
A PVM�Based Library for Sparse Matrix

Factorizations �

Juan Touri�no and Ram�on Doallo

Dep� of Electronics and Systems� University of A Coru�na� Spain
fjuan�doallog�udc�es

Abstract� We present �LM� a C Linked List Management Library for
parallel sparse factorizations on a PVM environment which takes into
account the �ll�in� an important drawback of sparse computations� It is
restricted to a mesh topology and is based on an SPMD paradigm� Our
goal is to facilitate the programming in such environments by means
of a set of list and vector�oriented operations� The result is a pseudo�
sequential code� in which the interprocessor communications and the
sparse data structures are hidden from the programmer�

� Introduction

Sparse matrix operations appear in many scienti�c areas� Many libraries have
been developed for managing sparse matrices� specially in linear algebra� for ins�
tance� the NIST sparse BLAS library 	
� provides computational kernels for fun�
damental sparse matrix operations� This library is based on compressed storage
formats which do not consider �ll�in operations� Moreover� many linear algebra
applications need to be solved in parallel due to memory and CPU require�
ments� so� parallel libraries such as ScaLAPACK 	��� mainly oriented to dense
computations� were developed� The �LM library was originally designed taking
advantage of our experiences in programming sparse QR factorization algorithms
on distributed�memory multiprocessors 	
�� However� the routines of the library
may be applied� without loss of generality� to several kinds of sparse algorithms
involving �ll�in �Cholesky� LU � � ���

This paper is organized as follows� in x� we describe the data structures
and distributions available to users� x� presents the programming model with
�LM� focusing on the loop mapping� Di�erent subsets of useful routines we have
developed are brie�y described in x�� A practical example of the use of �LM is
shown in x
 and� �nally� conclusions and future work are discussed in x
�

� Library Data Structures and Distributions

The Linked List Column�Row Scatter scheme �LLCS�LLRS� was selected for
representing sparse matrices� in order to support �ll�in operations in a �exi�

� This work was supported by the Ministry of Education of Spain �project CICYT
TIC�	�

���C
��� Xunta de Galicia �XUGA�
	
�B�	� and by the Training and
Mobility of Researchers Programme of the EU �ICARUS project at CINECA� Italy�

a 0 0 b 0 0 c 0

0 0 0 d 0 e f 0

0 g 0 0 h 0 0 i

0 0 0 m n o 0 0

j 0 0 0 k 0 0 l

p 0 q 0 0 r 0 0

s 0 0 t u 0 0 0

0 0 0 v w 0 0 x

3 s

0 a 01 h

2

3 u

c

n

PE (0,0)

011 j

2 p

2 q k

3 w

f

PE (0,1)

0 d

3 v

0 e

2 r

1 l

3 x

PE (1,1)

1 g

2

3

0 b

m

t

2 o 1 i

PE (1,0)

Fig� �� LLCS scheme

ble way� It includes a data structure� linked lists� each one of them represents
a column�row of the matrix� and a data distribution� a pseudo�regular cyclic
distribution� This is accomplished by means of this �LM routine�

int lll�dcs �char �file�n� int cols� dll �list�id�

where file�n is the name of the �le in which the matrix is stored in Harwell�
Boeing format 	�� or in coordinate format� if file�n�� �or NULL�� the structure
is only set up �this is necessary for sparse matrices which are generated at run�
time�� cols is the number of columns of the matrix� and list�id is an identi�er
of the matrix which contains the list orientation and an array of pointers to the
beginning and to the end of the lists� In Figure �� an �� � matrix is distributed
onto a � � � mesh using this scheme� Similar routines have been developed 	
�
for a row�oriented scheme �lll�drs�� for singly�linked lists �lll�scs� lll�srs��
and for two�dimensional linked lists �lll�srcs� lll�drcs��

In matrix algebra� vector operations such as scalar�vector multiplication� vec�
tor addition� dot product� vector multiply or saxpy operation are very common�
Besides� the characteristics of many problems force the programmer to manage
vectors distributed �and even replicated� in a row or column of processors of the
virtual mesh to take advantage of data locality and to minimize communications�
In order to make this kind of operations easier� we use the routine�

void �lll�InitVector �char �file�n� int nels� vector �vec�id�

int dir� int dtype�

which distributes a dense vector of nels entries� stored in file�n� onto a mesh in
a cyclic way� on each row or column of processors �that is� replicated�� depending
on dir �XDirection or YDirection�� dtype is the data type of the elements�
DataInt� DataFloat� DataDouble �prede�ned constants�� This routine stores in
vec�id �vector identi�er� the following information� orientation of the vector
�row�oriented or column�oriented�� type of the elements and a pointer to the
beginning of the vector� which is also returned by the routine�

A complete set of routines for data redistribution or reorientation� both for
sparse matrices and for dense vectors� has been also developed in 	
��

� Loop Mapping

Let us assume a mesh topology in which each processor is identi�ed by coordi�
nates �pidx� pidy�� �LM programs must begin with the sentence�

lll�BeginMesh �npex� npey� progname�

which sets a mesh of dimensions npey�npex and executes the program progname

in all the processors� using a PVM environment� for a cluster of workstations or
for a Cray T�D�T�E multiprocessor �by setting progname���NULL�� Programs
must end with lll�EndMesh���

As an example� considering that a matrix A is stored in an LLCS format� a
double loop which performs a column access� is mapped on a double local loop�
as shown in Figure ��

For instance� let us consider the operation of multiplying the elements of
the submatrix Aa�c�b�d by a scalar constant named value� The corresponding
pseudo�sequential �LM code is expressed as�

for �j�fcol�b�� j	fcol�d
��� j

�

lll�doper�j� listA�id� value� OpMul� frow�a�� frow�c
����

where listA�id is the matrix A identi�er� OpMul is the operation �product� of
each element of the list with value� from global row index a up to index c�
The procedure lll�doper goes only through the links of the corresponding lists
instead of traversing the whole iteration space a�c�

A similar procedure for vectors is lll�voper� which has a vector identi�
�er vec�id as parameter instead of a scalar value� it operates each entry of
list j with the corresponding entry of vec�id� There are prede�ned operations�
OpAdd� OpSub� OpMul� OpDiv� Nop� as well as user�de�ned ones�

for �j�j
� j�j�� j��� for �j�fcol�j
�� j�fcol�j��� j���
for �i�i
� i�i�� i��� �� for �i�frow�i
�� i�frow�i��� i���

Aij � � � � Aij � � � �

being

fcol�x� �

�
x

npex

�
�

�

 if pidx � �x mod npex�

 otherwise

frow�x� �

�
x

npey

�
�

�

 if pidy � �x mod npey�

 otherwise

Fig� �� Mapping global loops onto local loops

� Library Routines

The �LM routines we have shown above and the ones we will see next� have been
speci�ed for column�oriented operations� that is� using an LLCS distribution for
lists and using column vectors �YDirection�� This was accomplished in order
to simplify their explanation� There exist analogous procedures for singly�linked
lists �lll�s�� and for ��D linked lists �lll�
d�� lll�
s�� 	
��

However� the same routines can be also applied to row�oriented operations
�when using an LLRS scheme and row vectors� because these routines obtain the
orientation from the identi�ers of lists and vectors� and they operate accordingly�

Next� we introduce additional subsets of routines we found interesting for
helping the user to program parallel algorithms in our application context�

��� Replication Operations

Sometimes� a column �in an LLCS distribution� of the matrix is required to
perform calculations with data located in other processors�

The procedure lll�drepl�j� list�id� vec�id� low� high� replicates co�
lumn �list� j of the matrix on the corresponding processors� This column is stored
in the vector de�ned by vec�id� from entry with index low up to entry high �not
inclusive�� Internally� this procedure broadcasts a compressed vector instead of
a full�size vector to reduce the size of the message to be broadcast� There are
analogous procedures to replicate dense vectors �lll�vrepl��

��� Gather Operations

They are used for vectors which are distributed on each row �or column� of
processors� and other processors need to obtain non�local data of these vectors�
Function lll�vgather�vec�id� j�� j
� returns the value of entry j� of vector

identi�ed by vec�id to the processors which own entry j
� If j
�All �All is a
prede�ned constant of the library�� this value is returned to all the processors�

��� Reduction Routines

�LM provides a set of reduction instructions� both for lists and for dense vectors�
For instance� lll�vmaxval�lll�vminval�vec�id� low� high� returns the ma�
ximum�minimum element of vector vec�id� from index low up to index high�
Similarly� lll�vmaxloc�lll�vminloc�vec�id� low� high�� returns the index
of the maximum�minimum element� There are also reduction routines for other
operations such as sum� product � � �� and for user�de�ned operations�

��� Fill�in Routines

In the sparse computations we are considering� an important drawback is the
generation of new nonzero entries in the matrix� with the corresponding problems
of storage and treatment of these entries� This is solved by means of the linked
list data structure� Let us consider the following iteration space�

for �j�b� j�d��� j���
for �i�a� i�c��� i���

Aij � Aij � veci

where vec is a vector distributed and replicated in each column of processors�
Fill�in appears in this computation and is con�ned in the local processor which
executes its own set of iterations� We can solve this fact by using this routine�

for �j�fcol�b�� j	fcol�d
��� j

�

lll�dfillin�j� listA�id� vec�id� OpAdd� frow�a�� frow�c
����

where OpAdd is the operation between the entries of the list and vector vec�
Generalizing� an operation goper can be a prede�ned or a user�de�ned function�
According to this� the procedure lll�dfillin carries out the following actions�

If A�ij � goper�Aij � veci�

����
���

�� � and Aij �� � Entry Aij updated in the list as A�ij
�� � and Aij � � New entry A�ij inserted in the list
� Entry Aij deleted of the list
Aij No actions are taken

The routine lll�dupdate�i� j� aij� list�id� sets element �i� j� in the
matrix identi�ed by list�id to aij �insertion and deletion operations are assu�
med depending on the value of aij��

��� Swapping Operation

In many matrix calculations� explicit pivoting operations are required� This fea�
ture is a drawback in sparse computations due to the storage scheme and to
the �ll�in� which changes the number of elements per column of the matrix� A
high�level swap operation is implemented to make the programming easier�

lll�dswap�j�� j
� list�id� rows�

being j� and j
 the global indices of the columns to be swapped in the mesh
according to the LLCS scheme� and rows is the row dimension of the matrix�
Compressed vectors are used to reduce message sizes�

��� Other Routines

More remarkable procedures for list management� among others developed� are�
lll�dvdp�j� list�id� vec�id� low� high� returns to all the processors which
own list �column� j the dot product of that column and vector vec�id�
lll�dunpack�j� list�id� vec�id� low� high� copies elements of list �co�
lumn� j� from index low up to index high on the corresponding positions of the
column vector de�ned by vec�id� the rest of entries of this vector are zero�

There are also �LM low�level routines 	
� to handle directly the data structu�
res� as well as to determine the actions on each processor of the mesh� for special
operations which cannot be performed with the high�level set described above�

� Sparse QR Factorization� an Application Example

The code of Figure � shows an example of the use of the �LM routines for the
rank�revealing sparse Modi�ed Gram�Schmidt �MGS� QR algorithm� with co�
lumn pivoting� An m�nmatrixA is decomposed into the product of an orthogonal
matrix Q �which is originally matrix A� and an upper triangular matrix R �con�
sult 	�� Chap�
��� Lines ����� of Figure � correspond with the column pivoting
stage of the algorithm� The generation of each row k of matrix R is performed
in line ��� Rk�k � pivot� and in line ��� Rk�k���n�� � QT

��m���kQ��m���k���n���
Finally� the core of the stage of updating matrix Q is carried out in line ���
Q��m���k � Q��m���k�pivot� and principally in line
�� where �ll�in appears�
Q��m���k���n�� � Q��m���k���n�� �Q��m���kRk�k���n���

A detailed parallel implementation which uses message�passing routines ex�
plicitly is described in 	��� As we can see� the �LM code is not very broad� whereas
the corresponding parallel code mentioned above can �ll about ���� lines�

Figure � shows the e�ciencies obtained for the code of Figure � on a Cray
T�E� for �ve sparse matrices selected from the Harwell�Boeing collection 	��� A
strategy to preserve sparsity during the factorization was also included� The le�
gend of this �gure indicates the dimensions of the matrices� as well as the number
of nonzero entries� As we can see� the algorithm scales rather well� Nevertheless�
the execution times are not good in comparison with the implementation which
uses message�passing explicitly� This is because that implementation is very op�
timized and the �LM routines are generic� not speci�c for a particular algorithm�
The ease of programming using �LM involves higher execution times�

This library has been also used to program other sparse orthogonal facto�
rizations� such as Householder re�ections and Givens rotations� using LLCS and
LLRS schemes� respectively 	
�� A ��D linked list �LLRCS scheme� would be
suitable for a right�looking LU factorization� Sparse Cholesky factorization can
also be approached by means of the �LM library� using an LLCS distribution�

� �include �lll�h�
�
	 void main
�
�

� int m� n� pesx� pesy�
� int i� j� k� rank� pivot�index�
� double pivot� tempnorm�
� double �norm� �vsum� �vcol� �temp�
� vector norm�id� vsum�id� vcol�id� temp�id�
�� dll listQ�id� listR�id�
��
�� pesx��� pesy���
�	 lll�BeginMesh
pesx� pesy� �qr�mgs���
�� m������ n������
�� norm�lll�InitVector
�� n� �norm�id� XDirection� DataDouble��
�� vsum�lll�InitVector
�� n� �vsum�id� XDirection� DataDouble��
�� vcol�lll�InitVector
�� m� �vcol�id� YDirection� DataDouble��
�� temp�lll�InitVector
�� m� �temp�id� YDirection� DataDouble��
�� lll�dcs
�matrix�dat�� n� �listQ�id��
�� lll�dcs
NULL� n� �listR�id��
�� rank�n�
�� for
j�fcol
��� j�fcol
n�� j���

�	 lll�dunpack
j� listQ�id� temp�id� frow
��� frow
m���
�� norm�j��lll�dvdp
j� listQ�id� temp�id� frow
��� frow
m���
�� �
�� for
k��� k�n� k���

�� pivot�lll�vmaxval
norm�id� fcol
k�� fcol
n���
�� pivot�index�lll�vmaxloc
norm�id� fcol
k�� fcol
n���
�� if
pivot � ���e����

	� rank�k� break�
	� �
	� lll�dswap
k� pivot�index� listQ�id� m��
		 lll�dswap
k� pivot�index� listR�id� n��
	� tempnorm�lll�vgather
norm�id� k� pivot�index��
	� for
j�fcol
pivot�index�� j�fcol
pivot�index���� j���
	� norm�j��tempnorm�
	� pivot�sqrt
pivot��
	� for
j�fcol
k�� j�fcol
k���� j���

	� for
i�frow
k�� i�frow
k���� i���
�� lll�dupdate
i� j� pivot� listR�id��
�� lll�doper
j� listQ�id� pivot� OpDiv� frow
��� frow
m���
�� �
�	 lll�drepl
k� listQ�id� vcol�id� �� m��
�� for
j�fcol
k���� j�fcol
n�� j���

�� vsum�j��lll�dvdp
j� listQ�id� vcol�id� frow
��� frow
m���
�� for
i�frow
k�� i�frow
k���� i���
�� lll�dupdate
i� j� vsum�j�� listR�id��
�� norm�j��norm�j��vsum�j��vsum�j��
�� for
i�frow
��� i�frow
m�� i���
�� temp�i��vcol�i��vsum�j��
�� lll�dfillin
j� listQ�id� temp�id� OpSub� frow
��� frow
m���
�� �
�	 �
�� lll�EndMesh
��
�� �

Fig� �� Sparse MGS code using �LM routines

1 4 16 64
Number of processors

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

nc
ie

s

Sparse MGS: efficiencies on a Cray T3E

JPWH991 991x991, 6027 els.
ORANI678 2529x2529, 90158 els.
SHERMAN5 3312x3312, 20793 els.
LNS3937 3937x3937, 25407 els.
GEMAT12 4929x4929, 33111 els.

Fig� �� E�ciencies for the MGS algorithm using �LM routines

� Conclusions and Future Work

�LM provides an environment to develop e�ortlessly codes in the �eld of sparse
direct factorizations and their applications �linear systems of equations� least
squares problems � � ��� Besides� some of these routines can be used to extend the
capabilities of a data�parallel compiler to handle sparse matrix computations 	
��
As future work� we intend to code this library using Fortran ���MPI� as well as
to extend the library to include a wider class of problems�

References

� Choi� J�� Demmel� J�� Dhillon� I�� Dongarra� J�� Ostrouchov� S�� Petitet� A��
Stanley� K�� Walker� D�� Whaley� R�C�� ScaLAPACK� a Portable Linear Algebra
Library for Distributed Memory Computers �Design Issues and Performance� Tech�
Report CS�������� Dep� Computer Science� University of Tennessee �
�����

�� Doallo� R�� Fraguela� B�B�� Touri�no� J�� Zapata� E�L�� Parallel Sparse Modi�ed Gram�
Schmidt QR Decomposition� In Int�l Conference on High�Performance Computing
and Networking� HPCN��	� Brussels� Lecture Notes in Computer Science� Vol�

	��
Springer�Verlag �
��	� 	�	�	���

�� Du�� I�S�� Grimes� R�G�� Lewis� J�G�� User�s Guide for the Harwell�Boeing Sparse
Matrix Collection� Tech� Report TR�PA�����	� CERFACS �
�����

�� Golub� G�H�� van Loan� C�F�� Matrix Computations� The Johns Hopkins University
Press� second edition �
�����

�� Remington� K�A�� Pozo� R�� NIST Sparse BLAS User�s Guide� National Institute of
Standards and Technology �
��	��

	� Touri�no� J�� Parallelization and Compilation Issues of Sparse QR Algorithms� PhD
Thesis� Dep� of Electronics and Systems� University of A Coru�na� Spain �
�����

