
sensors

Article

Clock Frequency Impact on the Performance of
High-Security Cryptographic Cipher Suites for
Energy-Efficient Resource-Constrained IoT Devices †

Manuel Suárez-Albela , Paula Fraga-Lamas * , Luis Castedo and
Tiago M. Fernández-Caramés *

Department of Computer Engineering, Faculty of Computer Science, Universidade da Coruña,
15071 A Coruña, Spain; m.albela@udc.es (M.S.-A.); luis.castedo@udc.es (L.C.)
* Correspondence: paula.fraga@udc.es (P.F.-L.); tiago.fernandez@udc.es (T.M.F.-C.);

Tel.: +34-981167000 (ext. 6051) (P.F.-L.)
† Suárez-Albela, M.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Castedo, L. A Practical Performance

Comparison of ECC and RSA for Resource-Constrained IoT Devices. In Proceedings of the Global Internet of
Things Summit (GIoTS), Bilbao, Spain, 4–7 June 2018; pp. 1–6, doi:10.1109/GIOTS.2018.8534575

Received: 26 November 2018; Accepted: 15 December 2018; Published: 20 December 2018
����������
�������

Abstract: Modern Internet of Things (IoT) systems have to be able to provide high-security levels,
but it is difficult to accommodate computationally-intensive cryptographic algorithms on the
resource-constrained hardware used to deploy IoT end nodes. Although this scenario brings the
opportunity for using advanced security mechanisms such as Transport Layer Security (TLS), several
configuration factors impact both the performance and the energy consumption of IoT systems. In this
study, two of the most used TLS authentication algorithms (ECDSA and RSA) were compared when
executed on a resource-constrained IoT node based on the ESP32 System-on-Chip (SoC), which was
tested at different clock frequencies (80, 160 and 240 MHz) when providing different security levels
(from 80 to 192 bits). With every tested configuration, energy consumption and average time per
transaction were measured. The results show that ECDSA outperforms RSA in all performed tests and
that certain software implementations may lead to scenarios where higher security-level alternatives
outperform cryptosystems that are theoretically simpler and lighter in terms of energy consumption
and data throughput. Moreover, the performed experiments allow for concluding that higher clock
frequencies provide better performance in terms of throughput and, in contrast to what may be
expected, less energy consumption.

Keywords: ECC; ECDSA; RSA; IoT; TLS; power consumption; IoT security; energy efficiency

1. Introduction

The rise of the Internet of Things (IoT) paradigm brings the opportunity of having any device
connected anytime and everywhere. Such a heterogeneity and ubiquity raise some challenges and
threats when compared with other more isolated and controlled communications.

Nowadays, IoT devices are connected to the Internet in diverse environments and fields such as
industry or defense and public safety [1]. Nevertheless, security issues pose risks for human safety
and privacy [2], and it can be stated that the broad adoption of IoT is slowed down due to privacy and
security requirements that have not been addressed completely [3].

Although IoT devices have many advantages in terms of scalability and cost, they are restricted in
terms of memory, battery, computing capabilities and hardware resources, thus making it difficult to
implement the complex and heavy operations needed by ciphering algorithms to encrypt and secure

Sensors 2019, 19, 15; doi:10.3390/s19010015 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9891-4553
https://orcid.org/0000-0002-4991-6808
https://orcid.org/0000-0002-3801-012X
https://orcid.org/0000-0003-2179-5917
http://www.mdpi.com/1424-8220/19/1/15?type=check_update&version=1
http://dx.doi.org/10.3390/s19010015
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 15 2 of 16

communications [4]. Moreover, some resource-constrained IoT devices might be deployed in large
areas where power outlets are not available, so energy harvesting techniques have to be introduced.

Since IoT networks usually rely on TCP/IP, the use of already proven security protocols seems to
be the best approach in terms of reliability and implementation efficiency. In this scenario, Transport
Layer Security (TLS) arises as the main alternative, but it has a relevant limitation: its most popular
cipher suites were not designed for resource-constrained IoT devices [5]. In the last years, UDP-based
solutions such as Datagram Transport Layer Security (DTLS) [6] have been introduced to provide
lightweight alternatives, but, when security is added to such solutions, their gains over TLS are
diminished, being better to make use of broadly available and optimized TLS implementations [7].

One important consideration when securing the communications of resource-constrained devices
is the possibility of modifying the hardware configuration to improve both performance and energy
consumption. In this aspect, IoT System-on-Chip (SoC) clock frequency is a factor that usually presents
a relevant impact, since cryptographic algorithms require high computational capabilities. Moreover,
it is possible to modify and test the impact of different SoC frequencies on different hardware platforms
with minimum modifications. In contrast, other hardware optimizations such as the modification of
the memory mapping [8] are platform-specific and therefore more difficult to implement and test.

This study evaluated the impact of modifying the clock frequency on resource-constraint IoT
devices when executing TLS with different cipher suite configurations, thus providing a variety of
security levels that ranges from 80 to 192 bits. First, Rivest–Shamir–Adleman (RSA) was evaluated
in terms of security, scalability, power consumption and data throughput. The results were then
compared with a more suitable approach for resource-constrained devices based on Elliptic Curve
Cryptography (ECC). The evaluated ECC key sizes were selected to maintain an acceptable security
level for the years to come, unless breakthroughs in ECC cryptography or in certain disruptive
technologies (e.g., quantum computing) happen. In fact, IoT node hardware was selected with the
intention of being as close as possible in terms of computational power to the nodes that will be
deployed in the next generation of IoT networks.

The rest of this article is organized as follows. Section 2 reviews some of the latest academic
publications that deal with IoT security energy efficiency. Moreover, it introduces the basics of TLS
and its cipher suites, and analyzes the state of the art related to the performance of RSA and ECC
when executed by resource-constrained devices. Section 3 details the design of the proposed system.
In Section 4, the experimental setup and the performed tests are described. Finally, Section 5 is devoted
to the conclusions.

2. Related Work

2.1. IoT Architectures and Resource-Constrained Devices

In the last years, IoT architectures have evolved towards hierarchical topologies such as the one
depicted in Figure 1. Figure 1 shows a generic IoT architecture, with the main elements involved
on most IoT deployments. It must be taken into account that IoT devices carry out different tasks
depending on their role on the global IoT architecture. Multiple gateways exchange data with the IoT
nodes and with the cloud in a hierarchical way. Thus, the cloud at the top of the architecture provides
a single point-of-entry for cloud-centric IoT architectures. In comparison, edge computing approaches
unburden the higher layers of the architecture and distribute the computational requirements and
system access capabilities throughout all the elements involved.

Sensors 2019, 19, 15 3 of 16

Cloud

Gateways

IoT services
User access

Security policies
Data processing
Data persistence

Data access

Data generation

Data communication

End-device

Sensor

IoT services
User access

Security policies
Data processing
Data persistence

Data access
Data communication

Data generation

Cloud-centric
IoT architecture

Edge computing
IoT architecture

Gateways

End-device End-device

Sensor Sensor Sensor

Figure 1. Cloud-centric IoT architecture vs. edge computing IoT architecture.

2.2. IoT Security Challenges and Limitations

Recently, the number of IoT hardware boards has grown dramatically thanks to the progress
made on SoC technologies in terms of energy consumption and computational power, which
allows them to provide computer-like capabilities. For instance, in [5], the authors presented a
comprehensive analysis of the latest hardware platforms that can be used as IoT gateways and
end devices. Among such platforms, Single Board Computers (SBCs) seem to be better suited to act as
gateways due to their improved computational performance in comparison to IoT motes and other
embedded hardware platforms, which are often designed to operate as IoT end nodes. Nonetheless,
most IoT nodes embed low-power computational devices that can perform specific (but basic) tasks and
network communications through the Internet, so they are usually considered as resource-constrained
devices [9].

Due to the limited capabilities of IoT end devices, the data they capture are transferred to the
upper layers of the architecture to process them and provide the required services to users. The direct
consequence is that the amount of data per transaction increases as ascending from the bottom to the
top of the architecture due to data aggregation from the lower layers. Therefore, it can be observed
that the simplest IoT devices in terms of hardware would be at the bottom. However, more power is
required as ascending in the IoT architecture, especially for large deployments where thousands of IoT
nodes may exchange data simultaneously.

For this reason, the current tendency is to move from pure cloud architectures to edge computing
architectures [10–12]. Figure 1 presents the main elements of an IoT architecture, comparing the tasks
that each of the layers has to perform on a cloud-centric and on an edge computing architecture. As can
be observed, most of the computational resources on a cloud architecture have to be concentrated at
the cloud layer, since it performs most of the work. Edge computing approaches leverage the potential
of the lower layer devices, such as gateways and end devices, to perform either totally or partially the
tasks traditionally carried out by the cloud layer. Tasks related to provide IoT services, user access
control or to security policies, are performed by the lower layers, thus reducing the computational
requirements of the cloud infrastructure. In addition, this distributed approach also eliminates the
presence of a single point-of-failure of cloud-centric architectures. Furthermore, thanks to moving the

Sensors 2019, 19, 15 4 of 16

computational resources to the lower layers of the architecture, it is possible to process, persist and
provide access to IoT system data closer to where they are produced and consumed, greatly reducing
service latency and energy consumption [13].

To allow IoT deployments to move from cloud to edge computing, the devices of the lower layers
must be able to perform most of the tasks previously carried out by the upper layers [14]. However,
it is important to note that the weakest link in terms of security of an IoT architecture is usually the end
device layer, since end devices have to accommodate the computational demands of robust security
schemes to their resource-constrained hardware capabilities. In practice, this situation often derives
into the fact that IoT developers overlook or address security in a light way, so weak implementations
are common, what arises public security concerns [3]. For example, in [9], TLS is used for performing
only symmetric key operations, but the proposed cipher suite is currently not recommended since it is
considered insecure [15].

Traditional IoT deployments overcome these limitations and the lack of security of the end nodes
by centralizing the access permissions and policies on gateways [16,17]. The direct consequence of
these implementations is not only an impact on the performance and throughput capabilities of the
gateways, but also the introduction of a single point of failure in IoT systems. If a gateway that
provides access to a large number of IoT end devices is compromised, all of the IoT nodes that it
serves also become compromised, and there is no straightforward mechanism to re-gain trustful access
to them.

Moreover, a relevant number of vulnerabilities has been discovered recently after analyzing
technologies related to IoT deployments. For instance, in [18], the authors analyzed the security of
communications protocols used by Wi-Fi, Bluetooth, RFID or ZigBee. Another interesting survey
is presented in [19], which addresses the challenges that arise in terms of security in heterogeneous
networks. Finally, another interesting work is presented in [20], where the main security threats that
can be exploited to compromise IoT end nodes are studied.

2.3. Alternatives for Improving IoT Security

Several authors have proposed different alternatives to tackle the issues that arise when creating
secure mechanisms for IoT networks. Some authors have already provided a good list of the security
requirements for IoT technologies [21], while other researchers have focused on creating secure IoT
architectures [22,23]. Moreover, some researchers have proposed security improvements on the
architecture by following a layered approach [24].

Another challenge arises when providing secure end-to-end communications to resource-constrained
networks [25]. Thus, the use of protocols such as Datagram TLS (DTLS) has been proposed [6],
which was developed for providing security to UDP-based protocols like Constrained Application
Protocol (CoAP) and whose overhead can be decreased for using it in sensor networks or constrained
devices [26]. Note that since CoAP was also designed for resource-constrained devices; its security is
addressed lightly, including the use of pre-shared keys or raw public key cipher suites [27]. Certificates
can be used in CoAP, but the supported cipher suites usually provide low security levels.

Finally, it is also worth mentioning a growing tendency in IoT security that is based on the use of
unique and unclonable physical structures to avoid some attacks [28].

2.4. Security Level

When comparing different cryptographic algorithms, key size (i.e., the number of bits of
the key) cannot be used directly as a measure of the strength provided by an algorithm. A better
option is to use the security level, which is a value that quantifies the required effort to break a
cryptographic primitive [29]. If the effort is 2k, it is said to offer k-bit security and, therefore, it
provides a security level k. Different types of cryptographic algorithms (e.g., symmetric, asymmetric,
and hash functions) present different relationships between the key size and the security level they
provide. For example, considering a k − bit key size, symmetric algorithms provide a k − bit security

Sensors 2019, 19, 15 5 of 16

level while hash algorithms provide k/2 − bit security level. Asymmetric key algorithms present
different relationships between security level and key size. The National Institute of Standards and
Technology (NIST) recommendation for key management [30] provides the reference security levels
of symmetric algorithms when compared with two asymmetric algorithms, Elliptic Curve Digital
Signature Algorithm (ECDSA) and RSA. These values are summarized in Table 1. For example, a
128-bit security level is achieved by either using 3072-bit RSA or just a 256-bit key size of an ECC curve.
For this reason, the concept of security level is used throughout this paper to present a fair comparison
among the tested algorithms. The interested reader can find in [31] a comprehensive analysis of the
relationship between cryptographic key lengths and security.

Table 1. Comparable strengths for symmetric, RSA and ECDSA ciphers [30].

Security Symmetric RSA ECDSA
Level Key Algorithms Key Size Curve

80 2TDEA 1024 bits prime192v1
112 3TDEA 2048 bits secp224r1
128 AES-128 3072 bits secp256r1
192 AES-192 7680 bits secp384r1

2.5. TLS for IoT Networks and Cipher Suites

Many IoT systems use TCP/IP communications, whose current best security alternative consists
in using TLS [32].

TLS is a standard protocol composed by the TLS Record Protocol and the TLS Handshake Protocol:

• TLS Record Protocol provides connection privacy and reliability by using symmetric cryptography
(e.g., Advanced Encryption Standard (AES) and RC4) and hash functions (e.g., SHA-1).

• TLS Handshake Protocol enables server and client authentication and helps to determine the
encryption algorithm and the cryptographic keys used by the application protocol.

Therefore, the TLS Record Protocol is responsible for securing the connection after the TLS
Handshake Protocol establishes the parameters of the TLS session. The procedure is conditioned by
the used cipher suite, whose name indicates the involved algorithms. For instance, the cipher suite
ECDHE-RSA-AES128-GCM-SHA256 makes use of ECDHE-RSA for the key-exchange, AES128-GCM as
block cipher and SHA256 as the hash function that preserves the integrity of the handshake messages.

RSA and Elliptic Curve Diffie–Hellman Ephemeral (ECDHE) are the most popular cipher suites
recommended for TLS [15]. The cipher suites based on RSA make use of it for the key-exchange.
In contrast, ECDHE-based cipher suites use Ephemeral Diffie–Hellman based on Elliptic Curves for
the same purpose.

2.6. RSA and ECC Performance Comparisons

Currently, RSA and ECC are not often used by IoT nodes due to their resource demanding
requirements, although some researchers proposed resource-efficient hardware implementations of
both [33] and evaluated their performance on resource-constrained devices. For example, in [34], the
authors evaluated the performance of RSA and ECC on a smart card. Another example is described
in [35], where an ECC versus RSA time performance comparison is carried out by using 8-bit CPUs.
In this paper, the authors concluded that, for the tested key sizes, ECC outperforms RSA. It is also
worth mentioning a report from ATMEL [36] that compares RSA and ECC for embedded systems and
concludes that RSA is 10 times slower than ECC for a 128-bit security level while, for a 256-bit security
level, ECC is 50–100 times faster.

ECC and RSA have also been studied in terms of power consumption in different scenarios
(e.g., [37,38]), but such studies fall short in some aspects (e.g., security levels are not taken into account,
the consumed energy is just estimated or outdated hardware platforms and insecure/deprecated

Sensors 2019, 19, 15 6 of 16

cipher suites are used). No paper providing a fair comparison of power consumption in real-world IoT
devices with proper security levels, which is presented in Section 4, was found.

2.7. Hardware Configuration and Energy Efficiency for IoT Secure End Nodes

There are different approaches when trying to improve the energy efficiency of IoT deployments
that target hardware platforms and their configuration. One option is to develop mechanisms that
allow for reducing the time end nodes are in an active state [39]. When it is possible to put the
nodes to sleep, the reduction in the up-time can yield interesting results on energy consumption, but
this is not applicable when real-time constraints or constant availability are required. Some authors
investigated energy harvesting techniques [40–42], which allow IoT end devices to obtain energy
from their environment, and thus remove the need for external power sources and increase battery
replacement periods. Other works are focused on improving the network routing protocols of IoT
networks to accelerate communications, which has a positive effect on energy consumption [43].
These approximations, although practical in some scenarios, do not address the security mechanisms
required to deploy secure IoT networks.

Regarding the modification of the actual hardware configuration parameters of IoT end nodes for
improving their energy efficiency, there are few examples in the literature. For instance, the authors
of [44] presented an interesting approach that consists of using Dynamic Voltage Scaling (DVS) to
improve the energy efficiency of IoT control devices. The proposed scheduling algorithm allows for
obtaining significant energy consumption gains while maintaining real-time capabilities. Another
example of hardware configuration for improving the energy efficiency of IoT end nodes is presented
in [8], where the authors provided energy consumption values for different memory mappings when
executed on Ferroelectric RAM (FRAM)-based IoT devices. While both approximations could yield
significant energy reductions, they fall short in their applicability: they are complex to implement,
platform-dependant and application-specific, narrowing the application of the obtained conclusions to
specific hardware platforms and use cases. It is also worth mentioning that the impact of cryptographic
algorithms on the energy consumption of IoT end devices can be estimated by means of proper
mathematical models [45,46].

2.8. Feasibility and Impact of Implementing High Security Mechanisms on IoT End Devices

As explained above, to move from cloud-centric to edge computing IoT implementations, IoT
end-devices have to perform tasks previously carried out by the powerful hardware of cloud systems.
There are modern hardware boards capable of acting as end-devices, of processing the captured data
and of providing complex services, but no actual work was found in the literature that assesses the
impact of implementing advanced security mechanisms on such a kind of hardware platforms. There
are works evaluating the feasibility and impact of securing IoT communications, but the selected
methods do not provide the needed security levels for edge computing deployments. Moreover,
although in the literature there are comparisons between different IoT security techniques or algorithms,
they are not based on the concept of security level, providing misleading conclusions. Regarding
hardware configurations and their impact on securing IoT devices, the works presented in the previous
subsections propose complex techniques that cannot be tested on different hardware platforms and
whose conclusions are difficult to extrapolate to different systems.

The presented study compared the broadly used RSA algorithm with ECDSA, with keys that
provide equivalent security levels. For protecting communications, it uses TLS, one of the currently
most used protocols for securing any type of Internet communication. To compare the hardware
impact on both tested security schemes, different clock frequencies are tested, since clock frequency is
a parameter that can be configured in most hardware platforms and with a presumably high impact
on the execution performance of such computational demanding algorithms.

Sensors 2019, 19, 15 7 of 16

3. System Overview

The proposed testbed architecture is presented in Figure 2 and, as can be observed, it is aimed at
recording the energy consumption and throughput of an IoT end device. The testbed coordinator is
the device in charge of starting, stopping and recording the measurements during the tests. Such a
device can be a PC, a laptop or a virtual machine. To power up the IoT end device, a dedicated power
supply is used to obtain stable and accurate current measurements. A current sensor is placed between
the power supply and the IoT end device to register the current consumed by the end device. The
sensor is then connected to an SBC, which is in charge of starting the test procedure when requested
by the testbed coordinator. Such a test procedure consists on downloading multiple files from the IoT
end device while measuring the energy consumption with the help of the current sensor. To enable
the communications among all the computational devices of the testbed, a dedicated communications
gateway is used. The gateway is connected to the SBC and the testbed coordinator through a wired
connection, while it communicates wirelessly with the IoT end device.

SBC

Current
Sensor

Power
Supply

VCC

GND Testbed
Coordinator

IoT
End Device

Communications
Gateway

Figure 2. General testbed architecture.

3.1. Implemented Testbed

The IoT end device was implemented using an ESP32 module [47] since, to perform the designed
tests, an IoT-oriented hardware platform that supports ECDSA and RSA is needed. Moreover, it is
required that the SoC of the selected platform allows for using different base clock frequencies. Both
requirements are met by the official ESP32 Software Development Kit (SDK), thus making the ESP32 a
good alternative against other IoT oriented hardware platforms [14]. The actual IoT board that was used
for implementing the testbed was the ESP32-DevKitC [48], which is the official prototyping-oriented
version of the ESP32. Such a board integrates all the needed electronic components and a USB
connection, easing the development and its integration on final products. The ESP32 embedded on
this board provides an IEEE 802.11b/g/n interface and supports Bluetooth 4.2. The core of the SoC
is a 32-bit LX6 dual-core microprocessor that operates at up to 240 MHz with 520 KB of SRAM. The
hardware acceleration engine for cryptographic algorithms supports AES, SHA-2, RSA, and ECC
and also includes a Random Number Generator (RNG). In addition, the ESP32 configuration utility
allows for setting three different frequencies when flashing the firmware to the device: 80, 160 and
240 MHz. The module can be powered by a 3.3 V or a 5.0 V power source or by using a micro-USB
connector. The selected power supply provides 5 V and a maximum of 2 A, enough for the reduced
energy requirements of the ESP32-DevKitC module.

The energy measurement subsystem was formed by an INA219 current sensor and an Orange
Pi PC SBC [49] that reads the values reported by the sensor. The INA219 is capable of measuring
voltages of up to 32 VDC and currents of up to 3.2 A. However, it can be configured to measure lower

Sensors 2019, 19, 15 8 of 16

voltage and current ranges. For the performed tests, a maximum value of 800 mA was configured,
which allows for a resolution of 18µA. The Orange Pi PC was selected among the different available
SBCs because it provides a good compromise between hardware capabilities, energy consumption
and cost. With a cost of around $12, it is one of the most affordable SBCs on the market. Moreover,
it features an Allwinner H3 SoC, which integrates a Quad-core ARM Cortex A7 that runs at 1.6 GHz.
Regarding its communications capabilities, it integrates a Fast Ethernet interface, as well as 40
General Purpose Input/Output (GPIO) pins, which enable the use of the most common standard
communications protocols for accessing sensors and actuators (e.g., Inter-Integrated Circuit (I2C),
Universal Asynchronous Receiver–Transmitter (UART), and Serial Peripheral Interface (SPI)). These
features make the Orange Pi PC ideal for performing the required tasks of the implemented testbed.

Regarding the testbed coordinator, a virtual machine with Debian 9 was used. Such a virtual
machine was configured with 4 GB of RAM and four processors. It was executed on a 64-bit Windows
10 PC with 16 GB of RAM and an Intel i7 8550U processor.

To communicate all the wireless components of the testbed, an Asus RT-N12 Wireless N Router
was used as communications gateway.

Figure 3 shows a picture of the most relevant elements of the testbed. Specifically, it shows the
ESP32-DevKitC (Figure 3A) powered up through the INA219 sensor (Figure 3B), which is connected to
the Orange Pi PC (Figure 3C).

Figure 3. Implemented energy measurement testbed.: (A) ESP32-DevKitC; (B) INA219; and (C) Orange
Pi PC.

3.2. Software

The ESP32-DevKitC module was programmed using ESP32-IDF [50]. For each combination of
cipher suite, signing algorithm and frequency, a different version of the firmware was uploaded to the
ESP32 by using the official flashing tool provided by IDF. Specifically, an Hypertext Transport Protocol
Secure (HTTPS) server was implemented for the ESP32 using mbedTLS [51]. The server provides
remote users a 512-byte JSON file randomly generated with the Python library Faker v0.73 [52]. The test
procedure was started by the Debian 9 virtual machine, which executed a Python script that defined
the cipher suite to be used, started the energy measurements using the Application Programming
Interface (API) that runs on the Orange Pi PC, and then requested the 512-byte JSON file from the
ESP32 a number of times. The time taken by each of the HTTPS transactions was measured and

Sensors 2019, 19, 15 9 of 16

registered. When all transactions were finished, it requested the accumulated energy consumption
value from the Orange PI PC and stored all the data into a JSON file. When all the tests were finished,
an HTML page used Javascript to parse the collected JSON files and generate charts and tables that
show the relevant test data to ease their analysis.

To obtain the current values from the INA219, a Python script was developed. This script first
sampled the INA219 sensor by accessing the I2C bus, then collected the obtained values and finally
reported the final energy consumption values. Several tests and optimizations to the Python code
in charge of sampling the I2C bus were performed, which led to achieving a final sampling rate of
1000 Hz. The script was launched from a Python Hypertext Transport Protocol (HTTP) server that
runs on the same Orange Pi PC. The HTTP server provided a REST API, which enables the current
measurement procedure to be managed remotely by the testbed coordinator implemented on the
Debian 9 virtual machine.

3.3. TLS Certificate Selection and Generation

The aim of the proposed tests was to provide a comparative analysis of the performance of RSA
and ECDSA in terms of energy efficiency and response time, when securing IoT node communications
at different SoC clock frequencies. To provide a fair comparison among the selected algorithms, the tests
were driven by the concept of security level. Thus, four different security levels were chosen following
the NIST guidelines on TLS implementations, which establish a 112-bit security level as the minimum
for public keys. Accordingly, 80-bit (deprecated), 112-bit (minimum), 128-bit (recommended) and
192-bit (future-proof) security levels were selected. Several of the available TLS 1.2 [32] cipher suites
that implement RSA and ECDSA signing algorithms were evaluated. To provide valid and applicable
results to future standards, the latest TLS standard (TLS 1.3 [53]) was also analyzed. Such a standard
establishes the need to implement authenticated encryption algorithms for all the available cipher suites.
Thus, two cipher suites that comply with the NIST guidelines and that also provide authenticated
encryption (i.e., its block cipher implementation operates in Galois/Counter Mode (GCM)) were
selected: ECDHE-RSA-AES256-GCM-SHA384 and ECDHE-ECDSA-AES256-GCM-SHA384. These
two cipher suites only differ on their signing algorithm: the former uses RSA and the latter ECDSA.
The rest of the algorithms are exactly the same.

Seven different certificates that provide the previously mentioned security levels were generated.
For RSA, three key sizes were used (1024, 2048 and 3072 bits), while, for ECC, the certificates were
generated using four curves (prime192v1, secp224r1, secp256r1 and secp384r1). In the case of RSA, no
certificate was generated for providing a 192-bit security level, since it would require using a 7680-bit
key size, which cannot be handled by the ESP32 crypto engine (it only supports up to 4096-bit RSA
operations) and, currently, it would make no sense to use it in IoT applications.

4. Experiments

The experiments were designed with two major goals in mind: to provide valid conclusions
for current and mid-term IoT deployments, and to be easily contrasted and compared with other
hardware and software implementations. Specifically, the experiments were designed with the aim
of providing insightful results about three different aspects: (1) to test the feasibility of using high
security communications mechanisms on the lower layers of the IoT architecture (i.e., the end-devices);
(2) to determine whether the use of different ECC curves may yield energy consumption and data
throughput improvements over RSA when comparing implementations that provide the same security
level; and (3) to determine the impact of modifying the clock frequency of the SoC when executing the
computationally-intensive algorithms required to provide the selected security levels.

With the mentioned goals in mind, the ESP32 module was tested for the 21 scenarios that result
as a combination of the seven generated certificates and the three available SoC frequencies. For each
scenario, the 512-byte JSON file provided by the ESP32 HTTPS server was downloaded 100 times by
the virtual machine, while obtaining different measurements of energy consumption and throughput.

Sensors 2019, 19, 15 10 of 16

4.1. Initial Setup

Before performing the experiments, the ESP32-DevKitC module was programmed with each
of the selected configurations to verify the proper functioning of the generated certificates and the
involved cipher suites. The ESP32 was configured for all the tests with Secure Hash Algorithm (SHA)
and AES hardware acceleration enabled. NIST modulo p optimizations for ECC were used in all tests
because they improve the performance on both cipher suites (during the ECDHE key exchange phase,
ECC operations are performed). For RSA certificates with a key size of 1024 and 2048 bits, hardware
acceleration for Multi-Precision-Integer (MPI) was used. For the 3072-bit RSA certificate, it was not
possible to use MPI hardware acceleration: when such an acceleration was enabled, the ESP32 module
rebooted as soon as the HTTPS connection was initialized. Considering that the ESP32 datasheet [54]
states that the crypto engine supports up to 4096-bit operations for RSA, the problem seems to be
software related. With the ECC certificates, no further issues were found.

4.2. Energy Consumption Results

Energy consumption was obtained for each of the previously described test scenarios.
Figures 4 and 5 show, respectively, the obtained results for ECDHE-RSA-AES256-GCM-SHA384
and ECDHE-ECDSA-AES256-GCM-SHA384 cipher suites. The x-axis represents the SoC frequency.
For each of the frequencies, the security level increases from the left to the right. The actual RSA key
size and used ECC curve is depicted on the legend of the figure. The bars in the same color correspond
to security levels that are equivalent for RSA and ECC.

To ease the comparison, Table 2 presents the energy reductions obtained when using the tested
ECDSA and RSA cipher suites for different security levels and SoC frequencies. As can be observed,
RSA is outperformed by ECDSA on every scenario. Even though the differences between RSA and
ECDSA cipher suites decrease as the frequency increases, ECDSA consumes less energy than RSA
for all tested configurations of SoC frequency and security level. In particular, when configured at
a frequency of 240 MHz (the scenario in which less differences are obtained), ECDSA reduces RSA
energy consumption by a 35.75% for an 80-bit security level, a 22.65% for a 112-bit security level and a
remarkable 65.59% for a 128-bit security level.

Regarding the impact of the frequency on the reported energy consumption, it can be
concluded that the use of the highest available SoC frequency provides the bests results in terms
of energy efficiency.

Figure 4. Energy consumption grouped by SoC frequency for the different tested RSA key sizes.

Sensors 2019, 19, 15 11 of 16

Figure 5. Energy consumption grouped by SoC frequency for the different tested ECDSA curves.

Table 2. Energy consumption reduction (in percentage) of ECDSA in comparison to RSA.

Frequency (MHz) 80-bit 112-bit 128-bit

80 39.64 42.76 68.21
160 26.36 35.30 65.64
240 35.75 22.65 65.59

When comparing only the energy consumption of the ECDSA cipher suite, it can be seen
that the curve secp224r1 performs worse than the curve secp256r1 when the SoC is configured to
run at the maximum frequency. This because the NIST modulo p optimizations are platform and
curve-dependent, which means that, even if a curve uses fewer bits (and as a consequence provides a
lower security level), it can be outperformed (in terms of energy efficiency) by a more secure curve.
Since such optimizations are based on software implementations, increasing SoC frequency will have
a greater impact on the curves whose implementations are optimized. Thus, the relative performance
between these two curves varies with the frequency. Specifically, it can be observed that at 80 MHz
secp256r1 performs worst, at 160 MHz both curves present similar energy consumption and at 240 MHz
the secp224r1 is outperformed by the more secure and more optimized secp256r1 curve.

To verify that the secp256r1 curve actually outperforms secp224r1 due to the previously mentioned
platform-specific optimizations, the same tests were performed at 240 MHz but disabling the NIST
modulo p optimizations. The results are shown in Figure 6. As expected, the less secure secp224r1 curve
presents lower energy consumption values than the secp256r1 curve, which confirms the hypothesis
and thus illustrates the impact of the NIST modulo p optimizations.

Figure 6. Energy consumption of secp224r1 and secp256r1 curves without NIST modulo p optimizations
(ESP32@240 MHz).

Sensors 2019, 19, 15 12 of 16

4.3. Throughput Results

Regarding throughput, the conclusions that can be drawn are very similar to the ones obtained for
energy consumption in Section 4.2. Table 3 show the average time required per each of the 100 HTTPS
requests performed for the different RSA and ECDSA configurations. As can be observed, ECDSA
outperforms RSA in all scenarios. Specifically, when running at 240 MHz and for a 128-bit security
level, the secp256r1 is roughly three times faster than 3072-bit RSA. Moreover, the secp384r1, which
provides a 192-bit security level, is as fast as the weaker 2048-bit RSA that provides only 112 bits of
security. For each of the tested configurations, the fastest result is achieved when configuring the
SoC at 240 MHz, which provides more than a 50% time per request reduction when compared to
running the SoC at 80 MHz. The only exception occurs when using the secp224r1 curve, where a
46.2% reduction in time per request is achieved. This fact is related to the observed behavior of the
secp224r1 curve regarding the NIST modulo p optimizations. In fact, when comparing the throughput
performance of the secp224r1 curve with one obtained by the secp256r1 curve when the SoC runs at
240 MHz, the latter outperforms the former, presenting a time per request reduction of over 10%.

Table 3. Average time per request (seconds) for the tested RSA key sizes, ECC curves and SoC
frequency combinations.

RSA Key Sizes ECC Curves
Frequency (MHz) RSA 1024 RSA 2048 RSA 3072 prime192v1 secp224r1 secp256r1 secp384r1

80 2.11 3.33 7.51 1.21 1.84 2.31 3.23
160 1.16 1.86 3.84 0.83 1.16 1.27 1.75
240 0.89 1.21 2.63 0.55 0.99 0.88 1.20

4.4. Comparative Analysis of ECDSA and RSA Cipher Suites for the Obtained Results

The obtained results show huge differences for the same security level when comparing ECC
and RSA, being ECC a better alternative, since it presents less energy consumption and higher
data throughput values. However, the results also present interesting findings when different
implementations and key sizes of the same algorithm are compared.

Regarding ECC curves, the most interesting finding is the fact that the security level provided by
a curve is not always proportional to its performance. With the ESP32-IDF version used for the tests in
this article, the secp256r1 curve presented lower energy consumption and higher throughput values
than the weakest secp224r1 curve when the SoC is running at 240 MHz. This fact is explained because
the software optimizations performed to speed up the mathematical operations of the algorithms
involved in the curves are platform and curve dependent. This fact was empirically demonstrated by
repeating the same test with the NIST modulo p optimizations disabled, causing the secp256r1 curve
to consume more energy than the secp224r1 curve.

With respect to the RSA key sizes, the main problem is that, for a 3072-bit key size, it was not
possible to use the hardware acceleration for Multi-precision integer (MPI) operations, which would
have a great impact on speeding up RSA calculations and, consequently, reducing energy consumption.

When comparing the general performance of the two tested ciphers suites, it can be concluded
that, for the same security level, ECDHE-ECDSA-AES256-GCM-SHA384 always outperforms
ECDHE-RSA-AES256-GCM-SHA384 in both energy consumption and throughput.

When taking into account the SoC frequency, another interesting behavior was discovered:
increasing the frequency, instead of increasing the energy consumption (as it may be expected),
actually improved energy efficiency in all tested configurations. Similarly, as discussed in Section 4.3,
it was observed that the SoC frequency also has a major impact on the time per request required when
carrying out HTTPS communications. Therefore, the increase in energy consumption caused by using
a higher frequency is compensated with shorter communications times, resulting in a reduction of the
total energy consumption. Moreover, the obtained results show the impact of the ECC NIST modulo p
optimizations on different curves and confirmed the platform and curve dependency of this type of

Sensors 2019, 19, 15 13 of 16

optimizations. Specifically, when running the SoC at 80 MHz, the secp256r1 performed worse than the
secp224r1 curve, but when rising the frequency to 240 MHZ the secp256r1 outperformed the weakest
secp224r1. This fact, along with the test performed with the NIST modulo p optimizations disabled,
confirmed that the observed behavior was produced by these optimizations.

5. Conclusions

The aims of this study were to compare the performance of ECDSA and RSA TLS cipher suites
and evaluate the energy consumption impact of the different ECC curves and RSA key sizes when
using a resource-constrained IoT node capable of running at different clock frequencies.

After analyzing all the tests, it can be concluded that, in the selected scenarios, ECDSA can be
presented as a greener alternative than RSA for securing resource-constrained IoT devices. Regarding
clock frequency, the selected hardware platform presented better results in terms of energy efficiency
and response time when using the highest available frequency. By testing different working frequencies,
it was possible to show the impact of software optimizations that can improve individual ECC
curve performance.

The obtained results also emphasize the importance of testing and measuring empirically the
performance of the different algorithms supported by hardware platforms. The created testbed
allowed accurately comparing the different cipher suites and configurations in terms of security,
energy consumption and throughput. For instance, the impact of certain software implementations
and optimizations was demonstrated, which can make weaker security alternatives perform worse in
terms of energy consumption than more secure approaches. To sum up, real-world scenario testing is
a good tool for accurately finding which security algorithm and configuration is the best fitted for an
IoT application.

Author Contributions: M.S.-A., T.M.F.-C. and P.F.-L. conceived and designed the experiments; M.S.-A. performed
the experiments; T.M.F.-C. and P.F.-L. analyzed the data; and M.S.-A., T.M.F.-C., P.F.-L. and L.C. wrote the paper.
All authors approved the final version of the manuscript.

Funding: This work was funded by the Xunta de Galicia (ED431C 2016-045, ED341D R2016/012, and
ED431G/01), the Agencia Estatal de Investigación of Spain (TEC2013-47141-C4-1-R, TEC2015-69648-REDC,
and TEC2016-75067-C4-1-R) and ERDF funds of the EU (AEI/FEDER, UE).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AES Advanced Encryption Standard
API Application Programming Interface
DTLS Datagram Transport Layer Security
ECC Elliptic Curve Cryptography
ECDHE Elliptic curve Diffie–Hellman Ephemeral
ECDSA Elliptic Curve Digital Signature Algorithm
FRAM Ferroelectric RAM
GCM Galois/Counter Mode
GPIO General-Purpose Input/Output
HTTP Hypertext Transport Protocol
HTTPS Hypertext Transport Protocol Secure
I2C Inter-Integrated Circuit
IoT Internet of Things
MPI Multi-precision integer
NIST National Institute of Standards and Technology
RSA Rivest–Shamir–Adleman
SBC Single Board Computer
SDK Software Development Kit

Sensors 2019, 19, 15 14 of 16

SHA Secure Hash Algorithm
SoC System-on-Chip
SPI Serial Peripheral Interface
TLS Transport Layer Security
UART Universal Asynchronous Receiver–Transmitter
RSA Rivest–Shamir–Adleman
SBC Single Board Computer
SDK Software Development Kit
SHA Secure Hash Algorithm
SoC System-on-Chip
TLS Transport Layer Security
UART Universal Asynchronous Receiver–Transmitter
USB Universal Serial Bus

References

1. Fraga-Lamas, P.; Fernández-Caramés, T.M.; Suárez-Albela, M.; Castedo, L.; González-López, M. A Review
on Internet of Things for Defense and Public Safety. Sensors 2016, 16, 1644. [CrossRef] [PubMed]

2. Fernández-Caramés, T.M.; Fraga-Lamas, P.; Suárez-Albela, M.; Castedo, L. A methodology for evaluating
security in commercial RFID systems. In Radio Frequency Identification; Crepaldi, P.C., Pimenta, T.C., Eds.;
IntechOpen: London, UK, 2017. [CrossRef]

3. Nia, A.M.; Jha, N.K. A Comprehensive Study of Security of Internet-of-Things. IEEE Trans. Emerg.
Top. Comput. 2016, 5, 586–602.

4. Suárez-Albela, M.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Castedo, L. A Practical Performance
Comparison of ECC and RSA for Resource-Constrained IoT Devices. In Proceedings of the 2018 Global
Internet of Things Summit (GIoTS), Bilbao, Spain, 4–7 June 2018; pp. 1–6.

5. Suárez-Albela, M.; Fernández-Caramés, T.; Fraga-Lamas, P.; Castedo, L. A Practical Evaluation of a
High-Security Energy-Efficient Gateway for IoT Fog Computing Applications. Sensors 2017, 17, 1978.
[CrossRef] [PubMed]

6. Datagram Transport Layer Security Version 1.2. Available online: https://tools.ietf.org/html/rfc6347
(accessed on 28 July 2017).

7. Open SSL. Available online: https://www.openssl.org/ (accessed on 28 July 2017).
8. Kim, M.; Lee, J.; Kim, Y.; Song, Y.H. An analysis of energy consumption under various memory mappings

for FRAM-based IoT devices. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things
(WF-IoT), Singapore, 5–8 February 2018; pp. 574–579.

9. Sehgal, A.; Perelman, V.; Kuryla, S.; Schonwalder, J.; In, O. Management of resource constrained devices in
the internet of things. IEEE Commun. Mag. 2012, 50, 144–149. [CrossRef]

10. Oteafy, S.M.A.; Hassanein, H.S. IoT in the Fog: A Roadmap for Data-Centric IoT Development.
IEEE Commun. Mag. 2018, 56, 157–163. [CrossRef]

11. Preden, J.S.; Tammemäe, K.; Jantsch, A.; Leier, M.; Riid, A.; Calis, E. The Benefits of Self-Awareness and
Attention in Fog and Mist Computing. Computer 2015, 48, 37–45. [CrossRef]

12. Bangui, H.; Rakrak, S.; Raghay, S.; Buhnova, B. Moving to the Edge-Cloud-of-Things: Recent Advances and
Future Research Directions. Electronics 2018, 7, 309. [CrossRef]

13. Jalali, F.; Hinton, K.; Ayre, R.; Alpcan, T.; Tucker, R.S. Fog Computing May Help to Save Energy in Cloud
Computing. IEEE J. Sel. Areas Commun. 2016, 34, 1728–1739. [CrossRef]

14. Suárez-Albela, M.; Fernández-Caramés, T.; Fraga-Lamas, P.; Castedo, L.A Practical Evaluation on RSA and
ECC-Based Cipher Suites for IoT High-Security Energy-Efficient Fog and Mist Computing Devices. Sensors
2018, 18, 3868. [CrossRef]

15. Polk, T.; McKay, K.; Chokhani, S. Guidelines for the Selection and Use of Transport Layer Security (TLS)
Implementations; Technical Report; NIST Special Publication 800-52 Revision 1; NIST: Gaithersburg, MD,
USA, 2014. Available online: https://csrc.nist.gov/publications/detail/sp/800-52/rev-1/final (accessed on
15 October 2018).

16. Al-Ali, A.R.; Zualkernan, I.A.; Rashid, M.; Gupta, R.; Alikarar, M. A smart home energy management system
using IoT and big data analytics approach. IEEE Trans. Consum. Electron. 2017, 63, 426–434. [CrossRef]

http://dx.doi.org/10.3390/s16101644
http://www.ncbi.nlm.nih.gov/pubmed/27782052
http://dx.doi.org/10.5772/64844
http://dx.doi.org/10.3390/s17091978
http://www.ncbi.nlm.nih.gov/pubmed/28850104
https://tools.ietf.org/html/rfc6347
https://www.openssl.org/
http://dx.doi.org/10.1109/MCOM.2012.6384464
http://dx.doi.org/10.1109/MCOM.2018.1700299
http://dx.doi.org/10.1109/MC.2015.207
http://dx.doi.org/10.3390/electronics7110309
http://dx.doi.org/10.1109/JSAC.2016.2545559
http://dx.doi.org/10.3390/s18113868
https://csrc.nist.gov/publications/detail/sp/800-52/rev-1/final
http://dx.doi.org/10.1109/TCE.2017.015014

Sensors 2019, 19, 15 15 of 16

17. Ali, B.; Awad, A. Cyber and Physical Security Vulnerability Assessment for IoT-Based Smart Homes. Sensors
2018, 18, 817. [CrossRef] [PubMed]

18. Grabovica, M.; Popić, S.; Pezer, D.; Kneẑević, V. Provided security measures of enabling technologies in
Internet of Things (IoT): A survey. In Proceedings of the 2016 Zooming Innovation in Consumer Electronics
International Conference (ZINC), Novi Sad, Serbia, 1–2 June 2016; pp. 28–31.

19. Barki, A.; Bouabdallah, A.; Gharout, S.; Traoré, J. M2M Security: Challenges and Solutions. IEEE Commun.
Surv. Tutor. 2016, 18, 1241–1254. [CrossRef]

20. Deogirikar, J.; Vidhate, A. Security Attacks in IoT: A Survey. In Proceedings of the 2017 International
Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India,
10–11 February 2017; pp. 32–37.

21. Vasilomanolakis, E.; Daubert, J.; Luthra, M.; Gazis, V.; Wiesmaier, A.; Kikiras, P. On the Security and Privacy
of Internet of Things Architectures and Systems. In Proceedings of the 2015 International Workshop on
Secure Internet of Things (SIoT), Vienna, Austria, 21–25 September 2015; pp. 49–57.

22. Leo, M.; Battisti, F.; Carli, M.; Neri, A. A federated architecture approach for Internet of Things security.
In Proceedings of the 2014 Euro Med Telco Conference (EMTC), Naples, Italy, 12–15 November 2014; pp. 1–5.

23. Addo, I.D.; Ahamed, S.I.; Yau, S.S.; Buduru, A. A Reference Architecture for Improving Security and Privacy
in Internet of Things Applications. In Proceedings of the 2014 IEEE International Conference on Mobile
Services, Anchorage, AK, USA, 27 June–2 July 2014; pp. 108–115.

24. Zhao, K.; Ge, L. A Survey on the Internet of Things Security. In Proceedings of the 2013 Ninth International
Conference on Computational Intelligence and Security, Leshan, China, 14–15 December 2013; pp. 663–667.

25. Hummen, R.; Wehrle, K. Standards-based end-to-end IP security for the Internet of Things. In Proceedings of
the 2013 21st IEEE International Conference on Network Protocols (ICNP), Göttingen, Germany, 7–10 October
2013; pp. 1–3.

26. Van den Abeele, F.; Vandewinckele, T.; Hoebeke, J.; Moerman, I.; Demeester, P. Secure communication
in IP-based wireless sensor networks via a trusted gateway. In Proceedings of the 2015 IEEE Tenth
International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP),
Singapore, 7–9 April 2015; pp. 1–6.

27. Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS).
Available online: https://tools.ietf.org/html/rfc7250 (accessed on 28 July 2017).

28. Rührmair, U.; Devadas, S.; Koushanfar, F. Security Based on Physical Unclonability and Disorder.
In Introduction to Hardware Security and Trust; Tehranipoor, M., Wang, C., Eds.; Springer: New York, NY, USA,
2012; pp. 65–102.

29. Lenstra, A.K. Key Lengths Contribution to The Handbook of Information Security; Wiley: Hoboken, New Jersey,
USA, 2004.

30. Barker, E. Recommendation for Key Management—Part 1: General (Revision 4); NIST Special Publication 800-57
Part 1, Revision 4; NIST: Gaithersburg, MD, USA, 2016.

31. Lenstra, A.K.; Kleinjung, T.; Thomé, E. Universal security from bits and mips to pools, lakes-and beyond.
Lect. Notes Comput. Sci. 2013, 8260, 121–124.

32. The Transport Layer Security (TLS) Protocol Version 1.2. Available online: https://tools.ietf.org/html/
rfc5246 (accessed on 28 July 2017).

33. Wu, S.; Zhu, Y. A Resource Efficient Architecture for RSA and Elliptic Curve Cryptosystems. In Proceedings
of the 2006 International Conference on Communications, Circuits and Systems, Guilin, China, 25–28 June
2006; pp. 2356–2360.

34. Savari, M.; Montazerolzohour, M.; Thiam, Y.E. Comparison of ECC and RSA algorithm in multipurpose
smart card application. In Proceedings of the 2012 International Conference on Cyber Security, Cyber
Warfare and Digital Forensic (CyberSec), Kuala Lumpur, Malaysia, 26–28 June 2012; pp. 49–53.

35. Gura, N.; Patel, A.; Wander, A.; Eberle, H.; Shantz, S.C. Comparing Elliptic Curve Cryptography and RSA
on 8-bit CPUs. In Proceedings of the 6th International Workshop, Cambridge, MA, USA, 11–13 August 2004;
pp. 119–132.

36. Maletsky, K. RSA vs. ECC Comparison for Embedded Systems; Atmel: San José, California, USA, 2015.
37. De Oliveira, P.R.; Feltrim, V.D.; Martimiano, L.A.F.; Zanoni, G.B.M. Energy Consumption Analysis of the

Cryptographic Key Generation Process of RSA and ECC Algorithms in Embedded Systems. IEEE Lat.
Am. Trans. 2014, 12, 1141–1148. [CrossRef]

http://dx.doi.org/10.3390/s18030817
http://www.ncbi.nlm.nih.gov/pubmed/29518023
http://dx.doi.org/10.1109/COMST.2016.2515516
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
http://dx.doi.org/10.1109/TLA.2014.6894012

Sensors 2019, 19, 15 16 of 16

38. Noroozi, E.; Kadivar, J.; Shafiee, S.H. Energy analysis for wireless sensor networks. In Proceedings of the
2010 2nd International Conference on Mechanical and Electronics Engineering, Kyoto, Japan, 1–3 August
2010; Volume 2, pp. 382–386.

39. Kaur, N.; Sood, S.K. An Energy-Efficient Architecture for the Internet of Things (IoT). IEEE Syst. J. 2017, 11,
796–805. [CrossRef]

40. Lazaro, A.; Villarino, R.; Girbau, D. A Survey of NFC Sensors Based on Energy Harvesting for IoT
Applications. Sensors 2018, 18, 3746. [CrossRef] [PubMed]

41. Ejaz, W.; Naeem, M.; Shahid, A.; Anpalagan, A.; Jo, M. Efficient Energy Management for the Internet of
Things in Smart Cities. IEEE Commun. Mag. 2017, 55, 84–91. [CrossRef]

42. Ercan, A.Ö.; Sunay, M.O.; Akyildiz, I.F. RF Energy Harvesting and Transfer for Spectrum Sharing Cellular
IoT Communications in 5G Systems. IEEE Commun. Mag. 2018, 17, 1680–1694. [CrossRef]

43. Bagula, A.; Abidoye, A.P.; Zodi, G.-A.L. Service-Aware Clustering: An Energy-Efficient Model for the
Internet-of-Things. Sensors 2016, 16, 9. [CrossRef] [PubMed]

44. Gao, Z.; Wu, Y.; Dai, G.; Xia, H. Service-Aware Clustering: An Energy-Efficient Scheduling for Hybrid Tasks
in Control Devices for the Internet of Things. Sensors 2012, 12, 11334–11359. [CrossRef]

45. Potlapally, N.R.; Ravi, S.; Raghunathan, A.; Jha, N.K. A study of the energy consumption characteristics of
cryptographic algorithms and security protocols. IEEE Trans. Mobile Comput. 2006, 5, 128–143. [CrossRef]

46. Castiglione, A.; Palmieri, F.; Fiore, U.; Castiglione, A; De Santis, A. Modeling energy-efficient secure
communications in multi-mode wireless mobile devices. J. Comput. Syst. Sci. 2015, 81, 1464-1478. [CrossRef]

47. ESP32 Overview | Espressif Systems. Available online: https://espressif.com/en/products/hardware/
esp32/overview (accessed on 15 October 2018).

48. ESP32-DecKitC. Available online: https://www.espressif.com/en/products/hardware/esp32-devkitc/
overview (accessed on 28 July 2017).

49. Orange Pi Pc. Available online: http://www.orangepi.org/orangepipc/ (accessed on 15 October 2018).
50. Espressif IoT Development Framework. Official Development Framework for ESP32. Available online:

https://github.com/espressif/esp-idf (accessed on 15 October 2018).
51. SSL Library Mbed TLS/PolarSSL. Available online: https://tls.mbed.org/ (accessed on 15 October 2018).
52. Faker Webpage. Available online: https://pypi.python.org/pypi/Faker/0.7.3 (accessed on 15 October 2018).
53. The Transport Layer Security (TLS) Protocol Version 1.3. Available online: https://tools.ietf.org/html/

rfc8446 (accessed on 15 October 2018).
54. ESP32 Datasheet, Version 2.1. Available online: https://www.espressif.com/sites/default/files/documentation/

esp32_datasheet_en.pdf (accessed on 15 October 2018).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSYST.2015.2469676
http://dx.doi.org/10.3390/s18113746
http://www.ncbi.nlm.nih.gov/pubmed/30400233
http://dx.doi.org/10.1109/MCOM.2017.1600218CM
http://dx.doi.org/10.1109/TMC.2017.2740378
http://dx.doi.org/10.3390/s16010009
http://www.ncbi.nlm.nih.gov/pubmed/26703619
http://dx.doi.org/10.3390/s120811334
http://dx.doi.org/10.1109/TMC.2006.16
http://dx.doi.org/10.1016/j.jcss.2014.12.022
https://espressif.com/en/products/hardware/esp32/overview
https://espressif.com/en/products/hardware/esp32/overview
https://www.espressif.com/en/products/hardware/esp32-devkitc/overview
https://www.espressif.com/en/products/hardware/esp32-devkitc/overview
http://www.orangepi.org/orangepipc/
https://github.com/espressif/esp-idf
https://tls.mbed.org/
https://pypi.python.org/pypi/Faker/0.7.3
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	IoT Architectures and Resource-Constrained Devices
	IoT Security Challenges and Limitations
	Alternatives for Improving IoT Security
	Security Level
	TLS for IoT Networks and Cipher Suites
	RSA and ECC Performance Comparisons
	Hardware Configuration and Energy Efficiency for IoT Secure End Nodes
	Feasibility and Impact of Implementing High Security Mechanisms on IoT End Devices

	System Overview
	Implemented Testbed
	Software
	TLS Certificate Selection and Generation

	Experiments
	Initial Setup
	Energy Consumption Results
	Throughput Results
	Comparative Analysis of ECDSA and RSA Cipher Suites for the Obtained Results

	Conclusions
	References

