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SUMMARY

Accelerators have revolutionised the HPC community. Despite their advantages, their very specific
programming models and limited communication capabilities have kept them in a supporting role of the
main processors. With the introduction of Xeon Phi this is no longer true, as it can be programmed as the
main processor, and has direct access to the InfiniBand network adapter. Collective operations play a key
role in many HPC applications. Therefore, studying its behaviour in the context of manycore coprocessors
has great importance. This work analyses the performance of different algorithms for broadcast, scatter
and gather, in a large scale Xeon Phi supercomputer. The algorithms evaluated are those available in
the reference MPI implementation for Xeon Phi (Intel MPI), the default algorithm in an optimised MPI
implementation (MVAPICH2-MIC), and a new set of algorithms, developed by the authors of this work,
designed with modern processors and new communication features in mind. The later are implemented in
UPC, a PGAS language, leveraging one-sided communications, hierarchical trees and message pipelining.
This study scales the experiments to 15360 cores in the Stampede supercomputer, and compares the results
to Xeon and hybrid Xeon + Xeon Phi experiments, with up to 19456 cores. Copyright © 2010 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Processor manufacturing hit the power wall nearly 10 years ago. As a result the microprocessor
industry was forced to embrace a new era where the performance for new generation
microprocessors came mainly from exposing more parallelism, rather than increased frequency.
This posed a major shift in the industry, whose consequences are still difficult to deal with today.
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The supercomputing community is now hitting a new power wall, where the power budget for
supercomputers cannot grow anymore. As a result new creative ways are needed to circumvent
this limitation. New approaches propose using small low-power processors like the ones used in
cell phones (ARM) [1], with promising results. However, nowadays solutions rely in power-hungry
manycore processors, such as Graphic Processing Units (GPUs) or Many Integrated Cores (MICs),
but with a good MFLOPS/Watt ratio.

The emergence of these manycore processors has caused major changes in the HPC community.
It has introduced a new level of complexity that the application developers have to deal with,
adapting their applications to the new hardware, the new levels of memory hierarchy present in
the new processors, and the new APIs. Moreover, until recently direct communications involving
manycore processors were not possible. This issue has been solved now with modern GPUs and MPI
runtimes [2], and newer techniques alleviate some of the problems still present [3]. The Xeon Phi
coprocessor, released in early 2013, addresses these issues in a different way. This solution consists
of new manycore processors able to run applications using the same programming model, the same
tools and the same environment as the main processor. Furthermore, Xeon Phi has direct access
to the network, without buffering data in the main memory of the system. However, the hardware
complexity still requires significant efforts from the software developers. The software has to be
adapted in order to achieve good performance. In this context, parallel runtimes play an important
role in taking advantage of the underlying hardware. In particular, collective operations need to be
adapted for the upcoming systems. The number of cores is increasing exponentially, and achieving
a good scalability is more complicated than ever, with the efficient access to the network playing a
critical role [4].

In the last few years the Partitioned Global Address Space (PGAS) programming model is
becoming more popular. Despite not having the relevance of MPI, different important research
groups are focusing on PGAS languages due to their potential [5]. One of their main features,
one-sided asynchronous memory copies, has been already adopted in MPI. This feature can have
an important role in the design of collective operations in scenarios with thousands of cores,
where synchronisations becomes especially costly. This paper proposes a new set of algorithms
for collective operations that take advantage of one-sided memory copies, among other features.
Despite not being developed specifically for manycore systems, its design can make an effective use
of the hardware available.

This work presents a performance evaluation on a Xeon Phi supercomputer of all the algorithms
currently implemented in Intel MPI. The performance of these algorithms is compared with the
performance of the algorithms used in MVAPICH2-MIC, a highly optimised MPI implementation
for Xeon Phi. Besides MPI, this paper also presents a performance evaluation, on the same
supercomputer, of a set of algorithms developed by the authors of this work. These algorithms
are implemented in UPC, using (1) one-sided memory copies; (2) message pipelining; and (3)
hierarchical and fixed trees. The focus of the evaluation is in representative collective operations,
broadcast, gather and scatter operations, as they are common to both MPI and UPC, thus allowing
a cross-comparison.

The rest of this paper is organised as follows. Section 2 discusses the related work. Section 3
explains the algorithms implemented in MPI (Intel MPI and MVAPICH2-MIC), and the design of
the proposed algorithms implemented in UPC. Section 4 analyses the performance of the collective

Copyright © 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



MPI AND UPC BROADCAST, SCATTER AND GATHER ALGORITHMS IN XEON PHI 3

operations of Intel MPI, MVAPICH2-MIC and the proposed algorithms using Berkeley UPC, on one
of the largest deployments of Xeon Phi, the Stampede supercomputer. Finally, Section 5 concludes
the paper.

2. RELATED WORK

The optimisation of middleware for HPC is a complex task. It might involve all the layers of the
runtime, and it should evolve with new versions of languages and library APIs [6, 7]. Within
the runtime optimisation, one of the most important points is the optimisation of the collective
operations. Most applications rely on them, both for programmability, as they implement popular
operations, relieving the programmer from its error prone implementation, and also for performance,
as they generally implement optimised and refined algorithms. Collective operations are usually key
to achieve a good scalability. There are basically two approaches for the optimisation of collective
operations: the algorithmic and the system approach.

The algorithmic approach focuses on how the data is transferred and how the processes are
organised. Not all algorithms can be suitable or implemented for all systems. Previous works on
this field can be split between two main groups: distributed memory algorithms and shared memory
algorithms, which target the main current architectures.

Kandalla et al. [8] proposed a design for broadcast, reduce and all-reduce operations on symmetric
scenarios on Xeon Phi. Their design minimises the use of the PCIe bus and always uses a process on
the main processor to communicate with remote nodes. This design is just valid for hybrid scenarios,
involving both Xeon Phi and main processors, and cannot be applied to native scenarios (Xeon Phi
only), where there are not main processors involved. To solve that Potluri et al. [9] proposed the
use of a proxy service running on the main processor, even if the main processor is not used in the
job. Intel followed a similar approach with their Coprocessor Communication Link proxy (CCL-
proxy) for Intel MPI. Kandalla et al. [10] also had previously developed and tested a topology-
aware algorithm that builds the interconnect tree on InfiniBand clusters taking into account the
process placement in relation to the switches, avoiding unnecessary switch hops. Similarly, Gong
et al. developed an algorithm for MPI collectives in the cloud [11]. Bibo Tu et al. [12] described a
new broadcast algorithm for multicore clusters. In this algorithm two sets of communicators were
used. The first one for intra-node communications, where binding is used to improve locality within
a node. The second one is for inter-node communications. This way a broadcast is performed in
two steps, inter and intra-node transfer steps, avoiding the network interface congestion. Kumar
et al. [13] designed and evaluated an all-to-all algorithm for multicore clusters. This algorithm is
similar to the Bibo Tu’s broadcast algorithm, performed also in two steps. Chan et al. [14] proposed
an algorithm that takes advantage of architectures with multiple links, where messages can be sent
simultaneously over different links in systems with N -dimensional meshes/tori.

Other works have focused on optimisations for shared memory. Ramos et al. [15] modelled
collective communications for cache coherent systems, and proposed enhancements for Xeon Phi
taking into account the specific details of its cache implementation. Nishtala et al. [16] conducted
a series of experiments in three shared memory systems, based on multicore processors, using k-
nomial trees for representing the virtual topology of the processes. These experiments demonstrated
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that for each architecture and message size the optimal radix of the k-nomial trees is different.
Graham et al. [17] designed and tested a series of algorithms for shared memory, each one
appropriate for a set of functions and message sizes. The described algorithms are basically fan-
in or fan-out trees of variable radix; reduce-scatter (each process reduces its data) followed by a
gather or all-gather; and a recursive doubling algorithm. As expected, every algorithm is the best
performer for some setups, whereas not optimal for others.

Additionally, there are some works that aimed to optimise both shared and distributed memory
architectures, such as the work of Mamidala et al. [18], which implements and evaluates similar
algorithms to the previous works. A work more closer to ours is that of Kandalla et al. [19], which
proposed a multi-leader algorithm. This proposal is similar to Bibo Tu’s broadcast algorithm, except
for using more than one leader per node, initially considering only the all-gather operation. Nishtala
et al. [20] leveraged shared memory and trees to optimise collectives and explore their autotuning
possibilities. Qian [21] followed a similar path to Kandalla et al. and proposed a series of algorithms
mainly focused on all-to-all and all-gather, targeting multicore systems with multiple connections
per node, as well as optimising the algorithms for cases where different processes arrive at the
collective at a different time.

The algorithms considered in the related work are usually independent of their actual
implementation in a particular language. However, they have been generally developed using MPI
or UPC, two of the most popular choices nowadays. They are representative of message-passing
and PGAS solutions, respectively. However, usually there is no algorithm that always outperforms
the others. In fact, the performance of an algorithm depends on three factors: (1) message size, (2)
number of processes involved, and (3) the hardware, including the network topology . Providing the
best algorithm for each setup and message size is the optimum approach, as demonstrated in [22].
However, selecting among the algorithms entails a significant effort, as they are highly dependent
on the system. The solution typically relies on autotuning [23], generally based on an automatic
performance analysis of each algorithm for a wide range of setups.

Furthermore, it is possible to adapt the runtimes to the underlying hardware. This typically rely on
adding software features in order to achieve a better usage of the underlying hardware, or adapting
hardware specific layers to a given architecture, e.g., the network layer. Gupta et al. [24] were the
first to leverage both hardware capable of performing Remote Direct Memory Access and message
pipelining, for broadcast and all-reduce operations. Sur et al. [25] followed a similar approach for
all gather operations. For Xeon Phi Potluri et al. [26] optimised MVAPICH2 by leveraging the
Symmetric Communications InterFace (SCIF), a low level API that allows to control the DMA
engines. Miao et al. [27] proposed a single copy method to take advantage of shared memory
architectures, avoiding the system buffer. The proposal of Trahay et al. relies on a multithreaded
communication engine to offload small messages [28]. Brightwell et al. [29] propose the sharing of
page tables between processes, speeding up applications performance. Höfler et al. [30] proposed
the use of multicast in networks, resulting in highly scalable operations, but just valid for very small
messages. Velamati et al. [31] designed a set of algorithms for MPI collective operations for the
heterogeneous Cell processor.

Regarding experiences with Xeon Phi and UPC, Luo et al. [32] performed the first general
performance evaluation of UPC and MPI on Xeon Phi, slightly covering point to point and collective
communication performance, and computational kernels.
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The work done up to now successfully adapted collectives to different architectures. Nevertheless,
it does not combine the three main features of the algorithms here presented: one-sided
communications so common in PGAS languages, pipelining/overlapping and hierarchical trees.
The work of Gupta et al. [24] is the closest one, implementing two collectives using one-sided
communications and pipelining. However, unlike this work, their research does not tackle multi-
and manycore systems, do not use hierarchical trees, and do not cover gather and scatter collectives.
Moreover, their performance evaluation used a small system with outdated hardware (a cluster
with 16 Pentium III nodes and GigaNet network), and limited their analysis to small and medium
messages (from 4 bytes to 4KB).

In order to assess the performance of different collectives this work evaluates all the algorithms
implemented in Intel MPI, the leading MPI implementation for Xeon Phi. It also evaluates the
default behaviour of a specifically optimised version of MVAPICH2 for Xeon Phi (MVAPICH2-
MIC). These two MPI implementations are the only options available on Stampede, being
Intel MPI the preferred implementation due its stability on Xeon Phi coprocessors. As new
manycore coprocessors can benefit from one-sided communications, pipelining and hierarchical
trees, we have developed a set of algorithms in UPC combining the aforementioned features. The
performance of these algorithms has been also evaluated and compared with the state-of-the-art MPI
implementations.

3. SCALABLE ALGORITHMS FOR COLLECTIVE OPERATIONS IN MANYCORE
ARCHITECTURES

Scalability is a pervasive and complex problem in HPC. Sometimes an algorithm presents easy
development and good performance but it might not scale to hundreds or thousands of cores,
hindering the use of today’s HPC systems at their full power. The use of highly scalable methods is
key, even though they might be more complex and be outperformed by other methods when using
an small number of cores. This kind of methods should be the preferred choice to face up large
scale problems, as demonstrated in [33], whereas less complex algorithms are acceptable for small
or medium scale setups. These principles are valid both for applications and collective operations
libraries.

This section describes the algorithms used in this work. The set of algorithms present in Intel MPI
and MVAPICH2 is described in Subsection 3.1. Our set of algorithms developed on top of UPC
and tested using Berkeley UPC are described in Subsection 3.2. It should be noted that the only
documented algorithms on MVAPICH2-MIC at this moment are the ones described in the previous
section. However, there is no reason to believe that the algorithms present in MVAPICH2 are not
present in MVAPICH2-MIC. Intel MPI provides the user with the possibility of easily selecting the
algorithms. The algorithms mentioned in its documentation will be used as a conducting thread in
our enumeration, as most of them are present also in MVAPICH2.

3.1. Algorithms Implemented in Intel MPI and MVAPICH2

Intel MPI has a set of algorithms for its collective operations. Some of them are common to different
operations. There is no documentation that details the implementation of the algorithms in Intel MPI.
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However, keeping in mind that Intel MPI is based on MPICH2, it makes sense to speculate that some
of its algorithms are based on MPICH2 or its derived implementations (in particular MVAPICH2).

The first algorithm mentioned in the documentation of Intel MPI is the binomial algorithm. This
algorithm is present in MPICH2 and MVAPICH2, and consists basically in a binomial tree of
processes, where the data is propagated top-bottom for broadcast and scatter, and bottom-up for
gather.

There is a variation of the binomial algorithm in Intel MPI, called topology aware binomial. There
is no description of this algorithm in the documentation. However, MVAPICH2 has an algorithm
implemented as a k-nomial tree that builds the tree taking into account the topology of the nodes
and network participating in the job. Therefore, seems reasonable to assume that the algorithm
implemented in MVAPICH2 is also the algorithm implemented in Intel MPI, with the difference of
the tree radix, that is 4 by default in MVAPICH2.

The next algorithm mentioned in the documentation of Intel MPI is the ring algorithm. This
algorithm is not present in scatter or gather operations. Whereas it is possible to implement a
broadcast operation using purely a ring, i.e. passing the data to the next process in a ring fashion,
this is highly inefficient. However, again, MPICH2 and MVAPICH2 have an algorithm for broadcast
where the data is scattered across the processes, followed by an all-gather function. This all-gather
function can be implemented in a ring fashion, taking p− 1 steps.

There is also a topology aware version of this algorithm in Intel MPI, implemented also in
MVAPICH2 following the same principles as the topology aware binomial.

The next algorithm in Intel MPI is the recursive doubling algorithm. The description for this
algorithm is basically the same as for the ring algorithm, as it is also present in MPICH2 and
MVAPICH2, with the difference that the all-gather phase is implemented using recursive doubling,
which takes log2(p) steps.

As for the ring algorithm, the recursive doubling algorithm also has a topology aware version in
Intel MPI and MVAPICH2.

The last algorithm implemented in Intel MPI is the so called Shumilin’s algorithm. However, no
publicly available documentation exist about the details of this algorithm, and there are no other
MPI implementations with algorithms that suggest any specific detail about it.

All the MPI implementations have a default algorithm. This algorithm is one of the above
mentioned. Which one depends on the specific implementation, tuning and experiment, as the
default algorithm can be different for different message sizes and number of processes involved. The
default algorithm on Intel MPI will be evaluated to assess the suitability of the current thresholds
for a Xeon Phi environment. The default algorithm on MVAPICH2-MIC will be evaluated to assess
the performance of an implementation specifically optimised and tuned for Xeon Phi.

It should be noted that, even though an explanation of the algorithms in Intel MPI is not public
and admittedly the authors have speculated about their behaviour, there is not reason to believe that
the algorithms do not work as described, due to: (1) self descriptive name in most of the algorithms,
(2) similarity to names of algorithms described in the literature, and (3) being largely based in open
source implementations that include such algorithms.
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3.2. Proposed Scalable Collective Algorithms Developed with UPC

One of the design principles for scalability is to avoid the use of dynamic structures whose size and
build time overhead increases with the number of processes. Thus, in the proposed algorithms the
first call to a collective function creates a persistent and fixed (invariable) process tree structure,
which can be reused in a future collective call. If the root of the collective operation and the root of
the tree are not the same, then a copy of the message into the tree root is required.

The trees are constructed in two levels: The cluster level and the node level. In the cluster level a
tree connecting the nodes is built. For each node one process is selected as a node leader, in charge
of communicating its node with the other nodes. For efficiency and scalability purposes, a binomial
tree of node leaders will be built. In the node level a new tree will be built, with the node leader
as root. Here each process is bound to a specific core, without oversubscribing it (a single process
per core), thus avoiding process migration and resource contention. Flat trees do not scale, as they
saturate the sender or receiver (depending on the operation) easily. However, for a small number
of elements in the tree, a flat tree avoids intermediate steps, reducing the synchronisation overhead.
The library presented in this work evaluates both binomial and flat trees in the node level.

Another feature present in high speed network fabrics is the presence of separate links for upload
and download data. Bearing that in mind, it is possible to pipeline communications, overlapping
send and receive operations to reduce latency. The proposed collective algorithms implement
two fragmentation schemes for pipelining: fixed and dynamic. In the fixed mode the message is
fragmented into chunks of a given size. The dynamic mode is similar to the fixed mode, except that it
splits the message in two halves, instead of dmessage size/chunk sizeemessages. Thus the size of
the chunks changes depending on the size of the message. The selected chunk size for the fixed mode
is 32768 bytes. The dynamic mode will start fragmenting the messages when they are larger than
8192 bytes. It should be noted at this point that MVAPICH2 implements pipelining, but in a different
way. In hierarchical algorithms, with differentiated steps for intra and inter node communications,
MVAPICH2 can slice up the messages and perform the inter and intra node steps for every slice,
rather than the whole message. However, this does not allow communication overlapping at every
branch, and is a simpler and less effective mechanism.

This library also takes advantage of one-sided memory copies, implementing most functions
in two approaches: push and pull. In the push approach the source process puts the data in the
destination process, whereas in the pull mode it is the destination process the one which gets the
data. This way it is possible to achieve a higher degree of communication overlapping, since data is
streamed to/from different sources at the same time.

Synchronisation of pairs of UPC threads is necessary to develop efficient tree-based collectives.
UPC provides basic and global synchronisation mechanisms like barriers and fences. Using them
would add a very important overhead to any collective. Therefore, to synchronise the UPC threads,
point to point synchronisation is required. Bonachea proposed an interface of semaphores [34] to
allow this kind of synchronisation. Such interface has been used during the development of the
algorithms to minimise overhead.

3.2.1. Scalable Scatter and Gather Operations The use of trees pose more difficulties for data
distribution in scatter and gather due to the fact that every process needs or have a different and
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unique piece of data. However, a collective using trees avoids the overhead of each process copying
data separately, since less copies from/to source/destination will be done. Such approach seem
interesting in scenarios where the data held by each process is not excessive. Besides this, having
a scatter or gather function that uses trees has an additional benefit. Since just a few processes will
communicate with the root of the operation, the memory footprint will be smaller in some systems,
leading to a higher scalability. In jobs with thousands of processes this becomes a big problem
as it has been pointed out before in other works [35, 36]. Mitigating this effect usually involves
deep changes in the communication layer of the runtime or the transport layer. The UPC collectives
library evaluated in this paper and a runtime/driver with support for on-demand connections, where
buffers are allocated as needed instead of at initialisation, help to solve this problem for scatter and
gather at a higher level than runtime or transport layer modifications. The tradeoff that has to be
made to use trees on scatter and gather operations is to partly renounce to have hierarchical trees, as
there is no way to ensure that the data required by the children processes in an hierarchical tree is
contiguous. Therefore, a binomial tree ignoring topology information is built and used.

Gather has an extra particularity. It does not have a dynamic fragmentation version. The reason for
this is that, since the data flows upwards, copying the first half do not make sense in most situations.
The parent process could not take advantage of it, since its own first half will be larger than any of
its children’s first half. Therefore, data cannot flow in halves because parent processes would have
to wait for the second half anyway before sending their first half.

3.2.2. Summary of the Implemented Algorithms The noticeable number of variations of the
developed algorithms is the result of combining different orthogonal optimisations suitable for the
operations. Table I presents an overview of the developed algorithms. The correctness of all the
variations has been assessed with GUTS (GWU Unified Testing Suite) [37]. These algorithms are
heavily based in our previous work [38], where they were explained and discussed in more detail.

Table I. Algorithms implemented.

Operations
Broadcast Scatter Gather

Push

Hierarchical
binomial

Standard X X X
Dynamic fragmentation X

Static fragmentation X X

Hierarchical
binomial + flat

Standard X
Dynamic fragmentation X

Static fragmentation X

Pull

Hierarchical
binomial

Standard X X X
Dynamic fragmentation X X

Static fragmentation X X

Hierarchical
binomial + flat

Standard X
Dynamic fragmentation X

Static fragmentation X
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4. PERFORMANCE EVALUATION

This section presents a performance evaluation of MPI collectives and the proposed algorithms
implemented in UPC. This performance evaluation has been carried out on the Stampede
supercomputer [39] at TACC (Texas Advanced Computing Center), using up to 15,360 Xeon Phi
cores (256 nodes). Stampede is the 7th more powerful supercomputer in the world as of November
2014. Each node has 2 Xeon E5-2680 processors with 8 cores each, clocked at 2.7 GHz, and
32GB of memory. It also has one Xeon Phi SE10P per node, with 61 cores clocked at 1.1 GHz
and 8GB of memory. The operating system is CentOS 6.4, with kernel 2.6.32. The Manycore
Platform Software Stack (MPSS) version is 2.1.6720-21. Generally it is recommended to rely on
hybrid parallelisation with few communicating threads or processes to take full advantage of the
Xeon Phi computing power in an application. In this particular case 60 cores have been used per
Xeon Phi in order to maximise its computational power, taking the Xeon Phi to its limits. The
interconnection network is InfiniBand 4X FDR (54.54 Gbps of theoretical effective bandwidth).
The node architecture is sketched in Figure 1. In Xeon Phi the operating system running on the
accelerator is bound to core 61. The processes have been distributed in a block fashion, with 60
processes per node, avoiding the core where the operating system runs. The backend compiler
used is Intel icc 13.1.1. The MPI compilers and runtimes are Intel MPI 4.1.1 and MVAPICH2-
MIC (based on MVAPICH2 1.9). The Intel MPI experiments used the CCL-Proxy optimisation,
that routes all the Xeon Phi communication through a proxy service running in the host processor.
The experiments performed using MVAPICH2-MIC used the proxy optimisation for up to 1920
processes. It was not possible to successfully run the experiments with that optimisation and more
than 1920 processes. Moreover, MVAPICH2-MIC did not run reliably on hybrid mode, failing on
most setups, specially using messages larger than 128 bytes. Therefore, its results are not reported.
It should be noted that MVAPICH2-MIC is not yet officially supported on Stampede. MVAPICH2
results on Xeon have not been obtained, since its algorithms and runtime optimisations are similar to
those available on Intel MPI. The UPC compiler and runtime is Berkeley UPC 2.16.2. As the Xeon
Phi is not officially supported on this release of Berkeley UPC, a few modifications had to be done.
lfence, sfence and mfence memory fences were removed, as the Xeon Phi memory model
does not rely on those memory fences for ordering. Also, support for 128 bit atomics was disabled
on GASNet, as the cmpxchg16b instruction is not available on Xeon Phi. With those tweaks,
Berkeley UPC runs experimentally on Xeon Phi. Berkeley UPC offers the user the possibility of
running UPC threads as real operating system processes, or as POSIX threads. In Stampede, using
the Xeon Phi coprocessors, the use of POSIX threads is the only way to run tests up to 15360
cores, as the use of the 2 or more operating system processes crashed when running on 256 nodes.
Therefore, the execution of the tests used a single process per Xeon Phi, with 60 POSIX threads
(pthreads in Berkeley UPC runtime). This limitation, using a single process per node, impacts
performance negatively. Thus, using 1920 cores, with 2 processes per node and 30 pthreads, shows
almost twice the performance than using a single process and 60 pthreads, using the broadcast pull
based algorithm with dynamic fragmentation and flat trees at the node level, with message size of
1MB. This is due to the fact that the underlying GASNet layer has to be thread safe, and therefore
the overhead for locks increases with the number of pthreads used. It is important to note that
all threads participate actively on the collectives, as the distinction between process and thread is
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abstracted by the Berkeley UPC runtime, offering to the upper layers just the notion of UPC thread.
A new version of Berkeley UPC (2.18.0), with official support for Xeon Phi, has been released after
conducting the experiments of this research. In order to ensure the validity of the results of these
experiments some of them were repeated with the new runtime, choosing the most sensible setup,
i.e.: 15360 cores. No significant differences have been observed, and it is still not possible to run
more than one process per node when using 256 nodes. The latest version of Berkeley UPC (2.20.0)
do not contain significant changes over 2.18.0 for this research. Despite this fact, it has been also
tested, without observable differences in performance.

Node 0

Xeon E5-2680, 8 cores, 2.7 GHz

Xeon E5-2680, 8 cores, 2.7 GHz

16 GB

16 GB

Xeon Phi SE10P, 61 cores, 1.1 GHz

Mellanox Connectx-3 8 GB

DDR3

51.2 GB/s

GDDR5 
352 GB/s

InfiniBand FDR 
6.8 GB/s

DDR3 

51.2 GB/s

QPI 64 GB/s

PCIe gen2

8 GB/s

PCIe gen2 

8 GB/s

Node 1

Xeon E5-2680, 8 cores, 2.7 GHz

Xeon E5-2680, 8 cores, 2.7 GHz

16 GB

16 GB

Xeon Phi SE10P, 61 cores, 1.1 GHz

Mellanox Connectx-3 8 GB

DDR3

51.2 GB/s

GDDR5 
352 GB/s

InfiniBand FDR 
6.8 GB/s

DDR3 

51.2 GB/s

QPI 64 GB/s

PCIe gen2

8 GB/s
PCIe gen2 

8 GB/s

......
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Figure 1. Stampede Node Diagram

The software used for the performance evaluation is the Intel MPI Benchmarks (IMB) suite
[40] version 3.2.4, and the UPC Operations Microbenchmarking Suite (UOMS) [41] version 1.1,
developed by us due to the lack of microbenchmarking tools in UPC. These two tools have small
differences in how they measure performance. IMB reports minimum, maximum and average
latency. However, this data is the average per message size per process. The formulas of the reported
date are described in Equation 1, where p is the number of processes and n is the number of iterations
for a given message size. UOMS also reports minimum, maximum and average latencies. However,
these latencies are considering iterations, not processes, as UOMS considers one operation finished
just when all the processes involved are done, using UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC as
synchronisation mode. The formulas for the reported data in UOMS are described in Equation 2. In
order to allow comparisons as fair as possible the reported values for IMB are the maximum, i.e. the
highest average time among processes, to guarantee a state where all the processes have finished the
operation. The reported values for UOMS are the average, i.e. the average time per iteration needed
to guarantee that all the processes have finished the operation. The reported bandwidth on this paper
is calculated using these latencies. It should be noted that these two ways of measuring performance
are not algebraically equivalent. The equation applied by UOMS penalises the UPC results when
compared with the equation applied by IMB. However, the variability of the results, particularly in
the cases with large message sizes, is small enough to render these differences negligible.
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Subsections 4.1 and 4.2 present the performance results of three representative collectives,
broadcast, scatter and gather. Broadcast figures present the performance of a representative medium
size message (16KB) on the left and the performance of a representative large size message on the
right (1MB). Scatter and gather reported results have been obtained with shorter messages (8 bytes
and 1KB). With large number of cores the message size tends to be shorter, and it is limited by
the memory requirements in the root process, which is the result of multiplying the message size
by the number of processes. The y axis represents latency in microseconds in the graphs on the
left (medium size message case for broadcast and small size message case for scatter and gather),
whereas the y axis represents bandwidth in GB/s or MB/s in the graphs on the right (GB/s for large
size message case for broadcast and MB/s for medium size message case for scatter and gather).
Variations in the same basic algorithm can lead to some dramatic performance differences. The
graphs display only the most relevant algorithms (i.e.: the ones that scale and perform better) for
each combination of function and message size, giving more importance to the setups with high
number of cores.

Additionally, Subsection 4.3 compares the performance of the MPI and PGAS collectives on
Xeon, Xeon Phi, and hybrid setups (using Xeon and Xeon Phi on the same experiment), comparing
the results using fully populated nodes.

4.1. MPI Collective Performance Scalability on Xeon Phi

Figure 2 shows the performance of the broadcast operation for different MPI algorithms. In this
case, the best algorithms are the binomial algorithm and the topology aware versions of the binomial
algorithm and recursive doubling. The Shumilin algorithm has very good minimum run time, but
the maximum is higher than the remaining algorithms. Stands out the poor performance of the
default Intel MPI algorithm, shown here just for awareness of how important is to choose the right
algorithm. In the medium size case the default MVAPICH2-MIC algorithm outperforms all the
others, showing that the optimisations and tuning of the runtime are very effective on this scenario,
even though the proxy support is not enabled for more than 1920 processes. Regarding Intel MPI
the topology binomial algorithm is the one that exhibits the best performance, with a very flat
increase in latency when using more than 8 nodes (480 cores). The binomial algorithm performs
better than the topology aware recursive doubling, showing the suitability of tree-based algorithms
for setups with small to medium sized messages and high core counts, where the recursive doubling
algorithm cannot outperform the binomial algorithm, due to the small size of some of the transmitted
fragments. In the large message size case, the observed results are different. MVAPICH2-MIC is not
the best performer anymore, showing the importance of using the correct algorithm, regardless the
specific runtime optimisations. Intel MPI outperforms MVAPICH2-MIC when using the correct
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algorithm. In this scenario the fragments transmitted by the recursive doubling algorithm are not
that small anymore, and its performance is closer to the binomial algorithms. It also stands out the
change in the algorithm used by default by Intel MPI when using more than 4 nodes (240 cores).
This leads to a significant performance boost, but far away from the best algorithms.
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Figure 2. MPI broadcast performance and scalability on Xeon Phi
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Figure 3 corresponds to the scatter operation. The Shumilin algorithm hangs for setups with
more than 4 nodes, so its results are not reported. Therefore, for Intel MPI, besides the default
algorithm, the relevant algorithms are the binomial and the topology aware binomial algorithms.
The first result to notice is that the default MVAPICH2-MIC algorithm does not outperform the
default Intel MPI algorithm for less than 1920 processes, on the small size case. The Intel MPI
default algorithm behaves like the binomial for the whole range, which indicates that the default
algorithm does not change depending on the number of cores or message size. In the small size
case the binomial algorithm performs better than the topology aware algorithm for almost the whole
range. The overhead of performing the algorithm in two phases outweighs the faster transfers, that
are very fast due to the small size of the message. The binomial algorithm has a drop in performance
when going from 960 cores to 1920, but keeps outperforming the topology binomial algorithm at
the 15360 cores mark. For the medium size case all the algorithms drop in performance when going
from 1 node to 2 (from 60 cores to 120 cores), as the network access becomes the bottleneck.
Nevertheless, the default MVAPICH2-MIC algorithm keeps performing remarkably good for up to
1920 processes. With more processes the proxy optimisation has not been used, and performance
degrades sharply, proving the effectiveness of this optimisation in this case. The binomial algorithm
on Intel MPI keeps improving its performance when increasing the number of cores, from 120,
whereas the topology binomial algorithm keeps degrading its performance. In this scenario the
topology binomial could be able to slightly outperform the binomial algorithm. Nevertheless, this
is not the case. The measure of the experimental results has shown a very erratic behaviour for
this algorithm, with extremely differences between the minimum and the maximum for setups with
more than 240 cores (being similar both values with 240 cores or less), and significant differences
in performance between 64 and 128 bytes messages.

Figure 4 displays the gather operation. Gather is conceptually the inverse of scatter, and the
analysis and observations done for the later are also valid here, where the algorithms are the same,
and the observed behaviour and performance are very similar. The exception to this statement is the
performance of MVAPICH2-MIC in the medium size case, with a very bad performance for 240
processes and no results for 480 processes. However, for 960 and 1920 processes its performance is
better than any of the algorithms implemented on Intel MPI.

4.2. UPC Collective Performance Scalability on Xeon Phi

Figure 5 shows the performance of different broadcast algorithms implemented in UPC. In this
case, the best algorithms are variations of the pull approach. In particular the pull algorithm with
flat trees at the node level and without pipelining, the pull algorithm with dynamic fragmentation and
binomial trees in the node level, and the pull algorithm with dynamic fragmentation and flat trees
in the node level. In the medium size case stands out the behaviour of the three selected algorithms,
that reach a plateau at around 960 cores. This shows a very good scalability, as adding more cores to
the operation does not impact on the latency. This is due to the tree built to connect different nodes.
Going from 1 node to 2 (60 cores to 120) has a big impact, as communications are going through the
InfiniBand network, rather than exclusively through shared memory. However, the latency increases
slowly, as adding an extra level to the tree is not meaningful. Stands out also the better performance
of the pull approach with flat trees, which seems to be more adequate for medium messages than
the other algorithms. In the large message case the performance of all the implemented algorithms
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is similar with 15380 cores. Nevertheless, the pull algorithm with dynamic fragmentation is slightly
better, as in large messages pipelining becomes more important. The algorithms perform better than
MVAPICH2-MIC, similarly to the binomial and topology recursive doubling algorithms of Intel
MPI, and worse than the topology binomial algorithm.
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Figure 6 presents the performance of the scatter operation. The best performing algorithms are
all pull based, with binomial trees at both levels. The 3 selected algorithms show similar scaling
in the small message case. In fact, in this scenario these algorithms are essentially the same for
a number of cores smaller than 3840 (for the dynamic fragmentation algorithm, 15380 for the
fixed fragmentation algorithm), since there is no message fragmentation for aggregated messages
smaller or equal to 8KB (32KB in the fixed fragmentation case). However, they perform differently.
This suggests that the small differences in the implementation that calculates offsets, number of
chunks to complete a message and their size have an impact larger than expected, an effect that
probably has been augmented by the slow cores present in Xeon Phi. Here the best performer is
the algorithm with fixed fragmentation, taking advantage of a more straightforward implementation
with less computational load. However, in the large message case this algorithm is heavily penalised
when scaling to thousands of cores because of the extra steps to synchronise the pipelining. All the
algorithms have a drop in their aggregated bandwidth when going from 60 cores (1 node) to 120
cores (2 nodes), due to the impact of the use of the network, which is a major source of overhead
in collective operations. In fact, the performance keeps dropping until 240 cores (4 nodes). From
then on, for the pull algorithm and the pull algorithm with dynamic fragmentation the performance
increases, as the messages sent through InfiniBand become larger and the usage of the network
increases its efficiency. Stands out the good performance of the pull with dynamic fragmentation
and pull implementations when compared to Intel MPI, as their bandwidth is up to 75% better with
15360 cores. No comparison can be done with MVAPICH2-MIC using the large 15360 cores, since
MVAPICH2-MIC did not successfully run with that number of cores.

Finally, Figure 7 shows the performance of the gather operation. Typically top-down collectives
like broadcast or scatter benefit from a pull approach, whereas bottom-up operations like gather
benefit from a push approach. However, one of the best algorithms in these experiments follows
a pull approach. This confirms the trend seen in broadcast and scatter: the performance benefit of
message pipelining seems to do not compensate the extra overhead involved. The slow cores and
high start-up latency of small messages discourage the use of message pipelining. In the small
message case the push approach scales worse than the other two algorithms, as expected. In the
medium message case the push and pull approaches scale beyond 1GB/s, whereas the algorithm with
fixed fragmentation stop scaling at 1920 cores (32 nodes), where the performance degradation due
to fragmentation overhead reduces the aggregated bandwidth. As with scatter, stands out the poor
performance of Intel MPI when compared with these algorithms, as Intel MPI has 17× the latency
and below 20% of the bandwidth in the most extreme cases. More importantly, MVAPICH2-MIC,
with its specific optimisations, could not outperform these algorithms, showing their importance as
opposed to focusing exclusively on runtime optimisations.

4.2.1. Influence of Runtime Configuration (pthreads vs. processes) on Xeon Phi As mentioned
before, the Berkeley UPC runtime can implement UPC threads as POSIX threads or as processes.
One common problem for communication runtimes is dealing with multiple threads, were internal
structures have to be protected by locks. This increases the overhead, that becomes more apparent
with a large number of threads. Similar algorithms to the ones here presented were studied in the
past, in a traditional cluster, with performance advantages over MPI [38]. In Xeon Phi, it looks like
our collectives do not achieve a good performance when compared with MPI in certain cases, like
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on broadcast. In the experiments done in Stampede, just one process per node was used, and as
many threads as cores, i.e. 60 threads per Xeon Phi. However, Figure 8 shows clearly that reducing
the number of threads per process –and increasing the number of processes per node by the same
factor– has a positive performance impact on performance. The performance of our algorithms when
using 15 POSIX threads per process –and 4 processes per node– rivals the performance of the MPI
algorithms. Avoiding the use of POSIX threads altogether in the Berkeley UPC runtime is likely to
produce even better performance. Nevertheless, this is not possible on Xeon Phi when using a large
number of nodes, as the Berkeley UPC runtime crashes with this configuration. Therefore, using 60
POSIX threads per process is the only way to scale to 15360 cores.
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Figure 8. Effects of number of pthreads per process on UPC broadcast performance and scalability on Xeon
Phi

4.3. Collective Operations Performance on Xeon versus Xeon Phi

This subsection compares the performance of collective operations in Xeon versus Xeon Phi. The
purpose is to assess the impact of the processor used in communications performance. Figures 9, 10
and 11 compare the performance of the most relevant Intel MPI algorithms on Xeon Phi with the
performance of the same algorithms on Xeon, using the same number of nodes, for the broadcast,
scatter and gather, respectively. Results for MVAPICH2-MIC on Xeon Phi have been also included.
Figures 12, 13 and 14 show the results for UPC. The comparison has been made using the same
number of nodes, which are fully populated, and therefore the number of cores will be different
for Xeon and Xeon Phi. Hence, the Xeon Phi experiments use 60 cores per node, whereas the
Xeon experiments use 16 cores per node. All the experiments have been carried out on Stampede,
using from 1 to 256 nodes. For each figure, there are two graphs. The top graphs within the figures
are focused on latency, whereas the bottom graphs are focused on bandwidth. The MPI figures
additionally have results with hybrid setups, using both Xeon and Xeon Phi processors. These setups
also use fully populated nodes, ranging from 76 to 19456 cores (1 to 256 nodes).

Figure 9 shows the results for the MPI broadcast. Regarding latency, the results confirm the
observations made on previous experiments. Start-up latency is much higher on Xeon Phi than
on Xeon. The higher number of cores in Xeon Phi contributes to the higher latency, as more data
has to be distributed. However, it is remarkable that the Xeon with 256 nodes is faster than Xeon
Phi in a single node (except for the binomial algorithm), even though the number of cores is much
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Figure 9. Performance comparison of the most relevant MPI broadcast algorithms, for Xeon, Xeon Phi and
hybrid Xeon + Xeon Phi, using the same number of nodes

higher (4096 cores for Xeon vs. 60 cores for Xeon Phi). It is also highly remarkable the impact of the
network, where Xeon Phi is heavily affected, especially on the default algorithm of Intel MPI, which
performs poorly throughout all the tests. The hybrid Xeon + Xeon Phi setup is limited by the Xeon
Phi coprocessors, and therefore its latency is almost equal to the Xeon Phi setup for all the cases.
Regarding bandwidth the trend showed by the default algorithm on Intel MPI on Xeon is to scale
its performance with the availability of more resources, whereas on Xeon Phi it slows down up to
8 nodes, point where the default algorithm improves, showing that the default thresholds are not set
properly on Xeon Phi. The binomial algorithm with topology awareness increases its performance
in both Xeon and Xeon Phi, as well as the recursive doubling algorithm with topology awareness.
The performance of the binomial algorithm is very similar to the performance of the topology
aware binomial. As a general conclusion, the Xeon results are significantly better than the Xeon
Phi performance numbers. The performance of hybrid setups is very similar to the performance
of Xeon Phi setups regarding latency. Regarding bandwidth the hybrid setups can perform slightly
worse than Xeon.

Figure 10 presents the results for MPI scatter. Latency wise the trend is the same as for broadcast.
The Xeon experiments have lower latency than the experiments with Xeon Phi for every setup,
especially in the binomial algorithm, since the overhead of calculating the optimal tree has a big
impact in setups with small messages. Differently from the broadcast case, in scatter the hybrid
setups have better latency than pure Xeon Phi setups. Nevertheless, it is still significantly higher
compared to the results on Xeon, that performs more than 77× better than Xeon Phi, for the default
algorithm on Intel MPI using 256 nodes. On the bandwidth scenario Xeon is the best performer,
with the hybrid setups between Xeon and Xeon Phi. Interestingly the topology binomial algorithm
performs equal or better on Xeon than the binomial algorithm, for up to 8 nodes, whereas it is easily
outperformed by the binomial algorithm in setups with more than 16 nodes. On Xeon the bandwidth
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Figure 10. Performance comparison of the most relevant MPI scatter algorithms, for Xeon, Xeon Phi and
hybrid Xeon + Xeon Phi, using the same number of nodes
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Figure 11. Performance comparison of the most relevant MPI gather algorithms, for Xeon, Xeon Phi and
hybrid Xeon + Xeon Phi, using the same number of nodes

reaches its peak already with 64 nodes, whereas on Xeon Phi the bandwidth keeps increasing slowly
through all the setups.

Figure 11 shows the results for MPI gather. Like the Xeon Phi analysis done in Subsection 4.1,
the analysis for gather is quite similar to the analysis for scatter, with Xeon latencies much lower
than on Xeon Phi. The high start-up latencies of Xeon Phi also limits the performance of the hybrid
setups. Bandwidth is also much better on Xeon, with the performance of the hybrid setups slightly
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better than the performance of the Xeon Phi setups, except for the topology binomial algorithm,
where the hybrid setups perform up to 6× better than Xeon Phi.

Figure 12 shows the performance of UPC broadcast. As for MPI, for UPC the communication
latency is much higher on Xeon Phi. Besides that, UPC latencies are always higher than MPI
latencies. Again, Xeon Phi is more affected when using more than one node, with latencies
significantly higher. These results confirm that the reason for the suboptimal performance of these
algorithms on Xeon Phi is the high latency of the access to the network, as these algorithms rely
extensively on short synchronisation messages to coordinate the pipelining. However, the scalability
is quite good, with an almost constant latency on Xeon Phi, from 8 to 256 nodes, whereas on Xeon
it increases accordingly with the number of cores. Generally, the bandwidth obtained by Xeon Phi
setups is worse than Xeon setups, except than when using 256 nodes (15360 cores) and the pull
algorithm with flat trees at the node level. Thus, in large messages the same trend as for medium
size messages holds true, with Xeon outperforming Xeon Phi.
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Figure 12. Performance comparison of the most relevant UPC broadcast algorithms, for Xeon and Xeon Phi,
using the same number of nodes

In Figure 13 the results for UPC scatter are presented. As for the other setups already discussed,
the communication latency for Xeon is much lower than for Xeon Phi. However, as the latency on
Xeon Phi remains constant from 16 nodes on, the latency on Xeon keeps increasing. Regarding
bandwidth, the results for Xeon and Xeon Phi for the pull binomial algorithm are similar when
using a single node, but the performance of Xeon Phi falls significantly when using multiple nodes
because of the network access overhead. Here Xeon is the best performer, but Xeon Phi improves
when using more nodes, as the bandwidth obtained increases at a better pace than on Xeon, except
for the pull algorithm with binomial trees and fixed fragmentation. In this particular case there is
a high number of messages, a scenario which is especially penalised by high start-up latencies and
therefore its performance does not increase.

Finally, Figure 14 shows the results for UPC gather. It is remarkable the good performance of
Xeon Phi with more than 16 nodes, where it performs similarly to Xeon, or even better. Gather
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using the same number of nodes
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Figure 14. Performance comparison of the most relevant UPC gather algorithms, for Xeon and Xeon Phi,
using the same number of nodes

is a bottom-top collective, where leaves of the tree operate independently. In other words, more
parallelism is exposed at the beginning of the operation, and copies are done asynchronously
towards the root, whereas for scatter less parallelism is exposed at the beginning, and transfers
downwards have to wait for the data to arrive. This allows these gather algorithms to perform better
than their scatter counterparts. The same effect is noticeable for bandwidth.

Copyright © 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



MPI AND UPC BROADCAST, SCATTER AND GATHER ALGORITHMS IN XEON PHI 21

5. CONCLUSION

This work has analysed the performance of different algorithms for representative collective
operations, particularly broadcast, scatter and gather, on a large supercomputer with Xeon Phi
coprocessors. The performance of the most scalable algorithms in an MPI implementation (Intel
MPI) for Xeon Phi has been assessed, as well as an MPI implementation specifically optimised and
tuned for Xeon Phi (MVAPICH2-MIC). Moreover, this paper also analyses our proposal of scalable
algorithms for PGAS languages, implemented in Unified Parallel C (UPC) and using the first UPC
runtime available for Xeon Phi (Berkeley UPC). The potential of PGAS on future architectures has
motivated this evaluation. The measured results on Xeon Phi have been compared against those
using only main processors and a hybrid configuration with Xeon and Xeon Phi processors, using
up to 19456 cores. To the best of our knowledge, this is the first study done at this scale, comparing
orthogonally the performance of MPI and UPC collectives, and Xeon and Xeon Phi.

The analysis of the results has shown that: (1) in many cases the default algorithm for Intel MPI is
not the best for Xeon Phi, as the thresholds for switching algorithms seem to have been set with main
processors (e.g., Xeon) in mind; (2) the collectives operations overhead is typically much higher on
Xeon Phi than on Xeon processors. In some cases it is up to two orders of magnitude higher for the
same number of nodes. Applications whose performance depends on low latency communications
can suffer significant performance degradation on Xeon Phi; (3) specific optimisations on the
MVAPICH2-MIC runtime result in measurable benefit. Nevertheless, choosing the correct algorithm
plays a major role, and MVAPICH2-MIC is frequently outperformed by less optimised runtimes in
certain scenarios; (4) our algorithms implemented on UPC scale and perform well. However, the
compiler and runtime are not optimised for Xeon Phi, and therefore better performance could be
expected in upcoming releases. It is particularly important the use of multiple processes per node
in setups with a large number of cores, minimising the use of pthreads and therefore minimising
serialisation of the access to the communication layer, as well as using specific optimisations for
Xeon Phi as seen in MVAPICH2-MIC. Finally, (5) even without specific optimisation the proposed
algorithms implemented in UPC can outperform the MPI algorithms on Intel MPI and MVAPICH2-
MIC. Some of the UPC scatter algorithms outperform the MPI scatter algorithms in bandwidth
bound scenarios at large core counts, whereas for gather the performance is better using the UPC
algorithms in both latency and bandwidth bound scenarios.

To sum up, both MPI and UPC collective operations are able to scale on clusters of Xeon Phi
coprocessors, especially for large message sizes. Xeon Phi shows higher start-up latencies than
Xeon, which limits algorithms with multiple synchronisations, but a right choice of algorithms
can support its scalability. This study can serve as reference of collective operations scalability for
deployments of Xeon Phi coprocessors on supercomputers.
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