
Noname manuscript No.
(will be inserted by the editor)

BPLG-BMCS: GPU-Sorting Algorithm using a
Tuning Skeleton Library

Adrián P. Diéguez · Margarita Amor ·
Ramón Doallo

Received: date / Accepted: date

Abstract In this work, we present an efficient and portable sorting operator
for GPUs. Specifically, we propose an algorithmic variant of the Bitonic Merge
Sort (BMS) which reduces the number of processing stages and internal steps,
increasing the workload per thread and focusing on a multi-batch execution
for multiple problems of a small size. This proposal is well matched to current
GPU architectures and we apply different CUDA optimizations to improve
performance. For portability, we use a library based on tuning building blocks.
Thanks to this parametrization, the library can easily be tuned for different
CUDA GPU architectures. Our proposals obtain competitive performance on
two recent NVIDIA GPU architectures, providing an improvement of up to
11,794x over CUDPP and up to 6,467x over ModernGPU.

Keywords GPU · CUDA · Tuning · Building Blocks · Bitonic Merge Sort

1 Introduction

Sorting is a computational building block of high importance, being one of
the most studied algorithms due to its impact. Many algorithms rely on the
efficiency of sorting routines as core pillars of their own efficiency. For exam-
ple, sorting is widely used in computer graphics and geographic information
systems for building spatial data structures, and also acts as a basis for solving
sparse matrix operations or MapReduce patterns [4].

There are several parallel sorting algorithms such as Radix sort [18], Merge-
sort [8], Bitonic sort [1], and Quicksort [7]. Furthermore, many of these algo-
rithms have been developed for GPUs. Radix sort for GPUs was efficiently

A.P. Diéguez - M. Amor - R. Doallo
Grupo de Arquitectura de Computadores (GAC), Departamento de Electrónica e Sistemas
Facultade de Informática, Universidade da Coruña
Campus da Coruña, 15071 A Coruña, España
E-mail: adrian.perez.dieguez@udc.es, margamor@udc.es, doallo@udc.es

2 Adrián P. Diéguez et al.

implemented in [6]. Quicksort algorithm in GPU was first implemented in
[16], being improved in [3]. A hybrid algorithm that combines Mergesort and
Bucketsort [2] was presented in [17] whereas new implementations based on
Radix sort and Mergesort were developed in [15]. There are several acceler-
ated libraries that integrate sorting within a set of different algorithms. As
an example of these libraries, we can find CUDPP [13], CUB [14] and Mod-
ernGPU [12]. Performing a comparison of sorting primitives performance, cur-
rently ModernGPU is the fastest on small problem sizes, although all of these
libraries were developed with large problem sizes in mind.

In [5], we proposed an algorithmic variant of BMS, called Bitonic Merge
Comb Sort (BMCS), for solving limited-size problems that fit directly into
the high bandwidth of GPU scratchpad memory (called shared memory in
CUDA). Nowadays, the simultaneous execution of several problems of small
size has a large impact in the most complicated simulations. For example,
combustion, chemical and high-order finite-element models take advantage of
this execution. On the other hand, BPLG[11] is a library which uses a tuned
template library with a simple and unified interface for parallel prefix algo-
rithms [9] with a set of skeletons or building blocks as a basis. These building
blocks, predefined generic components, are parameterized where efficient im-
plementation and specialization may exist for given CUDA architectures and
algorithms, constraining programmers to using only the given set of skeletons.
In this work, we propose a new version called BPLG-BMCS, that has been
built based on tuning building blocks with BPLG and it has been improved by
considering different CUDA optimizations. Our experimental results demon-
strate that our implementation is faster than all previously published GPU
sorting techniques for a multi-batch execution of small problem sizes. Future
work will entail developing our library focused on dealing with many problems
of medium and large sizes.

The remainder of this paper is organized as follows: Section 2 presents
BMCS and its CUDA implementation. Section 3 presents our new BMCS
proposal using BPLG library. Experimental results are discussed in Section 4
whereas the main conclusions of our work are explained in Section 5.

2 Bitonic Merge Comb Sort (BMCS)

In this section, we present an algorithmic variant of Bitonic Merge Sort (BMS),
called Bitonic Merge Comb Sort (BMCS), which achieves high parallelism and
efficiency in GPU using CUDA. An initial version of BMCS was proposed in [5],
matching well to current NVIDIA GPU architectures. Furthermore, it adapts
thread workload to available registers, obtains coalescing accesses, avoids bank
conflicts, reduces synchronization barriers and uses shuffle instructions.

BMS is a parallel algorithm for sorting [1]. The classic complexity is of
N · (logN)2. Figure 1 shows the classic algorithm for N = 16 where each
horizontal line represents a key value, starting on the left and finishing at
the outputs on the right. Vertical segments are comparators which make the

BPLG-BMCS: GPU-Sorting Algorithm using a Tuning Skeleton Library 3

Fig. 1 Bitonic Merge Sort Algorithm for N = 16.

Fig. 2 Bitonic Merge Comb Sort Algorithm for N = 16.

comparison of the two selected keys, swapping their values if necessary. The
sorting is processed along log2N stages (grey boxes) where stage k has also k
internal steps (marked by rectangles inside each stage).

The Node operator is the responsible for performing computation in par-
allel prefix algorithms. In more detail, the node NodeALG is a computational
operator defined by four aspects: fan in which is the number of input data;
fan out, the number of output data; sizeof data which represents the size in
bytes of each data, and the specific operation depending on the ALG algo-
rithm. Furthermore, R is a factor specific to each algorithm where N

R indicates
the number of nodes per stage.

In BMS, the node fan in and fan out are both 2, processing 2 elements per
thread. The best results are achieved when each thread works with 4 elements
in order to increase thread workload, hence we have modified the algorithm,
so fan in and fan out are both 4. We propose an algorithm with log2N − 1
external stages, each with half the number of the internal steps. In the case
of external stages, 4 consecutive elements from global memory are read and

4 Adrián P. Diéguez et al.

Fig. 3 Bitonic Merge Comb Sort Algorithm for N = 16.

computed directly in registers, thus first two external stages are reduced to
one. Figure 2 contains a scheme of our algorithm for a problem of N = 16 with
4 threads where each thread computes a node of fan in=fan out=4. Reducing
the number of stages and steps involves reducing synchronization barriers.
Furthermore, increasing the fan in and fan out implies reducing the amount
of threads needed per problem. Nevertheless, fan in or fan out in excess of 4
results in the use of more registers, decreasing occupancy and performance.

In order to develop this algorithm, we have taken into account avoiding
dynamic indexing as well as achieving coalesced global memory accesses and
preventing shared memory bank conflicts. When working with arrays as in
this case, attention needs to be paid to accesses. Here we should point out
that highest performance is achieved with static accesses where the compiler
can derive constant indices in all accesses, placing elements into registers. If
the compiler cannot determine the index at compile-time, array elements are
placed in local memory in a process known as dynamic indexing. Our proposal
avoids dynamic indexing with index calculations that can be understood as
static accesses by compiler.

On the other hand, if each thread computes several elements, it is also
necessary to specify which elements are accessed per thread in order to avoid
bank conflicts or uncoalesced accesses (see Figure 2). The first and last steps
are designed to enable the use of customized data types such as Int4 which
reduce the number of memory transactions and allow coalescing accesses.

The matching of threads with elements is not trivial in remaining stages in
order to reduce the number of internal steps and to avoid shared memory bank
conflicts. Depending on the specific external stage, the number of internal steps
could be a non-power of two. In this case, it is necessary a mixed computation
of fan in 2 is necessary in the first step of stage k, whereas the remaining steps

BPLG-BMCS: GPU-Sorting Algorithm using a Tuning Skeleton Library 5

are processed by nodes of fan in 4. Furthermore, each thread has to operate
with the corresponding four elements which makes it possible to reduce the
two steps in the fan in 2 naive approach to one step in the fan in 4 approach.
This is shown clearly in Figure 2 when k = 3. In the first step of stage k = 3,
the first, fifth, twelfth and sixteenth elements have to be processed by thread
zero in order to reduce the first two steps of the naive algorithm to just one
in our algorithm. Actually, thread zero could select other elements to perform
the computation in other steps. However, this pattern is selected in order to
reduce the number of shared memory bank conflicts. Figure 2 clearly shows
how the pattern used in the internal steps allows consecutive threads to access
to adjacent shared memory banks (without bank conflicts), except in last
internal step where each thread loads 4 consecutive elements.

Figure 3 represents BMCS but using nodes NodeBMCS = {4, 4, 4, operator}.
In this figure, the ”comb” configuration can easily be seen. Increasing fan in/out
entails reducing the number of stages, i.e., reducing the number of synchro-

nization barriers. It should be noticed that the naive algorithm has n+ n(n+1)
2

synchronization barriers where N = 2n, whereas our proposal has n − 1 +
n/2(n/2+1)

2 . In general, performance is increased by reducing the number of
synchronization barriers. Here, we should emphasise the case of Fermi CUDA
architectures where each SM has only 32 SPs. In this case reducing the number
of barriers has a greater impact, synchronizing large thread block sizes implies
a lot of warp-context switchings per SM, wasting a lot of time on this task.

Finally, it is also possible to reduce synchronization barriers and memory
latencies with shuffle instructions which allow information to be exchanged
between threads in the same warp using registers instead of shared memory.
This approach avoids warp-synchronization barriers, although they are limited
to the warp scope. BMCS consists of a hybrid strategy in which the 6 initial
stages are computed using shuffle instructions, sorting fan in × warpSize
elements in each warp, and then using shared memory as a communication
channel between warps. Therefore, 128-data chunks are sorted without syn-
chronization barriers. Thus, if N ≤ 128, then any synchronization barrier is
needed in the execution. For larger sizes, this technique saves 9 synchronization
barriers as this is the number of barriers there are in the 6 initial stages. Even
though it was also possible to use shuffle instructions in internal steps with
chunks of up to 128 elements, empirically greater performance was obtained
working with shared memory.

3 BPLG-BMCS

We are currently developing an efficient library for parallel prefix algorithms
based on tuning building blocks, called Butterfly Processing Library for GPUs
(BPLG) [11]. This library enables algorithms to be designed with flexibility
and adaptability, so far other parallel algorithms, such as FFT or tridiagonal
system solvers, have been implemented in BPLG [10]. To this end, we use a
set of functions as building blocks, high level blocks of code in several layers

6 Adrián P. Diéguez et al.

where each function computes a small part of the whole work. This flexibility
does not compromise performance as a tuned strategy is followed, obtaining
a set of parameters in order to achieve the optimal level of parallelism to be
exploited on each GPU architecture.

The idea behind tuning building blocks is to write the same kernel or a very
similar one for all parallel prefix algorithms using skeletons,with the body of
kernel remaining constant throughout different algorithms, but changing the
implementation of the compute building block. Both computation and manip-
ulation building blocks have common features, such as the use of templates,
which allows generic programming and template metaprogramming. Thanks
to this behaviour many optimizations take place at compile time, for example
fully unrolling statics loops. Additionally, all functions have been designed to
operate in any GPU memory space. Data are loaded from one bufer to another
with the copy function. In contrast, computing blocks modify their input data.
The fundamental function of computing building blocks is the compute func-
tion, which performs computations in each stage. The interface of the compute
function is implemented by different algorithms, each one with its correspond-
ing operation, which can be defined either recursively or using specializations
depending on N .

The current BPLG version focuses on a multi-batch execution for multiple
problems of small size. Specifically, G problems of size N are simultaneously
computed. A kernel is invoked with B number of blocks where each block is
executed with L threads. Each thread computes Q nodes per stage; therefore,
each problem is processed by N

R×Q threads where R is a specific factor in which
N
R indicates the number of nodes per stage. However, instead of executing only
one problem per block, LG problems are computed per block using batch ex-
ecution in order to increase the thread parallelism. Thus, the total number of
threads per block is expressed as L = N

R×Q ×LG. In addition to aforesaid defi-
nitions, threads within a block have access to S data stored in shared memory
and P data stored in private registers. These parameters can be related as
follows: P = fan in× sizeof data×R×Q whereas S = P × L and B = G

LG
.

In comparison to other libraries, multi-batch problems are performed by a sin-
gle kernel invocation, where each thread performs the computation associated
to each node. Data are processed and stored in registers. After computation,
threads collaborate with each other in exchanging data prior to the next stage.

Algorithm 1 presents a first version of the code for the BMS in terms
of tuning building blocks, called BPLG-BMCS-Naive. The read-only buffers
are declared as const restrict pointers, allowing the memory accesses to be
optimized using texture cache. This code uses two tuning building blocks,
copy and compute. The code can be divided into four main sections:

– Initialization section (lines 3-7). Defines a number of identifiers and some
memory offsets for loading and storing operations. Furthermore, registers
and shared memory are also allocated.

– Load data from global memory (lines 8 - 9) and first compute stage (lines
10-11). Loads coalescent data using a 64- bit load to obtain 2 consecutive

BPLG-BMCS: GPU-Sorting Algorithm using a Tuning Skeleton Library 7

1 template <int N, int Q, int S> __global__ void
2 BPLG_Bitonic (const int* __restrict__ data) {
3 // Obtain group -1D, thread -X and batch -Y identifiers
4 ...
5 // Statically allocate registers and shared memory
6 int reg[Q*2];
7 __shared__ int shm[N > Q ? S : 1];
8 // Load data from global memory to registers
9 copy <2,Q>(reg , data , ...);

10 // First compute stage
11 compute <Q>(reg);
12
13 for(int accR =2; accR < N ; accR *=2) {
14 // Obtains strides and offsets from the iteration and threadId
15 int readOffset = ..., readStride = ... ;
16 //Reg -> Shm -> Reg
17 if(accR >MixR) __syncthreads ();
18 copy <2,Q>(shm +2* threadId , 1,reg , ...);
19 __syncthreads ();
20 copy <2,Q>(reg ,shm+readOffset ,readStride , ...);
21 compute <Q>(reg); // Computation in registers of first internal stage
22 // Internal stages
23 for(int j=accRad; j>1; j/=2) {
24 int readOffset = ..., readStride = ... ;
25 int writeOffset = ..., writeStride = ... ;
26 if (j<accRad) __syncthreads ();
27 copy <2,Q>(shm+writeOffset , writeStride ,reg , ...);
28 __syncthreads ();
29 copy <2,Q>(reg ,shm+readOffset ,readStride , ...);
30 compute <Q>(reg);
31 }
32 }
33 // copy to global memory
34 copy <2,Q>(data ,reg ,...);
35 }

Algorithm 1: Kernel code for BMS algorithm using tuning building blocks,
BPLG-BMS-Naive.

elements instead of accessing a single data element per memory request.
In the code, copy < 2, Q > (...) loads 2 consecutive elements Q times
per thread. Then, elements are directly processed in registers by compute
function. This building block compares and swaps values.

– Compute stages of the algorithm (lines 13-32). The loop computes the
remaining stages of the algorithm with its internal steps. To this end, the
loop loads the corresponding data into registers using shared memory and
synchronization barriers. The synchronization barrier in line 17 is avoided
in first iteration as data is already in registers. The same behaviour occurs
in the internal loop on line 26 where results are returned in registers.

– Store data to global memory (lines 33-34). The final iteration of loop stores
the results into registers, thus final result is moved from register to global
memory using 64-bit stores, reducing the number of memory transactions.

In order to achieve high portability and efficiency in GPUs, this code has
been slightly modified. Firstly, we generalize the data type to be sorted from
integers into any generic DTY PE using a new template parameter class, al-
lowing for easy portability. The code structure remains constant but even so

8 Adrián P. Diéguez et al.

Platform 1 Platform 2

CPU Intel Xeon E5-2660 CPU 2.2 GHz Intel Core i7-2600 3.4 GHz
Memory 64 GB DDR3 1600 8 GB DDR3 1333

OS CentOS 6.4 Ubuntu 12.04 LTS
Compiler GCC 4.4.7 GCC 4.6.3

GPU Nvidia Tesla K20 GPU Nvidia GeForce GTX980
Driver 340.58, SDK 6.0 343.22, SDK 6.5

Table 1 Description of the test platforms

it provides portability, by simply changing the DTY PE comparator imple-
mentation inside the compute function if necessary. Furthermore, our building
blocks such as copy or compute have been carefully designed in order to avoid
dynamic indexing.

The effectiveness of BMCS has been demonstrated in [5]. Thus, BMCS
is adapted to BPLG, also providing specialization kernels for some DTY PE
and Q values, with specific code for each case which exploits the maximum
parallelism of each proposal. For example, specialization kernels for enabling
the use of customized data types as Float2 or Int4 has been implemented,
reducing the number of memory requests and improving performance. This
approach has been also optimized with a hybrid implementation; initial stages
are computed using shuffle instructions, sorting fan in× warpSize elements
in each warp, and the other stages use shared memory as a communication
channel between warps. If N ≤ 128, then there is no synchronization barrier
in the execution. Finally, BPLG-BMCS is the result of adapting BMCS to
BPLG and applying all previous optimizations.

4 Experimental Results

In this section, we present the results of our proposals on different NVIDIA
GPU architectures. All tests were run using integers as data type. All the data
initially reside in the GPU memory, so there are no data transfers to CPU
during benchmarks. The test platforms used in our experiments are described
in Table 1, where Platform 1 has a representative GPU of Kepler architecture
whereas Platform 2 has a Maxwell GPU. All these algorithms were developed
to take advantage of the read-only data cache, which slightly improves global
memory read bandwidth. The performance of these experiments is measured in
million data processed per second, MData/s. The size of the batch depends on
the input size and is given by the expression G = 224/N . Thus, MData/s value
is performed using the expression N × G × 10−6/t. In order to demonstrate
the portion of effectiveness of the algorithm, tuning building blocks and other
optimizations, all proposals were tuned to each architecture.

Firstly, Figure 4 depicts a performance comparison of all our proposals pre-
sented for Platform 1 in Sections 2 and 3. The BMS tag refers to an optimized
Bitonic Merge Sort implementation whereas BMCS represents the implemen-
tatiton of our algorithmic variant with shuffle communications presented in

BPLG-BMCS: GPU-Sorting Algorithm using a Tuning Skeleton Library 9

Fig. 4 Comparison of our proposal optimizations on Platform 1.

Fig. 5 Comparison of our proposal optimizations on Platform 2.

Section 2. BPLG-BMS-Naive denotes a naive implementation for Q = 1 in
terms of tuning building blocks. BPLG-BMCS is a kernel specialization for
Q = 2, with the optimizations presented in Section 3. As this implementation
obtains the best performance, it is the one which we use in our BPLG library.
In general, while shared memory is not an expensive resource, tuning building
blocks implementations are better since they execute several batches per block.
Until N = 256, BPLG-BMCS is better than BMCS, as each block executes
several batches in parallel. The number of batches per block is obtained by
tuning, and it guarantees a high occupancy. As N increases, the number of
batches per block is reduced in BPLG, and performance is very similar with
BMCS. In the case of BMCS, peak of performance is obtained with N = 256
or N = 512 as occupancy is maximum with these values. In problem sizes
that are larger than N = 512, both BMCS and BPLG-BMCS can only exe-
cute one problem per block, owing to resource consumption. Even in this case,
BPLG-BMCS is slightly better than BMCS. Tuning building blocks offer a
simple way of programming, obtaining the same (or higher) performance than
other complex-optimized verbose kernels for the same task, such as BMCS. In
general, shared memory becomes a limiting factor. Figure 5 shows the same

10 Adrián P. Diéguez et al.

Fig. 6 Comparison of GPU sorting implementations for one batch on Platform 1.

Fig. 7 Comparison of GPU sorting implementations for one batch on Platform 2.

comparison on Platform 2, maintaining the same nomenclature. The MData/s
achieved on this platform is higher, which can be ascribed to the fact that
Maxwell presents a power-efficient performance which provides a higher de-
livered performance per CUDA core than Kepler owing to its new datapath
organization, new improved instruction scheduler, new memory hierarchy and
bandwidth, obtaining a higher number of actives blocks per Streaming Mul-
tiprocessor. The architecture doubles the number of blocks per SM, up to
32 blocks (double that of Kepler), although the available shared memory per
block remains the same. Owing to this behaviour, BMCS occupancy is maxi-
mum with N = 128 in Maxwell (N = 256 in Kepler).

Figure 6 compares BPLG-BMCS with respect to CUDPP implementation
[13], CUB and ModernGPU library, all of them developed by NVIDIA, with
ModernGPU being the reference library for sorting when small problem sizes
are considered. It should be noted that this comparison is made in terms of
execution time for only one batch. CUDPP shows the worst results for small
problem sizes that can be directly processed in shared memory. Our proposal,
BPLG-BMCS, provides highly competitive results compared to ModernGPU.
This performance is achieved implementing BPLG-BMCS, obtaining an im-
provement of up to 10x over CUDPP, up to 8.26x over CUB and up to 2.6x
over ModernGPU. On the other hand, Figure 7 presents the same comparison
on Platform 2, Maxwell architecture. Results are similar to Platform 1, ob-

BPLG-BMCS: GPU-Sorting Algorithm using a Tuning Skeleton Library 11

Platform 1 Platform 2
N G BPLG ModernGPU CUDPP CUB BPLG ModernGPU CUDPP CUB

64 262144 10614 2 0.9 1.4 15521 4.3 2.4 2.9
128 131072 7492 3.7 1.8 2.7 10457 8.3 4.9 6.1
256 65536 4496 7.1 4 5.3 7218 16.3 10 12.3
512 32768 3817 13.4 7.9 10.2 5333 31.4 19.6 23.5
1024 16384 2897 25.2 14.7 20.4 4234 61.2 35.9 43.1
2048 8192 2144 34.4 16.1 5.5 3314 66.5 33.4 24.2
4096 4096 1549 50.4 16 10.4 2534 97.2 48 40.1

Table 2 MData/s comparison of GPU Multibatch Sorting Algorithms.

taining up to 40x in comparison to CUDPP, up to 20.9x over CUB and up to
4.8x over ModernGPU.

Many applications need to solve G batch problems in parallel. Therefore,
we used a batch execution to compute G problems each time. Table 2 com-
pares our best proposal BPLG-BMCS to CUDPP, CUB and ModernGPU
ones. CUB, ModernGPU and CUDPP prove to be extremely ineffecient with
problems where many batches of small size are processed in parallel, since they
were designed for solving just one large-size problem. In order to solve G prob-
lems of size N , these two libraries have to launch G light kernels. Our proposal
is up to 11,794x faster than CUDPP library, up to 7,581x over CUB and up
to 5,307x over ModernGPU on Platform 1. Table 2 shows the MData/s ob-
tained in Platform 2. The MData/s for Platform 2 are higher because Maxwell
presents a power-efficient performance which provides a higher delivered per-
formance per CUDA core than Kepler thanks to new datapath organization,
new improved instruction scheduler, new memory hierarchy and bandwidth,
and more actives blocks per SM. Our proposal is up to 6,467x faster than
CUDPP, up to 5,352x over CUB and up to 3,609x than ModernGPU.

5 Conclusions

Sorting is a highly important kernel which takes part in many scientific and
engineering applications. In terms of efficiency, a GPU implementation of this
operator is not a simple task since hardware requirements have to be consid-
ered. In this paper, we provide a new proposal for solving sorting problems
that match well to the new GPU architectures. Specifically, this proposal is
an algorithmic variant of Bitonic Merge Sort (BMS), called Bitonic Merge
Comb Sort (BMCS). Furthermore, we obtain a new proposal BPLG-BMCS
using a tuning methodology based on tuning building blocks for parallel prefix
algorithms. In addition to tuning building blocks, BPLG-BMCS is also opti-
mized with different CUDA techniques such as specialized templates, shuffle
instructions or customized datatypes.

Despite its mathematical complexity, the performance of the resulting pro-
posal obtains very competitive results compared to other well-known sorting
libraries, such as ModernGPU, CUB and CUDPP, achieving an improvement
of up to 40x for single-batch execution and up to 11,794x for multibatch exe-
cution.

12 Adrián P. Diéguez et al.

As future work, our primary focus will be to extend our proposal for large-
size arrays that cannot be stored in shared memory.

Acknowledgements

This research has been supported by the Galician Government (Xunta de
Galicia) under the Consolidation Program of Competitive Reference Groups,
cofunded by FEDER funds of the EU (Ref. GRC2013/055); by the Ministry of
Economy and Competitiveness of Spain and FEDER funds of the EU (Project
TIN2013-42148-P) and by EU under the COST Program Action IC1305: Net-
work for Sustainable Ultrascale Computing (NESUS).

References

1. Batcher, K.E.: Sorting Networks and their Applications. In: Proceedings of Spring Joint
Computer Conference, AFIPS ’68 (Spring), pp. 307–314 (1968)

2. Corwin, E., Logar, A.: Sorting in Linear Time - Variations on the Bucket Sort. Journal
of Computing Sciences on Colleges 20(1), pp. 197–202 (2004)

3. Cederman, D., Tsigas, P.: GPU-Quicksort: A Practical Quicksort Algorithm for Graph-
ics Processors. J. Exp. Algorithmics 14, 4:1.4–4:1.24 (2010)

4. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
Commun. ACM 51(1), 107–113 (2008)

5. Diéguez, A.P., Amor, M., Doallo, R.: BS-Comb: An Efficient Sorting Algorithm for
GPUs. In: Proceedings of the 15th International Conference on Computational and
Mathematical Methods in Science and Engineering, CMMSE 2015, pp. 461–473 (2015)

6. Harris, M., Sengupta, S., Owens, J.D.: Parallel Prefix Sum (Scan) with CUDA. GPU
Gems 3(39), pp. 851–876 (2007)

7. Hoare, C.A.R.: Algorithm 64: Quicksort. Commun. ACM 4(7) (1961)
8. Kipfer, P., Westermann, R.: GPU Gems 2-Chapter 46. Improved GPU Sorting (2005)
9. Ladner, R.E., Fischer, M.J.: Parallel Prefix Computation. J. ACM 27(4), pp. 831–838

(1980)
10. Lobeiras, J., Amor, M., Doallo, R.: Designing Efficient Index-Digit Algorithms for

CUDA GPU Architectures. IEEE Transactions on Parallel and Distributed Systems
(In Press)

11. Lobeiras, J., Amor, M., Doallo, R.: BPLG: A Tuned Butterfly Processing Library for
GPU Architectures. International Journal of Parallel Programming 43(6), pp. 1078–
1102 (2015)

12. Nvidia Comp.: Modern GPU library (2013). URL
https://github.com/NVlabs/moderngpu

13. Nvidia Comp.: CUDPP: CUDA Data Parallel Primitives Library (2014). URL
http://cudpp.github.io/

14. Nvidia Comp.: CUB library (2015). URL http://nvlabs.github.io/cub/
15. Satish, N., Harris, M., Garland, M.: Designing Efficient Sorting Algorithms for Many-

core GPUs. In: Proceedings of the 2009 IEEE International Symposium on Paral-
lel&Distributed Processing, IPDPS ’09, pp. 1–10 (2009)

16. Sengupta, S., Harris, M., Zhang, Y., Owens, J.D.: Scan primitives for GPU comput-
ing. In: Proceedings of the 22Nd ACM SIGGRAPH/EUROGRAPHICS Symposium on
Graphics Hardware, GH ’07, pp. 97–106 (2007)

17. Sintorn, E., Assarsson, U.: Fast Parallel GPU-sorting Using a Hybrid Algorithm. J.
Parallel Distrib. Comput. 68(10), pp. 1381–1388 (2008)

18. Zagha, M., Blelloch, G.E.: Radix sort for vector multiprocessors. In: Proceedings Su-
percomputing ’91, pp. 712–721 (1991)

