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Abstract

The simulation of particle dynamics is among the most important mecha-
nisms to study the behavior of molecules in a medium under specific condi-
tions of temperature and density. Several models can be used to compute
efficiently the forces that act on each particle, and also the interactions be-
tween them. This work presents the design and implementation of a parallel
simulation code for the Brownian motion of particles in a fluid. Two dif-
ferent parallelization approaches have been followed: (1) using traditional
distributed memory message-passing programming with MPI, and (2) using
the Partitioned Global Address Space (PGAS) programming model, oriented
towards hybrid shared/distributed memory systems, with the Unified Paral-
lel C (UPC) language. Different techniques for domain decomposition and
work distribution are analyzed in terms of efficiency and programmability, in
order to select the most suitable strategy. Performance results on a super-
computer using up to 2048 cores are also presented for both MPI and UPC
codes.
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1. Introduction

Dynamical particle simulations aim at exploring the phase or configura-
tion spaces of the underlying physical system in order to gather statistics
for the calculation of expectation values of observables. Depending on the
level of resolution either ab initio methods, force field or effective medium
descriptions are used to propagate particles according to their equations of
motion. Interactions between solvated particles as well as particle-solvent-
and particle-wall-interactions are modeled according to their physical cha-
racteristics, their statistical properties and information from experimental
data. Brownian dynamics is a class of simulation that takes into account the
systematic interactions between particles, as well as the interaction with a
surrounding medium described by their statistical and transport properties,
which are often represented by diffusion tensors derived from a velocity field
description of the solvent.

It is assumed that solvated particles are very large compared to fluid
particles and that individual interactions can be reduced to statistical fluc-
tuations, induced by thermal noise. This allows to consider a time scale
separation, i.e. during a time step in which a so called Brownian or solute
particle is propagated (e.g., macromolecules, polymers or colloids), individual
solvent particles would perform a large number of micro steps and therefore
the fluid-solute interaction is considered as an average action. Thus, although
individual interactions between fluid and solute are not considered, the simu-
lation takes into account the collective properties of the fluid molecules using
a mobility tensor, which contains information about the velocity field in the
system.

Technically, a finite difference scheme is applied to calculate the trajectory
for each particle as a succession of short displacements ∆t in time. In a
system, containing N particles, the trajectory {ri(t); t ∈ [0, tmax]} of particle
i is calculated as a succession of small and fixed time step increments ∆t.
The time step is selected thereby: (1) large enough with ∆t ≫ mi/6πηai,
with η the solvent viscosity, ai the radius and mi the mass of the solute
particle i, so that the interaction between individual fluid particles and the
solutes can be considered as averaged and can be coupled to the solutes via
the diffusion tensor, and (2) small enough so that the forces and gradients
of the diffusion tensor can be considered constant within ∆t. According to
these conditions, the simulation can be performed by calculating the forces
that act on every particle in a time step, determining new positions for all
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particles and continuing this process in the following time step.
Brownian dynamics simulations are nowadays used to perform many stud-

ies in different areas of physics and biology [1], and there are several software
tools that help implementing these simulations, such as BrownDye [2] and
the BROWNFLEX program included in the SIMUFLEX suite [3]. Some
relevant work has also been published on parallel implementations of these
simulations on GPUs [4], also including a simulation suite called BD BOX [5].
However, there is still little information on parallelization methods for these
simulations, especially about their performance and scalability on high per-
formance computing (HPC) systems. This work overcomes these limitations
by providing an accurate description of the parallelization of a Brownian dy-
namics simulation for a set of solvated particles in a certain period of time,
in order to build a suitable implementation for HPC systems. The paral-
lel algorithm has been developed using MPI and Unified Parallel C (UPC),
which illustrate two programming models, message-passing and Partitioned
Global Address Space (PGAS), respectively, to obtain high efficiency and
scalability. The most relevant information about the parallelization of the
different parts of the simulation is presented, and its performance is analyzed
on a supercomputer in order to explain the behavior of the code for different
test cases.

The rest of this work is organized as follows. First, Section 2 presents
the formal explanation of the simulation. Section 3 contains a detailed com-
putational description of the simulation code. In Section 4 details about the
parallelization strategies are outlined, and Section 5 presents performance
results of the parallel codes using different workloads and computational re-
sources. Finally, Section 6 extracts the main conclusions from this work.

2. Theoretical background of Brownian dynamics

The equation of motion, governing Brownian dynamics for solvated mo-
lecules in a fluid, has been stated by Ermak and McCammon [6] (based on
the Focker-Planck and Langevin descriptions):

ri(t+∆t) = ri(t)+
N
∑

j=1

∂Dij(t)

∂rj

∆t+
N
∑

j=1

1

kBT
Dij(t)Fj(t)∆t+Ri(t+∆t) (1)

This one-step propagation scheme takes into account the coupling of the
particles to the flow field via the diffusion tensor D ∈ R

3N×3N and the system-
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atic forces F, acting onto the particles with the global property
∑

j Fj = 0.

The vector R ∈ R
3N contains correlated Gaussian random numbers with

zero mean, which are constructed according to the fluctuation-dissipation
theorem, i.e.:

〈Ri,α〉 = 0 , α = x, y, z (2)

〈Ri(t + ∆t)RT
j (t + ∆t)〉 = 2Dij(t)∆t (3)

with Ri ∈ R
3 and Dij ∈ R

3×3, being sub-vectors and block-matrices corre-
sponding to particle i and particle pairs i, j, respectively. kBT is the thermal
energy of the system, where T is the temperature and kB the Boltzmann con-
stant. Depending on the approximation for the diffusion tensor, the partial
derivative on the right-hand side of Eq. 1 might drop out. This is the case e.g.
of the Oseen tensor and the Rotne-Prager tensor [7, 8]. The latter one takes
into account the finite size of solute particles, and its regularized version is
considered in the present work [7], thus fulfilling the requirement of positive
definiteness also for inter-particle distances rij < 2a where rij = ‖ri − rj‖.
Here, we give the expression for the so called minimum image convention.
The expression for periodic boundary conditions applied in the code is out-
lined in Appendix A. The minimum image formulation is given by:

Dii =
kBT

6πηa
I (4a)

Dij =






















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8πηrij

[
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I + r̂ij r̂
T
ij

)
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)]

: rij > 2a
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6πηa

[(

1 − 9
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rij
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)

I +
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32

rij

a
r̂ij r̂

T
ij

]

: rij ≤ 2a

(4b)

where r̂ij = (ri − rj)/rij. Applying this form of the diffusion tensor, the
displacement vector of the Brownian particles, ∆r = r(t + ∆t)− r(t), can be
rewritten in a more simple way:

∆r =
1

kT
DF∆t +

√
2∆tZξξξ (5)

where ξξξ is a vector of independent Gaussian random numbers. According to
Eq. 3, the relation R =

√
2∆tZξξξ holds with D = ZZT , which relates the

stochastic process to the diffusion matrix. Therefore, Z may be calculated
via a Cholesky decomposition or via the square root of D. Both approaches
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are very CPU-time consuming with a computational complexity of O(N3)
and impose a large computational load. Therefore the development of faster
and more efficient and scalable methods with smaller complexity is an im-
portant task, in order to overcome the limitations in the system size. Such
an approach was introduced by Fixman [9], who applied an expansion of
the random displacement vector R in terms of Chebyshev polynomials, ap-
proximating its values without constructing Z explicitly and reducing the
computational complexity to O(N2.25).

Both methods for the construction of correlated random variates, based
on the Cholesky decomposition and the Chebyshev approximation, will be
considered in the present work.

3. Implementation of the simulation code

The Brownian dynamics simulation has been initially implemented in se-
quential C code. The system under study consists of a cubic box where
periodic boundary conditions are applied, and the propagation of Brownian
particles is performed by evaluating Eq. 5. The systematic interactions be-
tween particles are modeled by a Lennard-Jones type potential, from which
the forces are obtained via the negative gradient:

V (rij) = 4ε

[

(

σ

rij

)12

−
(

σ

rij

)6
]

(6a)

Fij = −∇rij
V (rij) = 24ε

[

2

(

σ

rij

)12

−
(

σ

rij

)6
]

r̂ij

r2
ij

(6b)

where σ is the diameter of the particles and ǫ is the depth of the potential
minimum. This potential has a short range character and practically inter-
actions between particles are neglected for mutual distances rij > Rc, where
Rc is the radius of a so called cutoff sphere, which is chosen as Rc = 2.5 σ.
The distance rij is chosen according to the minimum image convention, i.e.
the shortest distance between particle i (located in the central simulation
box) and particle j or one of its periodic images is taken into account (see
Fig. 1). In the code, the diffusion tensor D is calculated in periodic images,
which implies a summation of particle pair contributions over all periodic
images. The expression, which consists of a splitting into a short and long
range contribution, is given in Appendix A. Depending on the parameters
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Figure 1: Example of the short range interaction model with periodic boundary conditions

κ, kmax, Rc,D in Eqs. A.3a-A.3d, which are determined by the required ac-
curacy and optimal runtime performance, the short range part of D might
exceed half of the box length (Rc,D > L/2), which makes it formally nec-
essary to test explicitly all nearest periodic images of particle j, whether or
not it contributes to D.

The main component of the code is a for loop. Each iteration of this loop
corresponds to a time step in the simulation, which calls several functions,
being calc force() and covar() the most time consuming among them
and thus the main targets of the parallelization. Function calc force() in-
cludes: (1) the propagation of particles (with O(N) complexity, where N is
the number of particles in the system), (2) the force computation, for which
a linked-cell technique [10] is used (O(N)), and (3) the setup of the diffu-
sion tensor (O(N2)). The correlated random displacements are calculated in
function covar() via a Cholesky decomposition (O(N3)) and alternatively
via the Fixman’s approximation method, with complexity O(N2.25) [9].

The values of the diffusion tensor D are computed in calc force() for
every pair of particles in the system according to the distance between them
in every dimension following the Rotne-Prager tensor description, and then
stored using double-precision floating point values in matrix D, which is de-
clared as a square pNDIM×pNDIM matrix, where pNDIM is the product of the
total number of particles (N) and the system dimensions (3). Thus, each
row/column in D is associated to a particle and a dimension (for example,
value D[3*4+2][3*8+2] contains the diffusion tensor between particles 4 and
8 in the third dimension, z ). The interaction values in D[a][b] are also stored
in D[b][a], being D symmetric, i.e. the values of the upper triangular part
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of D are computed and they are copied to the corresponding positions in the
lower triangular part. This data replication has several advantages for the
sequential algorithm because it helps simplifying the implementation of the
operations with matrix D, allowing more straightforward computations on
this matrix.

After the initialization of D in calc force(), function covar() calculates
the random displacement vector R, which requires the construction of cor-
related Gaussian random numbers with given covariance values (Eq. 3). As
stated in Section 2 (see Eq. 5), the random vector is written as:

R =
√

2∆tZξξξ (7)

where the random values ξξξ are obtained using the pseudo-random generator
rand() (a Box-Muller method [11] may also be used here), and Z can be
obtained either as a lower triangular matrix L from a Cholesky decomposition
or as the matrix square root S.

To obtain the entries of matrix L, the following procedure is applied:

Lii =

√

√

√

√Dii −
i−1
∑

k=1

L2
ik , for diagonal values in L (8a)

Lij =
1

Ljj

(

Dij −
j−1
∑

k=1

LikLjk

)

, where i > j (8b)

The random vector is then obtained via the following steps:

D =











D11 D12 ··· D1n

D21 D22 ··· D2n

...
...

...
...

Dm1 Dn2 ··· Dnn











Cholesky−→ L =











L11 0 ··· 0

L21 L22 ··· 0

...
...

...
...

Lm1 Ln2 ··· Lnn











L
matrix-vector−→ Ri =

√
2∆t

i
∑

j=1

Lij ξj

(9)

i.e. having calculated the diffusion tensor matrix D, a Cholesky decomposition
generates the lower triangular matrix L, from where R is generated via a
matrix-vector product between L and ξξξ.
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The alternative to this method is the use of Fixman’s algorithm, which
implements a fast procedure to approximate the matrix square root S using
Chebyshev polynomial series. The degree of the polynomial is fixed depend-
ing on the desired accuracy for the computed values. The advantage of this
method is that it does not need to build the matrix S explicitly, but con-
structs directly an approximation to the product Sξξξ in an iterative way. The
computations performed here represent a generalization of known series to
obtain the scalar square root to the case of vectors:

SM =

M
∑

m=0

amCm (10a)

where M is the degree of the polynomial, which controls the accuracy of
approximation. In the limit it holds that limM→∞ SM = S. Accordingly, the
vector of correlated Gaussian variates becomes:

ZM = SMξξξ =

M
∑

m=0

amCmξξξ =

M
∑

m=0

amzm (10b)

The coefficients am can be pre-computed [12] and the vectors zm are com-
puted within an iterative procedure:

z0 = ξξξ ; z1 = (daD + dbI)ξξξ ; zm+1 = 2 (daD + dbI)zm − zm−1 (11a)

with

da =
2

λmax − λmin

; db =
λmax + λmin

λmax − λmin

(11b)

where λmin, λmax are the upper and lower limits for the eigenvalues of D.
For more details, see references [13, 14].

The approximation vectors zm, as well as the maximum and minimum
eigenvalues of D, are computed analogously using two separate iterative al-
gorithms. These algorithms apply the technique of double buffering, i.e. use
a pair of arrays that are read or written alternatively on each iteration: every
approximation (associated to a particle in a dimension) is computed using all
the approximated values from the previous iteration, therefore the use of two
arrays avoids additional data copies and data overwriting. This procedure
will be illustrated in Section 4.4.2.

After computing the random displacements in an iteration, the function
move() performs the matrix-vector product between the diffusion matrix and
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the force vector F, and adds all the computed contributions to obtain the new
positions of the particles (reduction operation). The matrix-vector product
has O(N2) complexity for this function. Some additional physical values,
e.g. pressure, are also computed here to monitor and control the progress of
the simulation.

Table 1 presents the breakdown of the execution time of the sequential
program in the testbed used in the performance evaluation (see Section 5)
in terms of the previously discussed functions, using 256 and 1024 input
particles for 50 time steps of simulation. The diffusion tensor matrix D has
(3 × N)2 elements, thus its construction takes at least a complexity of O(N2).
This is true for the real space contributions of the Ewald sum as the cutoff
radius is of the order of half the system size (or even larger), in order to keep
the reciprocal space contribution, i.e. the number of k-values, small for a
given error tolerance.Since the mutual distances between particles are calcu-
lated in the real space contribution, it is natural to integrate the construction
of matrix D in the calculation of short range direct interactions between par-
ticles (whose complexity is O(N)), thus giving out the O(N2) complexity
stated in row “short range contributions” of Table 1. The long range con-
tribution to the diffusion tensor also has to be calculated for every matrix
element, i.e. for each particle pair, which also imposes a computational com-
plexity of O(N2). However, there is an additional contribution to the long
range part, giving rise to a larger complexity, since a set of reciprocal vectors
(cf. Appendix A) has to be considered to fulfill a prescribed error tolerance
in the Ewald sum, increasing the complexity to approximately O(N2.5). The
computations of covar() also tend to reveal the different complexities of
Cholesky decomposition and Fixman’s algorithm commented in Section 2.

Code Part Complexity N = 256 N = 1024

calc force() - short range contributions O(N2) 4.733 s 75.966 s
calc force() - long range contributions O(N2.5) 7.095 s 181.103 s

covar() - option 1: Cholesky O(N3) 3.733 s 250.578 s
covar() - option 2: Fixman O(N2.25) 0.762 s 17.735 s

move() O(N2) 0.019 s 0.341 s

Total time (with Cholesky) O(N3) 15.580 s 507.988 s
Total time (with Fixman) O(N2.5) 12.609 s 275.145 s

Table 1: Breakdown of the execution time of the sequential code
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4. Building the parallel implementation

The strong increase with the number of particles of the total execution
time is the main motivation for the development of a parallel implementation
of this code. Two approaches have been followed: (1) the use of a message-
passing programming model with the MPI C library, and (2) the use of
a parallel language, PGAS UPC [15], which extends ANSI C for parallel
processing.

The MPI library represents a traditional and widely used approach for
parallel programming, and nowadays is the de facto standard for program-
ming distributed memory architectures. Several mature and optimized im-
plementations of MPI are currently available (e.g., MPICH2 and Open MPI),
with bindings for multiple languages (C, Fortran and C++), making it suit-
able for the parallelization of this application.

However, MPI presents several limitations when programming hybrid
shared/distributed memory architectures, such as clusters of multi-core pro-
cessors, as well as scalability issues because of the two-sided nature of its
communications. Looking for alternatives to MPI, UPC has been selected to
develop another parallel simulation code that would potentially take more
advantage of the growing complexity of current multi-core systems. The ar-
chitectural improvements in these systems (e.g., the increasing number of
cores per processor, the use of improved cache coherence mechanisms or
heterogeneous components) imply higher complexity in code development
in order to exploit all resources efficiently, and here traditional parallel pro-
gramming approaches tend to provide either low programmability (e.g., MPI)
or low flexibility (e.g., OpenMP). As a result, new programming paradigms
have been proposed to adapt to new computer architectures, among which
PGAS has been attracting the attention of many developers in the last years.
The UPC language, based on the PGAS memory model, provides a global
view of a memory space shared by all threads, while accessing data effi-
ciently through a logical partitioning of the memory among threads. Each
one of these shared memory portions is said to have affinity to a particu-
lar thread, and all computations of a given thread in its associated memory
space will benefit from data locality. UPC provides several constructs to
exploit PGAS features, such as: (1) the definition of shared variables that
allow implicit data transfers via direct assignments, (2) a loop construct that
distributes the work in different iterations between threads (upc forall),
(3) the predefined constants THREADS (total number of threads in a program)
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and MYTHREAD (thread identifier), and (4) a collection of standard libraries
which include one-sided memory transfers and collective functions, among
others.

4.1. Parallel workload decomposition

A preliminary analysis of the structure of the simulation code reveals
that each iteration of the main loop, i.e. each time step, has a strong de-
pendence on the previous iteration, because the position of a particle in an
instant of time depends on calculations performed in the previous time step.
Therefore, these iterations cannot be executed concurrently, so the work dis-
tribution is only possible within each iteration. At this point, the main
parallelization efforts have to be focused on the workload decomposition of
calc force(), according to Table 1, but also considering the performance
bottlenecks that might arise when performing communications, especially at
the covar() function.

In order to allow the parallel computations needed to update the diffusion
tensor values and random displacements, all processes (for clarity purposes,
the term “processes” will be used when considering both MPI processes and
UPC threads) require to have access to the coordinates for every particle
in the system. Thus, all processes store all the initial coordinates of the
particles to avoid continuous remote calls to obtain the necessary coordinate
values. After each iteration, all coordinates are updated for every process
by means of function move(), thus minimizing communications. Moreover,
this assumption allows the parallel computation of short and long range con-
tributions without involving any communication: each process can compute
any element of matrix D independently from the rest, and therefore the par-
allelization of calc force() becomes straightforward. The tradeoff of this
approach is a slightly higher memory consumption (approximately pNDIM

double-precision additional values).
However, the computation of each random displacement in covar() de-

pends on many of the elements of matrix D, whose computation has been pre-
viously performed by different processes in calc force(), and consequently
communications are unavoidable here. Therefore, it is necessary to find a
suitable workload distribution of diffusion tensor values in matrix D to favor
the scalability of the code by minimizing the amount of communications re-
quired by covar(). The following subsections present different approaches to
increase the scalability of the code taking advantage of the specific features
of MPI and PGAS UPC.
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4.2. Shared memory direct parallelization

The use of the UPC shared memory region to store matrix D allows a
straightforward shared memory parallelization, as shown in Figure 2 for 4
threads using a sample matrix, divided in four chunks of equal size (one per
thread). Each element on it represents the diffusion tensor values associated
to a pair of particles in every combination of their dimensions, that is, a
3 × 3 submatrix. In UPC, all threads are able to access all the data stored
in the shared memory region, so this parallelization only requires changes
in the matrix indexing to support the access in parallel by UPC threads.
Here, the matrix is distributed in blocks of N/THREADS elements (i.e., 3 ×
3 submatrices) among threads. Each diffusion tensor value from the upper
triangular part of the matrix is computed by the thread to which it has
affinity (see left graph). After that, the upper triangular part is copied into
the lower triangular part (see right graph) as described in Section 3, using
implicit one-sided transfers initiated by the thread that has the source data
by means of assignments.

THREAD 0

THREAD 1

THREAD 2

THREAD 3

Local data movement
Remote data movementshared [ pNDIM*pNDIM / THREADS ] double D [pNDIM*pNDIM]

Figure 2: Work and data distribution with D as a shared matrix in UPC

This approach has allowed the quick implementation of a prototype of the
parallel code, providing a straightforward solution for distributed memory
architectures thanks to the shared memory view provided by UPC. This
represents a significant advantage over MPI, where the development of an
equivalent version of this parallelization would require a significantly higher
programming effort because of the lack of a shared memory view (data have
to be transferred explicitly among processes), showing poorer productivity.

However, there are two drawbacks in this parallelization. The first one
is its poor load balancing: thread 0 performs much more work than the
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last thread (THREADS-1). This workload imbalance can be partly alleviated
through the distribution of rows in a cyclic way, but this will not be enough
when the number of threads is large and few rows are assigned to each thread.
The second issue of this work distribution is the inefficiency of single-valued
remote memory copies [16], which is due to the use of virtual memory ad-
dresses to map the shared variables in UPC. While private variables have
addresses that are directly translated to physical positions in memory, shared
variables use an identifier that includes information about the thread to which
the variable has affinity, the data block to which it belongs (in arrays, this
can be defined with a block size parameter) and the offset of the variable
inside the data block. As a result, the computational cost of handling these
shared address translations is not acceptable when simulating large systems
for a long period of time.

4.3. Private distributed memory parallelization

Figure 3 presents the distribution of matrix D and its associated data
movements for a more balanced workload decomposition on private dis-
tributed memory, where each process is assigned a set of particles in the
system in order to compute their corresponding diffusion tensor values. Here
the number of particles associated to a process is not evenly divided, but
instead follows an analogous approach to the force-stripped row decomposi-
tion scheme proposed by Murty and Okunbor [17], with the goal of achieving
a more balanced number of computations and remote copies in matrix D.
This workload/domain decomposition consists in distributing the number of
elements in the upper triangular part of matrix D (pNDIM×(pNDIM+1)/2, de-
fined as nelems in the code) between the number of processes in the program
by assigning consecutive rows to process i until the total number of assigned
diffusion tensor values is equal to or higher than nlocalelems*(i+1), where
nlocalelems is nelems divided by the number of processes.

This approach has been implemented both in MPI and UPC. In both
scenarios, first all computations of diffusion tensor values are performed lo-
cally by each process, and then the values are moved to the corresponding
destination in the lower triangular part of matrix D. Sometimes the desti-
nation position is local to the process which has the source data (see local
data movements in the middle graph of Figure 3), whereas on the remaining
cases there are data transfers between processes (see remote data movements
in the right-most graph of Figure 3). Regarding the UPC parallelization,
matrix D has been defined as a private memory region (local to each thread)
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PROCESS 0

PROCESS 1

PROCESS 2

PROCESS 3

Local data movements Remote data movements

Figure 3: Balanced workload decomposition of D on private distributed memory

for each submatrix. The reason for this decision is that the UPC standard
does not allow the allocation of a different number of elements per thread in
the shared memory region, i.e. the block size of a shared array must be the
same for all threads.

Despite the relatively good balancing of this distribution, its main draw-
back is the significant overhead associated to the communications needed
to achieve the symmetry in matrix D. After obtaining the symmetric ma-
trix, the next step in the simulation (function covar()) involves either a
Cholesky decomposition or a Fixman approximation. The Cholesky decom-
position can take advantage of the previous matrix distribution, minimizing
the number of remote communications. Regarding Fixman’s algorithm, it
is really convenient to fill the lower triangular part of matrix D in order to
avoid smaller element-by-element data movements in covar(), but the com-
munication time may become too high even when few processes are used.
This is also confirmed by the results of Table 1: the sequential computation
of the interactions for 1024 particles takes less than 5 minutes for 50 time
steps, being the average calculation time of each tensor value of about 0.6
microseconds in each iteration, and after that a large percentage of these
computed values is remotely copied (about 68% in the example in Figure 3).
As a result, the cost of communications can easily represent a significant
percentage of the total execution time.

4.4. Optimization of the parallel implementation

An analysis of the previously presented parallel implementations has
shown different matrix decomposition options for D, as well as their associated
drawbacks, which have a significant impact on the random displacement gen-
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eration method considered in covar() (Cholesky or Fixman). Thus, the op-
timization of these implementations has taken into account different factors
depending on the random displacement algorithm, especially for Fixman’s
method, in order to exploit data locality and achieve higher performance
with MPI and UPC. The next subsections present the optimized parallel
algorithms for the computation of random displacements in covar().

4.4.1. Optimized parallel Cholesky decomposition

The optimized parallel Cholesky decomposition is based on the balanced
distribution presented in Section 4.3 (see left graph of Figure 3), and mini-
mizes communications by introducing some changes with respect to the se-
quential algorithm; more specifically, this parallel code does not fill the lower
triangular part of D, and performs an efficient workload partitioning that
maximizes data locality. Listing 1 presents the pseudocode of the algorithm.
Initially, process 0 computes the first column of the result matrix L using
its first row in D, calculates the random displacement associated to this first
row, and then broadcasts to the other processes the computed values of L,
that are stored in an auxiliary array of pNDIM elements (L row). Once all
processes have the auxiliary array values, two partial calculations are per-
formed in parallel: (1) a contribution to obtain the elements of matrix L in
the positions of their assigned elements of matrix D, and (2) a contribution
to the random displacement associated to each of their rows. These steps are
also applied to the rest of the rows in matrix D.

This algorithm reduces the data dependencies by breaking down the com-
putations of the elements in L and the final random displacements: both sets
of values are computed as sums of product terms (cf. Figure 1 and Eq. 9
in Section 3), thus a process can compute these sums partially as soon as it
obtains one of their associated terms. As a result, the random displacements
of every particle in every dimension are calculated step by step, showing a
fine grain workload decomposition that maximizes the scalability of the code.
Moreover, this algorithm takes advantage of a distribution of matrix L be-
tween processes similar to that of matrix D, where each process builds only
the submatrix associated to its particles, and the only additional storage re-
quired is an array of pNDIM elements (L row) that receives the values of the
processed row in each iteration.
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f o r every row ‘k ’ i n matrix D
i f the row i s l o c a l to t h i s thread

i f i t i s the f i r s t row in D ( row 0)
L [ 0 ] [ 0 ] = sq r t (D [ 0 ] [ 0 ] ) ;
f o r every element ‘ i ’ i n t h i s row

L [ 0 ] [ i ] = D [ 0 ] [ i ] /L [ 0 ] [ 0 ] ;
end for

e l s e
L [ k ] [ k ] = sq r t (L [ k ] [ k ] ) ;
f o r every element ‘ i ’ i n t h i s row

L [ k ] [ i ] = L [ k ] [ i ] /L [ k ] [ k ] ;
end for

end i f
d i splacement [ k ] += L [ k ] [ k ] ∗ random displ [ k ] ;

end i f

broadcast va lues L [ k ] [ k :pNDIM−1] to ‘ L row ’

f o r every row ‘ j ’ > ‘ k ’ i n matrix D
i f the row i s l o c a l to t h i s thread

f o r every element ‘ i ’ >= ‘ j ’ i n t h i s row
i f i t i s the f i r s t row in D ( row 0)

L [ j ] [ i ] = D[ j ] [ i ] − L row [ j ]∗ L row [ i ] ;
e l s e

L [ j ] [ i ] −= L row [ j−k ]∗ L row [ i−k ] ;
end i f

end for
di splacement [ j ] += L row [ j−k ]∗ random displ [ k ] ;

end i f
end for

end for

Listing 1: Pseudocode for the computation of displacements with Cholesky decomposition

4.4.2. Fixman’s algorithm with balanced communications

Figure 4 presents a domain decomposition and hence a workload distri-
bution, both for MPI and UPC, focused on maximizing load balancing and
exploiting local computations to reduce communications for Fixman’s algo-
rithm. Matrix D consists of diagonal and non-diagonal elements, and its dis-
tribution assigns to each process a balanced number of consecutive elements
of each type, regardless of the particles to which they correspond. Thus,
in Figure 4 the 16 diagonal elements are distributed among the 4 processes
(each one receives 4 diagonal elements), and the 120 remaining elements are
scattered (30 elements per process). Finally, every chunk is linearized in
arrayDiag (diagonal chunks) and arrayD (non-diagonal chunks) following
the flattening process shown at the bottom of Figure 4. This distribution fa-
vors local processing for diagonal values, as well as the balanced distribution
of data and communications for non-diagonal values.
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i n i t i a l i z e maximum eigenva lue ‘ eigmax ’ to 1
i n i t i a l i z e ‘ eigenx ’ ( e i genva lue approximations f o r each row ) to 1
whi le the de s i r ed accuracy f o r ‘ eigmax ’ i s not reached

i f the i t e r a t i o n number i s even
f o r every l o c a l element in ‘ arrayD ’

compute p a r t i a l approximation f o r ‘ eigmax ’ \
i n ‘Dcopy ’ us ing ‘ eigenx ’

end for
f o r every l o c a l element in ‘ arrayDiag ’

compute p a r t i a l approximation d i r e c t l y \
i n ‘ e igenx d ’ us ing ‘ eigenx ’

end for
a l l−to−a l l c o l l e c t i v e to get a l l p a r t i a l
approximations from ‘Dcopy ’

f o r every l o c a l element ‘ i ’ i n ‘ e igenx d ’
f o r every p r oc e s s ‘ j ’

sum the p a r t i a l r e s u l t o f p r o c e s s ‘ j ’ i n ‘Dcopy ’ \
to get the f i n a l approximation o f ‘ e i genx d [ i ] ’

end for
i f ‘ e i genx d [ i ] ’ i s the maximum value

update ‘ eigmax ’
end i f

end for
a l l g a t h e r the computed va lues in ‘ e igenx d ’
a l l r e du c e the maximum value o f ‘ eigmax ’ from a l l p r o c e s s e s

e l s e
the same ope r a t i on s as above , but changing ‘ eigenx ’ \
by ‘ e igenx d ’ and v i c e ver sa

end i f
endwhi le

Listing 2: Pseudocode for the parallel computation of the maximum eigenvalue with Fix-
man’s algorithm

Listing 2 presents the pseudocode that implements the parallel calcula-
tion of the maximum eigenvalue in matrix D through an iterative method,
which can be analogously applied to the subsequent approximation of the
minimum eigenvalue and the elements of matrix S, as commented for the se-
quential code in Section 3. Each process calculates locally a partial result for
the approximated eigenvalue using its assigned diffusion tensor values, and
then an all-to-all collective communication is invoked by every process to get
all the partial results of its assigned rows. Finally, each process computes
the total approximation of its associated eigenvalues, an allgather collective
operation is used to provide all processes with all the approximations, and
an allreduce collective obtains the maximum eigenvalue of all processes in
order to start a new iteration of the method. The computed eigenvalues are
here assigned alternatively to arrays eigenx and eigenx d with the goal of
avoiding unnecessary data copies because of the iterative method, as com-
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mented in Section 3. As the distribution of particles is initially balanced, as
well as the amount of communications performed by each process, there is no
relevant workload difference among the processes, regardless of the number
of iterations.

Besides load balancing, another benefit of this distribution is the opti-
mized memory storage of variables, because it only considers the minimum
number of elements that are necessary for the simulation instead of using
the whole square matrix. Additionally, this implementation requires the use
of indices that mark, for example, the starting position of the values asso-
ciated to each particle in a dimension, which in turn increases slightly the
complexity of the source code. However, these indices are computed only
once before the simulation loop begins, and therefore they do not have a
significant influence on performance.

4.4.3. Fixman’s algorithm with minimum communications

The previous algorithm for Fixman’s method has limited its scalability
because of the overhead derived from the communications required at each
iteration. In order to reduce the amount of communications, a block dis-
tribution of matrix D by rows is proposed in Figure 5, both for MPI and
UPC. This distribution considers that the particles in the system are evenly
distributed between processes, and each of them computes all the diffusion
tensor values of its associated particles. As a result, Fixman’s algorithm can
be implemented using a minimum number of communications: the approx-
imations of the correlation coefficients for every particle in every dimension
are always computed locally by the corresponding process, and only an all-
gather collective operation is necessary at the end of each iteration. The
main drawback of this implementation is its higher computational cost, be-
cause it has to compute roughly double the number of elements, as it does
not take full advantage of the symmetry in D (only locally). However, the
scalability of this approach is significantly higher than that of the previous
algorithms: this is due to the reduced number of communications required,
which allows to outperform previous approaches as the number of processes
increases.

4.5. Implementation of communications using collective functions

As the previous subsections have shown, the most relevant communi-
cations in the parallel simulations are collective operations, which involve
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Figure 5: Work distribution with D as a full-size private matrix

multiple processes and perform common data movements and reduction op-
erations (e.g., broadcast, all-to-all, allgather, allreduce...). Both MPI and
UPC provide collective routines in their respective specifications (see [18]
for UPC). However, UPC collectives generally present more limitations than
MPI, which are derived from the strict management of the shared memory
space in UPC. Many of these collective communications are performed using
the same array as source and destination of the operation, which is supported
in MPI by the MPI IN PLACE wildcard, whereas UPC collectives do not sup-
port this feature, because data integrity would not be guaranteed. Moreover,
the UPC collectives library presents additional issues, such as the necessary
definition of source and destination as shared arrays (the most efficient UPC
implementations are based on the use of the private memory space [16]) and
the use of fixed-size data chunks for communications in all threads. These
facts have traditionally led UPC programmers to replace these functions with
raw data copy functions [16], reducing significantly the programmability of
the applications.

As a consequence of these limitations, the use of standard collective func-
tions in the UPC code is not possible because many data transfers involve
private arrays, a variable number of elements per thread or in-place com-
munications. In order to address these issues, we have developed a library
of extended UPC collectives [19]. Figure 6 presents an example of the data
movements involved in an extended broadcast operation, which are UPC
one-sided (that is, communications invoked by a single peer of the communi-
cation) memory copy functions, where the source (src) and destination (dst)
are both private arrays, using two steps: (1) the source thread copies the tar-
get data to a temporary shared buffer (tmp), and (2) the rest of threads copy
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the source data in parallel. This is a representative example of operation,
shown for illustrative purposes, which is used in the library only for intra-
node communications on shared memory, because it exploits the efficiency of
the parallel access to shared memory [20]. For inter-node communications dif-
ferent algorithms have been developed: (1) a binomial tree approach for data
movement collectives, and (2) a specific concatenation-like procedure [21] for
the in-place all-to-all collective, which avoids source data overwriting and
balances the workload among threads by calculating the minimum neces-
sary data transfers according to the number of threads in the program. As
a result, these functions provide an efficient implementation of the desired
communications in UPC.

SHARED
MEMORY

PRIVATE
MEMORY

THREAD 0 THREAD 1 THREAD 2 THREAD 3

src

dst

tmp

              upc_memput (1)

          3 x upc_memget (2)

 
                          memcpy (2)

Figure 6: Data movements in a UPC broadcast implementation based on private arrays

5. Performance evaluation

The evaluation of the developed parallel Brownian dynamics codes has
been accomplished on the JuRoPa supercomputer at Jülich Supercomputing
Centre, ranked 63rd in the TOP500 List of June 2012. It is a representative
supercomputer system with hybrid shared/distributed memory architecture
which consists of 2208 compute nodes, each of them including 2 Intel Xeon
X5570 (Nehalem-EP) quad-core processors at 2.93 GHz (hence 8 cores per
node), 24 GB of DDR3 memory at 1066 MHz and InfiniBand QDR HCA
with non-blocking Fat Tree topology. The UPC compiler used was Berkeley
UPC v2.14.2 (a UPC-to-C source-to-source compiler, released in May 2012)
with the Intel C Compiler v11.1 as backend C compiler, and relying on the
IBV (InfiniBand Verbs) conduit for efficient communications on InfiniBand.
The MPI compiler used here is ParaStation MPI 5.0.27-1 (March 2012) [22].
All the MPI and UPC executions were compiled with the optimization flag

21



-O3. In order to perform a fair comparison, all speedup results have been
calculated taking the execution times of the original sequential C code as
baseline, as it represents the fastest approach. The problem size considered
for each graph (Figures 7-9) is fixed for a varying number of cores, thus
showing strong scaling, and all tests use a fill-up policy for process scheduling
in the nodes of the testbed system, always with one process per physical
core. Three different versions of the simulations are shown depending on
the algorithm and work distribution used for the computation of random
displacements: (1) using Cholesky decomposition (see Section 4.4.1), (2)
using Fixman’s algorithm with the distribution presented in Section 4.4.2
that balances workload and communications (referred to as bal-comms from
now on), and (3) using Fixman’s algorithm with matrix D distributed to
minimize communications, as described in Section 4.4.3 (referred to as min-

comms).
Figure 7 shows the execution times and speedups of the parallel simulation

of 256 particles over 100 time steps (double the workload of Table 1). The
results show that, on the one hand, the best performance up to 16 cores
is obtained by the version that uses Fixman with balanced workload and
optimized storage (bal-comms), with very similar results for MPI and UPC.
However, the weight of allgather and all-to-all communications in covar()

limits heavily the scalability with this approach from 32 cores onward, as
the ratio computation/communication time is lower than in the other tests.
On the other hand, Fixman min-comms presents the opposite situation: the
redundant computations cause poor performance for a small number of cores,
but the minimization of communications provides good scalability as the
number of cores increases, even for 128 cores (that is, when only 2 particles
per core are processed). The codes based on Cholesky are able to scale up
to 32 cores, but performance decreases for 64 and 128 cores because of the
significant weight of the communication overhead in the total execution time.
These results also show that codes relying on Fixman’s algorithm outperform
Cholesky-based codes, either using the bal-comms version (except for a large
number of cores) or the min-comms one. Additionally, the execution times
when using Cholesky show a higher increase with the number of particles
than in the codes based on Fixman (see Table 1), confirming that Fixman is
the best choice for the generation of random displacements, hence discarding
the use of Cholesky with larger problem sizes.

Comparing MPI and UPC bal-comms codes when using 32 or more cores,
it can be observed that the overhead of the all-to-all communications, which is
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Figure 7: Performance results with 256 particles
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Figure 8: Performance results with 1024 particles
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Figure 9: Performance results with 4096 particles
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due both to memory requirements for internal buffering and synchronization
costs, becomes an important performance bottleneck, in particular for MPI.
Regarding UPC, our implementation of the extended all-to-all function (see
Section 4.5) manages memory and synchronizations more efficiently.

Figures 8 and 9 present the performance results with 50 time steps using
1024 and 4096 particles, respectively. In general, the results of the simula-
tions are very similar to those of Figure 7, so an analogous interpretation
can also be applied here: on the one hand, the bal-comms version obtains
an almost linear speedup up to 32 cores for 1024 particles, and up to 64
cores for 4096 particles. Additionally, bal-comms obtains the best results up
to the number of cores for which the computation time is still higher than
the communication time (i.e., up to 32 cores for 1024 particles, and up to
64 cores with MPI and 128 cores with UPC for 4096 particles), and again
UPC all-to-all communications represent a better choice than MPI in the
simulation. On the other hand, min-comms shows the highest scalability,
both for MPI and UPC, achieving in general a speedup of about half of the
number of cores being used (i.e., a parallel efficiency of around 50%). Taking
into account that this implementation requires almost double the number
of computations of the original sequential code (hence its speedup with one
core is around 0.6), this represents a significant scalability. Furthermore, the
min-comms results in Figure 9 show a slight difference between MPI and
UPC for 1024 and 2048 cores, mainly caused by the shared memory cache
coherence mechanisms of the UPC runtime, whose implementation presents
a significant overhead when handling thousands of cores.

Another factor to be considered is the number of particles handled per
core, which limits the exploitation of each parallel solution. For example,
according to the UPC performance results of Figures 7-9 and assuming that
all time steps in a simulation have the same workload, the bal-comms version
generally obtains the best results when 16 or more particles per core are
simulated in a system with 256 particles (that is, when 16 or less cores are
used); for simulations of 1024 and 4096 particles, bal-comms obtains the best
results with 32 or more particles per core. This situation is illustrated in
Figure 10 in the range of 16–256 cores, where the efficiency of the bal-comms

algorithm for all problem sizes can be seen in relative terms compared to
the performance of the min-comms counterpart: the higher the percentage
is, the more efficient the algorithm is for the corresponding problem size.
These results indicate that the bal-comms approach is overall a good choice
when using more than 16-32 particles per core, i.e. scenarios where the
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memory is limited (because of the optimized storage of matrix D commented
in Section 4.4.2) and the ratio computation/communication time is high,
regardless of the actual number of cores or particles used in the simulation.
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Figure 10: Efficiency comparison between bal-comms and min-comms algorithms, ex-
pressed as the percentage of the efficiency of the min-comms code

6. Conclusions

The simulation of Brownian dynamics is a very relevant tool to analyze
the interaction of particles under certain conditions, representing a computa-
tionally intensive task that has motivated the implementation of an efficient
and scalable parallel code to support the study of large particle systems on
high performance supercomputers under representative constraints. Thus,
this work has presented the design and implementation of a parallel Brownian
dynamics simulation using the MPI library and the PGAS UPC language.
While MPI represents a traditional and widely extended message-passing
parallel programming approach on distributed memory, UPC focuses on pro-
viding programmability resources for high performance applications by using
the PGAS memory model, which is especially suitable on hybrid shared/dis-
tributed memory architectures.

The main contributions of this work are: (1) the analysis of data depen-
dencies in the simulation codes and the proposed domain decompositions for
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parallel systems, (2) the assessment of the alternatives in the work distribu-
tions in order to maximize performance and manage memory requirements
efficiently, (3) the application of more efficient and usable collective commu-
nications for UPC, and (4) the performance evaluation of different versions
of the parallel code on a representative supercomputer with a large number
of cores.

The experimental results have shown that codes using Fixman’s algorithm
outperform codes with Cholesky decomposition, and that there is no single
optimal approach for all scenarios: the balanced communications version
(bal-comms) presents the best performance when computation time is higher
than communication time, whereas a more scalable approach (min-comms)
can take advantage of higher numbers of cores. Thus, the implemented ap-
proaches, both with MPI and UPC, are able to scale performance up to thou-
sands of cores (min-comms) while providing an alternative implementation
with less memory requirements for a reduced number of cores (bal-comms).
Regarding the programming models considered, significant differences have
been found. On the one hand, the higher maturity of MPI routines has pro-
vided high performance and stability (showing the best performance when
using more than 1024 cores) at the cost of a higher programming effort. On
the other hand, UPC has provided lower time to solution, allowing the de-
velopment of quick parallel prototypes thanks to its shared memory view
while providing good scalability by taking advantage of the use of one-sided
operations on a hybrid shared/distributed memory architecture, such as the
evaluated supercomputer (a cluster of multicore processors). Moreover, its
limitations in the support of collective operations have been overcome, thus
being UPC able to rival MPI in performance and even to outperform its MPI
bal-comms counterpart code when an extensive use of collective communi-
cations (mainly in-place ones) is necessary, showing better results in this
scenario as the number of cores increases.

As main outcome of this work, developers and users of parallel simulation
codes in general, and of Brownian dynamics in particular, would significantly
benefit from the lessons learned during the development of the multiple par-
allel implementations presented in this paper.
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Appendix A. Rotne-Prager tensor

In this Appendix the expression for the regularized version of the Rotne-
Prager tensor in periodic boundary conditions is given. The expression fol-
lows closely the one derived by Beenaker [23] with the extension of the reg-
ularization for distances r < 2a.

The tensor D is split into four parts:

D(rij) =
∑

ℓℓℓ

θ(rij(0) − 2a) [D(1)(rij(ℓ)) + D(2)(rij(ℓ)) + D(3)(rij(ℓ))]

+(1 − θ(rij(0) − 2a)) D(4)(rij(ℓ))

(A.1)

where

θ(x) =

{

0 : x < 0
1 : x ≥ 0

(A.2)

is the step function and rij(ℓ) = ri−rj +ℓℓℓL, with L the simulation box length
and ℓℓℓ = (ℓx, ℓy, ℓz)

T ∈ Z
3, i.e. the resulting tensor contains all contributions

between particle i and j plus all periodic images of particle j. The individual
terms of the tensor are given by:

D(1)(rij) =
kBT

6πηa

(

1 − 6√
π

κa

(

1 +
20

9
κ2a2

))

I δijδαβ (A.3a)

D(2)(rij) =
kBT

6πηa
θ(rij − Rc,D)

{

I

(

3

4

a

rij

+
1

2

a3

r3
ij

)

erfc(κrij) (A.3b)

+I
1√
π

(

4κ7a3r4
ij + 3κ3ar2

ij − 20κ5a3r2
ij −

9

2
κa + 14κ3a3 + κ

a3

r2
ij

)

× exp(−κ2r2
ij) + r̂r̂

(

3

4

a

rij

− 3

2

a3

r3
ij

)

erfc(κrij)

− r̂r̂

(

4κ7a3r4
ij + 3κ3ar2

ij − 16κ5a3r2
ij −

3

2
κa + 2κ3a3 + 3κ

a3

r2
ij

)

×
exp (−κ2r2

ij)√
π

}
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D(3)(rij) =
kBT

6πηa

1

V

∑

|k|<kmax

(I − k̂k̂)

(

a − 1

3
a3k2

)(

1 +
1

4

k2

κ2
+

1

8

k4

κ4

6π

k2

)

× exp

(

1

4

k2

κ2

)

cos(krij(ℓ))

(A.3c)

D(4)(rij) =
kBT

6πηa

(

1 − 9

32

rij

a

)

I +
∑

ℓ

rij(ℓ)>2a

D(2)(rij(ℓ)) + D(3)(rij(ℓ)) (A.3d)

with

δij =

{

0 : i 6= j
1 : i = j

(A.4)

the Kronecker-δ and α, β = x, y, z being cartesian indices of the position
vectors. Since these expressions are approximations to the evaluation of an
infinite sum, parameters which control the limits in the sums are introduced,
i.e. Eq. A.3b is evaluated only for particle pairs within a cutoff radius Rc,D

and Eq. A.3c is limited to wavenumbers |k| < kmax, where k = 2π/Ln, n ∈
Z

3. The parameters Rc,D, kmax, κ of the periodic version of the Rotne-Prager
tensor have to be determined according to an error threshold ǫ. There is no
unique set of parameters fulfilling this requirement, but one may obtain an
optimal set of parameters which, for a given ǫ, minimizes the runtime.
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