

Escola Politécnica Superior

TRABAJO FIN DE GRADO CURSO 2017/18

Petrolero Neo-Pánamax con 200000 TPM

Grado en Ingeniería Naval y Oceánica

Cuaderno 10:

PLANTA PROPULSORA Y SISTEMAS AUXILIARES

Escola Politécnica Superior

GRADO EN INGENIERÍA NAVAL Y OCEÁNICA TRABAJO FIN DE GRADO

CURSO 2017-2018

PROYECTO NÚMERO: 18-07

TIPO DE BUQUE: PETROLERO DE CRUDOS

CLASIFICACIÓN, COTA Y REGLAMENTOS DE APLICACIÓN:

BUREAU VERITAS, SOLAS, MARPOL NEO PANAMAX

CARACTERÍSTICAS DE LA CARGA:

200.000 TPM. Crudos del Petróleo y sus derivados con una densidad máxima de 0,99 g/ml

VELOCIDAD Y AUTONOMÍA: 16 nudos en condiciones de servicio. 85% MCR + 15% de margen de mar. 18.000 millas a la velocidad de servicio.

SISTEMAS Y EQUIPOS DE CARGA / DESCARGA: En cámara de bombas

PROPULSIÓN: Propulsión Diesel eléctrica 2 Líneas de ejes. LNG para servicios en puerto

TRIPULACIÓN Y PASAJE: 30 personas en camarotes individuales

OTROS EQUIPOS E INSTALACIONES: Los habituales en este tipo de buques.

Ferrol, 19 Setiembre 2017

ALUMNO/A: Da Julio Barreiro Montes

Introducción

El siguiente cuaderno busca realizar una descripción de la planta propulsora y sus contenidos pueden dividirse en los siguientes apartados:

- Justificación del motor.
- Justificación de la potencia.
- Sistemas auxiliares relacionados con la propulsión.
- Estimación del consumo del motor propulsor y justificación de la autonomía requerida. Esto se verá dentro del servicio de combustible de los sistemas auxiliares.
- Instalación LNG auxiliar.
- Disposición preliminar de la cámara de máquinas.

Las características principales del buque son las siguientes:

Desplazamiento	227611,8 t
Lpp	276 m
Manga	49 m
Puntal	25,75 m
Calado	19,19 m
Cb	0,855
Ср	0,858
Cm	0,996
Cwp	0,922
Superficie mojada	21664,527 m^2
Superficie flotación	12468,912 m^2
Velocidad	16 knots
Peso en rosca	27611,8 t

Índice

1 Justificación del motor:	4
2 Justificación de la potencia	4
3 Elementos y sistemas auxiliares	7
3.1- Servicio de combustible	7
3.2- Servicio de lubricación	11
3.3- Servicio de aire comprimido	13
3.4- Servicio de refrigeración	15
4 Instalación de LNG	19
5 Disposición general de la cámara de máquinas	20
6 Bibliografía	22
Anexo: Planos cámara de máquinas	23

1.- Justificación del motor:

Como se observa en los Requisitos Previos de Actuación (RPA), habrá dos líneas de ejes, cada uno con su propia hélice.

Este método de propulsión cuenta con varias ventajas:

- Segregación de la potencia total en dos motores
- Posibilidad de navegar con un motor averiado
- Mayor fiabilidad y flexibilidad de la planta propulsora.

El tipo de propulsión es la <u>diésel eléctrica</u>, de modo que la planta propulsora cuenta con motores generadores diésel por un lado y por otro lado con propulsores eléctricos que van conectados a las hélices.

Los motores diésel se encargan no sólo de la propulsión, sino de la generación eléctrica durante la navegación y el accionamiento de diversos equipos.

Así pues, en este cuaderno nos centraremos principalmente en las instalaciones diésel.

2.- Justificación de la potencia

La potencia necesaria del sistema propulsivo es de 29500 kW, a la que hay que sumarle lo requerido por la instalación eléctrica, que puede aproximarse como 2500 kW. En total los motores deben producir un mínimo de 32000 kW.

Los motores serán cuatro **Wartsilla 12V46F** capaces de conseguir una potencia máxima de 14400 Kw cada uno. En condiciones normales sólo estarán en funcionamiento tres de ellos, quedando uno de reserva. Operando al 75% de su potencia total, obtenemos 32400 kW.

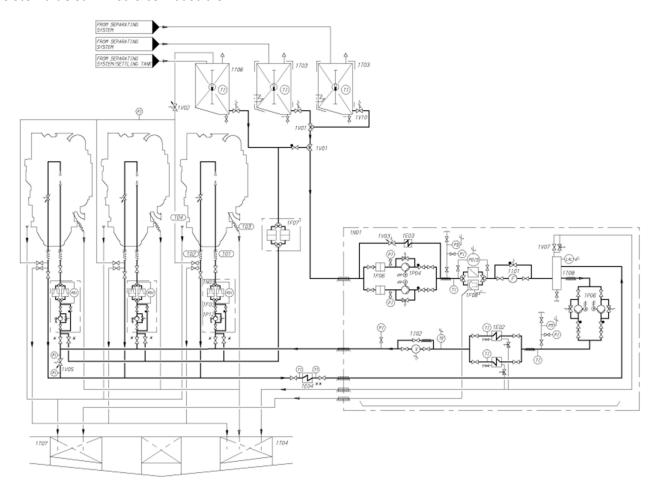
Para confirmar que la potencia es la indicada por el fabricante, calculamos la potencia por cilindro del motor partiendo de la presión media efectiva, el volumen de los cilindros, las revoluciones del motor y si éste es de 2 (a=1) o 4 tiempos (a=2)

- Volumen cilindro $(cm^3) = \pi * D^2 * \frac{h}{4} = \pi * 46^2 * \frac{58}{4} = 96390,34 \ cm^3 = 96,390 \ l$
- Volumen total (Cilindrada) = $V_{Cilindro} * n_{Cilindros} = 96,390 * 12 = 1156,684 l$
- Presión media efectiva (pme) = 24.9 bar
- $BHP_{cil} = N(rpm) * pme(bar) * \frac{V_{cil}(cm^3)}{a*450000} = 19200,95 hp$
- Potencia total = $19200,95 * 0,736 \frac{kN}{hp} = 14132 \ kW$

A continuación mostramos una hoja con las características del motor escogido:

Wärtsilä 12V46F		ME IMO Tier 2	DE IMO Tier 2
Cylinder output	kW	1200	1200
Engine speed	rpm	600	600
Engine output	kW	14400	14400
Mean effective pressure	MPa	2.49	2.49
Combustion air system (Note 1)			
Flow at 100% load	kg/s	25.0	25.0
Temperature at turbocharger intake, max. (TE 600)	°C	45	45
Temperature after air cooler, nom. (TE 601)	°C	50	50
Exhaust gas system (Note 2)			
Flow at 100% load	kg/s	26.16	26.16
Flow at 85% load	kg/s	22.8	23.4
Flow at 75% load	kg/s	21.6	23.4
Flow at 50% load	kg/s	14.88	18.84
Temp. after turbo, 100% load (TE 517)	°C	366	366
Temp. after turbo, 85% load (TE 517)	°C	320	316
Temp. after turbo, 75% load (TE 517)	°C	322	309
Temp. after turbo, 50% load (TE 517)	°C	325	273
Backpressure, max.	kPa	3	3
Calculated pipe diameter for 35 m/s	mm	1309	1309
,,,			
Heat balance at 100% load (Note 3)			
Jacket water, HT-circuit	kW	1632	1632
Charge air, HT-circuit	kW	2976	2976
Charge air, LT-circuit	kW	1524	1524
Lubricating oil, LT-circuit	kW	1464	1464
Radiation	kW	420	420
Fuel system (Note 4)			
Pressure before injection pumps, nom. (PT 101)	kPa	0 ± 40	0 ± 40
Flow to engine, approx.	m³/h	11.4	11.4
HFO viscosity before engine	cSt	1624	1624
Max. HFO temperature before engine (TE 101)	°C	140	140
MDF viscosity, min.	cSt	2.0	2.0
Max. MDF temperature before engine (TE 101)	°C	45	45
Leak fuel quantity (HFO), clean fuel at 100% load	kg/h	9.0	9.0
Leak fuel quantity (MDF), clean fuel at 100% load	kg/h	45.0	45.0
Fuel consumption at 100% load	g/kWh	178.7	178.7
Fuel consumption at 85% load	g/kWh	172.5	173.7
Fuel consumption at 75% load	g/kWh	177.0	182.7
Fuel consumption at 50% load	g/kWh	180.1	190.6
Lubricating oil system			
Pressure before bearings, nom. (PT 201)	kPa	500	500
Pressure after pump, max.	kPa	800	800

Wärtsilä 12V46F		ME IMO Tier 2	DE IMO Tier 2
Cylinder output	kW	1200	1200
Engine speed	rpm	600	600
Suction ability main pump, including pipe loss, max.	kPa	40	40
Priming pressure, nom. (PT 201)	kPa	80	80
Temperature before bearings, nom. (TE 201)	°C	56	56
Temperature after engine, approx.	°C	75	75
Pump capacity (main), engine driven	m³/h	306	260
Pump capacity (main), electrically driven	m³/h	259	210
Oil flow through engine	m³/h	200	200
Priming pump capacity	m³/h	70	70
Oil tank volume in separate system, min	m ³	22.5	22.5
Oil consumption at 100% load, approx.	g/kWh	0.7	0.7
Crankcase ventilation flow rate at full load	l/min	3540	3540
Crankcase ventilation backpressure, max.	kPa	0.4	0.4
Oil volume in turning device	- 1	70.0	70.0
Oil volume in speed governor	1	7.1	7.1
High temperature cooling water system			
Pressure at engine, after pump, nom. (PT 401)	kPa	250 + static	250 + static
Pressure at engine, after pump, max. (PT 401)	kPa	530	530
Temperature before cylinders, approx. (TE 401)	°C	74	74
Temperature after charge air cooler, nom.	°C	9195	9195
Capacity of engine driven pump, nom.	m³/h	210	210
Pressure drop over engine, total	kPa	150	150
Pressure drop in external system, max.	kPa	100	100
Pressure from expansion tank	kPa	70150	70150
Water volume in engine	m ³	2.0	2.0
Low temperature cooling water system			
Pressure at engine, after pump, nom. (PT 451)	kPa	250 + static	250 + static
Pressure at engine, after pump, max. (PT 451)	kPa	530	530
Temperature before engine, max. (TE 451)	°C	38	38
Temperature before engine, min. (TE 451)	°C	25	25
Capacity of engine driven pump, nom.	m³/h	210	210
Pressure drop over charge air cooler	kPa	50	50
Pressure drop over built-on lube oil cooler	kPa	20	20
Pressure drop over built-on temp. control valve	kPa	30	30
Pressure drop in external system, max.	kPa	150	150
Pressure from expansion tank	kPa	70 150	70 150
Water volume in engine	m ³	0.6	0.6
Starting air system (Note 5)			
Pressure, nom. (PT 301)	kPa	3000	3000
Pressure at engine during start, min. (20°C)	kPa	1500	1500
Pressure, max. (PT 301)	kPa	3000	3000
Low pressure limit in air vessels	kPa	1800	1800
Consumption per start at 20°C (successful start)	Nm ³	12.0	12.0
Consumption per start at 20°C, (with slowturn)	Nm ³	15.0	15.0


3.- Elementos y sistemas auxiliares.

Para funcionar, los motores requieren una serie de equipos auxiliares. En este apartado veremos los siguientes:

- Servicio de Combustible: Capacidad de tanques de uso diario, bombas del servicio de trasiego y alimentación, y depuración del combustible.
- Servicio de refrigeración: Dimensionado de bombas e intercambiadores.
- Servicio de aire de lubricación: Dimensionado de tanques de almacén de aceite y bombas.
- Servicio de arranque con aire comprimido: Definición de equipos y dimensionado de botellas y compresores.

3.1- Servicio de combustible

En el documento de la **Product Guide** de Warsilla viene indicada la disposición general del sistema de suministro combustible:

Siendo cada uno de los componentes los indicados en la siguiente tabla.

System	components			Pipe connections	
1E02	Heater	1P12	Circulation pump (HFO/MDF)	101	Fuel inlet
1E03	Cooler	1T03	Day tank (HFO)	102	Fuel outlet
1E04	Cooler (MDF)	1T04	Leak fuel tank, clean fuel	103	Leak fuel drain, clean fuel
1F03	Safety filter (HFO)	1T06	Day tank (MDF)	104	Leak fuel drain, dirty fuel
1F06	Suction filter	1T07	Leak fuel tank, dirty fuel		
1F07	Suction strainer (MDF)	1T08	De-aeration tank		
1F08	Automatic filter	1V01	Change-over valve		
1101	Flow meter	1V02	Pressure control valve (MDF)		
1102	Viscosity meter	1V03	Pressure control valve		
1N01	Feeder/booster unit	1V05	Overflow valve (HFO/MDF)		
1N03	Pump and filter unit (HFO/MDF)	1V07	Venting valve		
1P04	Fuel feed pump	1V10	Quick closing valve		
1P06	Circulation pump (booster unit)				

En nuestro buque hay <u>dos tanques de uso diario</u>, estando uno a cada costado del buque. Para calcular su capacidad mínima debemos saber el consumo de combustible de los motores, sabiendo que dichos motores emplean HFO de densidad máxima 0,991.

Se sabe que el consumo de combustible al 75% de la carga es de 177g/(KW*h), es decir, que con 32400 kW de potencia tenemos:

$$\frac{177 * 32400}{0,991 * 1000} = 5786,88 \frac{litros}{hora}$$

Según las RPA, con una autonomía de 18000 millas y 16 nudos a velocidad de servicio, nos sale un trayecto de 1125 horas.

Por tanto la capacidad total será de: 6510,242 m^3 + margen de seguridad

Los tanques de uso diario deben tener cada uno capacidad suficiente para 1 día de navegación. Es decir, su capacidad mínima será de:

Según el estudio de los tanques del Cuaderno 4, nuestros tanques tienen una capacidad de 177440 litros = 177,44 metros cúbicos, por lo que resultan válidos.

<u>Bombas de trasiego</u>: Dispondremos de dos bombas de trasiego, cada una capaz de rellenar los dos tanques de sedimentación en 8 horas, por lo que siempre estará disponible una de seguridad en caso de fallo en alguna de ellas.

Se emplearán bombas de tornillo. Estimando su rendimiento como 0,65 y una presión de descarga de 3 bares = 30 metros columna de agua, la potencia necesaria para el accionamiento será la siguiente:

$$Pot = \frac{Q\left(\frac{m^3}{h}\right) * H(m.c.a) * \rho\left(\frac{kg}{m^3}\right)}{75 * 3600 * \eta}$$

$$Pot = \frac{22,028 * 30 * 991}{75 * 3600 * 0.65} = 3,7316 \ hp = 2,7445 \ kW$$

<u>Bombas de alimentación</u>: Con más de dos motores conectados, es necesario instalar una bomba de alimentación antes de cada uno para asegurar una circulación igual por todos.

Presuponiendo una eficiencia de 0,5:

Caudal necesario =
$$\frac{5786,88}{3} \left(\frac{l}{h}\right) = 1928,96 \frac{l}{h} = 1,928 \frac{m^3}{h}$$

$$Presión = 10 \ bar = 100 \ m. \ c. \ a.$$

$$Pot = \frac{Q\left(\frac{m^3}{h}\right) * H(m. \ c. \ a) * \rho\left(\frac{kg}{m^3}\right)}{75 * 3600 * \eta}$$

$$Pot = \frac{1,928 * 100 * 991}{75 * 3600 * 0,5} = 1,416 \ hp = 1.04 \ kW$$

<u>Calentadores:</u> La temperatura de un tanque diario de HFO suele situarse por encima de 90°C, y en los motores suele introducirse a una temperatura no mayor a 135°C.

La diferencia de temperaturas máxima es de 45ºC, y es la que usaremos para calcular el calentador.

Potencia del calentador necesaria (P) =
$$\frac{Q * \Delta T}{1700}$$

- Q(I/h)=Consumo de fuel a potencia máxima+15% de margen
- Al 100% de la carga, el consumo de fuel es de 178,7 g/kWh,
- Con una potencia máxima de cada motor de 14400 kW y una densidad de 991 g/l:

$$Q = \frac{178,7 * 14400}{991} * 1,15 = 2986 \frac{l}{h}$$

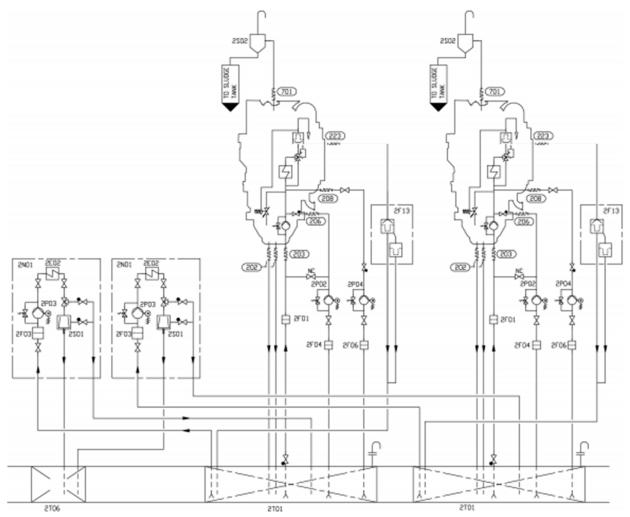
$$Por \ tanto, para \ cada \ motor \ (P) = \frac{2986 * 45}{1700} = 79 \ kW$$

<u>Purificador:</u> Pese a la existencia de los tanques de sedimentación, se requiere de un sistema de purificación para asegurar que el combustible llega en condiciones aceptables a los motores. El caudal del separador es el siguiente:

$$Q = \frac{P * b * 24}{\rho * t}$$

- P = Máximo ratio de potencia del motor (14400kW)
- B = consumo específico + 15% de margen de seguridad (203,55 g/kWh)
- ρ = densidad del combustible (0,99 kg/m³)
- t = tiempo de limpieza de combustible diario (Normalmente 23 o 23,5 horas)

$$Q = \frac{P * b * 24}{\rho * t} = 3023,7 \frac{l}{h} = 3,024 \frac{m^3}{h}$$


Por tanto se requerirán 4 purificadores con un caudal de 3,024 metros cúbicos por hora.

3.2- Servicio de lubricación

Este servicio se encarga de proporcionar aceite lubricante que precisan los motores para protegerse de las fricciones excesivas, las altas temperaturas y posibles corrosiones químicas de los residuos de la combustión.

Otros elementos del buque también requieren de lubricación, (Como el metro de servicios en puerto y el motor de emergencia) pero dichos elementos disponen de sus propios cárteres y la lubricación en cada uno se hace de forma independiente.

La disposición general sigue el siguiente esquema:

System components					
2E02	Heater	2F13	Automatic filter	2S01	Separator
2F01	Suction strainer	2N01	Separator unit	2S02	Condensate trap
2F03	Suction filter	2P02	Pre-lubricating oil pump	2T01	System oil tank
2F04	Suction strainer	2P03	Separator pump	2T06	Sludge tank
2F06	Suction strainer	2P04	Stand-by pump		

Es necesario recordar que los esquemas se aplican a nuestros 4 motores, aunque sólo 3 de ellos funcionen en un momento dado.

<u>Comprobación de Consumos</u>: El consumo de aceite es de 0,7g/kWh según los datos indicados por el fabricante. El consumo total será:

$$0.7 \left(\frac{g}{kWh}\right) * 32400kW * 1125 horas * 10^{-6} = 25.5 t = 28.6 m^3$$

Nuestros tanques son suficientes. Ahora haremos un cálculo de los equipos principales en el sistema de lubricación.

<u>Bombas de alimentación de aceite</u>: El sistema de alimentación de aceite suele ir incorporado en el motor, pero se debe disponer de una bomba de emergencia para cada uno. El caudal y la presión de descarga nos la da el fabricante, y recomiendan una bomba de tornillo. Con un rendimiento del 0,5 tenemos que:

Caudal:
$$306 \frac{m^3}{h}$$

$$Presión = 4 \ bar = 40 \ m. \ c. \ a.$$

$$Pot = \frac{Q\left(\frac{m^3}{h}\right) * H(m. \ c. \ a) * \rho\left(\frac{kg}{m^3}\right)}{75 * 3600 * \eta}$$

$$Pot = \frac{306 * 40 * 920}{75 * 3600 * 0.5} = 83,41 \ hp = 62,2 \ kW$$

<u>Bombas de cebado de aceite</u>: Esta instalación es obligatoria. Cada una de las bombas de cebado se encarga de tener las bombas de aceite en condiciones de funcionamiento. Habrá una bomba para cada motor y otra de reserva para cada uno. Con un rendimiento de 0,5 y unas características dadas por el fabricante, tenemos:

Caudal:
$$70 \frac{m^3}{h}$$

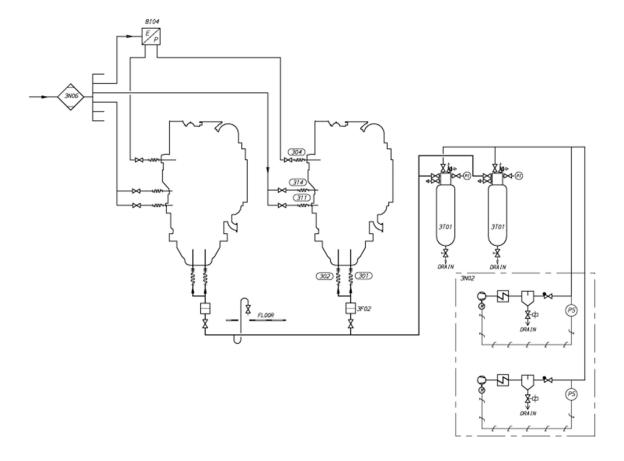
$$Presi\'{o}n = 3,5 \ bar = 35 \ m. \ c. \ a.$$

$$Pot = \frac{Q\left(\frac{m^3}{h}\right) * H(m. \ c. \ a) * \rho\left(\frac{kg}{m^3}\right)}{75 * 3600 * \eta}$$

$$Pot = \frac{70 * 35 * 920}{75 * 3600 * 0,5} = 16,7 \ hp = 12,45 \ kW$$

<u>Purificador de aceite</u>: Al igual que el combustible el aceite también debe ser convenientemente separado y preparado para su uso dentro del motor. Además de los filtros se emplea una unidad de purificación, cuyo caudal en I/h se calcula con:

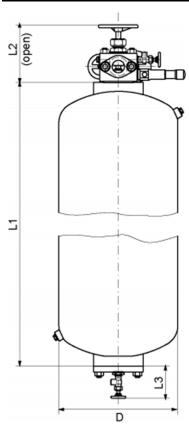
$$Q = \frac{1,35 * P * n}{t}$$


- P = Máxima potencia del motor (14400 kW)
- N = 5 para HFO
- T = tiempo de operación (23 h/día)

$$Q = \frac{1,35 * 14400 * 5}{23} = 4226 \frac{l}{h} = 4,226 \frac{m^3}{h}$$

Por lo tanto requerimos cuatro unidades de 4,226 metros cúbicos por hora cada una.

3.3- Servicio de aire comprimido


Este sistema se encarga de iniciar los motores y dar energía de actuación a equipos de seguridad y control. El aire tiene que estar libre de derivados del petróleo y de partículas sólidas.

System	System components				
3F02	Air filter (starting air inlet)	3T01	Starting air vessel		
3N02	Starting air compressor unit	8104	E/P converter		
3N06	Air dryer unit				

Pipe o	Pipe connections		
301	Starting air inlet		
302	Control air inlet		
304	Control air to speed governor (if PGA back-up governor)		
311	Control air to by-pass/waste-gate valve		
314	Air supply to compressor and turbine cleaning device		

<u>Dimensionamiento de las botellas</u>: Las botellas estándar son las mostradas a continuación:

Size		Weight			
[Litres]	L1	L2 1)	L3 1)	D	[kg]
500	3204	243	133	480	450
1000	3560	255	133	650	810
1250	2930	255	133	800	980
1500	3460	255	133	800	1150
1750	4000	255	133	800	1310
2000	4610	255	133	800	1490

¹⁾ Dimensions are approximate.

Para calcular el volumen necesario emplearemos la siguiente fórmula:

$$V_R = \frac{p_E * V_e * n}{p_{Rmax} - p_{Rmin}}$$

Y en dicha expresión:

Vr = Volumen inicial de la botella de aire (m^3)

 p_E = presión barométrica (0,1 MPa)

 V_e = Consumo de aire por cada arranque. (12 N/m³ según la información del fabricante)

n = Nº de inicios de acuerdo con la sociedad de clasificación. (2)

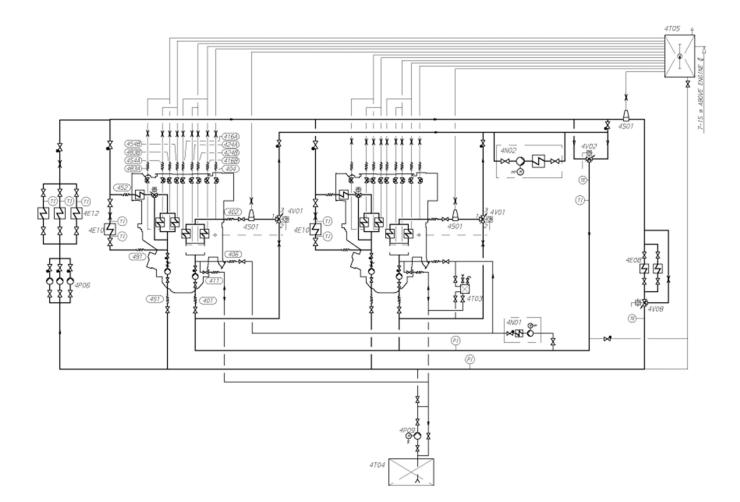
 p_{Rmax} = presión de inicio máxima (3 MPa)

 p_{Rmin} = presión de inicio mínima (1,5 MPa según el fabricante)

$$V_R = \frac{0.1 * 12 * 2}{3 - 1.5} = 1.6 \, m^3 = 1600 \, litros \, en \, total = 800 \, litros \, por \, botella$$

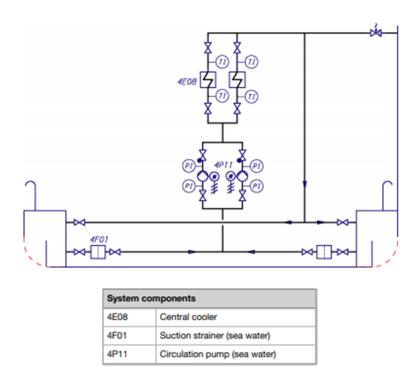
Elegimos pues la botella estándar de 1000 litros.

Según la especificación, deben existir al menos dos compresores, y éstos deben ser capaces de llenar las botellas de aire comprimido desde la presión mínima (1,8 MPa) a la presión máxima (3 MPa) en unos 15 minutos.

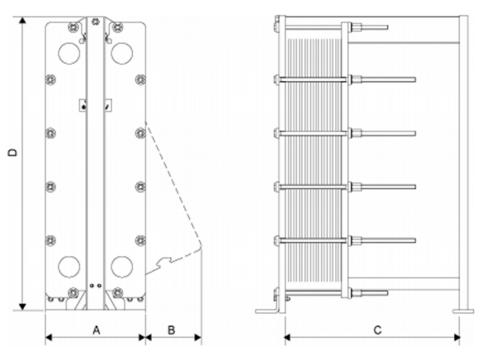

El caudal empleado puede estimarse en unos 200 m^3/h

3.4- Servicio de refrigeración

Este sistema no sólo evita el sobrecalentamiento del motor, sino también refrigera el agua de camisas y el aceite.


Se emplea para este fin agua dulce de un circuito cerrado. Esta agua se calienta con el motor y se enfría mediante intercambiadores de calor con agua salada que se devuelve al mar.

No se emplea agua de mar exhaustivamente por el riesgo de corrosión en los equipos, y se minimiza el acceso de ésta a los mismos, y dejando al motor únicamente en contacto con el agua dulce. Por cada par de motores **Wartsilla 12V46F** Con bombas de baja temperatura, el esquema es el siguiente:



System co	omponents		
4E08	Central cooler	4S01	Air venting
4E10	Cooler (reduction gear)	4T03	Additive dosing tank
4E12	Cooler (installation equipment)	4T04	Drain tank
4N01	Preheating unit	4T05	Expansion tank
4N02	Evaporator unit	4V01	Temperature control valve (HT)
4P06	Circulating pump	4V02	Temperature control valve (heat recovery)
4P09	Transfer pump	4V08	Temperature control valve (central cooler)
Pipe conn	nections		
401	HT-water inlet	424	HT-water air vent from exhaust valve seat
402	HT-water outlet	451	LT-water inlet
404	HT-water air vent	452	LT-water outlet
406	Water to preheater to HT-circuit	454	LT-water air vent from air cooler
411	HT-water drain	483	LT-water air vent
416	HT-water air vent from air cooler	491	Cooling water to gearbox oil cooler

Y por otro lado tenemos el sistema de agua salada, que se describe a continuación:

<u>Dimensionamiento del intercambiador de calor con agua salada</u>: El intercambiador de agua salada depende del modelo del motor y viene predeterminado por el fabricante. En este caso, al tratarse de 3 motores funcionando a la vez, requeriremos 3 intercambiadores, teniendo 1 de respeto.

Engine type	A [mm]	C [mm]	D [mm]	Weight [kg]
6L46F	690	1005	2149	860
7L46F	690	1005	2149	900
8L46F	690	1005	2149	900
9L46F	690	1255	2149	960
12V46F	690	1255	2149	990
14V46F	690	1505	2149	1120
16V46F	690	1505	2149	1120

<u>Bombas de circulación de agua dulce</u>: Pese a que cada motor cuenta con sus propias bombas de circulación se suele disponer de una bomba de reserva por cada motor.

Con un rendimiento estimado de 0,65, podemos hallar las características de las bombas:

Caudal: 210
$$\frac{m^3}{h}$$
 (Dado por el fabricante)

Presión máxima en el motor = 530 KPa = 54 m. c. a.

$$Pot = \frac{Q\left(\frac{m^3}{h}\right) * H(m.c.a) * \rho\left(\frac{kg}{m^3}\right)}{75 * 3600 * n}$$

$$Pot = \frac{210 * 54 * 1000}{75 * 3600 * 0.65} = 64,62 \ hp = 48,19 \ kW$$

4.- Instalación de LNG

El buque requiere de un motor LNG para suministrar energía eléctrica durante la estancia en puerto. En el cuaderno 11 se determina que este motor es un **Wartsilla Dual Fuel 6L20DF,** con una capacidad máxima de 1100 kW.

El propio motor se encuentra en la cámara de máquinas, mientras que los tanques de almacén de LNG se encuentran sobre la cubierta principal.

Puede emplearse el denominado **Wartsilla LNGPack,** el cual incluye varios sistemas auxiliares que requiere el motor:

- Un tanque de almacén de combustible a presión (Con entre 6-9 bares)
- Una bomba de alimentación del gas
- Unidad de equipo de procesamiento de LNG
- Sistema de control, seguridad y monitorización.
- Válvulas manuales y de control remoto.

Los tanques se dispondrán en cubierta, a proa de la superestructura, como puede verse en la imagen provista por el fabricante:

Disposición más común de los tangues LNG

Pese a que el buque de la imagen se trata de un Áframax, y es por tanto más pequeño que el de nuestro proyecto, la disposición es muy similar.

En nuestro caso los tanques serán de tamaño reducido, puesto que se busca producir energía eléctrica únicamente para la estancia en puerto. (Donde además puede ser posible obtener electricidad mediante una conexión a las instalaciones de tierra).

Preferimos escoger <u>dos</u> tanques pequeños para situarlos a ambos costados del buque y minimizar el riesgo de escora.

5.- Disposición general de la cámara de máquinas

La cámara de máquinas se sitúa a popa del buque, entre el pique de popa a 12 metros de la perpendicular de popa y el mamparo que separa la zona de carga situado a 46,4 metros de eslora.

A 25,6 metros del pique de proa se sitúa la cámara de bombas para el sistema de carga. Esta cámara tiene 8,8 metros de eslora, 8 metros de manga y 5 metros de puntal.

Además del doble fondo la cámara de máquinas cuenta con varias plantas que alojan varios dispositivos cada una. Algunos de ellos, como las calderas o los diésel generadores ocupan varias plataformas debido a su gran altura. Las plataformas superiores cuentan con aberturas que permiten holgura a estos dispositivos.

La disposición escogida, basándonos en buques similares, es la siguiente:

En el <u>doble fondo (2,5 metros de puntal)</u> se sitúan las tomas de mar, junto con las bombas de sentinas, aceite y contraincendios. Los motores propulsores se encuentran a los costados de la cámara de bombas.

En la <u>primera plataforma (8,3 metros de puntal</u>) se encuentran las calderas y sus sistemas de alimentación. También aloja la sala de purificadores que se encarga de limpiar el combustible y el aceite antes de pasar por los motores.

Dado que esta plataforma se sitúa justo debajo de los motores, contiene también las bombas de alimentación de los mismos, así como las bombas de refrigeración y los refrigeradores.

En la <u>segunda plataforma (13,4 metros de puntal</u>) se alojan los diésel generadores, y se distribuyen de costado a costado de la forma que indica el fabricante:

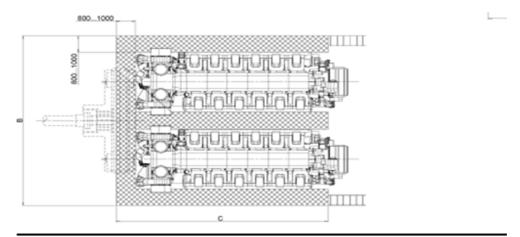


Fig 18-2 Engine room arrangement, V-engine (DAAE075829B)

Las distancias que es necesario dejar se indican a continuación:

Min. crankshaft distances [dimensions in mm]						
Engine type	gine type TC type A		B 1)	C 1)		
12V46F	TPL 71C	5600	11000	11200		

Habiendo 12 metros disponibles a cada lado de crujía, el espacio resulta suficiente.

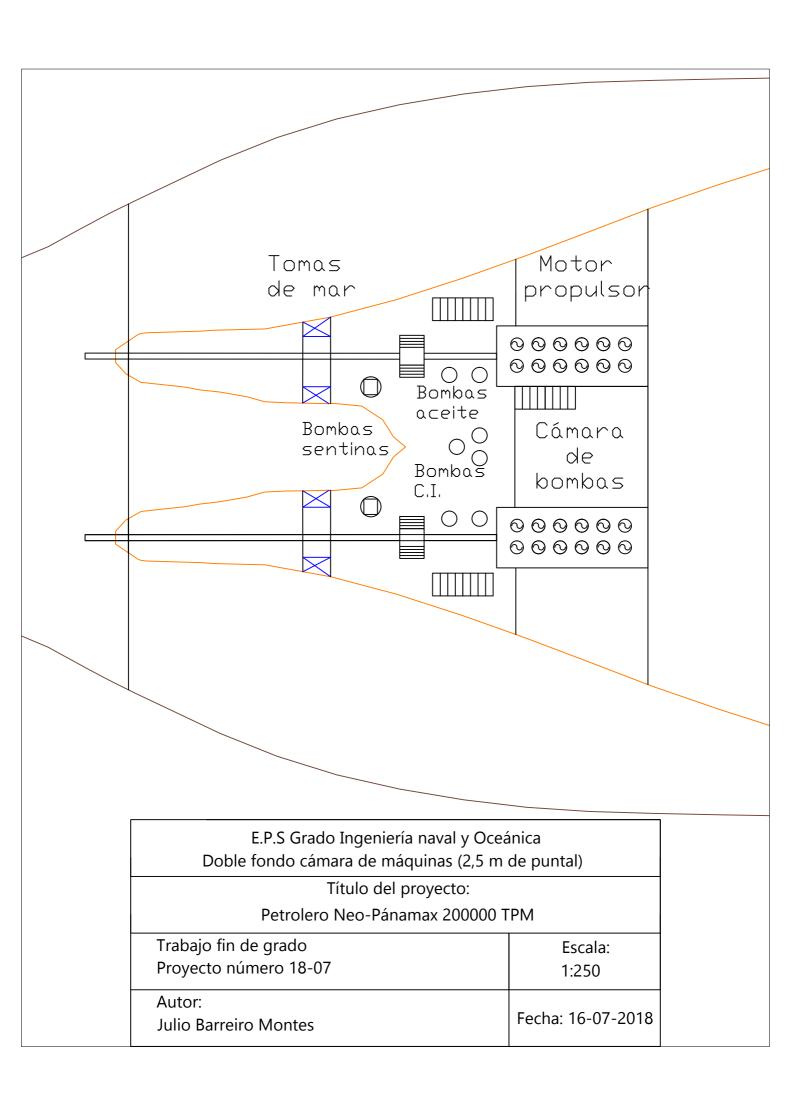
Ene sta plataforma además, sería posible incluír las botellas de aire comprimido y los compresores necesarios para llenar las mismas.

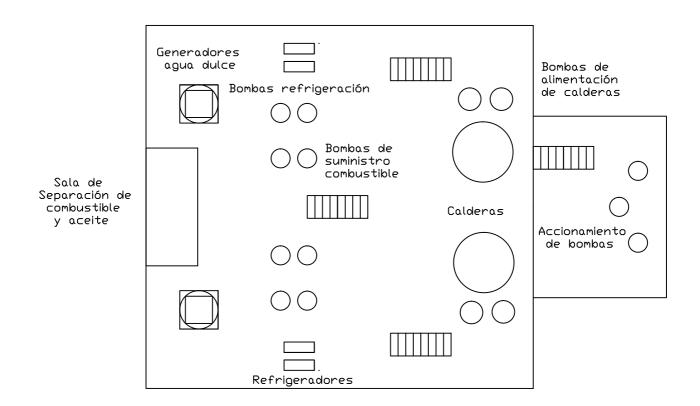
En la <u>tercera plataforma</u> (17,2 metros de puntal) se sitúa la planta de gas inerte, el condensador y el generador LNG de puerto.

La <u>cuarta plataforma</u> (21 metros de puntal) se encuentra la sala de control, que conecta con el tronco de las escaleras de la superestructura. Otras salas a destacar son la sala de transformadores y el taller de la cámara de máquinas.

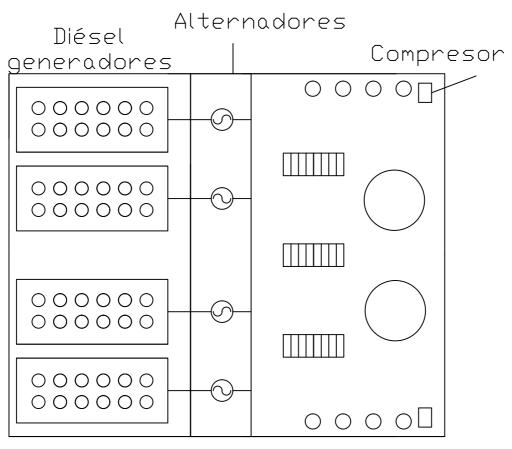
Esta plataforma también aloja el sistema de distribución y procesamiento de agua dulce (Tanques hidróforos, bombas, potabilizadores) con el beneficio de estar situada a la altura de los tanques estructurales de agua dulce.

La planta séptica y los sistemas de aire acondicionado pueden encontrarse también a esta altura.

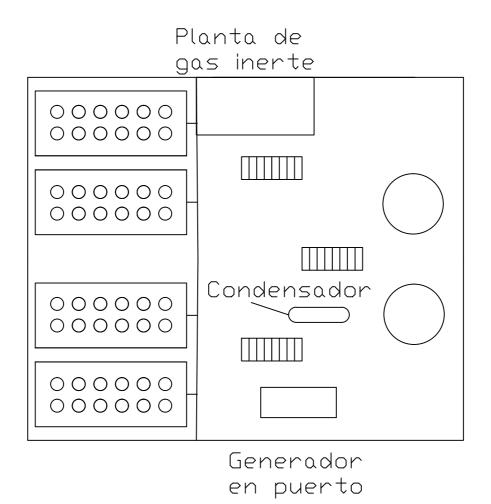

Los planos completos se encuentran en el Anexo del Cuaderno.


Puede observarse en el plano de la plataforma superior cómo los tanques delimitan la forma de la cámara de máquinas, confiriéndole una forma mayoritariamente rectangular que puede apreciarse en el resto de plataformas.

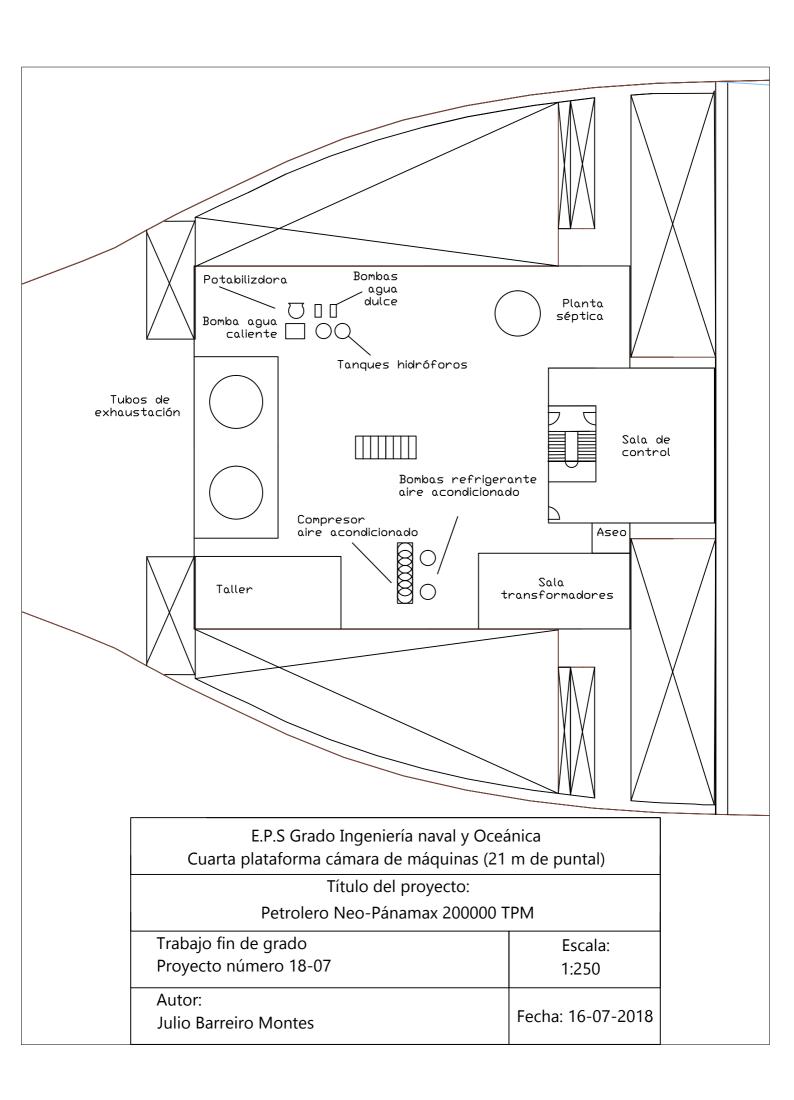
6.- Bibliografía


- 1. JUNCO OCAMPO, Fernando; DÍAZ CASAS, Vicente. Apuntes de la asignatura de *"Proyectos de buques y artefactos marinos 2"*. Universidad de A Coruña, Escuela Politécnica Superior de Ferrol, Curso 2017-2018.
- 2. Libro "Ship design and Construction", escrito por la Sociedad de Arquitectura Naval e Ingeniería Marina, editado por Thomas Lamb.
- 3. Technical data Wärtsilä 20DF dual fuel engine: https://www.wartsila.com/products/marine-oil-qas/engines-generating-sets/dual-fuel-engines/wartsila-20df
- 4. Technical data Wärtsilä 46F diesel engine:
 https://www.wartsila.com/products/marine-oil-gas/engines-generating-sets/diesel-engines/wartsila-46f
- 5. Technical data Wärtsilä LNGPack: https://www.wartsila.com/products/marine-oil-gas/gas-solutions/fuel-gas-handling/wartsila-lngpac

Anexo: Planos cámara de máquinas



E.P.S Grado Ingeniería naval y Oceánica Primera plataforma cámara de máquinas (8,3 m de puntal)		
Título del proyecto:		
Petrolero Neo-Pánamax 200000 TPM		
Trabajo fin de grado Proyecto número 18-07	Escala: 1:250	
Autor: Julio Barreiro Montes	Fecha: 16-07-2018	



Botellas de aire comprimido

E.P.S Grado Ingeniería naval y Oceánica Segunda plataforma cámara de máquinas (13,4 m de puntal)		
Título del proyecto:		
Petrolero Neo-Pánamax 200000 TPM		
Trabajo fin de grado Proyecto número 18-07	Escala: 1:250	
Autor: Julio Barreiro Montes	Fecha: 16-07-2018	

E.P.S Grado Ingeniería naval y Oceánica Tercera plataforma cámara de máquinas (17,2 m de puntal)		
Título del proyecto:		
Petrolero Neo-Pánamax 200000 TPM		
Trabajo fin de grado	Escala:	
Proyecto número 18-07	1:250	
Autor: Julio Barreiro Montes	Fecha: 16-07-2018	

