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Abstract 

A phylogenetic reconstruction based on the amplification of 3 satellite DNAs (stDNAs) was carried out in 1 

crustacean species and 15 bivalve species of the subclass Pteriomorphia (10, subfamily Mytilinae; 1, 

subfamily Litophaginae; 1, subfamily Modiolinae, all belonging to family Mytilidae; 1, family Arcidae; and 

2, family Pectinidae). The sequences obtained showed motifs with high similarity to those of A and B boxes 

of tRNA promoter regions. Dot-blot hybridizations revealed that the 3 stDNAs are present mainly in high 

copy numbers for each species of the genus Mytilus, whereas for the other species they appear in low copy 

numbers. Maximum-parsimony trees evidenced a tendency to group Mytilus clones together, and species 

containing these sequences as a single copy were distributed among the different mytilids. Finally, the 

possible origin and evolution of these stDNAs is discussed.  
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Introduction 

Satellite DNA sequences are highly tandem repeated monomers mainly located at the centromeres or 

telomeres, or, less frequently, in interstitial chromosome regions. These repeats show high variability in 

sequence, frequency, and chromosomal distribution, even among closely related species (Miklos 1985; 

Charlesworth et al. 1994). 

Usually, satellite DNAs (stDNAs) show rapid evolution among species, so that in short periods of time new 

families of satellite DNAs can arise or disappear (Miklos 1985). There are species-specific stDNAs, as, for 

example, in primates (Fanning et al. 1989) or in orthoptera (Bachmann et al. 1994), and sex-specific stDNAs, 

as in those from bats (Van den Busche et al. 1993) or horses (Wijers et al. 1993), and both types have a 

relatively recent evolutionary origin (Singer 1982). However, other stDNAs show a high degree of sequence 

conservation, and they are present in all the members of the same family, as observed in Cebidae (Fanning et 

al. 1993) or in Cetacea (Arnason 1990). These satellite sequences are widely spread across distantly related 

species, as, for example, the alpha-centromeric satellites of primates (Willard 1991; Fanning et al. 1993).  

To explain the evolution of stDNA, Salser et al. (1976) proposed that related species share a “library” of 

conserved satellite sequences, some of which could be amplified, and then a larger stDNA is generated for a 

particular species. This model is supported by Meštrovi et al. (1998), who analyzed 4 congeneric species of 
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Coleoptera, each containing a different single stDNA. They proposed that these differences occur as a result 

of a sudden amplification of a library of conserved stDNA, its spread by a mechanism of unequal crossing 

over, and its fixation within some individuals in a population. 

On the other hand, Nijman and Lenstra (2001) proposed a model of “the life history of satellite DNAs”, 

which postulates that homogeneity of interacting repeating units is “both cause and consequence of the rapid 

turnover of stDNA”. In the first phase, the amplification of homogeneous repeating units would occur, and, 

in the second phase, mutational events would give rise to variants that amplify independently. Later, 

recombination would prevent homogenization due to the spreading of 1 of the variants, and the satellite 

would eventually be outcompeted by another, more homogeneous tandem repeat sequence. 

Studies on the evolution of stDNA in molluscs are scarce. Only Muchmore et al. (1998) in 5 species of 

Eastern Pacific abalone (genus Haliotis) and Martínez-Lage et al. (2002) in 4 Mytilus species  carried  out  

evolutionary  studies  on stDNAs. In the analysis performed by Martínez-Lage et al. (2002), 3 different types 

of stDNAs in M. edulis, M. galloprovincialis, M. trossulus, and M. californianus were used. The sequencing 

results revealed that M. californianus is the most divergent species with respect to the other 3. Chromosome 

in situ hybridization showed a different organization and distribution of the 3 satellites in each species, and 

the genome proportion of each type of stDNA also varied.  

The central aim of the present work is to perform a molecular analysis of the 3 stDNAs used in our previous 

work (Martínez-Lage et al. 2002) to investigate the evolution of these sequences in the subfamily Mytilinae 

and analyze its possible origin and differentiation; as well, we discuss the model of “the life history of 

satellite DNAs” proposed by Nijman and Lenstra (2001). Specific primers were used to amplify genomic 

DNA from 15 bivalve and 1 crustacean species. The sequences obtained showed high similarity (with the 

exception of satellite 1 of M.  californianus), although dot-blot analysis revealed that only the Mytilus 

species has a high copy number, and the rest of the species have a low copy number. 

 

Material and methods 

PCR amplifications and sequencing 

The specimens analyzed were collected from the localities shown in Table 1. Clones of M. edulis, M. 

galloprovincialis, M.  trossulus, and M.  californianus were previously described by Martínez-Lage et al. 

(2002). DNA was obtained from adductor muscles or mantles following the protocol described in Rice and 

Bird (1990). 

PCR amplifications from template genomic DNA were performed in a final volume of 25μL (1ng/μL) using 

he following primers at 0.2 mmol/L an d1Uof Taq DNA polymerase (Roche Molecular Biochemicals, 

Mannheim, Germany): S1F, 5′-TTCCATATCAACCACACATT-3′, and S1B, 

5′AATACGTAAATGGGCAACTT-3′, for type 1 stDNA; S2F,  5′-ACCAAAACTCCCAAAATCAA-3′,  

and S2B, 5′-CCCAACAGT-TTAGGAATTAG-3′, for type 2 stDNA; and S3F,   5′-

GTCACCCTACCGCTACTTTG-3′,   and   S3B, 5′-CATCCACCTTCTTTCGTTCA-3′ , for type 3 stDNA. 

The PCR amplification profile for type 1 stDNA consisted of 1 initial denaturation cycle of 3 min at 94 °C, 

followed by 35 amplification cycles of 1 min at 94 °C for denaturation, 30 s at 45 °C (55 and 58 °C for types 

2 and 3 stDNA, respectively) for annealing, and 45 s at 72 °C for extension. A final extension cycle was 

performed at 72 °C for 5 min. The fragments obtained by PCR were ligated into the plasmid pGEM-T Easy 

Vector System (Promega Corporation, Madison, Wis.) and automatically sequenced using an ALFexpress 

instrument (Amersham Pharmacia Biotech, Uppsala, Sweden). 



 
 

Table 1. Taxa used in the molecular analysis of 3 satellite DNAs (stDNA) 

 EMBL–GenBank–DDBJ accession number* 

Taxon Collection site Type 1 stDNA Type 2 stDNA Type 3 stDNA 

Class  Bivalvia     

 Subclass Pteriomorphia     

  Family Arcidae     

        Arca noae Benicarló, Valencia, Spain AJ549340 AJ549257 AJ549276 

  Family Mytilidae     

   Subfamily Mytilinae     

       Mytilus edulis Yerseke, Holland AJ420289-AJ420291 AJ420303-AJ420305 AJ420758-AJ420759 

       Mytilus chilensis Puerto Aguirre, Chile AJ549331-AJ54933 AJ549251-AJ549253 AJ549267-AJ549269 

       Mytilus galloprovincialis Balcobo, La Coruña, Spain AJ420292-AJ420296 AJ420306-AJ420308 AJ420760-AJ420762 

       Mytilus trossulus Esquimalt Lagoon, Vancouver Island, 

B.C., Canada 

AJ420297-AJ42099 AJ420309-AJ420311 AJ420763-AJ420765 

       Mytilus californianus Point no Point, Vancouver Island, B.C., 

Canada 

AJ420300-AJ420302 AJ420312 AJ420766-AJ420768 

       Mytilus coruscus Otsuchi Bay, Japan AJ549334-AJ549338 AJ549254-AJ549256 AJ549270-AJ549271 

       Perna canaliculus Golden Bay, New Zealand AJ549347 AJ549263 AJ549275 

       Aulacomya ater Callao, Peru AJ549345 AJ549260-AJ549261 AJ549274 

       Choromytilus chorus Concepción, Chile AJ549346 AJ549262 AJ549273 

       Septifer virgatus Otsuchi Bay, Japan AJ549342-AJ549344 AJ549259 AJ549277 

   Subfamily Lithophaginae     

       Lithophaga lithophaga Benicarló, Valencia, Spain AJ549341 AJ549258 AJ549278 

   Subfamily Modiolinae     

       Geukensia demissa St. Mary’s River, Md., USA AJ549339 N.A. AJ549272 

  Family Pectinidae     

       Pecten maximus O Grove, Pontevedra, Spain N.A. AJ549264-AJ549265 AJ549281-AJ549282 

      Mimachlamys varia Málaga Bay, Spain N.A. N.A. AJ549279-AJ549280 

Class Crustacea     

      Pollicipes cornucopia Cedeira, La Coruña, Spain N.A. AJ549266 N.A. 

*EMBL, European Molecular Biology Laboratory; DDBJ, DNA Data Bank of Japan; N.A., no DNA amplification with the corresponding probe. 



 
 

Sequence analysis and comparison 

Consensus sequencing was performed by using the internal repeats of satellite DNA sequences and the 

computer program CLUSTAL X (Thompson et al. 1997). Maximum-parsimony trees were constructed by 

close neighbor interchange search. Resolution of internal nodes was performed using 500 bootstrap iterations 

with random replacement  (Felsenstein  1985).  Phylogenetic  and  molecular evolutionary analyses were 

conducted using version 2.1 MEGA software (Kumar et al. 2001). Motifs of the internal promoters of tRNA 

(A and B boxes) were also analyzed using CLUSTAL X and MEGA software. 

Dot-blot hybridization 

Mussel populations used to estimate the copy number of the  target  DNA  sequences  in  diploid  genomes  

were M. edulis from Yerseke (Holland) and Prince Edward Island; M. galloprovincialis from Ria de Arousa, 

Balcobo, and Ebro Delta (all on Spanish coasts); M.  trossulus from Öland Island (Sweden), Esquimalt 

Lagoon (Vancouver Island, B.C.), and  Bedford  Basin  (Newfoundland  and  Labrador); M. chilensis from 

Puerto Aguirre (Chile); M. coruscus from Otsuchi Bay (Japan), and M.  californianus from Point No Point 

(Vancouver Island, B.C.). 

Solutions containing denatured genomic DNA (200, 100, 50, and 25 ng, except for Esquimalt Lagoon 

mussels that were 64, 32, 16, and 8 ng) and denatured M.  galloprovincialis repetitive DNA fragments (0.8, 

0.4, 0.2, and 0 ng) were vacuum-blotted onto nylon membranes in a Bio-Rad dot-blotting apparatus. 

Astringency washes were performed in 0.2× SSC (1× SSC: 0.15 mol NaCl/L plus 0.015 mol sodium 

citrate/L) 1% SDS at 50 °C. Hybridization was detected using the Dig Luminescent Detection kit for nucleic 

acids (Roche Molecular Biochemicals) following the manufacturer’s instructions. Hybridization signals were 

quantified as in Martínez-Lage et al. (2003). The copy numbers of Mytilus spp. repetitive sequences were 

calculated from a linear plot made from dilutions of M.  edulis repetitive DNA fragments. The haploid DNA 

contents of M.  edulis and M.  galloprovincialis were 1.71 and 1.92 pg, respectively (Rodríguez-Juiz et al. 

1996), 1.90 pg for M.  coruscus (Ieyama et al. 1994), and 1.51 and 1.61 pg for M. trossulus and M.  

californianus, respectively (González-Tizón et al. 2000).  For M.   chilensis the  haploid  DNA  content  of 

M. edulis was used, because many investigators consider that M. chilensis is a subspecies of M. edulis. 

The hybridization control for low copy number was a digoxigenin-labelled probe obtained from a PLII 

fragment (Heath et al. 1995). This fragment is ~425 bp in length and has a copy number ranging from 4 to 

13, depending on the mussel species (Heath and Hilbish 1998; Rodríguez-Fariña 2001). To confirm that a 

similar DNA concentration was used in each dot-blot, a final hybridization was carried out with an rDNA 

probe (18S-5.8S-28S) containing ~750 copies per haploid genome. 

 

Results 

DNA amplifications with the primers previously designed by Martínez-Lage et al. (2002) yielded fragments 

in the ranges 170–175 bp for type 1 stDNA, 159–162 bp for type 2, and 88–89 bp to 164–167 bp for type 3. 

Table 1 shows the taxa used in this study. One clone from each individual was sequenced, although in the 

non-Mytilus species at least 3 clones were sequenced from each individual. 

In addition, DNA amplifications were carried out with these primers in other bivalve species (data not 

shown): Ostrea edulis and Crassostrea angulate (family Ostreidae), Chlamys  opercularis (family 

Pectinidae), Pinna  pectinata (family Pinnidae), Cerastoderma  edule (family Cardiidae), Donax trunculus 

(family Donacidae), Dosinia lupinus, Tapes decussatus,  Venerupis  rhomboides, and Venerupis  pullastra 

(family Veneridae), Ensis arcuatus and Ensis silique (family Pharidae), and Solen  marginatus (family 



 
 

Solenidae). However, amplification fragments were not obtained in all of them. DNA amplifications from 

Drosophila  melanogaster and humans were used as negative controls. 

Alignments of the nucleotide sequences from type 1 stDNA (Fig. 1a ) reveal similarity values above 86.70%, 

with the exception of M.  californianus which shows about 37.00%. Comparison between M.  coruscus 

(clone pCOB 105) and Aulacomya  ater (pAUL 101), and between Arca   noae (pARC 101) and Lithophaga 

lithophaga (pLIT 101) reveals that these species are highly similar. For type 2 stDNA (Fig. 1b) A. ater 

(pAUL 202) and Perna canaliculus (pPER 201) display the highest sequence similarity, and the other 

species exhibit values above 84.50%, with the exception of M. californianus (values close to 75.00%). 

 

Figure 1. Nucleotide sequences of a) DNA type 1, b) DNA type 2, and c) DNA type 3. Monomers derived from the 

same cloned fragments are indicated as suffixes: EYE as Mytilus edulis, ChPA as M. chilensis ,GBAas M. 

galloprovincialis, TEL as M. trossulus, CaP as M. californianus, COB as M. coruscus, PER as Perna canaliculus, AUL 

as Aulacomya ater ,CHOas Choromytilus chorus , SEP as Septifer virgatus ,LITas Lithophaga lithophaga , GEU as 

Geukensia demissa, ARC as Arca noae, POL as Pollicipes cornucopia, PEC as Pecten maximus, and CHL as M. varia. 

Only nucleotides divergent from the top sequences are indicated in particular monomers, and gaps are shown with dots. 



 
 

White and grey boxes indicate similarity with A box (5 ′-TRGCNNAGY*GG-3′ ) and B box (5′-GGTTCGANTCC-3′), 

respectively, internal promoters of tRNA (Geiduschek and Tocchini-Valentini 1988). Primer binding sites are 

underlined. 

  

 

 

Figure 1c shows that Septifer  virgatus (pSEP 301) and L.  litophaga (pLIT301) are the most divergent 

among the species, displaying a similarity value of 60.00%. The rest of the species show similarity values 

above 84.50%. M. californianus is less divergent for satellite type 3 than for satellite types 1 and 2. 

The sequences obtained have been aligned, showing the motifs that display a certain similarity with those of 

A box and B box of promoter regions of tRNAs. In M.  californianus, this motif is different from that in the 

rest of the species (Fig. 1 a). Similarity values are about 63.64% in A box and B box of type 1 stDNA, 

increasing to 72.73% for A box in M.  californianus . In the case of type 2 stDNA, the similarity value for A 

box is 45.46% and for B box is 72.73%. In type 3 stDNA, similarity values are 81.82% and 54.55% for A 

box and  B box, respectively. Finally, A and B boxes in S. virgatus and L. litophaga do not show similarity 

with any of the other species. 

 



 
 

 

 

Results from dot-blot hybridizations (Fig. 2) reveal that these stDNA sequences are present in high copy 

numbers for each species of the genus Mytilus (M.  edulis,  M.  galloprovincialis,  M.  trossulus,  M.  

chilensis,  M.  coruscus, and M. californianus), whereas for the other species they are single copy sequences 

because fewer than 10 copies are present. Table 2 shows the copy number and proportion of each satellite 

DNA in each population analyzed. For copy number, a notable difference exists between M.  californianus 

and the other species used. Another remarkable finding is the high copy number and proportion of type 3 

stDNA in M. trossulus species. 

The pairwise comparison of Kimura 2-parameter distance and transition/transversion (ts/tv) (data not shown; 

provided upon request) ratios for type 1 stDNA showed that distance values tend to be lower than 0.10; for 

Geukensia  demissa, values ranged from 0.09 to 0.15, and M. californianus clones showed the highest 

distance values (1.22–2.17). On the other hand, transitions are more abundant than transversions, as 

evidenced by ts/tv ratios greater than 1.0. For type 2 stDNA, distance values ranged from 0.01 to 0.36, again 

M.  californianus showing the highest values. Like type 1 stDNA, type 2 shows ts/tv values above 1.0. For 

type 3 stDNA, distance values ranged from 0.01 to 0.49, those corresponding to S. virgatus and L. litophaga 

being the highest. With a few exceptions, ts/tv ratios were less than 1.0. 

 



 
 

 

Figure 2. Dot-blot hybridizations from total genomic DNAs: Mytilus edulis from Yerseke (YE) and Prince Edward 

Island (PE); M. coruscus from Otsuchi Bay (OB); M. chilensis from Puerto Aguirre (PA); M. californianus from Point 

No Point (PP); Perna canaliculus from Golden Bay (GB); M. galloprovincialis from Ria de Arousa (RA), Balcobo 

(BA), and Delta del Ebro (DE); M. trossulus from Öland Island (OI), Esquimalt Lagoon (EL), and Bedford Basin (BB); 

and Aulacomya ater from El Callao (CA). C1, C2, and C3 correspond to M. edulis satellite DNA fragments, types 1, 2, 

and 3, respectively. Hybridizations with (a) type 1 stDNA, (b) type 2 stDNA, and (c) type 3 stDNA. Amounts of blotted 

DNA are 200, 100, 50, and 25 ng for genomic DNAs (except for Esquimalt Lagoon, which are 64, 32, 16, and 8 ng); for 

repeated DNA controls, 0.8, 0.4, 0.2, and 0 ng. 

 

As shown in the maximum-parsimony trees (Fig. 3), clones containing stDNA sequences (genus Mytilus) 

tend to group together, whereas clones containing these sequences as single copy are distributed among the 

different mytilids. The topology of the tree obtained for type 1 stDNA (Fig. 2 a) shows a cluster containing 

all the M.  californianus clones and another cluster with M.  coruscus clones. M.  chilensis and M. 

galloprovincialis cluster together (with the exception of  1  clone  for  each  species),  as  do M.   edulis and 

M.  trossulus . The 3 clones of  S.  virgatus are dispersed among the other species. The topology for type 2 

stDNA (Fig. 2b) reveals that genus Mytilus clones do not group together, with the exception of M. coruscus.   

For type 3 stDNA only M. coruscus clones group together in the same cluster with A. ater and A. noae ; the 

other mytilid clones group separately. 

 

Table 2. Copy number and proportion for the different satellite DNAs (stDNA) in 11 Mytilus mussel populations. 

 Copy number and % genomic content 

 Type 1 stDNA Type 2 stDNA Type 3 stDNA 

M. edulis       

   Yerseke 45000 0.46% 140000 1.31% 1100 0.01% 

   Prince Edward Island 53000 0.54% 120000 1.11% 1400 0.01% 

M. galloprovincialis       

   Ría de Arousa 69000 0.63% 150000 1.27% 4400 0.04% 

   Balcobo 79000 0.73% 200000 1.66% 3500 0.03% 

   Delta del Ebro 71000 0.65% 180000 1.55% 2800 0.03% 

M. trossulus       

   Oland Island 60000 0.70% 110000 1.13% 7400 0.08% 

   Esquimalt Lagoon 70000 0.79% 140000 1.51% 11000 0.12% 

   Bedford Bassin 60000 0.71% 130000 1.36% 8000 0.09% 

M. chilensis       

   Puerto Aguirre 37000 0.38% 110000 1.04% 1100 0.01% 

M. coruscus       

   Otsuchi Bay 35000 0.37% 110000 1.08% 1600 0.02% 

M. californianus       

   Point No Point 8500 0.10% 80000 0.85% 10000 0.11% 



 
 

Discussion 

The previous characterization of 3 satellite DNAs in the mussel species M. edulis, M. galloprovincialis, M. 

trossulus, and M.  californianus (Martínez-Lage et al. 2002) revealed that monomeric lengths were 171 bp 

for type 1 satellite DNA, 161 bp for type 2 satellite DNA, and 167 bp for type 3. The determination of the 

genomic contents of these repetitive sequences showed that type 2 satellite DNA was the most abundant of 

the 4 mussel species, and type 3 showed the lowest content. Fluorescent in situ hybridization revealed a 

random distribution of these repetitive sequences into several small clusters dispersed along the 

chromosomes. 

In the present study, these repetitive DNA sequences were analyzed in other Mytilus species and in bivalve 

species closely related to the genus Mytilus (Table 1). The results reveal that monomeric lengths and 

sequence similarities are very like those reported for the 4 Mytilus mussels previously analyzed (Martínez-

Lage et al. 2002) and that single-point mutations are the major contributors to divergence among them. 

However, there is interspecific variability in copy number, so that only the species belonging to the genus 

Mytilus present these sequences as satellite DNAs (high copy number), whereas in the rest of the species 

they appear as  single  copy  or  as  low  copy  number.  DNA  from D. melanogaster and humans was used 

as a negative control because the DNA from the crustacean Pollicipes cornucopia (initially selected as a 

negative control) was amplified with type 2 stDNA. On the other hand, the analyses of different populations 

of M. edulis, M. galloprovincialis, and M. trossulus showed very slight differences in copy number. 

Repetitive sequences can be classified according to the genetic mechanism by which they originate. DNA 

duplications create tandemly repeated sequences, whereas retrotransposition events generate dispersed 

elements (Ohshima et al. 1993). As observed in the sequence alignments (Fig. 1), these repetitive sequences 

show a region similar to those in A and B tRNA boxes, which initially suggests that they could be tRNA-

derived pseudogenes. As Oshima et al. (1993) and Ohshima and Okada (1994) suggested, these types of 

sequence are usually derived by retroposition. Under the “selfish” DNA hypothesis, repetitive sequences 

would accumulate in heterochromatin because these regions do not contain genes, and, subsequently, they 

are less likely to be deleterious, although accumulation of highly repetitive sequences is expected to occur 

only in regions where there is very low recombination and weak selective constraints on array length 

(Charlesworth et al. 1986, 1994; Stephan 1989). Under the same hypothesis, this process would occur by 

transposition and subsequent increase in their copy number. However, the possibility of horizontal transfer of 

satellite repeats among species is highly improbable because of the distribution of these sequences among 

taxonomically related species and the absence of data confirming the occurrence of the same satellite DNA 

in phylogenetically unrelated groups (Meštrovi et al. 1998). Our results agree with the library hypothesis 

proposed by Nijman and Lenstra (2001). These authors suggested that related species share a library of 

conserved satellite sequences, some of which could be amplified, creating a larger satellite DNA in a 

particular species. So, these sequences would have spread to constitute bigger satellite DNAs in the genus 

Mytilus species, but in the rest of the “non-Mytilus ” species would have remained as a single copy or low 

copy number. Probably, the expansion of these 3 satellite DNAs could have occurred in the recent Jurassic, 

150 million years ago, when the genus Mytilus emerged (Cox et al. 1969). 

The high sequence similarity displayed among the 3 types of sequence (except for type 1 stDNA in M. 

californianus) suggests that types 1, 2, and 3 repetitive sequences are in the initial phase of the model 

proposed by Nijman and Lenstra (2001). This model is known as “life history of satellites” and it postulates 

the existence of 3 phases in the evolution of satellite DNAs. During the initial phase, interactions of 

homogeneous repeating units cause rapid expansions and contractions, leading to saltatory fluctuations in the 

copy number. Perhaps, in M. californianus, type 1 stDNA would be in the second phase of this model, when 

mutations and recombination are acting to lead to divergence of sequence variants. Then, taking into account 

transition/transversion values, as in Kimura’s 2-parameter model, Li (1997) proposed that when a sequence 

is recent (≤ 50 m.y. old) ts/tv ratios  are  above  1.0.  When  the  evolutionary  time  is approximately 50 



 
 

million years ago, the ts/tv ratios are 1.0 or close to 1.0, and when it is more than 200 million years these 

ratios are 0.5. According to Li (1997), type 3 stDNA in M. californianus would be older than types 1 and 2, 

but, according to the results of Salser et al. (2001), the oldest would be type 1 stDNA. There are 2 

possibilities to explain the origin of these 3 types of satellite DNAs: (i) that each occurred at different 

evolutionary times, or ((ii) that the 3originated at the same time but by different evolutionary mechanisms 

(gene conversion, recombination, mutation), these being faster or more active in type 1 stDNA than in types 

2 and 3. The parsimony trees obtained in this analysis (Fig. 3) show the divergence among clones of different 

species, and also the tendency of clones of the same Mytilus species to group in a single cluster. This does 

not always occur, perhaps because stDNA clusters are dispersed throughout the genomes of these species. 

  

 

Figure 3. Maximum-parsimony bootstrap (500 replicates) consensus trees for (a) DNA type 1, (b) DNAtype2,and (c) 

DNA type 3. Bootstrap values over 50% are shown above branches. The numbers at the end of the branches refer to the 

number of the clone analyzed. 

 

Different studies were conducted to analyze phylogenetic relations among members of the Mytilinae 

subfamily using nuclear ribosomal DNA sequences (Kenchington et al. 1995; Steiner and Müller 1996; 

Winnepenninckx et al. 1996; Adamkewicz et al. 1997; Distel 2000) or mitochondrial DNA (Edwards and 

Skibinski 1987; Geller et al. 1993; Hilbish et al. 2000). None of these analyses grouped M. edulis clones and 

M. galloprovincialis clones separately, however. Our analysis with stDNAs shows both species in different 

clusters (Fig. 3). In the case of M. trossulus clones, phylogenies obtained from mitochondrial DNA 

sequences show them grouping in well-defined clusters (Geller et al. 1993; Hilbish et al. 2000), whereas 

those obtained from nuclear ribosomal DNA appear in an ambiguous position (Kenchington et al. 1995; 

Distel 2000). In all the studies performed until now, M. californianus has proved to be the most divergent 

species (Kenchington et al. 1995; Distel 2000; Hilbish et al. 2000; Eirín-López et al. 2002; present work). 

Finally, allozyme analysis has shown M. chilensis to be a subspecies of M.  edulis (McDonald et al. 1991), 

but data obtained from mitochondrial DNA (Hilbish et al. 2000), nuclear genes (Rodríguez-Fariña 2001), and 

satellite DNAs (present study) indicate that this species is closer to M. galloprovincialis than to M.  edulis. 

These results support the taxonomy of Lamy (1936), who proposed that M. chilensis is a species apart from 



 
 

M. edulis and M. galloprovincialis In conclusion, our results support the library hypothesis proposed by 

Salser et al. (1976), in that the analyzed sequences were present as a single copy/low copy number in the 

non-Mytilus species and as satellite DNAs in the Mytilus species. These sequences must be analyzed in other 

bivalve species to investigate the extension of this library. 
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