ± 65.7 46.95 ± 45.3 

 
20 min post-iTBS -12.0 ± 43.2 15.2 ± 56.2 27.2 ± 62.7 51.35 ± 44.5 

 
30 min post-iTBS -1.5 ± 44.1 6.8 ± 57.9 8.3 ± 65.9 46.54 ± 46.7 

 
40 min post-iTBS 9.5 ± 54.6 22.8 ± 101.3 13.3 ± 95.7 66.65 ± 69.0 

 
50 min post-iTBS -5.0 ± 49.8 15.5 ± 83.1 20.5 ± 92.0 59.16 ± 72.7 

 
Max. Facilitation 50.6 ± 51.6 87.5 ± 96.7 36.9 ± 93.3 62.13 ± 78.3 

AUC (%∆*time) 
    

 
0-20 min post-iTBS 78.4 ± 683.9 278.6 ± 823.4 200.3 ± 936.9 687.1 ± 657.9 

  0-50 min post-iTBS 5.6 ± 1634.6 721.1 ± 2456.7 762.6 ± 2379.2 1728.4 ± 1783.2 

Abbreviations: ∆B-A = net inter-visit difference; |∆B-A| = absolute inter-visit difference; RMT = resting 

motor threshold; AMT = active motor threshold; MEPs = motor evoked potentials; SICI = short 

intracortical inhibition; LICI = long intracortical inhibition ; ICF = intracortical facilitation. † Percent 

change from monophasic baseline; †† Percent change from biphasic baseline.  

 

 

8.3.1 Reliability of Neurophysiological measures 

 
Figure 8.1 shows coefficients for all measures and all groups. ICC were classified following 

criteria for categorizing reproducibility in neurophysiological assessments mentioned in State of 

the Art (Chapter 2 – Section 2.5) (Portney & Watkins, 2009).  
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Figure 8.1. Reproducibility of TMS measures across groups. 

Reproducibility of TMS measures across groups. The Intra-class correlation coefficient (ICC, y-axis) was 

calculated as an index of reliability for each TMS-based measure (x-axis); A, for single- and paired-pulse 

TMS measures and B for post theta burst (TBS) measures. ICCs were calculated for all subjects (solid line 

marker) as well as for each group: Alzheimer’s disease (AD; red triangle marker); type-2 diabetes mellitus 

(T2DM; green circle marker); and non-AD/non-T2DM controls (blue square marker). Abbreviations: AMT, 

active motor threshold; AUC, area under-the-curve; BI, biphasic waveform; ICF, intracortical facilitation; 

LICI, long intracortical inhibition; Max+, maximum facilitation; MEPs, motor evoked potentials; MO, 

monophasic waveform; POST, minutes post-TBS; RMT, resting motor threshold; SICI, short intracortical 

inhibition. 
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Considering all groups combined, the three motor thresholds had high reproducibility (ICC’s > 

0.81). For baseline MEPs elicited at 120% of RMT, monophasic (ICC = 0.65) pulses showed 

moderate reliability while the biphasic pulses (ICC = 0.47) had low reliability. Among the paired-

pulse measures, reproducibility was low to moderate for LICI (ICC= 0.33) and SICI (ICC = 0.55), 

respectively. While ICF was not reproducible (ICC = 0.14). All post-iTBS measures demonstrated 

low reproducibility (ICC’s = 0.26-0.34); except for Post10 (ICC = 0.10), Post30 (ICC = 0.17)  and 

Post50 (ICC = 0.09), which were not reproducible. 

Considering each group separately, ICCs tended to be higher for the AD group than for T2DM 

and controls. In particular, the AD group demonstrated high reproducibility for resting thresholds 

(ICC’s = 0.96), biphasic MEPs (ICC = 0.83), LICI and ICF protocols (ICC’s > 0.75). Further, 

reproducibility in AD was moderate for AMT (ICC = 0.72), monophasic MEPs (ICC = 0.59) and 

SICI (ICC = 0.66). For the remaining post-iTBS measures the reliability was low to none (ICC’s = 

0.09-0.47) with the exception of Post10 (ICC = 0.70) and AUC0-20 (ICC = 0.63) that showed 

moderate reliability values. By comparison, both controls and T2DM individuals showed low to no 

reproducibility in most of the TMS measures that were analyzed (ICCs = -0.37-0.48). Positive 

outliers were SICI in T2DM (ICC = 0.63), and monophasic MEPs (ICC = 0.51) and LICI in controls 

(ICC = 0.97) that showed moderate to high reproducibility, respectively. Reproducibility 

coefficients together with hypothetical effect sizes adjusted for these ICCs in all subjects and in 

the three separate cohorts are shown in Table 8.3. 
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8.3.2 Relationships between the net differences of neurophysiological measures 

 

For measures assessed with a monoPA pulse, there were no significant relationship 

between the ∆B-A of baseline MEP amplitudes and the ∆B-A of RMT, R31 = 0.01, p = 0.934. Similarly, 

there were no significant relationships between the ∆B-A of any of the paired-pulses measurements 

with the ∆B-A of either RMT or baseline MEP amplitudes (|R|’s < .27, p’s > 0.13). 

When using a biAP-PA pulse, the ∆B-A of baseline MEP amplitudes was significantly 

correlated with the ∆B-A of RMT, R34 = -0.35, p = 0.035. Specifically, a 1% MSO increase in the 

net difference of RMT was associated with a 70-µV decrease in the net difference of baseline 

MEP amplitude (Figure 8.2A). Further, the ∆B-A’s for all iTBS plasticity measures except Post30 

and Post40 were significantly correlated with the ∆B-A of biAP-PA baseline MEPs amplitudes (R’s < 

-.36, p < 0.04). In all cases, an increase in the net difference of baseline MEP amplitudes was 

associated with a decrease in the inter-visit difference of post-iTBS facilitation. This relationship 

was most apparent for AUC0-20, where a 1-mV increase in the inter-visit difference of baseline 

MEP amplitude was associated with a 390 (%∆*min) decrease in the net difference of the AUC 

(Figure 8.2B). By contrast, there were no significant relationships between the ∆B-A of any of the 

iTBS plasticity measures with the ∆B-A of either RMT or AMT (|R|’s < 0.32, p’s > 0.07). These 

results indicate that as much as 23% of the visit-to-visit variability in iTBS plasticity measures can 

be accounted for by the variability in the baseline MEP amplitude, which in turn is impacted by 

the variability in RMT.  

In the T2DM subjects, blood glucose levels did not differ significantly between visits (p > 

0.1) and no significant relationships were observed between changes in blood glucose levels and 

changes in any TMS measure between visits (p’s > 0.2). 
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Figure 8.2. Relationships between the net difference of neurophysiological measures. 

(A) Using biphasic pulse, an increase in RMT of 1% of maximum stimulator output from Visit-A to Visit-

B (x-axis) was associated with a decrease of 0.07 mV in baseline MEP amplitude over the same period 

(y-axis). (B) An increase of 1 mV in baseline MEP amplitude from Visit-A to Visit-B (x-axis) was 

associated with an inter-visit decrease of 390 % *min in the MEP change during the first 20 min (y-

axis). 

 

 

8.3.3 Analyses of the absolute difference between visits 

 

Controlling for the Inter-Visit Interval, as well as the Age and Gender of participants, the 

linear model yielded no difference between groups in the |∆B-A| of any neurophysiological measure 

(F’s < 2.2, p’s > 0.13). These results indicate that the absolute amount of change between visits 

in motor thresholds, as well as baseline reactivity, paired-pulse TMS, and plasticity measures 

were equivalent across AD, T2DM and control participants at the .05 level. 

The multiple regression analyses did show a significant relationship between the |∆B-A| of 

monophasic MEPs and Age, controlling for Group, Gender, and Inter-Visit Interval (F1,1 = 5.62, p 

= 0.025). Specifically, a one-year increase in participant Age was associated with a 0.03 mV 
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increase in the absolute visit-to-visit difference in the amplitude of biAP-PA MEPs. Similarly, there 

was a significant relationship between the |∆B-A| of Post05 facilitation and Inter-Visit Interval, 

controlling for Group, Gender, and Age (F1,1 = 6.42, p = 0.017). Specifically, a one-day increase 

in the interval between visits was associated with a 0.03 mV decrease in the absolute inter-visit 

difference in the %∆ in MEP amplitudes at Post05. None of the other relationships were significant 

(F’s < 4.0, p’s > 0.05) (Figure 8.3A).  

Regarding the influence of genetic polymorphisms, the multiple regression analyses 

demonstrated there was a significant effect of BDNF status on the |∆B-A| of several post-iTBS 

measures after controlling for Group (Figure 8.3B). Specifically, intra-individual variability was 

higher for BDNF-Met carriers than BDNF-Val homozygotes for Post05 (F1,1 = 6.76, p = 0.017) and 

Post50 (F1,1 = 6.79, p = 0.017), and AUC0-20 (F1,1 = 4.99, p = 0.037). By comparison, there was no 

significant effect of APOE status on the |∆B-A| of any of TMS measures (F’s < 2.8, p’s > 0.1). 

 

 

Figure 8.3. Additional sources of Variability. 

(A) Impact of BDNF polymorphism on the reliability of iTBS after-effects. Controlling for Group, the 

absolute difference in MEP facilitation (y-axis) tended to be higher across all post-iTBS time-points 

(x-axis) in Val-Met carriers (green) than Val/Val homozygotes (light blue). (B) Impact of inter-visit 

duration on the reliability of iTBS after-effects. Controlling for Group, Age and Gender, the absolute 

difference in MEP facilitation (y-axis) tended to be higher across all post-iTBS time-points (x-axis) in 

subjects that received their second visit within 7 days (dark blue) than those whose second visit 

occurred greater than 7 days after the first (grey). * p < 0.05, ^ p < 0.1. 
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8.4 Discussion 

 

We have previously discussed that the potential of TMS-based assessments to provide 

meaningful insights into human neurophysiology is constrained by its variability. In particular, the 

intra-individual variability of a given TMS measure could reduce its sensitivity to detect meaningful 

changes over time or in responses to an intervention. State of the Art (Chapter 2 – Section 2.5) 

summarizes the studies that have investigated the reliability of different TMS measures thus far 

and some of the common causes of their variability. However, as TMS is increasingly applied in 

different neuropsychiatric conditions, it is crucial to evaluate its reproducibility not only in terms of 

the technical parameters but also elucidate how target populations could be affected or may or 

may not introduce further variability to the measure. The current study offers the first direct 

analysis of reproducibility of single- and paired-pulse TMS, and patterned repetitive TMS in older 

healthy adults and those with impaired cognition or glucose metabolism. The results show that 

reproducibility varies considerably across measures and populations. Motor thresholds remain 

the gold standard in test-retest reliability; SICI and LICI tended to be more reproducible than ICF, 

though variability in LICI and ICF differed considerably across groups. Lastly, measures of LTP-

like plasticity from iTBS were among the least reproducible, especially for older healthy and 

diabetic individuals.  

Two recent studies in young healthy individuals have reported higher intra-individual 

variability in the response to iTBS (Hinder et al., 2014; Schilberg et al., 2017). The present results, 

based on data from healthy older adults and those with either impaired cognition or glucose 

metabolism, are more-or-less consistent with those reports in young adults and suggest that 

variability in the after-effects of iTBS remains a significant challenge to its use as a biomarker for 

the efficacy of neuroplastic mechanisms across the lifespan. In Chapter 2 – Section 2.5 we have 

also reviewed some of the factors that can influence the efficacy of TBS and thus increase intra-

individual variability such as prior exercise (McDonnell et al., 2013), ongoing voluntary activity 
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(Iezzi et al., 2008), and other state-dependent effects (Silvanto & Pascual-Leone, 2008). Other 

factors that are relevant for the present work such as BDNF polymorphisms and baseline cortico-

motor reactivity are further discussed below. Some factors could be disease-specific, such as 

fluctuations in blood glucose levels in T2DM, though importantly glucose levels (within the range 

of 80-200 mg/dL specified a priori) were not found to influence variability in the present study. 

Interestingly, the AD group showed numerically higher reproducibility coefficients for nearly all 

measures, including RMT, SICI and iTBS after-effects, which several studies in AD have shown 

to be abnormal and/or predictive of disease severity or response to treatment (Liepert, Bär, 

Meske, & Weiller, 2001; Di Lazzaro et al., 2004; Koch et al., 2012, 2016; Brem, Atkinson, 

Seligson, & Pascual-Leone, 2013; Balla, Maertens de Noordhout, & Pepin, 2014). It is possible, 

however unlikely, that some aspect of the Sham treatment (e.g., daily study visits or interaction 

with study staff) that the AD group underwent had some stabilizing effect on their 

neurophysiology. This possibility could be investigated further by conducting test-retest 

assessments in a similar AD cohort over a similar timeframe that did not include significant 

changes to their regular schedule. A more likely explanation is that the same pathological 

processes that cause certain measures to be abnormal in AD also exert a stabilizing effect on 

TMS measures. It is important to highlight that the responses of our AD cohort were aligned with 

those in previous studies where a reduction in LTP-like plasticity following iTBS is shown (and in 

some cases absence of LTP-like plasticity or even conversion to a LTD-like response) (Koch, 

2010; Koch et al., 2012; Di Lorenzo et al., 2016). This lack of response together with a greater 

reliability compared to those study participants that were cognitively intact (i.e. older healthy 

controls and T2DM) could reflect pathological changes in the brains of AD patients that reduce 

state-dependent effect and more neurophysiological rigidity less likely to change after the stimuli. 

In any case, the relatively high reproducibility of most TMS measures in AD appears to validate 

their use as surrogate biomarkers of AD cortical pathology (Freitas et al., 2011). 
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As explored in the previous set of experiments (Chapter 7), ICC’s can be used to adjust 

effect sizes trying to provide a more realistic estimate of the sample size required to observe the 

desired effect in relation to the reproducibility of the measure being tested. Table 8.3 shows 

adjustments to a hypothetical Cohen’s d of 0.5, corresponding to a change of half a standard 

deviation, and the sample sizes required to detect attenuated effects for each of the measures in 

the current analysis. The results of the present analysis can thus be used to more accurately plan 

for future studies using TMS-based neurophysiological measures as prognostic biomarkers in 

older healthy, diabetic, and AD populations.  

 

8.4.1 Variability in baseline MEP and its role in post-iTBS variability 

 

The reproducibility of biAP-PA MEP amplitude (ICC = 0.46) was noticeably lower than that 

of biphasic RMT (ICC = 0.89), when considering all subjects together. Given that MEPs were 

assessed using 120% of RMT, there appear to be factors that do not impact RMT but do add 

variability to batches of MEPs elicited at suprathreshold intensities.  

Epidural recordings of cortico-spinal volleys in conscious humans receiving TMS over 

motor cortex have shown that depending on its shape, current direction, and intensity, a TMS 

pulse can result in direct depolarization of the PTN cell (D-waves) and/or indirect depolarization 

through local circuits of interneurons (I-waves) (Burke et al., 1993) (more detailed information 

about these studies can be found on State of the Art). Also in State of the Art (Chapter 2 – Section 

2.3) we have discussed how at threshold intensities the second half of the biphasic pulse 

(posterior-anterior in the present study) contributes primarily to the activation of cortical 

components, while at suprathreshold intensities there is increasing influence of the first half of the 

pulse (anterior-posterior in the present study) (Di Lazzaro et al., 2003; A. Barker, 2017) 

contributing to MEP amplitude. Moreover, from the results of this study, the use of monoPA pulse 

waveforms, which primarily elicit early I-waves, yields higher reproducibility in measures of 
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cortico-motor reactivity over biphasic stimulation, which as just argued elicits a more complex 

pattern of D-waves, and early and late I-waves depending on the intensity of stimulation (Di 

Lazzaro et al., 2003). 

Additionally, in the previous experiments of this thesis (Chapter 7) we have proven the 

importance of the technical/physical TMS parameters (such as pulse waveforms and current 

direction) and their influence in both the efficacy and reliability of baseline MEP amplitudes in a 

different cohort.  

There is at least some theoretical evidence that biphasic TMS pulses might be less 

effective than monoPA at probing the neuromodulatory effects of TBS (Di Lazzaro & Rothwell, 

2014).  

At this point is worth emphasizing that post-iTBS data in our study was elicited using biAP-

PA pulses. Knowing that different pulse waveforms and current directions translate the activation 

of distinct cortical circuits, future studies should directly explore how the effect size and 

reproducibility of single-pulse, paired-pulse, and TBS-based TMS measures are influenced by 

physical TMS parameters such as pulse shape and duration, and induced current direction 

relative to the motor cortex in this populations. However, to our knowledge, this has never been 

directly investigated. This may help improving the reliability of the measures as well as helping 

understanding the undergoing cortical processes.  

Moreover, the inter-visit change in biphasic baseline MEP amplitudes was inversely 

related to that of biphasic RMT, suggesting that input-output curve (i.e., the relationship between 

TMS intensity and MEP size, see Methodology, Chapter 4 – Section 4.2 for a schematic 

representation of an input-output curve) itself varies across visits. Regardless, the relatively low 

reproducibility of baseline MEP amplitudes is an area of concern given that it is the basis on which 

post-iTBS measures are derived. Furthermore, a significant portion of the inter-visit variance in 

post-iTBS measures is accounted for by visit-to-visit difference in baseline MEP amplitudes. The 

high variability of the biphasic baseline responses together with the poor reliability of post-iTBS 
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measurements are consistent with a recent study showing that variability in MEPs within a session 

is predictive of the response to cTBS (Hordacre, Ridding, & Goldsworthy, 2015). Furthermore, the 

present results imply that improving the consistency of baseline measures (within and across 

sessions) would decrease the variability of post-iTBS measures as well. Given that changes in 

input-output curves might contribute to the changing relationship between RMT and 

suprathreshold MEP amplitudes, future studies should also explore whether the reproducibility of 

these measures could be improved by choosing stimulation intensities based on individual 

stimulus-response curves rather than a fixed percent of RMT. 

The use of neuronavigation has been shown to increase the consistency of MEPs 

(Julkunen et al., 2009). However, even with neuronavigation, handheld TMS remains prone to 

slight deviations in the position, orientation, and inclination of the TMS coil. Robot arms, such as 

the TMS Robot (Axilum® Robotics, Strasbourg) have been shown to improve the consistency of 

trial-to-trial MEPs over handheld TMS (Foucher et al., 2012; Ginhoux et al., 2013). Typically, MEP 

trials are elicited with individually spaced TMS pulses at a specific frequency range (e.g., 5000-

6000 ms in the present study) with some random jitter incorporated to reduce the likelihood of 

train effects. Several recent studies combining TMS with concurrent EEG have highlighted to role 

of pre-stimulus oscillatory activity on cortico-motor excitability. Mäki and Ilmoniemi (Mäki & 

Ilmoniemi, 2010) demonstrated that MEP amplitudes are inversely correlated with the amplitudes 

of pre-stimulus midrange-beta oscillations (15-18 Hz) over the stimulated motor cortex. Similarly, 

Iscan and colleagues (Iscan, Nazarova, Fedele, Blagovechtchenski, & Nikulin, 2016) showed that 

the variability of pre-stimulus power in the upper alpha band (10-12 Hz) was predictive of 

variability in ICF trials. Alternatively, Berger and colleagues (Berger, Minarik, Liuzzi, Hummel, & 

Sauseng, 2014) suggest that the instantaneous phase of EEG oscillations across a range of 

frequencies is more predictive of MEP amplitude than spectral power. Together, these studies 

suggest that technological advances that allow for closed-loop systems to trigger TMS pulses 

timed to real-time EEG rhythms should result in more consistent MEPs. While these approaches 
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offer the potential to improve the trial-to-trial consistency of MEPs, whether they would translate 

to greater reproducibility across visits remains to be explored. 

 

8.4.2 Impact of Age and Inter-Visit Interval 

 

While the multiple regression analyses did not show any significant difference between 

groups in terms of the absolute difference of the measures, participant Age was significantly 

related to the absolute difference of monophasic baseline MEP amplitudes and Inter-Visit Interval 

was significantly related to the absolute difference in Post05 facilitation, controlling for other 

factors such as Group and Gender. These results must be interpreted cautiously given the 

potential for Type-2 error in the present analysis. That the variability in baseline MEPs increases 

with age is not particularly surprising given that the activation of motor system becomes more 

complex through central compensatory mechanisms (Ward & Frackowiak, 2003) (Chapter 2 – 

Section 2.4 deepens on the relationship between age and the motor system); however, its 

influence is not easily controlled, especially if the focus of the study is aging. It is more surprising 

that immediate iTBS after-effects would be more consistent with greater time between visits. One 

possibility is that visits repeated under shorter intervals might be influenced by the iTBS from the 

previous visit, a phenomenon known as metaplasticity. It has been shown that the 

neuromodulatory effects of rTMS increase with consecutive daily application (Maeda, Keenan, 

Tormos, Topka, & Pascual-Leone, 2000; Valero-Cabré, Pascual-Leone, & Rushmore, 2008) . 

Moreover, these metaplastic effects and state-dependent interactions may be modulated by age 

(Opie, Vosnakis, Ridding, Ziemann, & Semmler, 2017) or neuropsychiatric disorders such as 

autism and Fragile X syndrome (Oberman et al., 2016). While the impact of multiple sessions 

separated by more than 24 hours has not been well explored, a single application of iTBS was 

shown to alter the expression of GABA-precursor enzyme GAD67 for up to 7 days in the neocortex 

of rats (Trippe, Mix, Aydin-Abidin, Funke, & Benali, 2009), suggesting the window for metaplastic 
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effects might be longer than previously understood. Indeed, a follow-up analysis of the current 

data found that the absolute difference of Post05 facilitation was higher between visits conducted 

within 7 days than those separated by more than a week (Figure 8.3B). 

 

8.4.3 Influence of BDNF polymorphisms 

 

The multiple regression analyses showed that the absolute difference of several post-iTBS 

measures was higher in subjects with a BDNF-Met allele. While the generalizability of these 

findings is limited by the small sample size, they nonetheless provide insight into the debate over 

the role of BDNF polymorphisms in shaping the effects of neuromodulation. Several studies have 

reported a reduced impact of repetitive TMS in Met carriers (Cheeran et al., 2008; Cirillo et al., 

2012; Lee et al., 2013; Chang et al., 2014; Di Lazzaro et al., 2015), still others have reported no 

difference (Li Voti et al., 2011; Mastroeni et al., 2013). The current results on a subset of our 

sample suggest that this divergence in the literature may be due to the fact that the BDNF-Met 

allele leads to more variability in the response to neuromodulation rather than simply blunting its 

effects. 

 

8.5 Conclusions 

 

Motor thresholds remain the gold standard for reproducibility of any TMS measure as 

demonstrated by high ICC coefficients. Post-iTBS measures of LTP-like plasticity demonstrate 

low reproducibility by comparison. Reproducibility was higher in the AD group, possibly reflecting 

pathological rigidity of neurophysiological systems. A number of factors may contribute to the 

intra-individual variability of iTBS after-effects, including BDNF polymorphisms and variability in 
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baseline MEP amplitudes, from which post-iTBS measures are calculated. Future studies can use 

the ICC to adjust expected effect size and required sample size calculations.  

Based on these conclusions, we offer the following recommendations for future studies to 

potentially reduce the intra-individual variability in TMS measures, especially in the iTBS induced 

modulation of cortico-motor reactivity. We note that these recommendations are based on 

exploratory analyses performed in a relatively small and heterogeneous group of subjects and 

further confirmatory studies are needed. (1) Waiting at least 7 days between repeated visits can 

reduce the probability of metaplastic effects, at least in healthy individuals. (2) Whenever possible, 

BDNF polymorphism should be taken into account, either by adding BDNF Met carrier status as 

a covariate, or by splitting the data into subgroups. (3) To reduce intra-individual variability in 

baseline MEP amplitudes and any resulting impact of this variability on post-iTBS measures, we 

recommend considering the use of a stimulation intensity derived from individual stimulus-

response curves, rather than using a fixed percent of RMT. 
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9 Reliability measures in young and older healthy controls. A comparison 

between cohorts from the previous studies 

 

Lastly, after investigating the effects of physical – technical TMS parameters and age-

related diseases on the reliability of TMS reliability, we decided to retrospectively compare  the 

reliability coefficients between our young and older healthy cohorts. This last analysis tries to 

elucidate if there might be possible differences in the reliability of common TMS single- and 

paired-pulse measures between those two groups of healthy participants.  

As we already mentioned in Chapter 2 – Section 2.4, the previous concept of a static brain 

that only changes in the early stages of life or as a result of a disease seems to be overdue and 

the scientific community mostly concludes today that the brain continuously changes across 

lifespan from the moment we are born to the elderly ages.  

In this last analysis of reliability, data on RMT, baseline MEP amplitude, and paired-pulse 

protocols with monoPA and biAP-PA pulses was compared between the young healthy cohort from 

the first set experiments (Chapter 7) and 12 older healthy controls (6 males, mean ± SD age: 58.6 

± 9.1 years) that were both cognitively intact (MMSE ≥ 27) and non-diabetic (hemoglobin A1c < 

6.2%) (Chapter 8). As previously mentioned, none of the participants had any unstable medical 

condition, drug intake or comorbidity.  

As a reminder, surface EMG activity was recorded from the dominant hand’s FDI and 

electrodes were placed in a belly-tendon montage with the ground electrode over the ipsilateral 

ulnar styloid process. Data consisted of RMT and baseline cortico-motor reactivity using both 

monoPA and biAP-PA pulses and SICI, LICI, ICF using monoPA pulses only. Aside from the RMT, 

the protocols in the young and older populations differed slightly. However, both Nexstim and 

MagPro have similar coil windings and were configured to induce similar pulse waveforms and 
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current directions in the brain. MEP peak-to-peak amplitudes (mV) of the non-rectified signal were 

recorded for individual traces and percentage of change from baseline MEP amplitude was 

calculated for paired-pulse protocols. Participants were monitored for drowsiness and asked to 

keep their eyes open throughout the experiment. The ICC’s, as previously mentioned, were 

calculated between the two visits to assess test-retest reliability using the ICC(A,1) formula 

(McGraw & Wong, 1996). The ICCs were calculated for young and older healthy controls groups 

depending on the waveform/current direction separately using MATLAB using the Statistics 

Toolbox (Release 2015b, The MathWorks, Inc., Natick, MA, USA, www.mathworks.com). In this 

study we followed the reliability classification which is most commonly adopted in TMS literature, 

described by Portney and Watkins (Portney & Watkins, 2009). ICC values were interpreted as 

high (ICC ≥ 0.75), moderate (0.5 ≤ ICC < 0.75), low (0.25 ≤ ICC < 0.5) or very low to none (ICC 

< 0.25).  

The ICC data for RMT (monoPA, biAP-PA), baseline MEP (monoPA, biAP-PA), and SICI, LICI, 

ICF (monoPA) were compared between the young and the older cohort  using two-way mixed-

effects F statistics.  

The reliability coefficients for the different single- and paired-pulse TMS measures are 

represented in Figure 9.1. RMT and LICI with monoPA pulses were both significantly more reliable 

among the older than the young controls (p = .028, and p < .001, respectively). The ICCs for other 

TMS measures were not significantly different between the two age groups (all p’s > 0.060). 
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Figure 9.1. Reliability of single- and paired-pulse measures. 

Intra-class correlation coefficients (ICCs) for the different TMS protocols performed with monoPA 

(monophasic posterior-to-anterior) and biAP-PA (biphasic anterior-to-posterior—posterior-to-anterior) in 

young adults (YA, ages 18 – 35) and older adults (OA, ages 50 – 79). Abbreviations: Amp., baseline MEP 

amplitude; RMT, resting motor threshold; %∆ LICI, long interval intracortical inhibition percentage of 

change from baseline; %∆ SICI, short interval intracortical inhibition percentage of change from baseline; 

%∆ ICF, intracortical facilitation percentage of change from baseline.  

 

 

The ICCs of most TMS measures were reassuringly quite similar between the young and 

the older healthy controls from the two previous experiments. Interestingly, however, the RMT 

and LICI with monoPA pulses, which were the two most reliable TMS measures among the older 

controls in the study of reliability of TMS measures in aging and age-related (Chapter 8), were 

both significantly more reliable in the older than in the young adults.  

The higher reliability of monoPA RMT in the older compared to young could be due to 

several factors: (1) the use of the participant’s individual brain MRI for older adults may have 
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improved the consistency of localizing the motor hotspot between the two visits compared to using 

a brain MRI template for young controls in the present study. A more consistent localization of 

motor hotspot, in turn, may have improved the reproducibility of RMT; (2) alternatively, normal 

aging may lead to an increase in the rigidity of neurophysiological systems, which may in turn 

reduce the influence of state-dependent effects and other factors that contribute to the 

intraindividual variability in corticospinal excitability in younger adults. 

The higher reliability of LICI among the older adults could be attributed to several factors: 

(1) Unlike young controls, most of the older showed nearly complete inhibition of MEPs after LICI, 

suggesting a floor effect. Such an effect seen in both visits and which bounds the data on one 

side, would have the impact of minimizing inter-visit variability; (2) There might be differences 

between young and older controls in the efficacy of intracortical inhibition, as indexed by LICI, due 

to age-related changes in the efficiency of GABAB synaptic transmission. While studies in rodents 

have suggested the overall efficacy of GABAB-mediated inhibition decreases with aging (McQuail, 

Banuelos, LaSarge, Nicolle, & Bizon, 2012), the 100-ms inter-pulse interval may have been sub-

optimal for the young adults relative to the older. (3) Finally, slightly different methods were used 

to measure paired-pulse effects among young and older cohorts: conditioned MEPs were 

measured in separate blocks for older but were intermixed in a pseudorandom order for young 

controls. It is, however, unclear why such a difference would affect LICI but not SICI or ICF. Unlike 

SICI and ICF, which are obtained with a narrow range of short ISIs, LICI is obtained with a wide 

range of longer ISIs. That wider range of ISIs can result in LICI, making it more likely that LICI-

induced inhibition occurs with a particular ISI in a given subject. In contrast, the range of optimal 

ISIs for SICI and ICF may be narrower, making them less likely to result in similar effects in both 

age groups across visits, where there might be differences in the efficacy of intracortical inhibition 

mediated by GABAergic synaptic transmission. Future studies could investigate this further by 

conducting a response curve of LICI using different ISIs in younger and older participants. 
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SECOND BLOCK OF EXPERIMENTS: EFFECTS OF TRANSCRANIAL 

STATIC MAGNETIC STIMULATION ON MOTOR CORTEX 

EXCITABILITY AND BRAIN OSCILLATORY ACTIVITY 

 

 

 

10 Effects of transcranial Static Magnetic Stimulation (tSMS) on motor cortex 

excitability and brain oscillatory activity in healthy subjects. 

 

10.1 Introduction 

 

Dynamic magnetic and electric fields have been used for decades to explore human brain 

function, brain physiology in health and disease, and have been proved to modulate the activity 

of the brain helping in the treatment of different diseases. The most known example of this is 

TMS. 

Recently, several studies have found that moderate SMFs (i.e. magnetic fields between 

1mT to 1T (Rosen, 2003) that do not change over time) also influence human cortical excitability. 

The use of SMFs as a NIBS tool has grown as a new and promising brain stimulation technique, 

further developing its potential for the modulation of brain cortical activity.  

The exposure to tSMS for 10-15 min induces a reduction of TMS elicited MEPs of about 

25% that outlast the intervention for several minutes and is negatively correlated with an increase 
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in RMT (Oliviero et al., 2011; Silbert et al., 2013) translating a decrease in motor cortex excitability 

due to the effects of the SMF.  

After these initial studies, other research groups continued exploring the effects of tSMS 

on (1) motor cortex, performing different TMS inhibitory protocols, and (2) other cortical areas, 

such as somatosensory and visual. As a summary of the studies on tSMS effects previously 

mention in State of the Art (Chapter 3),  we can presume that tSMS reduces cortical excitability 

through GABAA-inhibitory cortical circuits that are involved in SICI. Nevertheless, the involvement  

of GABAA-inhibitory circuits seems to be rather specific given that other protocols like SAI or LAI 

were not influenced by the SMFs. Hence, the physiological mechanisms of the induced inhibition 

of the motor cortex after tSMS are still unknown and additional studies are still needed in order to 

elucidate possible cortical circuits that are involved.  

One way of deepening on the understanding of the cortical mechanisms of tSMS is by 

using different TMS waveforms and current directions. We know from Di Lazzaro’s studies (Di 

Lazzaro et al., 2017) that different TMS waveforms and current directions may activate specific 

neural circuits related to the motor system (for further information read State of the Art, Chapter 

2). Therefore, the aim of the present study was to deepen on the understanding on the tSMS-

motor cortex interactions by using different waveforms and current directions when performing 

common TMS protocols to evaluate cortical excitability and the balance between facilitatory and 

inhibitory cortical networks. 

The second aim intended to further investigate the effects of tSMS on the motor system 

by measuring the cortical oscillatory activity with EEG and relate the possible changes to the 

reduction in MEP amplitude seen with the TMS evaluation. Changes in EEG motor activity after 

tSMS have not been tested so far, thus the hypothesis for the present study needed to be in the 

context of previous studies that have shown a relationship between the EEG beta band and an 

impairment of motor performance. The rationale for this hypothesis is further explained in 

Methodology (Chapter 6 – Section 6.2).   
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10.2 Methods 

 

10.2.1 Participants 

 

Twenty-six healthy participants (12 males, 22 right-handed) between the ages of 18 and 

35 were enrolled in the study were each participant completed two identical visits (intervisit 

interval range 1–70 days; median = 10.5 days) of real and sham tSMS stimulation during 15 

minutes over the dominant hemisphere. All participants underwent equivalent testing: (1) During 

the first visit, a structured medical history review (see appendix A) and handedness determination 

were performed. Handedness was determined by revised Edinburgh Handedness Inventory 

(Oldfield, 1971) (appendix B). TMS and tSMS safety questionnaires were reviewed for all 

participants at the beginning and end of each visit to screen for possible contraindications (see 

appendices C and D) and side effects (appendix E). The TMS safety screening form was based 

on the safety guidelines for TMS by The Safety of TMS Consensus Group (Rossi et al., 2009), for 

more information read Chapter 2 – Section 2.6 Safety of the present thesis. The tSMS safety form 

was an adaptation from a standard MRI safety questionnaire. The form that was used during the 

experiments can be found as appendix D. (2) At the beginning of both the real and the sham visits 

we acquired baseline EEG recordings followed by TMS cortical reactivity and excitability 

assessments. After the real/sham intervention recordings were repeated in the same order.  

In State of the Art and Methodology of the present thesis, we stated and reviewed the 

effects and implications of pulse waveform and current direction on the TMS-brain interaction. 

After the initial screening and based on these implications, participants were randomly assigned 

to one of three groups depending on the TMS pulse characteristics for cortical reactivity 

assessments: ten subjects received monoPA, nine received monoAP and seven subjects received 

biAP-PA stimulation. Current directions are referred as the main direction in the motor cortex. Three 

of the twenty-six enrolled participants were excluded from all data analyses. One participant 
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(assigned to monoPA group) was excluded because of a past episode of traumatic brain injury with 

probable loss of consciousness. The other two participants (assigned to monoAP group) could not 

be included in the analyses of study after the RMT determination because stimulation at 

suprathreshold intensities (120% of RMT) was not possible due to RMT’s greater than 83% of 

MSO. Therefore, the analyses were performed including 9 participants that underwent monoPA 

TMS stimulation and 7 monoAP and biAP-PA, respectively. None of participants that were included 

in the study had history of medical disease or any contraindication to either TMS or tSMS. 

Participants were comfortably seated with their arms rested in a natural 90º angle on a 

table in front of them. During the recordings and the stimulation, the participants were instructed 

to remain quiet with their muscles relaxed. Participants were also monitored for drowsiness and 

asked to keep their eyes open throughout the experiment, unless otherwise specified during EEG 

recordings. 

 

10.2.2 Transcranial Static Magnetic Stimulation 

 

During each visit, the participants were exposed to either real tSMS or sham intervention. 

Each participant underwent the real and sham interventions and the order of the real and sham 

visits was randomly assigned to each participant before the first visit. The real tSMS consisted on 

a cylindrical neodymium magnet (3.8 cm diameter x 3.8 cm height) (NdFeB; 45 MGOe; 

megagauss-oersteds, nominal strength 65 kg ≈ 0.5 tesla-T (Model DX8X8 K&J Magnetics, US) 

with south field polarity (for an up-to-date review of the previous literature and a rationale for the 

setup, as well as the specific characteristics of the magnetic field, see Chapters 3 and Chapter 5, 

respectively). A non-magnetic metal replica of identical appearance, size and weight was used 

for sham tSMS. Both interventions had a duration of 15 minutes and were performed over the FDI 

representation on primary motor cortex of the dominant hemisphere. The FDI cortical 

representation was previously identified by TMS as the hotspot. Both the magnet and its replica 
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were held in place with identical elastic bands under the investigators’ monitoring. At the end of 

the second visit, participants were formally asked if they could determine which visit was real and 

which sham. Only 5 out of the 23 participants (22%) guessed correctly for real/sham visits.   

 

10.2.3 Electromyography 

 

Surface EMG activity was recorded from the dominant hand’s FDI using a PowerLab 

4/25T data acquisition device and Scope software (ADInstruments, Colorado Springs, CO, USA). 

Electrodes were placed as described in Chapter 6 - Section 6.1 using a standard belly-tendon 

montage over FDI with the ground electrode over the ipsilateral ulnar styloid process. EMG data 

were digitized at 1 kHz for 250 ms following each stimulus trigger and amplified with a range of 

±10 mV (band-pass filter 0.3–1000 Hz). Triggered epochs were acquired for single and paired-

pulse measures, while live EMG was recorded and monitored throughout the protocol for the 

silent period trials to provide feedback for continuous muscle contraction. MEP peak-to-peak 

amplitudes (mV) of the non-rectified signal for single- and paired-pulse protocols and silent period 

duration (ms) were measured for individual traces.  

 

10.2.4 Transcranial Magnetic Stimulation 

 

Neuromuscular assessments were performed with neuronavigated TMS using a MagPro 

X100 device with a hand-held Cool-B65 figure-of-eight coil (outer diameter 75mm) placed over 

the primary motor cortex in the dominant hemisphere. As argued in Chapter 4, the handle of the 

coil was pointing backwards and at an angle of 45º (MagVenture A/S, Denmark), as this is the 

optimal coil orientation for motor cortex. MagPro devices are capable of changing between 

waveforms and current directions without repositioning the coil on the scalp. To assure consistent 
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targeting throughout the experiment, we used a brain MRI template with a Brainsight TMS 

neuronavigation system (Rogue Research, Inc., Montreal, QC, Canada) and a Polaris infrared-

optical tracking system (Northern Digital Inc., Waterloo, ON, Canada).  

Regardless of the waveforms and current directions that were used, the real and sham 

visits began with the assessment of the motor hotspot. For the hotspot search we used the 10/20 

EEG system approach and C3 or C4 as initial references, as previously described in Methodology 

(Chapter 4 – Section 4.1). The hotspot, once found, was marked in the template MRI and 

designated thereafter as the neuronavigation target for the remaining of the visit. The hotspot was 

researched at the beginning of the second visit with the same methodology. RMT was determined 

in each visit following hotspot assessment. RMT was defined following the International 

Federation of Clinical Neurophysiology guidelines (Rossi et al., 2009; Rossini et al., 2015) as the 

lowest intensity that elicits a MEP of at least 50µV in at least 50% of the trials.   

Once RMT was determined, the battery of standard TMS neurophysiological measures of 

cortical reactivity and  excitability were acquired: baseline cortico-motor reactivity; contralateral 

cSP; and three common paired-pulse protocols interleaved in a pseudorandom sequence. After 

the 15 minutes of tSMS or sham intervention all the TMS neurophysiological measures, but 

hotspot search and RMT determination, were repeated in the same order. For each TMS 

measure, individual data points > 2.5 SD from the mean were excluded from calculation and 

analysis.  

Baseline cortico-motor reactivity was assessed by the average of peak-to-peak amplitude 

of 40 unconditioned TMS pulses at 120% of RMT. The 40 post-intervention unconditioned MEPs 

were expressed as a percentage of change from pre-intervention mean MEP amplitude and 

divided in 4 groups. Each group consisted on the average of 10 consecutive trials. The first group 

refers to the 10 MEPs acquired just after the real or sham tSMS, and the last group or fourth refers 

to those acquired around 10 minutes after the intervention. This measure of cortico-motor 

reactivity will be hereafter referred to as MEP amplitude.  
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The cSP was assessed with 10 single pulses delivered at 120% of RMT during isometric 

contraction of the FDI at about 25% of the participant’s total strength (participants could rest for 

few seconds between pulses and had constant visual feedback of their performance with the live 

EMG). The cSP was measured from the onset of the MEP to the resumption of pre-TMS EMG 

activity (Orth & Rothwell, 2004), and averaged across all 10 trials either pre- or post-intervention. 

Paired-pulse protocols included SICI, LICI and ICF using standard parameters (Valls-Solé 

et al., 1992; Kujirai et al., 1993). SICI consisted of a CP at 80% of RMT, a TP at 120% of RMT 

and an ISI of 3ms. In LICI, CP and TP were 120% of RMT separated by an ISI of 100ms. ICF 

consisted of a CS at 80% of RMT, a TP at 120% of RMT and an ISI of 12ms. For further 

explanations on the standard parameters and the physiological implications see Chapter 4 – 

Section 4.3.  Stimulation consisted of 40 individual trials per protocol (for a total of 120 trials), 

administered in a pseudorandom, interleaved order to reduce blocking effects and with 

pseudorandomized inter-trial interval (4-6 seconds) to minimize expectation and avoid hysteresis 

of previous trials. The amplitude of the 40 conditioned MEP for each protocol was expressed as 

a percentage of unconditioned MEP amplitude and divided in 4 groups of 10 trials (the groups 

represent the same as described above for MEP amplitude). The post-tSMS percentage of 

change from pre-intervention was then calculated. Paired-pulse change calculation will be 

referred to as SICI, LICI or ICF depending on the paired-pulse protocol. 

 

10.2.5 Electroencephalography 

 

Possible changes in neural oscillations after tSMS were assessed analyzing the resting 

state EEG (rs-EEG) of all right-handed participants (20 total, 8 males). Rs-EEG was recorded 

using a 32-channel EEG system (BrainVision, BrainProducts, GmbH) with a recording sampling 

rate of 5000 Hz. Rs-EEG was acquired using the International 10-20 electrode positioning system 

(Figure 10.1) during 2-minutes of eyes-open (EO) and 2-minutes of eyes closed (EC) consecutive 
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recordings at the beginning of the visit (right before the TMS measures were recorded) and during 

the 5 last minutes of intervention. The second acquisition was performed during the last 4 minutes 

of stimulation to ensure a time-window effect for the TMS measures as well. Previous studies 

have shown that the effects of tSMS on corticomotor reactivity last for about 10 min after the 

exposure to the SMFs, therefore we expected the EEG effects to be fully present at the time the 

post-recording started. Ground and reference electrodes were placed in the center of the forehead 

(AFz) and midline (PCz) respectively, and impedances were kept below 5 k. The spot chosen 

for the intervention partially overlapped with the position of C3 electrode and therefore this 

electrode was excluded from recoding in order to reduce the cortex-to-tSMS distance. 

Electrooculography electrodes (EOG) were placed below and at the outer canthi of one eye to 

identify vertical and horizontal eye movements.  

 

 

 

 

Figure 10.1. Electroencephalography channel positions. 
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10.2.5.1 Electroencephalography preprocessing 

 

Rs-EEG Pre- and post-intervention data of EO or EC recordings were preprocessed 

separately and offline using custom scripts in Matlab (version 2012b, Mathworks, USA) and the 

EEGLab toolbox (Delorme & Makeig, 2004). The first step consisted on filtering the pre- and post-

intervention files applying a band-pass filter (high-pass of 1 Hz and low-pass of 100 Hz) and a 

notch filter (55-65 Hz) for power line noise, both using a zero-phase second-order Butterworth 

filter. Recordings were then down-sampled to 1024 Hz, continuous data divided into 3-second 

epochs and pre- and post-intervention files were merged. The merged files were visually 

inspected and faulty or excessively noisy channels were removed (average number of channels 

removed 0.10 ±0.50 SD for EO and 0.08 ±0.47 SD for EC).  The remaining data was re-referenced 

to the average of all channels. After re-referencing, the epochs containing excessive artefactual 

activity were filtered out using a semi-automatically approach where noisy epochs were 

highlighted. After visual inspection of the files, the noisy epochs were rejected (average number 

of epochs removed 7.45 ±6.18 SD for EO and 7.18 ±4.60 SD for EC). This led to an average 

number of epochs of 76.48 (±5.71 SD) for EO and 77.50 (±6.47 SD) for EC per participant being 

entered for further analysis. Subsequently, independent components analysis (ICA) was 

performed using the fastICA method (Hyvarinen & Oja, 2000; Rogasch et al., 2014) and 

components with clear blink, oculomotor, muscle or electrode artifacts were subtracted from the 

data (average number of rejected components 8.18 ±2.86 SD for EO and 4.95 ±2.12 SD for EC). 

Previously rejected channels (excluding C3 or C4 depending on the dominant hemisphere and 

the stimulation site for tSMS) were interpolated using a spherical spline interpolation and the 

merged files were divided back into pre and post-intervention for subsequent analysis.  

 

 



  Second block of experiments 

   136 

10.2.6 Statistical Analyses 

 

10.2.6.1 Electromyography statistical analyses 

 

Stata software version 13.1 (StataCorp, College Station, TX, USA) was used for statistical 

analyses. Calculation of TMS data for the real and sham interventions for each of the three 

waveforms/current directions (monoPA, monoAP, biAP-PA) included: % change post- to pre-

intervention of MEP amplitude; pre- and post- intervention average cSP duration in ms; and % of 

change of paired-pulse measures (SICI, LICI, and ICF). All analyses were conducted using a two-

tailed 95% confidence interval (α=.05). 

All data were checked for normality using the Shapiro–Wilk test. MEP amplitude, LICI, 

SICI and ICF significantly deviated from normality (p’s < 0.05), whereas cSP did not (p’s > 0.12). 

Thus, MEP amplitude, LICI, SICI and ICF were transformed as described previously (van Albada 

& Robinson, 2007). 

After normalization of the data, to assess the effect of tSMS on cortical reactivity in both 

the real and sham visits, we conducted repeated-measures analyses of variance (rm-ANOVAs) 

with each TMS measure as the dependent variable, the Waveform/current direction, hereafter 

referred to as Waveform (monoPA, monoAP, or biAP-PA), as a between-subject variable with nested 

effects, and Intervention (real or sham tSMS) and Time (groups of 10 consecutive trials) as 

longitudinal within-subject variables. Follow-up Tukey’s HSD tests were used to conduct pairwise 

comparisons of the effects of the interventions for each different Waveform. Planned contrast 

analyses were used to conduct pairwise comparisons of the effects of the interventions at each 

time point with different waveforms/current direction. Results were adjusted for multiple 

comparisons with the false discovery rate (FDR) method. 

Finally, we tested possible effects of a long period of muscle relaxation or cumulative 

effects of the single-pulse TMS on MEP amplitude by conducting an rm-ANOVA where MEP 
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amplitudes after the sham condition were the dependent variable, the Waveform (monoPA, 

monoAP, or biAP-PA) the between-subject variable with nested effects, Time (groups of 10 

consecutive trials) as the longitudinal within-subject variable and their interaction. 

 

10.2.6.2 Electroencephalography analyses and statistical procedures for power 

spectral density 

 

Analyses of the effects of tSMS on cortical oscillatory activity were performed in using 

custom scripts in Matlab (version 2012b, Mathworks, USA), and the EEGLab (Delorme & Makeig, 

2004) and Fieldtrip toolboxes (Oostenveld, Fries, Maris, & Schoffelen, 2011). For the analysis of 

rs-EEG data of pre/post-tSMS recordings, mean power spectral density across epochs was 

calculated at all electrodes using the spectopo function in EEGlab (sampling rate: 1024 samples, 

window-overlap = 512) to calculate absolute power for each frequency band. The frequency 

bands included (total power 1-30 Hz, in steps of 0.5 Hz): Delta 1-3.99 Hz, Theta 4-7.99 Hz, Alpha 

8-12.99 Hz and Beta 13-30 Hz. Gamma band (>30 Hz) was not included in the analysis given the 

current concern about a possible influence of muscle activity and ocular movement on high 

frequencies when using scalp EEG recordings (Whitham et al., 2007, 2008). 

Full rs-EEG data was analyzed performing two-tailed cluster-corrected massive 

permutation tests to identify significant changes in clusters across the electrodes and frequencies 

(Bullmore et al., 1999; Groppe, Urbach, & Kutas, 2011; Maris & Oostenveld, 2007). The Monte-

Carlo method with a cluster correction approach was chosen in order to control the multiple 

comparisons problem and for the familywise error rate (FWER). In line with Maris & Oostenveld 

(Maris & Oostenveld, 2007) the calculation of the test statistics was as follows: based on an initial 

pairwise comparison of all electrodes and frequencies, the uncorrected p-values that reached an 

alpha of 0.05 were clustered together if there had at least a neighboring frequency and/or 

electrode that were significant (average number of neighbor electrodes 4.86, min = 2 and max = 
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7, numbers were rounded up when no integer number). Subsequently, this cluster-building 

procedure was repeated across 1000 permutations of the data (Monte-Carlo method) where the 

most extreme t-scores were retrieved and group level statistics were randomly shuffled. The 

cluster-building was performed separately for positive and negative t-values. All analyses were 

conducted using a two-tailed 95% confidence interval (α=.05) and positive and negative clusters 

were considered significant if lower/higher than 97.5% (2.5% alpha per tail, 5% total alpha level). 

These cluster-based massive permutation tests were used to investigate between-group 

differences at specific time points (pre, post or group regardless of time) and effects of time (pre 

versus post regardless of the group). The same permutation of cluster-based approach was used 

for within-group tests (effects for the real and sham interventions through time separately). Two 

analyses were performed to examine the effects of time and group. First, following the 

aforementioned method, pre-intervention recordings were subtracted from post and then 

compared between real and sham groups. Given the restrictive nature of this analysis, we 

performed a second test within the significant cluster from previous massive permutation tests. 

For this analysis the average rs-EEG power for a cluster was calculated for each subject as the 

mean of all significant frequency bins and electrodes in both the real and sham groups for pre 

and post interventions time points (within-cluster averaged rs-EEG power). First, to elucidate the 

effects of the intervention for a particular significant cluster we performed a follow-up mixed-

effects linear regression. The model included the pre-to-post change of cluster-average rs-EEG 

power as the dependent variable, Subject as a random effect, Waveform as a between-subjects 

factor, Intervention as within-subject factor, and Waveform x Intervention interaction.  

Subsequently, to investigate possible relationships between changes in rs-EEG and 

changes in MEP amplitude a second within-cluster mixed-effects linear regression was 

performed. Using the within-cluster averaged rs-EEG power, the difference in change between 

real and sham visits for cluster-average rs-EEG power was the dependent variable, difference in 

MEP amplitude change between real and sham visits was a covariate, Subject was a random 
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effect and Waveform was a between-subjects factor. Following this, follow-up simple linear 

regressions and Pearson’s correlations for each Waveform were completed to clarify possible 

distinctive relationships depending on the waveform. FDR correction was performed for each 

linear regression.  

 

10.3 Results 

 

10.3.1 Electromyography results 

 

Table 10.1 shows mean (±SD) of the summary statistics for each TMS neurophysiological 

measure before and after the intervention as well as how much each measure changed due to 

the real/sham interventions and the direction of that change.  
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Table 10.1. Transcranial magnetic stimulation neurophysiological measures. 

   Pre-Intervention Post-Intervention  Effects 
M

E
P

 a
m

p
lit

u
d

e
 

monoPA 
Real 1.4 ± 0.9 1.1 ± 0.9   ▼ 24.4% 

Sham 1.2 ± 0.6 1.6 ± 1.5  ▲ 41.3% 

monoAP 
Real 2.2 ± 1.6 2.5 ± 1.3  ▲ 14.7% 

Sham 2.1 ± 1.3 2.2 ± 1.5  ▲ 5% 

BiAP-PA 
Real 1.8 ± 0.5 2.1 ± 0.7  ▲ 20% 

Sham 1.5 ± 0.9 2.2 ± 0.9   ▲ 16.5% 

c
S

P
 

monoPA 
Real 119.4 ± 32.5 126.4 ± 25.7   ▲ 5.9 % 

Sham 126.2 ± 31.1 136.4 ± 27.6  ▲ 8.1 % 

monoAP 
Real 127.1 ± 23.3 143.5 ± 50.8  ▲ 12.9 % 

Sham 133.4 ± 36.8 135.5 ± 27.5  ▲ 1.5 % 

BiAP-PA 
Real 139.1 ± 26.3 147.1 ± 18.3  ▲ 5.8 %  

Sham 138.7 ± 28.1 148.5 ± 20.0  ▲ 7.1 % 

%
 𝚫

 L
IC

I 

monoPA 
Real -0.8 ± 0.1 -0.9 ± 0.1   ▲ 3.3 % 

Sham -0.9 ± 0.1 -0.8 ± 0.1  ▼ 0.8 % 

monoAP 
Real -0.8 ± 0.4 -0.8 ± 0.4  ▲ 1.6 % 

Sham -0.9 ± 0.2 -0.9 ± 0.2  ▼ 0.6 % 

BiAP-PA 
Real -0.9 ± 0.2 -0.9 ± 0.1  ▲ 6.5% 

Sham -0.9 ± 0.2 -0.9 ± 0.2  ▲ 1.5 % 

%
 𝚫

 S
IC

I 

monoPA 
Real -0.7 ± 0.3 -0.7 ± 0.2   ▲ 7.4 % 

Sham -0.7 ± 0.2 -0.6 ± 0.2  ▼ 6.1 % 

monoAP 
Real -0.7 ± 0.3 -0.5 ± 0.7  ▼ 31.8 % 

Sham -0.6 ± 0.4 -0.6 ± 0.5  ▼ 0.5 % 

BiAP-PA 
Real -0.5 ± 0.4 -0.4 ± 0.4  ▼ 22.3 % 

Sham -0.6 ± 0.3 -0.4 ± 0.6  ▼ 38.7 % 

%
 𝚫

 I
C

F
 

monoPA 
Real 0.04 ± 0.4 -0.1 ± 0.5   ▼ 286.9 % 

Sham 0.2 ± 0.4 0.4 ± 0.7  ▲ 145.3 % 

monoAP 
Real 0.6 ± 1.0 1.1 ± 1.9  ▲ 104.9 % 

Sham 0.3 ± 0.6 0.3 ± 0.6  ▼ 11.6 % 

BiAP-PA 
Real 0.8 ± 0.7 1.1 ± 1.1  ▲ 29.4 % 

Sham 0.6 ± 0.5 1.1 ± 0.8  ▲ 87.6 % 

Table 10.1 shows mean (±SD) of the different TMS measures performed with the three waveforms and 

current directions for real and sham interventions. The black arrows indicate the % of increase (▲) or  

decrease (▼) in mean MEP amplitude (mV) or cSP duration (ms). For paired-pulse protocols the black 

arrows reflect the % of increase (▲) or  decrease (▼) in mean inhibition (LICI, SICI) or facilitation (ICF). 

Abbreviations: % 𝚫, percentage of change from baseline; BiAP-PA, biphasic anterior-posterior—posterior-

anterior; cSP, cortical silent period (ms); ICF, intracortical facilitation, MEP, motor evoked potential (mV); 

monoAP, monophasic anterior-posterior; monoPA, monophasic posterior-anterior; LICI, long-interval 

intracortical inhibition; SICI, short-interval intracortical inhibition.  
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MEP amplitude inhibition after real tSMS was only observed when TMS was performed 

with monoPA (inhibition of 24.4 %)(Table 10.1). The rm-ANOVA analysis for the MEP amplitude 

showed a significant effect of Waveform (p < 0.001) and of Waveform x Intervention interaction 

(p < 0.001). No significant effects of Intervention or Time alone or for the rest of the interactions 

(i.e. Waveform x Time, Intervention x Time or Waveform x Time x Intervention) were observed 

(all p’s > 0.05). Post Hoc Tukey’s HSD and planned contrast analyses, of Waveform and the 

Waveform x Intervention interaction respectively, showed a significant difference between monoPA 

with both monoAP and biAP-PA waveforms (p’s < 0.05). MonoPA was the only waveform that 

significantly inhibited after the real intervention (p < 0.001) whereas monoAP MEP amplitudes were 

significantly facilitated (p = 0.02) (Figure 10.2). Furthermore, the inhibitory effects of real tSMS 

when evaluated by monoPA were significantly greater than sham at Post-T3 and Post-T4 (i.e. 

pulses 21 to 30 and 31 to 40, respectively) (both p’s < 0.02) (Figure 10.3). Follow-up contrast 

analysis also showed an increase of mean MEP amplitude at real Post-T3 compared to sham 

condition that did not survive FDR correction (p = 0.18). BiAP-PA waveform did not differ significantly 

from monoAP and the slightly facilitatory effects of the tSMS captured by BiAP-PA did not reach 

significance. 
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Figure 10.2. Change in motor evoked potential (MEP) amplitude from pre- 

to post-intervention for each waveform and current direction. 

The figure shows the mean ± SE for the percentage of change in MEP 

amplitude. The negative values represent a decrease in MEP amplitude 

compared to pre-intervention. Abbreviations: AP, anterior-posterior; AP-PA, 

anterior-posterior—posterior-anterior; PA, posterior-anterior. * p < 0.05. 

 

 

 
Figure 10.3. Change in motor evoked potential (MEP) amplitude trough time. 

The figure shows the mean ±SE of the change in MEP amplitude from baseline through time for each 

waveform and current direction. The sham intervention is represented in blue and the real in red. The 

dashed lines depict the transition time from pre-intervention (Pre) to post-intervention (PostT1-T4) where 

the intervention took place. Only monoPA showed a significant difference in the change of MEP 

amplitudes between real and sham over time (* p’s < 0.02). Abbreviations: AP, anterior-posterior; AP-

PA, anterior-posterior—posterior-anterior; PA, posterior-anterior.  
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When only sham MEP amplitude was included in the model searching for possible effects 

of a long period of muscle relaxation or hysteresis of single-pulse TMS, no significant differences 

were found in the amplitude for Waveform, Time or their interaction (all p’s > 0.3). 

All the Waveforms lengthened the duration of cSP regardless of the Intervention (Table 

10.1 and Figure 10.4). Accordingly, the rm-ANOVA for cSP showed a significant effect of 

Waveform (p < 0.01) and Time (p = 0.02) but no significant differences were found either for the 

Intervention or any of the interactions. Post hoc Tukey's HSD for Waveform found that BiAP-PA was 

significantly different than both monophasic waveforms (p < 0.05) and monoPA inhibited more after 

the real intervention (p = 0.1), however none of the rest of follow-up analyses showed different 

effects in relation to the Intervention.  

 

 
Figure 10.4. Cortical silent period (cSP) durations in pre- and post-interventions. 

The figure shows the mean ± SE of cSP duration in ms for pre- and post-intervention for the different 

waveforms and current directions. The sham intervention is in blue and the real in red. Abbreviations: 

AP, anterior-posterior; AP-PA, anterior-posterior—posterior-anterior; PA, posterior-anterior. 

 

For the change in LICI, all waveforms were able to elicit greater inhibition after the real 

intervention (Table 10.1), furthermore both Waveform and Waveform x Intervention interaction 

were significant (p’s < 0.001). Post Hoc Tukey’s HSD showed that all waveforms were significantly 

different form each other (p’s <0.05) but only the monophasic (monoPA and monoAP) were able to 
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significantly inhibit after real tSMS (p’s < 0.01) (Figures 10.5 and 10.6). The effects of Time and 

its interactions did not reach significance.  

 

Figure 10.5. Change in long-interval intracortical inhibition (LICI) from pre- 

to post-intervention for each waveform and current direction. 

The figure shows mean ±SE of the percentage of change of LICI. The 

negative values represent more inhibition compared to pre-intervention. 

Abbreviations: AP, anterior-posterior; AP-PA, anterior-posterior—posterior-

anterior; PA, posterior-anterior. * p’s < 0.01 

 

 

Figure 10.6. Change in long-interval intracortical inhibition (LICI) through time. 

The figure shows the mean ±SE of the change in LICI from pre-intervention baseline through time for 

each waveform and current direction. The sham intervention is represented in blue and the real in red. 

The dashed lines depict the transition time from pre-intervention (Pre) to post-intervention (PostT1-T4) 

where the intervention took place. Abbreviations: AP, anterior-posterior; AP-PA, anterior-posterior—

posterior-anterior; PA, posterior-anterior.  



  Second block of experiments 

   145 

When performing SICI, only monoPA waveform captured an increase in inhibition after real 

tSMS (Table 10.1). The rm-ANOVA yielded significant Waveform and Waveform x Intervention 

interaction effects (both p’s < 0.001). Post Hoc Tukey’s HSD analyses showed that BiAP-PA 

significantly differed from the other two waveforms (p < 0.05). Planned contrast tests revealed a 

significant increase in inhibition after real tSMS for monoPA and when compared to sham (p = 

0.005). BiAP-PA and monoAP, both showed a decrease in inhibition after both interventions. 

Nevertheless BiAP-PA showed a relative increase in inhibition after real when compared to sham (p 

= 0.005) and monoAP a significant decrease inhibition (relative facilitation) after real intervention 

(p < 0.001) (Figure 10.7). None of the specific time points post-intervention survive FDR 

correction (Figure 10.8).  

 

 

Figure 10.7. Change in short-interval intracortical inhibition (SICI) from pre- 

to post-intervention for each waveform and current direction. 

The figure shows mean ±SE of the percentage of change of SICI. The 

negative values represent more inhibition compared to pre-intervention. 

Abbreviations: AP, anterior-posterior; AP-PA, anterior-posterior—posterior-

anterior; PA, posterior-anterior. * p’s < 0.05. 
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Figure 10.8. Change in short-interval intracortical inhibition (SICI) through time. 

The figure shows the mean ±SE of the change in SICI from pre-intervention baseline through time for 

each waveform and current direction. The sham intervention is represented in blue and the real in red. 

The dashed lines depict the transition time from pre-intervention (Pre) to post-intervention (PostT1-T4) 

where the intervention took place. Abbreviations: AP, anterior-posterior; AP-PA, anterior-posterior—

posterior-anterior; PA, posterior-anterior. 

 

 

Finally, only one of the paired-pulse TMS protocols performed in this experiment reflects 

the facilitatory mechanisms of the motor cortex. For ICF protocol, the only waveform that was able 

to capture an overall decrease in facilitation after real tSMS was monoPA while both monoAP and 

biAP-PA facilitated to some extent (Table 10.1 and Figure 10.9). However, due to the high variance 

of the sample the rm-ANOVA yielded no significant effects of Waveform, Intervention, Time or 

their interactions (p’s > 0.15) (Figure 10.10).  
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Figure 10.9. Change in intracortical facilitation (ICF) from pre- to post-

intervention for each waveform and current direction. 

The figure shows mean ±SE of the percentage of change of ICF. The 

negative values represent less facilitation compared to pre-intervention. 

Abbreviations: AP, anterior-posterior; AP-PA, anterior-posterior—

posterior-anterior; PA, posterior-anterior. 

 

 

Figure 10.10. Change in intracortical facilitation (ICF) through time. 

The figure shows the mean ±SE of the change in ICF from pre-intervention baseline through time for 

each waveform and current direction. The sham intervention is represented in blue and the real in red. 

The dashed lines depict the transition time from pre-intervention (Pre) to post-intervention (PostT1-T4) 

where the intervention took place. Abbreviations: AP, anterior-posterior; AP-PA, anterior-posterior—

posterior-anterior; PA, posterior-anterior. 
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10.3.2 Electroencephalography results 

 

For the EO condition, the two-tailed cluster-corrected massive permutation tests yielded 

a significant difference in pre- versus post-intervention recordings when both groups were shuffled 

together, although no differences were found in the between-groups analysis at different time 

points (p’s > 0.19). The pre- versus post-intervention analysis revealed a significant increase in 

the alpha (p = 0.005) and beta bands (p = 0.006). Figure 10.11 shows the cluster-corrected 

significant electrodes and frequency bins for both significant clusters and a representative 

topography for each of them. 

 

 

 

Figure 10.11. Whole-brain analysis of absolute power for Time effects of tSMS. 

A. Cluster-corrected T-values associated with an increment of alpha and beta 

bands comparing rs-EEG pre- to post-intervention in both groups (real and 

sham tSMS) across all electrodes (y-axis) and frequencies (x-axis). B-C. 

Characteristic topographic representations of the t-values associated with the 

rise in alpha (10Hz; t = 390, p = 0.006) (B) and beta (20Hz; t = 530, p = 0.005) 

(C) bands.  
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Furthermore, for the within-group comparisons for real and sham interventions separately 

showed a significant increase in the wide range of beta band (16-30 Hz) (p < 0.004) in bilateral 

fronto-central electrodes with a left hemisphere predominance after real tSMS with no significant 

changes after the sham intervention. Figure 10.12 shows the increase in beta after the real 

intervention and a representative topography for the significant cluster, and the lack of rs-EEG 

effects of sham.  

 

 

Figure 10.12. Whole-brain analysis of absolute power for each pairwise comparison. 

A-B. Cluster-corrected T-ratios between the pre- and the post-intervention for real and sham tSMS 

associated with an increment of beta band (A) after the real intervention but no significant effects after 

the sham (B) across all electrodes (y-axis) and frequencies (x-axis). C-F. Characteristic topographic 

representations of the t-values associated with the rise in fronto-central beta band (17, 22 and 25 Hz; t = 

545, p = 0.004) (C-E) after the real tSMS and no significant effects after sham (F).  
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To further investigate the effects of the real versus sham tSMS when rs-EEG was recorded 

with EO, we performed two analyses. First, a massive permutation cluster-corrected test with all 

electrodes and frequencies included that led to no significant differences and a second analysis 

where the specific significant electrodes and frequencies from the within-group cluster were 

averaged together and compared. This within-cluster mixed-effects linear regression that showed 

an effect of the Intervention (p = 0.03) with no Waveform or the Waveform x Intervention 

interaction (p > 0.11) effects. 

No significant effects of tSMS were found in the recordings performed with EC.  

Possible relationships between the changes in EO rs-EEG and the changes in MEP 

amplitude were also investigated. The mixed-effects linear regression yielded significant effects 

of waveform (p = 0.002) with mild effects of the change in MEP amplitude (p = 0.061). Follow-up 

linear regressions for each waveform revealed a significant relationship between rs-EEG and 

MEP amplitude changes when monoPA TMS (p = 0.036) was utilized but not when monoAP or biAP-

PA (p’s > 0.26) were the waveforms of choice. This relationship was additionally investigated with 

Pearson’s correlations. The results of the correlations are depicted in Figure 10.13.   
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Figure 10.13. Relationships between the differences in MEP amplitude (y-axis) and beta band 

(x-axis) changes between real and sham tSMS for each waveform. 

After tSMS the monoPA pulses revealed an inhibition of the MEP amplitudes that is negatively 

correlated with the increase in rs-EEG beta band. A moderate negative correlation between the 

decrease in MEP amplitude and the increase in beta band was also found for biAP-PA and no 

relationship between the MEP and EEG changes was achieved for monoAP.  

 

 

10.4 Discussion 

 

The present study investigated the effects of real and sham tSMS on motor cortex 

excitability, cortical balance of inhibition and facilitation, and brain oscillatory spontaneous activity. 

Both, the cortical excitability (expressed in terms of MEP amplitude) and the intracortical balance 

of inhibitory and facilitatory processes (measured by cSP, LICI, SICI and ICF) were evaluated 

with different TMS waveforms and current directions. After the real intervention, the MEP 

amplitude and the paired-pulse protocols LICI and SICI showed an increase in intracortical 

inhibition, while cSP tended to have a longer duration and ICF tended towards less facilitation of 
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the conditioned MEPs. These inhibitory results, however, appeared only when the consequences 

of tSMS where explored with monoPA. An overall facilitation of MEP amplitude and less inhibition 

after SICI were revealed with monoAP, however LICI induced more inhibition and no change was 

observed in cSP or ICF. Therefore, there was an increase in cortical excitability measured by 

single-pulse MEPs but no clear tilt in the balance was observed when TMS was performed with 

monoAP. No changes in excitability or intracortical balance were significant for biAP-PA waveform. 

Associated with the real tSMS there was as well an increase in the brain spontaneous oscillations 

(rs-EEG) in particular an increase in beta band power in the bilateral front-central region with a 

left hemisphere predominance. This increase was observed after the real-intervention visit 

regardless of the TMS waveform used for the evaluation of corticospinal effects. Furthermore, this 

increase in beta power, although present in the whole real group, was highly correlated with the 

reduction in MEP amplitude seen after monoPA, mildly related to responses of biAP-PA with no 

relation to monoAP excitability changes. 

In order to understand the present EMG findings, the best framework available nowadays 

is the theoretical canonical cortical model proposed by several authors in the past (Di Lazzaro, 

Oliviero, Mazzone, et al., 2001; Di Lazzaro, Oliviero, Saturno, et al., 2001; Di Lazzaro et al., 2006; 

Di Lazzaro, Ziemann, & Lemon, 2008; Di Lazzaro et al., 2011; Di Lazzaro & Ziemann, 2013; Di 

Lazzaro et al., 2017), this model and the effects of waveform and current direction on motor cortex 

responses are further explained in Chapter 2 – Section 2.3 of the present thesis.  

Previous studies on the effects of tSMS on the motor cortex excitability have found a 

decrease in MEP amplitude of about 25% after tSMS, that was first shown by Oliviero et al. 

(Oliviero et al., 2011) and posteriorly replicated by Silbert et al. (Silbert et al., 2013), both groups 

used monoPA for their TMS procedures. Our results, in line with these prior reports, showed that 

the effects of the real tSMS yielded an average MEP amplitude decrease of 24.4% when the 

excitability of motor cortex was explored using the same type of waveform.  
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Moreover, we also explored the course of these inhibitory effects through time and in 

relation to the responses to sham intervention. Relatively to sham, the inhibitory effects after the 

real tSMS were enlarged, showing a decrease up to a 60% when real and sham were directly 

compared. This difference between real and sham cortical excitability was not only due to a 

decrease of MEP amplitude after real but also because there was a tendency towards facilitation 

of the MEPs after sham. In contrast to the reduction of the MEP amplitude, the increase of sham 

MEPs was captured by all waveforms and current directions as time went on with no significant 

difference between them. The increase of the motor responses after sham or no intervention has 

been previously related to prolonged periods of muscle relaxation (Todd, Butler, Gandevia, & 

Taylor, 2006) or possible cumulative effects of single-pulse TMS (Pellicciari, Miniussi, Ferrari, 

Koch, & Bortoletto, 2015). Todd et al. found an increase of about 50% of MEP average duration 

after 20 minutes of muscle relaxation with no increase in peripheral muscle response (M wave) 

or spinal cord excitability (F wave). The authors, that used monoPA TMS, argued that this change 

could be mainly explain by an increase in cortical excitability due to the lack of motor input signals. 

Their hypothesis is also supported by previous experiments with ischemic or anesthetic nerve 

blocks (Brasil-Neto, Cohen, Pascual-Leone, et al., 1992; Ziemann, Corwell, & Cohen, 1998) 

where the cortical excitability raised after a short period of time. On a second study, Pellicciari et 

al. (Pellicciari et al., 2015) studied the effects of blocks of TMS biphasic single-pulses over time 

with fixed and random ISIs. The authors found that independently of the pattern of ITIs the MEP 

amplitude increased over time, and argued that single-pulse TMS may have a modulatory 

cumulative effect on corticospinal excitability similar to the modulation seen after rTMS.  

All of the above suggests that the local SMFs of tSMS not only decrease cortical reactivity 

to some extent but also prevent a raise in motor cortex excitability in response to either the muscle 

inactivity or the cumulative facilitatory effects of single-pulse TMS. In our results, this difference 

between real and sham for monoPA waveform was more evident at times T3 and T4 (about 5-6 

minutes after the intervention).  
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While our results using monoPA TMS are in line with those previously reported (i.e. 

exploring certain intracortical circuits), it is important to highlight that this decrease in motor cortex 

excitability was not observed with either monoAP or biAP-PA. Intriguingly, the effects captured by 

monoAP were facilitatory showing an average increase of MEP amplitude after the real tSMS. To 

explain this increase, we refer to the canonical cortical model and the specific neural circuits that 

monoAP explores. As mentioned above, monoAP evaluates cortico-cortical connections that most 

probably have regulatory inputs from other cortices or brain structures to contribute to motor 

control. One possibility may be that the SMFs inhibit those regulatory inputs releasing those 

cortico-cortical connections that are explored with monoAP. This hypothesis should be further 

tested with future studies perhaps recording from epidural electrodes to test whether there is an 

increase in the late I-waves amplitude after real tSMS when evaluated by monoAP. Besides the 

results of monophasic waveforms, biphasic competing mechanisms may take place by activating 

both the cortico-cortical connections (AP component) and the inhibitory intracortical networks in 

layers II and III (PA component). Congruently, biphasic MEP amplitudes did not show any 

significant decrease or increase after the real intervention or when compared to sham.  

In addition to cortical excitability, the balance between inhibition and facilitation of the 

motor system was evaluated with paired-pulse TMS measures. Greater inhibition after LICI and 

SICI was achieved with monoPA waveform, as well as a tendency towards larger cSP durations 

and less facilitatory cortical responses. Also important, the intracortical balance was shown to 

remain without clear overall significant alterations when evaluated by monoAP or biAP-PA given that 

both increases and decreases of inhibitory processes were observed when using those 

waveforms. 

The single- and paired-pulse inhibitory protocols that were evaluated in the present 

experiments included SICI, LICI and cSP. All these protocols translate cortical GABA processes 

but there are some subtle differences between them. GABA is the primary inhibitory 

neurotransmitter of the CNS and has two main membrane receptors, GABAA and GABAB. While 
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SICI is mediated by GABAA processes that exert a fast ionotropic inhibition (Cherubini, 2010), 

LICI and cSP are mediated by GABAB translating slow metabotropic inhibitory processes (Mott, 

2015). In addition, epidural recordings have shown that SICI and LICI produce a reduction in the 

amplitude of late I-waves with preservation of the I1-wave, whereas in the cSP protocol there is 

a first facilitatory phase where both the I1-wave and the late I-waves are enhanced with a posterior 

reduction or inhibitory phase (Di Lazzaro et al., 2017). To sum up, each inhibitory protocol despite 

their similarities most probably activate distinctive neural circuits through a common inhibitory 

neurotransmission system with different membrane receptors. However, as already mentioned in 

Chapter 7, the measurements of the epidural volleys have only been performed with monoPA 

waveform, hence future studies should investigate the epidural responses to other waveforms 

and current directions as also suggested in this same chapter of the present thesis. This will help 

to identify possible mechanistic differences between protocols and the tSMS effects when multiple 

waveforms are used. 

Since each inhibitory protocol may translate specific cortical processes, this allows to 

anticipate subtle different effects of the fields of the tSMS for each one of them and theorize about 

possible physiological implications. In a previous study, Nojima et al. (Nojima et al., 2015) 

evaluated the effects of tSMS on SICI, cSP and ICF when explored with monoPA waveform. 

Comparable to our results, the authors found greater inhibitory effects of SICI and a tendency 

toward longer cSP durations, suggesting that GABA-mediated inhibitory processes may be 

involved in the reduction of cortical excitability observed after real tSMS. As previously mentioned, 

cSP is a complex motor response that involves first facilitatory response followed by an inhibitory 

phase, and also involves both cortical and spinal processes which may interfere with the effects 

of tSMS. Therefore, the results of cSP may be more difficult to resolve. However, the authors did 

not find any reduction in facilitation after ICF, whereas our results suggest a trend towards lower 

facilitation after real tSMS reflecting an overall cortical inhibition. It is probable that decreasing the 

variance of the sample (by either increasing the number of pulses, the n of the sample or 
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modifying the technical parameters for a more stable ICF response) this reduction in facilitation 

may be more obvious. In regards to this last point, it has been suggested that a minimum of 30 

pulses is required for a reliable response to ICF protocol (Biabani, Farrell, Zoghi, Egan, & 

Jaberzadeh, 2018). Thus, it is probable that in future studies more pulses are needed in order to 

clarify whether facilitatory processes may be also affected by tSMS.  

The experiments of the present work testing the cortical balance of inhibition and 

facilitation have expanded those previously reported by evaluating a third inhibitory protocol, LICI, 

which is, like cSP, GABAB-mediated and also by exploring the excitability and intracortical balance 

with different waveforms and current directions. In regards to LICI, our results showed an increase 

of LICI cortical responses associated to greater inhibition.  

In summary, tSMS reduces cortical excitability and tilts that intracortical balance towards 

inhibition, but these effects can be only evaluated with monoPA. Thus, these results suggest that 

the tSMS may not only affect GABA-mediated processes but also particular neural circuits. In 

other words, the effects of SMFs may selectively affect specific networks of intracortical 

interneurons in layers II and III that are evaluated with monoPA, while the other neural circuits 

seem to remain mostly non-inhibited.  

Besides the EMG responses, during our experiments we have also recorded the 

spontaneous brain oscillatory activity before and after the interventions. The exposure to tSMS in 

the real intervention produced an increase in beta oscillations in bilateral fronto-central regions. 

Reassuringly, this increase in beta was observed in the group that received real tSMS regardless 

of the TMS waveform that was used for posterior excitability and cortical balance assessments.  

Moreover, the EMG and rs-EEG changes were found to be highly negatively correlated 

when TMS was performed with monoPA and mildly negatively related when biAP-PA was used. No 

relationship was found for monoAP. Reinforcing the idea that tSMS alters specific neural circuits 

within the motor cortex.  
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To better understand the relationship between the EMG and EEG results is important to 

provide a context for the behavioral meaning of beta oscillatory activity in the motor cortex. Beta 

is a prevalent oscillatory frequency in the motor system and has long been associated with the 

somatosensory networks, but its significance and behavioral correlates are yet very poorly 

understood (Jenkinson & Brown, 2011). As stated in Chapter 6, different theories have been 

proposed along the years. The first accepted hypothesis is that beta is a resting rhythm that 

represents a reliable indicator of the cortical control for movement prevention and initiation 

(Espenhahn, de Berker, van Wijk, Rossiter, & Ward, 2017; Jenkinson & Brown, 2011). In 

accordance with this, beta activity is suppressed at the onset and during the movement, and 

rebounded as soon as the movement stops. Similarly, beta power is enhanced when a movement 

needs to be ceased or voluntarily suppressed (Pogosyan et al., 2009; Zhang, Chen, Bressler, & 

Ding, 2008). This relationship is also supported by studies that showed that, in healthy individuals, 

slowed or worse motor performances are highly associated with an increase in spontaneous 

(Gilbertson et al., 2005) or entrained (Pogosyan et al., 2009) beta power. Increases of beta power 

in the motor network are also behind and reflecting a causal relationship to akinetic and dyskinetic 

symptoms of Parkinson’s Disease (Brown, 2007; Little & Brown, 2014). The second theory of a 

behavioral equivalence suggests that the beta oscillations are not only a resting rhythm but the 

expression of the efforts of the brain to maintain the status quo or the current motor state (Engel 

& Fries, 2010).  

Therefore, the highly negative correlation between the increase in rs-EEG beta band and 

the decrease in MEP amplitude observed with monoPA in our experiments, are in line with previous 

reports on motor behavior and EEG relationship. It is also very probable that the biphasic pulse 

partially evaluates, with its PA component, the same neural circuits than monoPA and that is 

reflected in a mild-to-moderate relation between the rs-EEG and biphasic EMG changes. 

Although, due to the AP component and its possible counterbalancing effect in motor cortex, those 

changes were not enough to reflect a significant reduction in MEP amplitudes.  
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Additional rs-EEG analyses investigated the effects of time regardless of the intervention 

showing two significant clusters. First, a fronto-central increase in beta that was led by the real 

tSMS group (i.e. no increase of beta was observed in the sham group in the pairwise comparison), 

and secondarily a raise in global alpha frequency across the entire brain. Despite the efforts of 

the investigators encouraging the participants to remain awake and focused, this raise in alpha 

frequency is most likely related to a higher level of drowsiness over time regardless of the 

intervention. The cluster-plot as well as the topographic representation of the alpha cluster show 

that the increased frequencies are mainly centered around 8-10Hz and that those frequencies are 

distributed globally through all electrodes. These features are often interpreted as an indicator of 

drowsiness or sleepiness.  

Finally, no significant results were observed when the recordings where performed with 

the participants having their eyes closed. Previous studies have suggested that the effects of 

different brain stimulation techniques depend on specific brain states (Neuling, Rach, & 

Herrmann, 2013; Thut, Schyns, & Gross, 2011). Therefore, it has been proposed that the 

neurophysiological recordings should be performed during the same brain state the NIBS 

technique was applied. Furthermore, specific rhythms are more effectively entrained in a brain 

state that physiologically favors such particular frequency. Namely, alpha rhythms can be more 

easily induced in dark conditions or eyes closed, whereas beta promotion would be best in light 

or with the eyes open (Kanai, Chaieb, Antal, Walsh, & Paulus, 2008). Given that during the 

exposure to either real or sham tSMS the participants were asked to remain with their eyes open, 

the main effects were expected to be maximized when the rs-EEG was recorded with the brain in 

that same condition. As one may expect, the effects of tSMS on the recordings performed with 

EC in the present experiment did not reach to any significant changes. This is probably due to a 

change in the brain state (from EO to EC) together with the fact that our main findings were 

observed in beta band which is best promoted during EO.  
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10.5 Conclusions 

 

The motor cortex exposure to tSMS changes brain’s excitability, the intracortical balance 

between inhibitory and facilitatory processes, and spontaneous oscillatory activity generating 

greater cortical inhibition that can be monitored with both EMG responses and EEG recordings. 

Those effects influence particular neural networks within the motor cortex. Most probably, tSMS 

changes the excitability of cortical interneurons in layers II and III given that only the TMS 

waveform monoPA was able to quantify those changes.  

Further evidence comes from the recording of spontaneous oscillatory activity, as 

measured by rs-EEG. Oscillations experienced an increase in a wide range of the beta frequency 

(16-30 Hz) after the real intervention regardless of the TMS waveform used posteriorly. Moreover, 

this boost in beta activity was highly correlated with the decrease in MEP amplitude observed with 

monoPA, reinforcing the hypothesis of excitability changes in specific intracortical circuits. 
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ADDITIONAL CONSIDERATIONS  

AND GENERAL CONCLUSIONS 

 

 

 

11 Additional considerations 

 

Few factors may limit the generalizability of the results of the present thesis. The most 

prominent limitation common to several experiments is the relatively small sample size in the 

groups of study. While the sample sizes may seem small, this has not reduced the power to detect 

significant differences between groups. It should be noted that in the present thesis, (1) we were 

able to detect significant differences between the groups of the different experiments; (2) our 

results are in line and have expanded previously reported measures in the literature; (3) in the 

reliability studies (Chapters 7 – 9, Reliability studies), when comparing the young versus the older 

healthy controls, several of the presented reliability coefficients were quite close between both 

groups regardless of being obtained from separate cohorts, in different studies and with different 

TMS stimulators. 

Some other limiting factors are referred to the intrinsic design of a particular study or the 

way the subjects were chosen. In the studies were the outcomes of different waveforms and 

current directions are compared (i.e. Chapters 7 and 10) a within-subject comparison of these 

parameters would have resulted in more power to detect significant differences in the efficacy and 
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reliability of TMS measures (Chapter 7) and in the effects of tSMS associated with pulse waveform 

and induced current direction (Chapter 10). However, completing those studies using a within-

subject design would have required six visits per subject, which may have reduced the feasibility 

of our study due to attrition. Importantly, a fully within-subject design would have made it difficult 

to disentangle the reproducibility results from the efficacy comparisons in Chapter 7. Finally, in 

the group of T2DM (Chapters 8 and 9), a number of the non-diabetic controls (i.e. Healthy 

controls) had hemoglobin A1c values indicating possible pre-diabetes. This may have contributed 

to the decreased reproducibility seen in this cohort. Further, HbA1c values were not available 

from the AD group, so the influence of impaired glucose metabolism could not be investigated in 

AD subjects, despite reports of high co-morbidity between AD and T2DM (Hölscher, 2011). 

Future studies, apart for including larger cohorts, should investigate possible differences 

in the response to iTBS between young and older healthy controls.   

 

 

12 General Conclusions 

 

In the first set of experiments, we aimed to better understand factors that could influence 

the reliability of different TMS measures. Those experiments included technical or modifiable 

factors (i.e. TMS pulse waveform and current direction), and physiological or non-modifiable (i.e. 

age and age-related diseases). Based on the results of the present thesis several general 

conclusions can be derived: 

 

1. Motor thresholds and MEP latencies remain the gold standard for reproducibility regardless 

technical or physiological factors. Nevertheless, waveform and current direction influence 

single-pulse TMS measures such as RMT, latency and cSP.  
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2. Paired-pulse protocols were performed with waveforms and current directions that have not 

been typically studied in previous literature (i.e. monoAP and biAP-PA). Monophasic waveforms 

achieved greater and more reliable inhibition. On the other hand, facilitatory protocols showed 

greater and more reliable effects when performed with biAP-PA.  

 

3. When comparing different populations, higher RMT and LICI reliability coefficients were 

observed in OHC than in younger controls, and the AD group showed higher post iTBS 

reliability relative to OHC or DM2. The greater reliability coefficients translate less variability 

in the measures probably due to greater cortical rigidity. 

  

4. Two factors have been found to contribute to increase the variability of the responses to iTBS: 

(1) Met-carriers of the BDNF-polymorphism, (2) and days between visit, where intervisit 

intervals of less than a week probably reflected metaplasticity processes of iTBS.  

 

In the second set of experiments, we investigated the effects of tSMS on cortical 

excitability, intracortical balance of inhibition and facilitation, and brain spontaneous oscillations 

(rs-EEG). From these experiments we conclude that: 

 

1. Fifteen-minute tSMS reduces motor cortex excitability and reactivity as shown by decreased 

MEP amplitude, increase inhibition after SICI and LICI, and a tendency towards longer cSP 

and less ICF. However, this reduction was only observed when using monoPA TMS, indicating 

that tSMS inhibits specific cortical interneuron networks. 

 

2. Electroencephalographic recordings quantified an increase in spontaneous oscillatory activity 

in the range of beta frequencies in fronto-central regions after real tSMS. This increase was 
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observed in all subjects of the sample regardless of the TMS technical aspects for EMG 

evaluation.  

 

3. Moreover, the increase in beta frequencies was negatively associated with the MEP inhibition 

captured by monoPA. MEP amplitudes of other waveforms were not related to the beta 

increase, reinforcing the hypothesis that inhibitory processes are a product of the influence 

of tSMS on specific neural populations.
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APPENDICES 

 

APPENDIX A. Self-reported Medical History. 

 Yes No 
Have you ever been hospitalized for surgery or a serious illness? 
If yes, please explain: 
________________________________________________________________ 

  

Are you taking any medications (including over the counter medications such as, 
vitamins, cold medication, allergy medication)?  If yes, please list here: 

  

Please list any allergies: 
________________________________________________________________ 

  

Do you smoke?  If yes, how many cigarettes/packs per 
day?____________________________ 
 

  

Do you drink alcohol?  If yes, how much and how often? 
________________________________ 
 

  

Do you use recreational drugs?  If yes, describe what drug(s) and how often: 
________________________________________________________________ 

  

Do you drink caffeine? If yes, How much per day? 
_____________________________________ 
 

  

 
Have you EVER had, or do you have any of the following?  If yes, please check the box(es) 
below and provide any details in the comments section provided. 
 

Heart problems   Stroke   Arthritis or joint pain  

Pacemaker   Migraines   
Eczema or chronic 
rash 

 

High blood pressure   Severe headaches   Kidney disease  
Lung or breathing 
problems 

  Seizures or epilepsy   Tumor or cancer 
 

Asthma   Fainting or dizzy spells   Depression or anxiety  
Stomach or intestinal 
disease 

  Neck pain/injury   Psychiatric problems 
 

Diabetes   Eye injuries/surgeries   
Drug/alcohol 
dependency 

 

Low blood sugar   
Hearing loss or 
problems 

  Other: 
 

Liver disease   Thyroid disease     

 

Provide an explanation to ALL of the checked boxes above: 

 
______________________________                                      ____________ 
             Participant Signature                   Date  
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APPENDIX B. Modified Edinburgh questionnaire. 

 
 
Which of the following do you consider yourself to be? 
 

      Right Handed     Left Handed    Ambidextrous 
 
 

 Always Left Usually 
Left 

No 
Preference 

Usually 
Right 

Always 
Right 

Writing 
     

Drawing 
     

Throwing 
     

Scissors 
     

Toothbrush 
     

Holding a knife to cut 
meat 

     

Spoon 
     

Broom (upper hand) 
     

Striking a match 
     

Opening a box 
     

 
 

 
 

_____________________________________________          ___________ 
Investigator Signature                 Date 
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APPENDIX C. TMS Safety Screening. 

 
 

Subject Initials: Protocol: Date: 
______/_____/______            
 

 

Check Yes or No for each question, for ALL Yes questions, 
provide details below 

Yes No 

Do you have epilepsy or have you ever had a convulsion or a seizure?   

Have you ever had a fainting spell (syncope)?    

Have you ever had a head trauma that was diagnosed as a 
concussion or was associated with a loss of consciousness? 

  

Do you have any hearing problems or ringing in your ears?   

Do you have cochlear implants?   

Are you pregnant or any chance that you might be?   

Do you have any metal in the brain, skull or elsewhere in your body? 
(e.g. splinters, fragments, clips, etc.…).  If yes, specify the type of 
metal. 

  

Do you have a neurostimulator in your body (e.g. vagal nerve 
stimulator, deep brain stimulator, epidural/subdural stimulator)? 

  

Do you have a cardiac pacemaker or intracardiac lines?   

Do you have a medication infusion device?   

Did you ever undergo TMS in the past?  If yes, were there any 
problems (describe below)? 

  

Did you ever undergo an MRI in the past?  If yes, were there any 
problems (describe below)? 

  

Are you taking any medications (including over the counter 
medications)?  If yes, then please list below. 

  

For any YES response, please provide details below.  Please list ALL medications and 
please list any past neurological (relating to your brain or spinal cord) medical or 
surgical history. 
_____________________________________________________________________ 

_____________________________________________________________________ 

 

Investigator Signature: Date: ______/_____/______           
 

Subject Signature: Date: ______/_____/______         
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APPENDIX D. tSMS safety screening. 

 
 
tSMS Safety Screening                                Subject ID:________________   
Date:_______________     Visit #____ 
 

Check Yes or No for each question, for ALL Yes questions, 
provide details below 

Yes No 

Have you ever been a machinist, welder or metal worker? If yes, did 
you wear safety glasses at all times? 

  

Have you ever had a piece of metal in your eyes?   

Do you have a Cardiac Pacemaker?   

Do you have an Aneurysm clip?   

Do you have a Prosthetic Heart Valve?   

Do you have a Neurostimulator (Tens-Unit) or any implanted pumps 
(Insulin)? 

  

Do you have Cochlear implants?   

Do you have a Stainless-Steel IUD?   

Do you have any shrapnel in your body?   

Do you have any metal or metallic implants in your body that are not 
listed? 

  

Is there a chance you could be pregnant?   

Are you wearing a skin patch (Nicotine, contraceptive)?   

Have you had a bone treated with metal rods, plates, or screws?  If yes, 
please describe and include 
date(s)___________________________________________________
_______ 

  

Have you had any major surgery?  If yes, please describe and include 
date(s):___________________________________________________
_______ 

  

Do you have any removable dental work?   

Do you have a hearing aid?   

Do you have tattoos?   

Do you have piercings that have not been removed?   
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For any YES response, please provide details below: 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________ 
 
YOU WILL BE ASKED TO LEAVE THESE ITEMS IN A BOX AT A SAFE DISTANCE OF THE 
MAGNET: 
 
Hairpins/Barrettes/Safety Pins  Wigs/Hairpiece/Extensions     
Jewelry/Piercings Watch 
 
Any other removable metal objects not listed that are above your shoulders or on your arms  
 
Subject Signature_______________________________ Date___________ 
 
Investigator signature____________________________ Date___________ 
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APPENDIX E. Side Effects Questionnaire. 
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APPENDIX F. Resumen de la Tesis Doctoral 

 
 

Introducción 

Durante las últimas décadas, se ha generado un gran interés científico y clínico en el uso 

de los campos magnéticos y eléctricos como herramientas de estimulación cerebral no invasiva 

(Non Invasive Brain Stimulation, NIBS). Estas técnicas permiten explorar y modificar la 

excitabilidad y plasticidad cerebrales, así como modular redes neurales sin la necesidad de 

procedimientos invasivos o quirúrgicos.  Por lo tanto, no es sorprendente que su uso para fines 

médicos haya experimentado un crecimiento exponencial y que hoy en día muchas clínicas y 

laboratorios incorporen métodos de NIBS como herramientas diagnósticas, terapéuticas o de 

investigación. Las técnicas de NIBS son, por lo tanto, un grupo heterogéneo de herramientas que 

usan corrientes eléctricas y/o fuerzas magnéticas para evaluar y modular las funciones del 

cerebro. Ejemplos destacables de estas técnicas no invasivas son la estimulación por corriente 

continua transcraneal (Transcranial Direct Current Stimulation, tDCS), que utiliza corrientes 

eléctricas para modular el sistema nervioso central (SNC); o la estimulación magnética 

transcraneal (Transcraneal Magnetic Stimulation, TMS), donde los campos magnéticos son 

capaces de modular y estimular las estructuras del sistema nervioso. 

Así mismo, la combinación de técnicas de NIBS con herramientas habituales en los 

registros neurofisiológicos como la electromiografía (EMG), la electroencefalografía (EEG) o la 

resonancia magnética (MRI) permite evaluar los cambios en el sistema nervioso de una manera 

objetiva y cuantificable. 

En esta tesis doctoral tiene gran relevancia la TMS, que desde que fue descrita por 

primera vez hace más de 30 años, se ha convertido en una poderosa herramienta diagnóstica y 

de tratamiento. La TMS se sirve de las propiedades de los campos electromagnéticos enunciadas 

en el s. XIX por Faraday. Es decir, un pulso de TMS consiste en una corriente eléctrica que pasa 

rápidamente por una bobina creando un campo magnético asociado. Este campo magnético 
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traspasa las barreras naturales de piel y hueso hasta llegar a la corteza cerebral. En la corteza 

cerebral, y dado que es un tejido eléctrico, los campos magnéticos inducen una segunda 

corriente eléctrica que es capaz de activar una zona determinada de esa corteza.  De ese modo 

la TMS se ha podido utilizar para investigar la excitabilidad y reactividad corticales dentro de un 

área concreta o en su relación con otras áreas, para estudiar el comportamiento cerebral, evaluar 

la neurofisiología del cerebro sano y la patofisiología de diferentes trastornos neuropsiquiátricos. 

Además, cuando se aplica como un tren de pulsos repetidos con una cierta frecuencia, 

denominada TMS repetitiva (rTMS), modula la actividad de las redes neuronales más allá del 

tiempo de estimulación. El tratamiento con rTMS de la depresión resistente a fármacos es el 

ejemplo paradigmático del uso médico de las técnicas de NIBS. Este uso fue aprobado por la 

agencia americana responsable de la regulación de medicamentos (FDA) (registro de aprobación 

de la FDA K061053) en 2008 y desde entonces ha sido ampliamente utilizado en todo el mundo. 

Además, la FDA también ha aprobado más recientemente el uso de TMS para el mapeo del 

sistema motor y del lenguaje como herramientas de diagnóstico preoperatorio. Desde entonces, 

se han descrito muchos otros protocolos y aplicaciones de TMS para diferentes enfermedades 

neuropsiquiátricas. 

Como hemos comentado previamente, las técnicas más comúnmente utilizadas se han 

clasificado clásicamente en dos grupos según el tipo de campo que emplean para alcanzar la 

corteza cerebral: (1) técnicas que usan campos electromagnéticos para pasar por el cuero 

cabelludo sin dolor y llegar a la corteza cerebral, como la TMS; y (2) técnicas que usan campos 

eléctricos, como la tDCS. Recientemente, se ha descrito en humanos sanos un método novedoso 

que no puede clasificarse en ninguno de los anteriores grupos, la estimulación magnética estática 

transcraneal (Transcraneal Static Magnetic Stimulation, tSMS). Esta nueva técnica de NIBS 

utiliza campos magnéticos estáticos (Static magnetic fields, SMF). El uso de SMF implica que el 

campo magnético no varia a lo largo del tiempo y esto se traduce en que no existe una inducción 

de corriente eléctrica secundaria como en la TMS. Aún así, la tSMS es capaz de modificar la 
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reactividad y excitabilidad de la corteza cerebral de forma indolora, reversible y segura. Los 

mecanismos mediante los cuales los SMF modifican la reactividad y excitabilidad corticales aún 

no se han dilucidado claramente. Diferentes estudios a nivel celular han propuesto varias 

hipótesis a este respecto: (1) debido a las características diamagnéticas y anisotrópicas de los 

fosfolípidos, los canales iónicos de iones y el flujo de calcio de la membrana se ven alterados 

bajo la influencia de los SMFs; (2) podrían también deberse un efecto de las partículas 

ferromagnéticas presentes en el cerebro sobre los canales iónicos; (3) o por ultimo, los SMFs 

podrían modificar la excitabilidad de membrana debido al efecto Hall sobre canales voltaje-

dependientes, aunque esta última hipótesis ha generado mayor controversia.  

A pesar del gran interés generado, todavía falta por comprender de manera profunda los 

mecanismos subyacentes a las técnicas NIBS y su interacción con los elementos neurales. Esto 

es especialmente acuciante en las nuevas formas de modulación del cerebro como la tSMS. 

Aunque la investigación en torno a la tSMS se está desarrollando rápidamente, aún quedan 

muchas preguntas por responder para entender cómo interactúan los SMF con la corteza 

cerebral. Por otra parte, el hallazgo de cambios significativos después de una intervención 

requiere evaluaciones neurofisiológicas fiables y reproducibles. Varios factores pueden influir en 

la respuesta a los métodos de NIBS como TMS, lo que reduce su reproducibilidad y afecta los 

posibles resultados. 

El objetivo principal de esta tesis es profundizar en el conocimiento de la interacción de 

las técnicas de NIBS con los componentes corticales respondiendo dos preguntas principales. 

En primer lugar, identificar y comprender mejor los factores que potencialmente influyan 

en los efectos y la reproducibilidad de la TMS. A pesar de su relevancia, la TMS tiene una 

considerable variabilidad entre visitas o dependiendo de la persona que suministra la 

estimulación. La determinación de diferentes elementos que estén aportando variabilidad puede 

ayudar a mejorar la reproducibilidad y, por lo tanto, la utilidad de la técnica para fines diagnósticos 

y terapéuticos. Para responder a esta pregunta se investigaron dos tipos de factores. En primer 
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lugar, factores técnicos o modificables. En base a los modelos teóricos actuales, diferentes 

parámetros técnicos, por ejemplo, diferentes formas de onda o direcciones de corriente de los 

pulsos de TMS, activan diferentes redes neurales en el córtex. Por lo tanto, el primer experimento 

de esta tesis plantea la primera hipótesis de que la forma de onda y la dirección de corriente de 

la TMS desempeñan un papel importante en la reproducibilidad al interactuar con componentes 

neurales específicos. El segundo grupo de factores que se investigaron en este trabajo fueron 

factores que no son fácilmente modificables y que afectan a la reactividad y a los procesos de 

plasticidad cerebrales. En concreto en estos experimentos se incluyeron adultos mayores de 55 

años y pacientes con alteraciones metabólicas (Diabetes Mellitus tipo 2, T2DM) y cognitivas 

(Demencia por enfermedad de Alzheimer, AD) para observar los efectos de la edad y de las 

enfermedades relacionadas con la edad en la reproducibilidad de la TMS. La hipótesis de este 

estudio fue que estos factores fisiológicos y patológicos modifican la interacción TMS-córtex 

cerebral, así como también tendrán un impacto considerable en la fiabilidad de TMS. 

En la segunda parte de esta tesis, se intenta investigar más a fondo el comportamiento y 

los cambios en la excitabilidad del córtex motor tras la exposición a la tSMS. Para registrar los 

cambios en la reactividad cerebral producidos por la tSMS utilizamos las respuestas motoras 

(motor evoked potentials, MEP) a la TMS y los registros EEG como herramientas de evaluación 

neurofisiológica. El EEG recoge los cambios eléctricos de la convexidad del cerebro a lo largo 

del tiempo de una manera muy precisa. Por lo tanto, los registros de EEG junto con las 

evaluaciones motoras de la TMS pueden ayudarnos a comprender mejor los cambios fisiológicos 

debido a tSMS. Como se mencionó anteriormente, parámetros físicos específicos de la TMS 

pueden interactuar con diferentes células neurales. En base a esto, en este tercer experimento 

de la tesis, se evaluaron los efectos de la tSMS sobre el córtex motor con varias formas de onda 

y direcciones de corriente. La hipótesis principal de trabajo fue que la tSMS influye de manera 

específica en diferentes redes neurales y por lo tanto las respuestas EMG serán distintivas 

dependiendo de los parámetros de TMS. Para obtener más evidencia, se llevaron a cabo no solo 
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protocolos de TMS de pulsos simples (excitabilidad cortical), si no también la evaluación del 

equilibrio excitación / inhibición en el córtex motor mediante TMS de pulsos-pareados. Los 

protocolos de pulsos pareados nos ayudaron a comprender mejor el funcionamiento de los 

circuitos intracorticales inhibitorios y facilitadores. Por último, los registro EEG y su relación con 

las respuestas EMG a la TMS aportaron mayor evidencia a las tesis planteadas. 

 

Estudios de reproducibilidad 

Previamente se ha mencionado que los estudios de reproducibilidad de esta tesis se 

pueden dividir en dos teniendo en cuenta los factores que se estudiaron. 

Por una parte, en un primer estudio se evaluó la influencia de los parámetros técnicos, es 

decir la forma de onda y dirección de corriente de la TMS.  

En este estudio se recogieron los datos en dos visitas diferentes en 23 sujetos jóvenes y 

sanos. Se usaron para ello tres formas de onda y direcciones de corriente: (1) monofásico 

posterior-anterior (monoPA) (9 sujetos), (2) monofásico anterior-posterior (monoAP) (7 sujetos) y 

(3) bifásico anterior-posterior—posterior-anterior (BiAP-PA) (7 sujetos). 

Cada visita consistió en una serie de evaluaciones neurofisiológicas realizadas con TMS 

con neuronavegación. Por una parte, se evaluó la excitabilidad y reactividad cortical con pulsos 

simples. Los protocolos de pulsos simples incluyeron la intensidad mínima a la cual existe 

respuesta motora o umbral motor (resting motor threshold, RMT), la amplitud y latencia de la 

respuesta corticoespinal a pulsos supra umbral o MEP y la duración del periodo de silencio 

(cortical silent period, cSP). Se exploró también el equilibrio inhibición / facilitación mediante una 

serie de protocolos de pulsos pareados inhibitorios (inhibición corta (SICI) o larga (LICI)) y 

facilitadores (ICF).  

En un segundo experimento de reproducibilidad, se investigó la influencia de factores 

fisiológicos de la edad y patofisiológicos de enfermedades asociadas a la edad (es decir, AD y 

T2DM) en la fiabilidad de los protocolos de pulsos simples y pareados de TMS, así como de un 
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tipo específico de rTMS que se denomina estimulación por theta-burst intermitente (intermittent 

theta-burst stimulation, iTBS). Para ello se obtuvieron datos de 36 adultos de los cuales 9 

padecían AD, 15 T2DM y los 12 restantes eran sujetos adultos sanos de edades similares a los 

otros dos grupos. Se obtuvo también un perfil genético de los participantes para saber cuáles de 

ellos eran portadores de la variante Met en el polimorfismo del factor neurotrófico derivado del 

cerebro (Brain derived neurotrophic factor, BDNF). 

En ambos experimentos de reproducibilidad nos centramos en el estudio de la fiabilidad 

y consistencia de respuesta intra-sujeto. Para ello se utilizó el método estadístico que se ha 

descrito como el más adecuado, los coeficientes de correlación intraclase (Intraclass correlation 

coefficients, ICC). Este coeficiente cuantifica cuánta de la variabilidad observada de una 

respuesta pertenece a la heterogeneidad de la muestra y cuánta a la variabilidad a las diferentes 

visitas o diferentes evaluadores. Por lo tanto, valores ICC de 1 reflejan la máxima fiabilidad de 

una medida, y 0 indica que la fiabilidad es muy pobre o no existe.  

En base a los resultados de la presente tesis, se pueden extraer varias conclusiones 

generales. De ambos estudios podemos concluir que los umbrales motores siguen siendo la 

medida más fiable independientemente de la forma de onda, la dirección de la corriente, la edad 

o grupo de enfermedad, dado que sus ICC son los más altos y cercanos a 1. 

 Sin embargo, los parámetros técnicos de la TMS estudiados en esta tesis sí influyen en 

la eficacia y la fiabilidad de los protocolos de pulso simples y pareados. De especial relevancia 

son los efectos sobre el RMT ya que generalmente este se toma como referencia para calcular 

la intensidad del resto de los protocolos. Además, en ambos experimentos, se observó una 

correlación negativa entre el RMT y la amplitud de los MEPs. A su vez, esta amplitud de MEP se 

asoció de manera inversa con la iTBS.  

De manera novedosa, en esta tesis los protocolos de pulsos pareados se realizaron con 

formas de onda y direcciones de corriente que no se habían usado previamente en publicaciones 

anteriores (monoAP y biAP-PA) además de con monoPA que es el parámetro de uso habitual. Estas 
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formas de onda y direcciones de corriente influyeron en los efectos y la fiabilidad de TMS de una 

manera característica. En particular, las formas de onda monofásicas lograron una inhibición 

mayor y más reproducible, y las formas de onda con el componente AP alcanzaron una mayor 

facilitación. Es más, la biAP-PA podría ser la forma de onda de elección para evaluar los efectos 

de la TMS en protocolos como cSP o ICF en los que podrían tener gran relevancia las conexiones 

córtico-corticales o la interacción de más de una estructura cerebral. 

Los procesos fisiológicos de envejecimiento y la fisiopatología de las enfermedades 

relacionadas con la edad pueden modificar la fiabilidad de TMS. En este trabajo de tesis doctoral, 

esto se observó en dos de los diferentes análisis. 

Primero, utilizando monoPA se observaron ICC más altos tanto en RMT como en LICI en 

la comparación entre adultos jóvenes y mayores. Aunque algunas características de la 

metodología probablemente hayan podido contribuir a estas diferencias, la mayor rigidez 

fisiológica del cerebro según avanza la edad podría afectar a la habilidad del SNC de variar entre 

pulsos, por lo que los valores de ICC serán más altos. 

La mayor rigidez de los procesos cerebrales también ha desempeñado un papel 

importante para el grupo de AD. El grupo de AD mostró una mayor fiabilidad en casi todas las 

medidas de TMS, en particular aquellas después de iTBS, comparado con los adultos mayores 

o los T2DM. Por el contrario, los otros dos grupos mostraron una fiabilidad bastante baja de los 

efectos de iTBS. Finalmente, otros factores también pueden contribuir a aumentar la variabilidad 

de las respuestas a TMS y, en particular, a iTBS. Entre ellos, dos fueron relevantes para este 

trabajo porque se comprobó que aumentaron la variabilidad de las respuestas en nuestra 

muestra: (1) Portadores de la variante Met del polimorfismo BDNF, (2) y los días entre ambas 

visitas. Los intervalos entre visitas de menos de una semana aumentaron significativamente la 

variabilidad en las respuestas a la iTBS, probablemente reflejando procesos de metaplasticidad. 

Sin embargo, estos dos factores no parecen tener influencia en las otras medidas de pulsos 

simples y pareados. 
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Estudios sobre campos magnéticos estáticos 

Los campos magnéticos y eléctricos dinámicos se han utilizado durante décadas para 

explorar la función del cerebro humano, la fisiología del cerebro en la salud y la enfermedad, y 

se ha demostrado que modulan la actividad del cerebro ayudando en el tratamiento de diferentes 

enfermedades. El ejemplo más conocido de esto es TMS. Recientemente, varios estudios han 

encontrado que los SMF moderados (es decir, campos magnéticos entre 1mT y 1T que no 

cambian con el tiempo) también influyen en la excitabilidad cortical humana.  

Hoy en día sabemos que la exposición a tSMS durante 10-15 min induce una reducción 

de la amplitud de los MEPs de aproximadamente el 25% que dura más que la intervención y que 

además se correlaciona negativamente con un aumento en el RMT. Esto traduce una 

disminución de la excitabilidad cortical motora debido a los efectos de la SMF. Tras estos estudios 

iniciales, otros grupos de investigación continuaron explorando los efectos de tSMS en (1) 

corteza motora, realizando diferentes protocolos inhibidores de TMS y (2) otras áreas corticales, 

como las áreas somatosensorial y visual.  

Los estudios previos en córtex motor llegaron a la conclusión de que la tSMS reduce la 

excitabilidad cortical probablemente a través de circuitos intracorticales inhibidores de GABAA ya 

que se ha observado una disminución en SICI. Sin embargo, la participación de los circuitos 

inhibidores de GABAA parece no poder ser la única explicación, ya que otros protocolos que 

también traducen procesos mediados por GABAA, como SAI o LAI, no sufrieron modificaciones 

tras la tSMS. Por lo tanto, los mecanismos fisiológicos de la inhibición inducida de la corteza 

motora después de la tSMS son todavía ampliamente desconocidos lo que hace necesarios 

estudios que profundicen en posibles circuitos corticales que están involucrados. 

Una forma de profundizar en la comprensión de los mecanismos corticales de tSMS es 

mediante el uso de diferentes formas de onda TMS y direcciones de corriente. Como previamente 

se ha comentado en varias ocasiones, los diferentes parámetros de TMS actúan de manera 
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específica sobre circuitos neurales del sistema motor. Por tanto, el primer objetivo de este 

experimento fue ahondar en la comprensión de las interacciones tSMS-córtex motor utilizando 

diferentes formas de onda y direcciones corriente. Estos parámetros específicos de la TMS se 

usaron para realizar protocolos comunes de evaluación de la excitabilidad cortical (amplitud de 

MEPs) y del equilibrio entre las redes corticales facilitadoras e inhibidoras (cSP y pulsos 

pareados). El segundo objetivo investigó más a fondo los efectos de tSMS en el sistema motor 

midiendo la actividad oscilatoria cortical espontánea con EEG y relacionó la reducción en la 

amplitud MEP con los posibles cambios en los registros EEG. Hasta la fecha no se ha publicado 

ningún trabajo sobre los efectos de la tSMS en los registros de la actividad oscilatoria del córtex 

motor. Aún así, la bibliografía existente describe que ante la inhibición espontánea o inducida del 

córtex motor existe un aumento de las frecuencias del rango beta. Por lo tanto, cabría esperar 

que los efectos inhibitorios de la tSMS (reducción del 25% en la amplitud de los MEPs según los 

estudios previos) se tradujeran a su vez en un aumento de esas frecuencias beta. 

En todos los sujetos de estos experimentos se llevaron a cabo dos visitas, una con 

estimulación tSMS real y otra placebo. El orden de ambas fue distribuido de manera aleatoria 

para cada sujeto. Antes y después de la intervención con tSMS se realizaron los registros de 

EMG y de EEG.   

En primer lugar, nuestro resultados reprodujeron con bastante precisión los resultados de 

estudios previos en los que se mostró una disminución en la amplitud de los MEPs, un aumento 

en la inhibición de SICI y la tendencia del cSP a duraciones más largas. Además, hemos 

ampliado esos resultados con el estudio del equilibrio inhibición / facilitación mediante la 

realización de otros protocolos de pulsos pareados que no habían sido investigados con 

anterioridad. Gracias a la realización de estos pulsos pareados se observó que, tras la visita de 

tSMS real, se registró una mayor inhibición tras LICI y una tendencia hacia una menor facilitación 

o ICF.  
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El segundo de los hallazgos novedosos proviene del uso de diferentes parámetros de 

TMS. Este uso nos permitió profundizar en los efectos de los SMF en diferentes redes neuronales 

corticales y mostrar que la influencia de esta nueva técnica NIBS está restringida a determinados 

circuitos intracorticales. Más precisamente, los efectos inhibitorios de la tSMS sobre la 

excitabilidad cortical (amplitud MEP) y el equilibrio intracortical (protocolos de pulsos pareados y 

cSP) únicamente fueron revelados por la forma de onda monoPA. 

Finalmente, en la actividad oscilatoria espontánea se registró un aumento de las 

frecuencias del rango beta tras la tSMS real independientemente de la forma de onda o de la 

dirección corriente de la TMS, tal y como se había teorizado. Fortaleciendo la hipótesis de que 

los procesos inhibitorios son producto de la influencia de tSMS en redes neurales específicas del 

córtex motor, se observó que este aumento de beta en regiones fronto-centrales estaba 

inversamente relacionado con la disminución de amplitud de los MEPs captada por monoPA. 

 

Conclusiones 

Los resultados de la presente tesis pueden ayudar a elegir los parámetros de los pulsos 

de la TMS que maximicen los efectos y la fiabilidad de las medidas realizadas. Los resultados 

también aportan diferentes recomendaciones para optimizar dicha reproducibilidad en 

poblaciones envejecidas o que sufren patologías asociadas a la edad.  

Por último, en esta tesis se ha conseguido profundizar e identificar posibles mecanismos 

por los cuales los SMFs inducen una reducción de la excitabilidad. Sin embargo, dada la 

naturaleza de los estudios realizados dichos mecanismos han de ser confirmados por futuros 

estudios fisiológicos. 
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