

Escola Politécnica Superior

CURSO 2016/17

REMOLCADOR DE PUERTO DE 60 TPF

Grado en Ingeniería Naval y Oceánica

Cuaderno 6

PREDICCIÓN DE POTENCIA Y DISEÑO DE PROPULSORES Y TIMONES

Alumno: Mario Martínez Caamaño

Tutor: Marcos Míguez González

PROYECTO NÚMERO 17-08

TIPO DE BUQUE: Remolcador de puerto de 60 TPF

CLASIFICACIÓN, COTA Y REGLAMENTOS DE APLICACIÓN: Bureau

Veritas, SOLAS, MARPOL, FIFI 1 OIL REC

CARACTERÍSTICAS DE LA CARGA: Gancho de remolque

VELOCIDAD Y AUTONOMÍA: 12 nudos en condiciones de servicio. 85%MCR+15% de margen de mar. Autonomía: 3000 millas a la velocidad de servicio

SISTEMAS Y EQUIPOS DE CARGA / DESCARGA: Los habituales en este tipo de buques

PROPULSIÓN: propulsor azimutal. DIÉSEL ELÉCTRICO

TRIPULACIÓN Y PASAJE: 4 personas + 10 SURVIVORS

OTROS EQUIPOS E INSTALACIONES: Contraincendios, lucha contra la contaminación en el mar

Ferrol, 10 Setiembre 2016

ALUMNO/A: Dº Mario Martínez Caamaño

Contenido

1	PRES	SENTACIÓN	4
2	ESTI	MACIÓN DE LA POTENCIA PROPULSORA	4
	2.1	ESTIMACIÓN PARA NAVEGACIÓN AGUAS LIBRES	5
	2.2	ESTIMACIÓN MEDIANTE FORMULACIÓN	12
	2.3	ESTIMACIÓN MEDIANTE RECTA DE REGRESIÓN	13
3	ELEC	CCIÓN DIÉSEL GENERADORES	14
4	ELEC	CCIÓN PROPULSORES	16
5	COM	1PROBACIÓN DE TIRO	19
6	CÁL	CULO DE TIMÓN	21
	6.1	ÁREA	22
	6.2	ALTURA	22
	6.3	LONGITUD.	22
	6.4	PERFIL	22
	6.5	ÁREA DE COMPENSACIÓN	23
7	CÁL	CULO DEL SERVOMOTOR	23
8	ANF	XO (SALIDAS NAVCAD)	24

1 PRESENTACIÓN

Para poder seleccionar los motores para nuestro buque, realizaremos en este cuaderno, una predicción de la potencia necesaria, además de dimensionar los propulsores óptimos.

Se realizarán cálculos tanto para conseguir la velocidad requerida en navegación en aguas libres, como para alcanzar el tiro a punto fijo especificado en la RPA.

Aunque debido al tipo de propulsores elegidos, azimutales (Shottel), no se hace necesaria la instalación de timones, mostraremos un ejemplo de cálculo para indicar su procedimiento de diseño.

Estas son las características principales del buque:

Loa	30,20 m
Lpp	26,80 m
В	11 m
D	5,45 m
Т	4,45 m
Cb	0,53
Cm	0,86
Ср	0,61
Cf	0,62
Δ	712,67 t

2 ESTIMACIÓN DE LA POTENCIA PROPULSORA

Para fijar la potencia instalada en nuestro remolcador, haremos una estimación de los valores de potencia necesarios para poder cumplir con la velocidad especificada de 12 nudos y para que dicho valor de la potencia sea suficiente para que el buque cumpla con su otra condición de tiro a punto fijo de 60T. La condición más exigente es la de tiro a punto fijo, ya que normalmente, la potencia necesaria para cumplir

dicha exigencia, se sitúa bastante por encima de la necesaria para alcanzar la velocidad requerida en la RPA.

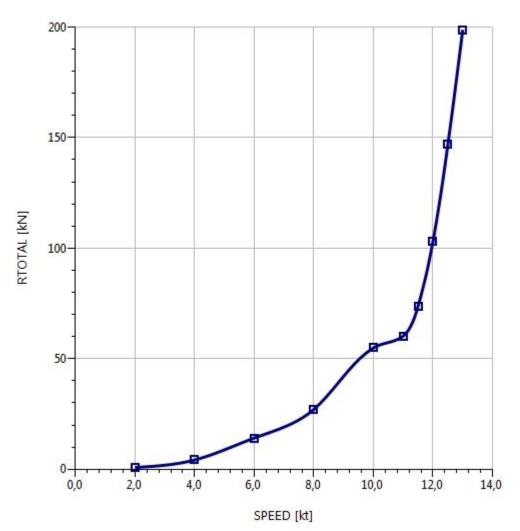
2.1 ESTIMACIÓN PARA NAVEGACIÓN AGUAS LIBRES

Emplearemos como método para el cálculo en navegación en aguas libres el propuesto en el programa NavCad, para lo que previamente se estima la resistencia a remolque mediante el método de G. Van Oortmersen (muy apropiado para remolcadores y buques de pequeñas esloras) basado en la hipótesis de Hughes. Hughes considera que la resistencia total de avance es la suma de dos resistencias independientes entre sí, que son la resistencia viscosa y la resistencia por formación de olas:

$$Rt = Rv (Rn) + Rw (Fn)$$

El cálculo de la resistencia por formación de olas, Rw, se obtiene a partir de ensayos en el canal, considerando además parámetros geométricos del buque y teniendo en cuenta el Número de Froude. El cálculo de la resistencia viscosa se realiza basándose en la línea de fricción ITTC-57, utilizando un coeficiente de forma (1+k).

Presentamos en la siguiente tabla las relaciones que debe cumplir nuestro buque para que sea de aplicación el método de Van Oortmerssen:

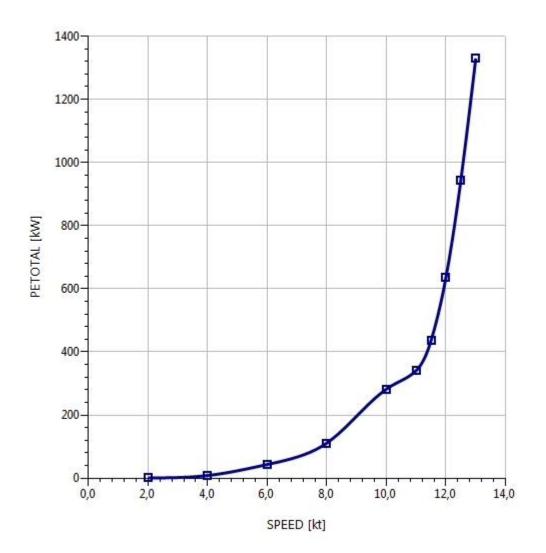

Campo de aplicación	Nuestro buque	Cumple
Fn < 0,50	Fn =0,37	SI
0,50 < Cp < 0,73	Cp = 0.61	SI
0,70 < Cm < 0,97	Cm = 0.86	SI
1,90 < B/T < 4,00	B/T = 2,47	SI
8,00 < Lpp < 80,00	Lpp = 26,80	SI
3,00 < Lpp/B < 6,20	Lpp/B = 2,43	NO

Emplearemos este método, a pesar de no cumplir una de las condiciones (relación Lpp/B), por ser el más indicado para este tipo de buques.

Presentamos las hidrostáticas de las cuales partimos:

Draft Amidships m	4,311
Displacement t	709,5
Heel deg	0
Draft at FP m	4,254
Draft at AP m	4,368
Draft at LCF m	4,316
Trim (+ve by stern) m	0,115
WL Length m	29,882
Beam max extents on WL m	10,367
Wetted Area m^2	374,987
Waterpl. Area m^2	269,636
Prismatic coeff. (Cp)	0,602
Block coeff. (Cb)	0,521
Max Sect. area coeff. (Cm)	0,874
Waterpl. area coeff. (Cwp)	0,87
LCB from zero pt. (+ve fwd) m	14,458
LCF from zero pt. (+ve fwd) m	12,129
KB m	2,66
KG fluid m	3,854
BMt m	2,956
BML m	24,14
GMt corrected m	1,762
GML m	22,946
KMt m	5,616
KML m	26,799
Immersion (TPc) tonne/cm	2,764
MTc tonne.m	6,075
RM at 1deg = GMt.Disp.sin(1) tonne.m	21,817
Max deck inclination deg	0,2452
Trim angle (+ve by stern) deg	0,2452

Una vez introducidos los datos que requiere el programa, obtenemos los siguientes resultados:

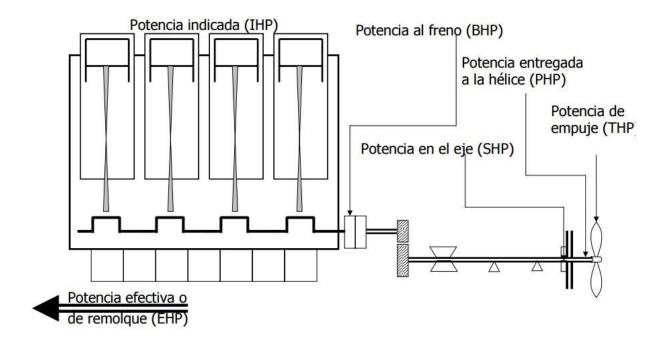


RESISTANCE SPEED RBARE RAPP **RWIND RSEAS RCHAN** RTOWED RMARGIN RTOTAL [kt] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 2,00 0,65 0,06 0,00 0,00 0,00 0,10 0,10 0,81 4,00 3,35 0,33 0,00 0,00 0,00 0,50 0,50 4,19 11,28 0,00 6,00 1,13 0,00 0,00 1,69 1,69 14,10 8,00 21,65 2,16 0,00 0,00 0,00 3,25 3,25 27,06 10,00 43,90 4,39 0,00 0,00 0,00 6,58 6,58 54,87 11,00 48,20 4,82 0,00 0,00 0,00 7,23 7,23 60,25 11,50 59,01 5,90 0,00 0,00 0,00 8,85 8,85 73,77 + 12,00 + 82,49 8,25 0,00 0,00 0,00 12,37 12,37 103,11 12,50 117,50 11,75 0,00 0,00 0,00 17,62 17,62 146,87 13,00 159,05 15,91 0,00 0,00 0,00 23,86 23,86 198,82

Resistencia total obtenida a la velocidad de 12 nudos:

$R_{\text{total}} = 103,11 \text{ KN}$

En cuanto a la potencia efectiva:



		HULL-PR	OPULSOR			ENG	INE		
SPEED [kt]	PETOTAL [kW]	WFT	THD	EFFR	RPMENG [RPM]	PBPROP [kW]	FUEL [L/h]	LOADENG [%]	
2,00	0,8	0,0596	0,1005	0,9563	270	3,6	78.5	0,0	
4,00	8,6	0,0584	0,1005	0,9563	550	30,6		0,0	
6,00	43,5	0,0578	0,1005	0,9563	739	100,7		0,0	
8,00	111,4	0,0574	0,1005	0,9563	771	184,1		0,0	
10,00	282,3	0,0571	0,1005	0,9563	800	346,0		0,0	
11,00	340,9	0,0570	0,1005	0,9563	800	411,4		0,0	
11,50	436,4	0,0569	0,1005	0,9563	800	489,8		0,0	
+ 12,00 +	636,5	0,0569	0,1005	0,9563	800	647,1		0,0	
12,50	944,4	0,0568	0,1005	0,9563	800	904,9	222	0,0	
13,00	1329,6	0,0568	0,1005	0,9563	800	1261,3		0,0	

P_{efectiva total} = 636,50 Kw

Esta potencia, debido a las pérdidas que se van produciendo, no será la misma que la que nos genere la planta propulsora.

Presentamos un esquema que nos ayuda a entender las distintas potencias:

<u>Potencia indicada IHP (lindicated Horse Power</u>): Es la potencia del ciclo térmico del motor.

<u>Potencia al freno BHP (Brake Horse Power):</u> Es la potencia del motor medida en el acoplamiento del motor al eje. Puede medirse mediante un freno dinamométrico.

<u>Potencia en el eje SHP (Shaft Horse Power):</u> Es la potencia transmitida a través del eje (medida con un torsiómetro tan cerca de la hélice como sea posible.

<u>Potencia en el propulsor PHP (Propeler Horse Power):</u> Es la potencia entregada a la hélice descontando las pérdidas en el eje de la anterior, las cuales se pueden estimar del orden de un 3% aproximadamente.

<u>Potencia de empuje THP (Transformer Horse Power):</u> Es la potencia transformada por la hélice. Se obtiene descontando su rendimiento de la potencia a la hélice.

<u>Potencia efectiva EHP o de remolque (Efective Horse Power):</u> Es la potencia que realmente se emplea en mover el barco o la potencia que sería necesaria emplear para remolcar el barco a la velocidad de proyecto. Puede obtenerse descontando de la anterior las pérdidas debidas a las formas del barco, apéndices etc.

El paso de una a otra potencia se realiza por medio de los coeficientes o rendimientos los cuales se desglosan a continuación:

- Rendimiento del casco: influencia del casco en el flujo hacia la hélice.
 Relación entre la potencia de remolque y la potencia de empuje. Se verifica que es igual a (1-t)/(1-w).
 - t → coeficiente de succión
 - w → coeficiente de estela

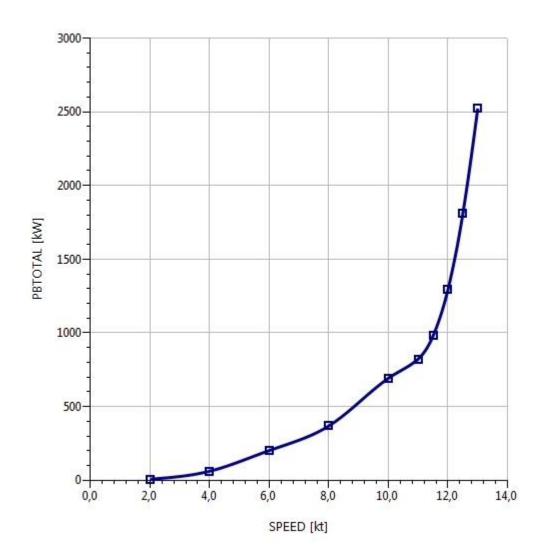
- Rendimiento rotativo relativo: coeficiente de influencia de colocación del propulsor. Relación entre la potencia de empuje suministrada a la hélice y la potencia absorbida por la hélice
- Rendimiento propulsivo o coeficiente cuasi-propulsivo: Es la relación, potencia de remolque / potencia absorbida por la hélice
- Rendimiento del propulsor aislado: Rendimiento de la hélice en flujo uniforme
- Rendimiento del propulsor afecto a la carena: Es la relación, potencia de empuje / potencia en el eje
- Rendimiento mecánico: Relación, potencia en el eje / potencia al freno Se verifica la siguiente relación siguiente, que se denomina coeficiente propulsivo total:

$$\frac{\textit{Potencia efectiva}}{\textit{Potencia al freno}} = \textit{Rend casco} \times \textit{Rend rotat relat} \times \textit{Rend prop aisl} \times \textit{Rend mec}$$

Sin tener en cuenta el rendimiento del propulsor aislado y estimando un rendimiento cuasi propulsivo de 0,5 y un rendimiento mecánico de 0,97, obtendríamos una BHP:

$$BHP = \frac{PE}{0.97 \times 0.50}$$

BHP = 1312,37 KW


Cuando se realizó el cálculo con el programa, ya se consideró un margen de un 15%. De no ser así, tendríamos que multiplicar por 1,15 la PE en la fórmula anterior, es decir:

$$BHP = \frac{PE \times 1,15}{0,97 \times 0,50}$$

Contando con dos unidades propulsoras y que cada motor no trabajaría al 100%, sino que lo hará al 85% de su capacidad, tendríamos para cada uno de ellos:

$$BHP_{motor} = \frac{1312,37}{2 \times 0.85} = 772 \text{ Kw}$$

Mostramos la gráfica y los resultados de la PB total obtenida con el Navcad:

	POWER DELIVERY									
SPEED [kt]	RPMPROP [RPM]	QPROP [kN·m]	QENG [kN·m]	PDPROP [kW]	PSPROP [kW]	PSTOTAL [kW]	PBTOTAL [kW]	TRANSP	CPPITCH [mm]	
2,00	64	0,49	0,11	3,4	3,5	6,9	7,1		1080,2	
4,00	130	2,05	0,48	29,1	29,7	59,3	61,2	234,1	1080,2	
6,00	174	5,01	1,18	95,7	97,7	195,3	201,4	106,7	1232,2	
8,00	182	8,78	2,07	175,0	178,6	357,2	368,2	77,8	1643,5	
10,00	189	15,91	3,75	328,9	335,7	671,3	692,1	51,7	2128,3	
11,00	189	18,91	4,46	391,1	399,0	798,1	822,8	47,9	2337,3	
11,50	189	22,51	5,31	465,6	475,1	950,3	979,7	42,0	2502,9	
+ 12,00 +	189	29,74	7,02	615,1	627,7	1255,4	1294,2	33,2	2757,5	
12,50	189	41,59	9,82	860,2	877,8	1755,6	1809,9	24,7	3100,9	
13,00	189	57,97	13,69	1199,0	1223,4	2446,9	2522,5	18,4	3514,9	

A la velocidad de servicio establecida en la RPA de 12 nudos:

BHP = 1294,2 Kw

Mario Martínez Caamaño Proyecto: 17-08

Al ser propulsión eléctrica, los motores eléctricos de los propulsores se alimentarán de esta potencia. Para dimensionar los diésel generadores que se la proporcionen, estimamos una potencia aumentada para satisfacer la demanda de los consumidores adicionales como bombas, aire acondicionado etc. En nuestro caso, estimamos esta potencia adicional en 200 KW, que sumados a los 1294,2 anteriores hacen:

BHP = 1495 Kw

Una vez determinada la potencia necesaria para alcanzar la velocidad de servicio requerida en aguas libres, procedemos al cálculo de la potencia necesaria a partir del tiro requerido de 60 TPF para poder determinar posteriormente los motores que integrarán la planta propulsora. Como ya se indicó en apartados anteriores, la demanda de potencia para obtener dicho tiro suele ser mucho mayor que la necesaria para alcanzar las velocidades demandadas, aunque en función del tipo de propulsor que se elija, la potencia puede ser mayor o menor para un mismo requisito de tiro a punto fijo.

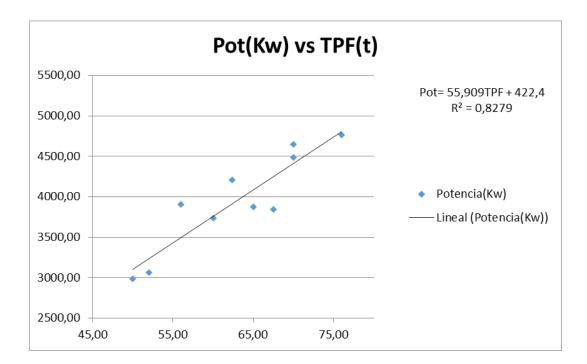
2.2 ESTIMACIÓN MEDIANTE FORMULACIÓN

El libro "El Proyecto Básico del Buque Mercante", presenta una fórmula para la determinación de la potencia a partir del tiro a punto fijo y de un coeficiente K₁, tabulado, el cual depende a su vez del tipo de propulsor instalado.

Mostramos la tabla para el cálculo de dicho coeficiente:

Una hélice sin tobera	65-70
Dos hélices sin tobera	63-68
Una hélice con timón-tobera (Kort)	60-65
Dos hélices con timón-tobera (Kort)	55-60
Dos hélices con tobera, azimutal (*)	55-60
Dos hélices cicloidales azimutales (**)	63-68

El TPF que nos indica nuestra RPA es de 60 t y se instalarán como propulsores, dos hélices con tobera, azimutal (Schottel).


 $BHP = K_1 \times TPF$

Tomando 60 como valor del coeficiente, obtenemos:

BHP = 3600 Kw

2.3 ESTIMACIÓN MEDIANTE RECTA DE REGRESIÓN

Enfrentando potencia instalada con tiro a punto fijo de los buques de nuestra base de datos:

Sustituyendo valores:

BHP = 3776 Kw

Observamos que se obtiene un valor bastante aproximado, aunque ligeramente superior, al calculado mediante formulación en el apartado anterior.

Al ser dos los propulsores, cada motor eléctrico demandará:

BHPmotor= 1888 Kw

Será ésta, la que nos determine el dimensionamiento de nuestros generadores por ser muy superior a la necesaria para alcanzar la velocidad exigida.

Si le sumamos a la necesaria para alcanzar el tiro requerido, los 200 KW estimados para satisfacer el resto de la demanda, obtenemos una potencia total de:

BHP = 3976 Kw

Dispondremos de tres generadores para así garantizar, que en caso de avería de uno de ellos, mantenemos potencia suficiente para la operatividad de los propulsores y el resto de demanda del buque.

Mostramos un cuadro resumen con las potencias necesarias obtenidas, resaltando la que determinará la elección de nuestra planta:

Potencia aumentada = Potencia propulsión+200 (demanda de otros consumidores)

	POTENCIA Kw	POTENCIA AUMENTADA Kw
NAVEGACIÓN AGUAS LIBRES	1295	1495
TIRO (FORMULACIÓN)	3600	3800
TIRO (REGRESIÓN)	3776	3976

3 ELECCIÓN DIÉSEL GENERADORES

Como se indicó en el apartado anterior, una vez realizados los cálculos para estimar la potencia necesaria, se decide dotar al buque de tres diésel generadores con objeto de garantizar la operatividad de los propulsores y poder atender la demanda de potencia de los demás consumidores en caso de fallo de uno de dichos generadores.

Dentro de la oferta que se nos presenta, nos decantamos por un WARTSILA, por ofrecer uno de los modelos más compactos del mercado, característica fundamental en nuestro tipo de buque, facilitando su disposición en la cámara de máquinas, además de la confianza que supone su experiencia en este campo.

Escogeremos dentro del AUXPAC 20, el tipo 1350W8L20, de 1350 Kw, con lo cual cumplimos nuestra exigencia de potencia, ya que al ser tres el número de ellos, contaremos con 4050 Kw, siendo 3976Kw la potencia aumentada necesaria para cumplir la exigencia de tiro a punto fijo que figura en la RPA.

En caso de avería de uno de ellos, todavía dispondríamos de 2700 Kw, suficientes para atender los motores eléctricos para la propulsión, así como la demanda de los demás consumidores

Table 1-2 Rating table for Wärtsilä Auxpac 20

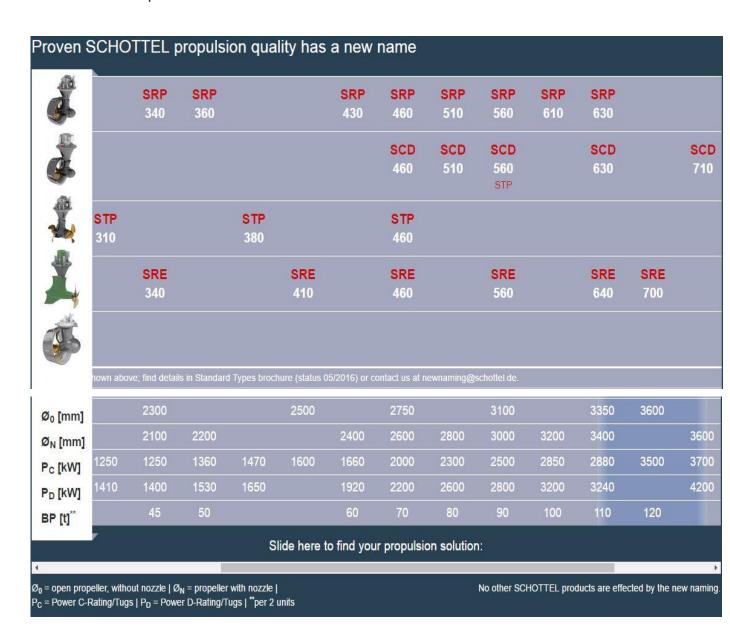
	900 rpm	60 Hz			1000 rpm /	50 Hz	
Туре	Output [kWe]	Voltage [V]	Generator	Туре	Output [kWe]	Voltage [V]	Generat
520W4L20	520	450	Fenxi	520W4L20	520	400	Fenxi
645W4L20	645	450	Fenxi	670W4L20	670	400	Fenxi
760W6L20	760	450	Fenxi	790W6L20	790	400	Fenxi
875W6L20	875	450	Fenxi	860W6L20	860	400	Fenxi
975W6L20	975	450	Fenxi	1000W6L20	1000	400	Fenxi
1050W6L20	1050	450	Fenxi	1140W6L20	1140	400	Fenxi
1200W8L20	1200	450	Fenxi	1350W8L20	1350	400	Fenxi
1400W8L20	1400	450	Fenxi	1550W9L20	1550	400	Fenxi
1600W9L20	1600	450	Fenxi	1700W9L20	1700	400	Fenxi
1800W6L26	1800	450	AVK	1950W6L26	1950	400-690	AVK
2100W8L26	2100	450-690	AVK	2250W8L26	2250	400-690	AVK
2400W8L26	2400	450-690	AVK	2550W9L26	2550	400-690	AVK
2700W9L26	2700	690	AVK	2850W9L26	2850	690	AVK

En el siguiente enlace, http://cdn.wartsila.com/docs/default-source/product-files/engines/g-sets/product-guide-o-e-auxpac.pdf?sfvrsn=10 se muestra toda la información técnica que proporciona la casa.

4 ELECCIÓN PROPULSORES

El valor de la potencia a instalar, dependerá en gran medida, además del tiro, del tipo de hélice que se disponga.

El uso de hélices con tobera se presenta en buques que han de producir grandes empujes, especialmente remolcadores y arrastreros, aunque alguna vez son utilizadas en buques mercantes convencionales.


Se solían utilizar hélices de Kaplan. Al funcionar dentro de la tobera, se logra que la hélice absorba más potencia y, en consecuencia, también se mejora el rendimiento. Si se dispone como timón tobera la mejora de las capacidades de maniobra del buque son extremas ("Proyecto Básico del Buque Mercante").

Mario Martínez Caamaño Proyecto: 17-08

El propulsor azimutal por el que nos decantamos, puede girar 360º alrededor de un eje vertical proporcionando un empuje en todas direcciones, controlado, lo que permite una maniobrabilidad excelente. También se elimina el reductor y el timón. La tobera disminuye las vibraciones inducidas en el casco por la hélice ya que proporciona una mayor regularidad del flujo de su interior, reduciendo las fluctuaciones generadas por el propulsor. Así mismo proporciona una protección al flujo de agua afectado por la hélice y por lo tanto las variaciones de presión sobre el casco en las proximidades del propulsor disminuyen. Las toberas se usan para incrementar la fuerza de tracción de un buque a bajas velocidades. La mayor contribución de las toberas en la propulsión del buque se presenta en la condición de tracción a punto fijo, ya que a medida que la velocidad del buque aumenta, decrece la contribución de la tobera al empuje total.

Al contar con propulsión Shottel, disponemos de los distintos propulsores tabulados en función de la potencia.

Technical Data

Туре	Input Power rpe [kW]			Input speed [min ⁻¹]	Propeller ø [m]	Weight [t]*	
	A	В	С	D			
SRP 100	82	190	200	225	1800/ 2300	0.80	1.50
SRP 130	67	260	280	315	1800/ 2000	1.05	1.65
SRP 150		310	330	370	1800/ 2100	1.10	2.10
SRP 190	12	470	500	560	1800	1.40	3.60
SRP 230	185	660	700	790	1600/ 1800	1.50	7.50
SRP 260	14	770	820	920	1000/ 1200/ 1500/ 1800	1.75	9.60
SRP 340	1090	1170	1250	1400	750/ 900/ 1000/ 1200/ 1600/ 1800	2.10	17.00
SRP 360	1190	1280	1360	1530	750/ 900/ 1000/ 1200/ 1600/ 1800	2.20	17.00
SRP 430	1450	1560	1660	1920	750/ 900/ 1000/ 1200/ 1600/ 1800	2.40	21.50
SRP 460	1750	1870	2000	2240	750/ 900/ 1000/ 1200/ 1600/ 1800	2.60	27.50
SRP 510	2030	2170	2320	2600	750/ 900/ 1000/ 1200/ 1600/ 1800	2.80	31.00
SRP 560	2190	2350	2500	2800	750/ 900/ 1000/ 1200/ 1600/ 1800	3.00	35.00
SRP 610	2490	2670	2850	3200	600/ 750/ 900/ 1000/ 1200/ 1800	3.20	42.00
SRP 630	2520	2700	3000	3300	600/750/ 900/ 1000	3.40	53.00
SRP 730	3270	3500	3730	4200	750/ 900/ 1000	3.80	80.00

^{*} Weight only SRP, well installation, with propeller and oil at PAL min. (from SRP 260 upwards with nozzle)

Rating

Rating	Rating description	Typical vessel application
А	continous unrestricted operations	freighters, tankers, seismic vessels, cable layer, ocean going vessels
В	alternating unrestricted operations	ferries, dredgers, diesel driven offshore vessels, pleasure yachts, river or lake going vessels
С	offshore duty	electrical driven offshore vessels and supply boats, AHTS, escort tugs, work boats, light passenger vessels, barges
D	tug duty	harbour tugs, light harbour crafts, light river or light lake going vessels

Nos decantamos por el modelo SRP 430, que con un diámetro de 2400 mm, cumple las exigencias de tiro (60 TPF) especificadas en la RPA.

5 COMPROBACIÓN DE TIRO

Según el "Proyecto Básico del Buque Mercante", podemos estimar el TPF del remolcador con la siguiente fórmula:

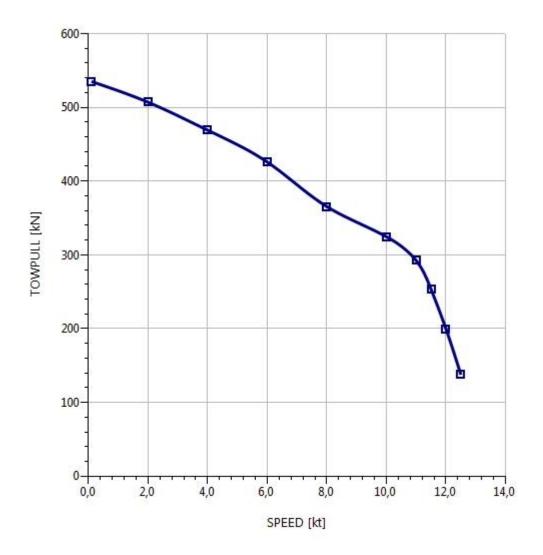
$$TPF = 0.0416 \times (D \times BHP)^{\frac{2}{3}}$$

Siendo:

D = diámetro del propulsor en pies

BHP = potencia en Kw

En nuestro caso:


D = 2.4 m = 7.87 pies

BHP = 3776 Kw

TPF = 79,82 t

Observamos que según dicha fórmula cumpliríamos sobradamente el tiro requerido en nuestra RPA.

Aunque ya se comprobó en el apartado anterior que con el tipo de propulsión escogida se alcanza la exigencia, realizamos una prueba con el Navcad, con un propulsor diseñado por el programa, pero con las dimensiones del escogido (Shottel RRP 430) y para el mismo rango de potencia, obteniendo la siguiente gráfica:

Podemos verificar que con la serie Kaplan 19 A utilizada y con el diámetro del propulsor, 2400 mm, no se consigue las 60 TPF que nos exigen. Lograríamos alcanzarlo de dos maneras: aumentando el diámetro del propulsor, o bien aumentando la potencia.

Mario Martínez Caamaño Proyecto: 17-08

Según indicaciones del profesor D. Vicente Díaz la causa es debida a la mejora en las eficiencias de las hélices actuales.

En el anexo se muestra las salidas proporcionadas por el programa Navcad

Consideramos, por tanto, que con la opción escogida optimizamos la relación propulsión- potencia para alcanzar el tiro requerido.

6 CÁLCULO DE TIMÓN

La propulsión se realizará mediante Schottel, con lo cual no dispondremos de timón. La función que realizaría el timón para la maniobra del buque, es realizada por este tipo de hélices azimutales, que son capaces de producir empuje en un rango de 360º, como ya se indicó anteriormente, siendo más efectivas que los timones a la hora de maniobrar.

Consideraremos dos timones, cada uno situado detrás de cada tobera. La mayoría de estos buques los monta de tipo suspendido y compensados (parte de su superficie a proa del eje de giro), y además vamos a diseñarlo de contorno rectangular, ya que, una opción muy habitual en barcos que deben maniobrar a bajas velocidades, es usar timones activos, los cuales disponen de un alerón móvil en el borde de salida y mejora la maniobrabilidad cuando se opera a velocidades reducidas.

6.1 ÁREA

El área del timón suele representar entre el 1.5 % y el 2 % del área de deriva. Sin embargo, para buques con dos timones, el área será del 1.25 % de esta área de deriva para cada timón. Por lo tanto:

$$\acute{\mathrm{A}}\mathit{rea}\;\mathit{tim\'on} = \frac{1{,}25}{100} \times \mathit{Lpp} \times \mathit{T}$$

Por tanto:

Área = $1,44 \text{ m}^2$

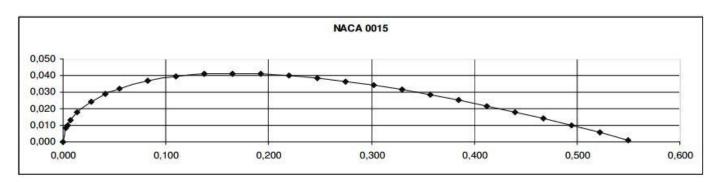
6.2 ALTURA

La altura del timón, debe cubrir todo el diámetro de la hélice. En nuestro caso, tenemos una hélice de 2,4 m rodeada por una tobera. Para que el timón cubra toda la hélice e incluso los límites de la tobera, disponemos una altura de:

Altura = 2.8 m

6.3 LONGITUD

Con esta altura y el área, calculamos el valor de la longitud de la pala:


$$Longitud\ pala = \frac{Area}{Altura}$$

Sustituyendo:

Longitud = 0.51 m

6.4 PERFIL

Utilizaremos los perfiles aeronáuticos NACA, de la serie 0015 los cuales son simétricos. Mostramos una imagen en la que se puede comprobar que las coordenadas de dichos perfiles se dan en porcentajes de la cuerda, es decir, de la longitud del perfil:

6.5 ÁREA DE COMPENSACIÓN

Según el libro "El Proyecto Básico Del Buque Mercante", la compensación o área del timón a proa del eje de giro, que se suele definir como tanto por ciento del área total, suele variar entre el 20-25% del área del timón

Si tomamos un 20%:

Área compensación = $0.2 \times$ Área total

En nuestro caso:

Área compensación = 0,28 m²

Situación eje = 0.28/2.8 = 0.10 m

7 CÁLCULO DEL SERVOMOTOR

Calcularemos la fuerza máxima ejercida sobre el timón tanto avante como ciando según la siguiente expresión:

Fuerza máxima =
$$\frac{41,35 \times S \times V^2 \times \sin \alpha}{0,2 + 0,3 \times \sin \alpha}$$

Siendo " α " el radio de giro del timón. Se realiza para un ángulo de 35°.

Avante:

$$V_{avante} = 12 \text{ Knots} = 6,14 \text{ m/s}$$

$$S = 1,44 \text{ m}^2$$

$$F_{avante} = 3460,49 \text{ Kg} = 33913 \text{ Nw}$$

Ciando:

$$V_{ciando} = 2/3 V_{avante} = 4,09 m/s$$

 $S = 1,44 \text{ m}^2$

 $F_{ciando} = 1535,49 \text{ Kg} = 15048 \text{ Nw}$

Una vez obtenidas las fuerzas, tanto avante como ciando, hallamos ahora la distancia del centro de presiones (CP) al eje, para poder calcular el par máximo necesario para el diseño del servo.

La posición de CP (centro de gravedad de las fuerzas actuantes sobre la pala del timón) no influye prácticamente en la maniobrabilidad del buque, pero sí lo hace poderosamente sobre el par en la mecha y, en consecuencia, sobre el escantillonado de la mecha y la potencia del aparato de gobierno. ("La Maniobrabilidad del Buque Pesquero" de Antonio Baquero).

D= distancia del centro de presiones al borde de ataque

 $D = (0.2 + 0.3 \times \sin \alpha) \times longitud$

Longitud = 0,51 m (calculada en apartados anteriores)

Sustituyendo:

D = 0.19 m

Si llamamos Xa a la distancia del CP al eje (avante), tenemos:

Xa = D - 0.10 = 0.09 m

Siendo Xc la distancia del CP al eje (ciando):

Xc = (0.51 - 0.09) - 0.19 = 0.23 m

Mostramos una tabla resumen con los resultados obtenidos:

	FUERZA MÁXIMA Nw	X m	PAR MÁXIMO Nw·m
AVANTE	33913	0,09	3052,17
CIANDO	15048	0,23	3461,04

Estableceremos un margen de seguridad por posibles pérdidas en el circuito, etc de un 20%, por lo que, en caso de llevar cada propulsor su servo, éste tendría que vencer un par de:

Par máximo = 4153,248 Nw⋅m

8 ANEXO (SALIDAS NAVCAD)

Propulsion 18 abr 2017 01:12 HydroComp NavCad 2014

Project ID Remolcador puerto

Description 60 TPF

File name EL BUENO.hcnc

Analysis parameters

Hull-propulsor interaction		System analysis	
Technique:	[Calc] Prediction	Cavitation criteria:	Keller eqn
Prediction:	Holtrop	Analysis type:	Free run
Reference ship:		CPP method:	Fixed RPM
Max prop diam:	2400,0 mm	Engine RPM:	
Corrections		Mass multiplier:	
Viscous scale corr:	[On] Custom	RPM constraint:	
Rudder location:	Free stream	Limit [RPM/s]:	
Friction line:	ITTC-57	Water properties	
Hull form factor:	1,000	Water type:	Salt
Corr allowance:	0,00000	Density:	1026,00 kg/m3
Roughness [mm]:	[On] 0,00	Viscosity:	1,18920e-6 m2/s
Ducted prop corr:	[On]		
Tunnel stern corr:	[Off]		
Effective diam:			
Recess depth:			

Prediction method check [Holtrop]

Parameters	FN [design]	CP	LWL/BWL	BWL/T
Value	0,36	0,58	2,88*	2,40
Range	0,060,80	0,550,85	3,90-14,90	2,104,00

Prediction results [System]

	HULL-PROPULSOR				ENGINE				
SPEED	PETOTAL	WFT	THD	EFFR	RPMENG	PBPROP	FUEL	LOADENG	
[kt]	[kW]				[RPM]	[kW]	[L/h]	[%]	
2,00	8,0	0,0596	0,1005	0,9563	270	3,6		0,0	
4,00	8,6	0,0584	0,1005	0,9563	550	30,6		0,0	
6,00	43,5	0,0578	0,1005	0,9563	739	100,7		0,0	
8,00	111,4	0,0574	0,1005	0,9563	771	184,1		0,0	
10,00	282,3	0,0571	0,1005	0,9563	800	346,0		0,0	
11,00	340,9	0,0570	0,1005	0,9563	800	411,4		0,0	
11,50	436,4	0,0569	0,1005	0,9563	800	489,8		0,0	
+ 12,00 +	636,5	0,0569	0,1005	0,9563	800	647,1		0,0	
12,50	944,4	0,0568	0,1005	0,9563	800	904,9		0,0	
13,00	1329,6	0,0568	0,1005	0,9563	800	1261,3		0,0	
				PC	OWER DELIVER	RY			
SPEED	RPMPROP	QPROP	QENG	PDPROP	PSPROP	PSTOTAL	PBTOTAL	TRANSP	CPPITCH
[kt]	[RPM]	[kN·m]	[kN·m]	[kW]	[kW]	[kW]	[kW]	TRANSF	[mm]
2,00	64	0,49	0,11	3,4	3,5	6,9	7,1		1080,2
4,00	130	2,05	0,48	29,1	29,7	59,3	61,2	234,1	1080,2
6,00	174	5,01	1,18	95,7	97,7	195,3	201,4	106,7	1232,2
8,00	182	8,78	2,07	175,0	178,6	357,2	368,2	77,8	1643,5
10,00	189	15,91	3,75	328,9	335,7	671,3	692,1	51,7	2128,3
11,00	189	18,91	4,46	391,1	399,0	798,1	822,8	47,9	2337,3
11,50	189	22,51	5,31	465,6	475,1	950,3	979,7	42,0	2502,9
+ 12,00 +	189	29,74	7,02	615,1	627,7	1255,4	1294,2	33,2	2757,5
12,50	189	41,59	9,82	860,2	877,8	1755,6	1809,9	24,7	3100,9
13,00	189	57,97	13,69	1199,0	1223,4	2446,9	2522,5	18,4	3514,9
		EFFIC	IENCY		THR	UST			
SPEED	EFFO	EFFG	EFFOA	MERIT	THRPROP	DELTHR			
[kt]					[kN]	[kN]			
2,00	0,1351	0,9700	0,1211	0,043638	0,45	0,82			
4,00	0,1623	0,9700	0,1453	0,059347	2,33	4,19			
6,00	0,2492	0,9700	0,2229	0,11135	7,84	14,11			
8,00	0,3487	0,9700	0,3119	0,16183	15,04	27,06			
10,00	0,4704	0,9700	0,4205	0,24857	30,50	54,87			
11,00	0,4779	0,9700	0,4272	0,24055	33,49	60,25			
11,50	0,5138	0,9700	0,4593	0,27374	41,01	73,77			
+ 12,00 +	0,5673	0,9700	0,5071	0,34239	57,31	103,11			
12,50	0,6019	0,9700	0,5380	0,41621	81,64	146,87			
13,00	0,6080	0,9700	0,5434	0,47032	110,51	198,81			

Report ID20170418-1312 HydroComp NavCad 2014 14.02.0029.S1002.539

Propulsion 18 abr 2017 01:12 HydroComp NavCad 2014

Project ID Description Remolcador puerto

60 TPF

EL BUENO.hcnc File name

Prediction results [Propulsor]

	PROPULSOR COEFS								
SPEED [kt]	J	KT	KQ	KTJ2	KQJ3	СТН	СР	RNPROP	KTN
2,00	0,3791	0,0118	0,00526	0,081963	0,09657	0,20872	1,6158	3,62e6	-0,0088
4,00	0,3733	0,0146	0,00535	0,10496	0,1029	0,26728	1,7218	7,35e6	-0,0075
6,00	0,4169	0,0273	0,00726	0,15687	0,10021	0,39947	1,6766	9,91e6	-0,0081
8,00	0,5331	0,0481	0,01169	0,16915	0,077203	0,43073	1,2917	1,04e7	-0,0128
10,00	0,6421	0,0904	0,01965	0,21936	0,074224	0,55859	1,2419	1,10e7	-0,0123
11,00	0,7064	0,0993	0,02336	0,19899	0,066271	0,50672	1,1088	1,10e7	-0,0178
11,50	0,7386	0,1216	0,02782	0,22291	0,069045	0,56763	1,1553	1,11e7	-0,0155
+ 12,00 +	0,7707	0,1700	0,03675	0,2861	0,080268	0,72856	1,343	1,11e7	-0,0050
12,50	0,8029	0,2421	0,05139	0,37553	0,099294	0,95627	1,6614	1,12e7	0,0142
13,00	0,8351	0,3277	0,07163	0,46994	0,12301	1,1967	2,0582	1,12e7	0,0387
	CAVITATION								
SPEED [kt]	SIGMAV	SIGMAN	SIGMA07R	TIPSPEED [m/s]	MINBAR	PRESS [kPa]	CAVAVG [%]	CAVMAX [%]	PITCHFC [mm]
2,00	276,57	39,75	7,98	8,02	0,076	0,18	2,0	2,0	955,1
4,00	68,97	9,61	1,93	16,31	0,083	0,94	2,0	2,0	952,3
6,00	30,61	5,32	1,06	21,91	0,098	3,15	2,0	2,0	1092,2
8,00	17,21	4,89	0,95	22,86	0,114	6,05	2,0	2,0	1404,8
10,00	11,00	4,54	0,86	23,73	0,157	12,26	2,0	2,0	1732,5
11,00	9,09	4,54	0,85	23,73	0,162	13,46	2,0	2,0	1888,3
11,50	8,32	4,54	0,84	23,73	0,185	16,48	2,0	2,0	1996,0
+ 12,00 +	7,64	4,54	0,84	23,73	0,236	23,03	2,0	2,0	2140,9
12,50	7,04	4,54	0,83	23,73	0,298	30,89	4,2	4,2	2311,1
13,00	6,51	4,54	0,82	23,73	0,363	39,17	9,6	9,6	2487,3

Report ID20170418-1312

HydroComp NavCad 2014 14.02.0029.S1002.539

Propulsion 18 abr 2017 01:12

HydroComp NavCad 2014

Project ID Description Remolcador puerto

60 TPF

File name EL BUENO.hcnc

Hull data

General		Planing	
Configuration:	Monohull	Proj chine length:	0,000 m
Chine type:	Round/multiple	Proj bottom area:	0,0 m2
Length on WL:	29,880 m	LCG fwd TR:	[XCG/LP 0,000] 0,000 m
Max beam on WL:	[LWL/BWL 2,882] 10,367 m	VCG below WL:	0,000 m
Max molded draft:	[BWL/T 2,402] 4,316 m	Aft station (fwd TR):	0,000 m
Displacement:	[CB 0,517] 709,50 t	Deadrise:	0,00 deg
Wetted surface:	[CS 2,609] 375,0 m2	Chine beam:	0,000 m
ITTC-78 (CT)		Chine ht below WL:	0,000 m
LCB fwd TR:	[XCB/LWL 0,484] 14,458 m	Fwd station (fwd TR):	0,000 m
LCF fwd TR:	[XCF/LWL 0,038] 1,129 m	Deadrise:	0,00 deg
Max section area:	[CX 0,894] 40,0 m2	Chine beam:	0,000 m
Waterplane area:	[CWP 0,870] 269,6 m2	Chine ht below WL:	0,000 m
Bulb section area:	0,0 m2	Propulsor type:	Propeller
Bulb ctr below WL:	0,000 m	Max prop diameter:	2400,0 mm
Bulb nose fwd TR:	0,000 m	Shaft angle to WL:	0,00 deg
Imm transom area:	[ATR/AX 0,225] 9,0 m2	Position fwd TR:	0,000 m
Transom beam WL:	[BTR/BWL 0,661] 6,850 m	Position below WL:	0,000 m
Transom immersion:	[TTR/T 0,240] 1,035 m	Transom lift device:	Flap
Half entrance angle:	36,32 deg	Device count:	0
Bow shape factor:	[WL flow] 1,0	Span:	0,000 m
Stern shape factor:	[WL flow] 1,0	Chord length:	0,000 m
		Deflection angle:	0,00 deg
		Tow point fwd TR:	0,000 m
		Tow point below WL:	0,000 m

Propulsor data

Propulsor			Propeller options	
Count:	2		Oblique angle corr:	Off
Propulsor type:	Propeller series		Shaft angle to WL:	0,00 deg
Propeller type:	CPP		Added rise of run:	0,00 deg
Propeller series:	Kaplan 19A		Propeller cup:	0,0 mm
Propeller sizing:	By thrust		KTKQ corrections:	Custom
Reference prop:			Scale correction:	None
Blade count:	4		KT multiplier:	1,000
Expanded area ratio:	0,5500	[Size]	KQ multiplier:	1,000
Propeller diameter:	2400,0 mm	[Size]	Blade T/C [0.7R]:	0,00
Propeller mean pitch:	[P/D 1,3549] 3251,7 mm	[Size]	Roughness:	0,00 mm
Hub immersion:	3300,0 mm		Cav breakdown:	Off
Engine/gear			Nozzle L/D:	0,50
Engine data:			Design condition	
Rated RPM:	0 RPM		Max prop diam:	2400,0 mm
Rated power:	0,0 kW		Design speed:	12,00 kt
Gear efficiency:	0,970		Reference power:	0,0 kW
Load correction:	On		Design point:	0,000
Gear ratio:	4,236	[Size]	Reference RPM:	800,0
Shaft efficiency:	0,980		Design point:	1,000

Report ID20170418-1312 HydroComp NavCad 2014 14.02.0029.S1002.539

Propulsion

18 abr 2017 01:12

HydroComp NavCad 2014

Project ID Remolcador puerto

Description 60 TPF

File name EL BUENO.hcnc

Symbols and values

SPEED = Vessel speed

PETOTAL = Total vessel effective power

WFT = Taylor wake fraction coefficient

THD = Thrust deduction coefficient

EFFR = Relative-rotative efficiency

RPMENG = Engine RPM

PBPROP = Brake power per propulsor

FUEL = Fuel rate per engine

LOADENG = Percentage of engine max available power at given RPM

RPMPROP = Propulsor RPM

QPROP = Propulsor open water torque

QENG = Engine torque

PDPROP = Delivered power per propulsor

PSPROP = Shaft power per propulsor

PSTOTAL = Total vessel shaft power

PBTOTAL = Total vessel brake power

TRANSP = Transport factor

EFFO = Propulsor open-water efficiency

EFFG = Gear efficiency (load corrected)

EFFOA = Overall propulsion efficiency [=PETOTAL/PSTOTAL]

MERIT = Propulsor merit coefficient

THRPROP = Open-water thrust per propulsor

DELTHR = Total vessel delivered thrust

J = Propulsor advance coefficient

KT = Propulsor thrust coefficient [horizontal, if in oblique flow]

KQ = Propulsor torque coefficient

KTJ2 = Propulsor thrust loading ratio

KQJ3 = Propulsor torque loading ratio

CTH = Horizontal component of bare-hull resistance coefficient

CP = Propulsor thrust loading coefficient

RNPROP = Propeller Reynolds number at 0.7R

KTN = Nozzle thrust coefficient

SIGMAV = Cavitation number of propeller by vessel speed

SIGMAN = Cavitation number of propeller by RPM

SIGMA07R = Cavitation number of blade section at 0.7R

TIPSPEED = Propeller circumferential tip speed

MINBAR = Minimum expanded blade area ratio recommended by selected cavitation criteria

PRESS = Average propeller loading pressure

CAVAVG = Average predicted back cavitation percentage

CAVMAX = Peak predicted back cavitation percentage [if in oblique flow]

PITCHFC = Minimum recommended pitch to avoid face cavitation

+ = Design speed indicator

* = Exceeds recommended parameter limit

! = Exceeds recommended cavitation criteria [warning]

!! = Substantially exceeds recommended cavitation criteria [critical]

!!! = Thrust breakdown is indicated [severe]

--- = Insignificant or not applicable