JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Solving Large Problem Sizes of Index-Digit
Algorithms on GPU: FFT and Tridiagonal
System Solvers

Adrian P. Diéguez, Margarita Amor, Jacobo Lobeiras and Ramén Doallo

Abstract—Current GPUs (Graphics Processing Units) are capable of obtaining high computational performance in scientific
applications. Nevertheless, programmers have to use suitable parallel algorithms for these architectures and usually have to consider
optimization techniques in the implementation in order to achieve said performance. There are many efficient proposals for limited-size
problems which fit directly in the shared memory of CUDA GPUs, however, there are few GPU proposals that tackle the design of
efficient algorithms for large problem sizes that exceed shared memory storage capacity. In this work, we present a tuning strategy that
addresses this problem for some parallel prefix algorithms that can be represented according to a set of common permutations of the
digits of each of its element indices [1], denoted as Index-Digit (ID) algorithms. Specifically, our strategy has been applied to develop
flexible Multi-Stage (MS) algorithms for the FFT (Fast Fourier Transform) algorithm (MS-ID-FFT) and a tridiagonal system solver
(MS-ID-TS) on the GPU. The resulting implementation is compact and outperforms other well-known and commonly used
state-of-the-art libraries, with an improvement of up to 1.47x with respect to NVIDIA’s complex CUFFT, and up to 33.2x in comparison

with NVIDIA’s CUSPARSE for real data tridiagonal systems.

Index Terms—GPU, CUDA, Tuning, Tridiagonal systems, FFT, Medium problem sizes, CUSPARSE

1 INTRODUCTION

IN recent years, GPUs (Graphics Processing Units) have
experienced a noticeable increase in their relevance
and usage in high performance computing. Nevertheless,
programmers have to use suitable parallel algorithms for
these architectures that also require special languages, such
as NVIDIA CUDA or OpenCL, and ultimately, have to
consider optimization techniques in the implementation
in order to achieve high performance. Furthermore, the
efficient solution on one single GPU of large problem sizes,
which exceed limited-size problems that fit directly into the
high bandwidth of GPU scratchpad memory (called shared
memory in CUDA), is still an important challenge.

The algorithms examined here are described using
a parallel prefix approach [2], one of the most popular
parallel paradigms. These algorithms are basically regular
algorithms whose communication pattern does not depend
on execution values; it is given by a linear function, which
is well suited to GPU architectures. Furthermore, each
resulting element is a combination of previous results of
other elements with common calculations that may be
reused. Some parallel prefix algorithms may be represented
according to a set of common permutations of the digits
of each element index [1], denoted as Index-Digit (ID)
algorithms. Specifically in this work, Index-Digit algorithms
are used for solving the FFT and tridiagonal systems.

o The authors are with the Computer Architecture Group, University of A
Corufia, Spain
E-mail: adrian.perez.dieguez, margarita.amor, jacobo.lobeiras@udc.es, ra-
mon.doallo@udc.es

Manuscript received ; revised .

The FFT is a highly important operation for many
applications, such as image and digital signal processing,
filtering, compression or partial differential equation
resolution. There are a number of auto-tuning proposals
for GPUs, which achieve high performance, such as [3], [4],
[5]. Specifically, approaches focused on large 1D FFT on a
single coprocessor include [3], [6], [7]. Another proposal
for solving this problem in a sparse format is presented in
[8]. However, the most widely used and well-known GPU
implementation is NVIDIA’s CUFFT [9].

Tridiagonal systems are types of linear equation
systems which are used in many applications, such
as fluid simulation or heat conduction and diffusion
equations. There are a number of GPU tridiagonal solvers
implementations based on different algorithms. Many
of these can be only applied to problems with many
independent small matrices that are stored in the GPU
shared memory, such as [10], [11], where parallelism is
inherent and there is no partitioning overhead. In [12], the
authors first recognized that partitioning is fundamental
for solving a single large matrix on GPUs, applying a
hybrid PCR [13] - Thomas [14] algorithm. Despite carefully
selecting switch points between computation stages, this
algorithm suffers from a computation overhead. Argiiello
et al. [15] proposed a split-and-merge method based on
the CR [16] algorithm that reduces the overhead from
previous proposals. This split-and-merge approach is later
refined in [17]. In [18], the authors present a partitioning
method based on the SPIKE [19] algorithm. On the other
hand, the diagonal pivoting method for numerical stability
is first introduced for GPUs in [20]. Combining QR
factorization with Given rotations in [21] improved the

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

previous implementation. In [22], a CR-based approach for
solving large-problems is also presented. Finally, NVIDIA
implements CUSPARSE [23], a library that uses a hybrid
CR-PCR implementation with pivoting for solving large-
problem sizes. Furthermore, other proposals have recently
been developed considering manycore architectures [24]
[25], as well as for quasi-tridiagonal systems on GPU [26].

A different approach was presented in [27], which
allows the design of ID-algorithms for CUDA-enabled
GPU architectures with little effort, while obtaining
competitive performance with respect to hand-tuned and
auto-tuned approaches. This methodology is based on
two phases: GPU resource analysis and string operator
manipulation. In the first phase, a set of resource factors are
obtained from determined premises that will allow high
performance to be achieved. In the second phase, CUDA
kernels are obtained from a combination of two techniques:
index-digit permutations and tuned mapping vector [28].
These techniques adjust the data distribution in the GPU
according to the resource analysis performed in the first
phase. In [27] kernels were built based on BPLG (Butterfly
Processing Library for GPUs [29]) functions and focused
solely on limited-size problems which fit directly into the
shared memory of GPUs.

In this work, we present a strategy that allows the design
of efficient large-size ID-algorithms with little effort. This
strategy addresses problems whose data cannot be fully
stored in the shared memory but which fit into the global
memory of a single GPU, by partitioning the computation
among several stages (multi-stage). It also uses the two-
phase methodology presented in [27]. In the first phase,
we need to determine the main features which influence
GPU performance for these problem sizes and establish
a set of premises. Based on these premises, a number of
tunable parameters is obtained and, for each algorithm,
the optimal values are chosen. In the second phase, CUDA
kernels are built and the best performing kernel version is
chosen at compile-time with the suitable tunable parame-
ters according to the problem size and target architecture.
Specifically, our methodology in this work has been applied
to develop flexible algorithms for the Fast Fourier Transform
(MS-ID-FFT) and a tridiagonal system solver (MS-ID-TS)
on the GPU. These proposals outperform the CUFFT and
CUSPARSE’s performance, respectively.

2 MULTI-STAGE STRATEGY FOR ID ALGORITHMS

In this section, we present the two-phase methodology
proposed on [27] along with the concepts needed to better
understand the multi-stage strategy.

Taking CUDA GPU architecture as a reference, thread
blocks are distributed by the hardware among the available
Streaming Multiprocessors (SM) and, depending on the
amount of required resources, each SM may be able to
simultaneously execute several thread blocks. Each thread
block has assigned an amount of shared memory that
allows the exchanging of data among threads of the same
thread block, whereas threads have associated a certain

2

amount of private registers. There is no explicit CUDA
instruction to synchronize thread blocks inside a kernel,
as occurs with threads inside a thread block. Nevertheless,
when two or more kernels are invoked, there is an implicit
global synchronization barrier between each invocation,
and each kernel invocation is also known as a stage. A more
detailed description of NVIDIA’s GPU architecture can be
found in [30].

When several threads need to collaborate in the same
task, specifically-designed algorithms are usually required
as, in most cases, threads have to communicate their partial
results, thus synchronizations are involved. These problems
can be classified depending on their size:

o The problem data fit in the shared memory. In this
case each problem can be assigned to a single CUDA
block, using the shared memory to perform commu-
nications. In some cases, even if the problem data
exceed the size of the shared memory, it is possible
to split data exchange in multiple steps, a technique
called shared memory multiplexing [31].

e The problem size is bigger than shared memory but
fits into the global memory of a single GPU. In
many cases, data are too large to be processed by
a single block, and need to be distributed among
several blocks. Each thread block locally computes
a partial result of the solution. Later, any synchro-
nization mechanism for exchanging partial results
within all thread blocks is used and finally, they are
combined to obtain the overall solution. However, as
has already been mentioned, only threads within the
same block can be synchronized in the current CUDA
computing model. Data interchange and synchronize
mechanishms among blocks are necessary here.

o The problem size is bigger than the global memory of
a single GPU. The work is distributed among several
streams and GPUs; nevertheless, these problems are
beyond the scope of this paper.

The aim of this work is to deal with the second case,
problems whose size is bigger than one thread block’s
shared memory capacity but which still fit into the global
memory of a single GPU. Data interchange is performed via
global memory, and different options to synchronize thread
blocks can be considered:

e Multi-stage Strategy. In this case, the work is divided
into several kernels; i.e., into several stages. Here,
each kernel invocation acts as a global synchroniza-
tion, as explained above. Thread blocks from each
corresponding kernel write their partial results into
global memory. As the synchronization mechanism
for this data interchange, another kernel is launched
with its corresponding thread blocks. These new
thread blocks build new partial results using the pre-
vious kernel data from global memory. This strategy
significantly increases the global memory bandwidth
requirements.

e Dynamic parallelism. Using dynamic parallelism, a
kernel directly from GPU can spawn other kernels.
Its main objective is to reduce the overhead of start-
ing and synchronizing kernels. Even considering the

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Parameter | Definition

N =r" Problem size.

rbateh Number of problems being simultaneously solved.
P=rP Number of elements stored in registers per thread.
B=r+? Number of thread blocks per stage, where B = B, - By
L=r! Number of threads per thread block, where L = L, - Ly,
g — s Number of shared-memory elements per thread block,

where s =n —byand s =p+1
m Number of computing stages, where m = [Z]

TABLE 1: Description of tuning parameters.

added flexibility, the generated code tends to run
slower due to the relocatable device code genera-
tion and the use of local memory, global memory
accessible only by the thread that declares it, as a
call stack [32]. This approach is suitable for problems
that require mesh refinement (such as finite element
methods) using a dynamic work distribution.

o Persistent threads. This is a descentralized sleeping
strategy. Each thread block sets a flag when it reaches
the intra-block barrier, executing an infinite loop
until a master thread block changes the flag value.
When all flags are set, the master block resets them
and all thread blocks continue execution. This allows
thread blocks to be synchronized in a single kernel.
A kernel uses, at most, as many thread blocks as
can be concurrently scheduled on the SM. Thus, this
strategy synchronizes global memory using a single
kernel and a constant number of thread blocks. In
many cases, the use of persistent threads on GPUs
results in performance losses [33]; nonetheless, it
has been successfully applied in some optimized
libraries, such as CUB [34], as it presents low memory
contention.

In this work we have used the multi-stage strategy
as the synchronization mechanism among thread blocks.
This is the same technique used in other libraries, such
as CUFFT [9] or the proposal presented in [11]. Despite
the increased global memory requirements, if the data
exchanges are properly optimized and the workload is
properly balanced among the GPU resources, the multi-
stage strategy is quite efficient.

In the following subsections, a number of basic concepts
introduced by our multi-stage strategy are presented. As we
will explain below, ID-algorithms are formulated with a set
of string operators, which allows us to describe both the be-
havior of the algorithm and the mapping of data over GPU
resources. The objective is to design efficient ID-algorithms
that can be easily adapted to the target architecture. With
this in mind, string operators are used to efficiently solve
large problem sizes.

2.1

A description of Index-Digit algorithms is presented in
this subsection. All parameters defined for our multi-stage
strategy are collected in Table 1.

GPU Resources Utilization Analysis Phase

An Index-Digit algorithm is a kind of regular algorithm
for a problem with size N = r", where r is called radix. The

3

m Step 1 m Step 2 m Step 3 m Step 4 m
5] 5] 5] 2]
4] 4]
4]
val/B el
g 0’0‘0’0‘0’0‘!] o !
= g

2
o) NN i

N/ N
e
13
\\a//a 3
m Step 1 m Step 2
‘\
%
9
¢
[4]
0

5]
6] ﬂ"ﬁ' 6] ,W [6]
‘WM
H (] 5] 5] W’w E]
5] ‘E‘. a =\
% (%)
’0.0‘ y
0.0
3] 3] i3] 3]
X

(b)

Fig. 1: Patterns of Index-Digit algorithms for radix-2 and
N=16 (a) Stockham pattern (b) Cooley-Tukey pattern with-
out bit-reversal step

data interchange can be modeled by the rearrangement of a
data array according to a common permutation of the digits
of each element’s index. To this end, data item z(t) with
index t =t, - r" "L+ . +ty-r+1t; is written as [t,, - - - tat1].
For example, element x(5) of an arbitrary radix-2 data
sequence of N = 16 = 2% elements, is represented as
[0101]. Each Index-Digit algorithm may be represented by
a directed acyclic graph, called a prefix circuit [35]. An
ID-algorithm is processed over several steps where each
step has a given number of node computations, which
execute the core operation over a number of elements.
Although there is computational independence within
each step, there are data dependencies among the different
steps. The node operator is represented by black circles
in the prefix circuit in Figure 1, and the radix r also
represents the number of elements that take part in each
node computation, computing them in one single step,
where N/r is the number of node computations in a single
step. But additionally, the size of the problem, N, can be
expressed as a power of r, N = r".

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

For example, Figure 1 shows two different patterns over
N = 16 elements. As each node computes 2 elements in a
single step, thus 7 = 2 and N = r" = 2%, it takes 4 steps,
using 8 nodes in each step. On the other hand, if » = 4
and each node computes 4 elements in a single step, then it
would take 2 steps and 4 nodes would be needed in each
step. Figure 1 (a) displays the Stockham pattern, used in
FFT which distributes the bit reversal operation among the
different radix steps. Figure 1 (b) shows the Cooley-Tukey
pattern, without the first step, which performs the bit
reversal operation.

In [27], kernel data are divided among B = r? thread
blocks, and each of these blocks executes L = r! threads.
A thread performs the calculation of P = r? data stored
in private registers and threads within a thread block have
access to S = r° data stored in shared memory. Henceforth,
for the sake of clarity, we will consider the index-digit
representation with » = 2. Furthermore, rbatch number of
problems (data sequences) are simultaneously processed in
a batch mode by a single invocation to our library. Thus,
the mapping of 7" data sequences of size N = r" is
identified with a 5-tuple of the form (n, p, s,1,b).

In our multi-stage proposal of ID-algorithms on GPU,
each problem is computed by dividing it into a set of m
stages, where each stage executes several steps. Each stage
executes a kernel which assigns a part of its corresponding
problem to different thread blocks. Here, b is formed by
two coordinates b = (b,,b,), where 7= represents the
number of used thread blocks per each problem while 7
represents the number of problems being simultaneously
executed on that kernel in a batch mode, also known as
segmented execution. Thus, B, - B, blocks process the whole
batch. Furthermore, each thread performs the computations
associated to the node operator. Data are stored in private
registers in order to achieve high performance, as register
files have lower access latency and higher bandwidth than
shared memory. Finally, threads from the same thread block
exchange data before the next computing step through
shared memory. Specifically, our multi-stage tuning pro-
posal is based on only three parameters (n,p,b,) given
that s = n — b,, as all the data stored in registers also
have a copy in shared memory to perform the intra-block
memory exchanges; and b, = batch is given by the batch
size, which is only known at runtime. In our proposal, !
consists of three coordinates (I, l,,.) where the second and
third coordinates, (I,, [.), are optional. The [parameter can
be related with s and p using s = p 4 [.

2.1.1 Premises for Performance Maximization

In this work, large problems are computed over several
kernels. When computing several kernels, new parameters
influence performance. For example, the number of invoked
kernels, the number of steps processed by kernel and the
number of elements processed by each kernel. Considering
these factors and attempting to improve performance, we
define the following premises:

1) The minimization of the number of stages, m. Global
memory data exchanges are slower than using other

4

memories, such as shared memory, despite implic-
itly utilizing the L1 and L2 caches. In the multi-
stage strategy, data interchange via global memory
is the only method for sharing information among
kernels, as n > s. In addition to this latency, each
kernel invocation implies an overhead, even for
empty kernels. Thus, the number of stages (kernels)
in the multi-stage strategy needs to be minimized.
In our proposal, the number of stages is given by
the following expression:

n=[?]

S

In order to minimize this expression, s must be as
large as possible. Each kernel invocation executes as
many problem steps as the shared memory allows.
Thus, each kernel processes several chunks of S
elements (one chunk per thread block). Subsequent
kernels will merge elements among chunks until the
final result is obtained.

Balancing warp and block parallelism. In the GPU, the
level of parallelism can be supported in terms of
the number of thread blocks per SM (SM block
parallelism), or the number of warps per SM (SM
warp parallelism):

a) The maximization of block parallelism in each
stage in order to keep processing the maxi-
mum amount of simultaneous thread blocks
per SM (16 in the case of Kepler and 32 in
the case of Maxwell-based GPUs). In fact,
the GPU hardware is able to provide highly
satisfactory performance even at lower occu-
pancies (low SM warp parallelism) [36], [37].

b) The maximization of warp parallelism in each
stage. This premise is focused on increasing
the number of warps per SM.

Our proposal attempts to strike a balance between
the maximization of warp and block parallelism. In
order to increase this parallelism, we need to limit
the factors that reduce the SM parallelism, such as
the number of registers used by each thread or the
amount of shared memory required by thread block.
Increasing the computational load per thread. Both r
and P parameters are closely related. Note that r
is a feature of the algorithm which represents the
number of data computed in each node. However, if
the target architecture allows more than r elements
to be stored in registers, without SM occupancy
penalization, it may be interesting to process more
node computations per thread, without modifying
the base r of N. In this case, each thread pro-
cesses P elements in £ radix-r nodes. Increasing
either P or r means processing more elements per
thread. It influences the number of steps taken and
the number of threads which process a problem,
and reduces the number of synchronization barri-
ers. Thus, larger values obtain higher performance.
Nevertheless, their increase may also require too
many registers per thread, resulting in local memory
spilling and the minimization of parallelism. In this

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

work, g radix-r nodes are easily integrated in a
single radix-P node, reducing the number of steps
taken.

Combining all of these premises is not easy. Firstly, s
needs to be increased in order for there to be fewer stages
(Premise 1). This is fundamental since it avoids launching
several kernels, synchronizations and reads/writes to
global memory. This increment entails more elements being
processed by a single kernel. However, the increase of s
may decrease the SM block parallelism (Premise 2.a). Each
SM has a fixed amount of shared memory partitioned
among the thread blocks, thus the amount of shared
memory required by each thread block limits the SM block
parallelism. In order to achieve Premise 2.b, keeping the
number of thread blocks constant, [must be raised. Due
to the equation s = p + [, there are two options: either
decreasing p and keeping s constant or increasing s and
keeping p constant. In the former option, block parallelism
remains the same, reducing the workload per thread (which
implies more steps, loop iterations and shared memory
accesses), whereas the opposite happens in the latter. In
addition to this, each SM also has a register file partitioned
among threads. Decreasing register consumption implies
better warp occupancy. However, p should be high if
Premise 3 is to be achieved. The maximum number of
concurrent warps and thread blocks per SM depends on
the architecture. In the case of Kepler, the total amount
of registers per SM is 65536 and the amount of shared
memory per SM is 48 KB, enabling up to 16 concurrent
thread blocks and 64 concurrent warps. The number of
registers used by each thread is assigned at compile time.
In hardware with CUDA capabilities 2.x or 3.0, it is not
possible to assign more than 63 registers to the same thread.
Hardware with CUDA capabilities 3.5 supports up to 255
registers per thread. If the kernel requires more registers
than those supported by the architecture, local memory
spilling will be generated. This means using global memory
for placing values instead of registers, paying the penalty
of global memory latency. Regarding Maxwell GPUs, the
architecture has 96 KB of shared memory per SM and can
use up to 48 KB per thread block, with the register file size
remaining constant. It enables up to 32 concurrent thread
blocks and 64 concurrent warps.

Our main objective in the optimization of these
algorithms is to find a trade-off between premises for each
problem on each architecture in order to achieve the highest
possible performance.

In the case of an arbitrary IV, our methodology is easily
extended. If IV is not a power of r, then it can be expressed
as ™ + N’. On the one hand, r" is computed following
the explained methodology. On the other hand, the smallest
power of r able to compute N’ is executed, and then r™ and
N’ data are integrated into one step.

2.2 CUDA Kernel Optimization Phase: String Operators
and Mapping Vector

This section describes the use of mapping vectors based
on the Index-Digit representation [28]. The mapping vector

5

is a compact representation of the data distribution on
the system memory hierarchy. A mapping vector divides
the Index-Digit representation into different fields which
are used to assign resources of the CUDA GPU (e.g. as
thread block, thread or registers) to the specific data item
to be treated by the GPU. At the beginning and the end
of the algorithm, data reside in global memory; however,
data are moved among different resources in the GPU
during the execution. The string operator provides a
precise description of the data reordering, being useful
in the design and optimization of different algorithms.
Furthermore, the string operator makes it possible to obtain
an index-digit representation in each step of the algorithm.
Further information about string operator properties can be
found in [38].

Data sequences are stored in the GPU'’s global memory
with a consecutive data distribution according to the follow-
ing mapping vector:

[tntbateh =ttt tn - t1])

This means that data with size N will be stored
consecutively in global memory. Hence, the first data
sequence of the batch will start at location 0, the second at
location NN, and the i-th problem of the batch at location
1 x N.

The mapping vector for data on the SM resources that
we consider is

S

—_—
[tntbateh - tsy1 ts---tipr -1] 3)
b P l
Firstly, this means that each thread block
i = [tntbateh - tst1] processes S items of data which

are stored in shared memory, and secondly, thread
j = [ti---t1] within a thread block processes P items
of data where datum [t,, ---t;41 & ---t1] is stored on the
register [ts---;41] of thread j. Note that consecutive data
belong to different threads.

However, the data distribution of a problem could
change depending on the implementation design for a given
target architecture. For instance, the previous example can
be also expressed with the following mapping vector:

S

[thrbatch et ts+1 ts e thrl tp et tl] (4)
%b,—/ —_——— ——
l P

In this case, each thread j = [t - - - tp+1] within a thread
block, processes P consecutive data stored in registers.

Figure 2 depicts an example of mapping the data to
the GPU resources when s = 9, p = 4 and b, = 2 for
the case » = 2 and n = 11. Each thread block receives a
set of elements, 2048/4 = 512, which are stored in shared
memory, and evenly distributed to the registers among 32
threads (I = 9 — 4). The mapping vector for this example
would be:

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Block O

SHM [0]1[2[3[4[5[6]7[8][0][10[11]12[13[14]15] - [511

Thread 0
[il 2 s

Thread 1
16 /17|18 |.../31

Thread 31
496497498 . ..511

Block 1

512513514 515|516 517/518/519|520/521 522 523 524 525 526|527 - - - 1023

v 4

Thread 1
528 529|530 - . - 543

SHM

Thread 0
512[513/514) . . . 527

Thread 31
10081009 - -- 1023

Block 2

SHM [1024/1025[1026]1027/10281029(1030/1031/1026]1027/1028(1029| - - - (1535

14 vt

Thread 0 Thread 1 Thread 31

1024/1025| - - - 1039 10401041 --- 1085 " 152011521 - .- 1535
Block 3
SHM [1536/1537|1538[1539/1540]1541[1542]1543]1544[15451546(1547| - - - (2047

Thread O

15361537 . . - [1551

Thread 1

155211553 ... 1567

Thread 31
20332034 ... 2047

Fig. 2: Data mapping withr =2, n =11,s =9, p = 4 and
by = 2.

s=9

—_——~
[tbateht11 -~ t12 tiitioto---ts ta---11] ®)
—_— N o ——
b, bo=2 1=5 p—4
] is

For example, element 1041 = [-- 0001

- 10 00001
——

ba 1 P
processed by thread 1 (I = 00001) in block 2 (b, = 10) and
stored in register 1 (p = 0001) of that thread.

We define two types of operators which correspond to
computations and data permutations, respectively. All of
these are formally defined in Table 2, wherein the modified
digits are underlined. To write the expressions of the string
operators we follow the convention of composing operators
from left to right. For example, in the string operator
¢1¢2, we first execute ¢ and then, ¢o. First, we define the
operator that represents the computations.

Definition 1. The node operator, T}, with 1 < ¢ < n where
n = log,.N, reads those sets of r data items whose
position differs precisely in their i-th digit, performs an
operation over them and writes 7 results.

Depending on the operation, each node function will
be defined with its own behavior for each algorithm.
This specialization only affects the implementation details,
but not the methodology design. In general, to simplify
the notation when using the basic radix-2 algorithm, the
expression of this operator will be referred to simply as
T, instead of Y?. Furthermore, in order to clarify the
explanation, we keep the index-digit representation with

6
Operator Definition
Nod T7, with T <7 < n, computes 7 data elements whose index
ode differs in the i-th digit.
Perfect Un-
shuffle Dijltn - t1] = [tn - tigatjts - tjpatj—1---ta]
General Dijpltn - t1] =
Unshuffle [t tigatit; - tjpatj—1 - tegatjte - tipiti—1 -t
Digit
Redersal Pigltn 0] = [tn - tigatjtyen - titj—1 - ta].

TABLE 2: Description of string operators.

r=2.

The second type of operators represents data
permutations.
Definition 2. The perfect unshuffle operator I'; j, i > j,

performs a cyclic shift to the right between the i-th and
j-th digits of the index-digit representation of the data.

We also define a generalization of this operator, I'}";. Instead

of performing a single cyclic shift to the right, it will perform

m consecutive shift operations, such as I'; ; =Ty ;I ;. For

instance, F%Q[tg t7 t6 t5 t4 t3 tg tl] = [tg t3 tQ t7 t(; t5 t4 tl]

Definition 3. The general unshuffle operator I'; j 11,4 > j >
k > 1, is similar to the previous definition, however it
is applied to two digit subfields {i...j} and {k...l} of
the index-digit representation.

Therefore, data in the range {¢;_1 - - - {41} remain unmod-

ified. For instance, r8,672,1[tg t7 tg t5 tg t3 to 11] =

[ty ts by ts by ts tg to).

Definition 4. The digit reversal operator p; ;, i > j, performs
the reversal of the digits between the i and j-th digit of
the index-digit representation of the data.

For instance, the digit reversal of the sequence
p7’2[ts t7 t6 t5 t4 tg tg tl] = [ts t2 t3 t4 lf5 t6 t7 tl } This
operator coincides with its inverse.

Once the algorithm expression is generated with the
operators, obtaining the code is quite straightforward. Per-
mutation operators are easily implemented using different
strides and offsets when transferring data from different
memory spaces. Computation operators are implemented
directly from their definition. The implementation makes
extensive use of template functions (skeletons) to create
several optimized versions, depending on the problem size
and the target architecture. Different tables are built, where
each problem size represents an entry indicating both how
to split the problem over the number of kernels and the
optimized performance parameters for each kernel. The
library chooses the entry depending on the problem size
and target architecture, and kernels are then built with these
parameters at compile time, via template metaprogram-
ming. Hence, the user does not have to generate it. Most
of the function calls, register loops and redundant move
operations will be fully optimized at compile time. Thus,
this approach provides generality and usability, generating
well performing kernels with little effort, as can be seen in
the performance evaluation section (see Section 5).

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

3 MULTISTAGE INDEX-DIGIT FFT ALGORITHM

Our MS-ID-FFT proposal is based on the Stockham algorithm
[39]. Figure 1 (a) displays the pattern of this algorithm with
N = 16 and radix 2, which provides an output sequence
that is digit reversed with respect to the input sequence
(a specific bit reversal stage is not required). The Stockham
pattern can be represented using the following expression:

n
H Fn,n—i+1TIL- (6)
i=1
Before explaining the mapping vector obtained from
the previous expression, our MS-ID-FFT algorithm is intro-
duced:

1) Each thread loads a small portion of data from
global memory into registers using coalescent mem-
ory access.

2) Compute the first step using radix-P or a mixed-
radix.

3) Exchange data through shared memory.

4) Compute the following step.

5) If no step assigned to this stage remains then stop
and data are written to global memory using a per-
mutation; this will contribute to the progressive bit-
reverse of the signal required by the FFT algorithm.

6) There are two possibilities:

a) If all the required stages have been computed
the algorithm terminates.

b) Otherwise, the next kernel re-reads the pre-
vious data from the global memory, albeit
with a different permutation to ensure that
once again it is possible to perform several
radix stages. Step 1 is repeated, launching as
many kernels as required until the problem
has been processed.

3.1 MS-ID-FFT Mapping Vector

Taking the foregoing into account, the mapping vector for
distributing data to the GPU resources that we propose is:

[tntbateh = tna1tn g1 tigb, =ttt 4b,41 (7)

by p ls

bty by tlatbet1 Btbe1 ot b, oot
——

It should be noted that I, is mapped to the lower part
of the index-digits to ensure global memory coalescence
(consecutive threads access adjacent memory locations) as
mentioned in Point 1 of the proposal details. Each 2!+ of data
form a batch, which will be processed in parallel as such.
The remaining threads, 2(/»*!=), load the actual data which
are processed and transformed in the current stage (Point 2
and 4). In this case there is more flexibility in the memory
access pattern as memory coalescence is now guaranteed.
However, they will usually control the higher bits of the data
sequence in the mapping vector representation. During data
exchanges, all thread block data reside temporally in shared
memory (Point 3):

s=ly+1ly+1,+p 8)

EREEER

Fig. 3: Distribution of the Stockham pattern with multi-stage
proposal for N = 16 using the parametersp =1, =, =1
and b, = 1.

Nonetheless, there are some strategies, such as shared-
memory multiplexing, which make it possible to reduce
the shared memory usage. For instance, in the case of
complex data, it is possible to exchange first the real part
and then the imaginary part. Another solution would be
to perform the data exchange in several stages and only
one subgroup of threads can communicate each time. This
approach, however, greatly increases the synchronization
costs. Furthermore, dynamic indexing refers to an index
which the compiler cannot resolve as constant, placing it
into local memory instead of registers, with the consequent
performance loss. Assigning the value p to the non-zero
dimensions that compose [produces simpler indexing
expressions that can be easily resolved as constant by the
compiler, avoiding poor-performance behaviors such as
dynamic indexing.

For example, Figure 3 displays the Stockham pattern of
the Figure 1 (a) for N = 16 using the parameters p = [, =
l;, = 1and b, = 1. This means that each data sequence is
processed in two stages (m = [%W) by two thread blocks and
each block consists of 4 threads (L = 2lv*l= = 21+1) which
process one node function (p = 1). Figure 4 also displays
the Stockham pattern but indicating the mapping to the
GPU resources and the operation performed in each step.
Each thread block loads the corresponding data from global
memory, placing them into registers. Then, threads perform
the node operation in registers, using shared memory for
exchanging elements (stage 1). Once S elements have been
processed, data are written to global memory in order to
be used for the next kernel. The second kernel repeats the
process, writing the final result into shared memory (stage
2). The mapping vector for the example would be:

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Global Memory

[@mz\uaﬂlnm

%

»

Registers

(o] [1][2][s](8][o][12] [13]
e

[o] (8] [1][o] [4] [z2] [5][13]

Shared Memory

Stage 1
Block 0

A

NN N NN NN
LY W W W W W W
Global Memory J

[@Il\!\l@llﬂﬂﬂlﬂﬂ--

Stage 2
Block 0
Block 1

Global Memory }

ﬁEIEEIIEIIIIIIEIIII-I

Fig. 4: Mapping of the Stockham pattern on the GPU re-
sources for N = 16 using the parameters p = [, = [, =1
and b, =

Py by s
AN A
[---ts ta t3 ta ti |)
—_— —
by n

Regarding the premises explained previously, a trade-off
needs to be found between number of stages, SM parallelism
and workload per thread. In this work, we consider problem
sizes with 12 < n < 24. Considering m = [2] and Premise
1, s should be as high as possible. On the other hand, taking
Premise 2 into account, block parallelism should be maxi-
mized. Combining both, the s value that minimizes m when
12 < n < 24, and which least affects block parallelism, is
s = 12. However, FFT node operates with two complex
data items (8 bytes for single precision), thus s = 12 would
involve 32 KB of shared memory, and therefore, each SM
could execute a single thread block. In order to avoid this,
a shared memory multiplexing technique [31] is applied,
firstly exchanging the real part and then exchanging the
imaginary part, reducing the shared memory consumption
to 16 KB per thread block (3 active blocks per SM); ie.,
each element is expressed as a 4-byte datum in shared
memory. Taking the remaining parameters into account,
several options are available, considering s = p + [and
l, =1, =1, = pwith s = 12. As using p = 6 would
imply having [, = 6,l, = [, = 0, and therefore 2 warps
per SM at most, achieving low warp parallelism (Premise
2.b), the value of p has been limited to 4, thus increasing [
due to s = p+1. As explained, the non-zero dimensions that
compose [should coincide with the value p in order to avoid
dynamic indexing. There are many options, specifically all
combinations that match the 12 = p+1[equation with p < 4.
Attending to Premises 2 and 3, the options are, on the one

8

hand, to use p = 4 and [, = [, = 4; or, on the other, to use
p =3 and [, = I, = [, = 3. Both options are described
below as MS-ID-FFT.V1 and MS-ID-FFT.V2, respectively:

e MS-ID-FFT.V1. The mapping vector for the first op-
tion,p=1, =1, =4,is:

R 2N TRR NS R SRR A S | (10)
P L
Uptby+1 i1ty T
N—_——
be L

The string operator used in this case would be as
follows:

P 'y
(pn,n7p+1 Tn—p+1) Fn,n7p+1,l+b1,lx+bz+1 (11)

P P P
(pn,n—;o-&-l Tn7p+1> Fn,n—p+1,lm,1 (Pn,71,—p+1 Tnfpjtl)

In this version, the resource factors used are (p, s, [)
= (4, 12, (4,4)). For example, for n = 13 the data
mapping in the GPU resources is as follows:

n

[---tia tistiatintio totstrte ts tatstot;] (12)
—— e e o —
by p Ly [la
With the following operator string:
(13,10 T1o) I%&,10,9,6 (p13,10 T1o) (13)

I“113,10,471 (P1371o T%O)

The level of parallelism achieved depends on the
GPU architecture on which the proposal is executed.
In order to ascertain how many thread blocks and
warps are executed, we need to pay attention to
the amount of common resources consumed. This
version uses | = §; ie., 256 threads per thread
block. In addition to this, it consumes 32 registers per
thread (p = 4) for storing elements, but taking into
account auxiliary variables, the real consumption is
between 46 and 54. Furthermore, the shared memory
per thread block is between 16.4 KB and 17.4 KB. In
the case of Kepler, which can execute up to 16 blocks
and 64 warps per SM, this version executes 2 thread
blocks and 16 warps in each SM. Regarding Maxwell,
which can hold up to 32 active thread blocks and
64 active warps per SM, it achieves 3 blocks and 24
warps .

e MS-ID-FFT.V2. The mapping vector for the second
option, p =1, =1, =1, = 3,1s:

ot tigbe 41 tipb, o blaba1 (14)

p I,

Bytly+be t b1 Ligtbot1 -t 41 lr, oot
——

I be L

The string operator used in these case would be as
follows:

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

P P

Pr,n—p+1 TTL*Z)‘FI Fn,n—p—&-l,l-{-b,,l;—&-%—&-l
P P

Prn,n—p+1 Tn—p+1 Fn,n—p-‘rl,l&“l
P

Pn,n—p+1 T’n—p-‘,—l

In this version, the resource factors used are (p, s, [)
= (3, 12, (3,3, 3)). For example, for n = 13 the data
mapping in the GPU resources is as follows:

[- t14 tistiotin tiotots trtets ta tstotq]
e e e e e

by p l. ly bz la

(15)

In this case, each problem is executed using 512
threads per thread block, the real number of registers
per thread is between 35 and 41, when p = 3, and
the shared memory per thread block is 16.6 KB. On
Kepler, each SM can execute up to 2 blocks and 32
warps; whereas on Maxwell, it executes 3 blocks and
48 warps.

With the following string operator:

4\ 74
(P13,10 TiO) 1—‘4113}10,9,6 A
(p13,10 Ti0) T310.4.1 (P13,10 To)
As can be seen in both options, the solution is quite
regular and easy to understand.

(16)

4 MULTISTAGE INDEX-DIGIT TRIDIAGONAL SYS-
TEM SOLVER ALGORITHM (MS-ID-TS)

A tridiagonal system is composed of N equations, where
each equation FE;, with ¢ = 1,---, N, takes the form:
aixi_1+bixi+ci:ﬂi+1 = d1 If ‘bz| Z |az|+|01|,VZ = 1, s ,N,
hence the system is known as diagonally dominant. This
kind of matrix guarantees numerical stability in most of
the algorithms proposed in the literature. Most recent
GPU implementations for solving large-problem sizes are
based on the CR algorithm in order to avoid computational
overheads suffered by other algorithms. However, the CR
algorithm still needs 2n — 1 computational steps.

Our MS-ID-TS proposal is based on the Wang and Mou
algorithm [40], which is based on the same Divide-and-
Conquer strategy [41] as the SPIKE algorithm. However,
in contrast to the SPIKE algorithm, the diagonalization of
each block is performed using the Gaussian elimination
method, also reordering the equations in a different way.
The Wang and Mou algorithm is a good match for the GPU
architecture, offering excellent performance. The computa-
tion is divided into n steps, and it follows a pattern similar
to the Cooley-Tukey, but excluding the initial bit-reversal
stage. Figure 1(b) shows the pattern of this algorithm with
N = 16 and radix-2. This pattern can be represented using
the following expression:

17)

|JRsE
i=1

Each node operator operates on triads of equations,
labeled Left, Center and Right, represented as:

Triad i

L) [c] [R]

Triad j

Fig. 5: Node operator in using Wang and Mou algorithm.

at— -1 -1 -1
[Z]t b= [E(t].ztflvEf 7E€q+1)2t*1—1] (18)
O
L; Ci R;

where ¢ = |i/2!7! | and the equation i-th in ¢t — 1 stage is of
the type:

E;?_l = {a§_1Iq2t71,1 + bg_ll‘i + CE_l.CC(q+1)2t71 = dg_l}
(19)

Figure 5 shows details of how each pair of triads ([i]’~*
and [j]*~!) are combined; each circle represents a reduction
operation. First, the middle term of the equation R; reduces
the first term of L;. The middle term of the new equation
in L; is used to reduce the final term of L; and C;. On
the other hand, the final term in R; reduces the middle
term of the original L;, and then, the new equation in L;
reduces the first term of R; and C;. At the end, both left
equations will be identical (see L’); the same is true for
both right equations (see R'). After n computation steps, the
solution z; can be immediately computed by dividing the
second term of C; by its independent term. This is the basic
computation in the case of radix-2, but higher radix versions
can be used. Therefore, each node operator element is a triad
of equations that requires 3 x 16 bytes of storage. However,
when dealing with adjacent equations, there is a property
which means that the whole triad need not be stored, just a
single equation, as the two others are easily obtained from
adjacent equations. Specifically, the left and right equations
are equal to two of the center equations. In step k, the left
and right equations of [¢] can be obtained as follows:

Li=C, —a=2"xi/2"]
Ri=Cy,—b=2"x(1+[i/2%]) -1

Therefore, each element is represented by a single
central equation and is stored in a float4 data type, since its
right and left equations are easily obtained from the central
equations of other elements. This property only arises in
the first stage of the algorithm, where adjacent equations
are stored in a common memory space; whereas in the
remaining stages, triads need to be stored for each equation,
since the central equations used for calculating the right
and left equations could be placed into another memory

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Step 2 \

—e— Block 0

—e— BIOCky &— Block 0 —— BIDCky

—e— Block 1

—e— Block 1

—e— Block 0
k‘— Block 0

Stage 1

Stage 2

Fig. 6: Distribution of ID-LD-TS proposal with two stages
for N=16,p=Il=1and b, =2

space. Henceforth, an element is formed by one equation
in the first stage, thanks to the adjacent property, but by 3
equations (a triad) in the remaining stages.

Figure 6 shows the reason why this property cannot be
applied in several stages. It shows the MS-ID-TS proposal
forn =4,p=1=1and b, = 2, where each number-box
represents an element. The computation is divided into
two stages; the first stage processes the first and second
steps, while the second stage performs the third and fourth
steps, using four thread blocks in each step. In the first
stage, adjacent elements are stored in the corresponding
shared memory of each thread block, so only one equation
per element is stored. However, it is easy to observe how
this behavior changes in the second stage, as each thread
block works with non-adjacent elements, storing the whole
triads for each element. For example, element-4 is solved by
block 0 in the second stage (although it was processed by
block 1 in previous stage). Accordingly, the right equation
of element 4, R4, corresponds with the central equation
of element 7, C7, in the first step of the second stage.
However, element-4 cannot access element-7, since they
are in different thread blocks: element-4 is stored in thread
block 0, whereas element-7 is contained in thread block
3. This fact forces us to store the corresponding three
equations of each triad for all elements.

Changing the access pattern (i.e., changing the current
data distribution among thread blocks) to another
pattern where adjacent elements are placed together
in the same thread block (working with portions of
consecutive elements) would imply increasing the number
of stages (with its corresponding latency penalty). This
new communication pattern guarantees processing the

10

maximum number of steps per stage, thus minimizing the
number of stages. For non-first stages, we have preferred
to launch a small number of kernels which store whole
triads, instead of launching more kernels whose elements
are single equations. We justify this decision on the basis
that the new GPU architectures (and it is highly likely
that future architectures too) increase their shared memory
space, which is beneficial for this implementation.

Due to this limitation, it has been necessary to
differentiate the s parameter depending on its being in the
first stage or in subsequent ones. Thus s is split into s;
and sy, as data size is not the same for a single equation
(first stage) as for a triad (remaining stages). Therefore, s;
is used to represent the elements in the first stage, where it
is not necessary to store triads, and s, is used in remaining
stages, taking into account that elements are represented by
triads of equations, 3 x float4. Note that both s; and s,
refer to the number of stored elements, irrespective of their
size. Thus, the first kernel’s shared memory can hold more
elements than other kernels’ shared memory, as its elements
are much lighter than the elements in the remaining stages,
$1 > $o. In our proposal, the first stage computes |s1/p]
steps and the remaining stages will compute w = Lp(?n_;ll))J
steps per stage. In order to take advantage of the data
type used for representing the elements, s; should be as
large as possible, since more steps can be performed in
Stage 1 in comparison to other stages, while using the same
amount of shared memory thanks to the adjacency property.

Moreover, instead of having only sy = r" elements per
thread block in the remaining stages, our implementation
stores sy elements of the same problem in each thread
block, where the s, value is defined to maximize GPU
parallelism, as explained below. Thus, each thread block
computes several sets of r dependent elements from
the same problem until s, is fulfilled. This increases
warp parallelism, performing more work in each thread
block. There is dependence among elements of the same
set (computing w steps implies 7 elements), but sets
are independent from each other. As each set operates
separately without needing information from the other sets,
the number of performed steps is still w, and all threads
in a thread block working on the same set have the same
l,-identifier.

In order to better understand the mapping vector design,
the CUDA implementation steps of our MS-LD-TS algo-
rithm are analyzed below, as we have already done with
the MS-LD-FFT algorithm. At the beginning of computation,
there is a table which determines the number of stages and
steps processed by stage (kernel) for each problem size.
Likewise, there is another table which specifies s, [and, thus,
the radix employed for each problem size.

1) Each thread loads P elements from global memory
into registers. In the first stage, these elements are
adjacent, benefiting coalescence. In the remaining
stages, each thread loads triads of equations follow-
ing the corresponding pattern.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

2) Compute the first step using radix-P or a mixed
radix.

3) Exchange data through shared memory. Equations
are stored as float4 elements in shared memory. Ex-
cept in the first stage, there are three shared memory
buffers, one for each triad.

4) Compute the following step.

5) If no step remains in that stage, then the result is
written to global memory in last stage or triads are
stored into global memory in the remaining stages.

6) There are two possibilities:

a) If all the required stages have been completed,
the algorithm ends.

b) Otherwise, the next kernel reads triads from
global memory, using the corresponding offset be-
tween their elements, restarting the process of this
list from Point 1.

4.1 MS-ID-TS Mapping Vector

In our proposal, p is mapped to the lower part of the
index-digits to ensure the global memory coalescence. Each
component of the equation is stored in a different array, and
each thread accesses four consecutive elements from up to
four equations using float4 data type. In the first stage, the
mapping vector of data on the GPU resources is as follows:

n

[t'n+batch o tn—&-l [ZAEE tl+p+1 tl+p te tp+1 tp sty }
——

by be l p

(20)
In order to determine the (p,si,l) tuple, two factors
need to be considered: on the one hand, it is recommended
to use the largest shared memory possible in order to
compute the maximum number of steps in the first stage
as explained above; on the other hand, it is also important
to fulfill the three stated premises, analyzing each target
architecture and finding a trade-off.

Following Premise 1, the number of stages should be
minimized and is determined by s. In Kepler, s; = 11
implies only 1 active thread block and 25% of warp occu-
pancy per SM; s; = 10 involves 3 active blocks and 38% of
warp occupancy, whereas s; = 9 generates 6 active blocks
and 38% of warp occupancy. Lower s; values underexploit
shared memory, as registers would be the limiting factor
of occupancy. Thus, s; = 9 is selected in order to achieve
Premise 2, making it possible to solve n < 18 problem sizes
with only m = 2 stages. The same reasoning is applied to
Maxwell, choosing s; = 9. This involves 8 active thread
blocks and 32 active warps per SM. However, taking into
account that sy stores at least n — s; elements, and each
element occupies 48 bytes in the second stage, then this
involves sp < 9, owing to hardware limitations, and the
second kernel occupancy would be very low when n > 16.
In order to avoid this, s; = 10 is utilised when n > 16.
Although some occupancy is lost in Stage 1, performance
will be improved in the second stage, obtaining better global
performance in the whole application. For example, note
that executing n = 17 on Kepler with s; = 9 (and p = 2) in

11

the first stage implies the following mapping vector in the
second stage:

n

[t174bateh - - - tigtir - - - t1o tg-- -t taty]
S)
p
| —
S2 =8
Obtaining only 4 concurrent thread blocks and 8 active
warps per SM in the second stage. Nevertheless, using s; =

10 and s, = 7 involves the following mapping vector:

n

[t17+baten -+ tistiz -+ tin tr - tgtaty |

\“l,_/\;/ (22)

| —
So=T

with 8 concurrent thread blocks and 8 active warps per
SM in the second stage. Despite slightly reducing the
number of concurrent thread blocks in the first stage, global
performance is enhanced. Additionally, thanks to using
51 = 10 in large problem sizes, up to n < 19 sizes can
be solved in only 2 stages. Maxwell provides up to 96 KB
per SM, delaying this parameter update until n > 17, as it
achieves a higher occupancy than Kepler at the same shared
memory consumption. Once both s; and s, have been
established, and taking into account that p = 2 according
to [27], the following tuples are obtained for Kepler:
(p,s1,1) = (2,9,7) when n < 16, and (p, s1,1) = (2,10, 8)
when 16 < n < 19. Regarding Maxwell, these values are
(p,s1,1) = (2,9,7) when n < 17 and (p, s1,1) = (2,10,8)
otherwise.

In the remaining stages, the mapping vector is:

[t7z+bat(:h e tn+1 tn e tbm+ly+p+1 (23)

by Iy

topttytp toptly+1to, 41, o, r1tp, oot]
P ly ba

In this case, the use of p as of the b, + [, + 1 index-digits
also ensures global memory coalescence. In the remaining
stages, the performance parameters used are givenby p = 2,
5o = max(6,n—s1) and (I, 1) = (n—s1—p), (s2—1z—p)).
In the case of s = 6, this ensures having 3072 shared
memory bytes per block, not limiting block parallelism
in either Kepler or Maxwell architectures and executing
several sets per block, in the case of short problem sizes.
When n > (6 + s1), a single set of elements is processed
by each block, consuming as much shared memory as
necessary. Regarding the distribution of threads in each
thread block, I, = (n — s; — p), L, of them collaborate in
the same set of equations that have dependencies between
each other, as explained above, while [, = (s2 — I, — p)
represents the fact that there are L, sets of equations of the
same problem being independently solved in the thread
block. Therefore, our implementation uses L, for working
on the same set, whereas L, sets of the same problem are
solved in parallel in that block. Finally, B, thread blocks
work on the same problem, whereas B, blocks work on

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

\ [Platform 1, Platform 2 [Platform 3 |
CPU Intel Xeon E5-2660 2.2 GHz Intel Core i7-2600 3.4 GHz
Memory 64 GB DDR3 1600 8 GB DDR3 1333
oS CentOS 6.4 Ubuntu 12.04 LTS
Compiler GCC 447 GCC4.6.3
GPU Nvidia Tesla K20, Nvidia Tesla K40 Nvidia GeForce GTX980
Driver 340.58, SDK 6.0 34322, SDK 6.5

TABLE 3: Description of the test platforms

different problems in batch mode.

The string operator used in the first kernel is as follows:

s1/p—1
|) Y o w

i=1

(24)

In the case of (s1 mod p # 0), an extra step is needed.
For the remaining kernels, the same expression is used but
an offset of [, + b, + 1 digits is applied in sub-indexes, as
its mapping vector is different, executing *—*- steps.

For example, for n = 14, the data mapping vector in the
first stage would be

n

[:--tis tiatiztiatyy tiototstrtetstats taty | (25)
S~ ~~
by b 1 P
and in the second stage
n
[+ tis tiatistiatintio tots trte tstatstaty | (26)
—_——— N~ —

by Ly Pl ba

5 EXPERIMENTAL RESULTS

In this section, the results of both the FFT algorithm and
the tridiagonal system solver are presented and analyzed.
In both cases, test data are already on the GPU, thus there
are no data transfers during the benchmarks. The exper-
iments are run in single precision. Table 3 describes the
test platforms used in our experiments. Platform 1 and 2
share similar features, presenting a Kepler GPU architecture,
whereas Platform 3 has a Maxwell GPU architecture. The
Kepler K20 card has 13 SMX with 192 CUDA cores each
one, whereas Kepler K40 has 15 SMX with 192 CUDA cores
and Maxwell GTX980 has 16 SMM with 128 CUDA cores.

5.1 FFT Results

FFT performance is commonly expressed in GFlops. In the
case of the complex FFT, the GFlop rate is given by the
formula 5N -loga(N) - batch - 1079 /t where batch is the total
amount of data sequences being processed and ¢ is the time
(seconds). In order to determine the number of batches for
each N problem, the total amount of data to be processed
is fixed at 224 complex elements, so the number of batch
problems depends on the problem size (batch = 24 /N).

Table 4 presents the performance and profiler analysis
for the different MS-ID-FFT versions on Platform 1,
highlighting the best result for each problem size. The

12

first column indicates the different version being used:
MS-ID-FFT.V1 with p = 4 and MS-ID-FFT.V2 with p = 3.
A different number of results are shown in each column,
depending on the number of kernels executed. If an entry
shows a single column value for different kernels, this
means all kernels share the same result. Regarding the
kernel profiler analysis, tables have detailed information
on the block size (L), the number of registers per thread,
the amount of shared memory per thread block and
the achieved SM occupancy. It should be noted that the
maximum number of registers for all cases is 56, thus there
is no local memory spilling. Note that in all cases, the
amount of available shared memory is a limiting factor.
Moreover, the number of registers becomes a constraint on
these thread block sizes, since more than 32 registers per
thread reduces the number of concurrent blocks per SM.

For n < 16, MS-ID-FFT.V1 achieves better results,
even with only 25% of the maximum SM occupancy (38%
on Maxwell architectures). It launches a single kernel
for n = 12, obtaining 504.68 GFLOPS. This performance
drops, to 345.12 GFLOPS, when n 13 owing to the
launching of two kernels due to the amount of available
shared memory becoming a limiting factor on a single
kernel (17408 bytes when n = 12). Although MS-ID-FFT.V2
has better SM occupancy due to a lower register/shared
memory consumption, better results are attained with
MS-ID-FFT.V1 thanks to the reduction in computational
steps. For example, with n 12, 3 computational steps
are performed in the first kernel, and 1 in the second one
using MS-ID-FFT.V1; whereas 4 computational steps with
the first kernel and 1 in the second one with MS-ID-FFT.V2.
Nonetheless, MS-ID-FFT.V1 uses 3 kernels from n = 17,
reducing performance considerably. At this point, MS-ID-
FFT.V2 shows better results as it still utilizes two kernels
owing to its lower shared memory consumption: 444.55
GFLOPs for n = 17 as opposed to 301.54 GFLOPs for
MS-ID-FFT.V1 for the same n. From n = 19, both versions
launch three kernels and MS-ID-FFT.V1 once again exhibits
better performance thanks to its fewer computing steps. An
analogous analysis is performed for Platform 3 in Table 5,
obtaining similar results than Table 4 about the FFT version
to be chosen for each n.

The performance results of our FFT algorithm are shown
in Figure 7 for each test platform, comparing the results
with the CUFFT (included in NVIDIA’s SDK). Both FFT
algorithms are highly optimized to take advantage of GPU
computing resources and perform most data exchanges
in shared memory. However, as the number of kernels
increases, the global memory bandwidth becomes the main
limiting factor. In a previous work [27], the performance of
CUFFT is proved with respect to other libraries, such as the
Nukada library.

The graphs show that our best results are obtained by
combining both FFT versions, thanks to a tuning process
that generates a table which selects the best version for
each problem. The graphs show a number of spikes before
n = 13 and n = 19. The reason for this behavior is the
invocation of an extra kernel. After n = 12, the algorithm

JOURNAL OF TEX GLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13
Shared Oceul Shared Oceu
n GFLOPS L Reg mem.) P kernels n GFLOPS L Reg mem. %) P kernels
(bytes) ° (bytes) °
Vi 12 504.68 256 52 17408 25 1 Vi 12 615.37 256 50 17408 38 1
13 345.12 256 51 16448,17408 25 2 13 324.3 256 50 16448,17408 38 2
14 372.16 256 51 16448,17408 25 2 14 351.86 256 53 16448,17408 38 2
15 397.96 256 52 16448,17408 25 2 15 372.45 256 53 16448,17408 38 2
16 424.87 256 51 16448,17408 25 2 16 396.03 256 50 16448,17408 38 2
17 301.54 256 47,53,53 16448,17408,17408 25 3 17 281.94 256 46,51,52 16448,17408,17408 75 3
18 316.24 256 47,5353 16448,17408,17408 25 3 18 295.62 256 46,51,56 16448,17408,17408 38 3
19 327.02 256 47,5354 16448,17408,17408 25 3 19 310.45 256 46,5156 16448,17408,17408 38 3
20 344.75 256 47,5352 16448,17408,17408 25 3 20 322.78 256 46,51,50 16448,17408,17408 38 3
21 360.76 256 50,56,53 16448,17408,17408 25 3 21 333.83 256 48,5452 16448,17408,17408 38 3
22 380.34 256 50,56,53 16448,17408,17408 25 3 22 347.55 256 48,5456 16448,17408,17408 38 3
23 396.41 256 50,56,54 16448,17408,17408 25 3 23 366.98 256 48,54,52 16448,17408,17408 38 3
24 41403 256 505653 16448,17408,17408 25 3 24 38231 256 535453 16448,17408,17408 38 3
V2 12 504.08 256 52 17408 25 1 V2 12 612.76 256 50 17408 38 1
1334507 64512 35 2336,16640 48 2 13 3136 64,512 35 2336,16640 75 2
14 370.94 64,512 36 2336,16640 48 2 14 334.854 64,512 35 2336,16640 75 2
15 3932 64,512 36 2336, 16640 48 2 15 36241 64512 35 2336, 16640 75 2
16 412.74 512 36 16640 48 2 16 360.62 512 35 16640 75 2
17 444.55 512 50,37 16640 25,48 2 17 392.22 512 48,36 16640 50,75 2
18 459.08 512 36 16640 48 2 18 394.83 512 36 16640 75 2
19 319.24 256,512,512 47,3841 16640 25,48,48 3 19 295.23 256,512,512 46,35,36 16640 50,75,75 3
20 33454 256512512 47,3837 16640 25,4848 3 20 3066 256512512 46,3536 16640 50,75,75 3
21 330.92 256,256,512 47,53,37 16640,17408,16640 25,2548 3 21 312.29 256,256,512 48,51,37 16640,17408,16640 50,50,75 3
22 30284 256512512 47,3837 25,4848 3 22 29128 256512512 483537 50,75,75 3
23 329.03 256,256,512 50,56,37 16640,17408,16640 25,2548 3 23 327.53 256,256,512 48,54,36 16640,17408,16640 50,50,75 3
24 336.77 256,256,512 50,56,38 16640,17408,16640 25,25,48 3 24 345.4 256,256,512 48,54,37 16640,17408,16640 50,50,75 3
TABLE 4: Complex MS-ID-FFT kernel performance and TABLE 5: Complex MS-ID-FFT kernel performance and

profiler analysis on Platform 1

is executed with two kernels instead of a single one. This
change is required due to shared memory constraints. For
n = 13, our library would require 8192 elements using
8 bytes per complex element, therefore 64 KB of shared
memory (without considering padding space to reduce
bank conflicts), which exceeds the maximum allowed.
Even if we divided the exchange of complex data (real and
imaginary parts), the GPU occupancy would be quite low.
As can be observed in the graphs, a similar problem occurs
when transitioning from n = 18 to n = 19, which requires
a third kernel to process the problem. Thus, the global
memory requirements are doubled and the performance is
reduced proportionally. CUFFT also shows this behavior
in its results for the three platforms, but ocurring with
different problem size transitions. Each library adjusts
them depending on its distribution of GPU resources and
strategy. Changing the number of kernels always implies
an impact on performance.

On Platform 1, our library performs better than CUFFT,
as can be observed, with an improvement of up to 1.47x, be-
ing 1.09x on average. This large performance gap is mostly
linked to the difference in the number of kernel passes re-
quired by the kernels (for n = 18 CUFFT uses three kernels
while MS-ID-FFT requires only two). In most cases, our
algorithm is able to maximize global memory bandwidth
utilization and split the computation at the optimal point
to distribute the workload evenly among the kernels. On
Platform 2, results are very similar to Platform 1, obtaining
an improvement of up to 1.46x. On Platform 3, our library
surpasses CUFFT, except in n = 13 and n = 22. It should
be pointed out that CUFFT uses one kernel for n = 13,
whereas our proposal uses 2 kernels, adversely affecting
performance. However, our proposal launches only two
kernels when n = 18, surpassing CUFFT which launches
three kernels. For n = 18, our library is 1.38x faster, but
for other sizes, the speed-up is more modest compared to
the Kepler architecture, being 1.01x on average. The reason
behind this behavior is the ratio between computing power

profiler analysis (Platform 3)

600
0.99x 1.47x
=0 118x 1.25
1.11x g 104x 109x 117
1.01x 1.02x
400 1.02x M__VJJ
hid o e
P 0.92x ad
3 300 1x
w
G 200
—=— MS-ID-FFT
100 CUDAFFT
0
12 13 14 15 16 17 18 19 20 21 22 23 24
n
(a) Platform 1
700 0.94x
1.22x 1.46x
600 LiIx_ = 1.14
X
0.90x 1.06x 102x 104x 1.08x
500 . M
w
1.01 =
= 400 8 1.01x
[=1%
S 300
]
200 g wsipFET
100 CUDAFFT
0
12 13 14 15 16 17 18 19 20 21 2 23 24
n
(b) Platform 2
700 0.52x
1.01x
600
500
” 1o2x MO 101x 138 Lo i0p j01x Oeax 10x 103
2 a00 ____p—" PR
0 PR
102 !
& 300 *
[V
U}

200 g MS-ID-FFT
166 CUDAFFT

0
12 13 14 15 16 17 18 19 20 21 22 23 24

n

(c) Platform 3

Fig. 7: Performance comparison of Complex MS — ID —
FFT proposal

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

and memory bandwidth in Maxwell. The Maxwell archi-
tecture was designed with efficiency in mind, employing
larger caches that usually reduce bandwidth requirements,
when data is reused. However, the FFT algorithm needs to
read all data in each kernel pass. On the other hand, the
amount of shared memory is also increased, which results in
greater GPU occupancy and more efficient data exchanges,
therefore reducing the computation but forcing the kernel
to wait for data more often. As can be observed, this issue
affects both MS-ID-FFT and CUFFT. Although the speed-up
achieved is not as impressive as the results for tridiagonal
system solvers, we would like to stress the fact that our
library, based on a methodology, outperforms CUFFT, a
fully optimized and well-known library for FFT on GPUs.

5.2 Tridiagonal System Solver Results

In the case of tridiagonal system solver, performance
is measured in million rows processed per second,
MROWS/s. Therefore, the MROWS/s value is obtained
using the expression N - rb@t¢" . 1076 /. In these tests, data
are initialized using diagonally dominant equation systems.

Our MS-ID-TS proposal considers problem sizes with
8 < n < 19. For dealing with larger sizes, more GPU
memory would need to be used (i.e. several GPU devices
may need to be used). In order to compute small problem
sizes n < 8, it is preferable to use the approach obtained
in [27], optimized for problems that fit directly in shared
memory, exchanging triads during computation without
resorting to global memory.

Table 6 and Table 7 present the profiler analysis for
Platform 1 and Platform 3, respectively. Each column
contains the values obtained for the two executed kernels.
Firstly, it should be noted that the (p, s1,1) = (2,9,7) tuple
was established on Kepler in Section 4 when n < 16, as
can be seen in Table 6, obtaining 768.6 MRows/s when
n = 16. From n = 17, the tuple (p, s1,1) = (2,10, 8) is used
for the reasons explained in Section 4 (decreasing block
parallelism on kernel 1, but increasing global performance
since block parallelism is increased on kernel 2), achieving
664.2 MRows/s. Table 6 shows global performance for
both cases, s; = 9 and s; = 10, highlighting the best
result. However, Table 7 shows 1554.2 MRows/s when
n = 16 and 1623.4 MRows/s when n = 17. In this case,
the same (p,s1,l) = (2,9,7) tuple is being used for
both cases, as Maxwell architecture provides up to 96 KB
per SM, delaying s; = 10 until n = 17, as it keeps a
higher occupancy than Kepler at the same shared memory
consumption. With n = 18, 1556 MRows/s are achieved
in Maxwell platform, since the new (p,s1,l) = (2,10,8)
tuple is being employed, achieving 1.29x with respect to the
s1 = 9 implementation. Finally, it should be observed that
greater occupancies are achieved on Maxwell architectures
than on Kepler architectures at the same level of shared
memory consumption due to the increased SM shared
memory size in Maxwell, as explained above.

Figure 8 shows the results of executing a single
problem (solid lines) and multiple batches (dashed lines)

14
Shared Occu
n MRows/s L Reg mem. (%) p-
(bytes) °
12 690.6 128,16 56,66 8192,3072 36,25
13 826.2 128,16 56,66 8192,3072 36,25
14 888.4 128,16 56,66 8192,3072 36,25
15 792.6 128,16 56,66 8192,3072 36,25
16 768.6 128,32 56,68 8192,6144 36,13
17 660.3 128,64 56,68 8192,12288 36,13
664.2 256,32 59,68 16384,6144 36,13
18 645 128,128 56, 68 8192,24576 36,13
687 256,64 59,66 16384,12288 36,13
19 620 256,128 59,61 16384,24576 36,13

TABLE 6: Complex MS-ID-TS kernel performance and pro-
filer analysis (Platform 1)

Shared

n MRows/s L Reg mem. (OO/C)C up-
(bytes) °
12 1202.1 128,16 55,63 8192,3072 48,33
13 1130.9 128,16 55,63 8192,3072 48,33
14 1349.3 128,16 55,63 8192,3072 48,33
15 1508.8 128,16 55,63 8192,3072 48,33
16 1554.2 128,32 55,64 8192,6144 48,16
17 1623.4 128,64 55,65 8192,12288 48,16
1516 256,64 59,59 16384,12288 48,16
18 1204 128,128 55,59 8192,24576 48,16
1556 256,64 59,65 16384,12288 48,16
19 1250.4 256,128 59,63 16384,24576 48,13

TABLE 7: Complex MS-ID-TS kernel performance and pro-
filer analysis (Platform 3)

on Platforms 1, 2 and 3. The performance comparison
with respect to the CUSPARSE library for one batch is
very similar on all three platforms. The performance
growth of CUSPARSE is very slow, as NVIDIA launches 10
kernels. However, the performance growth in our solver
is immediate. From n = 16 on Platform 1 and Platform
2; and from n = 17 on Platform 3, performance begins
to decrease, as was expected owing to the replacement
of s1 = 9 by s; = 10. In Section 4 and Tables 6 and 7,
we have justified the peaks in n = 16 (on Kepler) and
n = 17 (on Maxwell). As having more elements requires
more shared memory, then the fixed amount of shared
memory, optimized in our implementation, is not sufficient
and needs to be increased. This increase in shared memory
leads to reduced occupancy and a loss of performance,
obtaining those peaks. In the case of eight batches, the
speedup with respect to CUSPARSE is more modest, as
storing triads from all batches in global memory consumes
much more bandwidth. As more batches are introduced,
more GPU parallelism is exploited. Furthermore, more
global memory operations are issued, and L1/L2 cache
behavior will determine the location of peaks for each batch
execution. In all cases, the occupancy in the second kernel
is lower, especially when dealing with large problem sizes,
where the shared memory becomes a limiting factor. As
future work, we are considering implementing a hybrid
algorithm that does not use the Wang and Mou approach in
the second stage in order to reduce memory use.

In the case of Platform 1 and one batch, our solver
obtains up to 26.8x improvement over CUSPARSE, being

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

1000 - —@— MS-ID-TS- 1 batch
ggo - — %+ CUSPARSE - 1 batch = 3.5x

-k MSIDTS-Bhatches Si-TVs |
800~ .. _ & —. CUSPARSE — 8 batches -~ a0 pre oy
- m R 0.8x 07
85 9.3x KPP —k~ B
600 < .
o 11.9x% ,°
é 500 ;/‘ 1.8x
X 400 29x 7
= £
300 =
13x
.
26.8x-4 26.8% 258«
100477 22.8x,. -4~
A~ >
8 9 10 11 12 13 4 15 16 17 18 19
n
(a) Platform 1
1200
—&— MS-ID-TS — 1 batch 3x L
——&— CUSPARSE — 1 batch A 1.8x 1.4x -
1000~ ..— & —- MS-ID-TS — 8 batches ‘,/’ Tk T
“=4 = CUSPARSE -8 batches ", , kT 075
800 8.2x." 77 0.95x 4
Y P 33x 2.1x
- 600 8.2x
£ P
g .
S 400 2-5:‘/
8,7x
%
200 254¢4” 259x 24.7x

R g
i 7

(b) Platform 2

1800 —&— MS-ID-TS — 1 batch

1600- —®— CUSPARSE - 1 batch

- —i& —- MS-ID-TS — 8 batches o b
1400 28x.~ »
«-— & — - CUSPARSE - 8 batches . %

1200

1000 -{

800

MRows /s

600

400

(c) Platform 3

Fig. 8: Performance comparison of M.S — I D —T'S proposal

16.37x times faster on average. With eight batches, this
proposal is, on average, 4.41x faster. On Platform 2, it is up to
25.9x faster for one batch, 15.7x on average; whereas it pro-
vides up to 8.7x of speedup when processing eight batches
simultaneously. Additionally, up to 33.2x of improvement is
achieved with one batch on Platform 3, 20.14x on average,
while it obtains up to 11x of speedup with eight batches, 4x
on average.

6 CONCLUSIONS

This paper presents a new multi-stage strategy that permits
the tuning of ID-algorithms which can be represented
according to permutations of the digits of its elements and
for large problem sizes which fit into global memory of a
single GPU. This strategy is based on the use of a tuned

15

mapping vector following three Premises: the minimization
of the number of stages, the balancing between warp and
block parallelism, and an increase of the computational
load per thread.

This methodology makes it possible to create efficient
parallel algorithms for GPU architectures with little effort,
taking into account only three parameters (n,p,b,). At
compile-time, the tuned kernels generated are obtained
with index-digit permutations and achieve competitive
performance. Specifically, in this work we have proposed
two different proposals for FFT and tridiagonal system
solver algorithms, based on the strategy outlined herein,
obtaining two efficient algorithms: MS-ID-FFT and MS-ID-
TS. The performance of our proposals has been analyzed
and compared to other well-known libraries. MS-ID-FFT
shows an improvement of up to 1.47x on Platform 1
(Kepler), up to 1.46x on Platform 2 (Kepler) and up to 1.38x
on Platform 3 (Maxwell) with respect to CUDAFFT library.
MS-ID-TS is also up to 26.8x faster on Platform 1, up to
25.9x on Platform 2 and up to 33.2x on Platform 3 with
respect to CUSPARSE.

Our future work will be aimed at applying the method-
ology presented to other ID problems, such as parallel prefix
scan operation and sorting operators. On the other hand, we
also plan to extend the methodology for problem sizes that
are too large for global memory.

REFERENCES

[1] D. Fraser, “Array Permutation by Index-Digit Permutation,” Jour-
nal of ACM, vol. 23, no. 2, pp. 298-309, 1976.

[2] R. E. Ladner and M. J. Fischer, “Parallel Prefix Computation,”
Journal of the ACM, vol. 27, no. 4, pp. 831-838, 1980.

[3] Y. Dotsenko, S.S. Baghsorkhi, B. Lloyd and N.K. Govindaraju,
“Auto-Tuning of Fast Fourier Transform on Graphics Processors,”
in Proc. of Principles and Practice of Parallel Programming (PPoPP '11)
(2011), 2011, pp. 257-266.

[4] A. Nukada and S. Matsuoka, “Auto-tuning 3-D FFT Library for
CUDA GPUs,” in Proc. of the Conf. on High Perf. Computing Net-
working, Storage and Analysis (SC'09) (2009), 2009, pp. 1-10.

[5] A. Nukada, K. Sato, and S. Matsuoka, “Scalable Multi-GPU 3-
D FFT for TSUBAME 2.0 Supercomputer,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC "12, 2012, pp. 44:1-44:10.

[6]].Park, G. Bikshandi, K. Vaidyanathan, P. T. P. Tang, P. Dubey, and
D. Kim, “Tera-scale 1D FFT with Low-communication Algorithm
and Intel&Reg Xeon Phi&Trade Coprocessors,” in Proc. of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC "13 (2013), 2013, pp. 34:1-34:12.

[7] D. Takahashi, “Implementation of Parallel 1-D FFT on GPU Clus-
ters,” in 2013 IEEE 16th International Conference on Computational
Science and Engineering, 2013, pp. 174-180.

[8] C.Wang, S. Chandrasekaran, and B. Chapman, “cusFFT: A High-
Performance Sparse Fast Fourier Transform Algorithm on GPUs,”
in 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2016, pp. 963-972.

[9] CUDA CUFFT Library, NVIDIA, 2012, v5.0. [Online]. Available:
https://developer.nvidia.com/cufft

[10] Y. Zhang, J. Cohen,].D. Owens, “Fast Tridiagonal Solvers on the
GPU,” in Proc. of the 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), 2010, pp. 127-136.

[11] A. Davison and J. D. Owens, “Register Packing for Cyclic Reduc-
tion: A Case Study,” in Proc. of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, 2011, pp. 4:1-4:6.

[12] A. Davidson, Y. Zhang and]J.D. Owens, “An Auto-tuned Method
for Solving Large Tridiagonal Systems on the GPU,” in Proc. of the
25th IEEE International Parallel and Distributed Processing Symposium
(IPDPS) (2011), 2011, pp. 956-965.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

(13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

(35]

(36]

(37]

[38]

R. Hockney and C. Jesshope, Parallel Computers 2: Architecture,
Programming and Algorithms. Taylor & Francis, 1988.

L. H. Thomas, “Elliptic Problems in Linear Difference Equations
over a Network,” Watson Sci. Comput. Lab. Rep., Columbia Univer-
sity, 1949.

F. Arguello, D. Heras, M. Boo, and J. Lamas-Rodriguez, “The Split-
and-Merge Method in General Purpose Computation on GPUs,”
Parallel Computing, vol. 38, no. 67, pp. 277 — 288, 2012.

R. W. Hockney, “A Fast Direct Solution of Poisson’s Equation
Using Fourier Analysis,” Journal of ACM, vol. 12, no. 1, pp. 95-
113, 1965.

L.-W. Chang and W.-W. Hwu, “Mapping tridiagonal solvers to
linear recurrences,” Technical Report, University of Illinois at Urbana-
Champaign, 2013.

H.-S. Kim, S. Wu, L.-W. Chang, W.W. Hwu, “A Scalable Tridiag-
onal Solver for GPU,” in Procd. of Int. Conf. on Parallel Processing
(2011), 2011, pp. 444-453.

A. H. Sameh and D. J. Kuck, “On stable parallel linear system
solvers,”]. ACM, vol. 25, no. 1, pp. 81-91, 1978.

L.-W. Chang, J.A. Stratton, H.-S. Kim, W. W. Hwu, “A Scalable,
Numerically Stable, High-performance Tridiagonal Solver Using
GPUs,” in Proc. of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC’12) (2012), 2012,
pp- 27:1-27:11.

I. Venetis, A. Kouris, A. Sobczyk, E. Gallopoulos, and A. Sameh,
“A Direct Tridiagonal Solver based on Givens Rotations for GPU
Architectures,” Parallel Computing, vol. 49, pp. 101 — 116, 2015.

D. Zhao and J. Yu, “Efficiently Solving Tri-diagonal System by
Chunked Cyclic Reduction and single-GPU Shared Memory,” J. of
Supercomputing, vol. 71, no. 2, pp. 369-390, 2015.

CUDA CUSPARSE Library, NVIDIA, Aug. 2012, v5.0. [Online].
Available: https:/ /developer.nvidia.com/cusparse

E. Lészl6, M. Giles, and]J. Appleyard, “Manycore Algorithms for
Batch Scalar and Block Tridiagonal Solvers,” ACM Trans. Math.
Softw., vol. 42, no. 4, pp. 31:1-31:36, 2016.

X. Wang, W. Xue, J. Zhai, Y. Xu, W. Zheng, and H. Lin, “A
Fast Tridiagonal Solver for Intel MIC Architecture,” in 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2016, pp. 172-181.

K. Li, W. Yang, and K. Li, “A Hybrid Parallel Solving Algorithm
on GPU for Quasi-Tridiagonal System of Linear Equations,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 10, pp.
2795-2808, 2016.

J. Lobeiras, M. Amor and R. Doallo, “Designing Efficient Index-
Digit Algorithms for CUDA GPU Architecture,” IEEE Transactions
on Parallel and Distributed Systems, pp. 1331-1343, 2016.

F. Argtiello, M. Amor and E.L. Zapata, “FFTs on Mesh Connected
Computers,” Parallel Computing, vol. 22, no. 1, pp. 19-38, 1996.

J. Lobeiras, M. Amor and R. Doallo, “BPLG: A Tuned Butterfly
Processing Library for GPU Architectures,” International Journal of
Parallel Programming, vol. 43, no. 6, pp. 1078-1102, 2015.

D. B. Kirk and W. W. Hwu, Programming Massively Parallel Proces-
sors: A Hands-on Approach, 2nd ed. Morgan Kaufmann, 2012.

Y. Yang, P. Xiang, M. Mantor, N. Rubin and H. Zhou, “Shared
Memory Multiplexing: A Novel Way to Improve GPGPU
Throughput,” in Proc. of the 21st Int. Conference on Parallel Architec-
tures and Compilation Techniques, ser. PACT 12, 2012, pp. 283-292.
Y. Yang and H. Zhou, “CUDA-NP: realizing nested thread-level
parallelism in GPGPU applications,” in Proceedings of the 19th
ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPoPP’14, (2014), 2014, pp. 93-106.

K. Gupta, J. Stuart, and J. D. Owens, “A study of persistent threads
style GPU programming for GPGPU workloads,” in Proceedings of
Innovative Parallel Computing, ser. InPar "12 (2012), 2012.

CUB Library, Nvidia Comp.., 2015. [Online]. Available: http:
/ /nvlabs.github.io/cub

Y.-Ch. Lin and L.-L. Hung, “Fast problem-size-independent paral-
lel prefix circuits,” Journal Parallel Distributed Computing, pp. 382—
388, 2009.

V. Volkov, “Better performance at lower occupancy,” in Proceedings
of the GPU technology conference, GTC, vol. 10. San Jose, CA, 2010,
p- 16.

V. Volkov, “Use Registers and Multiple Outputs per Thread on
GPU,” in 6th International Workshop on Parallel Matrix Algorithms
and Applications, 2010.

A. P. Dieguez, M. Amor,]. Lobeiras and R. Doallo, “Operator
String Algebraic Properties and Usage,” Internal Report at

OR|
RUNA

16
University of A Corufia, 2016. [Online]. Available: {http:
//gac.des.udc.es/~aperezdieguez/AnnexA5.pdf}
T.G. Stockham, “High-Speed Convolution and Correlation,” in
Proc. of the Spring joint computer conference, 1966, pp. 229-233.
X. Wang and Z.G. Mou, “A divide-and-conquer method of solving
tridiagonal systems on hypercube massively parallel computers,”
in Proc. of the Third IEEE Symposium on Parallel and Distributed
Processing (1991), 1991, pp. 810-817.
J. L. Pey, “Design and evaluation of tridiagonal solvers for vector
and parallel computers,” Ph.D. dissertation, Universitat Politec-
nica de Catalunya, 1995.

Adrian P. Diéguez obtained his Bachelor of Sci-
ence and Master of Sience at University of A
Coruna, Spain, in 2013 and 2014, respectively,
and he is currently a PhD candidate. He joined
the Computer Architecture Research Group as a
researcher in 2013. His main research interests
are parallel algorithms and computer graphics
architectures.

Margarita Amor holds BSc and PhD degrees in
Physics from the University of Santiago de Com-
postela, Spain (1993 and 1997 respectively).
She is currently an associate professor at the
Department of Electronic and Systems, at Uni-
versity of A Corufa. Her research interests in-
clude the areas of computer graphics and paral-
lel computing.

Jacobo Lobeiras holds BSc and PhD degrees
in Computer Science from the University of A
Corufa, Spain (2010 and 2014 respectively).
His main research topics are GPU computing
and signal processing. His research interests
are mainly focused on the areas of computer
graphics and parallel computing.

Ramon Doallo received his Ph.D in Physics
from the Univ. Santiago de Compostela. He is
Full Professor and Head of the Computer Ar-
chitecture Research Group at University of A
Coruna. He has 28 years of experience in re-
search and development in the area of High-
Performance Computing (HPC), covering a wide
range of topics such as parallel and distributed
algorithms and applications, cloud computing,
Big Data processing, processor architecture,
and computer graphics. He has published more

than 200 technical papers on these topics.

