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Short abstracts 

 

Abstract 

In this PhD thesis, different genetic studies were carried out in two marine species of 

the genus Palaemon Weber, 1795 (Crustacea, Decapoda): the common littoral prawn 

Palaemon serratus (Pennant, 1777) and the rockpool prawn Palaemon elegans 

Rathke, 1837. Both their European distribution and morphological similarity make 

them interesting candidate species for developing population and cytogenetic 

analyses, complementing phylogenetic studies in order to clarify the evolution of the 

genus Palaemon. Furthermore, given the commercial relevance of P. serratus, this 

thesis aims to contribute to the effective management and traceability of this natural 

resource. Firstly, we applied cytogenetic analyses based on conventional staining, 

banding techniques and fluorescence in situ hybridisation to identify and characterise 

these two prawn species. The results obtained from this study revealed a high degree 

of diversity in chromosome number, karyotype and sex determination system, 

ranging from the putative absence of heteromorphic sex chromosomes to the 

multiple chromosome system X1X1X2X2/X1X2Y. Afterwards, we carried out a 

phylogeographic analysis of P. serratus to test intraspecific genetic diversity and 

geographic structure. A pronounced genetic differentiation was detected between 

Mediterranean and Atlantic populations and an uncommon phylogeographic boundary 

was unveiled. Finally, we developed a species-specific PCR-assay as a traceability 

tool for authentication of P. serratus and other four economically important prawn 

species. 
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Resumen 

En la presente tesis doctoral se han realizado diversos estudios genéticos en dos 

especies europeas de camarón pertenecientes al género Palaemon Weber, 1795 

(Crustacea, Decapoda): el camarón común P. serratus (Pennant, 1777) y el camarón 

de roca P. elegans Rathke, 1837. Su distribución europea y su similitud morfológica, 

las convierten en interesantes candidatas para desarrollar análisis de poblaciones y 

citogenéticos que complementen los estudios filogenéticos existentes y ayuden a 

clarificar la evolución del género Palaemon. Además, debido a la importancia 

comercial de P. serratus, esta tesis pretende contribuir a la gestión y conservación 

efectiva de este recurso natural, así como a su trazabilidad. En primer lugar, se 

emplearon técnicas citogenéticas basadas en tinciones convencionales, técnicas de 

bandeo e hibridaciones in situ fluorescente para identificar y caracterizar estas dos 

especies de camarón. Los resultados obtenidos revelaron disparidad en el número 

cromosómico diploide, cariotipo y sistema de determinación sexual de las dos 

especies estudiadas, variando desde la supuesta ausencia de cromosomas sexuales 

heteromórficos hasta el sistema múltiple de determinación sexual X1X1X2X2/X1X2Y. En 

segundo lugar, se realizó un análisis filogeográfico en P. serratus para evaluar la 

diversidad genética intraespecífica así como su estructura poblacional. Se detectó 

una pronunciada diferenciación genética entre las poblaciones atlántica y 

mediterránea que revelaron la existencia de una barrera filogeográfica poco 

frecuente. Finalmente, se desarrolló un método especie-específico basado en la PCR 

como herramienta de trazabilidad alimentaria para la autentificación de P. serratus y 

otras cuatro especies de langostinos y gambas de interés comercial.  
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Resumo 

Na presente tese de doutoramento realizáronse diversos estudos xenéticos en dúas 

especies europeas de camarón pertencentes ao xénero Palaemon Weber, 1795 

(Crustacea, Decapoda): o camarón común P. serratus (Pennant, 1777) e o camarón 

de roca P. elegans Rathke, 1837. A súa distribución europea e a súa similitude 

morfolóxica, converten estas dúas especies en interesantes candidatas para 

desenvolver análises citoxenéticas e de poboacións que complementen os estudos 

filoxenéticos existentes e que axuden a clarificar a evolución do xénero Palaemon. 

Ademais, debido á importancia comercial de P. serratus, esta tese pretende 

contribuir á xestión e conservación efectiva deste recurso natural, así como á súa 

trazabilidade. En primeiro lugar, empregáronse técnicas citoxenéticas baseadas en 

tincións convencionais, técnicas de bandeo e hibridacións in situ fluorescentes para 

identificar e caracterizar as devanditas especies de camarón. Os resultados obtidos 

revelaron disparidade no número cromosómico diploide, cariotipo e sistema de 

determinación sexual das dúas especies estudadas, variando dende a suposta 

ausencia de cromosomas sexuais heteromórficos ata o sistema múltiple de 

determinación sexual X1X1X2X2/X1X2Y. En segundo lugar, realizouse unha análise 

filoxeográfica en P. serratus para avaliar a diversidade xenética intraespecífica así 

como a súa estrutura poboacional. Detectouse unha pronunciada diferenciación 

xenética entre as poboacións atlántica e mediterránea que revelaron entre elas unha 

barreira filoxeográfica pouco frecuente. Finalmente, desenvolveuse un método 

especie-específico baseado na PCR como ferramenta de trazabilidade alimentaria 

para a autentificación de P. serratus e outras catro especies de lagostinos e gambas 

de interese comercial.  
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Resumen extendido 

En la presente tesis doctoral se han realizado diversos estudios genéticos en dos 

especies europeas de camarón pertenecientes al género Palaemon Weber, 1795 

(Crustacea: Decapoda): el camarón común P. serratus (Pennant, 1777) y el camarón 

de roca P. elegans Rathke, 1837. Actualmente se considera que este género 

comprende 87 especies de acuerdo con la reciente sinonimia de Palaemonetes Heller, 

1869, Coutierella Sollaud, 1914 y Exopalaemon Holthuis, 1950 con Palaemon, y 

teniendo en cuenta varias sinonimias a nivel de especie y tres especies nuevamente 

descritas. Sin embargo en los últimos años, la filogenia del género ha estado bajo 

revisión continua y en la actualidad no está completamente resuelta. Esto se debe en 

parte a que la discriminación morfológica entre congéneres es particularmente difícil 

debido a que los criterios taxonómicos de identificación se basan en diferencias muy 

sutiles, como por ejemplo, en la denticulación del rostro o en la morfología del flagelo 

antenular, lo que deriva a menudo en una identificación errónea de las especies. Las 

dos especies de camarón seleccionadas en este estudio ilustran un caso de 

extremada semejanza morfológica dentro del género. Palaemon serratus y P. elegans 

comparten además gran parte de su nicho ecológico y rango de distribución. En 

concreto, se distribuyen desde el Mar del Norte hasta Mauritania y Namibia 

respectivamente, incluyendo el Mar Mediterráneo y el Mar Negro. Desde los años 

1950s, P. elegans también se encuentra en el Mar Caspio y en el Mar de Aral debido 

a introducciones humanas y más recientemente, desde el año 2000, se ha detectado 

su presencia en el Mar Báltico, dónde está remplazando a su congénere nativo P. 

adspersus.  

Las características que comparten estas dos especies las convierten en apropiadas 

candidatas para desarrollar análisis de poblaciones y estudios de citogenética 

comparada que complementen los estudios filogenéticos y filogeográficos existentes 

y ayuden a clarificar la evolución del género Palaemon. A su vez, la elevada demanda 

comercial de P. serratus en diversas regiones europeas entre las que destaca el 

litoral de Galicia (España), ha dado lugar a una intensa explotación pesquera de este 

recurso natural. Es por ello que esta tesis pretende contribuir a la gestión y 

conservación efectiva de esta especie de crustáceo decápodo, por una parte 

mediante la identificación de posibles unidades o stocks genéticos a lo largo de su 

rango de distribución y por otra parte, a través del diseño de una herramienta 

molecular de autentificación dirigida sobre todo a empresas de alimentación, para su 

empleo en puntos de control de calidad o en auditorías.  
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Los objetivos concretos de esta tesis fueron 1) caracterizar los cariotipos de P. 

serratus y P. elegans identificando sus cromosomas sexuales, y con los resultados 

obtenidos, realizar un estudio de citogenética comparada; 2) evaluar la variabilidad 

genética intraespecífica de P. serratus así como su estructura poblacional a lo largo 

de su rango de distribución; y 3) desarrollar un método molecular de trazabilidad 

alimentaria que permita autentificar la presencia de P. serratus en productos frescos 

y congelados, garantizando así su calidad y combatiendo el fraude comercial. 

Además, en este último objetivo se incluyeron otras especies de crustáceos 

(langostinos y gambas) de gran importancia económica. 

Dichos objetivos se enmarcan dentro de las áreas de citogenética, genética de 

poblaciones e identificación genética de especies o DNA barcoding. 

Consecuentemente, la metodología empleada a lo largo de la tesis varía en cierto 

modo en cada uno de los capítulos que la conforman y puede resumirse como sigue: 

en el CAPÍTULO 1.1 titulado “Karyological analysis of the shrimp Palaemon serratus 

(Decapoda: Palaemonidae)” y en el CAPÍTULO 1.2 “Comparative cytogenetic analysis 

of marine Palaemon species reveals a X1X1X2X2/X1X2Y sex chromosome system in 

Palaemon elegans”, se utilizaron técnicas citogenéticas de extensión cromosómica, 

técnicas de bandeo cromosómico e hibridación in situ fluorescente (FISH) de los 

genes ribosomales mayores (18S-5.8S-28S) y de diversas secuencias teloméricas, 

así como el empleo de técnicas de microscopía en campo claro y fluorescente. 

Asimismo, se desarrollaron las sondas mediante reacción en cadena de la polimerasa 

(PCR), clonación y marcaje fluorescente de las secuencias de DNA. En el CAPÍTULO 2 

que lleva por título “Genetic differentiation between Mediterranean and Atlantic 

populations of the common prawn Palaemon serratus (Crustacea: Palaemonidae) 

reveals uncommon phylogeographic break” la metodología utilizada fue diferente. Se 

extrajo DNA de muestras de camarón procedentes de diferentes localidades 

atlánticas y mediterráneas. Posteriormente, se amplificaron mediante PCR dos 

fragmentos de DNA mitocondrial (el gen que codifica la subunidad 1 de la citocromo c 

oxidasa, Cox1 y el gen que codifica la subunidad mayor del ribosoma mitocondrial, 

16S rRNA) y un fragmento de origen nuclear (el gen que codifica la enzima Enolasa 

implicada en la glucólisis). Los productos de PCR resultantes fueron secuenciados 

mediante el método Sanger y las secuencias obtenidas fueron analizadas aplicando 

herramientas bioinformáticas. Por último, en el CAPÍTULO 3 titulado “Molecular 

authentication of five economically important prawn species by species-specific PCR-

assay” se siguió una metodología similar a la del capítulo anterior, pero en esta 

ocasión el marcador molecular elegido fue un pequeño fragmento del gen 

mitocondrial citocromo b oxidasa (cyt b) a partir del cual se diseñaron cebadores 
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especie-específicos. Las secuencias obtenidas en esta tesis se depositaron en las 

bases de datos GenBank/EMBL.  

A continuación se resumen los principales resultados obtenidos en cada uno de los 

capítulos de esta tesis: 

En el CAPÍTULO 1.1 “Karyological analysis of the shrimp Palaemon serratus 

(Decapoda: Palaemonidae)” se caracterizó por primera vez el camarón común 

europeo P. serratus a nivel citogenético. Se observó que esta especie cuenta con una 

dotación diploide de 2n=56 cromosomas, el número cromosómico más bajo descrito 

en la familia Palaemonidae hasta la fecha. El cariotipo de P. serratus consistió en 2 

grandes pares de cromosomas metacéntricos, 6 pares de cromosomas 

subtelocéntricos y 20 pequeños pares de cromosomas telocéntricos. La tinción con 

plata (Ag-NOR) y la hibridación in situ fluorescente de la sonda de los genes 

ribosomales mayores, localizaron las regiones organizadoras nucleolares (NORs) en 

los telómeros de cuatro pequeños cromosomas telocéntricos. La tinción con DAPI 

reveló bloques ricos en AT en las regiones centroméricas/pericentroméricas de todos 

los cromosomas además de bandas intercalares en los dos pares metacéntricos 

grandes.  

En el CAPÍTULO 1.2 “Comparative cytogenetic analysis of marine Palaemon species 

reveals a X1X1X2X2/X1X2Y sex chromosome system in Palaemon elegans” se 

profundizó en el análisis citogenético de P. serratus y se extendió el estudio a su 

congénere europeo P. elegans. Se observó que el número cromosómico diploide de P. 

elegans es 2n=89 cromosomas en machos y 2n=90 cromosomas en hembras. El 

cariotipo consistió en 43 pares cromosómicos autosómicos: 5 

metacéntricos/submetacéntricos, 4 subtelocéntricos/telocéntricos y 34 cuya 

morfología fue difícilmente distinguible dado su pequeño tamaño. El cariotipo de las 

hembras incluyó además dos pares de cromosomas telocéntricos más grandes; 

mientras que el complemento cromosómico de machos presentó un cromosoma 

metacéntrico grande y dos cromosomas telocéntricos. Así, el cromosoma 

metacéntrico de mayor tamaño y exclusivo de machos (Y) pone de manifiesto que los 

machos constituyen el sexo heterogamético en esta especie. El comportamiento de 

los cromosomas durante la primera división meiótica permitió definir sin lugar a duda 

el sistema de determinación del sexo de la especie. En diacinésis, cada brazo del 

cromosoma Y metacéntrico se asociaba terminalmente con cada uno de los 

cromosomas telocéntricos, formando un trivalente (X1X2Y). En hembras, los 

cromosomas sexuales telocéntricos apareaban dos a dos dando lugar a dos 

bivalentes (X1X1X2X2). Consecuentemente, se comprobó la existencia en P. elegans 
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del sistema múltiple de determinación del sexo X1X1X2X2/X1X2Y. El análisis de 

extensiones meióticas de P. serratus mostró 28 bivalentes en ambos sexos y no se 

detectó la existencia de ningún par cromosómico heteromórfico entre machos y 

hembras. Con el fin de clarificar la posible existencia de cromosomas sexuales en 

esta especie se realizó la técnica de bandeo C cromosómico. Dicha técnica reveló 

que, cuando estaba presente, la heterocromatina constitutiva tenía una distribución 

predominantemente telomérica; aunque sí se detectaron bandas heterocromáticas 

débiles en posición intersticial en los grandes cromosomas metacéntricos. No se 

observaron diferencias entre el patrón de bandas C de machos y hembras de P. 

serratus. En los cromosomas sexuales de P. elegans no se detectó la presencia de 

bandas C. Considerando este resultado, y teniendo en cuenta el gran tamaño del 

cromosoma Y así como la existencia de recombinación en meiosis de los cromosomas 

sexuales de macho, se postuló que el sistema múltiple de determinación sexual quizá 

sea el resultado de una evolución reciente.  

Siguiendo con los resultados derivados del bandeo C, en ambas especies de 

Palaemon se observó la presencia de grandes bloques heterocromáticos en los 

telómeros de 4 pequeños cromosomas, señales coincidentes con los sitios de 

hibridación de la sonda de los genes ribosomales mayores. Dada las diferencias 

identificadas entre los cariotipos de P. serratus y P. elegans, la existencia de dos loci 

ribosomales quizá constituya un carácter plesiomórfico dentro del género Palaemon. 

La tinción con DAPI mostró bloques ricos en AT en las regiones 

centroméricas/pericentroméricas de todos los cromosomas de P. serratus y P. 

elegans. Además en este capítulo, se detectó en ambas especies de camarón la 

presencia del motivo telomérico ancestral de artrópodos TTAGG en los telómeros de 

todos los cromosomas. No se encontraron señales intersticiales en ninguno de los 

complementos. En base a los resultados citogenéticos obtenidos para P. serratus y P. 

elegans y la revisión bibliográfica de los datos disponibles en la familia Palaemonidae, 

parece probable que un elevado número cromosómico represente una condición 

ancestral del género Palaemon, mientras que el reducido número cromosómico 

característico de P. serratus  constituya un carácter derivado. De acuerdo con esto, 

parece plausible que diversas fusiones cromosómicas constituyan el principal 

mecanismo responsable del origen del cariotipo de P. serratus, lo cual ha sido 

sugerido también para otras familias de decápodos como Astacidae y Parastacidae.  

En el CAPÍTULO 2, “Genetic differentiation between Mediterranean and Atlantic 

populations of the common prawn Palaemon serratus (Crustacea: Palaemonidae) 

reveals uncommon phylogeographic break”, se realizó un estudio biogeográfico de P. 

serratus con muestras tomadas en localidades situadas a lo largo de la costa 
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europea. Con este fin, se secuenciaron y analizaron dos genes mitocondriales (Cox1 

y 16S rDNA) y uno nuclear (Enolasa). Se construyeron redes de máxima parsimonia 

estadística para cada uno de los genes, se calculó la diversidad haplotípica y la 

diversidad nucleotídica y se realizó un análisis molecular de la varianza (AMOVA). Los 

resultados obtenidos revelaron diferenciación genética entre las localidades 

mediterráneas, el Estuario del Guadalquivir y las localidades atlánticas. Los 

individuos de las dos primeras áreas están relacionados entre sí formando parte de la 

población o linaje mediterráneo. El segundo linaje, la población atlántica contiene los 

individuos de las localidades atlánticas al norte del Golfo de Cádiz. Por tanto, la 

barrera filogeográfica que limita el flujo génico entre las poblaciones atlántica y 

mediterránea de P. serratus se encuentra en algún lugar al este del Golfo de Cádiz. 

Aunque la diferenciación intraespecífica atlántico-mediterránea ha sido detectada en 

diversas especies marinas, la barrera que se describe en este trabajo es muy poco 

frecuente en la literatura. Se ha postulado que el Frente Almería-Orán es la principal 

frontera hidrográfica que da lugar a diferenciación entre las poblaciones atlánticas y 

mediterráneas en muchas especies y de hecho se ha demostrado su efecto en la 

estructura genética de P. elegans.  

Los análisis realizados en este estudio (CAPÍTULO 2) mostraron que la población 

atlántica es genéticamente muy diversa, exhibiendo 18 haplotipos diferentes para 

Cox1 y todas las localidades analizadas presentan diversidades haplotípicas y 

nucleotídicas muy altas, así como elevado flujo génico entre ellas.  Del mismo modo, 

el análisis de diversidad haplotípica de la población mediterránea sugiere que 

también esta población representa un sistema estable con valores de flujo génico 

relativamente altos. Sin embargo, dentro de este linaje, el flujo génico de las 

localidades situadas en el Mar Mediterráneo con respecto a los individuos del Estuario 

de Guadalquivir es restringido y, como consecuencia, estos últimos forman un clado 

bastante homogéneo con haplotipos endémicos. A la vista de los resultados, parece 

probable la ocurrencia de una colonización reciente desde el este del Mar 

Mediterráneo al Golfo de Cádiz originando un efecto fundador que explicaría la baja 

variabilidad génica en esa localidad.  

En el Capítulo 3 “Molecular authentication of five economically important prawn 

species by species-specific PCR-assay”, se desarrolló un método de trazabilidad 

alimentaria basado en la PCR para autentificar la presencia de P. serratus además de 

otras cuatro especies de crustáceos de elevado interés comercial; en concreto: el 

langostino tigre (Penaeus indicus), el langostino jumbo (Penaeus monodon), el 

gambón argentino (Pleoticus muelleri) y la gamba rosada (Aristeus antennatus). Pese 

a su importancia comercial, Aristeus antennatus y Palaemon serratus se analizaron 
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aquí por primera vez desde una perspectiva de trazabilidad alimentaria. En este 

estudio, a partir de un fragmento de DNA mitocondrial (cyt b) de 181pb se 

desarrollaron cebadores especie-específicos. En el caso de P. serratus la 

autentificación se llevó a cabo en dos ciclos de amplificación, primero con el par de 

cebadores crustF/Se-cytbR (resultado positivo) y a continuación con los cebadores 

crustF/Mon-cytbR que no da lugar a amplificación por ser específico de P. monodon.  

En  los demás casos, un resultado de amplificación positivo de la muestra con el 

correspondiente par de cebadores específicos verifica la identidad de la especie para 

la que fue diseñado. La especificidad de los cebadores fue testada en todas las 

especies incluidas en el análisis además de en el camarón blanco, Litopennaeus 

vannamei, que contribuye al 80% de la producción mundial de camarón. No se 

documentaron casos de amplificación cruzada. Esta metodología puede emplearse 

tanto en tejido fresco como en tejido congelado. Además, el tipo de marcador 

molecular elegido (mitocondrial) y el pequeño tamaño de los amplicones, convierte a 

este método en un buen candidato para su empleo en productos procesados donde el 

DNA está habitualmente dañado y fragmentado. 

Las principales conclusiones de esta tesis se enumeran en los siguientes puntos: 

 El número cromosómico diploide de machos y de hembras de P. serratus 

es de 2n=56 cromosomas. En ambos sexos, el cariotipo consistió en 2 

grandes pares de cromosomas metacéntricos, 6 pares de cromosomas 

subtelocéntricos y 20 pequeños pares de cromosomas telocéntricos. El 

análisis comparativo entre las extensiones metafásicas de machos y de 

hembras de P. serratus indicó la supuesta ausencia de cromosomas 

sexuales heteromórficos. 

 

 El número cromosómico diploide de P. elegans es de 2n=90 en hembras y 

de 2n=89 en machos. En ambos sexos, el cariotipo consistió en 43 pares 

cromosómicos autosómicos: 5 pares metacéntricos/submetacéntricos, 4 

pares subtelocéntricos/telocéntricos, y 34 pares cuya morfología fue 

difícilmente reconocible debido a su pequeño tamaño. El complemento 

cromosómico de hembras incluyó además 4 grandes cromosomas 

telocéntricos (X1X1X2X2), mientras que el de machos reveló un gran 

cromosoma metacéntrico (Y) y dos cromosomas telocéntricos (X1X2). 

 

 El análisis comparativo entre cromosomas metafásicos de ambos sexos de 

P. elegans, además de su comportamiento en meiosis, revelaron la 

presencia de un sistema de determinación sexual múltiple X1X1X2X2/X1X2Y 
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en esta especie. La recombinación en meiosis de los cromosomas sexuales 

masculinos formando el trivalente observado, en combinación con el hecho 

de que el cromosoma Y es eucromático y de gran tamaño, pueden ser 

indicativos de que este sistema de determinación sexual ha surgido 

recientemente en la evolución de la especie. 

 

 La revisión de los números cromosómicos de los miembros de la familia 

Palaemonidae, además de ciertas evidencias aportadas en esta tesis, 

sugieren que el reducido número cromosómico de P. serratus constituye 

un carácter derivado dentro de la familia. La evolución cromosómica del 

género Palaemon podría estar relacionada con diversos eventos de fusión 

cromosómica, hipótesis que necesita futuras investigaciones. 

 

 La técnica de bandeo-C reveló que la heterocromatina constitutiva tiene 

una distribución predominantemente telomérica en los cromosomas de 

ambas especies de Palaemon. En cuanto a los cromosomas sexuales, en P. 

serratus no se encontraron diferencias en el patrón de heterocromatina 

constitutiva entre sexos. En P. elegans, esta técnica reveló la ausencia de 

heterocromatina constitutiva en los cromosomas sexuales. 

 

 De acuerdo con los resultados de hibridación in situ fluorescente, tanto en 

P. serratus como en P. elegans, se localizaron 4 señales (dos loci) de los 

genes ribosomales mayores en posición terminal, lo que podría constituir 

un carácter plesiomórfico del género. Además, en ambas especies, se 

detectó la presencia de la repetición TTAGG en los telómeros de todos los 

cromosomas, revelándose por primera vez la existencia de este motivo 

ancestral de artrópodos en la familia Palaemonidae.  

 

 El análisis poblacional de P. serratus resultante de analizar dos genes 

mitocondriales y un gen nuclear (Cox1 mtDNA, 16S rRNA and Enolase 

nuDNA), mostró diferenciación genética entre las localidades del Mar 

Mediterráneo, el Estuario de Guadalquivir y el Océano Atlántico.  

 

 La población mediterránea incluye los individuos del Estuario del 

Guadalquivir, indicando que la barrera geográfica que limita el flujo génico 

entre las poblaciones atlánticas y mediterráneas de P. serratus está 

localizada al oeste del Estrecho de Gibraltar, una barrera filogeográfica 

poco frecuente. 
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 En relación a la gestión de P. serratus, nuestros resultados revelaron la 

existencia de dos poblaciones dentro de esta especie que apuntan hacia la 

necesidad de establecer dos áreas prioritarias de gestión. 

 

 Se desarrolló un método sencillo de detección especie-específico basado 

en la PCR destinado a autentificar la identidad de cinco especies de 

crustáceos económicamente importantes en productos de alimentación: el 

langostino tigre (Penaeus indicus), el langostino jumbo (Penaeus 

monodon), el gambón argentino (Pleoticus muelleri), la gamba rosada 

(Aristeus antennatus) y el camarón común (Palaemon serratus).  

 

 Este método de trazabilidad alimentaria, que tiene como diana un pequeño 

fragmento del gen citocromo b oxidasa, asegura la detección del molde de 

DNA en productos frescos y congelados y proporciona un método simple, 

rápido y económicamente asequible para su aplicación en la industria de la 

alimentación así como para los laboratorios de control de calidad. 

 

22



 

 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 



 



Introduction 
 
 

Organisation of the thesis  

In this PhD thesis, different genetic studies were carried out in two marine Palaemon 

species: the common littoral prawn Palaemon serratus (Pennant, 1777) and the 

rockpool prawn Palaemon elegans Rathke, 1837 (Crustacea, Decapoda). The 

European distribution and morphological similarity between these two prawn species 

make them interesting candidates to perform population and cytogenetic analyses. 

These assays will complement previous phylogenetic studies in order to shed light on 

the evolution of the genus Palaemon. Furthermore, given the commercial relevance 

of P. serratus, this PhD thesis aims to contribute to the effective management and 

traceability of this natural resource. In terms of methodology, several cytogenetic 

and molecular biology approaches were followed to answer questions related to 

evolutionary and population genetics, conservation or food traceability among other 

issues.  

This thesis was funded by two different research projects by Xunta de Galicia 

(GRC2014/050) and Ministerio de Economía, Industria y Competitividad (CTM2014-

53838-R), reflecting the economic and ecological importance of the selected species. 

Given that the present thesis has been written as a compendium of research articles, 

each of them has its own introductory section. Therefore, in this general introduction, 

I will give an overview on the organisation of the thesis, providing some useful 

information that, due to editorial reasons, was not included in the articles 

themselves.   

For the sake of clarity, the following RESEARCH ARTICLES were ordered by 

publishing date and topic.  

In CHAPTER 1, we aimed to provide the first karyological data for P. serratus and P. 

elegans as well as identifying their sex chromosome system. Mitotic and meiotic 

karyotypes of these species were characterised based on conventional staining, 

banding techniques and fluorescence in situ hybridization (FISH) with ribosomal and 

telomeric probes.  

In CHAPTER 2, we focused on P. serratus prawn to perform a phylogeographic 

analysis on individuals collected along European coastlines. We assessed intraspecific 

genetic diversity and population structure of this species using mitochondrial and 

nuclear molecular markers.  

In CHAPTER 3, we developed a DNA-based technique to authenticate the presence of 

P. serratus in food products using a small sized mitochondrial marker. Also, we 
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extended our analysis to four economically important prawn species, in particular 

Pleoticus muelleri, Penaeus monodon, Penaeus indicus and Aristeus antennatus. 

In the CORRIGENDUM, we report some errors observed after the publication of the 

research articles that are part of this thesis.  

The GENERAL DISCUSSION addresses to examine the implications of the work 

developed in this thesis regarding further genetic studies in the genus Palaemon. 

Finally, we summarise the main CONCLUSIONS inferred from the results of this 

thesis. 
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Introduction to Palaemon species 

The genus Palaemon Weber, 1795 (Crustacea, Decapoda) is one of the most species-

rich genus of the family Palaemonidae Rafinesque, 1815 (De Grave and Fransen 

2011; De Grave and Ashelby 2013). It includes marine, estuarine and freshwater 

shrimps and prawns, as well as amphidromous representatives, distributed around 

the world (Carvalho et al. 2017). Palaemon currently consists of 87 species, 

according to the recent synonymization of the genera Palaemonetes Heller, 1869, 

Coutierella Sollaud, 1914 and Exopalaemon Holthuis, 1950 (De Grave and Ashelby 

2013) with Palaemon, and taking into account species-level synonymies (Carvalho et 

al. 2014a, b; Tzomos and Koukouras 2015) and three species newly described P. 

minos Tzomos and Koukouras, 2015; P. colossus Tzomos and Koukouras, 2015 and 

P. leucurus Ashelby, 2018. 

Eleven species of the genus inhabit in European waters, in particular, six species of 

Palaemon, namely, P. adspersus Rathke, 1837, P. elegans Rathke, 1837, P. 

longirostris H. Milne-Edwards, 1837, P. serratus (Pennant, 1777), P. xiphias Risso, 

1816, and the recently introduced P. macrodactylus Rathbun, 1902; four species of 

formerly named Palaemonetes, namely, P. antennarius (H. Milne-Edwards, 1837), P. 

turcorum (Holthuis, 1961), P. varians (Leach, 1814) and P. zariquieyi (Sollaud, 1939) 

(González-Ortegón and Cuesta 2006); and the new species redescripted by Tzomos 

and Koukouras (2015), Palaemon migratorius (Heller, 1862).  

Palaemon species occupy a broad spectrum of habitats with wide geographical 

distributions along the tropical and temperate regions. They present diverse 

reproductive strategies and morphological traits. The aforementioned variability 

might indicate close phylogenetic relationships among species which share the same 

character states. Alternatively, similarities between species might also be the result 

of convergent evolution due to similar selective pressures (Carvalho et al. 2017). 

This could be the case of the species under study, P. serratus and P. elegans, which 

share an extreme morphological similarity.  

The life cycle of Palaemon prawns includes four main distinguishable stages: eggs, 

larvae, juvenile prawns and adults. Palaemon species are sexually dimorphic, with 

males generally being smaller than females.  

The total size of adult individuals of P. serratus ranges between 25 and 90 mm. 

The rostrum is serrated with 6-8 dorsal teeth, and 5 teeth on the ventral margin. The 

abdomen shows a red coloured striped pattern. However, this coloration may be 

reduced or absent in specimens living in turbid waters (González-Ortegón and Cuesta 
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2006). Palaemon elegans grows up to 65 mm length. The rostrum, serrated as well, 

is strongly expanded ventrally, being extremely high at the level of the first ventral 

tooth, with 7-9 dorsal teeth and a single row of setae on ventral margin. The 

carapace and the abdomen are usually black with a striped pattern. The joints of the 

leg are defined by yellow bands and the palm of the chela of the second legs is blue. 

Nevertheless, as for P. serratus, such coloration may vary, depending on 

environmental conditions (González-Ortegón and Cuesta 2006).  

From a morphological point of view, the number of dorsal teeth behind their ocular 

orbit at the serrated rostrum unequivocally differentiates P. serratus from P. elegans 

(two and three teeth, respectively; González-Ortegón personal communication, 

2018). Although these species are morphologically similar, they differ in physiology, 

life history strategies and larval development (Fincham 1983; González-Ortegón et 

al. 2006; González-Ortegón and Gimenez 2014; Madeira et al. 2015). 

Palaemon serratus and P. elegans have a wide geographical distribution, ranging 

from the North Sea to Mauritania and Namibia, respectively and including the 

Mediterranean and Black Sea (Holthuis 1955; d'Udekem d'Acoz 1999). Nowadays, P. 

elegans also inhabits the Aral and Caspian Sea, due to unintentional human 

introductions in the 1950s (Zenkevich 1963; Grabowski 2006). Similarly, this species 

was introduced into the Baltic Sea, and it is replacing the native species P. adspersus 

since 2000 (Reuschel et al. 2010). 

They are both marine species, but whereas P. serratus inhabits estuaries in the 

reproductive season, P. elegans is common in rockpools, Zostera, Posidonia and 

Cymodocea meadows and it also appears in slightly brackish water close to river 

mouths (Cuesta et al. 2006). According to Madeira et al. (2015) they both present 

different vertical distributions in the intertidal zone: P. elegans can be found in 

intertidal pools in the middle to upper shore and P. serratus occupies pools from 

middle to lower shore and subtidal habitats. On the other hand, P. serratus is 

adapted to lower shore and subtidal conditions meanwhile P. elegans is adapted to 

higher shore conditions.  

As invertebrates species, these prawns are relevant elements of marine ecosystems 

mechanisms, providing a link between trophic levels by feeding on algae, bryozoans, 

or small crustaceans, and in this case, being prey of relevant commercial fish 

species, for instance from the family Moronidae or Sparidae (Madeira et al. 2015).  

Its broad ecological niche and the recent range expansion of P. elegans make this 

prawn key species within the European marine littoral fauna (Reuschel et al. 2010). 
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Both species are under commercial exploitation (Holthuis 1980), but only one of 

them, P. serratus, is highly important from an economic point of view in many 

European regions due to the size that it reaches and its valuable flavor. It has been 

commercially exploited using prawn trawls along the coast of Welsh, Ireland, 

England, France, Spain and Portugal from the early 1970s. Thus, the capture of this 

resource is an important traditional activity from social and economic perspectives. 

In fact, P. serratus fishery contributes more than ten million euros annually to the 

European economy (Kelly et al. 2008). In Galicia (Northwest Spain), during the last 

ten years, the volume of catches varied from 47,576 to 90,710 Kg per year, which 

signifies an approximate worth of 2 million euros per year (data obtained from 

https://www.pescadegalicia.gal/ on 20 Feb 2018, Xunta de Galicia).  

State-of-the-art of genetic studies in study species  

Palaemon serratus and P. elegans have been used, so far, as marine invertebrate 

models to investigate the effect of environmental stressors, such as trace metal 

contaminant, and they have proved to be suitable bioindicator species in 

ecotoxicology (e.g. Lorenzon et al. 2000; Sanders et al. 2005; Lozano et al. 2010; 

González-Ortegón et al. 2013; Oliveira et al. 2013). Furthermore, Erraud et al. 

(2017) lately suggested the interest of palaemonid prawns in ecogenotoxicology. In 

particular, these authors adapted the comet assay in P. serratus to asses the 

contamination impact on the sperm quality and to use this technique for 

biomonitoring issues.  

Genetic studies on these species are really scarce. The few genetic studies on P. 

serratus and P. elegans are focused on population genetics and phylogenetic 

relationships of the genus. Cuesta et al. (2012) accomplished a molecular study 

based on the mitochondrial marker 16S rRNA in order to clarify the phylogeny of 

European Palaemon and Palaemonetes, including 20 representatives (P. serratus and 

P. elegans among them). The results of this study confirmed the paraphyly of these 

genera, as it had already been pointed out by Murphy and Austin (2003; 2005) based 

on Australian representatives. Such status was partially resolved by De Grave and 

Ashelby (2013), who inferred a systematic relationship in Palaemoninae from 

analyses based on the mitochondrial 16S rRNA and nuclear Histone (H3) genes, 

synonymizing the genera Palaemonetes, Exopalaemon and Coutierella with 

Palaemon. However, a recent phylogeny based on partial sequences of 16S rRNA, 

histone H3 and 18S rRNA from 60 species of Palaemon and 15 species from other 

Palaemonidae (Carvalho et al. 2017), provided new evidences. According to Carvalho 

et al. (2017) the genus, as redefined De Grave and Ashelby (2013), remains non-
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monophyletic, and it can be divided into four clades: Palaemon sensu stricto; 

´Alaocaris´; and the monospecific P. mercedae and P. concinnus clades. Their results 

also supported previous studies (Ashelby et al. 2012; Cuesta et al. 2012; Botello and 

Álvarez 2013) reporting that the colonization of American and European waters likely 

occurred multiple times.  

In regard to population studies in P. elegans, a phylogeographic study of this species 

based on the mitochondrial genetic markers 16S rRNA and cytochrome c oxidase I 

(Cox1), revealed the existence of three haplogroups, one of them present in the 

Atlantic populations (type I), and two in the Mediterranean populations (type II and 

type III) (Reuschel et al. 2010). In light of the results obtained in this work, genetic 

differentiation between the Atlantic (type I) and Mediterranean population (type II) 

of P. elegans has been suggested due to the existence of an oceanographic barrier, 

the Almería-Orán front, that limits gene flow between the Atlantic Ocean and the 

Mediterranean Sea, and a process of speciation during the Mediterranean salinity 

crisis (Messinian crisis) in the Pliocene that would have given rise to a cryptic species 

(type III) within P. elegans. The authors also determined that this species was 

introduced from the Mediterranean Sea (type III) into the Baltic Sea by human 

action. Bilgin et al. (2015) studied different shrimp species by means of sequencing 

Cox1 marker and confirmed the existence of two different P. elegans haplogroups 

along the coast of Turkey, which supports the theory of the existence of a cryptic 

species within P. elegans proposed by Reuschel et al. (2010). Recently, Deli et al. 

(2017) examined the genetic structure and biogeographic patterns of both 

Mediterranean types (type II and type III), analysing all previously generated 

sequences of P. elegans from the Mediterranean (Reuschel et al. 2010; Bilgin et al. 

2015) along with new sequences. The results showed that the haplogroup type III 

prevails in the western Mediterranean, while the type II is mostly restricted to the 

eastern Mediterranean. Their results also showed a marked latitudinal cline between 

these two types in the southeastern Mediterranean and along the Italian coast.  

Despite the importance of P. serratus fishery, its stock status is unknown (Haig et al. 

2014). Understanding the spatial structure of this economic and ecological important 

resource is crucial for implementing effective management strategies. In this regard, 

Bilgin et al. (2015) pointed out that a single Mediterranean specimen of P. serratus 

from the Turkish coast may be distinct from its Atlantic counterparts. This data, 

joined with those previously documented for its congeneric and sympatric species P. 

elegans, have motivated our phylogeographic analysis of P. serratus based on one 

nuclear and two mitochondrial genes, which is the first one that delineates a 

biogeographic barrier for this species. In this way, to delve into population genetics 
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of this prawn using nuclear markers, our research group also isolated and 

characterized of 20 polymorphic microsatellite loci in P. serratus (Perina et al. 2016). 

Sixteen of these microsatellites were also amplified in P. elegans and other two 

congeneric species, P. adspersus and P. longirostris.  

Recently, de novo transcriptome assembly and annotation for P. serratus from adult 

individuals and from a pool of larvae, was performed by high throughput sequencing 

(Perina et al. 2017), providing a baseline for new and diverse molecular studies. 
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Aims and objectives 
 
 

 

Within the broad aim to delve into Palaemon serratus and Palaemon elegans genetic 

knowledge, the particular objectives of this thesis are: 

 

- To characterise the karyotypes of two prawn species, the common prawn 

Palaemon serratus and the rockpool prawn Palaemon elegans, identifying their 

sex chromosome systems; to accomplish a cytogenetic comparative analysis 

and to elucidate the main mechanism of chromosome evolution within the 

genus. 

 

- To assess genetic variability and genetic structure of Palaemon serratus 

throughout its geographical distribution range in order to understand the 

population genetics of this species, using both nuclear and mitochondrial 

molecular markers.  

 

- To develop a DNA-based method to authenticate the presence of economically 

relevant prawn species, including Palaemon serratus, in fresh and frozen 

samples; providing a traceability tool to guarantee the quality of the product 

and for combating commercial fraud. 
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KARYOLOGICAL ANALYSIS OF THE SHRIMP PALAEMON SERRATUS
(DECAPODA: PALAEMONIDAE)

Ana M. González-Tizón 1,∗, Verónica Rojo 1, Elisabetta Menini 2,
Zeltia Torrecilla 1, and Andrés Martínez-Lage 1

1 Department of Cell and Molecular Biology, Faculty of Sciences, University of La Coruña,
A. Fraga 10, 15008 La Coruña, Spain

2 Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche,
Vía Brecce Bianche, 60131 Ancona, Italy

A B S T R A C T

Analysis of metaphases of Palaemon serratus (Pennant, 1777) revealed a diploid number of 2n = 56 chromosomes with a karyotype
composed of two large metacentric pairs, six subtelocentric pairs and twenty telocentric pairs. Four Ag-NORs and 45S rDNA signals were
observed at the telomeres of two small telocentric chromosome pairs. Chromomycin A3 fluorochrome staining revealed GC-rich regions
associated with Ag-NORs, and DAPI showed positive bright bands on centromeric or intercalary positions of subtelocentric and telocentric
chromosomes.

KEY WORDS: Ag-NOR, chromosomes, Crustacea, Decapoda, FISH, Palaemon serratus

DOI: 10.1163/1937240X-00002185

INTRODUCTION

Decapoda comprises 233 families containing 2725 genera
and an estimated 17 635 species, including both fossil and
extant species (for review, see De Grave et al., 2009). Many
of these species have commercial importance and are exten-
sively exploited and consumed in different countries around
the world. There are numerous studies on their biology, ecol-
ogy and molecular genetics, but the knowledge of their kary-
ology is very scarce despite their high diversity. This is
because mitotic indexes are low, chromosomes are usually
small-sized and highly condensed, and chromosome num-
bers are large. These reasons make difficult to obtain a good
quality karyotyping and chromosome banding. However, the
knowledge of the karyotype provides very useful informa-
tion to clarify species status, to identify loci of interest in
aquaculture and to provide useful information for conserva-
tion programs and sustainable exploitation.

To our knowledge, in the last twenty years (since 1992)
karyological data have only been reported in 39 species of
decapods (belonging to 23 genera included in 10 families)
(Table 1). Most of these studies only provide the chromo-
some number (existing high variability as numbers range
from 2n = 32 to 2n = 200), while karyotypes were de-
scribed in 19 out of these 39 species. Fluorochrome stain-
ing and location of nucleolar organizer regions (NORs) have
been applied in six species, and molecular cytogenetics (flu-
orescence in situ hybridisation, FISH) in four species. In four
species, a variable number of B (supernumerary) chromo-
somes was described (for review, see Coluccia et al., 2004;
Deiana et al., 2007).

∗ Corresponding author; e-mail: hakuna@udc.es

The present study was carried out in the shrimp Palae-
mon serratus (Pennant, 1777), which is distributed in the
European waters from Denmark to Mauritania, and in
the Mediterranean and Black Seas (González-Ortegón and
Cuesta, 2006). This species is under commercial exploitation
in many countries, reaching high values in market and being
an important fishery resource. This shrimp species inhabits
rock pools in the intertidal zone and also populates shallow
sand bottoms and brown algae belts. P. serratus has a cylin-
drical body composed of carapace at the front and six ab-
dominal segments. It has a large upturned rostrum in front of
the eyes with distinctive dorsal and ventral teeth (González-
Ortegón and Cuesta, 2006).

In order to increase the knowledge of crustacean cyto-
genetics and as karyotyping provides useful information in
conservation genetics, in genetic breeding programmes, and
to develop genetic maps (among other applications) we in-
vestigated the chromosome number and morphology, the lo-
cation of the major ribosomal loci by FISH and silver stain-
ing (Ag-NORs), and the location of AT-GC rich regions
by means of fluorochrome stainings with Chromomycin A3
(CA3) and 4′,6-diamidino-2 phenyl-indole (DAPI) by first
time in the shrimp P. serratus.

MATERIALS AND METHODS

Biological Material and Chromosome Preparation

Specimens of P. serratus were collected with a fish trap from the Artabro
Gulf (43°25′N, 8°20′W, La Coruña, Spain). Once in the laboratory animals
were maintained in a fish tank and fed with fish pieces for 24 hours.

Adult shrimps were injected at the epimeral line with 0.005% colchicine
solution (5 μl/g body weight) 4-5 hours before anesthetization by exposure

© The Crustacean Society, 2013. Published by Brill NV, Leiden DOI:10.1163/1937240X-0000218541



844 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 33, NO. 6, 2013

Ta
bl

e
1.

K
ar

yo
lo

gi
ca

ls
tu

di
es

in
D

ec
ap

od
a

fr
om

la
st

tw
en

ty
ye

ar
s.

2n
,d

ip
lo

id
ch

ro
m

os
om

e
nu

m
be

r;
FI

SH
45

S,
lo

ca
tio

n
of

m
aj

or
ri

bo
so

m
al

lo
ci

by
FI

SH
;F

IS
H

5S
,l

oc
at

io
n

of
m

in
or

ri
bo

so
m

al
lo

ci
by

FI
SH

C
,C

-b
an

di
ng

;Q
,Q

ui
na

cr
in

e
st

ai
ni

ng
,D

A
PI

,4
′ ,6

-d
ia

m
in

o-
2

ph
en

yl
-i

nd
ol

e
st

ai
ni

ng
;C

A
3,

ch
ro

m
om

yc
in

A
3

st
ai

ni
ng

.

2n
K

ar
yo

ty
pe

B
an

di
ng

,F
IS

H
R

ef
er

en
ce

R
em

ar
ks

Su
bo

rd
er

D
en

dr
ob

ra
ch

ia
ta

Fa
m

ily
Pe

na
ei

da
e

Pe
ne

au
s

m
on

od
on

88
8m

+
10

sm
+

5s
t+

21
t

K
um

ar
an

d
L

ak
ra

,1
99

6
Pe

ne
au

s
in

di
cu

s
88

27
m

+
13

sm
+

4s
t

L
ak

ra
et

al
.,

19
97

Pe
ne

au
s

va
nn

am
ei

88
4m

+
10

sm
+

56
st

+
18

t
Te

lo
m

er
ic

FI
SH

M
or

el
li

et
al

.,
19

98
Pe

ne
au

s
ca

li
fo

rn
ie

ns
is

88
4m

+
10

sm
+

56
st

+
18

t
C

am
po

s-
R

am
os

,1
99

7
Pe

ne
au

s
se

m
is

ul
ca

tu
s

90
24

m
+

11
sm

+
1s

t+
9t

A
lc

iv
ar

-W
ar

re
n

et
al

.,
20

06
Pe

ne
au

s
m

er
gu

ie
ns

is
88

21
m

−
sm

+
23

st
−

t
C

am
po

s-
R

am
os

,1
99

7
Pe

ne
au

s
sc

ul
en

tu
s

88
H

os
se

in
ie

ta
l.,

20
04

Pa
ra

pe
na

eo
ps

is
st

yl
if

er
a

74
1m

+
18

sm
+

1s
t+

17
t

A
m

in
ia

nd
M

an
so

ur
i,

20
10

;M
an

so
ur

ie
ta

l.,
20

11
Tr

ac
hy

pe
na

eu
s

cu
rv

ir
is

tr
is

70
21

m
+

5s
m

+
6s

t+
3t

Z
ha

ng
et

al
.,

20
02

b
M

et
ap

en
ea

us
en

si
s

78
20

m
+

5s
m

+
7s

t+
7t

M
uk

es
h

an
d

L
ak

ra
,2

00
0

N
o

fig
ur

es
,o

nl
y

id
io

gr
am

M
et

ap
en

ea
us

af
fin

is
88

Z
ho

u
et

al
.,

19
99

O
nl

y
ab

st
ra

ct
av

ai
la

bl
e

in
E

ng
lis

h
Fe

nn
er

op
en

ea
us

pe
ni

ci
ll

at
us

88
Z

ha
ng

et
al

.,
20

02
b

O
nl

y
ab

st
ra

ct
av

ai
la

bl
e

in
E

ng
lis

h
Fe

nn
er

op
en

ea
us

ch
in

en
si

s
88

FI
SH

5S
Z

ha
ng

et
al

.,
20

02
b;

H
ua

n
et

al
.,

20
10

Fa
rf

an
te

pe
ne

au
s

az
te

cu
s

88
Z

ha
ng

et
al

.,
20

02
b

Fa
rf

an
te

pe
ne

au
s

du
or

ar
um

88
Z

ha
ng

et
al

.,
20

02
b

L
it

op
en

ea
us

se
pt

if
er

us
90

Z
ha

ng
et

al
.,

20
02

b
L

it
op

en
ea

us
st

yl
ir

os
tr

is
88

Z
ha

ng
et

al
.,

20
02

b
X

ip
ho

pe
ne

au
s

kr
oy

er
i

78
Z

ha
ng

et
al

.,
20

02
b

M
ar

su
pe

ne
au

s
ja

po
ni

cu
s

86
Z

ha
ng

et
al

.,
20

02
b

Fa
m

ily
Si

cy
on

id
ae

Si
cy

on
ia

in
ge

nt
is

64
Z

ha
ng

et
al

.,
20

02
b

Su
bo

rd
er

Pl
eo

cy
em

at
a

Fa
m

ily
A

ty
id

ae
A

ty
ae

ph
yr

a
de

sm
ar

es
ti

i
32

11
m

+
5s

m
A

na
st

as
ia

do
u

an
d

L
eo

na
rd

os
,2

01
0

Fa
m

ily
Pa

la
em

on
id

ae
M

ac
r o

br
ac

hi
um

ro
se

nb
er

gu
i

11
8

L
ak

ra
et

al
.,

19
97

M
ac

ro
br

ac
hi

um
ro

se
nb

er
gu

i
10

4
11

m
+

26
sm

+
4s

t+
11

t
Q

ia
n

et
al

.,
20

05
O

nl
y

ab
st

ra
ct

av
ai

la
bl

e
in

E
ng

lis
h

E
xo

pa
la

em
on

m
od

es
tu

s
90

28
m

+
4s

m
+

6s
t+

7t
Ji

an
g

et
al

.,
20

08
O

nl
y

ab
st

ra
ct

av
ai

la
bl

e
in

E
ng

lis
h

Pa
la

em
on

se
rr

at
us

56
2m

+
6s

m
+

20
t

FI
SH

45
S,

C
A

3,
D

A
PI

,A
g-

N
O

R
s

T
hi

s
st

ud
y

42



GONZÁLEZ-TIZÓN ET AL.: KARYOLOGY OF PALAEMON SERRATUS 845

Ta
bl

e
1.

(C
on

tin
ue

d.
)

2n
K

ar
yo

ty
pe

B
an

di
ng

,F
IS

H
R

ef
er

en
ce

R
em

ar
ks

Fa
m

ily
N

ep
hr

op
id

ae
N

ep
hr

op
s

no
rv

eg
ic

us
13

1-
14

0
m

,s
m

,t
(n

o
nu

m
be

r)
C

-,
Q

-,
A

g-
N

O
R

D
ei

an
a

et
al

.,
19

96
H

om
ar

us
am

er
ic

an
us

13
6

(m
od

e)
m

,s
m

,t
(n

o
nu

m
be

r)
C

-,
D

A
PI

,C
A

3
C

ol
uc

ci
a

et
al

.,
20

01

Fa
m

ily
A

st
ac

id
ae

A
st

ac
us

as
ta

cu
s

17
6

52
m

+
35

sm
+

1t
FI

SH
45

S,
D

A
PI

M
lin

ar
ec

et
al

.,
20

11
A

st
ac

us
le

pt
od

ac
ty

lu
s

18
0

FI
SH

45
S,

D
A

PI
M

lin
ar

ec
et

al
.,

20
11

A
st

ac
us

flu
vi

at
is

11
6

L
ec

he
r

et
al

.,
19

95
A

us
tr

op
ot

am
ob

iu
s

to
rr

en
ti

um
16

4
Pa

vl
ic

a
et

al
.,

20
08

Fa
m

ily
C

am
ba

ri
da

e
P

ro
ca

m
ba

ru
s

ll
am

as
i

12
0

A
ll

te
lo

ce
nt

ri
cs

In
dy

et
al

.,
20

10
P

ro
ca

m
ba

ru
s

di
gu

et
i

10
2

35
M

+
15

m
+

1s
t

D
iu

po
te

x
C

ho
ng

et
al

.,
19

97

Fa
m

ily
Pa

ra
st

ac
id

ae
C

he
ra

x
de

st
ru

ct
or

18
8

70
m

+
42

sm
+

48
st

+
28

t
Sc

al
ic

ie
ta

l.,
20

10
C

he
ra

x
qu

ad
ri

ca
ri

na
tu

s
20

0
33

m
+

25
sm

+
14

st
+

28
t

Ta
n

et
al

.,
20

04

Fa
m

ily
Pa

lin
ur

id
ae

Pa
li

nu
ru

s
el

ep
ha

s
13

8-
15

0
A

g-
N

O
R

s,
FI

SH
,

45
S

rD
N

A
,C

A
3

Sa
lv

ad
or

ie
ta

l.,
19

95
;C

ol
uc

ci
a

et
al

.,
20

06

Pa
li

nu
ru

s
m

au
ri

ta
ni

cu
s

11
3-

13
0

C
ol

uc
ci

a
et

al
.,

20
03

Fa
m

ily
Sc

yl
la

ri
da

e
Sc

yl
la

ru
s

ar
ct

us
70

Sa
lv

ad
or

ie
ta

l.,
19

92
Sc

yl
la

ri
de

s
la

tu
s

12
6

Sa
lv

ad
or

ie
ta

l.,
19

92

43



846 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 33, NO. 6, 2013

to ethyl ether. After removing the carapaces, we collected thorax tissue,
which we hypotonized in 0.56% KCl solution for 10 minutes and fixed three
times in freshly prepared ethanol/glacial acetic acid fixative (3:1) at 4°C.
Finally, a piece of about 3 mm of fixed tissue was placed into an microtube
containing 45% acetic acid solution and minced with the aid of a microtube
pestle. The cell suspension was then dropped onto slides heated to 43°C and
air-dried. Metaphases were stained with 4% Giemsa in phosphate buffer
pH 6.8.

Chromosome Staining and Fluorescence in situ Hybridisation

CA3 and DAPI staining were applied following Schweizer (1976, 1980),
and Ag-NOR staining was performed as described by Howell and Black
(1980).

Chromosomal location of 45S rDNA loci was carried out by FISH as
described in González-Tizón et al. (2000), using the DNA probe pDm
238 from Drosophila melanogaster (Roiha et al., 1981) labelled by nick
translation with digoxigenin-11-dUTP (Roche). Briefly, the slides were
pretreated with DNAse-free RNAse (100 μg/ml in 2 × SSC) for 1 h at
37°C, incubated in pepsin (10% in 100 mM HCI) for 10 min at 37°C, post-
fixed in formaldehyde (1% in PBS 50 mM) for 10 minutes, washed in 2 ×
SSC for 10 minutes and finally dehydrated in a graded ethanol series and
air-dried.

A hundred ng of labelled probe were made up to 30 μl with hybridization
buffer (50% formamide, 2 × SSC and 10% dextran sulphate), predenatured
at 75°C for 15 minutes, chilled on ice, and placed on a slide under a sealed
coverslip. Gradual denaturation and annealing of chromosomal DNA was
done in a slide-thermal cycler as follows: 7 minutes at 75°C, 2 minutes at
55°C, 30 seconds at 50°C, 1 minute at 45°C, 2 minutes at 42°C, 5 minutes
at 40°C, 5 minutes at 38°C, and 5 minutes at 37°C. Finally, we incubated
the slides overnight in a moist chamber at 37°C. Post-hybridization washes
consisted of two 5-minute incubations in 2 × SSC at 37°C and at room
temperature, respectively, followed by a 5-minute incubation in 0.1 M Tris,
0.15 M NaCl, 0.05% Tween-20.

Signal detection was carried out with mouse anti-digoxigenin anti-
body, FITC-rabbit anti-mouse IgG (Sigma) and FITC-goat anti-rabbit IgG
(Sigma-Aldrich). Chromosomes were counterstained with DAPI (50 ng/ml
antifade) and visualized and photographed using a Nikon Microphot-FXA
microscope equipped with a NIS-Elements D 3.10 software and a digital
camera DS-Qi1Mc.

RESULTS

The analysis of 62 metaphase plates obtained from four
males and five females showed a modal number of 56 chro-
mosomes (20 metaphases), which states a diploid number of
2n = 56 chromosomes (Fig. 1a). The karyotype consisted
of two clearly identifiable large metacentric pairs, six sub-
telocentric, and twenty telocentric pairs, all of them hardly
distinguishable due to size similarities.

The Ag-NORs were located at the telomeres of four
small telocentric chromosomes (Fig. 1b). From the analysis
of 46 metaphases obtained from two females and two
females, 4 metaphases showed one Ag-NOR (4.35%), 20
showed two Ag-NOR (43.48%), 15 showed three signals
(32.61%), and 9 showed four Ag-NORs (19.56%). The
signals revealed by FISH confirmed the positions of the
ribosomal loci on the four small telocentrics (Fig. 1c). The
CA3 positive bands were also visualized in the terminal
regions on four small telocentrics (Fig. 1d). DAPI staining
showed bright fluorescence at centromeres of the two large
metacentrics when these chromosomes are highly condensed
(Fig. 1e). However, when chromosomes are decondensed,

Fig. 1. A, Giemsa stained metaphase chromosomes of Palaemon serratus (2n = 56) showing two large metacentric pairs, six subtelocentric, and twenty
telocentric pairs which are very similar in size; B, Ag-stained metaphase plate; arrows show the location of the Ag-NORs (which were active in the precedent
interphase); C, chromosomal mapping of the 45S ribosomal using FISH; arrows point to hybridization signals at the ends of two small chromosome pairs;
D, GC-rich regions revealed with Chromomycin A3 (arrows); E, AT-rich regions after DAPI staining; when chromosomes are highly condensed only the
centromeric regions of chromosome pairs nos. 1 (solid arrows) and 2 (dotted arrows) show bright signals; F, AT-rich regions revealed with DAPI staining on
low-condensed chromosomes; the centromeric signals appear less intense than on condensed chromosomes, but in contrast longitudinal banding is observed
on chromosomes nos. 1 and 2 and on other chromosomes of the complement. Scale bar = 10 μm.
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some intercalar bands can be visualized on chromosomes 1
and 2, as well as other DAPI positive bands on centromeric
or intercalar positions of subtelocentric and telocentric
chromosomes (Fig. 1f).

DISCUSSION

The knowledge of the cytogenetics of Decapoda is very
poor and generally restricted to the estimation of the chro-
mosome number, and, in the last twenty years the use of
different chromosome banding and FISH techniques did
not have much progress in comparison with other animal
taxa. Hence, the location of major ribosomal loci (45S
rDNA) was described in Astacus astacus and A. leptodacty-
lus (Mlinarec et al., 2011) and in Palinurus elephas (Coluc-
cia et al., 2006), the location of minor ribosomal loci (5S
rDNA) in Fenneropenaeus chinensis (Huan et al., 2010), and
the location of telomeric sequences in Penaeus vannamei
(Alcivar-Warren et al., 2006). Other banding techniques such
as Ag-staining and fluorochrome staining were applied in
Nephrops norvegicus (Deiana et al., 1996), Homarus ameri-
canus (Coluccia et al., 2001), A. astacus and A. leptodacty-
lus (Mlinarec et al., 2011) and P. elephas (Salvadori et al.,
1995; Coluccia et al., 2006). These six species belongs to the
families Penaeidae (P. vannamei), Nephropidae (N. norvegi-
cus and H. americanus), Astacidae (A. astacus and A. lepto-
dactylus) and Palinuridae (P. elephas).

Among Palaemonidae, three species have been studied
until now: Macrobrachium rosenbergui (Lakra et al., 1997,
only data on chromosome number), M. nipponense (Qian
et al., 2005, data on chromosome number and karyotype)
and Exopalaemon modestus (Jiang et al., 2008, data on
chromosome number and karyotype).

The present study contributes to increase the cytogenetic
data in Palaemonidae and in Decapoda in general. The
species we studied, P. serratus, shows a modal diploid
chromosome number of 2n = 56, the lowest number
in Palaemonidae analyzed to date, as E. modestus has
2n = 90, M. nipponnense 2n = 104 and M. rosenbergi
2n = 118. These data support the molecular taxonomy
and phylogenetics of palaemonid shrimp (concerning to
the genera Macrobrachium and Palaemon), which state
that major lineages within Palaemonidae are paraphyletic
(Cuesta et al., 2012).

The application of Ag-NOR banding and FISH of major
ribosomal loci (45S rDNA) revealed that P. serratus presents
two ribosomal loci (four signals) at terminal position on four
small subtelocentric chromosomes. The number of signals
in P. serratus is lower than that in P. elephas (multiple
Ag-NORs and five rDNA loci) and N. norvegicus (5-8
Ag-positive regions) (Coluccia et al., 2006; Deiana et al.,
1996, respectively). The staining with CA3 produced bright
fluorescence signals which are probably coincident with
FISH signals (as happens in many other species), showing
a GC-richness of these regions. No variability in the number
of signals after FISH was observed. Additionally, AT-rich
areas appeared distributed on the centromeric regions of
the two large metacentric chromosomes and at intercalary
positions in a great number of subtelocentric and telocentric
chromosomes.

In conclusion, this work provides information on the chro-
mosome number, karyotype and chromosome banding in P.
serratus and contributes to the increase of cytogenetic stud-
ies in Crustacea. Although further studies are required in
this field, the cytogenetic analyses, altogether with molecu-
lar studies, are useful to investigate systematic relationships
among members of Palaemonidae.
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Abstract

Background: The maintenance of species and the promotion of speciation are closely related to chromosomal
rearrangements throughout evolution. Decapoda represents the most species-rich order among crustaceans and,
despite its ecological and economic importance, little is known about decapod karyology. We aim at cytogenetically
characterizing two sympatric prawn species.

Results: Analysis of mitotic metaphases and meiotic diakinesis of the common prawn Palaemon serratus and the
rockpool prawn P. elegans, revealed considerable differences between their karyotypes including chromosome
numbers and sex determination systems. The cytogenetic data for P. serratus showed a diploid number of 56 and
the putative absence of heteromorphic sex chromosomes. However, the diploid chromosome number in P. elegans was
90 for females and 89 for males. The karyotype of the females consisted of the three largest acrocentric pairs and 42
submetacentric and metacentric pairs, while the karyotype of the males comprised a clearly identifiable large metacentric
chromosome and two acrocentric pairs as well as the smaller 42 pairs. These results highlight the presence of the
X1X1X2X2/X1X2Y multiple sex chromosome system in P. elegans, which constitute the only sexual system for Decapoda
reported cytogenetically using modern techniques. The origin of this sex chromosome system is discussed.
We hypothesize that the chromosome evolution within the genus could involve several fusion events giving
rise to a reduction on the chromosome number in P. serratus. In both species, the major ribosomal genes
were located in two chromosome pairs and hybridization signals of the telomeric sequences (TTAGGG)n were
visualized at the telomeres of all chromosomes. C-banding revealed that, when present, constitutive heterochromatin
had a predominantly telomeric distribution and no centromeric constitutive heterochromatin was observed.

Conclusions: Although more comparative cytogenetic analyses are needed to clarify our hypotheses, the findings of
this work indicate that the prawns of the genus Palaemon represent a promising model among Decapoda
representatives to investigate the karyotype evolution and the patterns of sex chromosome differentiation.
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Background
Decapoda is the most species-rich order within Crustacea.
This extremely diverse group plays a key role in the
aquatic trophic relationships [1, 2] and many of these spe-
cies have a significant commercial importance since they
are exploited for human consumption in different coun-
tries around the world [3, 4]. However, despite the import-
ance of this group, the limited knowledge of decapod
crustacean karyology constitutes an obstacle to elucidate
different modes of sex determination, the occurrence of
chromosomal rearrangements along their evolution or
clarify phylogenetic relationships between related species.
To our knowledge, during the last 25 years karyological
data have only been reported in 46 species of decapods be-
longing to 10 families (for a review, see [5]). This scarcity
of studies is mostly caused by decapod chromosomes pe-
culiarities, usually small-size, numerous and highly con-
densed [6].
The family Palaemonidae comprises 981 species [7] of

which only 13 belonging to three genera (Palaemon,
Exopalaemon and Macrobrachium) have been studied at
the cytogenetic level. These species show a wide karyo-
typic diversity and remarkable differences in their dip-
loid chromosome number (Table 1). The existence of
sex chromosomes was never determined cytogenetically
in any species of the genera of Palaemonidae family and
only rarely in Decapoda.
The genus Palaemon Weber, 1795 (Crustacea: Deca-

poda) is a group of caridean prawns of the family Palae-
monidae. Recently, phylogenetic and taxonomic revisions
changed the status of the genus Palaemon [8–11] as well
as the number of its species. The genus Palaemon cur-
rently comprises 86 species, two of which have been

recently described (Palaemon minos sp. nov. and Palae-
mon colossus sp. nov.) [10].
The selected species, the common prawn P. serratus

and the rockpool prawn P. elegans, have a wide geograph-
ical distribution from the North Sea to Mauritania and
Namibia, respectively, including the Mediterranean and
Black Seas [12, 13]. These species differ in physiology, life
history strategies and larval development [14–16]. They
are both marine prawns, but whereas P. serratus inhabits
estuaries in the reproductive season, P. elegans is common
in tidal rockpools, Zostera, Posidonia and Cymodocea
meadows and it also can be found in slightly brackish
water close to river mouths [17].
Whilst the species are morphologically similar, it is un-

known whether they share chromosome number and
morphology. The karyotype of P. serratus was recently
described. In our previous study, the karyotype of P. ser-
ratus was described [5].
Here, we aim at: (i) extending the previous knowledge

on the cytogenetics of P. serratus; (ii) providing the first
karyological data for P. elegans and compare them with
what is known about P. serratus and (iii) identifying their
sex chromosome systems. For this purpose we have
studied the mitotic and meiotic chromosomes of both
species and applied conventional staining and banding
techniques, fluorescence in situ hybridization (FISH)
with 18S–5.8S-28S rDNA and telomeric (TTAGGG)n,
(TTAGG)n and (TAACC)n probes.

Methods
Biological material and chromosome preparation
Specimens of P. serratus and P. elegans used in this
study were collected from the Artabro Gulf (43° 25′N, 8°
20′W) in the northwest of Spain. Animals were captured
with a fish trap and carried alive to the laboratory. Ani-
mals were kept at 18 °C in an aerated aquarium and fed
with frozen brine shrimp for 24 h. Individuals were
sorted into species [13] and the sex was determined by
the presence (in males) or absence (in females) of the
masculine appendix on the endopodite of the second
pleopod [18]. Metaphase chromosome spreads were ob-
tained according to previously described protocol [5].
Briefly, adult shrimps were injected at the epimeral line
with 0.005% colchicine solution (5 μl/g body weight) 3–
5 h before anesthetization by exposure to ethyl ether.
Cefalothorax content (including gonad, circulatory tis-
sue, digestive tissue and muscular tissue) was removed
from each individual and then immersed into a hypo-
tonic solution of 0.56% KCl for 10 min at room
temperature. The tissue was then fixed four times in
freshly prepared ethanol/glacial acetic acid (3:1) for
20 min each time at 4 °C, followed by overnight incuba-
tion in a fresh fixative at 4 °C. The following day a piece
of about 3 mm of the heterogeneous fixed material was

Table 1 Chromosome numbers in the members of the family
Palaemonidae

Species Chromosome number Reference

Palaemon serratus 2n = 56 [5]

Palaemon khori 2n = 96 [36]

Palaemon elegans 2n = 89♂/90♀ This study

Exopalaemon modestus 2n = 90 [34]

Exopalaemon carinicauda 2n = 90 [35]

Macrobrachium carcinus 2n = 94 [59]

Macrobrachium superbum 2n = 100 [60]

Macrobrachium siwalikensis 2n = 100 [61]

Macrobrachium nipponense 2n = 104 [62]

Macrobrachium idella 2n = 104 [63]

Macrobrachium scabriculum 2n = 104 [64]

Macrobrachium lamarrei 2n = 118 [65]

Macrobrachium rosenbergii 2n = 118 [65]

Macrobrachium villosimanus 2n = 124 [66]
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dissolved in 45% acetic acid and a cell suspension was
obtained. Then, 4–5 drops of this suspension were pipet-
ted onto pre-heated slides at 43 °C and air-dried.

Chromosome staining and fluorescence in situ
hybridization
The slides were stained with anti-fade medium Vecta-
shield (Vector Laboratories) containing 1.5 μL/mL 4′, 6-
diamidino-2-phenylindole (DAPI). C-banding was per-
formed on metaphase plates following Sumner [19].
To locate the position and number of the 18S–5.8S-

28S rDNA sites we used the DNA probe pDm 238 from
Drosophila melanogaster [20] labeled with FITC by using
Prime-It Fluor fluorescence labeling kit (Stratagene) fol-
lowing the manufacturer’s instructions.
Chromosome mapping of the telomeric sequences was

carried out using a (TTAGGG)n Cy3-labeled pan-telomeric
probe (Cambio) according to the instructions of the manu-
facturer; a PCR generated pentanucleotide (TTAGG)n re-
peat according to Ijdo et al. [21] labeled with rhodamine-
dUTP and the (TAACC)2 probe was synthesized and dir-
ectly 5′ labeled with Cy3 (Isogen Life Science).
In situ hybridization was performed as described in

González-Tizón et al. [22] with minor pre-hybridization
and post-hybridization modifications. The slides were
pretreated with DNAse-free RNAse (100 μg/mL in 2 x
SSC) for 30 min at 37 °C, washed in 2 x SSC for 5 min
and dehydrated in a graded ethanol series. Post-
hybridization washes consisted of two 5-min incubations
in 2 × SSC at 37 °C and at room temperature, respect-
ively, followed by a 5-min incubation wash in 0.1 M
Tris, 0.15 M NaCl and 0.05% Tween-20 at room
temperature. Chromosomes were counterstained with
40 μL of anti-fade medium Vectashield containing
1.5 μL/mL DAPI.
Images were captured using a Nikon Microphot-FXA

epifluorescence microscope equipped with a Nikon DS-
Qi1Mc digital camera and processed with the NIS-
Elements D 3.10 software.
The cytogenetic analyses described above were per-

formed on P. serratus and P. elegans with the exception
of the 45S rDNA chromosomal location in P. serratus,
characterized in a previous work [5].

Results
Karyotypes, heterochromatin distribution and
Fluorochrome staining
Mitotic and meiotic metaphases were obtained from 18 P.
elegans specimens (8 females and 10 males) and 10 P. serra-
tus specimens (6 females and 4 males). At least 15 meta-
phases per individual were observed, specifically 126 in P.
elegans females, 153 in P. elegansmales, 92 in P. serratus fe-
males and 31 in P. serratusmales.

The diploid chromosome number in P. elegans was 90
for females and 89 for males (Fig. 1a, b; Table 1). The
karyotype consisted of 43 autosomal chromosome pairs:
5 metacentric/submetacentric, 4 subtelocentric/telocen-
tric, and 34 hardly distinguishable due to size similarities
(Fig. 2). The karyotype of the females also included two
large telocentric sex chromosome pairs (Fig. 2a), while
that of the males included one clearly identifiable large
metacentric chromosome and two telocentric chromo-
somes (Fig. 2b). Thus, male heterogamety is evidenced
by a metacentric chromosome present only in the male
karyotype (Y chromosome) which is the largest element
of the complement. During meiotic diakinesis, each arm
of the large metacentric Y is terminally associated with
one acrocentric chromosome (X1 and X2) forming a tri-
valent (X1X2Y, Fig. 1d). Therefore, in diakinetic plates
males exhibited 43 autosomal bivalents and one sex tri-
valent while females showed 45 undistinguished biva-
lents (Fig.1d, c).
In P. serratus, the karyotype was identical to that pre-

viously described (2n = 56) [5]. At meiotic diakinesis 28
bivalents in both sexes were observed (Fig. 1e).
Fluorochrome staining with DAPI revealed bright

centromeric/pericentromeric AT-rich blocks on all chro-
mosomes in P. elegans and P. serratus (Fig. 1) whereas
interstitial bands were observed on the four largest chro-
mosomes of P. serratus. In P. elegans chromosomes
DAPI-bands were noticed in some terminal regions,
always weaker than those found at the centromeres. We
also detected large telomeric DAPI faint segments in a
few chromosomes.
C-banding revealed that, when present, constitutive het-

erochromatin had a predominantly telomeric distribution
in both species of Palaemon (Fig. 3a, b). Furthermore, no
centromeric constitutive heterochromatin was observed.
A large heterochromatic block was also found in the telo-
meres of four small size chromosomes in both species. In
P. elegans the two X chromosomes and the Y chromosome
were C-negative (Fig. 3a). In P. serratus, small weak bands
of heterochromatin were also localized in interstitial posi-
tions of the large metacentric chromosomes. Slides con-
taining C-banded chromosomes were previously stained
with DAPI (Fig. 3c, d).

Chromosomal mapping of the 18S–5.8S-28S rDNA genes
In situ hybridization of the 18S–5.8S-28S rDNA genes
on meiotic chromosomes of both sexes of P. elegans re-
vealed four sites of probe hybridization (Fig. 3e, f ). The
rDNA probe mapped the free telomeres of two bivalents
paired at one end (dumbbell-shape bivalents). Both 18S–
5.8S-28S rDNA-bearing chromosome pairs were hetero-
morphic showing different hybridization intensity of the
homologous chromosomes. FISH signals coincided with
the heterochromatic blocks observed.

Torrecilla et al. Frontiers in Zoology  (2017) 14:47 Page 3 of 9

51



Chromosomal location of the telomeric probes
In situ hybridization of the (TTAGGG)n, (TTAGG)n and
the (TAACC)n telomeric sequences were made in P. ser-
ratus and P. elegans. No hybridization signals were de-
tected with the (TTAGGG)n or the (TAACC)n probes
while FISH with the (TTAGG)n pentanucleotide repeat
produced discrete fluorescence signals at the telomeres
of all chromosomes in P. serratus and in all the diaki-
netic bivalents in P. elegans (Fig. 3g, h).

Discussion
Chromosome number and karyotypes
The diploid chromosome number obtained in this study
for P. elegans falls within the range of the published
chromosome numbers in other members of the family
Palaemonidae, with P. serratus displaying the lowest
number in the family (2n = 56).
The lack of cytogenetic studies in other members of the

genus Palaemon hinders the definition of clear trends in
karyotype evolution in these species. However, some evi-
dence supports the hypothesis that the chromosome

evolution within the genus could involve several fusion
events giving rise to a reduction on the chromosome
number in P. serratus: i) We observed interstitial DAPI-
bright bands on the large metacentric chromosomes of P.
serratus, being DAPI-positive bands that are characteristic
of centromeric regions in both Palaemon species, as ob-
served in other families of decapods such as Astacidae
[23, 24], Cambaridae [25], Nephropidae [26], Scyllaridae
[27] and Palinuridae [28]. ii) The presence of interstitial
C-bands on these chromosomes may represent a chromo-
some fusion event. In general, decapod species on which
this technique has been performed to date showed posi-
tive C-bands at the centromeres of almost all chromo-
somes (e.g. [29–32]), with the only exception of P.
serratus and P. elegans wherein heterochromatin is lo-
cated, mainly, in the telomeres. Macgregor and Sessions
[29] postulated that the heterochromatin expansion is
originated in the centromeres and then is dispersed to-
wards the telomeres. Hence, according to this theory, dis-
persed distributions of heterochromatin (interstitial or
telomeric) have an older phylogenetic status. Iii) Recent

Fig. 1 Metaphase plates of P. elegans (a) female and (b) male. Meiotic diakinesis of P. elegans (c) female and (d) male; the arrow shows the sex
trivalent. (e) Meiotic diakinesis of P. serratus male. The bar equals 10 µm
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molecular phylogenetic studies have suggested that genus
Exopalaemon should be included within Palaemon [8, 33].
Among Exopalaemon, karyological analysis of E. modestus
and E. carinicauda, have shown a diploid chromosome
number of 90 [34, 35]. More recently, the determination of
the Palaemon khori karyotype was performed showing
2n = 96 [36].
In the light of our results, the phylogeny and the

chromosome numbers found in the family Palaemonidae
(Table 1), it seems likely that the high chromosome
number detected represents the ancestral condition in
this lineage whereas the reduced chromosome number
of 2n = 56 observed in P. serratus constitutes a derived
character. According to that, it seems plausible that the
fusions constitute the main mechanism responsible for
the origin of the P. serratus karyotype, which was also
suggested for Astacidae and Parastacidae among Deca-
poda [24]. Further cytogenetic studies are still necessary
in order to determine the mechanisms underlying the
karyotype evolution in this group of species.

Ribosomal loci
As previously reported in P. serratus [5], P. elegans re-
vealed four sites of 18S–5.8S-28S rDNA probe
hybridization corresponding to two loci. Given the diver-
gence observed between both karyotypes, this may con-
stitute a plesiomorphic condition for genus Palaemon.
In all cases, the ribosomal clusters were located in ter-
minal positions on two small chromosome pairs. In
addition, conspicuous heterochromatin blocks were

located in the major ribosomal genes sites, closely re-
lated to large telomeric DAPI faint segments, highlight-
ing the rDNA GC-richness as reported for a wide variety
of organisms (e.g. [37] and references therein).
Moreover, in P. elegans both rDNA-bearing chromo-

some pairs showed heteromorphism in size of the 18S–
5.8S-28S rDNA locus between homologous as observed in
males of some species of the Astacidae [23, 24]. Mlinarec
et al. [24] have speculated from these findings that the
heteromorphic chromosome pair could represent male
sex chromosomes suggesting the presence of an XX-XY
sex determination system, even though the karyological
characterization of females is a pending issue. Conversely,
our results show that in P. elegans the heteromorphic
rDNA-bearing chromosome pairs correspond to auto-
somes, which have been reported for many animal groups
(e.g. [38–41]).

Telomeric repeats
This study shows for the first time the presence of the
TTAGG repeat, known as the ancestral motif of arthropod
telomeres, in the family Palaemonidae [42]. Since the pres-
ence of this repeat has not been demonstrated in most
decapod families, it is interesting to confirm the constant
presence of this motif within Decapoda, particularly when
some animal groups have lost the TTAGG repeat during
their evolution such as the crustacean species Asellus
aquaticus (Isopoda) [43].
FISH with the (TTAGGG)n probe found in all verte-

brates [44] and the (TAACC)n probe identified in the

Fig. 2 Palaemon elegans karyotypes. Female (a) and male (b)
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shrimp Penaeus vannamei [45] gave no hybridization
signals. On the contrary, in both P. serratus and P. ele-
gans, the hybridization signals of the (TTAGG)n probe
were located at the telomeres of all chromosomes.
Nonetheless, no interstitial telomeric signals were found
as evidence of structural reorganizations occurring
throughout chromosomal evolution. However, the fusion
sites of ancestral chromosomes do not always preserve
the telomeric sequences, and when retained these non-
functional repeats could undergo a progressive

degeneration or reduction [46], that could impede their
detection by FISH.

Sex chromosomes
The comparative analysis between the karyotypes of both
sexes of P. elegans in addition to their meiotic behaviour
showed a heteromorphism between males and females,
which is compatible with the presence of an X1X1X2X2/
X1X2Y sex chromosome system, in which the Y chromo-
some would correspond to the large metacentric

Fig. 3 C-banded plates of (a) meiotic diakinesis of P. elegans and (b) mitotic metaphase of P. serratus males. Single arrows show C-band blocks,
double arrow shows the sex trivalent (c, d) The same meiotic diakinesis of P. elegans and mitotic metaphase of P. serratus males, stained with DAPI.
Chromosomal localization of the 18S–5.8S-28S rDNA genes of (e) P. elegans male and (f) female. Chromosomal localization of the (TTAGG)n telomeric
sequences in (g) P. elegans male and (h) P. serratus male. Asterisks in a and c indicate the sex trivalent. The bar equals 10 μm
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chromosome exclusive to males, and the X1 and X2 chro-
mosomes would correspond to two of the largest acrocen-
tric chromosomes of the complement. According to this
system females of P. elegans have 2n = 90 (86 + X1X1X2X2)
whereas males have 2n = 89 (86 + X1X2Y).
Interestingly, the C-banding technique revealed a lack

of constitutive heterochromatin in the sex chromo-
somes, not even in the Y chromosome which also turned
out to be remarkably large.
Typically, during the evolution of sex chromosomes

from autosomes, the reduction of recombination be-
tween the sex-determining regions is the first step to
produce simple sex chromosome systems (XY or ZW).
Then, the differential accumulation of repetitive se-
quences and deleterious mutations favour the hetero-
morphism between the X and Y (or Z and W), either in
size, morphology or through banding techniques [47],
and the recombination is kept in the pseudoautosomal
regions of the sex chromosomes. In regard to the mul-
tiple sex chromosome systems, the initial stage of differ-
entiation seems to be associated with chromosomal
rearrangements between the chromosomes bearing sex-
determining genes and an autosome (e.g. [48–50]). Con-
sequently, due to rearrangements, even newly evolved
sex chromosomes can be heteromorphic [51] and not
necessarily involve heterochromatin increase [49]. These
considerations may explain the existence of meiotic re-
combination between the P. elegans X and Y chromo-
somes, the lack of heterochromatin in them and the size
of the euchromatic Y chromosome; indicating the possi-
bility that the multiple sex chromosome system in this
prawn species is a result of recent evolution. In light of
this possibility, and bearing in mind male and female
karyotypes and their meiotic behaviour, the initial step
of sex chromosome differentiation in this species could
be a centric fusion between two nonhomologous acro-
centric chromosomes, forming the large metacentric
neo-Y and leading to two acrocentric chromosomes
without homologous in males (neo-X1 and X2 chromo-
somes). Accordingly, during meiosis, the recently formed
neo-Y would pair with the neo- X1 at one end and with
the neo-X2 at the other end, which would lead to the
formation of a trivalent such as we observed.
In neither this nor our previous report [5], did we

identify sex chromosomes in P. serratus. Also, we did
not find differences in the constitutive heterochromatin
pattern between sexes. Even so, the results demonstrated
that the sex chromosome systems of both congeneric
species are different since mitotic and meiotic meta-
phases displayed the same chromosome number in both
P. serratus males and females, making a multiple sex de-
termination system impossible in that species. In this re-
gard, future studies involving comparative genomic
hybridization would be helpful in investigating the

putative absence of heteromorphic sex chromosomes in
detail in the aforementioned species.
A review of the literature suggests that the multiple sex

chromosome system X1X1X2X2/X1X2Y found in P. elegans
may be unprecedented among decapods with the excep-
tion of Cervimunida princeps [52]. However, without add-
itional studies using current techniques, the C. princeps
sex determination system formulated in 1959 is question-
able considering that it was based on male chromosome
number (2n = 109) and the presence of three univalents at
meiotic metaphase I, observations that could correspond
for instance to an XX/XY1Y2 system.
The present data show the first karyotype with distin-

guishable heteromorphic sex chromosomes within the
family Palaemonidae, where a ZZ/ZW sex chromosome
system had been suggested for Macrobrachium rosenber-
gii, in which it is believed that the female is the hetero-
gametic sex on the basis of molecular studies [53]. In
fact, the ZZ/ZW sex-determining mechanism was never
determined cytogenetically in any member of Decapoda
although its existence has also been inferred in the cray-
fish species Cherax quadricarinatus (infraorder Astaci-
dea) [54] and some penaeid shrimps (for a review, see
[55, 56]). In contrast, male crabs (infraorder Brachiura)
are reported to be the heterogametic sex based on their
karyotype, with an XX/XY sex chromosome system and
even an XX/XO system being observed (see the reviews
[6, 57]). Notwithstanding, due to the inherent limitations
of the techniques used at the time, we should be cau-
tious as to the reliability of these studies. Recently, the
ZZ/ZW sex determination system was proposed for the
Chinese mitten crab Eriocheir sinensis (infraorder Bra-
chiura) based on QTL mapping and confirmed by trip-
loid induction experiments [58].
Our results on Palaemon sex determination systems

and our bibliographic review reveal a large variability
within Decapoda. They also show the difficulty of identi-
fying sex chromosomes in this order using cytogenetic
methods. The absence of heterochromatic blocks in the
sex chromosomes in P. elegans could be a widespread
characteristic in decapods. Besides, the high chromo-
some number and their small and homogenous size
complicate the identification of sex chromosome pairs,
especially if the meiotic stage, where the homologous
are connected and the chromatin more condensed, is
not analyzed.

Conclusions
This and our previous study [5] show that the congeners
P. serratus and P. elegans present a high degree of diversity
in their chromosome number, karyotype and sex deter-
mination system, ranging from the putative absence of
heteromorphic sex chromosomes to the multiple chromo-
some system (X1X1X2X2/X1X2Y). Such variability, even

Torrecilla et al. Frontiers in Zoology  (2017) 14:47 Page 7 of 9

55



between species so closely related, makes this genus a
promising model among Decapoda to investigate not only
the karyotype evolution but also the patterns of sex
chromosome differentiation.
In this perspective, future comparative cytogenetic

analyses comprising other Palaemon species are needed
to clarify the hypothesis developed in this work where
fusions events would constitute the main mechanism of
karyotype evolution in the genus. Likewise, the sex de-
termination system in P. serratus and the existence of
additional sex chromosome systems in the genus that
shed light on the genus sex chromosome evolution are
interesting aspects to be elucidated in further studies.
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The Atlantic–Mediterranean transition zone between the Alborán Sea and the Gulf of Cádiz constitutes the most prominent
marine geographic barrier in European waters and includes known phylogeographic breaks such as the Strait of Gibraltar and
the Almerı́a-Oran Front. A genetic shift in this area has been previously documented for the European littoral shrimp
Palaemon elegans. Here we carried out a phylogeographic analysis with the congeneric and sympatric species Palaemon ser-
ratus to test for similar intraspecific genetic differentiation and geographic structure. This littoral prawn is distributed in the
Northeastern Atlantic Ocean, the Mediterranean Sea and the Black Sea. We compared DNA sequences from the mitochon-
drial genes Cox1 and to a lesser extent from 16S rRNA of several Atlantic and Mediterranean populations. Furthermore,
sequences from the nuclear gene Enolase were included for corroborating differences between Mediterranean and Atlantic
individuals. A pronounced genetic differentiation was detected between the Mediterranean and Atlantic populations,
amounting to 10.14% in Cox1 and 2.0% in 16S, indicating the occurrence of two independent evolutionary lineages.
Interestingly, specimens from the Atlantic Gulf of Cadiz cluster together with the Mediterranean individuals, indicating
that a biogeographic barrier appears to be located west of the Strait of Gibraltar.

Keywords: Decapoda Caridea, Mediterranean Sea, Atlantic Ocean, Gulf of Cadiz, phylogeography, mtDNA Cox1
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I N T R O D U C T I O N

Recent molecular biodiversity studies increasingly reveal local
genetic differentiation in biphasic marine species with a larval
dispersal phase (e.g. Mathews, 2006; Galarza et al., 2009;
Ragionieri et al., 2009; Fratini et al., 2016). Geographic bar-
riers are the main historical factor determining the biogeog-
raphy of European marine species, as documented for
caridean shrimps (Reuschel et al., 2010; González-Ortegón
et al., 2016). The most prominent geographic barrier in
European marine waters is the one between the Atlantic
Ocean and the Mediterranean Sea. It is located somewhere
in between the Alborán Sea and the Gulf of Cádiz,
and either the Strait of Gibraltar or the Almerı́a-Oran
Front have been postulated to act as the main barrier, as
recently revised and discussed (Patarnello et al., 2007;
Garcı́a-Merchán et al., 2012). In recent geological history,

the shallow Strait of Gibraltar isolated the Mediterranean
Sea repeatedly from the Atlantic, caused by sea level regres-
sions, sometimes even resulting in major desiccations (Hsü
et al., 1977). These repeated isolations led to a very high
level of endemism in the Mediterranean Sea (Hofrichter,
2002), and many marine species show a phylogeographic
break among Atlantic and Mediterranean populations (Zane
et al., 2000; Patarnello et al., 2007; Luttikhuizen et al., 2008;
Deli et al., 2016). The Messinian Salinity Crisis in the late
Miocene (around 5.5 Ma) was probably the most dramatic
isolation event (Krijgsman et al., 1999) and ended with
the Zanclean Flood, i.e. when Atlantic waters re-flooded the
Mediterranean Basin, leading to a re-colonization of the
Mediterranean Sea with Atlantic species (Garcı́a-Castellanos
et al., 2009). Even today, the waters between the Strait of
Gibraltar and the Almerı́a-Oran Front seem to act as a
barrier to gene flow for many marine species, determining
the genetic structure and diversity of many European coastal
water species.

The shrimp genus Palaemon Weber, 1795 (Crustacea:
Decapoda: Caridea) belongs to the large family
Palaemonidae Rafinesque, 1815 and includes many important
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representatives from coastal waters all over the world.
Recently, important systematic and taxonomic changes were
postulated for this family, summarized in the review by De
Grave & Ashelby (2013), with the consequence that the
genera Palaemonetes Heller, 1869, Exopalaemon Holthuis,
1950 and Coutierella Sollaud, 1914 were synonymized and
re-arranged within the genus Palaemon that now contains
83 species (for the most recent phylogeny see Carvalho
et al., 2016). Morphological distinction within this genus is
partly difficult, because only small differences serve as identi-
fication criteria, as for example the upper antennular flagellum
or the denticulation of the rostrum (González-Ortegón &
Cuesta, 2006). This often results in wrongly classified species
within the genus Palaemon. For example, Palaemon garciacidi
Zariquiey Álvarez, 1968 turned out to be a synonym of
Palaemon longirostris Milne-Edwards, 1837 (Cuesta et al.,
2012; Cartaxana, 2015). Also the existence of cryptic species
is discussed for this genus, since Reuschel et al. (2010) gave
evidence for differentiation along the Atlantic–
Mediterranean barrier within Palaemon elegans Rathke,
1837 and the possible existence of a cryptic species within
the Mediterranean Sea. Thus, it seems worthwhile to use
genetic techniques to study phylogeographic relationships
between Atlantic–Mediterranean populations of other
coastal species of Palaemon and to help redefine the morpho-
logical classification in this taxonomic group. It is of particular
interest to focus on species living in both the Atlantic Ocean
and the Mediterranean Sea, to determine if similar differenti-
ation patterns may be revealed as in P. elegans. In Europe, six
marine and/or estuarine species (including the recently intro-
duced P. macrodactylus Rathbun, 1902 (see González-Ortegón
et al., 2007; Ashelby et al., 2013)) and four fresh to brackish
water species of Palaemon can be found (Cuesta et al.,
2012). The former ones include the widespread and commer-
cially exploited species Palaemon serratus (Pennant, 1777),
also known as the common prawn. It could make an interest-
ing study object regarding phylogeographic analyses, as a
recent published record indicated that a single
Mediterranean specimen from the Turkish coast may be dis-
tinct from its Atlantic counterparts (Bilgin et al., 2014).

Palaemon serratus lives in rocky crevices along the
European and North African coastlines in shallow waters up
to a depth of 40 m. Its distribution area ranges from
Scotland and Denmark to Mauritania and it is common in
the Atlantic Ocean, with occasional records in the
Mediterranean Sea, and the Black Sea (Lagardère, 1971;
d’Udekem d’Acoz, 1999). Adult individuals have a total
length of 90–110 mm and the cephalothorax and abdomen
are transparent with a dark reddish-brown striped pattern
which can vary widely between different regions or habitats
(Carlisle, 1955; González-Ortegón & Cuesta, 2006). Larval
development is linked to initial larval body mass and female
body size and can be modified by environmental conditions
experienced by the larvae (Reeve, 1969; González-Ortegón &
Giménez, 2014).

There is an important commercial fishery on P. serratus,
especially around the British Isles, France and northern
Spain, and the high commercial value could possibly lead to
overfishing, as already expressed by Fahy et al. (2006). Even
though the latter study only evaluated the fisheries around
Ireland, the same problems could also occur elsewhere.
Currently, baseline monitoring data are gathered in the UK
and Ireland to ascertain the stock status and population

trends and to identify possible problems caused by the fishery
exploitation (Haig et al., 2014). Although this species was pro-
posed as suitable for cultivation (Reeve, 1968; Rodrı́guez, 1981),
further studies about its ecology and husbandry conditions are
necessary to take this step. For this endeavour, basic knowledge
on the natural genetic diversity and the phylogeography of this
species will be critically important.

This study thus focused on the genetic differentiation
among various populations of P. serratus along European
coastlines. DNA sequences for the mitochondrial gene Cox1
were analysed. To confirm the obtained results additional
sequences of the more conserved mitochondrial 16S rRNA
and the nuclear gene Enolase were included. Cox1 and 16S
rRNA have been shown to be suitable marker genes for DNA
barcoding in crustaceans (Schubart et al., 2000; Lefébure
et al., 2006; Costa et al., 2007) and also within the
Palaemonidae (Reuschel et al., 2010; Cartaxana, 2015).
Special attention is paid to the possible divergence among
Atlantic and Mediterranean populations, as previously
reported for the closely related prawn P. elegans (see
Reuschel et al., 2010).

M A T E R I A L S A N D M E T H O D S

Specimens of Palaemon serratus used for the analysis origi-
nated from the authors’ collections and were stored in 70–
95% ethanol. Most individuals were sampled by hand with
the aid of a dip net. Sampling localities, coordinates and
number of sequences for each available population of P. serra-
tus are shown in Figure 1 and Table 1. For some populations,
only the locality was given and the coordinates were esti-
mated. DNA-extractions were performed following either
the Puregene Method (from Gentra Systems: Minneapolis,
MN55447, USA) or the Realpure – Spin Kit 250 Extract
(from Durviz – Gentaur: Brussels, Belgium).

Two different mitochondrial DNA gene fragments were
amplified by means of PCR reactions: the mitochondrial
gene Cox1 encoding subunit 1 of the cytochrome c oxidase
gene that is especially suitable for intraspecific comparisons
and used as the biological barcoding gene (e.g. Costa et al.,
2007) (N ¼ 67 sequences). In addition, one individual of
each of five Atlantic populations and four individuals
of Mediterranean populations were analysed for variation of
the more conserved 16S rRNA gene, transcribed to the struc-
tural rRNA of the large subunit 16S of mitochondrial ribo-
some. The only available 16S-sequence in GenBank
(JQ042291) was downloaded and added to the analysis, allow-
ing comparison of a total of 10 sequences. In addition, the
nuclear gene Enolase, better suited for interspecific compari-
sons (e.g. Ip et al., 2015), was amplified for some of the
Mediterranean and Atlantic populations (N ¼ 26 sequences).

For both mitochondrial genes, different primer combina-
tions were used. For Cox1, a few long fragments of 1276 base-
pairs (bp) were amplified with primers COL6 or COL6a and
COH1b. This was not possible for the Mediterranean indivi-
duals, so a shorter fragment was amplified using the primers
COL1Pe and COH1b (630 bp). For the amplification of the
16S rRNA gene, the forward primer 16L29 and the reverse
primer 1472 were used (�580 bp). The nuclear gene Enolase
was amplified using the primer combination ENEA1 and
ENES1 (409 bp). All primer sequences and the corresponding
references are listed in Table 2.
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PCR reactions were run in a total volume of 25 ml with dif-
ferent protocols optimized for the respective Taq polymerase
(Fermentas Taq, Promega GoTaq or Roche Taq). The tem-
perature profile of the PCR for all three genes consisted of
an initial denaturation step at 948C for 4 min, followed by
35–40 cycles and a final elongation step at 728C for 5–
10 min. The cycle program included denaturation at 958C
for 45 s, annealing at 528C for the primer combination
COL6 or COL6a/COH1b, 488C for all other mitochondrial
gene combinations, and 508C for Enolase for 45–60 s, and
elongation at 728C for 60 (short fragments) or 90 (long frag-
ments) seconds. In a few difficult cases, the annealing tempera-
ture was decreased to 458C to obtain useable PCR products.

Most of the long fragments of the Cox1 gene were
sequenced in both directions, while the short fragments

were only sequenced with COH1b. The 16S rRNA fragments
were sequenced with 16L29 and the Enolase fragments with
ENEA1. Sanger sequencing took place at the Laboratory of
Molecular Biology, SAI (Servicios de Apoyo a la
Investigación; University of A Coruña, Spain) or was out-
sourced to Macrogen Europe (the Netherlands). Sequence
chromatograms were proofread using Chromas Lite version
2.1.1 (Technelysium Pty Ltd) and edited manually, if neces-
sary. All sequences were aligned with BioEdit version 7.2.0
(Hall, 1999) using the ClustalW algorithm (Thompson
et al., 1994) and, if necessary, adjusted manually. Five different
alignments were created, three with the Cox1 sequences,
depending on the primer combinations and sequence
length, and one in each case for the 16S and the Enolase data-
sets. No ambiguities were encountered during the alignment

Fig. 1. Sampling localities of Palaemon serratus (Pennant, 1777). The locality numbers correspond to the code numbers in Table 1.

Table 1. Coordinates and number of individuals of the studied populations of Palaemon serratus from west to east.

Sequences

Code (Fig. 1) Population Latitude Longitude Date N Cox1 16S Enolase

3 Cork (Ireland, A) 51.9 28.483333 August 2012 1 – 1 –
7 Artabro Gulf (Spain, A) 43.366667 28.466667 October 2012 15 12 1 –
8 Guadalquivir Estuary (Spain, A) 36.783333 26.366667 August 2012 21 14 1 10
1 Millport (UK: Scotland, A) 55.749917 24.927883 November 2003 1 – – 1
2 Anglesey (UK: Wales, A) 53.133333 24.283333 January 2012 9 7 1 –
6 Saint-Jouin-Bruneval (France, A) 49.645283 0.1525 August 2012 10 7 – 5
9 Cala Nova (Spain: Ibiza, M) 39.007595 1.581657 October 2011 2 2 – –
9 Cala Llenya (Spain: Ibiza, M) 39.015299 1.587782 October 2009 11 10 1 1
5 Calais (France, A) 50.966667 1.80 September 2012 1 – 1 –
4 Duinbergen (Belgium, A) 51.35 3.25 October 2012 1 1 – –
10 Marine de Farinole (France, M) 42.729274 9.339269 June 2003 1 1 1 1
11 Pula (Croatia, M) 44.860903 13.81284 September 2004 1 1 1 1
12 Acheron Estuary (Greece, M) 39.236111 20.479722 July 1993 2 2 – 2
13 Ligia (Greece, M) 39.154657 20.563746 September 2003 1 1 1 –
17 Githion (Greece, M) 36.791944 22.596389 July 1986 3 3 – 3
14 Nafplio (Greece, M) 37.547222 22.818056 December 2013 1 1 – 1
16 Limin Ieraka (Greece, M) 36.785833 23.0825 July 1986 1 1 – 1

A, Atlantic Ocean; M, Mediterranean Sea.
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process. Before building the parsimony network, the align-
ments were cropped manually to the same length and short
sequences were eliminated. All new DNA sequences (all hap-
lotypes in case of Cox1) were submitted to the European
Nucleotide Archive (ENA as part of GenBank) and have
been assigned accession numbers LT717247 to LT717310.
Alignments were converted from FASTA to PHYLIP format
with FaBox version 1.41 (URL 1). Finally, five networks
were constructed with the software TCS version 1.21
(Clement et al., 2000) based on the single alignments. In the
three Cox1 networks, the maximum connection steps had to
be specified manually (65–130 steps) in order to allow the
haplogroups to be connected, while in the Enolase network
a 95% and in the 16S network a 94% connection limit
between the different genotypes were used. Nucleotide and
haplotype diversities were calculated with the software
DnaSP version 5.10.01 (Librado & Rozas, 2009) for six differ-
ent populations (only populations with more than two indivi-
duals were included). A permutation test was performed with
10,000 replicates. Also a mismatch analysis of sequences was
carried out with DnaSP version 5.0 for the Cox1 and for the
16S alignments containing Mediterranean individuals. A con-
stant population size was chosen as the model for expected
values. Finally, an analysis of molecular variance (AMOVA)
was carried out for two of the populations of the
Mediterranean (with more than eight individuals) and the
population of Guadalquivir using the software DnaSP
version 5.0.

R E S U L T S

For many of the long fragments of Cox1, clean reads were only
obtained for one direction. Therefore, sequences were subdi-
vided into three length groups of which three different align-
ments and three different parsimony networks were
constructed. The first alignment consists of 17 consensus
sequences of forward and reverse reads of the long primer
combination, resulting in 1199 bp. The second alignment con-
tains only the sequences read with the forward primers COL6
or COL6a (26 sequences, 811 bp) and the third alignment the
ones read with the reverse primer COH1b (58 sequences,
611 bp). Since all three parsimony networks show similar dis-
tribution patterns, only the one with most individuals, i.e. the
one sequenced with the primer COH1b, is shown (Figure 2).
The other two can be found in the Supplementary material
(Appendices 1–2). For the graphic presentation of the net-
works, the two localities of Ibiza (Cala Llenya and Cala
Nova) were summarized as one population, since they are

geographically very close to each other and there were no
important differences in their sequences. The same approach
was used for the different sites in Greece.

The maximum parsimony network based on the alignment of
the COH1b sequences (Figure 2) shows a clearcut dissociation
between the Mediterranean populations (including the
Guadalquivir Estuary) and the more western Atlantic popula-
tions. Sequences from the Guadalquivir Estuary are recovered
as four haplotypes, of which haplotype A with 10 individuals
holds a central position. Interestingly, the sequences of
Guadalquivir Estuary do not share haplotypes with the
Mediterranean populations, despite being closely related.
Consequently, the Mediterranean populations have their own
central haplotype B found in 12 individuals. The Atlantic haplo-
type closest to the ones of the Guadalquivir Estuary is separated
by 62 mutation steps (equivalent to 10.14% of the COH1b align-
ment length) and belongs to the population of Anglesey. In con-
trast to the Mediterranean populations and the one of the
Guadalquivir Estuary, all the Atlantic populations are mixed
and scattered with no recognizable central haplotype.
Haplotype and nucleotide diversities were only calculated for
the six populations with more than two individuals listed in
Table 3. These values can only be compared conditionally,
because the number of sequences of each population differs.
The population of the Guadalquivir Estuary shows the lowest
haplotype diversity with 0.49451, followed by the individuals
of Greece, Ibiza and then Anglesey, while Saint-Jouin-Bruneval
and Artabro Gulf with 1.0 each have the highest values. The
highest nucleotide diversity is also found in the population of
Saint-Jouin-Bruneval, followed by Anglesey and the population
of Artabro Gulf and then Ibiza and Greece. The lowest nucleo-
tide diversity was found in the population of the Guadalquivir
Estuary with 0.0009.

For the AMOVA, we also used the COH1b-alignment of
the Cox1 gene, since it contains most sequences. Eight indivi-
duals of the different sites in Greece, 12 individuals of the two
populations of Ibiza and 14 individuals of the population of
Guadalquivir Estuary were compared. Between Ibiza and
Greece, a FST value of 0.04562 (P ¼ 0.1) indicates the high
level of panmixia between these populations of the
Mediterranean Sea. In contrast, the FST values of the pairwise
differences between Ibiza and the Guadalquivir Estuary
(0.62084) and Greece and the Guadalquivir Estuary
(0.68065) are highly significant (P , 0.01). They demonstrate
that there is restricted gene flow across the Strait of Gibraltar,
despite the genetic similarity between the Guadalquivir and
Mediterranean populations.

To confirm the results of the Cox1 gene, a small network
was constructed with 10 sequences of the 16S mtDNA gene

Table 2. DNA primer sequences and corresponding references.

Primer Gene Sequence 5′ – 3′ Reference

COL6 Cox1 TYT CHA CAA AYC ATA AAG AYA TYG G Schubart (2009)
COL6a Cox1 TCW ACA AAT CAT AAA GAY ATT GG Schubart (2009)
COL1Pe Cox1 TAC YTC RTT CTT TGA TCC TGC New
COL1b Cox1 CCW GCT GGD GGW GGD GAY CC Schubart (2009)
COH1b Cox1 TGT ATA RGC RTC TGG RTA RTC Schubart (2009)
16L29 16S YGC CTG TTT ATC AAA AAC AT Schubart et al. (2001)
1472 16S AGA TAG AAA CCA ACC TGG Crandall & Fitzpatrick (1996)
ENEA1 Enolase CAG CAA TCA ATG TCA TCA AYG GWG G Tsang et al. (2014)
ENES1 Enolase ACT TGG TCA AAT GGR TCY TCA AT Tsang et al. (2014)
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based on an alignment of 499 basepairs (Figure 3). It consists
of four different haplotypes. One of these haplotypes repre-
sents three Mediterranean individuals, while the fourth
Mediterranean individual only differs in one position. Two
individuals of the Gulf of Cádiz population directly west of
the Strait of Gibraltar (Cádiz and Guadalquivir Estuary) are
also separated from the larger Mediterranean haplotype by
one mutational step. In contrast, the fourth haplotype is sepa-
rated from all others by at least 10 mutational steps (equiva-
lent to 2.0%) and is found in four individuals of the other
Atlantic populations (one of each location from Artabro
Gulf, Calais, Cork and Anglesey). Therefore, the 16S
network confirms the structure of the Cox1 network.

The mismatch analyses for both the COH1b sequences of
Cox1 mtDNA and 16S rRNA show a bimodal distribution,
i.e. two separate peaks, in the frequency of pairwise differences
among haplotypes (Figure 4). This reflects the fact that the hap-
lotypes are either very close to each other (within Atlantic and
Mediterranean) or more distantly related (between Atlantic and
Mediterranean). In Cox1 mtDNA, haplotypes are either

separated by not more than nine or between 62–71 mutational
steps, whereas in 16S mtDNA there are either up to two or
between 10 and 11 mutational steps. In both cases, the observed
frequency (dashed line) did not correspond to the expected
values for a constant population size (solid line).

An independent nuclear marker was applied as third evi-
dence and to test for possible ongoing speciation: The
nuclear gene Enolase was sequenced from 26 individuals,
resulting in an alignment with a length of 409 bp. It includes
only two parsimony-informative sites that consistently sep-
arate two genotypes. The corresponding maximum parsi-
mony network can be found in Figure 5. Ten individuals
originating from Croatia, Greece, Ibiza (Spain) and Corsica
(France) and 10 from the population of the Guadalquivir
Estuary share one genotype, whereas the second genotype
is found in five individuals of the Atlantic coast of France
and one specimen from Scotland. Therefore, a clean
split is confirmed between the Mediterranean plus the Gulf
of Cádiz sequences and the more northern Atlantic
populations.

Fig. 2. Maximum parsimony network of Cox1 mtDNA (COH1b alignment) of Palaemon serratus, constructed with TCS version 1.21 and a connection limit of 65
steps, based on an alignment of 58 sequences (611 base pairs). The numbers within the circles correspond to the number of individuals represented by that
haplotype (circles without a number represent single individuals). Black spots represent missing haplotypes.

Table 3. Estimates of haplotype and nucleotide diversities of Palaemon serratus, based on the COH1b alignment of the Cox1 gene with 611 base pairs.
Calculated with DnaSP version 5.10.01. Only populations with more than two individuals were included. Permutation test with 10,000 replicates.

Population Number of sequences Number of haplotypes Haplotype diversity Nucleotide diversity

Saint-Jouin-Bruneval (F) 7 7 1 0.00834
Guadalquivir Est. (Spain) 14 4 0.49451 0.0009
Artabro Gulf (Spain) 12 12 1 0.00491
Anglesey (Wales) 7 5 0.85714 0.0053
Greece 8 3 0.60714 0.00216
Ibiza (Spain) 12 6 0.80303 0.00288
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D I S C U S S I O N

Results of three analysed genes (Cox1 mtDNA, 16S rRNA and
Enolase nuDNA) show genetic differentiation among the
populations of Palaemon serratus in the Mediterranean Sea,
the Gulf of Cádiz and the Atlantic Ocean. The individuals of
the first two areas are closely related and will henceforth be
termed the Mediterranean lineage (ML) which thus includes
the populations from the Guadalquivir Estuary and the
Mediterranean populations. A sequence from GenBank
(JQ042291) corresponding to the 16S mtDNA of an individual
from Cádiz confirms that populations from the Gulf of Cádiz
are more closely related to Mediterranean populations than to
other Atlantic ones. The second lineage, henceforth called the
Atlantic lineage (AL), contains all the other Atlantic popula-
tions included in this study. The 16S network consists of
three different haplotypes in the ML and only one haplotype
in the AL, while all three Cox1 networks have a smaller
number of haplotypes in the ML than in the AL. This can
be due to the fact that only one individual per population
was used for the 16S analysis, so that most likely not all occur-
ring haplotypes are represented in the network. In the Enolase
alignment, only two different genotypes can be found, corre-
sponding to ML and AL and separating these in the same
fashion as the mitochondrial genes.

The Cox1 haplotypes of the populations of the Mediterranean
are linked tightly, and while the Greek individuals show a mod-
erate haplotype diversity (hd¼ 0.60714), the individuals of the
populations of Ibiza are quite heterogeneous (hd¼ 0.80303).
This suggests that the Mediterranean stocks represent a
healthy and stable system, with relatively high gene flow
among the sampled populations. Nevertheless, this should be

tested with more individuals and more populations, since only
two Mediterranean populations were used for the analysis of
haplotype and nucleotide diversities in this study.

The specimens of the Guadalquivir Estuary form a very
homogeneous clade, with only a few haplotypes (hd ¼

0.49451) being very close to each other (nd ¼ 0.0009). This
can be best explained by a founder effect, i.e. a new population
founded by only a few individuals and therefore with low
genetic variety. The proximity of some Cox1 haplotypes
from Ibiza to the Guadalquivir haplotype A suggests a rela-
tively recent colonization from the western Mediterranean.
Another possible explanation would be reduced gene flow to
and from the Guadalquivir population, because of its geo-
graphically marginal position, compared with a population
that is located in the centre of the range of a genetic lineage.
In any case, current gene flow of the population from the
Guadalquivir Estuary with the Mediterranean populations
seems limited.

The fact that the population of the Guadalquivir Estuary
nevertheless belongs to the ML raises the question why it
groups together with Mediterranean populations instead of
Atlantic ones. Most other studies of species with a genetic sep-
aration of the Atlantic and the Mediterranean populations
reveal the opposite scenario: They show an extension of the
Atlantic genotypes into the Alborán Sea which is the western-
most part of the Mediterranean Sea. This is for example the
case in the closely related prawn Palaemon elegans (see
Reuschel et al., 2010) as well as in many other marine
species, e.g. the scallops Pecten jacobeus and P. maximus
(see Rı́os et al., 2002) or the euphausiid Meganyctiphanes nor-
vegica (see Zane et al., 2000). This extension of Atlantic

Fig. 3. Maximum parsimony network of 16S mtDNA of Palaemon serratus,
constructed with TCS version 1.21 and a connection limit of 94%, based on
an alignment of 10 sequences (499 base pairs). The number within the
circles correspond to the number of individuals represented by that
haplotype (circles without a number represent single individuals). Black
spots represent missing haplotypes.

Fig. 4. Mismatch distribution of pairwise differences in two mitochondrial
genes of Palaemon serratus. Calculated with DnaSP version 5.10.01. The
dashed lines show the observed, the solid lines the expected frequencies
within a constant population size. (A) Cox1 mtDNA (COH1b alignment
with 58 sequences, 611 base pairs). (B) 16S mtDNA (10 sequences, 499 base
pairs).
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genotypes into the Mediterranean Sea has been explained by
the intrusion of Atlantic waters into the Alborán Sea, where
they circulate as two gyres, so that the Almerı́a-Oran Front
often represents the real hydrographic boundary of Atlantic
and Mediterranean surface waters (Tintoré et al., 1988),
rather than the Strait of Gibraltar itself. However, in a recent
study on several crustacean species, the role of the Strait of
Gibraltar as a gene flow barrier compared with the one of the
Almerı́a-Oran Front has been emphasized (Garcı́a-Merchán
et al., 2012).

Palaemon serratus is not the only species in which popula-
tions of the Guadalquivir Estuary differ genetically from other
Atlantic populations, as this was also reported in the mysid
Neomysis integer (see Remerie et al., 2009). It remains
unknown, when Mediterranean P. serratus may have migrated
from the Mediterranean Sea through the Strait of Gibraltar and
settled in the Gulf of Cádiz. Furthermore, we do not know if
they replaced ‘typical’ Atlantic P. serratus which theoretically
should be better adapted to the local conditions, like tempera-
ture and tides, in the Gulf of Cádiz. Alternatively, it is conceiv-
able that the Gulf of Cádiz population may have diverged
from Atlantic stocks independently and gave rise to
the Mediterranean populations with the flooding of the
Mediterranean Basin. Hence, more detailed studies about the
dispersal and ecology of P. serratus, especially in the area
west and east of the Strait of Gibraltar, are necessary to recon-
struct how the extension of Mediterranean haplotypes into the
Atlantic Ocean took place. A human introduction can be
excluded, because the haplotypes from the Guadalquivir
Estuary of both mitochondrial genes have so far not been
sampled in the Mediterranean Sea and thus appear to be
endemic. It remains to be solved, where the contact zone
with the other Atlantic populations is, and if there is genetic
mixing. One possible explanation for endemic genotypes
could be the fact that the population of the Guadalquivir
Estuary belongs to the most important nursery area in the
Gulf of Cádiz, favouring the reproduction and/or the settlement
of local individuals (González-Ortegón et al., 2015) and prob-
ably a more estuarine genotype. Further investigations of differ-
ent populations along the coastline of Andalusia to Portugal are
necessary to define the exact border between AL and the hap-
lotypes of the Gulf of Cádiz, and to determine what induces
the biogeographic break within the Atlantic Ocean.

The populations of AL are genetically very diverse with 18
different haplotypes in the COH1b network (Figure 2), and all

tested populations show very high haplotype and nucleotide
diversities. According to the coalescent theory of Kingman
(1982), high genetic diversity leads to the conclusion that
the corresponding species is presumably of a great age (the
higher the diversification the longer the required time span
to develop this diversity). This provides evidence that the
Atlantic stock of Palaemon serratus represents a very stable
and healthy system, which has probably existed for a long
time. The maximum parsimony networks as well as the haplo-
type diversities indicate high gene flow among the Atlantic
populations, with the exception of the ones from the Gulf of
Cádiz. It would be useful to confirm these assumptions with
more individuals per population and more populations to
cover the whole distribution area of P. serratus and to quantify
gene flow statistically, as no populations east of Belgium and
south of Spain are represented in this study.

Our results suggest the existence of a potential cryptic
species or at least ongoing speciation within P. serratus, i.e.
a morphological indistinct lineage separated by genetic differ-
ences at species level (Belfiore et al., 2003). The separation of
the ML and the AL amounts to 2.0% in the 16S gene and
10.14% in the Cox1 gene and is thus comparable to recognized
species from other crustacean genera with an Atlantic–
Mediterranean separation, such as in Carcinus (see Geller
et al., 1997; Roman & Palumbi, 2004; Ragionieri &
Schubart, 2013) or Brachynotus (see Schubart et al., 2001).
Furthermore, the independently evolving nuclear gene
Enolase confirms the same differentiation pattern. So far,
there are no morphological characters known that differ in
Atlantic and Mediterranean specimens of P. serratus, but
this needs to be verified in a separate study. It would also be
important to know if hybridization of Atlantic and
Mediterranean individuals is possible. Considering the fact
that in this study only a few populations were represented
by more than 10 individuals, statistical possibilities are
limited and make further studies with larger sample sizes
necessary. No type locality for Palaemon serratus was indi-
cated by Pennant (1777), but even though a few
Mediterranean individuals were included in his first study
characterizing the species, most of the individuals studied
were from the Atlantic Ocean, i.e. from the English
Channel, Belgium and the Netherlands (De Man, 1915). For
that reason, and because Pennant published his results in
British Zoology, it appears logical that the species name
Palaemon serratus would remain with the Atlantic

Fig. 5. Maximum parsimony network of Enolase nuDNA of Palaemon serratus, constructed with TCS version 1.21 and a connection limit of 95%, based on an
alignment of 26 sequences (409 base pairs). The numbers within the circles correspond to the number of individuals represented by that genotype. Black spot
represents missing genotype.
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individuals, if two separate species were to be recognized in
the future.

Overall, this study reveals some interesting phylogeo-
graphic aspects, although the results have limited conclusive
significance, due to the restricted number of populations
and the fact that some analysed populations consisted of
very few individuals and therefore could not be used for stat-
istical analyses. Hence, more research is needed regarding the
population genetics and taxonomic status of P. serratus,
including morphological and morphometric aspects, to
understand the remarkable case of an Atlantic population
with haplotypes that are more closely related to
Mediterranean ones than to the other Atlantic ones, and to
decide whether a cryptic species is involved.
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González-Ortegón E., Baldó F., Arias A., Cuesta J.A.,
Fernández-Delgado C., Vilas C. and Drake P. (2015) Freshwater
scarcity effects on the aquatic macrofauna of a European
Mediterranean-climate estuary. Science of the Total Environment
503–504, 213–221.
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l’Institut Scientifique Chérifien 36, 1–140.
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Abstract  

Seafood traceability is crucial to avoid 

commercial fraud by species substitution, to 

certify product quality and to guarantee 

consumer health safety. Under European 

legislation, commercial and scientific names 

among other features have to be clearly 

indicated on the label. Prawn species are 

particularly susceptible of mislabelling due to 

the morphological similarities between them or 

the frequent absence of their carapaces in many 

seafoodstuffs. Thus, molecular tools are 

necessary to authenticate the species status. A 

species-specific PCR-assay was developed for 

authentication of five commercially relevant 

species: Penaeus indicus, Penaeus monodon, 

Pleoticus muelleri, Aristeus antennatus and 

Palaemon serratus. This method targeting a 

small-sized (<181 bp) mtDNA cytochrome b 

sequence ensures a template detection in fresh 

and frozen seafood products. Accuracy of the 

assay relies on the use of new species-specific 

primers. A reliable authentication is possible by 

this simple, fast and cost-effective PCR approach.  

Keywords: prawn; shrimp; seafood; 

authentication; cytochrome b; species-specific 

primers 

INTRODUCTION 

Seafood is the most traded food commodity, 

even surpassing well-known agricultural 

products like wheat or sugar [1]. Crustaceans 

belonging to the order Decapoda comprise a 

wide variety of prawns, shrimps, lobsters, 

crayfish, and crabs of commercial interest. 

Among them, marine shrimps and prawns 

represent economically important worldwide 

resources [2].  

In seafood products traceability is critical to 

guarantee quality and avoid health safety 

hazards such as allergies. Traceability also 

promotes conservation and sustainability of 

fisheries [3]. 

Though the European Union (EU) and USA are in 

the midst of the top seafood consumers per 

capita [4], the EU has currently superior seafood 

traceability regulations and requirements 

compared with other countries [3]. In the EU, the 

Council Reg. n. 1379/2013 [5], regulates the 

accuracy of labelling, repealing the previous 

provisions [for review see 6]. Under this 
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normative, fresh or processed crustaceans 

should be clearly labelled with commercial and 

scientific names, fishing gear category, net 

weight, food operator, identification mark, list of 

ingredients, production method, catch area and 

storage condition.  

Mislabelling in seafood is often caused by 

unintentional or deliberate adulterations 

generally through the replacement of high-value 

species by lower priced ones [7]. Traditional 

species authentication for traceability purposes 

in prawns becomes complicated or even 

impossible due to morphological similarities 

between species. This is especially problematic 

when external anatomical parts are removed in 

commercialised products [8]. Therefore, reliable 

molecular tools are indispensable to 

authenticate species status, assuring the 

labelling compliance. It is necessary to point out 

that legislation is only useful when surveillance 

through audit, spot check or trace-back is 

adequately and regularly exercised by 

authorities and companies [9, 10]. 

Molecular tools relying on proteins or DNA 

analyses have been considered as suitable 

approaches for seafood species authentication. 

As DNA is more stable than proteins and it can 

resist processing, including high temperatures, 

protein-based methods have been overcome 

with the introduction of DNA tools [11, 7]. DNA-

based methods, standing out polymerase chain 

reaction (PCR) assays, are the most widespread 

strategy for discriminating between closely 

related species [12]. 

Shrimps and prawns are one of the most globally 

demanded seafood group, accounting for 7.8 

million tonnes in 2013, over 50% of crustacean 

market [13]. The highly commercialized Indian 

white shrimp (Penaeus indicus), the black tiger 

prawn (Penaeus monodon), the Argentine red 

shrimp  (Pleoticus muelleri), the blue and red 

shrimp (Aristeus antennatus) the and common 

prawn (Palaemon serratus) were subjected to 

the present authentication study. In order to 

illustrate the great market demand of these 

species, stats data from the available sources 

collected in Food and Agriculture Organization 

of the United Nations (FAO) [13] are supplied 

here for each species. Penaeus indicus and P. 

monodon are subjects of an intense aquaculture 

farming activity, mainly in Indo-West Pacific 

countries, reaching 3,449 tonnes and 634,521 

tonnes in 2014, respectively Pleoticus muelleri 

fishery takes place exclusively in Argentina, with 

150,000 tonnes traded in 2016.  Aristeus 

antennatus is fished along the Mediterranean 

coasts, with a global catch of 1,782 tonnes 

reported in 2014.  Palaemon serratus fishery is 

conducted in some European communities, 

where 411 tonnes were traded in 2011. 

Although the amount of traded tonnes of 

Aristeus antennatus and P. serratus is lesser than 

the other three species, they reach high market 

prices, over 120 €/kg and 140 €/kg, 

respectively. 

Mitochondrial DNA (mtDNA) markers have been 

applied as tracing tools for discriminating 

different prawn species. In particular, with 

regard to aforementioned species, Pascoal et al. 

[8] used cytochrome b (cyt b) in Penaeus 

monodon and Pleoticus muelleri; Pascoal et al. 

[14] targeted a 16S rDNA sequence in Penaeus 

monodon and P. indicus; and Fernandes et al. [7] 

used cytochrome c oxidase subunit I (COI) in 

Penaeus indicus and P. monodon. Nevertheless, 

species-specific approach was never 

accomplished in these species.  Likewise, A. 

antennatus and Palaemon serratus are here 

analysed for the first time from a tracing 

perspective.  

The aim of this work was the development of a 

species-specific PCR-assay to authenticate 

Penaeus indicus, Penaeus monodon, Pleoticus 

muelleri, Aristeus antennatus and Palaemon 

serratus, in fresh and frozen samples. A small-

sized cyt b mtDNA sequence was chosen as a 

target using newly designed species-specific 

primers providing a feasible authentication 

methodology in the field of seafood inspection.  

MATERIAL AND METHODS 

Sample collection and DNA extraction 

Frozen samples of Penaeus indicus, P. monodon 

and Pleoticus muelleri were collected from a 

local market. Fresh individuals of A. antennatus 

and Palaemon serratus were collected by the 

authors in several samplings in Mediterranean 

and Atlantic localities, respectively. All samples 

were stored in 70- 95% ethanol. Ten individuals 

from each species were analysed. Morphological 
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external traits were used for the all samples 

identification by a marine biologist expert in 

shrimp and prawn taxonomy from the Instituto 

de Ciencias Marinas de Andalucía (ICMAN, CSIC). 

Genomic DNA was extracted from about 25 mg 

of muscle abdominal tissue using NZY Tissue 

gDNA Isolation kit (NZYTech, Lisbon, Portugal) 

following the manufacturer’s instructions. DNA 

concentration and purity was determined with a 

NanoDrop 1000 Spectrophotometrer 

(ThermoScientific, Wilmington, DE, USA). 

Primer design, PCR amplifications and 

electrophoretic analysis 

Preliminarily, primers crustF (5´-

GCTAATGGAGCGTCTTTCTTCTT-3´) and crustR 

(5´-TGGCTCCCCAGAATGATATTTG-3´) 

previously reported by Pascoal et al. [8] were 

used to amplify an internal 181 bp fragment of 

the mtDNA cyt b gene in the target species 

samples. PCR reactions were carried out in a 

total volume of 25 µL containing 25 ng of 

genomic DNA, 0.625 U of Taq DNA polymerase, 

1× PCR buffer (Roche Diagnostics), 200 μM of 

each dNTP (Roche Diagnostics) and 0.2 μM of 

each primer. Amplification conditions were as 

described in Pascoal et al. [8]. PCR products 

were purified using ExoSap-IT PCR cleanup 

reagent (Affymetrix, Santa Clara, CA, USA), and 

all products were sequenced using the BigDye 

Terminator Cycle Sequencing Ready Reaction 

v3.1 kit (Applied Biosystems, Paisley, UK) on an 

Applied Biosystem 3710 automated sequencer. 

Identity of Penaeus indicus, P. monodon and 

Pleoticus muelleri was additionally confirmed by 

BLASTn (http://blast.ncbi.nlm.nih.gov), as cyt b 

sequences of these species were available in 

public databases.  

Forward and reverse sequences were manually 

checked, edited with BioEdit v.7.2.5 software 

[15] and then aligned by the use of the Clustal W 

software [16] in order to identify nucleotide 

differences among species and to design species-

specific primers. The novel cyt b primer pairs for 

each species are listed in Table 1.  

PCR amplifications were performed in a 25 μL 

final volume containing 12.5 μL of NZYTaq II 2x 

Green Master Mix (NZYTech, Lisbon, Portugal), 

0.5 μM of each primer and 25 ng of DNA 

template. Amplification profile was as follows: 

94ᵒC for 1 min 30 s, followed by 35 cycles of 

94ᵒC for 20 s, 51.5ᵒC or 65ᵒC for 20 s, 72ᵒC for 

30 s and a terminal extension step of 72ᵒC for 15 

min. Species-specific annealing temperature is 

detailed in Table 1.  PCR products were run on 

2% TAE agarose gels stained with Greensafe 

premium (Nzytech, Lisbon, Portugal) using a 

50 bp DNA ladder VI as a molecular-weight size 

marker (Nzytech, Lisbon, Portugal). Then, 

amplicons were visualised under UV 

illumination in a Gel Doc XR system (BioRad 

Laboratories, Hercules, CA, USA).  

All PCR assays were performed on a MyCycler 

Thermal Cycler (BioRad Laboratories, Hercules, 

CA, USA).  

RESULTS AND DISCUSSION 

Seafood has become an important key driver in 

European food industry [17], therefore 

authentication of commercial prawn species is 

crucial to avoid fraud by species substitution.  

Moreover, procedures as freezing can cause 

chemical and physical damages to the DNA, such 

as its degradation or fragmentation [18], 

complicating DNA testing issues. Consequently, 

molecular identification and authentication 

Species Primer name Oligonucleotides primers Tm Size (bp) References

crustF 5´-GCTAATGGAGCGTCTTTCTTCTT-3´ 61 147 Pascoal et al. (2008)

In-cytbR 5´-CACATATCCTAAGAAAGCT-3´ This study

crustF 5´-GCTAATGGAGCGTCTTTCTTCTT-3´ 65 149 Pascoal et al. (2008)

Mon-cytbR 5´-AATACATACCCTAAGAAGGCAGTC-3´ This study

crustF 5´-GCTAATGGAGCGTCTTTCTTCTT-3´ 65 125 Pascoal et al. (2008)

Mue-cytbR 5´-GCTATTACTAGCAGAAGGATTAC-3´ This study

crustF 5´-GCTAATGGAGCGTCTTTCTTCTT-3´ 51.5 120 Pascoal et al. (2008)

Ant-cytbR 5´-TACTAATAATAGAATCACAACTCCG-3´ This study

crustF 5´-GCTAATGGAGCGTCTTTCTTCTT-3´ 51.5 178 Pascoal et al. (2008)

SeMon-cytbR 5´-CTCCCCAGAATGATATTTGTA-3´ This study

Penaeus indicus

Penaeus monodon

Pleoticus muelleri

Aristeus antennatus

Palaemon serratus

Table 1 Oligonucleotide primers for cyt b species-specific PCR-assay 
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methods for food tracing have to assure the 

detection of the target DNA.  

In the current study, a new simple, fast and cost-

effective DNA-based technique was developed 

for the accurate authentication of five highly 

commercial value species: Penaeus indicus, P. 

monodon, Pleoticus muelleri, A. antennatus and 

Palaemon serratus. No molecular authenticating 

tool was previously reported for A. antennatus 

and P. serratus despite of their importance.  

DNA amplification with primers crustF/crustR 

[8] allowed us to obtain cyt b sequences in target 

species (Fig. 1). Haplotype sequences are 

available in GenBank/EMBL under accession 

numbers: LT971317 to LT971325 and 

LT971329 to LT971331. 

Novel reverse species-specific primers (Fig. 1) 

were designed and coupled with crustF, 

successfully amplifying in all individuals of each 

target species. The new primer pairs amplified 

fragments of 147 bp, 149 bp, 125 bp, 120 bp and 

178 bp for Penaeus indicus, P. monodon, Pleoticus 

muelleri, A. antennatus and Palaemon serratus 

species, respectively (Table 1). The results of the 

amplification of the five-cited above species are 

shown in the Fig. 2. In this study the presence of 

a given species is not verified by bands size on 

electrophoresis gels, but through positive 

amplification with its respective primer pair.  

Primers specificity was checked in all studied 

species. No cross-reactivity was found among 

them, except for Palaemon serratus crustF/Se-

cytbR primer pair, which gave amplification in P. 

serratus and Penaeus monodon individuals. 

Afterwards P. serratus authentication was 

achieved by PCR product sequencing or by a 

second cross-reactivity-free PCR-assay using 

Penaeus monodon specific crustF/Mon-cytbR 

primer pair. A subsequent negative amplification 

reveals that the sample actually corresponds to 

Palaemon serratus. Targeting a small DNA region 

may result in the need for accomplish two PCR 

reactions, as in Pascoal et al. [14]. 

Mitochondrial DNA has been used successfully 

for food species identification due to its higher 

abundance respect to nuclear DNA in cells, rapid 

evolution, and greater sequence diversity 

compared to nuclear DNA [10]. In this field, 

mtDNA markers COI [e.g. 19], 16S [e.g.14], cyt b 

[e.g. 20] and 12S [e.g. 21] have been widely 

applied as well as the less extended ND4 [e.g. 

22]. Regarding the identification of prawn and 

Figure 1 Alignment and location of cyt b crust primers and novel species-specific primers designed in 
this study. Note: grey areas represent forward and reverse primers. 
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shrimp species in foodstuffs, there are many 

works using several mtDNA markers [see 

revision in 2]. Among these markers, cyt b has 

shown sufficient interspecific divergence to 

enable the design of specific primers in penaeid 

shrimps (Pascoal et al., 2008). Analysis of cyt b 

gene stands out in DNA-based methods in 

seafood authentication approaches [12]. Here, 

authentication of Penaeus indicus, P. monodon, 

Pleoticus muelleri, A. antennatus and Palaemon 

serratus was assured due to the use of species-

specific cyt b designed primers. We reduced the 

cyt b target amplicon size under 180 bp in all 

ofstudied species. It has been reported that 

targeting short DNA fragment facilitates DNA 

amplification even in highly degraded samples 

caused by food industry [23, 24, 25] This fact 

makes our method a potential candidate to be 

implemented for authenticate the presence of 

these prawns in processed products in further 

studies.  

The PCR-based assay described in this study 

represents a suitable authentication tracing tool. 

PCR methods provide sensitivity, specificity, 

accuracy and reproducibility at once they do not 

require expensive equipment and highly 

qualified staff [26]. In order to contribute to the 

traceability effort, our protocol should be 

considered together with other valuable PCR-

based seafood tracing methods previously 

reported, for instance PCR-RFLP [8], PCR-

sequencing [19], RT-PCR [27], HRM [7], PCR-

ELISA [28], FINS [29], SSCP [30], and RT-NASBA 

[31]. For seafood authenticity purposes, PCR 

using species-specific primers approaches, such 

the method described in this work, have been 

previously developed for several species [32 and 

references therein]. These species-specific 

methodologies are affordable because they 

neither require expensive fluorescent-labelled 

reagents or endonucleases nor sequencing after 

PCR. The use of the Master Mix cited here 

implies also a decrease of assay costs and time, 

as the addition of a dyed loading buffer is not 

needed in electrophoresis step. In this sense, a 

faster DNA extraction procedure recently 

described could be implemented for fresh, 

ethanol stored tissues or processed samples 

[33]. This method is appropriated for 

crustaceans, specifically A. antennatus was one 

of the species included in that study.  

The approach described in this work represents 

a useful tool for authentication of relevant 

prawn species that complements previously 

developed methods. This new assay offers a 

necessary feasible tool for administration and 

seafood industry to verify labelling compliance.  

CONCLUSIONS 

A new PCR-assay using species-specific primers 

allows the detection and authentication of 

Penaeus indicus, P. monodon, Pleoticus muelleri, 

A. antennatus and Palaemon serratus fresh and 

frozen samples. The proposed method is simple, 

rapid and affordable without losing accuracy, 

reliability and sensitivity. We provide a useful 

tool for food industry and control laboratories 

for routine analysis of these commercially 

relevant prawn species to unmask mislabelling 

and/or fraudulent situations and to assess 

authenticity in seafood products.  
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Figure 2 Size of cyt b PCR fragment for the five 
prawn species. Note: lane M represents DNA 
marker and lanes 1-5 represent Penaeus indicus, 
Penaeus monodon, Pleoticus muellleri, Aristeus 
antennatus and Palaemon serratus respectively. 

 

79



 

REFERENCES 

1. Asche F (2014) Exchange rates and the 
seafood trade. GLOBEFISH Research 
Programme 113. 
 

2. Ortea I, Pascoal A, Cañas B, Gallardo JM, 
Barros‐Velázquez J, Calo‐Mata P (2012). 
Food authentication of commercially‐
relevant shrimp and prawn species: 
From classical methods to 
Foodomics. Electrophoresis 33:2201-
2211. 
 

3. Leal MC, Pimentel T, Ricardo F, Rosa R, 

Calado R (2015) Seafood traceability: 

current needs, available tools, and 

biotechnological challenges for origin 

certification. Trends biotechnol 33:331-

336. 

 

4. FAO (2014). The state of world fisheries 

and Aquaculture: opportunities and 

challenges, Food and Agriculture 

Organization of the United Nations, 

Rome. 

 

5. Regulation (EU) No 1379/2013 of 11 

December 2013 on the Common 

Organisation of the Markets in fishery 

and aquaculture products, amending 

Council Regulations (EC) No 1184/2006 

and (EC) No 1224/2009 and repealing 

Council Regulation (EC) No 104/2000. 

OJEU 2013; L354. 

 

6. D’Amico P, Armani A, Gianfaldoni D, 

Guidi A (2016) New provisions for the 

labelling of fishery and aquaculture 

products: Difficulties in the 

implementation of Regulation (EU) n. 

1379/2013. Mar Policy 71:147-156. 

 

7. Fernandes TJ, Silva CR, Costa J, Oliveira 

MBP, Mafra I. (2017) High resolution 

melting analysis of a COI mini-barcode 

as a new approach for Penaeidae shrimp 

species discrimination. Food Control 

82:8-17. 

 

8. Pascoal A, Barros-Velázquez J, Cepeda A, 

Gallardo JM, Calo-Mata P (2008) 

Identification of shrimp species in raw 

and processed food products by means 

of a polymerase chain reaction–

restriction fragment length 

polymorphism method targeted to 

cytochrome b mitochondrial sequences. 

Electrophoresis 29:3220-3228. 

 

9. Lewis SG, Boyle M (2017) The 

expanding role of traceability in 

seafood: tools and key initiatives. J Food 

Sci 82. 

 

10. Taboada L, Sánchez A, Pérez-Martín RI, 

Sotelo CG (2017) A new method for the 

rapid detection of Atlantic cod (Gadus 

morhua), Pacific cod (Gadus 

macrocephalus), Alaska pollock (Gadus 

chalcogrammus) and ling (Molva molva) 

using a lateral flow dipstick assay. Food 

Chem 233:182-189. 

 

11. Galal-Khallaf A, Ardura A, Borrell YJ, 

García-Vázquez E (2016) PCR-based 

assessment of shellfish traceability and 

sustainability in international 

Mediterranean seafood markets. Food 

Chem 202:302-308. 

 

12. Griffiths AM, Sotelo CG, Mendes R, 

Pérez-Martín RI, Schröder U, Shorten M, 

Silva HA, Verred-Bagnis V, Mariani S 

(2014). Current methods for seafood 

authenticity testing in Europe: Is there a 

need for harmonisation? Food Control 

45:95-100. 

 

13. FAO (2017). Food and Agriculture 

Organization of the United Nations, 

Rome, Italy. Available at: 

http://www.fao.org/ (Last accessed 29 

December 2017). 

 

14. Pascoal A, Barros-Velázquez J, Ortea I, 

Cepeda A, Gallardo JM, Calo-Mata P 

(2011) Molecular identification of the 

black tiger shrimp (Penaeus monodon), 

the white leg shrimp (Litopenaeus 

vannamei) and the Indian white shrimp 

(Fenneropenaeus indicus) by PCR 

targeted to the 16S rRNA mtDNA. Food 

Chem 125:1457-1461. 

 

15. Hall TA (1999). BioEdit: A user-friendly 

biological sequence alignment editor 

80



 

and analysis program for Windows 

95/98/NT. Nucleic Acids Symp Ser 

41:95e98.  

 

16. Thompson JD, Higgins DG, Gibson TJ 

(1994) CLUSTAL W: improving the 

sensitivity of progressive multiple 

sequence alignment through sequence 

weighting, position-specific gap 

penalties and weight matrix 

choice. Nucleic Acids Res 22:4673-4680. 

 

17. Di Pinto A, Mottola A, Marchetti P, 

Bottaro M, Terio V, Bozzo G, Bonerba E, 

Ceci E, Tantillo G (2016) Packaged 

frozen fishery products: species 

identification, mislabeling occurrence 

and legislative implications. Food 

Chem 194:279-283. 

 

18. Bauer T, Weller P, Hammes WP, Hertel C 

(2003) The effect of processing 

parameters on DNA degradation in 

food. Eur Food Res Technol 217:338-

343. 

 

19. Armani A, Tinacci L, Lorenzetti R, 

Benvenuti A, Susini F, Gasperetti L, Ricci 

E, Guarducci M, Guidi A (2017) Is raw 

better? A multiple DNA barcoding 

approach (full and mini) based on 

mitochondrial and nuclear markers 

reveals low rates of misdescription in 

sushi products sold on the Italian 

market. Food Control 79:126-133. 

 

20. Teletchea F (2009) Molecular 

identification methods of fish species: 

reassessment and possible 

applications. Rev Fish Biol 

Fisher 19:265. 

 

21. Di Finizio A, Guerriero G, Russo GL, 

Ciarcia G (2007) Identification of gadoid 

species (Pisces, Gadidae) by sequencing 

and PCR–RFLP analysis of 

mitochondrial 12S and 16S rRNA gene 

fragments. Eur Food Res 

Technol 225:337-344. 

 

22. Rastogi G, Dharne MS, Walujkar S, 

Kumar A, Patole MS, Shouche YS (2007) 

Species identification and 

authentication of tissues of animal 

origin using mitochondrial and nuclear 

markers. Meat Sci 76:666-674. 

 

23. Madesis P, Ganopoulos I, Sakaridis I, 

Argiriou A, Tsaftaris A (2014) Advances 

of DNA-based methods for tracing the 

botanical origin of food products. Food 

Res Int 60:163-172. 

 

24. Perez M, Presa P (2008) Validation of a 

tRNA-Glu-cytochrome b key for the 

molecular identification of 12 hake 

species (Merluccius spp.) and Atlantic 

Cod (Gadus morhua) using PCR-RFLPs, 

FINS, and BLAST. J Agric Food Chem 

56:10865-10871. 

 

25. Shabani H, Mehdizadeh M, Mousavi SM, 

Dezfouli EA, Solgi T, Khodaverdi M, 

Rabiei M, Rasyegar H, Alebouyeh M. 

2015. Halal authenticity of gelatin using 

species-specific PCR. Food Chem 

184:203-206. 

 

26. Xue C, Wang P, Zhao J, Xu A, Guan F 

(2017) Development and validation of a 

universal primer pair for the 

simultaneous detection of eight animal 

species. Food Chemistry 221:790-796. 

 

27. Espiñeira M, Vieites JM (2015) Genetic 

system for traceability of goatfishes by 

FINS methodology and authentication of 

mullets (Mullus barbatus and Mullus 

surmuletus) by RT-PCR. Eur Food Res 

Technol 240:423-429. 

 

28. Santaclara F J, Velasco A, Pérez-Martín 

RI, Quinteiro J, Rey-Méndez M, Pardo 

MA, Jimenez, E, Sotelo CG (2015) 

Development of a multiplex PCR–ELISA 

method for the genetic authentication of 

Thunnus species and Katsuwonus 

pelamis in food products. Food 

Chem 180:9-16. 

 

29. Santaclara F J, Pérez-Martín RI, Sotelo 

CG (2014) Developed of a method for 

the genetic identification of ling species 

81



 

(Genypterus spp.) in seafood products by 

FINS methodology. Food Chem 143:22-

26. 

 

30. Chapela MJ, Sánchez A, Suárez MI, 

Pérez-Martín RI, Sotelo CG (2007) A 

rapid methodology for screening hake 

species (Merluccius spp.) by single-

stranded conformation polymorphism 

analysis. J Agric Food Chem 55:6903-

6909. 

 

31. Ulrich RM, John DE, Barton GW, 

Hendrick GS, Fries DP, Paul JH (2013) 

Ensuring seafood identity: Grouper 

identification by real-time nucleic acid 

sequence-based amplification (RT-

NASBA). Food Control 31:337-344. 

 

32. Böhme K, Barros‐Velázquez J, Calo‐Mata 

P, Gallardo JM, Ortea I (2015) Seafood 

Authentication using Foodomics: 

Proteomics, Metabolomics, and 

Genomics. Genomics, Proteomics and 

Metabolomics in Nutraceuticals and 

Functional Foods, 14-30. 

 

33. Tagliavia M, Nicosia A, Salamone M, 

Biondo G, Bennici CD, Mazzola S, Cuttitta 

A (2016) Development of a fast DNA 

extraction method for sea food and 

marine species identification. Food 

Chem 203:375-378. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

82



 

 

 

 

 

 

 

 

 

 

 

 

 

CORRIGENDUM 

 

 

 

 

 

 

 

 

 

 

 

 



 



Corrigendum 

 
 

 

Since the publication of the scientific articles that constitute the present thesis, we 

have noticed some errors. Although in general do not alter the main conclusions of 

the articles we consider should be corrected. Therefore, we list them below. The 

typographical errors are not recorded, unless they were misleading. 

Corrections to CHAPTER 1.1: Karyological analysis of the shrimp Palaemon 

serratus (Decapoda: Palaemonidae). 

In this research article we have used the term 'shrimp' to refer to Palaemon serratus, 

we have also indiscriminately interchanged 'shrimp' and 'prawn' in CHAPTER 1.2, and 

from there on out we used 'prawn'. In scientific literature there is no clear distinction 

between both terms and, although the term 'shrimp' is sometimes applied to smaller 

species while 'prawn' is more often used for larger forms, their usage is often 

confused or even reversed depending on the country (FAO, 2018). Finally, we 

considered use the word 'prawn' since the naturalist Thomas Pennant categorised P. 

serratus as 'the common prawn' in 1777.  

Corrections to CHAPTER 1.2: Comparative cytogenetic analysis of marine 

Palaemon species reveals a X1X1X2X2/X1X2Y sex chromosome system in 

Palaemon elegans.  

During the revision of the proofs of this article, a paragraph in the 'Abstract' section 

was no modified: 'The karyotype of the females consisted of the three largest 

acrocentric pairs and (…)' should be read as follows: 

The karyotype consisted of 43 autosomal chromosome pairs: 5 

metacentric/submetacentric, 4 subtelocentric/telocentric, and 34 hardly 

distinguishable due to the small size. The karyotype of the females also included two 

large telocentric sex chromosome pairs, while that of the males included one clearly 

identifiable large metacentric chromosome and two telocentric chromosomes. 

In the 'Abstract' section the telomeric sequence was incorrectly written. The correct 

sequence is (TTAGG)n. 
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General discussion 
 
 

Contributions of this thesis to cytogenetic data in Palaemon 

Cytogenetic studies not only provide basic information on the number, size and 

morphology of chromosomes, but also allow to determine the ploidy level (Suda et 

al. 2006) and to identify chromosomal rearrangements (Gross et al. 2010). From a 

practical point of view, this genetic approach is extremely useful in aquaculture. 

Some of the most important applications of the cytogenetic in aquaculture include: 1) 

verifying the success of chromosome set manipulation processes, such as polyploidy 

induction (de Almeida et al. 2011), gynogenesis and androgenesis, sex control and 

intra- and interspecific hybridizations (Dai and Han, 2018), 2) assessing the level of 

cytogenetic stability among polyploids (Benabdelmouna and Ledu 2015), and 3) 

assigning linkage groups to physical chromosomes, to integrate physical and 

recombination genetic maps (Doudrick et al. 1995).  

The economic importance of numerous crustacean species (i.e., the common prawn 

Palaemon serratus) and the prospect that in the near future these species can be 

farmed in fisheries and aquaculture have brought about a greater interest in some 

aspects of their cytogenetics. Hence, the cytogenetic data reported in CHAPTER 1.1 

and 1.2, provide the necessary basis to implement possible genetic improvement 

technologies in this species.  

On the other hand, the phylogeny of Palaemon has been under continual revision and 

it has not been completely clarified (Carvalho et al. 2017). In this context, 

karyological studies based on conventional staining and banding techniques have 

proven useful for inferring phylogenetic relationships and delimiting subspecies and 

species boundaries in many animal groups (e.g. Hillis 1991; Volleth and Heller 1994; 

Odierna et al. 1996; Mazurok et al. 2001; Shibusawa et al. 2004; Targueta et al. 

2010). A recent cytogenetic study has shown the special value of chromosomal 

markers as a taxonomic character to detect invasive and cryptic species in marine 

mussels (García-Souto et al. 2017).  

Unfortunately, the vast majority of crustacean species have not been subject of 

cytogenetic analyses (less than 2% of the Crustacea), having been considered 

particularly challenging for this type of analysis (Mlinarec et al. 2011). During the last 

years, the number of studies developed in this field has not increased significantly. 

Most of these studies only focus on estimating the chromosome number and applying 

conventional staining for cytogenetic characterisation, but do not perform FISH 

assays.  Niijama (1959) and many authors thereafter, have attributed the lack of 

information to the fact that these species have high diploid chromosome numbers, 

usually small and of similar size and highly condensed. Only three Palaemon species 
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(P. carinicauda, P. modestus and P. khori), and from Asian regions, have been 

studied cytogenetically until now (Jiang et al. 2008; Li et al. 2012; Hassan et al. 

2015). Palaemon serratus was the first European species of the genus to be 

cytogenetically characterised (CHAPTER 1.1). In order to start unravelling the 

chromosome evolution of the genus, in CHAPTER 1.2 we extended the cytogenetic 

analysis to other European representative, P. elegans. Overall, we applied classical 

and molecular cytogenetic methods based on conventional staining, banding 

techniques and fluorescence in situ hybridization in these species; and it allowed us 

to perform a detailed comparative cytogenetic analysis between them. 

We revealed the diploid chromosome number of P. serratus (2n=56), the lowest 

known diploid chromosome number in the family Palaemonidae (CHAPTER 1.1). The 

karyotype consisted of 56 chromosome pairs: 20 telocentric, 6 subtelocentric, and 2 

large metacentric. Interestingly, the karyotype of P. elegans was composed of 2n=90 

chromosomes in females and 2n=89 chromosomes in males (CHAPTER 1.2). The 

diploid chromosome number of P. elegans is similar to those reported to P. 

carinicauda, P. modestus and P. khori (2n=90, 2n=90 and 2n=96, respectively), but 

it is strikingly higher than that of the other European species, P. serratus (2n=56). 

We hypothesized that the main mechanism of karyotype evolution of the genus 

would involve several fusion events giving rise to a reduction on the chromosome 

number in P. serratus (see CHAPTER 1.2 for details). 

Ribosomal DNAs (rDNAs) are important components of eukaryotic chromosome 

complements and comprise conserved regions. They have been, and still are, the 

main chromosome marker of choice (Sochorová et al. 2017). The number of rDNA 

loci has been widely used to characterise animal and plant species (for a review, see 

García et al. 2014; Sochorová et al. 2017). In both P. serratus and P. elegans, the 

major ribosomal genes were observed at the telomeres of two chromosome pairs 

(four sites of probe hybridization). Considering the whole online animal rDNA 

database (www.animalrdnadatabase.com), this number reflects the average number 

of 45S per diploid chromosome set (3.8). Indeed, the median is two sites (single 

locus/1C) for 45S, indicating that most karyotypes tend to maintain loci numbers 

moderately low, despite large variation (1–54 sites) (Sochorová et al. 2017). 

Likewise, the distal and pericentromeric chromosomal positions are the most 

prevalent (> 75% karyotypes) for 45S loci (Sochorová et al. 2017). Telomeric 

sequences (TTAGG)n were detected at the telomeres of all chromosomes in the two 

studied species. Therefore, we demonstrated the presence of the TTAGG repeat, 

known as the ancestral motif of arthropod telomeres, for the first time in the family 

Palaemonidae. 
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General discussion 
 
 
The comparative analysis between the chromosome complements of both sexes of P. 

elegans showed considerable differences. The karyotype consisted of 43 autosomal 

chromosome pairs: 5 metacentric/submetacentric, 4 subtelocentric/telocentric, and 

34 hardly distinguishable due to their reduced size. Female karyotype also included 

two large telocentric sex chromosome pairs, while that of the males included one 

clearly identifiable large metacentric chromosome and two large telocentric 

chromosomes. Thus, male heterogamety is evidenced by a metacentric chromosome 

present only in the male karyotype (Y chromosome). Analysis of meiotic diakinesis 

shed light on sex chromosome behaviour in P. elegans. During meiosis, each arm of 

the large metacentric Y is terminally associated with one telocentric chromosome (X1 

and X2) forming a trivalent (X1X2Y). Thus, we confirmed the presence of the 

X1X1X2X2/X1X2Y multiple sex chromosome system in this species. This is the first sex 

chromosome system discovered in Palaemon and the only sexual system reported for 

Decapoda so far using modern cytogenetic techniques. Some considerations 

discussed in CHAPTER 1.2 led us to hypothesise that the multiple sex chromosome 

system in this prawn species is a result of recent evolution (see CHAPTER 1.2 for 

details). Remarkably, the C-banding technique revealed a lack of constitutive 

heterochromatin in the sex chromosomes, not even in the Y chromosome. It is also 

noteworthy that C-banding pattern did not evidence the existence of heteromorphic 

or heterochromatic chromosomes in P. serratus. 

The hypotheses developed in CHAPTER 1.2 stress the need for future studies 

including cytogenetic and molecular approaches to better understand the driving 

forces and molecular pathways underlying the evolutionary dynamics of karyotypes, 

sex chromosomes, and sex-determining mechanisms of Palaemon in a comparative 

framework.  For this purpose, we intend to select other congeneric species closely 

related to the members included in the present work. Based on a recent phylogenetic 

analysis (Carvalho et al. 2017), the ideal candidates would be the European species 

P. adspersus (the type species of the genus), P. longirostris and P. xiphias; and the 

American species P. floridanus and P. northropi. 

Recently, a new databank from the first transcriptome assembly and annotation of 

Palaemon serratus (Perina et al. 2017) have been reported, opening new scenarios to 

investigate some essential questions (as What is the sex determination mechanism in 

P. serratus?) that remain unanswered. Chandler et al. (2017) have proposed the 

functionally conserved sex regulators, Dmrts, as target genes to guide studies into 

sex determination in Decapoda. So far, several Dmrts homologues have been 

identified in seven species comprising Penaeidae, Palinuridae, Palaemonidae and 

91



Zeltia Torrecilla Pérez 

 

Portunidae (Chandler et al. 2017). Future studies focusing on gene expression should 

address the validation of these sex-specific genes. 
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General discussion 
 
 

Contributions of this thesis to the management of Palaemon serratus 

populations 

Population boundaries are difficult to define within marine ecosystems (Taylor et al. 

2000); albeit, to achieve effective management of wildlife populations, it is necessary 

to delimitate discrete, countable, and reasonable units (Coder 1996; Evans and 

Teilmann 2009). Such units are separate groups of individuals within the species 

itself that form genetic units of evolution (Abdul-Muneer 2014) and thus will respond 

uniquely and independently to fishing pressure (Ovenden et al. 2015). These units, 

or biological stocks, are critical for the management and conservation of wild 

fisheries. In that sense, species affected by fishing should be managed to minimize 

the loss of genetic diversity, which is a key measure of resilience and abundance 

(Ovenden et al. 2015). Besides the genetic diversity, it is crucial to determine genetic 

differences among populations considering that it provides information about gene 

flow among them and about their evolutionary history (Allendorf et al. 2013). Proper 

management of the species reduces not only the depletion of stocks in terms of 

numbers but also minimizes their genetic deterioration (Romana-Eguia et al. 2015). 

With the rapid growth of molecular biology, the use of genetic markers as tools to 

determine patterns of gene flow and, therefore, to define biological stocks, have been 

widespread (Watts et al. 2009). In this regard, because of its intrinsic properties 

(high mutation rate, absence of recombination…), mitochondrial DNA (mtDNA) has 

been widely used in studies of population genetics, species identification and 

molecular phylogenetics (Brown et al. 1979; Avise et al. 1987; Moritz et al. 1987; 

Hebert et al. 2003; Galtier et al. 2009). Such is its discriminatory power, that the 

mitochondrial fragment cytochrome c oxidase 1 (Cox1) was selected as the 

standardised tool for molecular taxonomy and identification (Ratnasingham & Hebert 

2007). Nevertheless, the combination of mitochondrial and nuclear markers is 

considered the best option to evaluate the genetic status of populations. Actually, 

with respect to marine organisms, the most commonly used molecular markers are 

mitochondrial and microsatellite (nuclear) markers (Cuellar-Pinzón et al. 2016). 

Reuschel et al. (2010), analysing the DNA-sequences of two mitochondrial genes 

(16S rRNA and Cox1), revealed a genetic differentiation between Atlantic and 

Mediterranean populations of P. elegans. Due to the ecological and economic 

relevance of the sympatric species P. serratus, it was necessary to test the 

occurrence of a similar population structure in this species that allows us to 

implement effective management strategies. In fact, Haig et al. (2014) pointed out in 

their review of the P. serratus fishery in UK and Ireland that P. serratus fishery is not 
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currently subject to any particular management regime other than a closed season 

between May and August in Ireland to protect stocks from overexploitation.  

In CHAPTER 2, we provided the first phylogeographic analysis of P. serratus along 

European coastlines, based on one nuclear (Enolase) and two mitochondrial genes 

(Cox1 and 16S rRNA). In this study, a pronounced genetic differentiation was 

detected between the Mediterranean and the Atlantic localities. Besides P. elegans 

(Reuschel et al. 2010) and P. serratus, this Atlantic-Mediterranean division has been 

recorded for many marine species in general and numerous crustacean in particular 

such as the pelagic crustacean Meganyctiphanes norvegica (Zane et al. 2000), the 

shrimp Crangon crangon (Luttikhuizen et al. 2008), the spiny lobster Palinurus 

elephas (Palero et al. 2011), or the Norway lobster Nephrops norvegicus (Gallagher 

et al. 2018). Nevertheless, in many of these studies the phylogeographic break 

responsible for the species genetic subdivision is still unclear. Certainly, as noted in 

their review Patarnello et al. (2007) `despite a wealth of historical and oceanographic 

data, the Atlantic-Mediterranean transition remains controversial at the biological 

level as there are discordant results regarding the biogeographical separation 

between the Atlantic and Mediterranean biota`. In the case of P. serratus, a 

biogeographic barrier appears to be located west of the Strait of Gibraltar, given that 

sampling sites from the Gulf of Cádiz were more closely related to the Mediterranean 

population than to the other Atlantic localities. This was also reported in the mysid 

Neomys integer (Remerie et al. 2009). Interestingly, the opposite scenario was 

postulated by Reuschel et al. (2010) for the counterpart P. elegans, where the 

Almería-Orán Front is the hydrographic boundary between the Atlantic and 

Mediterranean populations. According to Tintore et al. (1988), the Almería-Orán 

Front is a semi-permanent dynamic oceanographic structure and it has been 

described as the main barrier restricting genetic flow along the Atlantic–

Mediterranean transition area (e.g. Galarza et al. 2009). This is for instance the case 

of the krill Meganyctiphanes norvegica (Zane et al. 2000), the scallops Pecten 

jacobeus and P. maximus (Ríos et al. 2002), the cuttlefish Sepia officinalis (Pérez-

Losada et al. 2002; 2007) or the European sea bass Dicentrarchus labrax (Lemaire et 

al. 2005). However, a recent study on seven crustacean species showed that the 

Almería-Orán Front has not effect on their genetic structure (García-Merchán et al. 

2012). This statement is also in agreement with a phylogeography study on the red 

shrimp Aristeus antennatus (Fernández et al. 2011); indicating that the role of this 

front cannot be generalized and that other discontinuities, such as the Gibraltar Strait 

or the Ibiza Channel, can reduce the gene flow between the two basins (García-

Merchán et al. 2012). In line with that, the boundary located somewhere west of the 

Strait of Gibraltar for P. serratus populations should be taken into account to 
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General discussion 
 
 
investigate genetic differentiation in other coastal species with a larval dispersal 

phase. 

Concerning the management of the common prawn P. serratus, our results 

suggested the existence of two clearly differentiated populations within the species 

that indicate the need to establish two priority management areas. These areas 

should be taken into consideration when establishing specific policies for the 

sustainable regulation of regional fisheries. Genetic stocks should be also considered 

for the development of breeding and restocking programs for this highly commercial 

prawn species. 

Now we know that genetic differentiation occurs in this species, further studies are 

indispensable to better define genetic stocks of this natural resource and to delimit 

the biogeographic barrier between the Atlantic and Mediterranean populations. In this 

regard, the analysis of polymorphic molecular markers such as microsatellites loci 

could reveal fine-scale genetic structure even the level of genetic differentiation 

among populations is low (Wright and Bentzen 1995).  
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Contributions of this thesis to seafood traceability 

Traceability is destined to enable tracking a product along the production and 

distribution chain, from the raw materials to the end-consumer, and it makes use of 

the labelling as a tool for achieving this aim (D`Amico et al. 2016).  

Given that seafood is the most traded food commodity worldwide, even surpassing 

well-known agricultural products (Asche, 2014), the EU has implemented a legal 

framework that regulates the accuracy of its labelling (EU 1379/2013) (D`Amico et 

al. 2016). Under the aforementioned normative, fresh or processed seafood should 

be clearly labelled with commercial and scientific names, fishing gear category, net 

weight, food operator, identification mark, list of ingredients, production method, 

catch area and storage condition. Labelling compliance is crucial to guarantee the 

product quality and minimize food safety risks (Leal et al. 2015) and also to promote 

the sustainable exploitation and the conservation of exploited stocks (Bernatchez et 

al. 2017). Thus, species identification and authenticity control are major concerns to 

the seafood industry. Traditionally, the identification of species in seafood products 

was based on observed morphological traits. However, these features are particularly 

difficult to use in species identification among seafood species in general, and in 

prawns belonging to the order Decapoda in particular, because of their phenotypic 

similarities and to the fact that during processing, the external carapace is often 

removed (Ortea et al. 2012). This explains why they are often regarded as 

adulteration targets (Fernandes et al. 2017). In 2014, a report by the Ocean 

Conservation Group, Oceana, revealed that 15% of prawns are mislabelled in terms 

of either the method of production or species (Wilwet et al. 2018). 

Molecular authentication methods provide useful tools to verify species status and 

labelling information (Bernatchez et al. 2017). Actually, molecular tools relying on 

biomarkers targeting proteins or, more frequently, DNA, have been proposed as 

suitable strategies for prawn species identification or authentication (Griffiths et al. 

2014; Fernandes et al. 2017). When talking about DNA-based approaches for food 

analysis purposes, the polymerase chain reaction (PCR) plays a crucial role (Böhme 

et al. 2015). PCR-based assays provide sensitivity, specificity, accuracy and 

reproducibility at once, and they do not require expensive equipment and highly 

qualified staff (Xue et al. 2017). Taking all of these advantages into account, species-

specific PCR-assays are faster, simpler and more affordable than other PCR-based 

authentication methods as PCR-RFLP (Pascoal et al. 2008) or PCR-sequencing (see 

CHAPTER 3). 
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For seafood authenticity purposes, PCR-based methods using species-specific primers 

have been previously developed in several seafood species (Böhme et al. 2015 and 

references therein). 

In order to provide new species authentication tools for traceability studies according 

to existing regulations, in CHAPTER 3 we developed a species-specific PCR-assay to 

authenticate the presence of common prawn P. serratus in fresh and frozen seafood 

samples. In this work, we also extended this procedure to other four economically 

important prawn species, in particular the Indian white shrimp (Penaeus indicus), the 

black tiger prawn (Penaeus monodon), the Argentine red shrimp (Pleoticus muelleri) 

and the blue and red shrimp (Aristeus antennatus). Palaemon serratus and A. 

antennatus were included here for the first time from this type of analysis. A small-

sized cyt b mtDNA sequence was the target for species-specific primers design 

providing a sensitive authentication methodology to be applied in the field of seafood 

inspection.  
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Conclusions 
 
 

Main conclusions of Chapter I: Karyological characterization of 

Palaemon serratus and Palaemon elegans. 

I. The diploid chromosome number in males and females of P. serratus is 

2n=56 chromosomes. In both sexes, the karyotype consists of 2 large 

metacentric, 6 subtelocentric and 20 telocentric chromosome pairs. 

Comparisons between P. serratus female and male karyotypes indicated a 

putative absence of heteromorphic sex chromosomes.  

 

II. The diploid chromosome number of P. elegans is 2n=90 for females and 

2n=89 for males. In both sexes, the karyotype consists of 43 autosomal 

chromosome pairs: 5 metacentric/submetacentric, 4 

subtelocentric/telocentric, and 34 hardly distinguishable chromosomes due 

to their small size. The chromosome complement of females also includes 

2 large telocentric chromosome pairs (X1X1X2X2), while that of the males 

includes one large metacentric (Y) and two telocentric chromosomes 

(X1X2).  

 

III. Comparative analyses between the karyotypes of both sexes of P. elegans 

in addition to their meiotic behavior, revealed the presence of an 

X1X1X2X2/X1X2Y sex chromosome system. The existence in males of 

meiotic recombination between the sex chromosomes, as well as the large 

euchromatic Y chromosome, suggests the possibility that the multiple sex 

chromosome system is a result of recent evolution. 

 

IV. The reduced chromosome number of P. serratus constitutes a derived 

character in Palaemonidae. Fusion events could be the mechanism 

responsible for the origin of this karyotype, but this hypothesis needs 

further investigation. 

 

V. C-banding revealed that constitutive heterochromatin has a predominantly 

telomeric distribution in both species of Palaemon. In P. serratus we did 

not find differences in the constitutive heterochromatin pattern between 

sexes. In P. elegans, C-banding revealed the absence of constitutive 

heterochromatin in the sex chromosomes. 

 

VI. According to fluorescent in situ hybridisation, the major ribosomal genes 

are located in terminal positions on two small chromosome pairs in both 
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species, which may constitute a plesiomorphic character in the genus. 

Also, the presence of the ancestral motif of arthropod telomeres, a TTAGG 

repeat, was revealed. 

Main conclusions of Chapter II: Genetic differentiation between 

Mediterranean and Atlantic populations of the common prawn 

Palaemon serratus (Crustacea: Palaemonidae) reveals uncommon 

phylogeographic break. 

VII. Results of three analysed genes (Cox1 mtDNA, 16S rRNA and Enolase 

nuDNA) showed the existence of genetic differentiation between P. 

serratus localities in the Mediterranean Sea, the Guadalquivir Estuary and 

the Atlantic Ocean.  

 

VIII. The Mediterranean population includes all individuals from Guadalquivir 

Estuary, indicating that a biogeographic barrier that limits genetic flow 

between Atlantic and Mediterranean populations is located west of the 

Strait of Gibraltar, an uncommon phylogeographic break. 

 

IX. Concerning the management of the common prawn P. serratus, our results 

revealed the existence of two differentiated populations within the species 

that indicate the need to establish two priority management areas. 

Main conclusions of Chapter III: Molecular authentication of six 

economically important prawn species by species-specific PCR-assay 

X. The species-specific PCR-assay developed in this work allows for detection 

and authentication of five prawn species (Penaeus indicus, Penaeus 

monodon, Pleoticus muelleri, Aristeus antennatus and Palaemon serratus). 

 

XI. This method, targeting a small cytochrome b fragment, ensures template 

detection in fresh and frozen food products, and provides a simple, fast 

and cost-effective tool for food industry and control laboratories.  
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