A PVM-Based Library for Sparse Matrix
Factorizations *

Juan Tourifio and Ramén Doallo

Dep. of Electronics and Systems, University of A Corufia, Spain
{juan,doallo}@udc.es

Abstract. We present 3LM, a C Linked List Management Library for
parallel sparse factorizations on a PVM environment which takes into
account the fill-in, an important drawback of sparse computations. It is
restricted to a mesh topology and is based on an SPMD paradigm. Our
goal is to facilitate the programming in such environments by means
of a set of list and vector-oriented operations. The result is a pseudo-
sequential code, in which the interprocessor communications and the
sparse data structures are hidden from the programmer.

1 Introduction

Sparse matrix operations appear in many scientific areas. Many libraries have
been developed for managing sparse matrices, specially in linear algebra; for ins-
tance, the NIST sparse BLAS library [5] provides computational kernels for fun-
damental sparse matrix operations. This library is based on compressed storage
formats which do not consider fill-in operations. Moreover, many linear algebra
applications need to be solved in parallel due to memory and CPU require-
ments; so, parallel libraries such as ScaLAPACK [1], mainly oriented to dense
computations, were developed. The LM library was originally designed taking
advantage of our experiences in programming sparse QR factorization algorithms
on distributed-memory multiprocessors [6]. However, the routines of the library
may be applied, without loss of generality, to several kinds of sparse algorithms
involving fill-in (Cholesky, LU ...).

This paper is organized as follows: in §2 we describe the data structures
and distributions available to users; §3 presents the programming model with
3LM, focusing on the loop mapping. Different subsets of useful routines we have
developed are briefly described in §4. A practical example of the use of LM is
shown in §5 and, finally, conclusions and future work are discussed in §6.

2 Library Data Structures and Distributions

The Linked List Column/Row Scatter scheme (LLCS/LLRS) was selected for
representing sparse matrices, in order to support fill-in operations in a flexi-

* This work was supported by the Ministry of Education of Spain (project CICYT
TIC96-1125-C03), Xunta de Galicia (XUGA20605B96) and by the Training and
Mobility of Researchers Programme of the EU (ICARUS project at CINECA, Italy)

a 0 0b 00 c 0
00 0doOef 0
0 g 00 h OO
j 000K O0OO1
000 mno 00
p 0O q O0O0TFr o0
s 00t uo0O00
00 0 v woO 0 x
L
PE (0,1) PE (1,1

Fig.1. LLCS scheme

ble way. It includes a data structure: linked lists, each one of them represents
a column/row of the matrix, and a data distribution, a pseudo-regular cyclic
distribution. This is accomplished by means of this LM routine:

int 111_dcs (char *file_n, int cols, dll *list_id)

where file_n is the name of the file in which the matrix is stored in Harwell-
Boeing format [3] or in coordinate format; if file_n=0 (or NULL), the structure
is only set up (this is necessary for sparse matrices which are generated at run-
time); cols is the number of columns of the matrix, and 1ist_id is an identifier
of the matrix which contains the list orientation and an array of pointers to the
beginning and to the end of the lists. In Figure 1, an 8 x 8 matrix is distributed
onto a 2 x 2 mesh using this scheme. Similar routines have been developed [6]
for a row-oriented scheme (111_drs), for singly-linked lists (111_scs, 111_srs),
and for two-dimensional linked lists (111_srcs, 111_drcs).

In matrix algebra, vector operations such as scalar-vector multiplication, vec-
tor addition, dot product, vector multiply or saxpy operation are very common.
Besides, the characteristics of many problems force the programmer to manage
vectors distributed (and even replicated) in a row or column of processors of the
virtual mesh to take advantage of data locality and to minimize communications.
In order to make this kind of operations easier, we use the routine:

void *111_InitVector (char *file_n, int nels, vector *vec_id,
int dir, int dtype)

which distributes a dense vector of nels entries, stored in file_n, onto a mesh in
a cyclic way, on each row or column of processors (that is, replicated), depending
on dir (XDirection or YDirection); dtype is the data type of the elements:
Datalnt, DataFloat, DataDouble (predefined constants). This routine stores in
vec_id (vector identifier) the following information: orientation of the vector
(row-oriented or column-oriented), type of the elements and a pointer to the
beginning of the vector, which is also returned by the routine.

A complete set of routines for data redistribution or reorientation, both for
sparse matrices and for dense vectors, has been also developed in [6].

3 Loop Mapping

Let us assume a mesh topology in which each processor is identified by coordi-
nates (pidz, pidy). 3LM programs must begin with the sentence:

111_BeginMesh (npex, npey, progname)

which sets a mesh of dimensions npey xnpex and executes the program progname
in all the processors, using a PVM environment, for a cluster of workstations or
for a Cray T3D/T3E multiprocessor (by setting progname=0/NULL). Programs
must end with 111_EndMesh ().

As an example, considering that a matrix A is stored in an LLCS format, a
double loop which performs a column access, is mapped on a double local loop,
as shown in Figure 2.

For instance, let us consider the operation of multiplying the elements of
the submatrix Ag.cp.q by a scalar constant named value. The corresponding
pseudo-sequential 8LM code is expressed as:

for (j=fcol(b); j<fcol(d+1l); j++)
111 _doper(j, listA_id, value, OpMul, frow(a), frow(c+1));

where 1istA_id is the matrix A identifier, OpMul is the operation (product) of
each element of the list with value, from global row index a up to index c.
The procedure 111_doper goes only through the links of the corresponding lists
instead of traversing the whole iteration space a:c.

A similar procedure for vectors is 111_voper, which has a vector identi-
fier vec_id as parameter instead of a scalar value; it operates each entry of
list j with the corresponding entry of vec_id. There are predefined operations:
OpAdd, OpSub, OpMul, OpDiv, Nop, as well as user-defined ones.

for (j=j1; j<jZ; j++) for (j=feor(j1); j<feor(j2); j++)
for (i=il; i<i2; i++) = for (i=frow(il); i<frow(i2); i++)
Aij=- Aij=--

being

_ x 1if pide < (x mod npex)
fcol(a:) - \‘npel‘J + { 0 otherwise

0 otherwise

Frow(®) = { v J +{Mf pidy < (z mod npey)

Fig. 2. Mapping global loops onto local loops

4 Library Routines

The 3LM routines we have shown above and the ones we will see next, have been
specified for column-oriented operations, that is, using an LLCS distribution for
lists and using column vectors (YDirection). This was accomplished in order
to simplify their explanation. There exist analogous procedures for singly-linked
lists (111_s*) and for 2-D linked lists (111_2d*, 111_2s*) [6].

However, the same routines can be also applied to row-oriented operations
(when using an LLRS scheme and row vectors) because these routines obtain the
orientation from the identifiers of lists and vectors, and they operate accordingly.

Next, we introduce additional subsets of routines we found interesting for
helping the user to program parallel algorithms in our application context.

4.1 Replication Operations

Sometimes, a column (in an LLCS distribution) of the matrix is required to
perform calculations with data located in other processors.

The procedure111_drepl(j, list_id, vec_id, low, high) replicates co-
lumn (list) j of the matrix on the corresponding processors. This column is stored
in the vector defined by vec_id, from entry with index low up to entry high (not
inclusive). Internally, this procedure broadcasts a compressed vector instead of
a full-size vector to reduce the size of the message to be broadcast. There are
analogous procedures to replicate dense vectors (111_vrepl).

4.2 Gather Operations

They are used for vectors which are distributed on each row (or column) of
processors, and other processors need to obtain non-local data of these vectors.
Function 111_vgather(vec_id, j1, j2) returns the value of entry j1 of vector

identified by vec_id to the processors which own entry j2. If j2=A11 (Allis a
predefined constant of the library), this value is returned to all the processors.

4.3 Reduction Routines

3LM provides a set of reduction instructions, both for lists and for dense vectors.
For instance: 111_vmaxval/111_vminval(vec_id, low, high) returns the ma-
ximum/minimum element of vector vec_id, from index low up to index high.
Similarly, 111_vmaxloc/111_vminloc(vec_id, low, high), returns the index
of the maximum/minimum element. There are also reduction routines for other
operations such as sum, product ..., and for user-defined operations.

4.4 Fill-in Routines

In the sparse computations we are considering, an important drawback is the
generation of new nonzero entries in the matrix, with the corresponding problems
of storage and treatment of these entries. This is solved by means of the linked
list data structure. Let us consider the following iteration space:

for (j=b; j<d+1; j++)
for (i=a; i<c+1; i++)
Aij = Aij + vec;

where vec is a vector distributed and replicated in each column of processors.
Fill-in appears in this computation and is confined in the local processor which
executes its own set of iterations. We can solve this fact by using this routine:

for (j=fcol(b); j<fcol(d+1l); j++)
111 _dfillin(j, listA_id, vec_id, OpAdd, frow(a), frow(c+l));

where OpAdd is the operation between the entries of the list and vector vec.
Generalizing, an operation goper can be a predefined or a user-defined function.
According to this, the procedure 111_dfillin carries out the following actions:

0and Ai; # 0 Entry A;j updated in the list as Aj;
0 and A;; =0 New entry Aj; inserted in the list
0 Entry A;j deleted of the list

Ajj No actions are taken

(3

If A*fj — Joper (Aij, veci)

The routine 111_dupdate(i, j, aij, list_id) setselement (i, j) in the
matrix identified by 1list_id to aij (insertion and deletion operations are assu-
med depending on the value of aij).

4.5 Swapping Operation

In many matrix calculations, explicit pivoting operations are required. This fea-
ture is a drawback in sparse computations due to the storage scheme and to
the fill-in, which changes the number of elements per column of the matrix. A
high-level swap operation is implemented to make the programming easier:

111 _dswap(j1, j2, list_id, rows)

being j1 and j2 the global indices of the columns to be swapped in the mesh
according to the LLCS scheme, and rows is the row dimension of the matrix.
Compressed vectors are used to reduce message sizes.

4.6 Other Routines

More remarkable procedures for list management, among others developed, are:
111_dvdp(j, list_id, vec_id, low, high) returns to all the processors which
own list (column) j the dot product of that column and vector vec_id.
111_dunpack(j, list_id, vec_id, low, high) copies elements of list (co-
lumn) j, from index low up to index high on the corresponding positions of the
column vector defined by vec_id; the rest of entries of this vector are zero.
There are also 3LM low-level routines [6] to handle directly the data structu-
res, as well as to determine the actions on each processor of the mesh, for special
operations which cannot be performed with the high-level set described above.

5 Sparse QR Factorization: an Application Example

The code of Figure 3 shows an example of the use of the 3LM routines for the
rank-revealing sparse Modified Gram-Schmidt (MGS) QR algorithm, with co-
lumn pivoting. An mxn matrix A is decomposed into the product of an orthogonal
matrix) (which is originally matrix A) and an upper triangular matrix R (con-
sult [4, Chap.5]). Lines 27-37 of Figure 3 correspond with the column pivoting
stage of the algorithm. The generation of each row k of matrix R is performed
in line 40: Ry, ;. « pivot, and in line 47: Ry j11:m-1 ¢ Q81 £Q0im 1.6+ 1:m—1-
Finally, the core of the stage of updating matrix Q is carried out in line 41:
Qo:m—1,k < Qo:m—1,k/pivot, and principally in line 51, where fill-in appears:
QO:mfl,kJrl:nfl — QO:mfl,kJrl:nfl - QO:mfl,kRk,k+1:nfl-

A detailed parallel implementation which uses message-passing routines ex-
plicitly is described in [2]. As we can see, the 3LM code is not very broad, whereas
the corresponding parallel code mentioned above can fill about 2000 lines.

Figure 4 shows the efficiencies obtained for the code of Figure 3 on a Cray
T3E, for five sparse matrices selected from the Harwell-Boeing collection [3]. A
strategy to preserve sparsity during the factorization was also included. The le-
gend of this figure indicates the dimensions of the matrices, as well as the number
of nonzero entries. As we can see, the algorithm scales rather well. Nevertheless,
the execution times are not good in comparison with the implementation which
uses message-passing explicitly. This is because that implementation is very op-
timized and the LM routines are generic, not specific for a particular algorithm.
The ease of programming using $LM involves higher execution times.

This library has been also used to program other sparse orthogonal facto-
rizations, such as Householder reflections and Givens rotations, using LLCS and
LLRS schemes, respectively [6]. A 2-D linked list (LLRCS scheme) would be
suitable for a right-looking LU factorization. Sparse Cholesky factorization can
also be approached by means of the 3LM library, using an LLCS distribution.

QOO WN -

#include "111.h"
void main()

int m, n, pesx, pesy;

int i, j, k, rank, pivot_index;

double pivot, tempnorm;

double *norm, *vsum, *vcol, *temp;

vector norm_id, vsum_id, vcol_id, temp_id;
dll listQ_id, listR_id;

pesx=4; pesy=4;
111_BeginMesh(pesx, pesy, "qr_mgs");
m=1000; n=1000;
norm=111_InitVector (0, n, &norm_id, XDirection, DataDouble);
vsum=111_InitVector(0, n, &vsum_id, XDirection, DataDouble);
vcol=111_InitVector(0, m, &vcol_id, YDirection, DataDouble);
temp=111_InitVector(0, m, &temp_id, YDirection, DataDouble);
111_dcs("matrix.dat", n, &listQ_id);
111_dcs(NULL, n, &listR_id);
rank=n;
for (j=fcol(0); j<fcol(m); j++) {
111_dunpack(j, listQ_id, temp_id, frow(0), frow(m));
norm[j]1=111_dvdp(j, listQ_id, temp_id, frow(0), frow(m));
}

for (k=0; k<n; k++) {
pivot=111_vmaxval(norm_id, fcol(k), fcol(n));
pivot_index=111_vmaxloc(norm_id, fcol(k), fcol(n));
if (pivot < 1.0e-20) {
rank=k; break;

}
111_dswap(k, pivot_index, listQ_id, m);
111_dswap(k, pivot_index, listR_id, n);
tempnorm=111_vgather (norm_id, k, pivot_index);
for (j=fcol(pivot_index); j<fcol(pivot_index+1); j++)
norm[j]=tempnorm;
pivot=sqrt(pivot);
for (j=fcol(k); j<fcol(k+1); j++) {
for (i=frow(k); i<frow(k+1); i++)
111_dupdate(i, j, pivot, listR_id);
111_doper(j, listQ_id, pivot, OpDiv, frow(0), frow(m));
}

111_drepl(k, listQ_id, vcol_id, 0, m);
for (j=fcol(k+1l); j<fcol(m); j++) {
vsum[j]1=111_dvdp(j, listQ_id, vcol_id, frow(0), frow(m));
for (i=frow(k); i<frow(k+1); i++)
111_dupdate(i, j, vsum[j], listR_id);
norm[jl=norm[j]l-vsum[jl*vsum[j];
for (i=frow(0); i<frow(m); i++)
temp [il=vcol [i]*vsum[j];
111_dfillin(j, listQ_id, temp_id, OpSub, frow(0), frow(m));
}

}
111_EndMesh() ;

Fig. 3. Sparse MGS code using 3LM routines

Sparse MGS: efficiencies on a Cray T3E

1.0

0.8

0.6

Efficiencies

04

A—A JPWHI91 991x991, 6027 els.

3 — 81 ORANI678 2529x2529, 90158 els.
02 } |©--©OSHERMANS 3312x3312, 20793 els.
Fe---H LNS3937 3937x3937, 25407 els.

O -0 GEMATI2 4929x4929, 33111 els.

0.0 L L
1 4 16 64

Number of processors

Fig. 4. Efficiencies for the MGS algorithm using 3LM routines

6 Conclusions and Future Work

3LM provides an environment to develop effortlessly codes in the field of sparse
direct factorizations and their applications (linear systems of equations, least
squares problems . ..). Besides, some of these routines can be used to extend the
capabilities of a data-parallel compiler to handle sparse matrix computations [6].
As future work, we intend to code this library using Fortran 90/MPI, as well as
to extend the library to include a wider class of problems.

References

1. Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet, A.,
Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK: a Portable Linear Algebra
Library for Distributed Memory Computers -Design Issues and Performance. Tech.
Report CS-95-283, Dep. Computer Science, University of Tennessee (1995).

2. Doallo, R., Fraguela, B.B., Tourino, J., Zapata, E.L.: Parallel Sparse Modified Gram-
Schmidt QR Decomposition. In Int’l Conference on High-Performance Computing
and Networking, HPCN’96, Brussels. Lecture Notes in Computer Science, Vol. 1067,
Springer-Verlag (1996) 646—653.

3. Duff, I.S., Grimes, R.G., Lewis, J.G.: User’s Guide for the Harwell-Boeing Sparse
Matrix Collection. Tech. Report TR-PA-92-96, CERFACS (1992).

4. Golub, G.H., van Loan, C.F.: Matrix Computations. The Johns Hopkins University
Press, second edition (1989).

5. Remington, K.A.) Pozo, R.: NIST Sparse BLAS User’s Guide. National Institute of
Standards and Technology (1996).

6. Tourifio, J.: Parallelization and Compilation Issues of Sparse QR Algorithms. PhD
Thesis, Dep. of Electronics and Systems, University of A Corufia, Spain (1998).

