High Performance Genetic Algorithm for Land Use
Planning

Juan Porta, Jorge Parapar, Ramén Doallo?®, Francisco F. Rivera®, Inés
Santé, Rafael Crecente®

@ {juan.porta,jparaparl,doallo} Qudc.es
Computer Architecture Group. University of A Corunia, Spain
b # rivera@usc.es
D. FElectronics and Computing. University of Santiago de Compostela, Spain
¢ {ines.sante,rafael.crecente} Qusc.es
Land Laboratory. University of Santiago de Compostela, Spain

Abstract

This study uses genetic algorithms to formulate and develop land use
plans. The restrictions to be imposed and the variables to be optimized are
selected based on current local and national legal rules and experts’ criteria.
Other considerations can easily be incorporated in this approach. Two op-
timization criteria are applied: land suitability and the shape-regularity of
the resulting land use patches. We consider the existing plots as the min-
imum units for land use allocation. As the number of affected plots can
be large, the algorithm execution time is potentially high. The work thus
focuses on implementing and analyzing different parallel paradigms: multi-
core parallelism, cluster parallelism and the combination of both. Some tests
were performed that show the suitability of genetic algorithms to land use
planning problems.

Keywords: land use planning; genetic algorithms; parallel programming;
distributed programming; clusters of multi-core systems; GIS

1. Introduction

Land use planning is a broad term that can be applied to different pro-
cesses related to the regulation and management of land use. According to
the FAO (Food and Agriculture Organization of the United Nations), land

Preprint submitted to Computers, Environment and Urban Systems May 7, 2012

use planning is the systematic assessment of potential land and water alter-
natives for land use and economic and social conditions to select and adopt
the best land use options (FAO et al., 1993).

Developing a comprehensive land use plan is a long and laborious process,
requiring great effort from public administrations and technical teams to
achieve a good solution. As a result, there is an increasing demand for tools
that support the planning process. One of the most complex tasks in this
process is allocating land use categories to spatial units, resulting in a land
use zoning map. Multiple conflicting objective functions and a high number
of spatial units are involved in this process.

Due to these characteristics, we propose a parallel genetic algorithm for
land use zoning that uses an irregular spatial structure based on a cadastral
parcel map. This work is done within the frame of a project that aims to
develop a spatial decision support system for the development of Municipal
Land Use Plans in Galicia, an autonomous region in Northwest Spain. But
as this is a general algorithm for optimizing of land use allocation, it can be
used to design different types of land use plans in any region.

Our study cases are the municipalities of Galicia. This region is charac-
terized by highly fragmented land ownership. Each municipality thus has, on
average, about 36,000 plots, leading to high computational costs for execut-
ing the genetic algorithm. To the best of our knowledge, the related literature
represents no solutions for handling large regions with so many plots. There-
fore, one of the main issues to be considered here is using different parallelism
strategies to reduce the execution time, and thus improving the algorithm
results. Two levels of parallelism are considered: a lower one for multi-cores
based on shared memory paradigms, and a higher one for clusters based on
message passing paradigms. These two levels can be joined, giving a third
hybrid one.

The algorithm has been developed using the Java programming language.
In particular, implementating the multi-core parallelism uses the standard
concurrent programming package included in the Java Platform, and the
cluster version has been implemented using the specific Java message pass-
ing library called MPJ Express (Shafi, 2011). Java was chosen because the
performance gap between it and native languages (e.g. C and Fortran) has
recently narrowed, thanks to the Java Virtual Machine (JVM) Just-in-Time
(JIT) compiler. Moreover, the interest for parallel programming in Java
is rising because of the appealing features of this language for program-
ming multi-core cluster architectures, particularly the built-in networking

and multi-threading support, and the continuous increase in JVM perfor-
mance. Furthermore, the number of available libraries contributes to the
productivity of the projects implemented in Java (Taboada, Tourino, and
Doallo, 2009).

Due to the type of the information involved, using a Geographical Infor-
mation System (GIS) (Nyerges and Jankowski, 2009) can be helpful. As part
of this work, two user interfaces were implemented to allow users to work
with these algorithms. One of these interfaces is graphical and embedded
into a GIS software, which makes managing of the tool even easier (Section
7.3). The other one was intended for environments where using graphical
interfaces is not allowed, e.g., clusters.

1.1. Related work

Numerous studies have recognized the multi-objective nature of land
use planning problems (Janssen, van Herwijnen, Stewart, and Aerts, 2008).
These objectives often include the land suitability for the land uses of a
land category (Arentze, Borgers, Ma, and Timmermans, 2010; Cromley and
Hanink, 1999; Eastman, Jin, Kyem, and Toledano, 1995; Xibao, Jianming,
and Xiaojian, 1995) and some kind of spatial criteria, especially patch com-
pactness (shape-regularity), where a patch is defined as a contiguous area
within the same land category (Aerts, Eisinger, Heuvelink, and Stewart,
2003; Aerts, van Herwijnen, Janssen, and Stewart, 2005; Duh and Brown,
2007; Janssen, van Herwijnen, Stewart, and Aerts, 2008; Kai, Bo, Qing, and
Shengxiao, 2009; Stewart, Janssen, and Herwijnen, 2004). The simplest spa-
tial metrics for evaluating compactness are based on metrics for each land
use, including the number of patches (Aerts, van Herwijnen, Janssen, and
Stewart, 2005; Janssen, van Herwijnen, Stewart, and Aerts, 2008), the largest
patch for each land use (Aerts, van Herwijnen, Janssen, and Stewart, 2005;
Janssen, van Herwijnen, Stewart, and Aerts, 2008), or the number of neigh-
boring cells with the same land use (Aerts, Eisinger, Heuvelink, and Stewart,
2003; Kai, Bo, Qing, and Shengxiao, 2009). More complex metrics are based
on the relationship between area and perimeter for each land use patch, as the
average, for all patches of the ratio of the number of perimeter cells to the to-
tal number of cells in the patch (Janssen, van Herwijnen, Stewart, and Aerts,
2008), or the average ratio of the perimeter divided by the square root of the
patch area (Aerts, van Herwijnen, Janssen, and Stewart, 2005). Brookes
(2001) developed a more sophisticated method for patch design based on a
genetic algorithm, applicable only in a raster environment.

3

Spatial allocation problems involve great computational complexity, as
they are combinatorial optimization problems that are characterized by a
large number of alternative solutions. They thus often require high com-
putation times (Xiao, Bennett, and Armstrong, 2001), especially when the
objectives include spatial characteristics like compactness or connectedness
(Duh and Brown, 2007). Due to this, and because the number of spatial
units involved in a land use allocation problem is usually high, searching the
optimal solution requires turning to heuristic algorithms capable of achiev-
ing near-best solutions in a reasonable time (Matthews, Sibbald, and Craw,
1999). In particular, genetic algorithms have proven efficient and effective for
solving geographical problems (Xiao, Bennett, and Armstrong, 2001). Nu-
merous studies have used genetic algorithms for spatial land use allocation
(Aerts, van Herwijnen, Janssen, and Stewart, 2005; Balling, Taber, Brown,
and Day, 1999; Eldrandaly, 2010; Feng and Lin, 1999; Holzkamper and Sep-
pelt, 2007; Janssen, van Herwijnen, Stewart, and Aerts, 2008; Kai, Bo, Qing,
and Shengxiao, 2009; Matthews, Sibbald, and Craw, 1999; Stewart, Janssen,
and Herwijnen, 2004; Xibao, Jianming, and Xiaojian, 1995; Xin and Zhi-xia,
2008; Zhang, Zeng, and Bian, 2010). Most algorithms operate on a regular
raster grid. Land use zoning based on a regular grid is unrealistic, as it may
lead to a single land use plot allocated to several categories or a group of
different plots allocated to a single land use category. The specific planning
laws in the study area also require land use zoning based on cadastral plots.
Only two of the cited studies use irregular spatial units, but the number of
units is small in these cases; 155 in Balling et al. (1999) and six in Xin and
Zhi-xia (2008).

The high number of plots involved in a municipal land use plan leads
to high computational costs when running enough iterations to explore the
complete search space. This is why we considered using parallel computing.
Research on parallel computing applied to geographical information science
began over 20 years ago but most current geographical analytical tools and
models are still based on sequential processing (Guan and Clarke, 2010).
Some researchers have started to implement GIS based on parallel environ-
ments (Huang, Wei, and Li, 2009). Armstrong and Densham (1992) describe
strategies for parallelizing location-allocation models, but optimization algo-
rithms for spatial land use allocation have not been parallelized. Finally, the
architecture of processors that dominate the market presently is multi-core.
This fact justifies parallelizing the proposed algorithms.

The paper is structured as follows: Section 2 introduces the concrete land

4

use planning problem that must be resolved. Section 3 explains the main
characteristics of the genetic algorithms, formally establishes the optimiza-
tion problem and discusses the representation of the individuals of the genetic
problem and other data structures. Section 4 summarizes a pre-processing
stage and describes the specific characteristics of the genetic algorithm. This
section also explains the functions used to evaluate the land suitability and
patch compactness. Section 5 introduces the implementations of the parallel
versions of the algorithm. Section 6 discusses the experimental results. Sec-
tion 7 provides details about other important functionalities of the proposed
tool. Finally, Section 8 presents some conclusions and ideas for future work.

2. Land use planning problem definition

As reported in section 1.1, the land use planning problem can be formu-
lated using an optimization problem in which each piece of land is allocated
to the best category according to certain criteria and restrictions.

Galicia land use planning laws define a set of fifteen land use categories
(Lei 2/2002, 2002; Lei 2/2010, 2010). The laws also describe the restrictions
enforced for each category (i.e., the maximum and minimum size for each one)
and establish conditions about when a piece of land is in one of the following
circumstances: should be allocated in one category, may be allocated in one
category, or may not be allocated in one category. For some categories,
spatial allocation is completely and uniquely determined by legal restrictions
(i.e., closeness to riversides or roads). For other categories, the conditions
only partially establish their spatial allocation. We refer to these two groups
of categories as fixed and non-fixed categories, respectively.

Laws and experts in land use planning issues also advise that the spatial
allocation process should consider the current boundaries of the existing plots
in the municipality, i.e., a plot should not be divided into several parts with
different categories. A plot whose category is uniquely determined by legal
conditions is called a fixed plot, and the rest are non-fixed plots.

Allocating the categories that cover urban areas and rural settlements
should be considered with special attention. On the one hand, these cate-
gories generate the most social controversy among the inhabitants, mainly
due to building restrictions. On the other hand, the technical conditions for
their allocation are usually specific and difficult to satisfy. Therefore, allo-
cating the rural settlements is calculated first with an evolutionary algorithm
(Porta et al., 2012) and considered input for the genetic algorithm. Our main

concern in this work is to solve the problem of the remaining categories, in-
cluding the urban areas to be treated like any other non-fixed category.

Computations to spatially delimit the fixed categories and determine the
fixed plots can be performed easily using geometric operations (i.e., buffers,
intersections, or differences). In our proposal, they are executed in a pre-
processing stage. The problem is then reduced to assign one non-fixed use
category to each of the non-fixed plots. If the number of non-fixed categories
is C, and N is the number of non-fixed plots, the number of possible solutions
is CV. There are fewer possible solutions because of the constraints, e.g., the
maximum and minimum amounts of area that can be allocated to each non-
fixed category.

In general, land use planning regulations do not establish explicit meth-
ods to quantitatively evaluate land use plans to compare different alterna-
tives. There are many variables of different natures that can be considered
to validate any solution to the problem. Our study, based on experts’ crite-
ria, considers two aspects to be optimized: the compactness of the resulting
land use patches and the land suitability that each plot has for the category
allocated to it. These criteria can be changed in different cases accordingly.

Land use patches are defined as the polygons resulting from the union
of plots allocated to the same category. Their regularity is estimated as de-
scribed below, using their geometrical features (areas and perimeters). Re-
garding the land suitability of each plot to each category, this work considers
it as a piece of input data established by experts. In (Santé-Riveira, Crecente-
Maseda, and Miranda-Barrds, 2008), the authors discussed different methods
for its estimation and studied methods to determine the optimal total area
to be allocated to each land use. Intervals centred on these optimal values
can be used to choose the upper and lower bounds of the area constraints.
These bounds are also input parameters.

Hence, the objective is to maximize these optimization criteria for the
search space defined by all possible combinations of non-fixed plots with
non-fixed categories, subject to given area constraints.

The optimization problem can thus be established as maximizing a fitness
function that represents a trade-off between the aptitude of the plots to
their category and the compactness of the spots, subject to the condition
that the total area of every category is inside a given interval. Section 4
provides details about this formulation and Section 3 introduces some related
concepts.

3. Land use optimization using genetic algorithms

Decision makers consider several, usually conflicting, objectives in many
problems like this one. They are usually called multiobjective combinatorial
optimization (MOCO) problems (Ehrgott and Gandibleux, 2000). MOCO is
a discrete optimization problem with several variables, several objectives and
a specific constraint structure defining the feasible solution set. In our case,
the categories of each N plots define the set of variables, and the objectives
are the aptitude and compactness defined in section 4.2.2. Because MOCO
problems have discrete natures, they are non-continuous and thus cannot be
solved as linear programming problems. To solve these problems, researchers
have proposed many approximation methods based on iterative heuristics
that intelligently combine different concepts for exploring and exploiting the
search space. One of the most robust heuristics is the genetic algorithms.

Genetic algorithms (Goldberg, 1989) are search heuristics that are often
applied to optimization or learning. They are based on the principles of
natural evolution and use terms as genes and individuals, and operators as
selection, crossover and mutation. They use the "survival of fitness” evolu-
tionary analogy, where the best individuals survive to the next generations.
Genetic algorithms maintain a set of individuals called the population. Each
individual, or chromosome, encodes a candidate solution and is composed
of genes. With the selection, crossover, mutation and election operators,
individuals evolve and generate a new population.

To formalize the land use optimization problem in a genetic algorithm, a
way to represent individuals must be defined. In Matthews et al. (1999), the
authors propose two different genotype representations. The first one is based
on a one-dimensional array, the land block (LB) representation, in which each
land block corresponds to a current plot. The second one is the percentage
and priority (P&P) representation, in which genes hold two values, the tar-
get percentage to be allocated and the priority for each land use. The LB
representation usually requires many blocks, which demands a large amount
of memory. Conversely, the P&P representation often needs more operations
and more iterations. There is a third method to represent the individuals
based on a two-dimensional structure, called the grid method(Kai, Bo, Qing,
and Shengxiao, 2009). It divides the region into rectangular cells, where each
cell represents a piece of land to be classified. This method was rejected due
to potential problems in matching grid-based solutions with plots. In our
study, the plots usually have irregular patterns. Our proposal is to use the

first approach primarily because it fits with the plot information provided
by the GIS, and the computational drawbacks can be reduced by the right
data structure choice for storing the population. Parallel implementation can
diminish the high execution times.

Each individual gene represents a label that identifies the possible non-
fixed category allocated to the corresponding plot. Individuals consist of as
many genes as the number of considered plots and can thus be large in terms
of number of genes. This is why an optimal use of the available memory
becomes a critical issue. As a consequence, data structures with fast access
times must be carefully chosen.

To validate the quality of individuals, a fitness function with two com-
ponents is considered. Section 4.2.2 explains it in-depth. Individuals that
do not satisfy the restrictions are not penalized, but they are not allowed to
exist in the next population.

4. Pre-processing stage and genetic algorithm implementation

This section introduces the preprocessing stage and data structures cho-
sen to optimize data access time. Our specific problem is formulated using a
genetic algorithm scheme.

4.1. Pre-processing stage and basic data structures

Some information derived from the geographical data is obtained in a
pre-processing stage. This information is saved in a file to be read when
the genetic algorithm starts. Both stages are thus uncoupled, and several
executions of the genetic algorithm with different parameters can be easily
performed without rerunning the pre-processing. Getting most information
requires, executing computationally expensive geometric operations (e.g., in-
tersections). Using the pre-processing stage, these calculations will be run
just once. The time spent reading the file is negligible compared to the time
spent by those operations. In the pre-processing stage, the plots with fixed
category are identified and will not considered in the genetic algorithm. Fur-
thermore, fixed plots allocated to non-fixed categories are also identified and
marked in the preprocessing stage; we do not dismiss them, because they
influence the compactness calculation, although they cannot change their
categories.

For compactness, the lengths of the border lines between plots are needed,
so each plot is checked to find all its neighbors (adjacent plots). Two plots

Plots

P5

P6
P7 Index array

[P2|P8|Pa|P1|P3|Pe|P7|P2|Pa|Pe|P3|P5|P4|Ps|P2|P3|Ps|p7|p2|Pe|Ps|P1|P7[Ps|P1|Ps]

25

Array with neighbours

Figure 1: Arrays used to store the information about the neighborhood.

are neighbors when the length of the borders they share is greater than zero,
which means that two plots are not neighbors if they only touch each other
at one point. Calculating the neighbors is also a computationally expensive
operation. Doing so at the pre-processing stage thus saves execution time.
Choosing the right data structure to store the neighbors and the length
of its frontier is an important issue, as the genetic algorithm often accesses
this information. It is thus important to minimize their access time. As the
number of neighbors of each plot can differ, two unidimensional arrays are
used to store the list of neighbors: an array of neighbors and an index array.
The i-th entry of the index array indicates the position in which the first
neighbor of the i-th plot is stored in the array of neighbors, where i=1...N,
with N being the number of the considered plots. The neighbors of each plot
are stored consecutively in the array of neighbors. Figure 1 shows an example
of these two arrays. Neighbors of plot P2 are P1, P3, P6 and P7, and they
are stored starting from position 4 of the array of neighbors (4 is the value
of the second entry in the index array). This structure presents low latency
in its access, which is much lower than a list of lists. The two-dimensional
array is discarded due to the variable number of neighbors of each plot.
The pre-processing stage also involves reading other input data, including
maximum and minimum areas or category weights. Some geographic infor-
mation layers, like coast protection, wetlands, rivers, railway lines, roads,
wind farms, or burnt areas, are also needed to determinate special zones.
As mentioned above, an individual gene is a label that represents any

category. The number of available categories is usually small, so the category
can be labeled using a single byte. An individual is represented by an array
of bytes with as many entries as the number of plots.

The data structure used to store the population is a two-dimensional array
of bytes with one row for each individual. To store the fitness values, a one-
dimensional array is also used with as many entries as the population size.
To store new generations, these data structures must be duplicated, which
increases the memory problem. These data could not be updated in-place,
as they are needed in further steps of the genetic algorithm.

4.2. Genetic algorithm for land use planning

Consider N plots geometrically characterized by their area a, and perime-
ter pr and C' categories such that each plot is assigned to only one category;
ap;r denotes the aptitude of plot k to the ¢ —th category established as an in-
put value. Our problem can then be formulated as obtaining the assignment
of each plot to the category that maximizes a certain objective function. This
function must be defined considering both aptitude and geometrical criteria.
In our proposal, the objective is to find the best assignment with the largest
compacity.

Consider the set of plots assigned to each category such that N; plots
are assigned to the i-th category, and therefore a;;, p;; and ap;; are the area,
perimeter and aptitude of the j-th plot in the i-th set, respectively.

4.2.1. Genetic algorithm stages

Table 2 shows the pseudocode of our genetic algorithm. In the following
paragraphs, all steps are explained using the numbered lines of the pseu-
docode as reference.

Let P be the population with M individuals, P; an individual with size N
(plots), F'(P;) the value of the fitness function of F;, F;; the land-use category
of the j-th gene (plot) of P;, and @) the number of genes to be changed by
the mutation operator.

The initial individuals are randomly created (lines 1 to 3), but this pop-
ulation must be feasible in the sense that it must satisfy the restrictions
imposed in the problem. For severe restrictions, not enough individuals may
be created to complete the population. In that situation, the algorithm stops
after several attempts to create feasible individuals. An alternative might be
starting with valid solutions in the population if experts could provide some

10

1 for (t=1to M) {
2 randomly create P;
3}
4 while (execution_time < maz_time) {
) i=1;
6 while (1 < M) {
7 select P, and P;, where 1 <ig,4, < M Selection
8 randomly select jo and j; where 1 < 59 < j3 < N
9 Py =Py Py Py Py Py Py Crossover
o+1’ J1 J1+1 N
10 Py=Py Py Py Py Pu . ..P,
Ljo ™ "Ojp+1” J1 g1+l N
11 for(a—ltoQ){
12 randomly select kg and ky where 1 < kg, k; < N
13 P;O ko = random_category Mutation
14 P~i1k1 = random_category
15 }
16 P! = P, where F(P,) =
— maa{F(Py), F(P,), F(P,), F(P,)} lection
17 P!, = Py where F(Ps) =))
—max2”d{F< 20)7 () (F)io>7F< 11>}
18 1 =1+2
19 }
20 P=PF
21 }
22 return P, where F(P,) = maz{F(FR,), ..., F(Py)}

Figure 2: Sequential genetic algorithm psuedocode.

such solutions. Nevertheless, in all tests with real cases, the algorithm could
always generate a valid random population.

The first iteration of the main loop of the genetic algorithm is executed to
obtain a new complete population. The main loop of the genetic algorithm
(lines 4 to 21) is hereafter called the genetic loop, and it is the loop in which
the selection, crossover, mutation and election actions are performed.

We use the roulette-wheel technique for the selection stage (Goldberg
and Deb, 1991) (line 7). This is a fitness proportionate method in which
individuals with higher fitness have a higher probability to be chosen. The
main drawback of this method is that it could reduce the search space if

11

super-individuals, which are individuals with much higher fitness than the
rest, are present in the population. Conversely, this method does not sort
individuals according to their fitness as in rank based methods (Béck, 1996).

A two-point crossover (Spears and DeJong, 1991) with random point-
selection is implemented (lines 8 to 10). It randomly selects two different
plot array positions and swaps the genes of both parents between those two
positions. The user establishes the crossover probability.

The user can also set the probability of applying mutations. Theoretically,
each individual gene can change with a given probability, but the number of
genes to be changed (@) can instead be determined by multiplying the given
probability and individual length. The genes are randomly selected (lines 11
to 15). This strategy saves execution time. Mutation rate is an important
parameter, although there is not a way to establish the best value. In fact,
it is directly linked to the problem itself. The literature suggests different
values for it: DeJong set it to 0.001 (Jong, 1975) and Grefenstette to 1/L
(where L is the individual size) (Grefenstette, 1986). In the section devoted
to the results, some conclusions about this issue are shown.

In every genetic loop iteration, two individuals are chosen to be part of the
new population using elitism (lines 16 to 17). If the chosen individual already
exists in the population and the user has forced the individual uniqueness as
a feature of the algorithm, then it is mutated. If no valid individual is found
after a number of mutations, a new one is randomly created.

The stop criterion is based on time instead of the fitness function value
(line 4) because it is difficult to know which value makes an individual ac-
ceptable. The user must establish for how long the algorithm be run. Finally,
the algorithm returns the individual from the new population with the best
fitness value (line 22).

4.2.2. Fitness function

The fitness function provides a method for quantitatively ranking individ-
uals. By comparing fitness values, we can determinate whether one individual
is better than another. The proposed fitness function contains two addends.
The first addend is the land suitability that each plot has for the category
allocated to it, and the second is the compactness of the resultant land use
patches. We refer to the former as aptitude and the latter as compactness.
Both addends are weighted to allow the user to establish the importance of
one against the other. Equation 1 defines that.

12

Fitness = w, * Aptitude + w. * Compactness (1)

where w, and w, are addend weights, and they are input parameters. They
are normalized, and their sum must be 1.

Aptitude is calculated using the weighted average of the aptitudes for
each category. Aptitude for a category is obtained from the average of the
aptitudes that the plots allocated to that category have for it, weighted by the
area of each plot and normalized by the total area assigned to the category:

C N;
Aptitude = w; (W) (2)
i=1 D1 Qi

where C' is the number of categories, w; is the weight of the i-th category
(it is an input parameter), IV; is the number of plots allocated to the i-th
category, ap;; is the aptitude that the j-th plot allocated to the i-th category
has for it, and a;; is the area of the j-th plot allocated to the i-th category.

Compactness can be defined in different ways. Our proposal considers
two definitions related to the above explanation: one based on patches, which
are groups of adjacent plots with the same category, and the other based on
categories, where plots are grouped into categories. Users can choose the
function to use.

For compactness based on patches, the following expression defines the
function:

C t Ay, = Py (3)
ompactnesspatches = w;
i=1 NPCLZ

where N Pa; is the number of patches of the i-th category, p;; and a,; are the
perimeter and area values of the j-th spot of the i-th category, respectively,
and C' and w; have the same meaning as in (2).

This formula arises because, for a given area, a circle maximizes the so-
called circularity (Montero and Bribiesca, 2009), where circularity is defined
thus:

Clircularity = 411 area

(4)

Function (3) has high computational costs, as the patches of each indi-
vidual of the new population must be calculated in each iteration.

perimeter?

13

The compactness function based on categories is also based on (4) but
avoids computing the patches:

¢ ZN:H [
Compactness ategories = 411 Y w; (1@7> (5)
i=1 (225251 pig)?
where C, w;, N;, and a;; have the same meaning as in (2), and p;; is the
perimeter of the j-th plot allocated to the i-th category. This function
presents clearly lower computational costs and, as shown below, produces
good results.
The constraints in the size of each category implies: min; < Z;V:"O a;; <
max;, where min; and max; are the minimum and maximum area allowed
for the 7 — th category respectively.

5. Parallel genetic algorithm

The genetic algorithm execution times are high due to the large number
of plots and the implicit nature of the problem. To get a practical algorithm,
these execution times must be reduced: the solution lies in parallelizing the
algorithm. Three parallel solutions were implemented: a multi-core solution
based on the shared-memory paradigm, a cluster one based on the message
passing paradigm and a hybrid one. These target systems are important, as
they are currently widespread.

5.1. The parallel algorithm for multi-cores

Current computers, from servers to laptops and smart-phones, often have
multi-core processors. It is interesting to implement algorithms to take ad-
vantage of this architecture.

We focus on parallelizing the genetic loop, i.e., the processes to generate
new individuals through multiple threads. Each thread generates a set of
individuals by performing selection, crossover, mutations and the election
operation. As threads share memory, they can all read the same population
and update the next population.

The number of threads is an input parameter. Given this number and the
population size, the number of individuals to be created by each thread can
be established. This distribution must be as balanced as possible in terms
of execution time. Figure 3 shows an example of how the work distribution
is performed. All threads can select any individual from the population,

14

Thread 1

i Read Write i
Population Selection New population

Crossover
Mutation
Election

Thread 2

Selection
Crossover
Mutation
Election

Thread 3
Selection
Crossover

Mutation
Election

Figure 3: Workload among slave threads in the multi-core algorithm.

but they can only write individuals in the new population in the positions
assigned to them.

Figure 4 shows the structure and stages of the multi-core parallel genetic
algorithm.

The Java package java.util.concurrent (Java.com, 2011) is used to launch
threads in different cores. For each genetic loop iteration, a master thread is
in charge of starting all slave threads, and it waits until they finish. Each slave
thread is independent of the rest, so the parallelization is straightforward and
efficient. Once the master thread recovers control, the new population has
been already created and master thread only checks the stop criterion.

With this parallel method there is no guarantee of obtaining individuals
better than those in the same iteration of its sequential counterpart. Never-
theless, it is possible to run more iterations of the genetic loop and generate
more individuals than the sequential algorithm in the same time. With this
method, convergence can be reached earlier.

5.2. The parallel algorithm for clusters

Clusters are distributed memory systems, so processes must be able to
send and receive messages to exchange information. An open-source Java
message passing library called MPJ Express was thus used.

Each process is executed in a cluster node, and a master process is in
charge of establishing communications with the slave processes. Each slave
executes the whole genetic algorithm independently from the other slaves,
using its own population. Synchronization with the master process is per-
formed periodically. This parameter is set by the user, who can choose a

15

Master process

Slave processes

-

Launch slave processes
(MPJ does that)

Send generic parameters
to slave processes

Receive best individuals
from slave processes

Create new population

>‘

New population becomes
the initial population

Yes

Send best individuals
to master process

Receive global convergence
message from master process

Receive generic parameters
from master process

!

Create initial population

population
completed?

Noj

Check convergence

Global

Send global convergence
message to slave processes

onvergence?

Yes

Send population
to slave processes

Receive population
from master process

A

A

Save solution

Cross-over

Replacement

Figure 4: Multi-core parallel genetic algorithm work flow.

16

Share Send best
population P1 individuals

Read Write

Execute the
complete
/ algorithm

Population New population

P2

Execute the
f Master I~ complete Master
algorithm

P3

\ Execute the

complete
algorithm

Figure 5: Workload among slave processes in the cluster algorithm.

period of seconds, minutes or even hours. This synchronization consists of
sending the best individuals from the slaves to the master. After gathering
this information, the master creates a new population. This new population
is then broadcast to the slaves to start the algorithm again. The master
checks the stop criterion. Figure 5 shows a summary of this parallel imple-
mentation.

This version takes advantage of each slave process generating its own
population at each genetic loop iteration, and it executes the whole algorithm
until synchronization. After synchronization, the slaves receive the same
population that will evolve in their own way because of the randomness of
the genetic operators. The best individuals obtained from executing different
slaves also join the new population, raising the average fitness and increasing
the search space.

An interesting issue is that implementing the algorithm allows slave pro-
cesses to read their own local parameters files. In this way, different processes
can work with different parameters, e.g. crossover and mutation rates, and
selecting new populations after synchronizations provides a richer set of in-
dividuals, thus achieving more heterogeneity and potentially better results.

17

Master process Slave processes |

Receive generic
> parameters from Slave threads
New population master process

Launch slave processes
(MPJ does that)

becomes the | — # R E—
initial population

Create initial
No| population Yes

Yes 3

Receive best individuals Send ~ Launch
from slave processes best individuals threads

to master process

No
Create new population Receive global stop

Local
population
completed?

Send generic parameters
to slave processes

| message from Calculate
master process total fitness

Check stop conditions

‘ Send global stop

ge to slave prc

Genetic Loop

Figure 6: Hybrid parallel genetic algorithm work flow.

5.8. The hybrid algorithm for multi-core clusters

The previous sections proposed two different parallelism environments.
These environments are orthogonal in that they can be mixed to produce a
new algorithm that can be executed in a cluster with multi-core nodes taking
advantage of both parallel paradigms. As shown below, this implementation
presents better results in the fitness of the final result, as it exploits multiple
parallelism levels.

Figure 6 shows the communications between the master and the slave
processes and how they launch local slave threads.

6. Experimental results

For our study, some tests were performed in a Galician municipality called
Guitiriz, with 138,175 plots, 52,045 of which have a fixed category. The
individuals thus have 86,130 genes: 10,232 are fixed plots, so the genetic
algorithm considers the 75,898 remaining plots as candidates for category

18

changes. For this municipality, four non-fixed categories are considered: nat-
ural area, agricultural, forestry, and urban. All performance tests were exe-
cuted in a cluster node with two Intel Xeon E5520 processors and 8GB RAM.
Each processor has 4 cores at 2.27GHz provided with hyper-threading (two
threads per core are allowed to run simultaneously). Using this cluster was
shared with other users, so some variability should be considered regarding
the measured execution times.

6.1. Influence of population size

As a representative case, the results of Figure 7 correspond to a set of
multi-core parallel executions over 16 threads and 32, 64, 128 and 256 in-
dividuals in the population. This figure shows the average of the values
obtained from running the algorithm 20 times with each population size for
three hours. The fitness function weights were 0.25 for the aptitude and
0.75 for the compactness. With small populations, the algorithm runs more
iterations per unit time and achieves better results in the short-term than
the executions with greater population sizes. However, in the long-term (24
hours for the 256 individuals executions, not shown in Figure 7), our tests
indicate that the fitness tends to be slightly better with high values for the
population size, presumably because of the increased explored search space.

6.2. Influence of the mutation rate

Some tests to find the best mutation rate (MR) were also executed. Figure
8 shows the average of five cases executed 20 times each with a population of
32 individuals and different mutation rates, using the recommended values
mentioned in Section 4.2.1. Each execution lasted one hour. These tests also
include an adaptive mutation rate (AMR), which starts with a high value and
reduces the MR (75% in the tests) to change fewer genes and adjust precision
when the best fitness of the population does not improve in a certain number
of iterations (20 in the tests).

These results indicate that executions with high mutation rates perform
poorly. This occurs because too many changes in individuals’ genes make
the mutation behaviour almost random. If the mutation rate proposed by
Grefenstette is used (1/L, with L the individual size, that in our case is
1.3174E~°), then the algorithm obtains the best individuals. Comparing
results obtained using MR and AMR individuals tends to be similar in the
long-term, but at least theoretically, a larger search space is explored using
an AMR.

19

Fitness

0,19

WY
\\“\\\“\\\\\
\\\“\“\“\“\\
\\\“\\“\“\\\\
\\“\\\“\“\\
\\\\\\\‘“\\\
\\\“\“\\“
“\“\\\\\
“\\\\
S
S

0,18

5)
0,17 "v'

Y A0 49 9% Al p0 D g 4> QL g&,§p gﬁ ﬂé iﬂ g@ ﬂﬁ gﬁ gﬁ ﬂ?

Minutes

48 32 individuals ==64 individuals "V 128 individuals =¢256 individuals

Fitness

Figure 7: Fitness versus the population size.

0,17

0,16

NVAVAVAAAAAAA Y

VVVVVVVVV
VVVVVVVVVVVVVVVVVVV
%
VVVVV
0,14 pand

B BN N TN R e A T L B NV I R R C I
Minutes

= MR = 0.001 == AMR = 0.0001 ¥V MR = 0.0001
= AMR = 0.00004 #=MR = 1.3176E-5

Figure 8: Aptitude versus static mutation rate and adaptive mutation rate.

20

017
0,182 ‘

Fitness
Fitness

0,178

0,176

T
1

0174 012 -
32 indiv s4indiv 128indiv 256 indiv MR = 0001 AMR = 0.0001 MR=00001 AMR=000004 MR=13176E-5

Figure 9: Box plots of the population size (A) and mutation rate (B) tests.

Figure 9 depicts the variance of the set of results obtained in the popu-
lations size and mutation rate tests. Note that the values are quite homoge-
neous, which prove that the use of the average as representative data in the
plots, is a valid method of measure.

6.3. Comparison between fitness functions

As mentioned above, two compactness functions were implemented: one
based on patches, and another one based on categories. Aiming to study the
effects of both functions, a rectangular parcel map was created. This parcel
map has 10,496 plots with different sizes, and each plot has only one suitable
category (the aptitude is one for this category and zero for the rest). The
same list of categories as the real case (see the beginning of section 6) is used.

These tests were executed with the multi-core version of the algorithm
using 16 threads in a 8 cores machine with hyperthreading for three hours.
Tables 3 and 4 show the average of five executions for each test. The columns
show the values of the different fitness function components for the corre-
sponding configuration: Apt shows the aptitude value, C'C the compactness
value by category, and CP the compactness value by patches. The number
of patches obtained (NPa) and percentage of the plots allocated to the right
category (hits) are also shown.

The rows indicate the configuration with which the algorithm was exe-
cuted: label Aptitude means that the fitness function only considers apti-
tude; labels Comp. Cats. and Comp. Pats. mean that the fitness func-

21

(B)

Figure 10: Plot maps: random allocation (A) and compacted one (B).

tion only considers the compactness by categories and patches, respectively;
Apt:CC X%:Y% and Apt:CP X%:Y% mean that the fitness function consid-
ers both attributes, i.e., aptitude at X% and compactness (using categories
and patches, respectively) at Y%; and CC+CP X%:Y% mean that both com-
pactness functions are considered, i.e., using categories at X% and patches
at Y%. This last configuration was added after testing the other configura-
tions. As the CC configurations reduce the number of patches and the CP
configurations help make them more compacted, a new fitness function was
implemented integrating both compactness methods as two addends.

The difference between the tables is that the aptitudes for the plot map
were randomly set in Table 3 (hereafter the random allocation), and the
aptitudes were set with some compactness (compacted allocation) in Table 4,
as in Figure 10. This figure shows the aptitude-based optimal plot map, as
the best category is allocated to each plot. Compacted allocation is closer to
reality.

Tables 3 and 4 show that when only the aptitude is used, our algorithm
achieves 100% of hits (first row in both tables). In real cases, the aptitude
value of the categories is neither one nor zero but takes intermediate values,
so it is more difficult to reach 100% of hits.

With the aptitude random allocation (Table 3) and using only compact-
ness by categories (second row), the number of patches between executions

22

Apt CC CP [NPa| Hits
Aptitude 1 0.000633 | 0.6655 | 5387 | 100%
(Apt)
Comp. Cats. 0.3005 | 0.0555 | 0.6392 | 143 | 28.14%
(CC)
Apt:CC
25%:75% 0.3229 | 0.0408 | 0.6022 | 110 | 29.53%
Apt:CC
50%:50% 1 0.000633 | 0.6655 | 5386 | 99.99%
Apt:CC
75%:25% 1 0.000633 | 0.6655 | 5387 | 100%
%;;p. Pats. 0.4972 | 0.000816 | 0.7787 | 6244 | 48.70%
Apt:CP
25%:75% 0.9095 | 0.000604 | 0.7509 | 7065 | 78.45%
Apt:CP
50%:50% 0.9712 | 0.000572 | 0.7172 | 6934 | 91.04%
Apt:CP
75%:25% 0.9992 | 0.000631 | 0.6677 | 5445 | 99.76%
CC+CP
50%:50% 0.3374 | 0.0191 | 0.6975 | 327 | 33.20%

Figure 3: Comparison between fitness functions with random aptitudes.

can change considerably (in our tests, from 53 to 213 patches, 143 is the
average). This occurs because each execution starts with a random solution,
and the groups of categories obtained thus differ. As the aptitude is ignored
in this case, the evolution of the individuals can be quite different. If 25% of
the aptitude is added to the fitness function, that variance is reduced (from
73 patches as minimum to 211 as maximum) and the number of hits slightly
increases. With a fifty-fifty balance between aptitude and compactness, the
algorithm almost reaches 100% of hits. With the same compactness method
in the fitness function but using the compacted allocation as a plot map
(Table 4), less compactness is obtained as more aptitude is added, but more
hits are achieved and the number of patches is closer to the aptitude-based
optimal plot map.

When using only compactness by patches, many patches are created. This

23

Apt | CC CP | NPa| Hits
Aptitude 1 00138 | 04620 | 165 | 100%
(Apt)
Comp. Cats | 5179 | 0.0494 | 05739 | 65 | 52.07%
(CC)
Apt:CC
501750 0.6187 | 0.0505 | 0.5863 | 68 | 52.85%
Apt:CC
509507 0.7051 | 0.043 | 0.0.5691 | 73 | 61.41%
Apt:CC
5095, 0,9387 | 0.0169 | 0.502 | 137 | 92.73%
(Ccogl)p' Pats- 10 6908 | 0.0021 | 0.7795 | 4030 | 56.30%
Apt:CP
5L, 0.95 | 0.0042 | 0.7728 | 2747 | 83.44%
Apt:CP
50%:50% 0.9716 | 0.006 | 0.7639 | 1769 | 89.60%
Apt:CP
5095 0.9841 | 0.0078 | 0.7481 | 1153 | 93.79%
CC+CP
50%:50% 0.7636 | 0.0264 | 0.6330 | 144 | 72.22%

Figure 4: Comparison between fitness functions with compact aptitudes.

happens using any allocation method in the plot map (as in the bottom half of
Tables 3 and 4). If both compactness functions are combined, a good relation
among CC, CP, and NPa is obtained because compactness by categories tends
to create fewer patches, and compactness by patches helps make them more
compacted. If the goal is more hits, i.e., if it is more important to choose
the suitable category than achieve a good compactness degree, a percentage
of aptitude can be added to the fitness function. In the results with random
allocation, the number of patches obtained was varied from 104 to 419. With
compactness allocation, however, this variance was reduced (from 136 to 160
patches).

Figure 11 shows the results obtained executing the CC+CP:50%-50%
configuration using both plot maps of Figure 10. As in Tables 3 and 4, this
is the best configuration to reach an agreement between all measured pa-

24

(A) (B)

Figure 11: Plot map results for the CC+CP:50%-50% configuration: random allocation
(A) and compacted one (B).

rameters. Comparing both solutions, the one using the compacted allocation
(Table 4) as a plot map has fewer difficulties in achieving a compacted solu-
tion with few patches but many hits. As real cases often have that aptitude
distribution, the results can be considered satisfactory.

Finally, as shown in a real case in section 6.5, these tables can help decide
fitness function weights depending on the goals the planning expert wants to
reach: aptitude, compactness, number of patches, or number of hits.

6.4. Performance results

Figure 12 shows the speed-up evolution for the multi-core parallel versions
versus the sequential version (a single-threaded execution disabling core hy-
perthreading), and Figure 13 shows speed-up (A) and efficiency (B) for a
particular case, considering 20,000 iterations. The parallel algorithm exe-
cutions present super-linear speed-up, while the number of threads used by
the parallel genetic algorithm is less than or equal to the number of physical
computer cores, 4 in this case. This occurs due to a better memory hier-
archy utilization, as each thread must deal with less data. Though speed-
up still increases, efficiency decreases using more cores, as hyper-threading
is not as efficient as using a different physical core for each thread (as ex-
pected according to the reports of the proper microprocessor manufacturers).
Hyper-threading allows executing more than one thread simultaneously; as

25

Speed-up

Q QO QO Q QO Q QO Q QO Q
'\,-QQ '500 c)00 '\00 ‘-Z"QQ \'\-00 »_’5Q0 \")00 »_’\QQ \900

Iterations

2 threads =*=4 threads 'V 8 threads =16 threads #=32 threads
Figure 12: Speed-up for the multi-core parallel versions against the sequential one.

threads share some cpre resources, real performance only increases by 30-40
per cent at most. The charts shown in these two figures were obtained from
the average of 20 executions performed for each test.

The speed-up for the cluster algorithm version is not shown, because that
parallelization method aims to improve fitness in the shortest time. In this
case, the speed-up of the slower node conditions the speed-up.

Figure 14 shows the fitness of the hybrid version versus the multi-core
version. For these tests, 16 threads were used per node for both algorithms
versions. The hybrid version was executed in two, four and eight nodes
with different synchronization times. All executions using the hybrid version
provided better results than those using the multi-core version.

Focusing on the hybrid algorithm executions, Figure 14 shows how the
best results are obtained using 2 nodes with 15 minutes between synchro-
nizations and 4 nodes with 6 minutes. The curve of the executions with 2
nodes tends to stand still, but the curve of the executions with 4 nodes (spe-
cially with 6-minutes synchronizations) has a steeper slope than the 2-node
executions. Nevertheless, the differences between fitness among these execu-
tions are small. Executions with 8 nodes achieve lower fitness than the other

26

Speed-up
Efficiency

2 threads 8 threads 32 threads ’ 2 threads 8 threads 32 threads
4 threads 16 threads 4 threads 16 threads

Figure 13: Speed-up (A) and efficiency (B) in the iteration 20,000 of the multi-core parallel
versions against the sequential one.

executions, but longer executions may achieve better results. As mentioned
above, the stop criterion was based on execution time, so these tests were
executed during 3 hours to see the results clearly.

6.5. Real case test

Figure 15 shows a solution provided by the algorithm for the Guitiriz
test case. This municipality has 138,175 plots, 52,045 of which have a fixed
category. Knowing that the plot map of Guitiriz has some compactness
in their aptitudes, according to the Table 4, tests were executed using the
Apt:CC 50%:50% to get a good relation between the number of patches and
hits. As the different colors indicate, plot patches form the expected regular
polygons. White patches correspond to fixed categories, like riversides or
roads. Other patches include the remaining plots, fixed and not-fixed.

Figure 16 compares the solution generated by the algorithm and one pro-
vided by experts. The first solution has more white patches (fixed categories),
because expertos do not always account for protection zones around rivers
or roads. Apart from this, both solutions have considerable similarities, and
the algorithm solution is a good starting point for the experts.

7. Additional functionalities

Some functionalities are included in the algorithm implementation to help
users and handle possible system failures.

27

CECCKEEEECEEEEAE1 EREEELEEILEEEEATTEIEELLLLLLTILLELLLLLLULALECteecco)

0,18

0,17

3 RO
0,16 =2 e o

0,1879 VXKNVWWWW
VY s i

COPPLE (GGG
0,187 AR kKRR oesees

0,15

Fitness

01869 A4
0,1867

BN N N R R N RN -G RN RN LN
R TN L R L R LI C I G BN S TN IO A N LN S SN S I N LN < I
Minutes

> Multicore == MPJ 4 nodes 3'sync 'V MPJ 4 nodes 6' sync "™ MP] 4 nodes 15' sync
#= MP) 2 nodes 3' sync < MP) 2 nodes 6' sync ®#MPJ 2 nodes 15' sync "= MP) 8 nodes 3' sync
" MP) 8 nodes 6' sync < MPJ 8 nodes 15' sync

Figure 14: Fitness value for the multi-core version against the hybrid version.

7.1. Checkpointing

A mechanism to continue execution after possible system breakdowns was
implemented, based on the idea of periodically saving the algorithm state.
All individuals of the current population, including their fitness and some
additional general information, are saved. If the algorithm stops for any
reason, it can thus be rerun starting from the last stored data. Depending
on the execution mode, i.e., sequential or parallel versions, the checkpoint-
ing was implemented in different ways. When the algorithm finishes each
genetic loop iteration, it checks whether it is time to save the checkpoint
file. In the cluster/hybrid parallel model, the master process is in charge of
performing the checkpoint right after each synchronization. As the amount
of information to be stored in the checkpointing files can be large, these files
are compressed.

7.2. Saving the best individual

After every iteration in the sequential and multi-core algorithm versions,
the best individual from the entire population is saved. At the end of the
algorithm, the solution is the best individual obtained at any iteration during
the execution. Regarding the cluster and hybrid versions, this operation

28

= Roads

= Rivers

O Fixed Categories
@@ Natural Area

@ Agricultural

@B Forestry

@D Urban

Figure 15: Algorithm output.

29

Figure 16: Comparison between algorithm’s solution (A) and experts’ solution (B).

is performed after every synchronization. Every slave also saves the best
individual, and they are sent to the master process at the synchronization
point.

7.3. User interfaces

To implement the algorithm, a Java-free geospatial analysis tool called
SEXTANTE (Olaya, 2011) was used. Its main aim is being a platform to
develop geoalgorithms that eases both the implementation and use of these al-
gorithms. SEXTANTE can be used in desktop GIS software like uDig, open-
JUMP or gvSIG through their GUI (Graphical User Interface) or command-
line interface. The planner can use the GUI of our algorithm in sequential
or multi-core computers and the command-line interface in clusters where
graphical user interfaces cannot be displayed. Figure 17 shows the GUI for
gvSIG.

8. Conclusions and future work

This work shows that parallel genetic algorithms are a good choice to
deal with land use planning problems where the number of possible plot and

30

File Tools Window Help

gvSIG OADE 2010:gvsig_rsai.gvp

[=I=](x]

\ Parallel genetic algorithm for land use planning

SEXTANTE
i=--Algorithms
Basic hydrological analysis
Basic toals for raster layers
o Buffers
Calculus tools for raster layer
Cost, distances and routes
Focal statistics
Fuzzy logic

- Geostatistics

Image processing

Local statistics
Locationsallocation
5-Models

#-Pattern analysis

i-Geomorphometry and terrain analysis

Indices and other hydrological parameters

1 a: itation of rural
- Planning: Land-use planning

- Preprocessing algorithm
- Selution analysis

B Prof
Raster categoeries analysis

es

Raster layer analysis
Reclassify raster layers

- Statistical methods
Table tools

Tools for line layers

Tools for point layers

Tools for polygen layers
Tools for vector layers
Topology

B-Vegetation indices
#-Visibility and lighting

i@ Geographical parallel simulated annealing algorith
- Parallel genatic algorithm for land use planning
- # Parallel simulated annealing algorithm [Output

- sequential simulated annealing algorithm

5-Planning: Land-use planning (console)
Planning: Land-use planning (experimental)

Parameters |

| Preprocessed shape

[preprocessing.shp

Opti

Initial population size
Crossover rate
Mutation rate.

Mutation rate reduction

Number of threads

Hours to exscute the algorithm
Compactness weight

Aptitude weight

Allow identical indiiduals

File with preprocessing data
File to save the solution

Save result map

Times fitness value is equal to reduce... [4

[0

[To

[0.0020

[05

Método para el célculo de la compaci... [Select one

[18

[os

[0

o2

Qutput vector layerfvector]

[ISave ta temporary filel

i Opening project: gusig_rsal.qvp

Metres <= 582,136.55 |v = 4,795,712,27 |[FP5G:23030

Figure 17: GUI for gvSIG with SEXTANTE.

31

category combinations could be huge. This work has reached several conclu-
sions. One conclusion is that this kind of algorithm can be parallelized and
executed in multi-core systems where it can reach an almost linear speedup.
In cluster systems, the algorithm takes advantage of multiple parallel execu-
tions. If the cluster contains multi-core nodes, both parallelization strategies
can be merged, resulting in a parallel hybrid version of the algorithm.

Several tests were executed to analyze the algorithm behaviour, depend-
ing on the plot map or attributes considered for the fitness function. The
results of these tests were discussed and shown to be a good starting point
for the planning experts. Experts can use the results in Tables 3 and 4 to
configure the algorithm to obtain better results according to their goals.

Finally, developing efficient parallel Java code has proven to be a com-
petitive solution: programmability issues are clearly in favor of Java, where
acceptable performance has been obtained.

As future work, one of the most immediate improvements is to study
other functions to evaluate compactness criteria. In particular, patches of
the same category are usually separated by roads or water bodies, which
should be considered to avoid diminishing the compactness value. Other op-
timization criteria can also be considered, including favoring the creation for
patches of agricultural uses next to the localization of existing farms. Cre-
ating corridors to connect patches of natural protected areas should also be
promoted. Another idea for future work is applying new parallelism levels,
e.g., in evaluating the fitness function. Finally, we are working on develop-
ing algorithms to limit growth areas for rural settlements. Comparing the
results of the genetic algorithm with an implementation based on simulated
annealing is also in progress.

Acknowledgements

This work is included in the project named Geographical Information Sys-
tems for Urban Planning and Land Management using Optimization Tech-
niques on Multi-core Processors (ref. 08SIN011291PR), supported by the
projects of Consolidation of Competitive Research Groups (ref. 2010/06 and
2010/28), all funded by the Galician Regional Government, Spain.

References

Aerts, J. C. J. H., Eisinger, E., Heuvelink, G. B. M., Stewart, T., 2003. Using
linear integer programming for multi-site land-use allocation. Geographical

32

Analysis 35 (2), 148-169.

Aerts, J. C. J. H., van Herwijnen, M., Janssen, R., Stewart, T. J., 2005. Eval-
uating spatial design techniques for solving land-use allocation problems.
Journal of Environmental Planning and Management 48 (1), 121-142.

Arentze, T. A., Borgers, A. W. J., Ma, L., Timmermans, H. J. P.; 2010.
An agent-based heuristic method for generating land-use plans in urban
planning. Environment and Planning B: Planning and Design 37, 463-482.

Armstrong, M. P.; Densham, P. J., 1992. Domain decomposition for par-
allel processing of spatial problems. Computers, Environment and Urban
Systems 16, 497-513.

Balling, R. J., Taber, J. T., Brown, M. R., Day, K., 1999. Multiobjective
urban planning using genetic algorithm. Journal of Urban Planning and
Development 125 (2), 16-99.

Brookes, C. J., 2001. A genetic algorithm for designing optimal patch config-
urations in gis. International Journal of Geographical Information Science
15 (6), 539-559.

Back, T., 1996. Evolutionary Algorithms in Theory and Practice. Oxford
Univ. Press.

Cromley, R. G., Hanink, D. M., 1999. Coupling land use allocation models
with raster gis. Journal of Geographical Systems 1, 137-153.

Duh, J. D., Brown, D. G., 2007. Knowledge-informed pareto simulated an-
nealing for multi-objective spatial allocation. Computers, Environment and
Urban Systems 31, 235-281.

Eastman, J., Jin, W., Kyem, P. A. K., Toledano, J., 1995. Raster procedures
for multi-criteria/multi-objective decisions. Photogrammetric Engineering
& Remote Sensing 61 (5), 539-547.

Ehrgott, M., Gandibleux, X., 2000. A survey and annoted bibliography of
multiobjective combinatorial optimization. OR Spektrum.

Eldrandaly, K., 2010. A gep-based spatial decision support system for mul-
tisite land use allocation. Applied Soft Computing 10, 694—-702.

33

FAO et al., 1993. Guidelines for Land-Use Planning. Development Documents
Series. Food and Agriculture Organization of the United Nations.

Feng, C. M., Lin, J. J., 1999. Using a genetic algorithm to generate alterna-
tive sketch maps for urban planning. Computers, Environment and Urban
Systems 23, 91-108.

Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization and Ma-
chine Learning, 1st Edition. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Goldberg, D. E., Deb, K., 1991. A comparative analysis of selection schemes
used in genetic algorithms. In: Foundations of Genetic Algorithms. Morgan
Kaufmann, pp. 69-93.

Grefenstette, J. J., jan 1986. Optimization of control parameters for genetic
algorithms. Systems, Man and Cybernetics, IEEE Transactions on 16 (1),
122 —128.

Guan, Q., Clarke, K. C., 2010. A general purpose parallel raster processing
programming library test application using a geographic cellular automata
model. International Journal of Geographical Information Science 24 (5),
695-722.

Holzkamper, A., Seppelt, R., 2007. A generic tool for optimizing land-use
patterns and landscape structures. Environmental Modelling & Software
22, 1801-1804.

Huang, H., Wei, Z., Li, Z., 2009. The Geographic Information System Based
on Distributed Parallel Computation. Networking and Digital Society, IC-
NDS ’09 International Conference 1, 234-237, 30-31 May 2009.

Janssen, R., van Herwijnen, M., Stewart, T. J., Aerts, J. C. J. H., 2008.
Multiobjective decision support for land-use planning. Environment and
Planning B: Planning and Design 35, 740-756.

Java.com, 2011. http://download.oracle.com/javase/6/docs/api/java/util/
concurrent /package-summary.html, visited on 31 July 2011.

Jong, K. D., 1975. An analysis of the behavior of a class of genetic adaptive
systems. Ph.D. thesis, University of Michigan, Ann Arbor, MI, USA.

34

Kai, C., Bo, H., Qing, Z., Shengxiao, W., aug 2009. Land use allocation
optimization towards sustainable development based on genetic algorithm.
In: Geoinformatics, 2009 17th International Conference on. pp. 1 —5.

Lei 2/2002, 2002. Galician Official Diary 252, 18,025 — 18,094, Lei 9/2002,
do 30 de decembro, de ordenacion urbanistica e protecciéon do medio rural
de Galicia (in Galician).

Lei 2/2010, 2010. Galician Official Diary 61, 4,639 — 4,666, Lei 2/2010, do
25 de marzo, de medidas urxentes de modificacion da Lei 9/2002, do 30
de decembro, de ordenacién urbanistica e proteccion do medio rural de
Galicia (in Galician).

Matthews, K. B., Sibbald, A. R., Craw, S., 1999. Implementation of a spatial
decision support system for rural land use planning: integrating geographic
information system and environmental models with search and optimisa-
tion algorithms. Computers and Electronics in Agriculture 23 (1), 9 — 26.

Montero, R. S., Bribiesca, E., 2009. State of the art of compactness and
circularity measures. International Mathematical Forum 4 (25-28), 1305
1335.

Nyerges, T., Jankowski, P., 2009. Regional and urban GIS: a decision support
approach. Guilford Press.

Olaya, V., 2011. www.sextantegis.com, visited on 31 July 2011.

Porta, J., Parapar, J., Doallo, R., Barbosa, V., Santé, 1., Crecente, R.,
2012. Evolutionary Algorithm for the Demarcation of Rural Settlements.
In: 9th World Congress of the Regional Science Association International.
Timisoara, Romania. Paper accepted.

Santé-Riveira, 1., Crecente-Maseda, R., Miranda-Barrés, D., 2008. GIS-based
planning support system for rural land-use allocation. Computers and Elec-
tronics in Agriculture 63 (2), 257 — 273.

Shafi, A., 2011. http://mpj-express.org/, visited on 31 July 2011.

Spears, W. M., DeJong, K., 1991. An analysis of multipoint crossover. In:
Proc. of Workshop of the Foundations of Genetic Algorithms. pp. 301 —
315.

35

Stewart, T. J., Janssen, R., Herwijnen, M., 2004. A genetic algorithm ap-
proach to multiobjective land use planning. Computers & Operations Re-
search 31, 2293-2313.

Taboada, G. L., Tourino, J., Doallo, R., 2009. Java for High Performance
Computing: Assessment of Current Research and Practice. In: 7th In-
ternational Conference on the Principles and Practice of Programming in
Java, PPPJ 2009. ACM International Conference Proceeding Series. Cal-
gary, Alberta, Canada, pp. 30-39.

Xiao, N., Bennett, D. A., Armstrong, M. P., 2001. Interactive evolutionary
approaches to multiobjective spatial decision making: A synthetic review.
Computers, Environment and Urban Systems 31, 232-252.

Xibao, X., Jianming, Z., Xiaojian, Z., 1995. Integrating gis, cellular au-
tomata and genetic algorithm in urban spatial optimization - a case study
of lanzhou. In: Proc of SPIE. Vol. 6420. 64201U-1 - 64201U-10.

Xin, H., Zhi-xia, Z., 2008. Application of genetic algorithm to spatial distribu-
tion in urban planning. In: IEEE International Symposium on Knowledge
Acquisition and Modeling Workshop. pp. 1026-1029, wuhan, China.

Zhang, H. H., Zeng, Y. N., Bian, L., 2010. Simulating multi-objective spatial
optimization allocation of land use based on the integration of multi-agent
system and genetic algorithm. International Journal of Environmental Re-
search 4 (4), 765-776.

36

