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Abstract

Many key problems in computational systems biology and bioinformatics can be formulated and
solved using a global optimization framework. The complexity of the underlying mathematical models
require the use of efficient solvers in order to obtain satisfactory results in reasonable computation times.
Metaheuristics are gaining recognition in this context, with Differential Evolution (DE) as one of the
most popular methods. However, for most realistic applications, like those considering parameter esti-
mation in dynamic models, DE still requires excessive computation times.
Here we consider this latter class of problems and present several enhancements to DE based on the
introduction of additional algorithmic steps and the exploitation of parallelism. In particular, we pro-
pose an asynchronous parallel implementation of DE which has been extended with improved heuristics
to exploit the specific structure of parameter estimation problems in computational systems biology.
The proposed method is evaluated with different types of benchmarks problems: (i) black-box global
optimization problems and (ii) calibration of non-linear dynamic models of biological systems, obtaining
excellent results both in terms of quality of the solution and regarding speedup and scalability.

1 Introduction

Global optimization methods are playing an increasingly important role in computational biology [1], bioin-
formatics [2] and systems biology [3]. In the case of the field of systems biology, the aim is to understand
complex biological systems by combining experimental data with mathematical modelling and computational
methods.

Building these mathematical models is an iterative process which starts with the definition of the purpose
of the model and the selection of a model framework. Then, a mathematical structure is proposed with a set
of non-measurable parameters. After that, these parameters are estimated in order to obtain quantitative
predictions. Finally, the model is (in)validated with new experiments, obtaining feedback which can be
subsequently used in a refinement process.

The parameter estimation step is key in this iterative model building process and can be formulated as a
mathematical optimization problem subject to the dynamic constraints which describe the time-dependent
behavior of the system. Most biological models are highly non-linear dynamical systems, resulting in chal-
lenging multi-modal problems which are very difficult to solve, as described in [4].

Global optimization methods are robust alternatives to solve these complex optimization problems. They
can be roughly classified in two classes, deterministic methods and stochastic (including heuristic) methods.
In the first type, the solution retrieved will be the global optimum, though the computational effort to
ensure global optimality might be extremely large, making them impractical. Stochastic and other heuristic
methods do not guarantee convergence to the global optimum, but they usually provide near-global solutions
in reasonable computation times.

In the case of stochastic methods, many research efforts have focused on developing metaheuristic (i.e.
guided heuristic) methods which are able to locate the vicinity of the global solution in reasonable compu-
tation. In order to reduce further the computational cost of these methods, a number of researchers have
studied parallel strategies for metaheuristics [5, 6]. In the area of computational systems biology, parallel
methods have already shown promising results [7, 8, 9].

Differential Evolution (DE) [10] is one of the most popular heuristics for global optimization, and it
has been successfully used in many different areas [11, 12, 13]. In particular, DE remains as a widely used
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method for parametric identification of complex models [14] [15] [16]. However, in most realistic applications,
this population-based method requires a very large number of evaluations (and therefore, large computation
time) to obtain an acceptable result. Thus, in order to improve the runtime of the classical DE algorithm,
two main strategies have been preliminary explored by us in [17]. First, including a selected local search
and other algorithmic improvements in order to enhance the classical DE through intensification, drastically
reducing the number of evaluations required. Second, exploiting parallelism at different levels, so as to
reduce the computational time needed. In this paper, we extend significantly our previous work to include:
(i) further description of the asynchronous parallel strategy and its improvement in the global search through
the enhancement in diversification due to a cooperative scheme, (ii) an additional extensive experimental
analysis both in black-box global optimization problems and in calibration of non-linear dynamic models of
biological systems. Regarding experimental results, both vertical and horizontal views [18] are analyzed in
this paper. A vertical approach assesses the performance of a fix number of evaluations, i.e., a predefined
effort; while an horizontal view assesses the performance by measuring the time needed to reach a given
target value. Our main goal is to improve the horizontal approach, however, the vertical approach will also
benefit from the proposed solution, which is interesting for many real world applications where the total
number of evaluations is limited.

The organization of this paper is as follows. Section 2 covers the related work, while section 3 presents
a brief overview of the DE algorithm. Section 4 describes the asynchronous strategy proposed to parallelize
an island-based DE algorithm. Section 5 describes the new heuristics for parameter estimation that have
been added to improve local search. The performance of the proposed method is evaluated in Section 6,
demonstrating its good efficiency and scalability. Finally, Section 7 summarizes the main conclusions of our
study.

2 Related Work

Many researches have tried to improve DE by proposing modifications to the original algorithm. Interesting
reviews can be found in [19] and more recently in [13]. In several cases, the original DE algorithm was
improved with additional algorithmic components exploiting certain aspects of a given class of problems.
In [20] a modified DE approach using generation-varying control parameters is proposed to improve the
search performance in preventing of premature convergence to local minima. A hybrid algorithm using DE
as an evolutionary framework and a crossover-based local search was proposed in [21, 22]. A DE with Scale
Factor Local Search was introduced in [23] and extended in [24] for self-adaptive DE schemes. The use of
a tabu list in the DE has also been applied in recent works [25, 26, 27].

Several studies have considered parallel versions of the algorithm. A distributed adaptive DE version was
proposed in [28]. This algorithm was based on the island-mode paradigm with a random communication
topology for individuals exchange. Another parallel approach was proposed in [29], based on the distribution
of the population data among different processors (slaves), which communicate through data migrations,
all of them managed by a central processor (master). The latter was also responsible of checking the
stopping criteria. The algorithm was implemented in PVM (Parallel Virtual Machine) [30] with presumably
synchronous communication, resulting in low speed-up results.

A simple approach to asynchronous parallelization was proposed in [31], consisting of a master-slave
architecture with several independent processes, where the communications were not established directly
but through the filesystem. The master process was in charge of selecting the best individuals. When
the stopping condition was satisfied, the slaves were stopped. Another asynchronous proposal based on a
master-slave approach is the parallel metaheuristic based on DE and simulated annealing proposed in [32].
The master asynchronously assigns different tasks to the slaves, thus, allowing for simultaneous evaluation
of several trial solutions. The proposal is implemented in MATLAB, using PVM for the communications
between master and slaves.

A parallel DE with asynchronous communications and an island-model scheme is presented in [33]. Its
termination criteria was controlled by a master node and was implemented with POSIX (Portable Operating
System Interface) threads. A heterogeneous local configuration was used, where each parallel processor had
a different mutation strategy (MSt). The results indicated an improvement in the reliability and the perfor-
mance of the algorithm with a configuration of five islands, compared to the time spent by five sequential
versions for the same optimization problems. Another asynchronous distributed DE was presented in [34].
In this case, the algorithm was also exploiting an island-model with asynchronous communication. The
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topology was an unidirectional ring, where the individuals exchanged were selected randomly.
Several other works studied improvements to island-model schemes. In [35], a complete study about

the impact on the performance of different communication topologies of the islands was presented. These
authors used a synchronous parallel DE on a set of standard benchmarks with different topologies, concluding
that ring topology was the best option. In [36], subpopulations were grouped into two families. The first
family uses a ring topology and a best-random like migration strategy to evolve its subpopulations. In
the second one each subpopulation independently evolves with a population size reduction strategy. The
solutions generated by the second family are moved into the first family.

Several studies suggest that randomization of the control parameters can be a propitious mechanism
for enhancing the DE performance [37]. Different randomization schemes have been proposed to develop
self-adaptive DE frameworks and investigate the effect of changing control parameters in distributed DE [38,
39, 40, 41]. Two mechanisms to avoid the loss of diversity when the size of the population is small are
described in [42]. The first one was based on shuffling: the individuals from a specific subpopulation were
randomly reorganized. The second one, an update mechanism, changed and adapted scaling factors for each
subpopulations. The results indicated that these techniques obtained a very significant performance when
the dimensionality of the functions grew. An improved which entails four different scale factors updating
schemes, associated to the binomial crossover in a distributed DE structure, is presented in [41]. With the
exception of one scheme in which equally spaced scale factors are considered, in all the others the scale
factors are randomly initialized for each subpopulation. Although proper choice of a scale factor scheme
appears to be dependent on the distributed structure, each of these simple schemes proposed has proven to
significantly improve upon the single-scale factor distributed DE algorithms.

Other parallelization strategies have appeared with the emergence of new hardware and software tech-
nologies. This is the case of [43], where a DE improved through local Pattern Search method was parallelized
through CPU-GPU heterogeneous computing, using a cellular model scheme. Also, a parallel DE based on
GPUs is explored in [44], which employs self-adapting control parameters and generalized opposition-based
learning (GOBL) to improve the quality of candidate solutions. In [45] a multiagent framework was pro-
posed to create a distributed cooperative structure based on agents. This scheme was implemented in Java,
defining a communication API (Application Programming Interface) to send information to the different
agents of the environment.

In this contribution, our aim was (i) to improve the DE algorithm incorporating several algorithmic
steps which exploit the structure of parameter estimation problems, and (ii) develop a parallel version
following a cooperative asynchronous strategy. The overall objective was to obtain a high performance
implementation that achieves a good trade-off between exploration (diversification or global search) and
exploitation (intensification or local search), which is at the core of modern metaheuristics [46].

3 Differential Evolution

Differential Evolution (DE) is an iterative mutation algorithm where vector differences are used to create
new candidate solutions. Algorithm 1 shows a simple pseudocode for the classical sequential DE (which we
will denominate seqDE here).

Starting from an initial population matrix composed of NP D-dimensional solution vectors (individuals),
DE attempts to achieve the optimal solution iteratively through changes in its vectors. For each iteration,
new individuals are generated in the population matrix through mutation operations performed among
individuals of the matrix. These mutation operations depend on the mutation factor (F), which is used
in the creation of new solutions in different ways depending of the selected mutation scheme. There are
different mutation strategies (MSt) to generate new individuals, this work uses some of them:

• DE/best/1:
Indk ← bestPk + F · (bk − ck) (1)

• DE/best/2:
Indk ← bestPk + F · (bk − ck) + F · (dk − ek) (2)

• DE/rand/1:
Indk ← ak + F · (bk − ck) (3)
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Algorithm 1: Differential Evolution algorithm - seqDE

input : A population matrix P with size D x NP
output: A matrix P whose individuals were optimized

repeat
for each element in P do
−→a ,−→b ,−→c ← different random individuals from P matrix

for k ← 1 to D do
if random point is less than CR then
−−→
Ind(k)← −→a (k) + F (

−→
b (k) - −→c (k));

end

end

if Evaluation(
−−→
Ind) is better than Evaluation(

−→
P (x)) then

−→
P (x) =

−−→
Ind

end

end

until Stop conditions;

• DE/rand/2:
Indk ← ak + F · (bk − ck) + F · (dk − ek) (4)

where −→a ,−→b ,−→c ,−→d ,−→e ∈ P are solution vectors randomly selected,
−−−−→
bestPk ∈ P is the current best solution of

the population, and
−−→
Ind = (Ind1, . . . , IndD) is the new candidate solution created in the mutation process.

These mutation operations are applied in specific positions k of the old solution vector of the matrix.
These positions are determined through the crossover constant (CR): if random generated value is less than
CR, the mutation strategy is applied in the position k of the current vector. Thus, candidate solutions have
one part of the old solutions that are intended to replace, and on the other hand, they have values obtained
from the mutation process.

Finally, only when the fitness value of the new candidate solution is better than the current one, the new
individual is included in the population matrix.

A population matrix with optimized individuals is obtained as output of the algorithm. The best of these
individuals are selected as solution close to optimal for the objective function of the model.

4 Improving global search through an asynchronous parallel co-
operative scheme

The parallelization of metaheuristics pursues one or more of the following goals: increase the size of the
problems that can be solved, speed-up the computations, or attempt a more thorough exploration of the
solution space. However, to achieve an efficient parallelization of metaheuristics is usually a complex task,
since the search of new solutions depends on previous iterations of the algorithm, which not only complicates
the parallelization itself but also limits the achievable speedup. Different strategies can be used to address
this problem: attempting to find parallelism in the sequential algorithms, preserving its behavior; finding
parallel variants of the sequential algorithms, slightly varying their behavior to obtain a more easily paral-
lelizable algorithm; or developing fully decoupled algorithms, where each process executes its part without
communication with other processes, at the expense of reducing its effectiveness.

The solution explored in this work pursues the development of an efficient parallel variant of the serial DE,
focussed on both the acceleration of the computation by performing separate evaluations in parallel, and the
convergence improvement through the stimulation of the diversification in the search and the cooperation
between the parallel threads. Thus, when evaluating the performance of the proposal, both vertical and
horizontal approaches will benefit.

The parallel algorithm proposed is based on the island model approach [47]. The population matrix
is divided in subpopulations (islands) where the algorithm is executed isolated. Phases such as selection,
recombination and mutation are performed only within each island, which implies absence of collaboration
among processes. Sparse individual exchanges are performed among islands to introduce diversity into
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the subpopulations, preventing search from getting stuck in local optima. After m iterations, a migration
phase links the different populations: selected individuals from each island are communicated to another
island. Both the migration operation and the checking of the termination criteria imply an exchange of
communications among processes.

The simplest implementation of the parallel island DE is a synchronous algorithm (synPDE). The drawback
of the synchronous algorithm is that processors are idle during a significant amount of time, while they are
waiting for each other during the migration steps.

Replacing synchronous communications with asynchronous ones, each process will send the information
to a memory buffer associated with the remote process, enabling the reception of the message later on
(whenever that process is ready to receive it), thus, avoiding idle periods. However, in such asynchronous
version, when a migration is planned, each process would need to wait for the reception of its required new
data. This could stall processes and cause idle periods.

The algorithm proposed in this work avoids this by implementing a variation of the classical parallel island
DE. The pseudocode for the proposed solution (asynPDE) is shown in Algorithm 2. Each process receives
an island population. For each iteration of the main loop, mutation and crossover operations are performed
within each island, in the same way as in the serial implementation. Every m iterations, a migration phase
is performed to link the evaluations in different islands. Whenever a process reaches the migration phase,
it sends a set of individuals to the selected remote process using an asynchronous communication (ISend()
function in Algorithm 2). Then, the process in the migration phase checks if the message with the new
individuals of a remote process has already arrived to its memory buffer (IRecv() function in Algorithm 2).
However, if the new solutions have not arrived yet, the process proceed with the next evaluation. After each
evaluation the process searches for the reception of data missed in previous migrations (Test() function in
Algorithm 2), however avoiding stalls if the messages have not arrived yet. To deal with the migration data
received asynchronously, a dynamic data list is created. In each migration phase a new node is attached to
the list, to be filled with the expected data. Once the data of a node is used, the node is removed from the
list.

In addition to the migration step, the checking of the stopping criteria may also involve communications
between processes. Stopping criteria are needed to terminate the execution of the algorithms. They can
be as simple as using a maximum number of evaluations, which do not imply exchange of communications.
However, other criteria, that allow to react adaptively to the state of the optimization progress, need commu-
nications between processes. Asynchronous MPI communications are also used in the proposed algorithm
for those communications, so that processes may continue running independently. Each parallel process
opens a buffer where it expects to receive a termination message. This buffer is checked every iteration of
the algorithm. Thus, the control of the stopping criteria of the global search is distributed among all the
processes: when a stopping condition is fulfilled in a process, this condition is communicated to the rest of
processes, then all of them can stop the algorithm almost at the same time.

Finally, note that the new parallel algorithm does not implement straightforwardly the serial one. As
demonstrated in Section 6, it performs always better in terms of execution time and scalability even if, often,
it requires higher number of evaluations when assessing its performance from an horizontal view.

5 Improving local search in Differential Evolution algorithms

In some real applications, such as parameter estimation in dynamic models, the performance of the classical
sequential DE is not acceptable due to the large number of objective function evaluations needed. As a
result, typical runtimes for realistic problems are in the range from hours to days. In order to improve the
computational effort required by the DE algorithm running in each of the processors in the parallel version,
three enhancements that exploit the special structure of these parameter estimation problems have been
included.

Logarithmic space

The classical DE algorithm begins by generating an initial set P of individuals. Typically this generation
is performed in a uniform space, where the range is divided into n sub-ranges of equal size and values are
randomly chosen from selected sub-ranges. However, in other metaheuristics it has been found that, when
variables may have values in a huge range, this uniform distribution for selecting diverse solutions will not
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Algorithm 2: Asynchronous island-based parallel DE - asynPDE

input : A population matrix P with size D x NP
output: A matrix P whose individuals were optimized

Plocal ← scatter population P into N processors
iter = 0;
repeat

for each element in Plocal do
Crossover, mutation and evaluation operations

end

! migration phase
if iter%m==0 then

migrationSet ← selected individuals from Plocal
! asynchronous send of migrationSet to remote destination

ISend(migrationSet, remoteDestination);
! asynchronous reception of migrationSet in the receptionSet

IRecv(receptionSet, remoteOrigin); ! non-blocking operation that allows for execution progress if no message has

arrived yet

end

while pending migration do
! check for pending messages of previous migrations

Test(receptionSet, isComplete); ! non-blocking operation that allows for execution progress

if isComplete then
! Insert received individuals into Plocal subpopulation

Plocal (selected individuals) ← receptionSet
else

break;
end

end
iter++;

until Stopping condition;

Gather all subpopulation into matrix P

generate many trial points with good value [48]. In contrast, a logarithmic distribution will initialize the
algorithm with high quality members in the initial population, ensuring a faster convergence. Thus, the
search is proposed to be performed in a logarithmic space, which results in a more suitable exploration of
the space of parameters when they are positive and potentially span through several orders of magnitude.

Local solver

A local method is introduced to achieve a fast local convergence, therefore, reducing the number of objective
function evaluations required when an horizontal view is assessed. The local search moves from solution to
solution in the space of candidate solutions by applying local changes, until a solution considered optimal is
found or a time bound is elapsed. NL2SOL [49], a method for solving non-linear least-squares problems, has
demonstrated to be particularly effective for parameter estimation problems [48]. In this work, NL2SOL is
called every L iterations of the DE algorithm.

Tabu List

One drawback of the previous local search is that it tends to become stuck in suboptimal regions or on
plateaus where many solutions are equally fit. As a means to avoid this problem, the concept of tabu
search is introduced in the algorithm. Tabu search enhances the performance of local methods by avoiding
revisits to the same place during the search. This is achieved using memory structures that describe the
visited solutions. If the vicinity of a potential solution has been previously visited within a certain short-
term period it is marked as tabu, so that the algorithm does not consider that possibility repeatedly. This
technique improves the diversity among members of the population, and consequently contributes to the
computational efficiency of the algorithm.

Algorithm 3 shows the pseudocode for the local search and tabu list included at the end of each external
iteration of the DE algorithm. The local solver condition is met each L external iterations of the DE algo-
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Algorithm 3: Local Search and Tabu List

TabuList ← set of visited points in the local solver ;
! local solver condition
if iter%L==0 then

Sort Plocal population;
−−−→
Point =

−−−−→
Plocal(0);

for i ← 0 to number of individuals of Plocal do
! Calculate all distances among the point Plocal(i) and all points of the Tabu List

distanceSet = distanceEuclidean(
−−−−→
Plocal(i) , TabuList);

if ∀ d ∈ distanceSet > min distance then
−−−→
Point =

−−−−→
Plocal(i);

break;

end

end

Insert
−−−→
Point in the TabuList;

−−−−−−−→
newPoint = Run Local Search(−−−→Point);

if
−−−−−−−→
newPoint is better than

−−−→
Point then

Replace the worst point in Plocal with
−−−−−−−→
newPoint;

end

end

rithm, and the evaluations performed during the local search stage count in the total number of evaluations
of the DE algorithm.

Although all these three enhancements have significantly contributed to accelerate the solution of our real
systems biology applications, the use of a local solver (effectively creating a hybrid method) has proved to be
particularly useful. It is worth mentioning that hybrid methods have a long tradition in numerical methods in
general, and numerical optimization in particular (e.g. Powell’s dogleg method [50] is a well known classical
example). In evolutionary computation, memetic algorithms [51] use a hybrid approach to combine global
with local search methods. Hyper-heuristics make use of an even higher level of generality, with the objective
of choosing the right heuristic for a given problem [52]. Here we have chosen a parsimonious hybrid design,
combining a classical DE scheme with an specialized local search.

Figure 1 graphically illustrates the global proposal asynPDE IH: the asynchronous parallel implementation
of a DE extended with improved heuristics. Note that different processes are executing a DE in different
stages, and cooperation between them is performed in an asynchronous fashion avoiding stalls if any of the
processes is involved in a time consuming phase, such as the execution of the local solver (see process ID
3 in the figure), while other processes (processes ID 2 and ID 3 in the figure) are in the migration phase.
When a process is not able to attend to a migration reception, the message will be stored in the process as
a pending migration, avoiding the blocking of the sender process (see process ID 1 in the figure, attending
pending migrations).

6 Experimental Results

This section assesses the impact of the described optimization techniques in the DE algorithm. In order to
evaluate the efficiency of the proposed cooperative asynchronous algorithm, different experiments have been
carried out. Its behaviour, in terms of convergence and total execution time, was compared with alternative
versions of DE. To simplify the understanding of this work, we use the following nomenclature in this section
:

• seqDE: sequential classic version of DE (Algorithm 1)

• asynPDE: proposed asynchronous parallel version of the seqDE

• synPDE: synchronous parallel version of the seqDE (used for comparative purposes)

• seqDE IH, asynPDE IH and synPDE IH: versions of the above algorithms with improved heuristics en-
abled (local search, tabu list and logarithmic search).
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Figure 1: Asynchronous parallel DE with improved heuristics (asynPDE IH).

The experiments performed are presented in two subsections. The first one analyzes the performance
of the asynchronous parallel cooperative strategy proposed considering an algebraic black-box optimization
test-bed. The second one evaluates the overall improvement in a set of computational systems biology
problems by combining diversification achieved by the parallel cooperative strategy with the intensification
proposed for the local search.

In order to enable the reproducibility of these experiments and the comparison with other parallel ap-
proaches [53], sufficient information to allow the replication of the different experiments, such as all the
configuration parameters used in each test, are provided in next subsections. Also, because of the stochastic
properties inherent to these algorithms, several independent runs have been made for each experiment. The
number of independent runs and statistical data corresponding to the obtained results are reported as well.
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Table 1: Subset of BBOB-2009 benchmark functions. Parameters: dimension (D), population size (NP),
crossover constant (CR), mutation factor (F), mutation strategy (MSt), value-to-reach/ftarget (VTR).

N. Function D NP CR F MSt VTR
f8 Rosenbrock Function, original 12 150D .8 .9 DE/rand/2 149.15
f15 Rastrigin Function 5 150D .8 .9 DE/rand/2 1000
f17 Schaffers F7 Function 6 150D .8 .9 DE/rand/2 -16.94
f19 Composite Griewank-Rosenbrock Function F8F2 4 3000D .9 .9 DE/rand/1 -102.55
f20 Schwefel Function 6 150D .8 .9 DE/rand/2 -546.5
f22 Gallagher’s Gaussian 21-hi Peaks Function 10 150D .8 .9 DE/rand/2 -1000

6.1 Performance evaluation of the asynchronous parallel strategy

The quality of the solution for the proposed parallelization has to be evaluated, since the proposal implements
not only a variant of the sequential DE, the island-model, but also a modification of the classical synchronous
implementation of this model. Therefore, it is interesting to determine whether the proposed algorithm
challenges the classical implementations in terms of the number of evaluations needed to achieve the required
quality solution. In order to obtain a fair comparison between the proposal (asynPDE) and the serial classical
DE (seqDE), the enhancements proposed in Section 5, that is, the logarithmic search, the local solver, and
the tabu list, were disabled.

The BBOB-2009 data set [18] has been used as a benchmarking testbed due to its popularity and
accessibility. This data set is composed of 24 noiseless benchmark functions to be minimized. Although
tests have been carried out using the whole BBOB-2009 data set, only five benchmark functions have been
selected to illustrate the experimental results in this paper.

Table 1 shows the five selected benchmarks and some of the configuration parameters used in the following
experiments. There are many configurable parameters in the classical DE algorithm, such as the mutation
scaling factor (F), the crossover constant (CR) or the mutation strategy (MSt), whose selection may have a
great impact in the algorithm performance. Since the objective of this work is not to evaluate the impact
of these parameters, only results for one configuration are reported here. Previous tests have been done to
select those parameters that lead to reasonable computation times. Nevertheless, the proposal can be applied
to any other configuration parameters. Also, it is worth noting that further performance improvements can
be achieved by further fine-tuning settings.

For the selection of the settings in these experiments, in general, the suggestions in [10] have been
followed. Regarding F and CR, the settings F ∈ [0.5, 1] and CR ∈ [0.8, 1] are recommended. Thus, in
these experiments F=0.9 and CR=0.8 have been chosen. Concerning the mutation strategy, among those
suggested in [10], namely DE/best/1, DE/best/2, DE/rand/1 and DE/rand/2, the last one has been chosen
since some of these benchmarks are multimodal, where this MSt remained most competitive and slightly
faster to converge to the value to reach [13]. For the population size, although in [10] a guideline is given
where a setting of the DE population size to about ten times the dimensionality of the problem is proposed,
this indication is not confirmed in recent studies, such as in [54] where it is shown that a population size
lower than the dimensionality of the problem can be optimal in many cases. Since the parallel algorithm
will scatter the population matrix between the number of processors, and taking into account that when
the population size is small the probability of premature convergence and stagnation may be higher, a
NP = (5×D)× 30 = 150×D has been chosen for these experiments, where the number of processors range
between 5 and 60. The only exception was function f19-Composite Griewank-Rosenbrock Function F8F2,
which is a highly multimodal function that, with the previous settings, frequently fall into an undesired
stagnation condition. Therefore, to prevent stagnation in this function NP has been augmented to 3000×D,
CR has been set to 0.9, and MSt to DE/rand/1.

In parallel island DE algorithms, new parameters have to be also considered (see Table 2 ), such as
migration frequency (µ), island size (λ), communication topology (Tp) between processors, or selection
policy (SP) and replacement policy (RP) in the migration step. In SP and RP policy, there are two possible
values: random mode (RR) when individuals are selected or replaced randomly, and better/worse mode
(BW) when the better individuals are selected to be sent and the worst individuals are replaced.

In addition, the proposed parallel algorithms was tested using different combination of CR and F values
in different processes, which enhances diversity as well [39, 41]. Experiments combining these parameters
have been thoroughly performed. Local configuration (LC) parameter manages this property: it can be
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Table 2: Parallel implementation parameters
Parameter Value Description
Island size (λ) n/nproc Size of population matrix for each parallel process.
Migration frequency (µ) 12.5% (every 8 iterations) Number of iterations to enter in migration stage.
Topology (Tp) ring/star Communication topology between processors
Selection policy (SP) random (RR) / best (RB) It selects a set of elements to send in migration stage.
Replacement policy (RP) random (RR) / worst (RW) It replaces a set of elements in subpopulation matrix.
Local configuration (LC) Homogeneous/Heterogeneous It explains how is the value of CR and F for each processor.

Table 3: AsynPDE vs SeqDE. Function: f-22. Values in the table in order of appearance: percentage of
success (hits), average of the best value for each run, mean of the number of consumed evaluations, mean and
standard deviation of the execution time, and speedup calculated as sp=time(seqDE)/time(asynPDE). Parallel
implementation parameters: Tp=ring, SP/RP=RR, µ=12,5%, and LC=Heterogeneous. Stopping criteria:
maximum number of evaluations=3000000 or achieve VTR=-1000 with an absolute tolerance TOL=1e-3.
Algorithm processors % hit avg(bestx) mean #

evals
mean time
±std (s)

mean speedup

seqDE 1 4 -999.4315 3001950 10.199 ± 0.037 -
5 20 -999.5550 2937648 1.688 ± 0.086 6.04
10 44 -999.7322 2841867 0.979 ± 0.097 10.42

asynPDE 20 60 -999.8317 2744889 0.481 ± 0.055 21.21
40 78 -999.9434 2576759 0.246 ± 0.039 41.36
60 92 -999.9987 2537147 0.187 ± 0.023 54.34

Table 4: Quality value test in BBOB benchmarks. Values in the table: mean and standard deviation of seqDE
runtimes; parallel parameters, LC and Tp, that obtain the best results for each parallel algorithm (asynPDE or
synPDE); speedup results calculated as sp=time(seqDE)/time((a)synPDE). Common parallel implementation
parameters: SP/RP=RR. Stopping criteria: achieve VTR with an absolute tolerance TOL=1e-3.

mean speedup
Number of processors

Function seqDE (s) Algorithm LC Tp 5 10 20 40 60
f8 13.55±1.17 asynPDE Hete Ring 5.2 10.8 21.1 34.0 43.8

synPDE Hete Ring 5.0 9.5 16.9 15.4 13.2
f15 20.41±0.73 asynPDE Hete Ring 4.3 8.7 43.4 171.9 221.9

synPDE Homo Ring 9.8 22.3 69.0 123.1 136.4
f17 7.26±0,35 asynPDE Hete Star 6.7 12.6 26.1 70.7 120.8

synPDE Hete Star 7.6 15.9 29.2 56.4 68.3
f19 26.93±10.39 asynPDE Homo Ring 7.3 11.2 40.9 124.8 155.4

synPDE Hete Ring 9.0 18.6 45.3 95.4 128.0
f20 18.12±0,88 asynPDE Hete Ring 21.3 31.9 113.3 318.6 447.2

synPDE Hete Ring 21.8 50.1 131.7 235.2 252.0

homogeneous (Homo), when all processes have the same attributes, and heterogeneous (Hete) in the opposite
case. In heterogeneous case, the values used for the results reported were F={.9, .7} and CR={.9, .7, .2}.
The combination policy is the following: the algorithm assigns to each process one pair F-CR belonging to
the sorted list of all possible combinations of the above sets of F and CR. When all the pairs have been
distributed, it restarts the previous sorted list and the algorithm continues the distribution.

In the experiments performed with BBOB-2009 benchmarks, it is important to note that the global
population has been distributed among the cores. This assures that the improvement in the diversity comes
from the asynchronous sparse individual exchanges in the parallel version, allowing to analyze the impact
of this technique on the algorithm computational efficiency. So, the island size for these experiments is
NP/PROC.

Experiments, consisting of 50 independent runs each, were carried out on Intel Sandy Bridge nodes of
CESGA SVG Linux cluster [55]. Table 3 shows, for the f-22 Gallagher’s Gaussian 21-hi Peaks Function of
the BBOB-2009 data set, the percentage of executions that achieve the optimal value (% hit), the average
value of the achieved tolerances (avg), the mean number of evaluations (# evals) and the mean execution
time. Results for the serial DE (seqDE) and for the proposed parallel island-based algorithm (asynPDE) with
different number of cores are shown. First, it can be observed that when the number of cores grows (P-5 to
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Figure 2: Predefined effort test in BBOB benchmarks. Parallel implementation parameters:
LC=Heterogeneous, Tp=ring, SP/RP=RR and µ=12,5%. Stopping criteria: maximum number of eval-
uations=1000200.

P-60 in Table 3), the number of the executions that achieve the quality solution increases. It can also be
observed that the number of evaluations needed to achieve the optimal solution decreases when the number
of processors grows. In short, these results show the effectiveness of the parallel algorithm proposed in terms
of quality of the solution, where less evaluations are needed to come to the required tolerance when more
processors take part in the search. Table 3 shows also speedups for the proposed algorithm asynPDE versus
the seqDE with different number of processors. At first glance, it can be observed that the speedups obtained
are superlinear. That is due to the diversity introduced by the migration phase in the parallel execution,
that actually improves the effectiveness of the DE algorithm.

Two different stopping criteria for the algorithms were considered in these experiments: solution quality,
for an horizontal view, and maximum effort, for a vertical approach. Thus, two different speedup definitions
were used to compare the sequential and the parallel algorithm: a speedup with solution quality stop, and
a speedup with predefined effort. The first one shows how fast the parallel algorithm reaches DE solution
versus the sequential algorithm. This is the case of the results shown in Table 3. This speedup is due
both to the distribution of computations among the processors, and to the effectiveness of the parallel
algorithm, which requires fewer iterations as the number of processors grows. However, in most of the cases,
the sequential algorithm and the parallel one running on few processors do not reach the quality solution
before the maximum allowed effort. In those cases, the best way to fairly compare sequential and parallel
executions is to stop all of them at a predefined effort, that is, for a predefined number of evaluations. Since
the number of iterations performed are, in this case, the same, these speedup results help to analyze how
faster are the iterations of the parallel algorithm versus the classical iterations. Table 4 shows the speedup
with quality solution for those configurations that reach the required tolerance in a reasonable amount of
time and eventually obtain the best speedups. The value-to-reach (VTR) in each experiment, generated by
the BBOB benchmark software, is shown in Table 1. It is noticeable that, in most cases, the heterogeneous
strategies are superior to homogeneous ones, since they benefit from search diversification.

Figure 2 shows the speedup from a vertical view, that is, for a predefined effort. Results for both the
proposed asynchronous algorithm (asynPDE) and for a synchronous version of the classical DE (synPDE) are
shown for comparison purposes.

It can be seen that, for a small number of processors, the speedup achieved when using the stopping
criterion of predefined effort (Figure 2) is similar in synchronous and asynchronous strategies, indicating that
the evaluation time is similar in both. For a small number of processors, the synchronous version obtains
higher speedups from the horizontal view, that is, using the solution quality as stopping criterion (data
shown in Table 4). This is because fewer evaluations are needed to reach the solution in the synchronous
version. The reason is that, when the processes are synchronized in the migration phase, the new evaluations
are performed after exchanging solutions between processors. In the asynchronous version, however, the
new evaluations after the migration point can start before the complete exchange of solutions, since no
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synchronization is forced between processes. As the number of processors increases, it can be observed
that the scalability of asynchronous proposal improves versus the synchronous one. This is because the
synchronization slows down the processes, since it implies more processes’ stalls while waiting for data.
Thus, the asynchronous version, in spite of requiring further evaluations, reaches the solution in a shorter
time.

In summary, these results show that the proposed asynchronous island-based algorithm achieves good
speedup, and it scales better than the synchronous algorithm for a large number of processors.

6.2 Result for parameter estimation problems in systems biology

In computational systems biology, parameter estimation in models of nonlinear dynamic systems seeks to
obtain a decision vector p, that optimizes the cost function in order to obtain quantitative predictions which
match a given set of experimental time-series data, satisfying other possible constraints. Finding the optimal
values of this decision vector p can be represented as a nonlinear programming problem (NLP), where the
objective is to minimize the cost function:

J =

nε∑
ε=1

nε
o∑

o=1

nε,o
s∑
s=1

(ymε,o
s − yε,os (p))TW (ymε,o

s − yε,os (p)) (5)

where nε is the number of experiments, nεε is the number of the observables (state variables measured
experimentally), nε,os corresponds with the number of the samples per observable per experiment, ymε,o

s are
the measured data, yε,os (p) are the model predictions, and W is a scaling matrix that balances the results
of the observables. This optimization is also subject to the following constraints:

ẋ = f(x,p, t) (6)

x(to) = xo (7)

y = g(x,p, t) (8)

heq(x, y,p) = 0 (9)

hin(x, y,p) ≤ 0 (10)

pL ≤ p ≤ pU (11)

where x is the vector of state variables, xo are the initial conditions, f is the nonlinear dynamic problem
with the differential-algebraic constraints (DAEs), g corresponds with the observation function, heq and hin
are equality and inequality constraints, and pL and pU are lower and upper bounds for the decision vector
p. The equality dynamic constraints, Eqn. (6-7), are solved as an inner initial value problem for each
decision vector. Note that in our case studies constraints Eqn (9-10) were not present, but could be handled
using differential-algebraic solvers and suitable penalty functions, as described in [56]. Upper and lower
bounds for the parameters (Eqn. 11) were handled by a reflection strategy [11] during the global phase and
automatically by the solver NL2SOL during the local searches.

In order to evaluate the global algorithm proposed in this paper (asynPDE IH, that combines the diversifi-
cation introduced by the parallelization evaluated previously and the intensification of the local search) three
challenging parameter estimation problems from the domain of computational system biology were consid-
ered. These problems are known to be particularly hard due to their ill-conditioning and non-convexity
[57, 4]:

• Circadian model: parameter estimation in a dynamic model of the circadian clock in the plant Ara-
bidopsis thaliana, as presented in [58]. The model consists of 7 ordinary differential equations with 27
parameters (13 of them were estimated) with data sets from 2 experiments.

• Nfkb model: this problem is based on the model in [59] and consists of 15 ordinary differential equations
with 29 parameters and data sets from 2 experiments.

• 3-step pathway model : problem considering a 3-step generic and highly non-linear pathway with 8
differential equations and 36 parameters, and data sets from 16 experiments, as presented in [57].
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Figure 3: Best convergence curves for parameter estimation problems. Configuration DE parameters:
NP=10×D, MSt=DE/rand/2. Parallel implementation parameters: LC=Heterogeneous, Tp=ring, SP=RB,
RP=RW, µ=33% (m=3), and λ=NP/NPROC. Local solver condition: L=6. Stopping criteria: achieve
(a)(b) VTR (value to reach)=1e-5 (c) VTR=1e-2

The aim of these experiments is to demonstrate the potential of the proposed techniques for improving
the convergence and execution time of very hard problems. Since the goal of including the enhancements
proposed in Section 5 in the DE algorithm is to improve the effectiveness of each local evaluation, it is
desirable to enhance the exploration in the solution space by means of increasing the diversification in the
parallel threads. Therefore, for these experiments, the heterogenous LC was used in all the cases.

A multicore cluster was used to carry out these experiments. It consists of 16 nodes powered by two octa-
core Intel Xeon E5-2660 CPUs with 64 GB of RAM. The cluster nodes are connected through an InfiniBand
FDR network. OpenMPI library version 1.6.2 has been used to compile the parallel implementations, and
the experiments were carried out using from 1 to 30 processors. In these benchmarks, the execution of only
one test of seqDE could take hours or even days to complete. For each experiment 30 independent runs have
been performed.
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Figure 4: Boxplot of the execution time for parameter estimation problems with asynPDE IH. Configuration:
same configuration as in Figure 3

Figure 3 shows the best convergence curve for these three parameter estimation problems. Results show
that, on the one hand, the logarithmic search, the local search, and the tabu list, on seqDE IH achieve by
themselves a drastically reduction in the execution time required for convergence, due to a reduction in the
number of evaluations needed; on the other hand, the parallelization on asynPDE IH also improves quality
of mean solution since more evaluations are performed in the same amount of time.

Figure 4 illustrates how the proposed asynPDE IH reduces the big variability of execution time in the
sequential version of the algorithm. It demonstrates that when the number of processors grows up in
the asynchronous method, the outliers of the execution time decrease. This is a important feature in the
performance of this solver, because it reduces the average execution time for each benchmark.

Figure 5 shows the speedup for a quality value test in these three parameter estimation problems. These
speedups were calculated comparing execution times of synPDE IH and asynPDE IH with seqDE IH. Note
that the seqDE execution time can not be used to compare with, because of its unreasonable amount of time
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Table 5: Execution time table of the experiments. Configuration: same configuration as in Figure 3
SB problem algorithms proc. #evals #evals/proc. #iter. mean time±std (s)

seqDE 1 11521835 11521835 88627.7 26856.12±3424.14
seqDE IH 1 3534.37 3534.37 11.20 6.46±3.81

circadian asynPDE IH 10 10382.37 1038.23 7.10 2.50±0.27
asynPDE IH 20 17398.73 869.93 6.70 2.02±0.32
asynPDE IH 30 23935.47 797.85 6.58 1.96±0.43
seqDE 1 - - - -
seqDE IH 1 30580.97 30580.97 32.60 202.40±138.53

3-step pathway asynPDE IH 10 43802.94 4380.29 11.03 32.01±8.77
asynPDE IH 20 73970.33 3698.57 9.28 27.79±4.74
asynPDE IH 30 95001.10 3166.70 8.20 24.67±5.06
seqDE 1 - - - -
seqDE IH 1 11253.90 11253.90 34.00 91.37±98.68

NFKB asynPDE IH 10 4370.10 437.01 8.30 6.55±16.90
asynPDE IH 20 4688.27 234.41 7.31 2.98±0.52
asynPDE IH 30 5839.67 194.66 6.76 2.88±0.56

to converge (more than 48 hours for each 3-step and NFKB experiment, when they do not get stuck in local
optima). These figures show that the proposed asynPDE IH reduces significantly execution time, and scales
better than the synPDE IH algorithm for a large number of processors.

The speedup results in these figures may appear to be modest, since they have been calculated related
to the seqDE IH execution time instead of to the seqDE execution time. Table 5 shows results for both
the execution time and the number of evaluations performed in these experiments. Note that the number
of evaluations reported in this table includes those performed by the local solver. Although each external
iteration of the algorithm involves more evaluations when the local solver is enabled, the overall result shows
that the enhanced algorithm needs less total number of evaluations to reach the optimum value.

In these problems, the improvement introduced by the local solver achieves convergence with very few
external iterations of the algorithm, that is, with very few migration phases between islands. Therefore,
adding more processes does not significantly improve the execution time. In the NFKB problem, the con-
vergence improvement achieved by the local solver is not that noticeable, thus, the parallelization continues
introducing diversity when the number of processes increases so performance enhancement is achieved. In
all the cases, when the number of external iterations are drastically diminished, there is no room for further
improvement despite the increased number of processors.

It is important to note that the local solver introduces a great overhead on the execution of each eval-
uation. Moreover, it is responsible for the lack of synchronization between processes at the migration step,
since it leads processes into a more computationally unbalanced scenario, thus, giving advantage to the pro-
posed asynchronous solution. When more evaluations are required, the synchronization between processes
will decrease, thus, better performance will be achieved by the asynchronous proposal. This is the case of
the NFKB problem, that requires more evaluations to converge than the other two benchmarks.

To prove the statistical significance of the results, the Wilcoxon Rank-sum test has been applied for a
confidence level of 0.95. Table 6 shows the results of the test, using the runtimes obtained in the experiments.
As it can be seen, the p-value is always smaller than the significance, thus, asynPDE IH outperforms both
the seqDE IH and the synPDE IH. Note also that, when comparing the asynchronous proposal with the
synchronous one, the values of p-value are higher when using few processors and they decrease when the
number of processors grows. This demonstrates the scalability of the proposal over the synchronous version.

Compared to the serial DE (seqDE), the proposed enhancements improve the execution time in several
orders of magnitude. For the circadian problem, the execution of the seqDE lasts more than 7 hours while the
proposed seqDE IH requires only a few seconds, which demonstrates the potential of the proposed heuristics
in the solution on these problems.

7 Conclusions

In this paper, we presented an improved Differential Evolution algorithm designed to solve complex problems
in computational systems biology. The key idea is to achieve a proper balance of the exploration abilities
of DE and the exploitation abilities of efficient local search. The method improves global search through an
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Figure 5: Speedups calculated with respect to the execution time of seqDE IH. Configuration: same config-
uration as in Figure 3
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Table 6: Wilcoxon signed ranks test with a significance level α=0.05. The parameters in the table R+ and
R− are the sum of the positive/negative ranks. Configuration: same configuration as in Figure 3

SB problem algorithms R+ R− p-value
circadian asynPDE IH 10-procs versus seqDE IH 465 0 1.73E-06

asynPDE IH 30-procs versus asynPDE IH 10-procs 424 41 8.19E-05
asynPDE IH 10-procs versus synPDE IH 10-procs 446 19 1.13E-05
asynPDE IH 30-procs versus synPDE IH 30-procs 464 1 1.92E-06

3-step pathway asynPDE IH 10-procs versus seqDE IH 465 0 1.73E-06
asynPDE IH 30-procs versus asynPDE IH 10-procs 399 66 6.16E-04
asynPDE IH 10-procs versus synPDE IH 10-procs 443 22 1.49E-05
asynPDE IH 30-procs versus synPDE IH 30-procs 465 0 1.73E-06

NFKB asynPDE IH 10-procs versus seqDE IH 465 0 1.73E-06
asynPDE IH 30-procs versus asynPDE IH 10-procs 370 95 4.70E-03
asynPDE IH 10-procs versus synPDE IH 10-procs 441 24 1.80E-05
asynPDE IH 30-procs versus synPDE IH 30-procs 465 0 1.73E-06

asynchronous parallel implementation based on a cooperative island-model. The improved local search is
implemented by means of several heuristics (efficient local solver, tabu list, logarithmic search) which exploit
the structure of parameter estimation problems in systems biology, the main application area considered
here.

It should be noted that, although the method presented here is based on a parsimonious hybrid (global-
local) design, the three heuristic enhancements introduced in the local search are fundamental to successfully
exploit the special characteristics of these systems biology problems, which are typically very ill-conditioned
and highly multimodal, as reviewed in [4]. The results obtained show that this improved local search
mechanism, combined with the parallel cooperation scheme, allow an adequate balance between exploration
and exploitation for the class of problems considered.

The experimental results show that (i) convergence time can be reduced by several orders of magnitude
when the local search heuristics are included in the DE algorithm, and (ii) the asynchronous parallel strategy
proposed attains a further reduction in the convergence time through collaboration of the parallel processes,
demonstrating also a competitive speedup against the synchronous approaches.

As an example of the practical significance of this work, one of the systems biology benchmarks considered,
the 3-steps pathway problem, typically requires more than 3 days of computation time using the classical
version of DE executed in one of the cores of our test machine, but it can be solved in less than one minute
with the novel asynchronous parallel method presented.

Although the improved DE was designed and tested with focus on the field of parameter estimation prob-
lems in computational systems biology, it can also be directly applied to solve arbitrary global optimization
problems.
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[48] J. Egea, M. Rodŕıguez-Fernández, J. R. Banga, R. Mart́ı, Scatter search for chemical and bio-process
optimization, Journal of Global Optimization 37 (3) (2007) 481–503.

[49] J. E. Dennis, Jr., D. M. Gay, R. E. Welsch, Algorithm 573: Nl2sol - an adaptive nonlinear least-squares
algorithm [e4], ACM Trans. Math. Softw. 7 (3) (1981) 369–383.

[50] M. Powell, Convergence properties of a class of minimization algorithms, Nonlinear programming 2 (0)
(1975) 1–27.

[51] F. Neri, C. Cotta, P. Moscato, Handbook of memetic algorithms, Vol. 379, Springer, 2012.

[52] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, S. Schulenburg, Hyper-heuristics: An emerging
direction in modern search technology, in: Handbook of metaheuristics, Springer, 2003, pp. 457–474.
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