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Abstract 

A method based on Genetic Programming (GP) to improve previously known empirical equations is presented. From 

a set of experimental data, the GP may improve the adjustment of such formulas through the symbolic regression 

technique. Through a set of restrictions, and the indication of the terms of the expression to be improved, GP creates 

new individuals. The methodology allows us to study the need of including new variables in the expression. The 

proposed method is applied to the shear strength of concrete beams. The results show a marked improvement using 

this methodology in relation to the classic GP and international code procedures. 
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1. Introduction 

On certain occasions there are contrasted theoretical formulations that allow finding a solution to a 

particular engineering problem, but there is not often a proven theoretical solution and it is necessary to 

resort to empirical formulations that are inferred from experimental results. The evolutionary computation 

is a tool that is capable to solve on its own and from experimental results, numerous problems in different 

fields as, for example, in Civil Engineering [1]. In this study field it appears different interests where 

artificial intelligence techniques can help to the science enrichment. In most of the problems a physical 

phenomenon is abstracted in a mathematical problem to simulate and predict such phenomenon. Since in 

most of the case study there has already been some available knowledge about a particular phenomenon, 

that is, there have already been different models that try to adjust the physical/chemical behavior through 

equations, the use of artificial intelligence techniques is of great interest for the optimization or 

improvement, if anything, of such models. 

 

In scientific literature there are numerous approximations for the optimization of several processes. If 

we concentrate on the example field (structural engineering), most of the optimization processes are 

focused on the resource optimization, that is, on the execution of a specific element with the minimum of 

resources that are used but always guarantying the element security. An example is the job made by 

Perera and Vique [2]. In this paper the authors use the genetic algorithms for automatically producing 

optimal strut-and-tie models for the design of reinforced concrete beams. For this, they look for 

minimizing the axial force product, the length and axial strain of the truss elements. 

 

Another example to quote is the one developed by Sonebi and Cevik [3]. In this case the authors use 

the Genetic Programming technique to find an equation for modelling the fresh properties and the 

compressive strength of self-compacting concrete (SCC) containing pulverized fuel ash (PFA), 

highlighting the obtaining of good results in spite of the fact that there are available few data. 

 

As well as the evolutionary computation techniques, the artificial neural networks (ANNs) can be 

used to improve the physical model involved in a process. In this aspect, it is important to point out the 

job of Cladera and Marí [4], who uses the ANN for the analysis of the shear strength in concrete beams 

without shear reinforcement. In this case, and afterwards the training and verification process, the ANNs 

were used as a virtual laboratory, predicting test values that were not made physically. With the one that 

was developed, they get to study the dependence type facing each of the variables, finally formulating 

two design expressions that improve noticeably any of the ones developed by other authors or by other 

national or international codes. The main inconvenient in the use of ANN is the impossibility to give 

expression explicitly to the result, that is, the result that was obtained through the learning is a data 

recorder which only gives results according to the input stimulus, without relating explicitly the input 

values to the output values at no time. On the other hand, it is impossible to apply restrictions as the ones 

presented in the article through the use of ANN. 

 

Nearer to our case study, it is found the job made by Ashour et al. [5]. In this case they obtain an 

expression through GP that, from the previously standardized variables, is capable of predicting the shear 

strength in concrete beams. This example differ mainly from the one presented here in two questions. In 

the first place, the variables have been standardized. In the second place, the search process is not directed 

anyway. Although it is obtained better results with a priori standardized data, it would entail not being 

able to apply the resultant formula immediately since it would be necessary to apply the standardization 

to the data. In any case, they get good adjustments from a database of only 141 beams tests indexed to 

scientific literature, although they do not compare them to the current codes of practice in spite of 

mentioning them. 

 

Regarding the tendencies in the field of Genetic Programming, related to the orientation of the search 

process, they are synthesized in syntactic restrictions. For example, Koza uses this type of restrictions 

when generating new individuals [6]. There is a mechanism developed likewise by Koza [7], called 

“Automatically Defined Functions (ADFs)”, that it could be explained as a particular case of syntactic 

restrictions, since the ADF are functions or subroutines that are “reusable” by the Genetic Programming 
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algorithm of a fixed structure that can evolve. Another type of restrictions would be the ones that involve 

the type of data, or the dimensional coherence of a result. In this case, Montana [8] proposes a “Strongly 

Type Genetic Programming method (STGP)” with it is achieved, for example, that the operator “sine” is 

only applied to variables that contain angles. Finally, there are the techniques based on “Grammar Guided 

Genetic Programming (GGGP)”, in which the genetic operations are conditioned by grammar that is 

defined by the user. In this grammar, called “Context Free Grammar (CFG)”, it lies the expert knowledge 

in the study area. For example, García-Arnau et al. [9] develops a method called “Grammar Based 

Initialization Method (GBIM)” that he uses with GGGP for classification tasks in Breast Cancer. More 

related to the case study of this job, Ralte and Sebag [10] use GGGP to create a behavior model of a 

material from experimental data. 

 

Pérez et al. [11] have presented an algorithm that allows to improve a mathematical expression that is 

controlled by an expert on the basis of experimental data, leading the search process through restrictions 

given by the expert in the creation of new solutions. In the current article it is carefully presented the 

followed methodology, and it is compared to the results that would be obtained with classic techniques of 

GP. Besides, it is proposed a methodology to study the necessity or not to include certain variables that 

were not considered in the initially chosen formulation to be optimized. As an example, and as an 

illustration of its functioning, it has been chosen a problem that is enshrined within the structural 

engineering: the shear strength phenomenon in concrete beams. Besides, in the article it is presented how 

the consideration of a variable that was not initially included, the relation among the shear force and the 

concomitant bending moment allows to establish shear-moment interaction diagrams through two simple 

expressions, obtaining results that have a lot in common to the ones given by one of the most developed 

and complex theoretical models, the Modified Compression Field Theory [12]. 

2. Genetic Programming 

Genetic Programming is a subset of solution search techniques enshrined within the term of 

evolutionary computation (EC). EC includes a set of methods based on models that emulate certain 

characteristics of nature, mainly the capacity that living beings possess to adapt themselves to their 

environment. This feature of living beings had been captured by Charles Darwin to make his theory of 

evolution according to the species natural selection principle [13]. Darwin holds that those individuals in 

a population who possess the most advantageous characters will leave proportionally more descendants in 

the following generation, and if such characters are due to genetic differences that can be transmitted to 

the descendants, the genetic composition of the population will tend to change, raising the number of 

individuals with such characteristics. In this way, the complete population of living beings adapt 

themselves to the changeable circumstances of their environment. The final result is that living beings 

tend to perfect themselves in relation to the circumstances that surround them. 

 

John Holland was the first to develop this type of techniques that, in a first moment, he called them 

reproductive plans, but he became popular under the name of genetic algorithm (GA) after the 

publication of his book “Adaptation in Natural and Artificial Systems” in 1975 [14]. Nowadays the GA is 

being used mainly to develop solutions to parameterized problems (optimization problems). But it was 

John Koza who laid the foundations in 1992 of what has been known from that moment onwards as 

Genetic Programming [6]. The GP arises as an evolution of the traditional GA, keeping the same 

principle of natural selection. With this technique the aim is to provide solutions to problems through the 

program induction and the algorithms that solve them. They are used in several science fields such as 

electronic circuit design, pattern recognition, and symbolic regression. 

 

In GP, an analogy between the set of solutions to a problem and the set of individuals in a natural 

population is established, codifying the information of each solution through a tree-shaped structure. In 

this codification two types of nodes are differentiated. The first type is the non-terminal nodes or 

functions where the operators of the algorithm that is wanted to develop are lodged (for example addition, 

subtraction, etc.). They are characterized because they always have one or more children. The second type 

is the terminal nodes or tree leaves, where the constant values and the previously defined variables are 
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located. These nodes have not got children. For example, Fig. 1 represents a possible solution to a 

problem where it is desired to relate the input variables (a, b) to the output ones f(a, b) through the 

expression f(a, b) = a
*
((b/4) + 3). In this example, the non-terminal nodes or functions would correspond 

to the product, the addition and the division, whereas the terminal nodes would be the values 3 and 4, 

together with the variables a and b. Therefore, a fundamental part of the GP configuration for its 

execution is the specification of the terminal and non-terminal element set before the beginning of the 

evolutionary process, since the algorithm will build the trees with the nodes that are specified to it. 

 
 

 
Fig. 1. Tree for the expression a*((b/4) + 3)). 

Since in the execution of GP it will be created a great deal of trees in which it will not be controlled 

the node disposition, it is possible that operations that are not valid are generated, for example, that a 

value is divided into 0. In general terms, it is widened the dominion of application in each operator to 

avoid possible errors in the application of the operators. This new operator is called protected operation. 

For example, the natural logarithm dominion of application is the set of positive real numbers including 

zero. In this case, it will be necessary to widen the dominion of application for all the negative numbers. 

For example, the protected natural logarithm operation could be implemented as the natural logarithm of 

the argument absolute value. 

 

Each of these trees will be a possible solution to the problem in question. The fitness function is used 

to evaluate its goodness. In GP, each solution is called individual, and the set of individuals with whom it 

works is called population. This population, who is initially random, is made to evolve through a number 

of iterations that are called generations in which new individuals who will be part of the current 

population are created from the individuals of a previous generation. These new individuals are created 

combining the genetic material of some selected individuals, using the selection, crossover and mutation 

algorithms. In Fig. 2 it is described the GP general functioning. This outline is the same for any 

evolutionary algorithm. 
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Fig. 2. Outline of an evolutionary algorithm. 

3. Genetic Programming to improve well-known equations 

The use of GP to develop mathematical expressions is probably its most extended application [15]. Its 

way of codifying allows these to be represented in an easy way, and they have been applied in a great deal 

of different fields related to science or engineering [1], [16], [17]. The results that were found have been 

very beneficial and the expressions that were achieved have improved in a great number of occasions 

compared to the previous ones existent in this field. 

 

However, GP should not be useful only as a tool for the development of new equations in the 

development of mathematical expressions, but also it would be desirable to use GP to optimize one or 

several parts of a previously known equation. In previous works [18] GP is used to develop distinctive 

parts in a mathematical expression. However, in such study it is not started from a known equation, but 

different parts of an equation are made to evolve, which will eventually be combined linearly to give way 

to a more complex expression. 

 

The developed algorithm that is detailed in this article is based on classic Genetic Programming 

techniques, but it has been specialized in the optimization of mathematical formulas. Thereby, algorithm 

development has been focused on the symbolic regression technique from learning patterns. Besides, a 

module has been added that makes it possible to incorporate expert knowledge to orientate the search 

process, by inserting different restrictions when creating, mutating and crossing individuals. 

 

The algorithm that is developed allows the optimization of any mathematical expression at the points 

the expert selects. Given an equation f where n variables take part, it is expected to be optimized through 

a set of experimental data. This set of data can contain values for more variables than the ones taking part 

in the function. For instance, in Eq. (1) variables a, b and c take part, however in the set of experimental 

data, there are values for variables a–e. This means that it is possible that, apart from the variables a, b 

and c, which are in the function, variables d and e are also used in the optimization. The expert selects 

which points of the equation are desirable to optimize in order to orientate the solution, in this case four 

points (values in brackets of the equation: 2, 1/2, a + c and 5). 

 

 

𝐟(𝐚,𝐛,𝐜) = [2] (
1

𝑎
)
[1/2]

(
𝑏

[𝐚 + 𝐜]
· 𝑐)

[5]

 (1) 
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It is necessary to use a codification that allows us to develop the four branches that are desired to 

optimize for the optimization of this expression with GP. The solution to this problem will depend on a 

tree which, in this case, will contain four branches (see Fig. 3). Each branch represents the part of the 

formula that will be substituted in the original equation. 

 
 

 
Fig. 3. Example of a solution. 

It has been necessary to define what the solutions will be like in order to adapt the GP algorithm to the 

proposed problem. This means that it is necessary to give the genotype definition of the solution. To 

achieve this, it is started from the target function to be optimized. In Eq. (2) the resultant genotype of Eq. 

(1) is shown and the application way in the evaluation function. It is represented as a “Branchj”. Each of 

the solution branches that were obtained and the set of variables (a, b, c) are obtained from the data set. 

 

 

𝐵𝑟𝑎𝑛𝑐ℎ1 (
1

𝑎
)
𝐵𝑟𝑎𝑛𝑐ℎ2

(
𝑏

𝐵𝑟𝑎𝑛𝑐ℎ3
· 𝑐)

𝐵𝑟𝑎𝑛𝑐ℎ4

 (2) 

 

 

As examples of restrictions, it could be mandatory that the use of a certain variable was not allowed to 

be used in a branch, or that only a subset of functions can be used (addition and subtraction). In this case, 

when creating, mutating or crossing an individual, if this does not satisfy the restrictions given by the 

expert; this individual would be “debugged” until all the restrictions are fulfilled. For example, in a 

branch where a variable cannot appear because of the given restriction, this is substituted by a constant 

value, in case a restricted variable appear as a result of a crossover or mutation operation. In Fig. 4 an 

example of a valid individual that optimizes Eq. (2) is shown. This individual satisfies the restrictions that 

have been imposed in Fig. 5 (Constrain Module). 

  

https://www.sciencedirect.com/science/article/pii/S0965997812000397#f0015
https://www.sciencedirect.com/science/article/pii/S0965997812000397#e0025
https://www.sciencedirect.com/science/article/pii/S0965997812000397#e0020
https://www.sciencedirect.com/science/article/pii/S0965997812000397#f0020
https://www.sciencedirect.com/science/article/pii/S0965997812000397#e0025
https://www.sciencedirect.com/science/article/pii/S0965997812000397#f0025


 
 

 
Fig. 4. Example of a result. 

 
 

 
Fig. 5. Algorithm diagram. 

Fig. 5 shows a diagram of the implemented algorithm. As it can be seen, the algorithm needs the 

evaluation function, the restrictions in each branch of the individuals, the input data and the typical 

configuration of the Genetic Programming to be defined (definition of terminal operators, functions, 

constants, crossover and mutation rates, size of initial population, maximum height, parsimony, etc.) For 

this, the expert will define the points where it is desired to optimize the equation, establishing, in this 

way, the number of children the solution will have. It is also necessary to establish the restrictions of each 

child (which variables are valid, if it must be one constant, etc.). 
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3.1. Fitness function 

The experimental results of shear failures of concrete beams without shear reinforcement show that, 

due to the great number of parameters taking part in the physical phenomenon and to concrete 

heterogeneity, there is certain variability. For this reason, the predictions that are made for this type of 

failure must take into account this variability and, despite this, they must obtain a safe result for most of 

the cases that are analyzed. In fact, the formulations designed to be used by engineers in national or 

international concrete codes must give priority to safety over precision, that is why oversizing can be 

suitable. 

 

Mechanisms that are configurable by the user have been established to be able to ensure the oversizing 

of the prediction obtained by the algorithm. The first one consists of locating the ratio target value, 

Vtest/Vpred, equal to 1.1, against the value 1.0 that would be the one of the “exact” prediction. In this way, 

the model will be located slightly on the safety side (the value obtained will be lower than the value of the 

test result) obtaining a conservative prediction. The way of materializing it in Genetic Programming is 

through the fitness function. Eq. (3) shows how this has been defined. The value lbias corresponds to the 

bias, considered generally equal to 1.1 in this paper, as it has been previously pointed out. Besides, a 

penalization is added to prevent from the excessive size of the individuals, with α being the parsimony 

level and si the individual size (number of nodes). Higher values of Eq. (3) represent a worst solution. 

With the parsimony factor (α · si), the algorithm may eliminate those expressions that have a similar 

adjustment to others but that they use a higher number of nodes. 

 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) =

∑𝑛𝑖=0 𝑘𝑖 · |𝑙𝑏𝑖𝑎𝑠 −
𝑉𝑡𝑒𝑠𝑡,𝑖
𝑉𝑝𝑟𝑒𝑑,𝑖

|

𝑛
+ 𝛼 · 𝑠𝑖 

(3) 

 

 

In this type of models it is very important that most of the predictions are within a range, or several 

ranges of application, and penalize in a different way the errors that are very near of the target value 

against the ones that are very far from the target. For this reason, some intervals, which are configurable 

by the user, are defined and they adjust the error that is made regarding the obtained value. In the fitness 

function it is expressed as the factor k that will adjust the error made in the prediction. 

 

In Eq. (4) an example of the different values k for each error interval is shown. As well as the number 

of intervals, the penalization value is configurable by the user and dependant on the problem to be 

optimized. In the example given in Eq. (4), the algorithm would penalize much more the predictions in 

the range Vtest/Vpred lower than 0.5 (non-conservative results) than the predictions in the range Vtest/Vpred 

greater than 1.5 (conservative results). 

 

 

𝑘 =

{
  
 

  
 10,

𝑉𝑡𝑒𝑠𝑡
𝑉𝑝𝑟𝑒𝑑

< 0.5

1, 0.5 ⩽
𝑉𝑡𝑒𝑠𝑡
𝑉𝑝𝑟𝑒𝑑

< 1.5

3,
𝑉𝑡𝑒𝑠𝑡
𝑉𝑝𝑟𝑒𝑑

⩾ 1.5

 (4) 
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3.2. Methodology 

In Fig. 6 the process that was carried out to obtain the formulas is shown briefly. 

 
 

 
Fig. 6. Methodology used. 

The first step, which is the database debugging, may seem trivial at first sight but it is essential to 

obtain coherent, unbiased results. Having a data base that is well verified and is as complete as possible, 

will be a solid base for the process. The data base must be representative enough in the data intervals to 

be studied. Should this condition not be fulfilled, a refinement must be made until a set that is 

representative enough is achieved. 

 

Once a good set of data has been obtained, this set is divided into two subsets to see whether the 

results generalize correctly: one for training and the other for test. It is possible to opt for several methods 

that are subdivided regarding as to whether they are random or not. The most usual one would be to save 

a fixed percentage of patterns randomly to make the test. This method has the main drawback that the 

resultant sets can be very different (variable range, etc.). To avoid this, it is usual to resort to the cross-

validation method of “n” levels that carry out the previous process “n” times, thus obtaining “n” pairs 

(training-test), and the result of the adjustment would be the mean of all [19], [20]. Finally, it can be 

decided to carry out the division process by hand, in this case it is the expert who is in charge of making 

the two sets. This last option is more complex but it guarantees that the sets are more representative. 
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Once the training/test sets have been established, they are placed at the disposal of establishing the 

formula or set of formulas that form the “frame” to make the tests. In each of these formulas it is 

necessary to determine the GP basic configuration. In this case, it is recommended to carry out different 

tests while varying only one parameter of the basic configuration (for example, % crossover, % 

mutations, selection method, etc.). Alongside it is necessary to determine the departure equation and 

which points of the equation are improvable. In this case the option to make several hypotheses may be 

given. 

 

The definition of the starting equation (frame equation) is essential in guiding the search process of 

the new expression. From this moment onwards it begins an iterative process that is supervised by the 

expert and that consists of the definition of the applying restrictions, execution and analysis of results. 

This process will end when the expert’s demands are satisfied. However, the term “good solution” is not 

only based on a good adjustment of the formula that is found, but rather there is a “subjective” aspect that 

makes it possible for the solution which a priori has a better global adjustment, to be ruled out. For 

example, an expert can prefer a simple expression (with few terms) to a complicated one, but with a better 

adjustment. It is also possible that the adjustment of an expression in overall terms to be better but, when 

analysing different key subsets for the resolution of the problem in detail, it is proved that the expression 

offers unsatisfactory results for a certain subset; therefore the whole expression could be invalidated. 

4. Case study 

4.1. Problem description 

With the aim of proving the good functioning of the algorithm that has been developed in a real case, 

it has been used a problem that is enshrined within structural engineering: shear strength in concrete 

beams. This problem is one of the most controversial aspects linked to ultimate limit states in structural 

engineering, since the great complexity of the theoretical models makes it necessary to simplify in order 

to obtain standardized simple expressions. In fact, nowadays the current codes of practice propose very 

different formulations, most of them of empirical origin. 

 

The phenomenon to be studied focuses on the shear strength mechanisms for beams without shear 

reinforcement. A report by the ASCE-ACI Committee 426 [21] in 1973 identified the following four 

shear strength mechanisms: shear stresses in uncracked concrete, shear transferred on the crack surface, 

known as aggregate interlock or shear friction, the dowel effect of longitudinal reinforcement, and arch 

action. In 1998, the report by the ASCE-ACI Committee 445 presented a new mechanism called residual 

tensile stresses, which are transmitted directly through the cracks. There are different opinions concerning 

the relative importance of each mechanism, leading to different models. 

 

The international Eurocode 2 [22] was chosen to make the optimization of the shear model. Besides, 

the results obtained were compared to the ones given by the expressions 11-3 and 11-5 of the ACI Code 

318-05 [23]. In Eq. (5) the formulation given in Eurocode 2 is shown, where a minimum for the value 

Vrd,c is marked (Eq. (6)). Table 1 shows the variables used in the above equations. 

 

 

𝑉𝑅𝑑,𝑐 = 0.18 · 𝑘 · (100 · 𝜌𝑙 · 𝑓𝑐)
1 3⁄ · 𝑏𝑤 · 𝑑 ⩾ 𝑉𝑅𝑑,𝐶𝑚𝑖𝑛 (5) 

 

 

𝑉𝑅,𝑑,𝐶𝑚𝑖𝑛 = 0.035 · 𝑘
3 2⁄ · 𝑓𝑐

1 2⁄ · 𝑏𝑤 · 𝑑 (6) 
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Table 1. Variables used in the Eurocode 2 formulation. 

Variables Description  

   

k 

𝑘 = 1 + √
200

𝑑
⩽ 200 

 

ρl Geometric amount of the longitudinal tensile reinforcement, 

anchored to a distance equal to or greater than d from the study 

selection 

𝜌𝑙 =
𝐴𝑆

𝑏𝑤 · 𝑑
 

As Tensile reinforcement (mm2)  

fc Compression concrete project strength (N/mm2) 𝑓𝑐 ⩽ 90MPa 
bw Minimum thickness web  

d Piece useful depth  

Yc Security factor (=1 in this job)  
   

 

Kani showed the importance of arch action in not very slender beams [24]. Its importance is inversely 

proportional to the relationship between the shear span and the effective depth, a/d. In beams with a 

coefficient a/d lower than 2.5, shear cracks are developed and, after an internal redistribution of stress, the 

beams are capable of resisting a significant load increase because the applied strength can be transmitted 

directly to the supports through the appearance of compressed struts in concrete. In the case of beams 

with a/d greater than or equal to 2.5, this effect loses importance, as can be observed in Fig. 7. For this 

reason this paper deals only with slender beams, beams with a/d equal to or greater than 2.5. 

 
 

 
Fig. 7. Strength calculated and observed in concrete beams tested by Kani [24]. 

The treatment of the influence of the longitudinal reinforcement also varies noticeably from one code 

of practice to another. The formulation given by the Eurocode 2 (EC-2) propounds that shear strength is 

proportional to the amount of longitudinal reinforcement. However, other models propose that shear 

strength is proportional to the ρl · V · d/M value, as in the case of one of the methods proposed in the ACI 

Code [23]. 
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One of the limitations that EC-2 poses for elements without shear reinforcement is the fact that the 

EC-2 procedure does not take into account the bending moment-shear force interaction, except for the 

need to check that the longitudinal tension reinforcement is able to resist the additional tensile force 

caused by shear. In a given section, according to the EC-2 formulation, shear strength is independent of 

the concomitant bending moment if the last is kept away from which produces the yielding of the 

longitudinal reinforcement. On the other hand, more complex models such as the Modified Compression 

Field Theory (MCFT) [12] predict a reduction in shear strength as the concomitant bending moment 

increases for any value of the bending moment. 

4.2. Equation to be optimized 

Eqs. (7), (8) have been established to make the optimization through the algorithm that has been 

developed: 

 

 

𝑉𝑐 = 𝐵𝑟𝑎𝑛𝑐ℎ1 (1 + (
𝐵𝑟𝑎𝑛𝑐ℎ2

𝑑
)
𝐵𝑟𝑎𝑛𝑐ℎ2

) (100 · 𝜌𝑙)
𝐵𝑟𝑎𝑛𝑐ℎ4 · 𝑓𝑐

𝐵𝑟𝑎𝑛𝑐ℎ5 · 𝑏𝑤 · 𝑑 (7) 

 

 

𝑉𝑐 = 𝐵𝑟𝑎𝑛𝑐ℎ1 (1 + (
𝐵𝑟𝑎𝑛𝑐ℎ2

𝑑
)
𝐵𝑟𝑎𝑛𝑐ℎ2

) (100 · 𝜌𝑙)
𝐵𝑟𝑎𝑛𝑐ℎ4 · 𝑓𝑐

𝐵𝑟𝑎𝑛𝑐ℎ5 · (𝐵𝑟𝑎𝑛𝑐ℎ6)
𝐵𝑟𝑎𝑛𝑐ℎ7 · 𝑏𝑤

· 𝑑 

(8) 

 

 

Eq. (7) comes directly from the generalization of the Eurocode 2 procedure (5), and it was previously 

optimized in Ref. [11]. However, in Eq. (8) a new term has been added, 𝐵𝑟𝑎𝑛𝑐ℎ6
𝐵𝑟𝑎𝑛𝑐ℎ7  . The aim of 

introducing a new term is to introduce the influence of the relationship between shear load and the 

concomitant bending moment. 

 

The choice of these equations for optimization, based on Eurocode 2, is justified on the fact that the 

formulation given by EC-2 for beams without shear reinforcement is simple and generally offers a good 

correlation with experimental results, although it does have some gaps, as explained above. In addition, 

this formulation has been adopted by different national regulations, such as Spanish Code EHE-08 [25], 

so it is well known to structural engineers. In any case, this paper explains in detail the methodology used 

to make it possible to replicate the study with using other initial equations. 

4.3. Database 

For the execution of the tests for the study of the shear crack phenomenon, a data base compiled by 

Collins [26] was mainly used. It has been specifically included 1149 experimental results of beams whose 

relation a/d, where a is the shear span and d is the effective depth (see Fig. 8), is greater than or equal to 

2.5 and where the failure of the beams was identified as shear failure. 

 
 

 
Fig. 8. Beam parameters.  
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4.3.1. Available variables 

According to Eurocode 2 procedure, the variables that influence shear strength are beam width, bw, 

mechanical depth, d, compression concrete strength, fc, and the geometric amount of longitudinal tensile 

reinforcement, ρl. The result variable is the experimental shear strength, Vu. 

 

Besides, there are also available other two variables in the data base: the maximum aggregate size, ag, 

and the variable V · d/M, which takes into account the relation among the shear force and the concomitant 

bending moment in the critical section and that it is easily deduced from the shear span of the test and the 

type of load. 

 

The data base was divided into two sets to conduct this study. Five-hundred and eighteen beams were 

used for the training process. The remaining 631 cases were left for the test process. Table 2 shows the set 

characteristics of the data used. In Fig. 9, the distribution of the values d, fc and ρl for the data base beams 

is shown in a graphic way, depending on whether they belong to the training or verification set. Division 

of the beams into two sets was random, but it was compulsory in the training set to included beams whose 

variables belong to the range ends observed in Table 2. In this way, and as observed in Fig. 9, for most of 

the usual variable values, less than 50% of the beams were part of the training set but, for the most 

extreme variable values, most of the beams were introduced in the training set. In this way, an attempt 

was made to minimize the lack of homogeneity of the database used. 

Table 2. Data set used 

Data set Amount 

bw (mm)  d (mm)  fc (MPa)  ρl (%)  V · d/M (–)  ag (mm)  Vu (kN) 

Min Max  Min Max  Min Max  Min Max  Min Max  Min Max  Min Max 

                      

Training 518 21 3000  41 3000  6.1 127.5  0.14 9.5  0.077 0.904  2 50  1.9 1575.00 

Test 631 21 1829  41 2000  6.3 127.5  0.17 9.42  0.071 0.953  1 50  2.1 789.00 
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Fig. 9. Distribution of the essential variables from EC-2 formulation for the database beams that were used. 

 

 

  



4.3.1.1. Variables that were selected 

As mentioned at the beginning of this section, it is expected to optimize Eqs. (7), (8) which are based 

on Eurocode 2. A subset of variables (d, fc and ρl) were used to optimize Eq. (7). The decision of selecting 

only this set is due to the fact that the current EC-2 formula only uses such variables in the equations 

points that are proposed to be improved (Eq. (11)). 

 

On the other hand, the variables (d, fc, ρl and V · d/M) were used in the optimization of Eq. (8). The 

use of the last variable depends on being able to study the influence of the concomitant moment and 

failure shear relationship. 

 

At a data later than the development of the equations that were proposed in this article, a study was 

conducted as to the necessity to incorporate, or not, the maximum aggregate size, ag. The results are 

presented in Section 6 and they led us not to use this variable. 

4.4. Fitness function 

Regarding the definition of the parameters k and lbias of the fitness function (see Eq. (9)), tests using 

classic GP techniques were carried out. It was decided to opt for using 1.0, 1.1 and 1.3 for the execution 

of these tests. The value of Vtest/Vpred of 1.0 represents the exact value of the prediction, against the values 

1.1 or 1.3 in which it is oversized. In this way the model will be located slightly on the safety side (the 

value of the formula that has been obtained will be inferior to the test value) with the aim of obtaining a 

conservative prediction. 

 

Besides, the tests were carried out with or without the error adjustment regarding the interval. In Eq. 

(9) the value k that was inspired in the use of the “demerit points” technique and used by Collins to 

categorize the results is shown [27]. 

 

In total, five sets of different tests were carried out as a whole in order to determine the best value of 

lbias and the necessity, or not, to use the value k (aim 1.0 with or without penalization; aim 1.1 with or 

without penalization; and aim 1.3 with penalization) when using the same configuration. This was: 

population of 1000 individuals, crossover rate of 80%, mutation rate of 20%, selection algorithm by 

tournament and maximum height of seven depth nodes. This configuration was chosen after the execution 

of some qualifying tests, since it was the configuration that produced better results. Besides, the tests were 

repeated using different parsimony values: a set of tests without taking into account the solution size and 

other two groups with parsimony values fixed at 0.01 and 0.000001. One-hundred and fifty runs were 

made as a whole. 

 

 

𝑘 =

{
 
 
 
 
 
 

 
 
 
 
 
 10,

𝑉𝑡𝑒𝑠𝑡
𝑉𝑝𝑟𝑒𝑑

< 0.5

5, 0.5 ⩽
𝑉𝑡𝑒𝑠𝑡
𝑉𝑝𝑟𝑒𝑑

< 0.67

3, 0.67 ⩽
𝑉𝑡𝑒𝑠𝑡
𝑉𝑝𝑟𝑒𝑑

< 0.85

1, 0.85 ⩽
𝑉𝑡𝑒𝑠𝑡
𝑉𝑝𝑟𝑒𝑑

< 1.3

2, 1.3 ⩽
𝑉𝑡𝑒𝑠𝑡
𝑉𝑝𝑟𝑒𝑑

< 2

3,
𝑉𝑡𝑒𝑠𝑡
𝑉𝑝𝑟𝑒𝑑

⩾ 2

 (9) 
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Fig. 10 shows the demerit point values (DP) and the coefficient of variation (COV) of the resultant 

expressions for the different executions against the experimental data of training and verification. In 

Appendix B the calculation formulas that were considered for the COV and the DP are presented. As can 

be observed, it can be corroborated, after the tests are made, that the best results are obtained when using 

aim value 1.1 and the error adjustment factor (value k), both in training and in test (see Fig. 10). 

 
 

 
Fig. 10. Training and test results without parsimony. 

4.5. GP application 

Several sets of tests were established, following the aim of leading the search space according to 

expert indications in the job area. Table 3 shows the default settings used in the runs of the 

implementation of the algorithm that has been developed. These parameters were chosen due to the fact 

that they were the ones that gave the best results in the initial tests. The input data to the algorithm were 

not standardized, with the aim of the resultant formulas being directly applicable. 

Table 3. Parameters used 

Configuration parameters Default values Other values 

   

Population size 1000 
 

Crossover rate 80% 
 

Non-terminal selection rate 90% 
 

Mutation probability 20% 
 

Algorithms Selection: Tournament 
 

 
Initialization: Ramped Half & Half 

 

 
Mutation & Crossover: Subtree 

 
Elitist strategy Yes 

 
Parsimony 0 0.1, 0.01, 0.001, 0.0001, 1 × 10−7 or 1 × 10−10 

Initial tree depth 3 6 

Maximum tree depth 6 8 or 10 

Maximum mutation depth 3 7 or 8 
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Addition, subtraction, product and protected division were chosen as default operators and non-

terminal nodes. This new definition of the division operator widens the application dominion to all the 

real numbers for the purpose of ensuring the individual evaluation. In this case, the behavior chosen is 

shown in Eq. (10). Variables belonging to the data set (d, fc and ρl) for the terminal nodes, random 

constants from the interval (−1, 1) with the integer numbers between the intervals [−10, 10] are used. 

 

 

𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛(𝑎,𝑏) = {
1, 𝑏 = 0
𝑎

𝑏
, 𝑏 ≠ 0

 (10) 

 

 

4.5.1. Restrictions 

Table 4 shows the most representative restrictions made using Eq. (7) as base. The symbol “Cst” 

indicates that any constant is allowed to be used (generated through GP, containing operations such as 

addition, subtraction, product and protected division of constants: real numbers in the interval (−1, 1) and 

integer numbers in the interval [−10, 10]). With the symbols d, fc o ρl, or any combination between them, 

it is indicated that such variables from the data base can be used or any constant that is related through the 

operators of addition, subtraction, product and protected division. Finally, when a value appears, it 

indicates that only this value will be used in that branch. 

Table 4. Restrictions applied in Eq. (7). 

Restriction Branch1 Branch2 Branch3 Branch4 Branch5 

      

A Cst d,fc,ρl d,fc,ρl d,fc,ρl d,fc,ρl 

B Cst d,fc,ρl Cst Cst Cst 

C Cst Cst d,fc,ρl Cst Cst 

D Cst Cst Cst d,fc,ρl Cst 

E Cst Cst Cst Cst d,fc,ρl 

F Cst Cst 0.40 + 0.001fc 0.37 Cst 

G Cst Cst Cst Cst Cst 

      

 

Once the tests have been made, using Eq. (7) as base and after the experience that was obtained, only two 

restriction sets were established for Eq. (8). In Table 5 these restrictions are shown. 

Table 5. Restrictions applied in Eq. (8). 

Restriction Branch1 Branch2 Branch3 Branch4 Branch5 Branch6 Branch7 

        

H Cst 1600 0.42 Cst 1/3 V · d/M Cst 

I Cst Cst fc Cst Cst V · d/M V/M, d,ρl Cst 
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5. Results 

In the following tables it is shown the adjustments obtained by the current standardized formulations 

and the equations proposed in this article against the database used. The equations that have been 

developed in this research work have been subdivided into three categories. The first one represents the 

equations that were generated through the algorithm developed in this article; the second one corresponds 

to the equations that were generated with classic GP; and, finally, the equations obtained with classic GP 

with fitness error. For each category the best value is shown in bold type, highlighting the best value as a 

whole (underlined). In each table the equation name appears 

(Formula_Base + Name_Restriction + Solution_Number); for example, equation 7A3 means Equation 

base 7, restrictions “A”, selected formula number “3”. The Vtest/Vpred term represents the average quotient 

of the value obtained in the real test into the value that was predicted through the different models. 

Appendix B presents the coefficient of variation value COV. R
2
 is the square of the correlation coefficient 

from the Pearson product. Finally, there are the Mean Squared Error (MSE), the Mean Average Error 

(MAE) and the demerit points (DPs). Appendix B presents the formulas that were used for the 

calculation. 

 

In Table 6 the results for the training set are shown. Regarding the criterion to follow, it would be 

obtained that equations 7A1, 7A3, 8H1 and 8I1 (see Appendix A) are the best ones to predict shear 

strength for this data set. If the demerit points are taken as a reference, the best function would be 7A3. 

Instead, if the MSE is taken as a reference, the best model would be 7A1. 

Table 6. Training results 

  
COV Vtest/Vpred R2 MSE MAE DP 

        

International models EC2 23.40 1.10 0.960 2165.38 17.84 229 

 
ACI 11-3 33.23 1.44 0.867 18820.12 41.11 636 

 
ACI 11-5 28.72 1.30 0.876 18962.56 38.13 551 

Models generated by the developed GP algorithm 7A1 17.32 1.09 0.978 387.92 11.36 106 

 
7A3 – GP-3 16.51 1.10 0.972 542.31 11.84 72 

 
7B1 17.88 1.11 0.960 806.80 13.30 116 

 
7C1 18.37 1.09 0.968 767.09 12.55 122 

 
7D1 17.94 1.09 0.976 433.11 11.89 123 

 
7E1 17.61 1.10 0.977 446.50 12.03 114 

 
7F1 – GP-2 18.06 1.09 0.978 410.72 11.78 125 

 
7G1 – GP-1 18.06 1.09 0.975 445.70 11.97 124 

 
8H1 – GP-4 16.21 1.09 0.972 696.41 12.51 130 

 
8I1 15.91 1.09 0.975 528.54 11.85 104 

Classic GP P1.0 18.40 0.98 0.967 944.29 13.37 273 

 
P1.1 18.59 1.08 0.965 803.00 13.60 165 

Classic GP with error adjustment (k) P1.0K 18.49 1.03 0.948 2552.57 15.78 199 

 
P1.1K 18.33 1.10 0.961 705.53 13.94 145 

 
P1.1K-C 16.78 1.10 0.971 687.33 12.58 95 
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Nevertheless, it has special importance to study the response of the formulations that were obtained 

for the test set, since they are beams that were not used in the learning process. In this case (see Table 7), 

the function that has the greater generalization ability is 8I1, followed by 8H1. 

Table 7. Test results 

  
COV Vtest/Vpred R2 MSE MAE DP 

        

International models EC2 25.80 1.14 0.928 627.68 13.23 267 

 
ACI 11-3 33.26 1.53 0.829 1902.22 25.62 639 

 
ACI 11-5 25.36 1.35 0.845 1778.20 21.98 488 

Models generated by the developed GP algorithm 7A1 20.11 1.11 0.941 548.76 12.18 195 

 
7A3 – GP-3 20.07 1.14 0.962 497.30 12.50 177 

 
7B1 22.44 1.16 0.931 673.01 13.73 213 

 
7C1 20.20 1.11 0.942 527.19 11.95 195 

 
7D1 20.56 1.12 0.950 536.59 12.59 221 

 
7E1 20.90 1.13 0.944 631.20 13.28 221 

 
7F1 – GP-2 20.78 1.11 0.950 567.72 12.89 219 

 
7G1 – GP-1 20.64 1.12 0.949 546.25 12.73 212 

 
8H1 – GP-4 17.75 1.12 0.946 501.52 11.78 153 

 
8I1 17.01 1.11 0.949 466.99 11.26 136 

Classic GP P1.0 21.23 1.01 0.934 507.54 11.65 346 

 
P1.1 20.95 1.12 0.956 477.34 12.49 218 

Classic GP with error adjustment (k) P1.0K 21.46 1.08 0.922 623.14 12.02 259 

 
P1.1K 20.58 1.13 0.959 503.57 12.73 213 

 
P1.1K-C 22.67 1.14 0.944 804.65 14.28 229 

        

 

More information can be obtained regarding the correlations of formulas 7G1, 7F1, 7A3 and 8H1 in 

Ref. [11], under the name GP-1, GP-2, GP-3 and GP-4 respectively. These equations were initially 

selected; especially GP-1 and GP-4 for their simplicity of use, although equation 8I1 should also be taken 

into account for further studies. 

 

It can be observed that the equations that are generated by the present algorithm offer better results 

than the ones that are generated by classic-GP techniques, especially when checking the correlation 

regarding the test set. Besides, as can be seen in Appendix A, it is possible to obtain equations with great 

simplicity, as is the case of expressions 7D1, 7E1, 7F1, 7G1, 8H1 and 8I1. Furthermore, the equations 

that were developed by the proposed algorithm improve the EC2 correlation and the ACI318-05 code 

formulations (equations 11-3 and 11-5). 

 

In addition, it can also be observed that the hypothesis that was made by the expert team when 

defining Eq. (8), which makes it possible to include variable V · d/M, is suitable since the two equations 

obtained by this procedure are the ones that give better results. 
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It is worth noting the safety rise that was achieved both with the skew “1.1” that was applied and the 

factor “k” of error adjustment. This effect can be seen in Fig. 11 which shows the correlation of Eurocode 

2 and equation 8I1. The shady area corresponds to the unsafe values of the predictions. 

 
 

 
Fig. 11. Correlation between the test value and the prediction value. 

Fig. 12 shows the coefficient of variation of each model and equation. It can be observed that the 

international models are the ones that classify the worst, followed by classic GP which – taking into 

account the worst equation P1.0 – obtained better results than any of the international models. These 

results improve when using factor k of error adjustment. And, finally, when applying the algorithm that 

has been developed in this article, it is possible to refine even more and make fewer errors in the 

prediction. 

 
 

 
Fig. 12. Coefficient of variation of the formulas. 
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6. Influence of the maximum aggregate size 

The design procedures based on the Modified Theory of Compression Field [12] include as a design 

variable the maximum aggregate size, ag. Its influence on shear strength is based on the fact that the 

aggregate size is a main parameter in the shear-friction mechanism, which is, at the same time, one of the 

key mechanisms of shear strength. Its influence was inferred, at that moment, from the maximum 

aggregate size influence in the shear-friction response in type Z elements [28]. Its influence is usually 

related to the size effect. Summing up, and for strength conventional concretes, the greater the maximum 

aggregate size, the more shear-friction and, therefore, the more shear strength. 

 

Once the previous expressions were obtained, expression 7G1 was taken as the departure reference to 

make a specific study of the maximum aggregate size influence on real beam tests. This expression was 

taken since it has great simplicity and considers the same variables as the Eurocode 2 formulation. In this 

expression it was allowed to optimize two branches, as shown in 

 

 

𝑉𝑐 = 𝐵𝑟𝑎𝑛𝑐ℎ0 · 𝐵𝑟𝑎𝑛𝑐ℎ1 · (100𝑝𝑙)
0.37 · 𝑓𝑐

1 3⁄ · 𝑏𝑤 · 𝑑 (11) 

 

 

The study of the influence of the variable ag by GP techniques was carried out in two phases. In both 

of them departure expression (11), where the following restrictions were imposed: Branch0 must be a 

constant and Branch1 is a function that simulates the size effect and the possible maximum aggregate size 

influence. In the first phase of the study a penalization in the adjustment due to the tree size (parsimony) 

was not included; that is why expressions from Branch1 could be very complex, with the imposition of 

the following restrictions: 

 

(I) Branch1 depends on d. 

(II) Branch1 depends on d and ag. 

(III) Branch1 depends on sxe, a parameter defined in Eq. (12). 

(IV) Branch1 depends on d and fc. 

(V) Branch1 depends on d, ag and fc. 

 

 

𝑠𝑥𝑒 =
36

16 + 𝑎𝑔
· 0.9𝑑 (12) 

 

 

In the second phase of this study, the same general restrictions were kept but it was opted to set 

parsimony at a value of 0.00001 and the maximum height of the tree equal to 6. This configuration forced 

GP to give very simplified expressions. 

 

Table 8 compares the expressions obtained in the first phase, without using the parsimony term, for a 

whole number of 50 runs for each case. It can be observed that for the training set, a certain improvement 

is produced when considering variable ag in the size effect term (Branch1) and, above all, some results are 

even better when considering variables ag and fc. The results worsen slightly when considering variable sxe 

instead of variable d. However, when analyzing the results for the test set, it is proved that the best 

correlations in the training set are due to a certain overtraining, since these improvements become 

inexistent when comparing the formulations obtained with the tests of beams that were not used in the 

training process. 
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Table 8. Average results and better ones for 50 executions – phase 1 

Case 
Variables 

Branch1 

Training set  Testing set 

Average 
COV 

Minimum 
COV 

Average 
DP 

Minimum 
DP 

 
Average 
COV 

Minimum 
COV 

Average 
DP 

Minimum 
DP 

           

I d 19.39 18.12 132.76 115  20.44 19.57 207.02 185 

II d,ag 18.34 16.99 112.66 92  20.68 19.62 204.12 185 

III sxe 19.71 18.39 128.76 117  20.84 19.89 233.46 210 

IV d,fc 19.40 17.50 128.64 106  20.60 19.62 208.16 186 

V d,ag,fc 18.45 16.37 112.40 90  30.35 19.54 209.86 192 

           

 

In the second phase, while limiting the complexity of Branch1 a lot, each of the case studies executed 

a total of 50 times, and three formulas were analyzed with a lower coefficient of variation for each of the 

cases. In Table 9 there is an outline of the results in the second phase of the study (parsimony 0.00001, 

maximum height 6), in which it is clearly observed that when limiting the complexity of the solution, 

Genetic Programming tends to remove variable, ag, which only arises in one of the six possible cases. So, 

GP tends to disregard the influence of that variable; which is why it omits it, since as a whole the 

contribution of ag is minimal compared to the contribution that other variables may have, like the one 

from d. 

Table 9. Selection of GP variables when limiting the complexity of Branch1. 

Case Allowed variables Branch1 

Variables that really appear in Branch1 

Eq. (1) Eq. (2) Eq. (3) 

     

I d d d d 

II d,ag d d d 

III sxe sxe sxe sxe 

IV d,fc d d,fc d 

V d,ag,fc d,ag d d 

     

 

Finally, it has been studied the Eq. (11) from case V (Table 9), the only equation in which ag appears 

to analyze the importance that the formulation that was proposed by GP gives to maximum aggregate 

size, ag (Eq. (13)): 

 

 

𝐵𝑟𝑎𝑛𝑐ℎ0 = 195/196

𝐵𝑟𝑎𝑛𝑐ℎ1 =
7680 + 480 · 𝑑 + 160 · 𝑎𝑔

1440 · 𝑑 + 𝑑2
 (13) 
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The graphical representation of the maximum aggregate size influence in the tensile crack is presented 

in Fig. 13, for a beam of 300 mm of effective depth and for another beam of 1000 mm of depth. The rest 

of the variables were kept constant. It is observed that increasing the maximum aggregate size from 5 mm 

to 50 mm has a small influence on shear strength: approximately 4.7% for a beam with small depth 

(d = 300 mm) and 1.5% for a beam with large depth (d = 1000 mm). This influence is small, taking into 

account that it is about extreme values of the variables, and it is much lower than the errors that were 

obtained by all the calculation formulations presented. So, taking into account the great variability in 

experimental shear crack results, it is estimated that it is not necessary to include the maximum aggregate 

size variable, ag, for the study of shear crack in real beams. Besides, it must be pointed out that the 

maximum aggregate size is a parameter that concrete supplying companies do not always respect in 

building practice. Finally, it is worth highlighting the physical sense of the result that was obtained 

through GP techniques: the more effective the depth, the lower the influence of maximum aggregate size. 

 
 

 
Fig. 13. Tensile shear crack versus effective depth, d, and maximum aggregate size, ag. 

7. Bending moment-shear force interaction 

The proposed 8H1 and 8I1 equations introduce the term of V · d/M or V/M, which reflects the 

influence of the relationship between the concomitant moment and shear force. Fig. 14 presents the 

diagram of ultimate bending moment-shear force interaction obtained with Eurocode 2, the proposed 

equations 8H1 and 8I1, equation 7G1 and through the software Response-2000 [29], based on the 

Modified Compression Field Theory [12]. 
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Fig. 14. Bending moment-shear force interaction according to EC-2, Response-2000 (Resp-2000) and proposed equations 7G1, 8H1 

and 8I1, as a function of beam depth (bw = 250 mm, fc = 25 MPa, ρl = 0.689%). 

The non-dimensional values of Fig. 14 were obtained using 

 

 

𝜇 =
𝑀𝑢

𝑏 · 𝑑2 · 𝑓𝑐

𝜔 =
𝑉𝑢

𝑏 · 𝑑 · 𝑓𝑐
1 3⁄

 (14) 

 

 

In this section, the limits given by Eq. (15) were used for the graphical representations of the results 

given by equations 8H1 and 8I1. These limits do not apply to any of the beams from the database, but it is 

necessary to fix it to extend the formulation to short beams with a small a/d ratio. 

 

 
𝑉 · 𝑑

𝑀
≯ 1.0;

𝑉

𝑀
≯ 𝑑−1 (15) 

 

 

It can be observed that Eurocode 2 does not present ultimate moment-ultimate shear interaction until 

high values of the bending moment. On the other hand, the simple formulas 8H1 and 8I1 present 

interaction for any value of the concomitant bending moment and their behavior is similar to the one 

given by the sophisticated model Modified Compression Field Theory (Response-2000). The values 

obtained by equation 7G1 represent an average of the Response-2000 results, being slightly conservative 

for low non-dimensional bending moments and somehow non-conservative for high non-dimensional 

moments. The effect of beam depth increase may be clearly seen in Fig. 15 for the different procedures. 

EC-2 shear procedure is, compared to the Response-2000 results, unsafe for high concomitant bending 

moments. This effect is especially remarkable for large beams. In Fig. 15 the graph for equation 8I1 is not 

given, but it will be very similar to equation 8H1. 
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Fig. 15. Bending moment-shear force interaction diagrams as a function of beam depth. 

The fact of taking into account the bending moment-shear force interaction has effects on the 

influence on the amount of longitudinal reinforcement. Fig. 16 presents the influence of ρl according to 

different shear procedures. Fig. 16a shows the evolution of the predictions of shear failure stress when 

increasing the value of ρl and keeping the rest of the parameters constant. In this case, the represented 

equations (EC-2, 7G1, 8H1, 8I1) show a similar behavior for low values of longitudinal reinforcement. 

For values higher than 2% of longitudinal amount, EC-2 does not consider increases in the value of the 

ultimate shear, whereas this keeps increasing for the formulations proposed through GP techniques. 
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Fig. 16. Influence of the amount of longitudinal reinforcement. (a) Beams with a/d constant. (b) Beams with M/ρl · V · d constant. 

In Fig. 16b the shear spans of the beams was increased as the value of the longitudinal reinforcement 

amount increased, which leads to the value of the stress in the reinforcement remaining constant, or what 

is equivalent, the value of the parameter M/ρl · V · d keeps constant. It is observed that the predictions of 

EC-2 and 7G1 are identical to the ones given in Fig. 16a. However, for the 8H1 and 8I1 formulations, 

ultimate shear increases to a lesser extent when increasing the amount of longitudinal reinforcement. 

8. Conclusions 

The algorithm that has been presented is a valid method for improving existing expressions in certain 

points that were chosen by the experts with different possible restrictions. The restrictions can refer both 

to the choice of the data set variables that can be used, and what operators (both terminal and non-

terminal) are allowed in the generation of new individuals. With the proposed solution it is gone beyond 

mere numerical value adjustments within an expression. Although this case would be a subset of 

problems that it is possible to solve through the algorithm presented, it would be more suitable to use the 

genetic algorithms, which are another evolutionary computation technique. 

 

With the set of tests that were made, the validity of the algorithm developed is shown, obtaining better 

results than the international Codes of Practice that were analyzed. Although with this method good 

adjustments are achieved with relatively complex formulas (equation 7A1), this one is too complex from 

the point of view of a standardized approach of structural engineering. The power of the method is 

highlighted when obtaining formulas of great simplicity, as in the case of equations 7F1, 7G1, 8H1 and 

8I1, which could be taken into account to incorporate them to the Code of Practice as a prediction model 

of shear strength for concrete beams without shear reinforcement. Within the four formulas, 8I1 stands 

out, as it obtains very good results with a maximum simplicity; or the set that is made up of equations 

7G1 and 8H1, since they are alike and the difference lies in taking into account 8H1 or not 7G1 the 

phenomenon of the bending moment-shear force interaction. 

 

Restriction refinement was essential in obtaining the final results, thanks to the experience of the Civil 

Engineers involved in the tests development. 
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Although an almost similar adjustment can be achieved with classic Genetic Programming techniques, 

it is not managed to satisfy the field expert demands, due mainly to two reasons. Firstly, with the same 

level of adjustment, the resultant formula of classic GP is more complex; secondly, the great difference 

there is between the formulas obtained by classic GP as opposed to the internationally well-known 

models. In fact, structure designers are generally reluctant to important changes in a standardized model 

even though a significant improvement is shown; that is why it is easier for them to accept the 

improvement of a model that keeps great resemblance with the original, already known formulation. 
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Appendix A. Resulting equations 

7𝐴1 = 0.81994081 ·

(

 
 
 
 
 

1 +

𝑎𝑏𝑠 (
14.2569

(
4

10 · 𝜌𝑙
− 8)

− 𝑓𝑐)

𝑑

)

 
 
 
 
 

𝑑

8∗(𝑓𝑐−
5000·𝜌𝑙
𝑑
16
−3

+50)

(100𝜌𝑙)
0.37058625

· 𝑓𝑐

−
1

5·𝑓𝑐
7
−
𝑑
252

+
3
20 · 𝑏𝑤 · 𝑑 

 

 

7𝐴3 = 1 ·

(

 1 + (
𝐵𝑟𝑎𝑛𝑐ℎ2

𝑑
)
−
−
1
320

(−1+
1
10
·𝑓𝑐)∗(100𝜌𝑙−

1
3
·𝑓𝑐)+

1
30
·𝑑

−𝑓𝑐+3+100·𝜌𝑙

)

 (100𝜌𝑙)
𝐵𝑟𝑎𝑛𝑐ℎ4 · 𝑓𝑐

1
10

1
10
+
3
100

·𝑑

4−𝑓𝑐 · 𝑏𝑤 · 𝑑 

 

 

where: 

 

𝐵𝑟𝑎𝑛𝑐ℎ2 =

−4 + 𝑓𝑐 − 100𝜌𝑙
𝑑 − 12 − 10 · 𝑓𝑐

65 −
1
3
· 𝑑

1
3
·

𝑑
100𝜌𝑙 − 0.63

−
31
3
· 𝑓𝑐 +

1
27
· (36𝑓𝑐 −

1
3
· 𝑑 + 10) · 𝑑

1
3
· 𝑑 −

36 + 10 · 𝑓𝑐
100𝜌𝑙

1 −
9
10 · 𝑓𝑐 −

9
𝑑

(−
5
9
−
1
3
· 𝑑) · (𝑑 +

10
𝑑
· (𝑓𝑐 + 3)) − 105.6838 −

1
3
· 𝑑

 

 

  



𝐵𝑟𝑎𝑛𝑐ℎ4 =
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1
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·
𝑑2
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7
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−
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9
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1
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−
1
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8
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−
1
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+
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𝑑
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𝑑
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𝑑
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Appendix B. Equations for error calculation 

𝐷𝑒𝑚𝑒𝑟𝑖𝑡𝑃𝑜𝑖𝑛𝑡𝑠(𝑖) =∑
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