
Open Access Library Journal, 2014, 1, 1-10
Published Online June 2014 in OALib. http://www.oalib.com/journal
http://dx.doi.org/10.4236/oalib.1100526

How to cite this paper: Salgueiro, M., González, P., Pena, T.F. and Cabaleiro, J.C. (2014) Assessment, Design and Imple-
mentation of a Private Cloud for MapReduce Applications. Open Access Library Journal, 1: e526.
http://dx.doi.org/10.4236/oalib.1100526

Assessment, Design and Implementation of
a Private Cloud for MapReduce Applications
M. Salgueiro1, P. González1, T. F. Pena2, J. C. Cabaleiro2
1Department of Electronics and Systems, University of A Coruña, A Coruña, Spain
2Centro de Investigacións en Tecnoloxías da Información, CITIUS University of Santiago de Compostela,
Santiago de Compostela, Spain
Email: marcos.salgueiro@gmail.com, patricia.gonzalez@udc.es, tf.pena@usc.es, jc.cabaleiro@usc.es

Received 24 April 2014; revised 30 May 2014; accepted 10 June 2014

Copyright © 2014 by authors and OALib.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Scientific computation and data intensive analyses are ever more frequent. On the one hand, the
MapReduce programming model has gained a lot of attention for its applicability in large parallel
data analyses and Big Data applications. On the other hand, Cloud computing seems to be increa-
singly attractive in solving these computing problems that demand a lot of resources. This paper
explores the potential symbiosis between MapReduce and Cloud Computing, in order to create a
robust and scalable environment to execute MapReduce workflows regardless of the underlaying
infrastructure. The main goal of this work is to provide an easy-to-install interface, so as non-ex-
pert scientists can deploy a suitable testbed for their MapReduce experiments on local resources
of their institution. Testing cases were performed in order to evaluate the required time for the
whole executing process on a real cluster.

Keywords
MapReduce, Hadoop as a Service, OpenStack, Private Clouds, Cloud Computing, Virtualization

Subject Areas: Big Data Search and Mining, Cloud Computing

1. Introduction
Scientific Computing enables to perform new kind of experiments that would have been impossible only a dec-
ade ago. Nowadays, Big Data science is generating datasets that are increasing exponentially in both complexity
and volume, making their analysis a big challenge. Two issues should be addressed: finding an effective method
to tackle such challenging problems, and obtaining the necessary resources to solve them.

http://www.oalib.com/journal
http://dx.doi.org/10.4236/oalib.1100526
http://dx.doi.org/10.4236/oalib.1100526
http://www.oalib.com/journal
mailto:marcos.salgueiro@gmail.com
mailto:patricia.gonzalez@udc.es
mailto:tf.pena@usc.es
mailto:jc.cabaleiro@usc.es
http://creativecommons.org/licenses/by/4.0/

M. Salgueiro et al.

2

MapReduce [1] may help in addressing the first issue. The MapReduce programming model abstracts the
common difficulties linked to distributed processing on large clusters, by offering a simple and efficient way of
processing large data sets with a parallel distributed algorithm. Although it has been argued that MapReduce
does not suit well for many scientific algorithms, a recent work [2] studied how to adapt different classes of al-
gorithms into the MapReduce model and concluded that the MapReduce programming model can be used suc-
cessfully even for solving complex scientific computing problems.

As for the second matter, Cloud Computing [3], that agglutinates miscellaneous subsystems forming a unified
interface to flexibly deploy and manage virtual clusters, seems to suit well in solving scientist’s resource prob-
lems. Nowadays, most of the computing power of an institution is spread in different environments. Even
though the computational capacity of the institution as a whole may grow, the resources available to each indi-
vidual user remain very limited. Besides, provided that many machines may remain idle for long periods of time,
the distributed computing environment can be under-used and inefficient. Previous projects [4] have already
studied the scope of establishing private clouds at the universities. With these clouds, students and researches
can efficiently use the already existing resources of university computer networks in solving computationally
intensive scientific problems.

The major contribution of this work is qosh (quick-openstacked-hadoop), a simple and unified interface to
manage MapReduce computations, leveraging any existing IaaS (Infrastructure as a Service) deployment with a
little customization, while providing an automatic one node test installation based on OpenStack [5] and Apache
Hadoop [6].

The structure of the paper is as follows. Section 2 briefly reviews related work. Section 3 elaborates on cur-
rent IaaS and MapReduce framework implementations, focusing on its highlights and drawbacks. Section 4 de-
tails qosh architecture and self-installing deployment structure, and goes through a complete execution cycle,
identifying key points of the process. Section 5 reviews qosh performance when deployed on a real cluster. Fi-
nally, Section 6 collects a reflection on qosh main contributions and future development guidelines.

2. Related Work
Installing an IaaS cloud framework is not an easy task. Some solutions, such as DevStack [7], ease the complex-
ity to install and configure cloud environments. However, they do not provide a usable environment to develop
applications on top of an IaaS cloud.

Since MapReduce and Cloud Computing together may prove useful in servicing a potential world of data
consumers, it is easy to understand the growing interest in integrate both technologies. Currently, the best known
example of a unified approach to said technologies is Amazon Elastic MapReduce (EMR) [8]. Nonetheless,
there are other implementations focusing on extending EMR functionality, either by surpassing its constraints—
information must be made semi-public and MapReduce workflows need to be executed on Amazon’s installa-
tion—with Resilin [9], Sahara [10] or Dynamic MapReduce [11], or by reusing its cloud interface to build a
MapReduce platform upon like with Cloud MapReduce [12].

None of the previous solutions presents such a simple and integrated approach of installation, configuration
and operation as the one presented in this work. All of them involve some extra effort from the user, requiring,
in general: knowledge of its inner workings, a previous cloud deployment, the payment for consumption, or the
requisite of making public the input data to the MapReduce framework. In summary, the solution presented in
this paper may be the natural choice for initially small-scale deployments or as an introductory point to MapRe-
duce and cloud IaaS technologies. From a minimum and automatic deployment, the cloud administrator can add
new processing nodes, update the Hadoop virtual machine, alter the mechanics of provisioning or even install
another cloud provider without too much effort.

3. Frameworks and Software Selection
This Section discusses about the selection of frameworks and software to be used in the design and implementa-
tion of our solution.

In order to abstract virtual cluster creation and destruction, qosh relies on an IaaS cloud framework. Even
though there are a good number of these frameworks, they all share a common architecture and cover a similar
set of functionality with mixed maturity levels. Structurally, they are comprised of a series of modules con-
nected together by an asynchronous message broker. Internally, they save their processing information in a da-

M. Salgueiro et al.

3

tabase and exploit their server hardware through the use of a hypervisor. Externally, they expose their capabili-
ties implementing a REST interface to be consumed by a demanding client.

It could be argued that any listing that covers the most widely used IaaS cloud frameworks must include
OpenStack [5], CloudStack [13], OpenNebula [14] and Eucalyptus [15]. Precisely, in order to determine which
of them could couple qosh best, a reduced installation was carried out before putting them to use. The testing
methodology considered diverse subjective magnitudes, such as documentation completeness, installation com-
plexity, modular flexibility, standardization, etc., to give a general view of each one of them. Keeping in mind
both the end users and the variability of the field, the target were stable frameworks, that do not change substan-
tially over time, well documented, and with a solid community behind to bring support. In the end, OpenStack
came up on top, inasmuch as the latest two releases have immensely improved both its reach in real deployments
and its perceived functional maturity.

In the last decade, many encoding frameworks for the MapReduce paradigm have appeared, such as Apache
Hadoop, GridGain [16], or Twister [17], among others. Of these, Hadoop is unquestionably the MapReduce
framework most widely used today. Its open source nature and its flexibility, both of processing and storage,
have reported growing interest from the IT industry. The qosh’s development relies on the Hadoop framework.

The goal of this work is to provide an easy-to-install interface, so as non-expert scientists can deploy a suita-
ble testbed for their experiments on local resources of their institution. Thus, the qosh setup defaults to a single
node installation in which both infrastructure and execution environment are configured. Figure 1 precisely de-
picts the layered configuration. Atop Fedora 17, a setup script downloads and installs OpenStack precompiled
packages, and afterwards it downloads, untars and registers a virtual machine image containing an Oracle 1.7
JRE and Apache Hadoop 1.0.4 installation. Likewise, it automatically creates the right user and tenant so that
qosh may be put to use straightaway.

At the right end of Figure 1, it appears an Interface module lying on top of Fedora and being connected to
both OpenStack and Hadoop. Its main purpose is to deploy virtual Hadoop clusters, to manage its component
virtual machines (VMs) lifecycles and to orchestrate MapReduce workflows executions.

4. Architecture and Implementation
The qosh installation script will automatically configure a highly-performing testing environment that could be
easily scaled-out as demand grows. Figure 2 represents the layered setup decomposition in a single node after
the installation procedure had finished.

The OpenStack modules deployed are those fundamentally required by a minimum standalone setup [5]:
Keystone manages authorization, authentication and quota by user and tenant.
Nova handles VMs lifecycles and networking configuration, routing and data flow utilizing Kernel Virtual

Figure 1. High level design diagram.

Figure 2. Layered initial deployment.

M. Salgueiro et al.

4

Machine (KVM) as hypervisor.
Glance holds the browsable catalog of installed VM images on the local file system.
This implies that no fault tolerance measures are defined—as expected from a single node and local file sys-

tem arrangement—cloud-wise, but it certainly allows for other standard safety protocols to be implemented—
e.g. some RAID level with replication or UPS solutions.

4.1. Interface
Figure 3 represents the user interface modular composition. There are three essential modules within: Compute,
Fabric, and Django.

4.1.1. Compute
Compute is the REST access client that bridges the OpenStack cloud with the web interface, effectively de-
coupling qosh from the infrastructure provider. It basically encapsulates a series of methods by which an autho-
rized user is allowed to manually define VM deployment behavior.

Current implementation manages virtual clusters defined with OpenStack running on a single real cluster, i.e.
no hybrid clouds are supported. However, Compute may be effortlessly adapted to handle VMs running on other
IaaS deployments or to manage hybrid clouds, with no interaction whatsoever with another module, as far as
qosh API semantics are preserved.

4.1.2. Fabric
Fabric is a Python library used to simplify the management of our virtual cluster by establishing SSH tunnels
with the VMs, letting qosh shape Hadoop configuration, putting processing data into HDFS (Hadoop Distributed
File System) and recovering results to user space; everything as SSH traffic.

To establish SSH connections our Fabric module is fed a Keystone-generated keypair. This keypair is created
on each virtual cluster deployment and shared by all VMs in the same cluster. Its private part is injected into
VMs once they have finished booting, and its public part is kept on the local file system. It is automatically re-
moved—both from OpenStack and file system—when Hadoop execution completes.

4.1.3. Django
Django glues together both modules, renders HTML to be displayed to the user, and organizes result and meta-
data storage.

Django can be plugged different back-ends, from session objects managers to static file storage, to deal with
varying needs and to accommodate future demands. The qosh plugin configuration includes: MySQL, used as
meta-information repository; the server file system, to save and retrieve MapReduce I/O data; and OpenStack-
Backend to delegate into Keystone user access and quota.

Putting it all together, a user would define MapReduce computations though a Django-backed web interface.
Django would pass configuration parameters on to Fabric for creating and feeding input data to a virtual Ha-
doop cluster. And lastly, real infrastructure would be provisioned by an IaaS cloud driven through Compute
module.

4.2. Deployment
The qosh installation script will take care of a single node deployment in an automatic fashion, so no previous
knowledge of OpenStack or Hadoop would be required to exploit qosh elastic MapReduce prowess in this case;
though the virtual cluster elasticity would be heavily constrained. To overcome this limitation, qosh has been
architected to abstract the infrastructure underneath, allowing for any IaaS framework to be deployed at any size
(some parts of the Compute module would require rewriting, nonetheless, if OpenStack were not used).

Figure 3. Interface composition.

M. Salgueiro et al.

5

An installation may be grown from a starting single node setup just by laying out a real IaaS cloud cluster of
any size. In fact, any public cloud Amazon Elastic Compute Cloud-compatible (EC2-compatible) could be used
to expose infrastructure that qosh would utilize to spawn virtual clusters of any size.

4.3. Apache Hadoop Virtual Machine
The Apache Hadoop installation has been manually configured from scratch inside a virtual machine. It has been
conceived to have a minimum footprint while maintaining a server-grade stability. In order to fulfill these re-
quirements CentOS was chosen and an EC2-compatible VM was built up with it [18].

An EC2-compatible VM differs from a regular VM in a few peculiarities:
• Container format: It is really subject to framework requirements but the most commonly preferred formats

are raw and qcow2 for cloud images, while traditional VMs depend exclusively on the virtualization plat-
form support.

• User access: It is controlled by injecting a private part of an SSH keypair into booting VMs, so that only us-
ers with the public counterpart are allowed to log in. However, that private part is not pushed into the VM
file system by the cloud framework itself, it is pulled instead to a web location, concealed from other VMs,
so it is the VMs duty to fetch and safeguard that keypair.

• VHDD resizing: Which is the ability to change, on demand, the HDD size of the VMs, can only be accom-
plished if direct kernel boot was being used. Enabling a VM image to boot a kernel directly implies extract-
ing both initram and kernel images from the VM file system and uploading them to the particular cloud
framework deployed.

Bearing those singularities in mind, an Apache Hadoop and Oracle JRE installations, a limit in what kind of SSH
connections can be established—only those authenticated by keypair—and a final compression, together, yielded
qosh, which has potential to be executed on any cloud distribution (considering it being EC2-compatible).

4.4. Execution Flow
Before any MapReduce processing take place, a user should log in into qosh web interface and navigate to the
Define Job page. Figure 4 contains a visual representation of a complete execution cycle starting up from that
point.

1) When Define Job is completely rendered, a form to configure a new MapReduce job and its supporting
virtual cluster is presented to the user.

2) In case the form be correctly filled, all of the input data and configuration parameters would be uploaded
server-side.

3) Once the upload have finished, a new process is spawned to manage the remaining procedure; meanwhile,
the user is sent back to the Home page.

4) To guarantee a fair level of privacy, an SSH keypair is created anew on each MapReduce execution. Along
with it, a set of virtual machines, or instances, is started.

5) As the amount of time required to bring up networking on each instance varies depending on virtual and
real cluster size, a mechanism to check their networking status had to be devised. In order to reduce the com-
plexity and coupling introduced by making the instances fire a networking-ready signal, an improvement is in-
troduced. Instead of pushing a ready event from the VM to the cloud, the process supervising their creation is
kept looping trying to establish an SSH connection to the instances, up to a certain number of attempts.

6) Once every instance can be reached through SSH, a virtual Hadoop cluster is configured following the
guidelines contained in Fabric script.

7) Through Fabric mediation, Hadoop daemons are started on every instance, input data and workflow im-
plementation are pushed onto HDFS and the MapReduce application is started.

8) When the job is finished, the results will be fetched from the virtual cluster to the local file system, where
they will be permanently stored.

9) Lastly, the instance set is destroyed and the keypair removed from both OpenStack and the local file system.

5. Performance Evaluation
To assess a measure on qosh performance, a custom deployment was carried out on two nodes. In one of them,

M. Salgueiro et al.

6

the automatic installation procedure was executed first and the resulting configuration tweaked later to commu-
nicate with the other node. In the other, the bare minimum required to allow for VM execution was manually in-
stalled (OpenStack Compute and required libraries).

Both machines share the same physical configuration which is comprised of an octo-core Intel Xeon CPU
layout, 8 GB RAM, 200 GB SATA 3 HDD and dual Gigabit Ethernet connectivity.

5.1. Testing Methodology
In order to give a general picture of qosh performance, three different testing cases were set up to measure the
time required by the whole executing process. Timing marks have been hard coded to cut relevant parts off and
to reduce measurement errors. To that account—to bound the experiment variance, testing cases were executed
and measured ten times per deployment configuration; displayed results reflect a simple average of said meas-
ures.

Five components were gauged:
• Deploying time, stands for the time interval elapsed from the instant that the virtual cluster is starting to be

spawned up to when all of the instances can be reached. It should be noted this component adds up to a
second of error per instance, due precisely to the one second delay between retries as explained in Section
4.4.

• Configuring time, alludes to Hadoop configuration time requirement. It includes transferring and decom-
pressing input data, pushing them to HDFS and laying Hadoop configuration out in the virtual cluster.

• MapReducing time, covers exclusively the amount required to complete the MapReduce job.
• Cleaning time, spans just the temporal lapse that is needed to remove the keypair and to shutdown every in-

stance in the cluster.
• Total time, is the time it took the whole process to complete. Note that it does not equal partial times sum-

mation.
The MapReduce application used is the well-known WordCount, which counts the number of words in an ac-

tual document set. Apache Hadoop was configured to allocate to its underlaying JVM up to the maximum RAM
available to the instance.

The first test case centered on evaluating qosh timings when the virtual cluster was scaled out. Thus, a fixed
62.5 MB plain text document list was fed to a growing virtual cluster ranging from one 1 GB RAM/VCPU in-
stance to eight (4 instances on each node, as OpenStack was laid over a dual-node cluster).

For the second test case, the number of VMs spawned remained constant in different executions but its capa-
bilities—RAM and VCPU count—were sequentially doubled from 1 GB RAM/VCPU to reach 4 GB RAM/
VCPU, to account for qosh tendency on vertical scaling. The 62.5 MB of plain text was kept untouched as on
the first case.

Finally, a third test case presents the resulting measurements obtained on the same virtual cluster configura-
tion, when the input size was sequentially doubled from 62.5 to 250 MB.

5.2. Results Analysis
Figure 5 presents the evolution of different timings as instance count increases from one to eight. It can be seen
how deploying, configuring and clearing measurements rise slightly with instance count, while processing time
drops, all as expected.

In Figure 6 it is shown how vertical scaling affects qosh performance. Deploying and cleaning times stay
constant (two instances on every execution), whereas processing and configuring times are reduced as instances
are upgraded.

Looking at both charts it can be seen that, for our particular dual-node deployment, vertical scaling uses infra-
structure resources more efficiently: two 4 GB RAM/VCPU instances are roughly equal to eight 1 GB RAM/
VCPU, but total executing time is reduced by almost 28%.

Finally, Figure 7 shows timing evolution as input size heightens. In this case, the time of MapReduce in-
creases with the size of the problem, and also the configuration time due to the copy of data files in the HDFS.

6. Conclusions and Future Work
In this paper, a simple and unified interface for deploying OpenStack Framework and Hadoop MapReduce

M. Salgueiro et al.

7

Figure 4. Global execution flow.

900

1000

800

700

600

500

400

300

200

100

0

1 2 4 8

Instances (1 GB RAM)

Deploying

Configuring

MapReducing

Clearning

Total

Ti
m

e
(s

)

46
.4

73
.8

5

4.
39

 49
 74

.5
5

7.
84

 57
.8

3
78

.0
7

6.
09

82
.4

84

8.
57

16

5.
45

34
6.

35

39
1.

99

24
3.

95

56
5.

95

43
1.

59

89
5.

66

76
4.

93

Figure 5. Tendency on scaling out.

M. Salgueiro et al.

8

700

600

500

400

300

200

100

0

1 2 4
GB RAM and VCPUs/instances

Deploying

Configuring

MapReducing

Clearning

Total

Ti
m

e
(s

)

49
 74

.5
5

4.
84

 47
.8

5

45
.9

7

4.
02

56
.6

9

42

14
1.

88

4.
99

24
9.

42

34
0.

8

23
8.

91

59
5.

95

43
1.

59

Figure 6. Tendency on scaling in.

800

600

500

400

300

200

100

0
62.5 125 250

Input size (MB)

Deploying

Configuring

MapReducing

Clearning

Total

Ti
m

e
(s

)

82
.4

84

8.
57

81
.5

97
.9

9.
05

82
.5

9 12
0.

47

45
5.

96

9.
41

67
5.

14

46
1.

52

26
6.

2

34
6.

35

16
5.

45

700

Figure 7. Tendency on input size escalation.

M. Salgueiro et al.

9

together building a private cloud is presented. The solution main contributions can be summarized in the fol-
lowing points.
• Simplicity of installation and exploitation. The qosh installation script is straightforward and its web inter-

face provides the means to define custom virtual Hadoop deployments, to launch MapReduce jobs and to
download results easily and intuitively.

• Vertical integration of every module, from the web interface to file storage and infrastructure provisioning.
The qosh installation script configures automatically a complete execution environment with no user inter-
vention required.

• High performance on initial setup, since qosh has been conceived from the beginning to execute MapReduce
workflows on virtual clusters, while maintaining a minimum learning curve.

• Reusability of the main components. Adhering to Amazon Web Services standards when building the VM
allows deploying it over any EC2-compatible cloud IaaS. Additionally, its worth considering the ability to
make the VM run with no cloud architecture underneath, by setting up an installation on top of a real cluster.

• Adaptability to handle infrastructure provided by other cloud frameworks, and thus, opening the possibility
to spread virtual clusters on hybrid clouds just by rewriting the Compute module.

• Source code and documentation both from qosh and its required libraries and applications, are publicly
available online [19].

Future Work
The main limitation of qosh is a certain coupling between modules. It would be interesting to abstract a REST
client interface in order to code different delegates, which could be used to adapt messages to any REST API
language, clearing hybrid cloud implementations up.

Following the same decoupling dynamics, some use cases like view processing in Django could be detached
from the web interface as action objects, and be executed in an action processor. This action processor could be
shaped, for instance, a processes pool consuming these action objects queuing in memory easing off horizontal
scaling and load balancing.

References
[1] Dean, J. and Ghemawat, S. (2008) MapReduce: Simplified Data Processing on Large Clusters. Communications of the

ACM, 51, 107-133. http://vgc.poly.edu/~juliana/courses/cs6093/Readings/dean-cacm2008.pdf
[2] Ekanayake, J., Pallickara, S. and Fox, G. (2008) MapReduce for Data Intensive Scientific Analyses. IEEE Fourth In-

ternational Conference on eScience, Indianapolis, 7-12 December 2008, 277-284.
[3] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A.,

Stoica, I. and Zaharia, M. (2009) Above the Clouds: A Berkeley View of Cloud Computing. Technical Report
UCB/EECS-2009-28, EECS Department, University of California, Berkeley.

[4] Srirama, S.N., Jakovits, P. and Vainikko, E. (2012) Adapting Scientific Computing Problems to Clouds Using Ma-
pReduce. Future Generation Computer Systems, 28, 184-192.
http://dx.doi.org/10.1016/j.future.2011.05.025

[5] OpenStack. http://www.openstack.org
[6] White, T. (2009) Hadoop: The Definitive Guide. O’Reilly Media.
[7] DevStack. http://devstack.org
[8] Amazon Web Services: Elastic MapReduce. http://aws.amazon.com/elasticmapreduce
[9] Riteau, P., Iordache, A. and Morin, C. (2011) Resilin: Elastic MapReduce for private and community Clouds. Research

Report RR-7767, INRIA.
[10] OpenStack: Project Sahara. https://wiki.openstack.org/wiki/Sahara
[11] Loughran, S., Alcaraz Calero, J.M., Farrell, A., Kirschnick, J. and Guijarro, J. (2012) Dynamic Cloud Deployment of a

MapReduce Architecture. IEEE Internet Computing, 16, 40-50. http://dx.doi.org/10.1109/MIC.2011.163
[12] Liu, H. and Orban, D. (2011) Cloud MapReduce: A MapReduce Implementation on Top of a Cloud Operating system.

11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Washington DC, 23-26 May 2011,
464-474.

[13] Apache Cloudstack. http://cloudstack.apache.org

http://vgc.poly.edu/%7Ejuliana/courses/cs6093/Readings/dean-cacm2008.pdf
http://dx.doi.org/10.1016/j.future.2011.05.025
http://www.openstack.org/
http://devstack.org/
http://aws.amazon.com/elasticmapreduce
https://wiki.openstack.org/wiki/Sahara
http://dx.doi.org/10.1109/MIC.2011.163
http://cloudstack.apache.org/

M. Salgueiro et al.

10

[14] Moreno-Vozmediano, R., Montero, R.S. and Llorente, I.M. (2012) IaaS Cloud Architecture: From Virtualized Data-
centers to Federated Cloud Infrastructures. IEEE Computer, 45, 65-72. http://dx.doi.org/10.1109/MC.2012.76

[15] Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Youseff, L. and Zagorodnov, D. (2009) The Eucalyptus Open-
Source Cloud-Computing System. 9th IEEE International Symposium on Cluster Computing and the Grid, Shanghai,
18-21 May 2009, 124-131.

[16] GridGain Systems. GridGain 3.0—High Performance Cloud Computing Whitepaper. Technical Report, 2011.
[17] Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-H., Qiu, J. and Fox, G. (2010) Twister: A Runtime for Itera-

tive MapReduce. Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing,
Chicago, 21-25 June 2010, 810-818.

[18] Apache Hadoop 1.0.4 Based on CentOS 6.3 VM.
https://drive.google.com/file/d/0B2lmVzXW-C5UcmZIYk80dTZJb0k/edit?usp=sharing

[19] Qosh Main Page. https://code.google.com/p/quick-openstacked-hadoop

http://dx.doi.org/10.1109/MC.2012.76
https://drive.google.com/file/d/0B2lmVzXW-C5UcmZIYk80dTZJb0k/edit?usp=sharing
https://code.google.com/p/quick-openstacked-hadoop

	Assessment, Design and Implementation of a Private Cloud for MapReduce Applications
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Frameworks and Software Selection
	4. Architecture and Implementation
	4.1. Interface
	4.1.1. Compute
	4.1.2. Fabric
	4.1.3. Django

	4.2. Deployment
	4.3. Apache Hadoop Virtual Machine
	4.4. Execution Flow

	5. Performance Evaluation
	5.1. Testing Methodology
	5.2. Results Analysis

	6. Conclusions and Future Work
	Future Work

	References

