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Abstract

The main goal of this PhD work is the development and numerical resolution of

mathematical models that simulate the dynamics of bacterial biofilm systems, paying

special attention to those biofilms formed by the Listeria monocytogenes, a pathogen

of special relevance in food safety.

A biofilm is a layer of microorganisms attached to a surface and protected by a

matrix of exopolysaccharides. Biofilm structures difficult the removal of microorgan-

isms, thus the study of the type of structures formed throughout a biofilm life cycle

is key to design elimination techniques.

In the present work, we develop different models that simulate the dynamics of

biofilms formed by different strains of L. monocytogenes. We start with a 1D model

that can be used to describe the formation of flat biofilms. Afterwards, we apply

the acquired knowledge to develop a 2D model capable of describing more complex

structures. All this models are solved with efficient numerical methods and robust

numerical techniques, such as the Level Set method, that guarantees the good be-

haviour of the obtained solutions.

Finally, the numerical results are compared with the experimental measurements

obtained in the Instituto de Investigaciones Marinas, CSIC (Vigo, Spain), and the

Micalis Institute, INRA (Massy, France).
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Resumen

El objetivo fundamental de esta tesis consiste en el desarrollo y resolución numérica

de modelos matemáticos que reproduzcan la dinámica de biopeĺıculas, en especial,

aquellas formadas por Listeria monocytogenes, un patógeno especialmente relevante

en la seguridad alimentaria.

Una biopeĺıcula es una capa de microorganismos adheridos a una superficie y pro-

tegidos por una matriz de expolisacáridos. La estructura de las biopeĺıculas hace

dif́ıcil la eliminación de los microorganismos, de ah́ı que sea fundamental estudiar

el tipo de estructuras que se forman durante la vida de una biopeĺıcula para poder

diseñar nuevas técnicas de eliminación.

En el presente trabajo, desarrollamos modelos que simulan la dinámica de biopeĺı-

culas der diferentes cepas de L. monocytogenes. Comenzamos estableciendo un mod-

elo 1D capaz de describir la formación de biopeĺıculas planas para, posteriormente,

aplicar los conocimientos adquiridos al desarrollo de un modelo 2D capaz de describir

estructuras más complejas. Estos modelos se resuelven con métodos numéricos efi-

cientes y técnicas numéricas robustas, como el método Level Set, que garantizan el

buen comportamiento de las soluciones.

Finalmente, los resultados obtenidos son comparados con las imágenes de mi-

croscoṕıa procedentes de experimentos realizados en el Instituto de Investigaciones

Marinas, CSIC (Vigo, España) y en el Micalis Institute, INRA (Massy, Francia).
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Resumo

O obxectivo fundamental desta tese é o desenvolvemento e resolución numérica de

modelos matemáticos que reproduzan a dinámica de biopeĺıculas, en especial, aquelas

formadas por Listeria monocytogenes, un patóxeno de especial relevancia na seguri-

dade alimentaria.

Unha biopeĺıcula é unha capa de microorganismos adheridos a unha superficie

e protexidos por unha matriz de expolisacáridos. A estructura das biopeĺıculas fai

dif́ıcil a eliminación dos microorganismos, de áı que sexa fundamental estudar o tipo

de estructuras que se forman ao longo da vida dunha biopeĺıcula para poder deseñar

novas técnicas de eliminación.

No presente traballo, desenvolvemos modelos que simulan a evolución de dife-

rentes cepas de L. monocytogenes. Comezamos establecendo un modelo 1D capaz

de describir a dinámica de cepas chás para, posteriormente, aplicar os coñecementos

adquiridos ao desenvolvemento dun modelo 2D capaz de describir estruturas máis

complexas. Todos estes modelos resólvense con métodos numéricos eficientes e técnicas

numéricas robustas, como o método Level Set, que garanten o bo comportamento das

solucións.

Finalmente, os resultados obtidos compáranse coas imáxes de microscoṕıa obti-

das en experimentos realizados no Instituto de Investigacions Mariñas, CSIC (Vigo,

España) e no Micalis Institute, INRA (Massy, Francia).
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Introduction

Bacterial biofilms are essential for the equilibrium of ecosystems, as well as for many

industrial processes. A bacterial biofilm is a layer of prokaryotic cells anchored to a

substrate layer that keeps them fed. This layer is embedded in a matrix formed by

polymers, called the exopolysaccharides matrix or EPS, which keeps bacteria grouped

and difficults their removal [21, 108]. In a simplified way, we could say that a biofilm

is a group of micro-organisms attached to a surface. Current studies estimate that

less than 0.1% of the aquatic microbial lifeforms are in a planktonic (free floating)

state [20]. Therefore, biofilms constitute the preferred microbial lifeform.

The reason behind that preference is the competitive advantage achieved by the

ability to adhere to surfaces and form biofilms, compared to planktonic bacteria. The

latter can be easily washed out by the water flux while the former are protected from

that phenomena and live in an environment where they can grow, provided nutri-

ents are available. Biofilm physical structure also allows the distinction of biological

niches that make growth and survival easier for those micro-organisms that could not

compete in a fully homogeneous system. Furthermore, the microbial activity inside

biofilms can change the inner environment making the biofilm more hospitable than

the liquid region [86].

The fundamental layers present on a biofilm are the surface (where bacteria are

attached to), the proper biofilm (formed by one or more cell species and the EPS), the

media (with nutrients), and the environmental conditions that determine the biofilm

development (temperature, pH, hydrodynamics, etc.).

There are beneficial biofilms, both for humans or the adequate environmental

1



INTRODUCTION

Figure 1: Fundamental parts of a bacterial biofilm system

development, as well as harmful biofilms, which usually cause health problems or

poor industrial processes performance and thus economical losses. Examples [108] of

the former are the biofilms used in water treatment plants (RBCs, biological reactors,

etc.) or in the fermentation industry (for instance, in quick-vinegar processes), but

also some naturally formed biofilms present in the subsoil (contributing to soil or

groundwater decontamination), in rivers, lakes and coastal zones (colonizing rocks or

suspended in the water, usually contributing to the removal of contaminants from

the water), or in the roots of many plants (enhancing the availability of nutrients to

plants). Naturally formed biofilms are fundamental for earth biosphere.

On the other hand, harmful biofilms appear in many situations. For instance,

biofilms are a major problem in dental hygiene [61], infectious diseases or infections

caused by medical implants [115]. Other examples are the biofilms that cause water

2



INTRODUCTION

contamination or malfunctions in heat exchangers [11]. Specially relevant are the

biofilms formed by pathogenic bacteria that appear in food industry because they

constitute an important source of food contamination and can be a major health

issue for consumers [93].

Preventing harmful biofilm formation is, in general, quite difficult, due to their

ability to develop even in adverse conditions. Also, once formed, it is hard to elimi-

nate them, because bacteria forming biofilms are much more resilient to the immune

response of the host or antimicrobial agents [34, 44].

The necessity of improving the properties of beneficial biofilms or controlling the

formation of the harmful ones has motivated numerous investigation work lines con-

sidering the genetic, biochemical or physical mechanisms that contribute, not only to

biofilm formation, but also to its structure.

Numerous studies indicate that biofilm structure determines the magnitude of

the processes taking place inside of it, such as the nutrients transference rate to

inner layers, the antimicrobial agents diffusion rate or its resistance to friction. Plate

counts have been widely used to analyse biofilms. However, they only consider viable

culturable cells and do not inform about the structure [22]. Due to these limitations,

several alternatives have been proposed.

Major emphasis has been paid to the development of various microscopy based

techniques. The most successful, confocal laser scanner microscopy (CLSM), enables

in situ and in vivo three-dimensional biofilm optical imaging [95]. Also, microsensors

can be used to measure concentrations of the different components inside the biofilm,

thus allowing the analysis of the availability of substrates of the different regions of the

biofilm [116]. The advances in molecular biology and in situ hybridisation techniques

contributed to the development of gene probes and microscopy techniques, allowing

the detailed analysis of microbial communities inside the biofilm [23, 56, 97]. The

combination of cellular stains for fluorescent cellular staining together with imaging

techniques allow mapping viable and damaged or dead cells [99] or the distribution

3
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of extracellular polymeric substance but also reconstructing three-dimensional struc-

tures, thus obtaining a more comprehensive study of biofilms. Remarkably CLSM

together with quantitative image analysis [114] allows for the automatic determi-

nation of biofilms thickness, biovolume or roughness. This approach allows for a

quantitative comparison of biofilms among different strains, species or environmental

conditions (media, temperature, type of culture).

Recent works suggest several alternative work-flows and software tools for the sys-

tematic analysis of microscopy images. IMARIS (a commercial software) enables the

reconstruction of 3D structures. COMSTAT [43], ISA 3D [10], or PHLIP [67] allow

quantifying confocal laser scanning microscopy (CLSM) images. BIOFILMDIVER

[65] permits the quantification of biofilms areal porosity, covered area, diffusion dis-

tances or the spatio-temporal population distribution from 2D images taken with

epifluorescence and CLSM. Machine learning algorithms can be used to analyse scan-

ning electron microscopy images [103].

Biofilm modelling: a brief historical perspective

Quantitative image analysis can be complemented with mathematical modelling to

gain insights into the mechanisms that lead to a given biofilm structure [4]. Even the

most homogeneous biofilms develop complex internal processes, intertwined between

them. Mathematical modelling brings the possibility to explore different internal pro-

cesses and their connections, their relative importance and the role of the environment

in biofilm life cycle [105].

The inception of mathematical models of biofilms started around mid 20th century

with simple empirical models [69]. Since then, mathematical models became much

more complex taking into account multiple species both of bacteria and nutrients

together with different microbiological, chemical and physical processes giving place

to multi-dimensional PDE systems. The evolution of the mathematical models of

biofilms is linked to the evolution of the experimental analysis of biofilms.

The new techniques and tools gave place to new experimental models to grow
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biofilms in certain conditions in order to study specific features (such as the use

of flow cells that can be helpful to study the initial stages of a biofilm), but more

importantly, inspired new mathematical models [70]. For instance, confocal laser

scanning microscopy allowed the visualisation of heterogeneous structures in biofilms

triggering the development of three-dimensional models that were able to reproduce

the three-dimensional structure of the biofilm [77]. Other examples include the models

reproducing the multi-species interactions that emerged after the in situ visualisation

of individual micro-colonies within a biofilm.

Most mathematical modelling efforts mainly focus on the exploration of different

mechanisms that lead to particular biofilm structures, mostly clustered and mush-

rooms forming biofilms. The emphasis is paid into qualitative validations of developed

models, which are able to recover experimentally observed structures. In that pursue,

the new generation of biofilm models offers detailed descriptions of the formation of

heterogeneous structures with clusters and mushrooms (see, for instance, the reviews

by [45, 77, 105]). Thus continuous and hybrid models have been proposed that incor-

porate various mechanisms to describe biomass growth, spreading and detachment as

well as nutrients transport and conversion.

This PhD work gives a step forward by combining CLSM image analysis, novel

mathematical models and advanced numerical techniques to qualitatively and quan-

titatively explain Listeria monocytogenes biofilms behaviour.

Listeria monocytogenes

In the period 2011-2014, 183 persons were infected with an outbreak-associated strain

of Listeria monocytogenes, resulting in 39 deaths in the USA. Such infections were

linked to three different cheese brands and cantaloupe [14]. More recently, the USA

Centers for Disease Control and prevention have reported a number of outbreaks from

2015 to 2017 related to the consumption of some cheese products, dairy products,

packaged salads, or frozen vegetables. In Europe eight strong-evidence food-borne
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outbreaks caused by L. monocytogenes were reported in 2011–2012 [31, 32]. Listerio-

sis affected about 2,200 people in the EU in 2015, causing 270 deaths. Besides, there

was a total of 2536 reported listeriosis cases in 2016 [33]. Listeria strains were found

in sandwiches, bakery products or ready-to-eat fish and meat products.

Listeria monocytogenes is a Gram-positive, food-borne pathogen that can cause

systemic infections in immune compromised, pregnant or elder patients [19]. Out of

the around fifteen L. monocytogenes serotypes reported, there are three that account

for the majority of human diseases: 1/2a, 1/2b and 4b [96]. Transmission of this

pathogen to humans is primarily due to consumption of contaminated food, usually

contaminated by contact with unhygienic work surfaces or facilities, where biofilms

are found [50, 96, 109]. L. monocytogenes biofilms can emerge on common food

contact surfaces, such as plastic, polypropylene, rubber, stainless steel or glass [92],

and are protected from a variety of environmental factors, such as temperature, salt,

sugar or pH [64]. They also tolerate better biocides, thus hindering the surface

decontamination process to the point that many L. monocytogenes strains have been

isolated from food processing plants despite the programs to sanitize them [13, 87].

Miettinen et al. [63] showed that L. monocytogenes biofilms can persist several

years in food processing plants. These facts reflect the relevance of biofilms for the

food industry [64] and identifies L. monocytogenes as a major concern. Because

of this, quantification of the biofilms formed by L. monocytogenes is of the highest

interest. Indeed the knowledge of interstrain variations is basic for understanding

biofilm behaviour and designing adequate disinfection techniques

L. monocytogenes biofilms can depict different structures: mono-layer of adhered

cells, flat unstructured multi-layers, honeycomb structures or clusters [12, 15, 24, 62,

78, 82]. Recent works [37] reconstructed CLSM images to observe L. monocytogenes

instraspecies diversity and concluded that most strains form complex honeycomb-like

structures at 48h. Other works [65, 66] used quantitative image analysis to study the

life cycle of biofilms formed by three L. monocytogenes strains, showing the presence
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of, at least, three phases: first, separate clusters that evolved to interconnected clus-

ters, honeycomb-like or flat structures and finally, a detachment phase. The timing

for these phases varies significantly among strains.

Objectives

This PhD work presents the identification and numerical solution of various deter-

ministic mathematical models intended to describe the life cycle of biofilms formed

by several different strains of Listeria monocytogenes. Special emphasis was paid to

the implementation of advanced numerical techniques for the solution of the proposed

candidate models. Model predictions were compared to experimental data.

The following objectives were defined:

• To develop a one-dimensional model to describe the dynamics of flat biofilms.

Mosquera et al. [66] showed that the L1A1 L. monocytogenes strain forms

thick flat biofilms. The aim is to develop a continuous reaction-diffusion model

to explore the relevant mechanisms that may lead to flat biofilms.

• To develop a two-dimensional model to describe the dynamics of flat or clus-

tered biofilms. Bridier et al. [12] and Mosquera et al. [66] showed that L.

monocytogenes strains might form flat, honeycomb or clustered biofilms. The

aim is to propose a two-dimensional multi-species model which can account for

such interstrain variability.

• To propose robust and efficient numerical techniques to solve one- and two-

dimensional deterministic models with special interest on those based on the

Level set method.

• To compare model predictions with quantitative image analysis data for various

L. monocytogenes strains of relevance in the food industry.
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Structure of this PhD work

In Part I we focus on the study and development of several one-dimensional models. In

particular, we selected a deterministic continuous modelling framework. Determin-

istic reaction-diffusion models (RDM) offer the advantage of reproducibility [105].

Besides, this type of models can be solved with advanced numerical techniques to

guarantee the computational efficiency required for model identification through op-

timization based techniques [3, 102]. Chapter 1 serves as an introduction to biofilm

modelling, as well as a presentation for various candidate reaction-diffusion models to

describe the L. monocytogenes biofilm system. The candidate models incorporate al-

ternative mechanisms for growth, nutrient consumption and detachment. Each model

was reconciled with the measured data through optimization based data fitting. The

best model was selected attending to a best compromise between the number of un-

known parameters and its capability to quantitatively reproduce the measurements.

Chapter 2 describes the numerical methods and techniques and offers the guide-

lines to build the numerical systems. The finite differences Crank-Nicolson method

together with a central differences scheme in space, leads to the fully discretised non-

linear numerical system, which is solved through the linearised system resulting from

the application of a Newton method. These numerical methods were selected so that

the computational time is reduced and the numerical solution is efficiently calculated,

as was discussed in the recent work [7]. Chapter 2 also shows the resolution of some

academic tests, in order to validate the numerical methods applied.

Chapter 3 shows the numerical results of the different models, as well as a compar-

ison between the numerical results obtained from the model and the corresponding

experimental measurements, in order to validate the models and numerical methods

used to solve them from a biological point of view. The focus of the discussion is the

most satisfactory model, although other intermediate candidates were also analysed

in the recent work [9].
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In Part II a similar path is followed, this time focusing on the study and develop-

ment of several two-dimensional models. We maintained the deterministic continuous

modelling framework, but in this part we added damaged or dead cells as a second

biological species and substituted the diffusion process by an advection process that

regulates the advance of the biofilm. Chapter 4 introduces the necessity of two-

dimensional biofilm modelling in order to capture the different spatial heterogeneities

that a biofilm can develop. Afterwards, it presents the different studied and developed

models.

Chapter 5 presents the numerical strategy used to solve the two-dimensional pro-

posed models. As the complexity of the system increases, new methods with higher

efficiency and more sophistication are required. Although we keep working in a finite

differences setting, we use a modified upwind method following the strategy devel-

oped by Gibou et al. [36] together with a Level Set technique [89], WENO schemes

[48], Crank-Nicolson numerical strategies and a Newton algorithm for the non-linear

fully discretised models.

Finally, Chapter 6 shows the numerical results for the different models, analysing

their accuracy in order to validate them from a biological point of view.

Appendix A summarises some mathematical results on the theoretical analysis of

the Eberl model that appear in a recent work of Efendiev, Eberl and Zelik [28].

Appendix B presents a brief explanation on the optimisation techniques included

in the AMIGO2 toolbox [5], a high level MATLAB-based toolbox which is used in

the parameter calibration process.

Finally, a last chapter summarizing the main results of the thesis, the more relevant

conclusions and some expected future lines of research are included.
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Chapter 1

1D biofilm modelling

1.1 Some notions on biofilm modelling

The interest in the study of biofilms started in the late 19th century. However, it

is not until the publication of the pioneering work by Zobell and Anderson in 1936

[117], that their study started to receive significant attention. After that first work,

the first simple mathematical models appeared. Those models were mostly empirical,

consisted of simple empirical correlations derived from the patterns found in exper-

imental data obtained under relevant conditions (see, for instance, [69]). Therefore,

those models could not provide information about the internal mechanisms and their

range of application was limited to the conditions in which they had been obtained.

The advent of novel experimental techniques allowed to increase the knowledge

about the processes happening inside biofilms. This knowledge could be incorporated

into new mechanistic models. Mechanistic biofilm modelling started in the 70s, with

new models mainly focused on the role of nutrients diffusion within the biofilm. Those

first models consisted of one or two one-dimensional partial differential equations

(PDEs) which described the decrease of nutrients concentration inside the biofilm

and the biofilm growth [39, 40, 55, 84, 85, 110]. They considered a simple geometry, a

slab; a uniform biomass (viable cells) distribution and combined diffusion mechanisms

with reaction terms.
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In the 80s, mathematical models started to include different types of micro-

organisms (multi-species) and non uniform biomass distributions inside the biofilm.

These second generation models maintained the one dimensional slab geometry, but

considered systems of reaction-diffusion ODE and/or PDE for both biomasses and nu-

trients while adding spatial patterns for the different types of nutrients and biomasses.

The main goal of these models was to evaluate the total nutrients and the fluxes of

metabolic products in the surface of the biofilm. [51, 83, 106, 107]

Since then, the experimental techniques used in the detailed analysis of biofilm

structures and activities have improved significantly, favouring the development of

experimental models that allowed the growth of biofilms in the laboratory. This fact,

coupled with the reliable new numerical methods and computers, gave rise to a re-

newed interest in the mathematical modelling of biofilms. The possibility of studying

heterogeneous structures present inside a biofilm motivated the development of math-

ematical models simulating the three-dimensional biofilm structure. The possibility

of having in situ visualisations of micro-colonies inside a biofilm motivated the devel-

opment of mathematical models that were able to reproduce the interaction between

species.

Current models include numerous features or mechanisms that underlie complex

structure dynamics. The use of these models gives a detailed description both of the

structure of the biofilm and its biological behaviour, thus providing novel insights into

biofilm life cycle but at the expense of computational cost, compared to the small

amount of information but low cost of the first models [105].

As explained, mathematical models can be very different, from simple empirical

correlations to sophisticated and computationally expensive models, or even vary

from the macroscopic to the microscopic scale. Choosing the right model or building

a new one requires, first, the definition of the model objective, i.e., the question we

want to answer with such a model. That question will condition the mechanisms

to be incorporated in the model and, thus, its complexity. Due to the flexibility

that goes hand in hand with the mathematical models, it is easy to add or eliminate
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processes which, in turn, makes modelling an important and versatile tool in biofilm

investigation [105].

A model intended to capture detailed descriptions of all components and processes

must include mass balance equations for each component in each part of the domain.

Also it must take into account continuity equations for the fluid system when the

biofilm is embedded in a circulating fluid and well defined boundary conditions for

each and every variable. It is quite obvious that such a model would be computa-

tionally non-viable, so simplifications are in order. While applying simplifications, it

is important to foresee the consequences of those simplifications, thus being another

difficulty in the model design process.

The latest multidimensional models take into account the distinction between the

solid domain Ω1 (containing the biomass), and the liquid domain Ω2 (including pores

and channels). Both domains are separated by an interface Γ. In Ω1, nutrients are

consumed through biochemical reactions and are transported by diffusion, while in

Ω2 transport is due to diffusion and convection. Certain studies take also into account

the possibility of decoupling processes based in the fact that nutrients consumption

and diffusive and convective transport are much faster that the biofilm development

processes [51].

On the other hand, equations describing the hydrodynamic processes, the trans-

port and consumption of nutrients and biomass production are well known, whereas

the modelling of biomass propagation is still an open question due to the many in-

fluencing factors both physical and environmental [75, 100, 101].

Recent models are divided into three great categories: cellular automaton, discrete

models (individual model based), and continuous models. The first two, are based

on the concept of agents. Each cell is an agent which behaves following a certain

set of rules. Those rules represent cellular nutrient uptake, cellular proliferation and

spatial location. When biomass is greater than a certain density threshold in one cell,

certain quantity propagates randomly to a neighbouring empty cell, using different

strategies when neighbours are not empty [42, 71, 74, 111]. The predictions offered
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by these models are in qualitative agreement with experimental results, but they

present some physical disadvantages. First of all, the predictions strongly depend on

the discretisation, which makes them not invariant with respect to the coordinate

system. Furthermore, there must be certain ordering of grid cells so that, when

two cells try to move biomass into a shared neighbour, there is no conflict with the

biomass spread mechanism. Finally, there are many different formulations for the set

of propagation rules, all of them reliable, but creating qualitative differences.

In the case of continuous models all these disadvantages disappear as they do not

rely that much in the discretisation and the spreading mechanism is based only in

the processes added to the model. They are not free from drawbacks, either, as the

computational cost can be high, although the computational cost does not depend

on the number of cells considered in the system. But they generate deterministic

solutions, meaning that they need to be run only one time, and they can be subject

to analytical studies.

In this PhD work we propose various deterministic models to describe the dynam-

ics of biofilms formed by several different L. monocytogenes strains. First, we will

consider one-dimensional models which can be be efficient and reliable alternatives

to describe flat biofilms (as the ones presented by L1A1 L. monocytogenes strain).

1.2 First model: the Eberl model

As it has been previously indicated, L1A1 L. monocytogenes strain develops mostly

flat biofilms, so a one dimensional model seems appropriate. As the starting point for

the current work, let us consider the model developed by Eberl et al. [26], a robust

model from the literature validated not only numerically but also analytically. We

refer to Appendix A for a summary of the analytical results, as proved in Efendiev

et al. [28].

The Eberl model takes into account the following assumptions:

i. Existence of a sharp front of biomass at Γ representing the transition from the
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biomass region to the bulk region.

ii. Biomass spreading is important when the biomass concentration reaches certain

density.

iii. Biomass density can not exceed a maximum bound.

iv. Biomass production is due to nutrient consumption.

v. Spreading mechanism must be compatible with the hydrodinamics and the nu-

trients consumption and transfer model.

vi. Given certain biochemical parameters, the spatial heterogeneity of a single-

species biofilm is only due to the environmental conditions.

The biomass density maximum bound postulated in iii) is not obtained from the

reaction terms, based on iv). In fact, it must be a associated to the biomass propa-

gation process. Moreover, one can expect that limit to be obtained as a consequence

of ii).

The propagation mechanism will be a non-constant diffusive flux, thus avoiding

an instantaneous diffusion that would contradict ii). Therefore, a biomass depending

diffusion coefficient that vanishes in the liquid region will be proposed.

Environmental conditions responsible for the nutrients availability are included

through an accurate description of the transport processes in Ω2, i.e., the hydrody-

namic and mass transfer processes.

All things considered, the spatio-temporal variables of the model are

• t ≥ 0: time,

• x ∈ Ω: spatial coordinate,

• c(t, x): biomass density,

• s(t, x): nutrients concentration,
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• Ω1: biofilm region, m > 0,

• Ω2: liquid region, m ≡ 0,

• di(c): diffusion coefficients related to s (i = 1), and c (i = 2),

• u(t, x): fluid velocity,

• f(s, c): nutrients consumption rate,

• g(s, c): biomass production rate,

and so, the model equations are

∇ · u = 0
∂u

∂t
+ u · ∇u = −1

ρ
∇p+∇2u

for x ∈ Ω2,

u ≡ 0 for x ∈ Ω1,


(1.1)

∂s

∂t
+ u · ∇s = ∇ · (d1(c)∇s)− f(s, c), (1.2)

∂c

∂t
= ∇ · (d2(c)∇c) + g(s, c), (1.3)

f(s, c) =
k1sc

k2 + s
, g(s, c) = k3(f(s, c)− k4sc). (1.4)

Equations (1.1) correspond to Navier-Stokes equations for a fluid in the bulk region

Ω2, with constant density, ρ, and constant kinematic viscosity, ν [38].

Equation (1.2) describes the nutrients diffusive and convective transport in Ω2,

and in Ω1, where is only diffusive, and the nutrients consumption. The term d1(c)

corresponds to the diffusion coefficient while the term f(s, c) represents the nutrients

consumption rate as described in (1.4).

Equations (1.1) and (1.2) have been widely studied while equation (1.3) is the

biomass density evolution equation as proposed in [26]. Spatial propagation is due to

a diffusive flux d2(c)∇c, with d2(c) being the biomass dependent diffusion coefficient.
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New biomass comes from the term g(s, c), as described in (1.4), including a decay

term −k3k4c. As the only biomass source is g(s, c), postulate iv) is granted. Also,

postulate v) is granted by equations (1.1) and (1.2), as long as we obtain a front with

a sharp gradient separating the regions Ω1 and Ω2.

Since Ω1 and Ω2 vary with the evolution of c, it is not possible to decouple the

hydrodynamic part of the model, although it can be simplified depending on the

experimental conditions, as will be shown later. Parameters k1 to k4 are non negative

and depend on the particular problem. We assume that d1(c) is positive, bounded

and piecewise differentiable. The biomass diffusion coefficient, d2(c) must satisfy

postulates i-iv). Therefore, following the steps from [26, 68], we assume

d2(c) =

(
ε

cmax − c

)a
cb, (1.5)

where cmax is the maximum biomass limit.

It can be seen that the function (1.5) is zero when c = 0, i.e., in the bulk, and small

when c is much smaller than cmax. When c approaches cmax, the diffusion function

grows giving rise to a non-negligible diffusive transport. Parameter a must be chosen

so it satisfies iii) while parameters b and ε must satisfy i) and ii).

1.2.1 Model particularisation and simplifications

Equations (1.1)-(1.5) conform a complete but complicated mathematical model, dif-

ficult to analyse or solve. A quick analysis shows some trivial solutions: c ≡ 0 is a

solution for the model for all values of s, and u; if s ≡ 0 or there are not nutrients

input to the system, the model will decay to the solution c ≡ 0 and s ≡ 0 for all u

satisfying (1.1). These solutions do not correspond to biofilims behaviour. In the se-

quel we describe the modifications we will introduce into the model to accommodate

the experimental system used. This will lead to the formulation of three different

models regarded as M1, M2 and M3, respectively.

First of all, we are trying to simulate the dynamics of the L1A1 strain in a batch
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system, i.e., we can assume u ≡ 0, thus eliminating the complexity of the Navier-

Stokes equations. Secondly, let us consider as a first approach that the nutrients

diffusivity in the bulk and the biofilm are of the same order of magnitude, thus

making d1(c) ≡ d1, constant. Finally, we are going to solve a dimensionless model, so

we introduce the dimensionless variables

C := c/cmax, S := s/s0.

Therefore, equation (1.2) with reaction term (1.4), constant d1 and neglected fluid

velocity u becomes

s0
∂S

∂t
= d1s0∆S − k1s0ScmaxC

k2 + s0S
,

or equivalently

∂S

∂t
= d1∆S − k1cmax

s0

SC
k2

s0
+ S

. (1.6)

Moreover, equation (1.3) with growth term (1.4) and diffusion term (1.5) becomes

cmax
∂C

∂t
= ∇ ·

(
cb−amax

(
ε

1− C

)a
Cbcmax∇C

)
+ k3

(
k1s0ScmaxC

k2 + s0S
− k4cmaxC

)
,

or equivalently,

∂C

∂t
= ∇ ·

(
cb−amax

(
ε

1− C

)a
Cb∇C

)
+ k3k1

SC
k2

s0
+ S
− k3k4C. (1.7)

Next, we define the functions

F (S,C) = K1
SC

K2 + S
, (1.8)

G(S,C) = K3
SC

K2 + S
−K4C, (1.9)

d2(C) = cb−amax

(
ε

1− C

)a
Cb, (1.10)
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where the involved parameters, K1 to K4, are defined as

K1 = cmax
k1

s0

, K2 =
k2

s0

, K3 = k3k1, K4 = k3k4,

with

k1 = cmax

(
µm
YXS

+ms

)
, k2 = Ks, k3 =

YXS
cmax

, k4 = mscmax.

and the rest of the involved parameters are listed in Table 1.1. Thus, the simplified

dimensionless model can be written as

∂S

∂t
= d1∇2S − F (S,C), (1.11)

∂C

∂t
= ∇ · (d2(C)∇C) +G(S,C). (1.12)

The model based on (1.11) and (1.12) is completed with initial conditions and

boundary conditions. For this, we assume that bacteria adhere initially to the surface

located at x = 0, with a given thickness of 4.5µm and that there is neither flux of

bacteria nor nutrients. At time zero, a fixed nutrients concentration is fed. Therefore,

boundary and initial conditions read as follows

C(0, x) =

{
C0, if 0 ≤ x ≤ 4.5× 10−5,

0, if 4.5 ≤ x ≤ L,
(1.13)

∂C

∂x
(t, 0) = 0, t ∈ [0, T ], (1.14)

∂C

∂x
(t, L) = 0, t ∈ [0, T ], (1.15)

S(0, x) = 1, x ∈ [0, L], (1.16)
∂S

∂x
(t, 0) = 0, t ∈ [0, T ], (1.17)

∂S

∂x
(t, L) = 0, t ∈ [0, T ]. (1.18)
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Param. Description Used in
d1 Nutrients diffusion coefficient (m2/s) M1, M2
d2 Biomass diffusion coefficient (m2/s) M3
dN Nutrients bulk diffusion coefficient (m2/s) M3
µm Specific growth rate (1/s) M1, M2, M3
YXS Substrate growth yield (-) M1, M2, M3
Ks Monod saturation constant (kg/m3) M1, M2
Kd Monod decay constant (kg/m3) M2
kd Rate of activation of detachment (-) M3
Dmin % of damaged or dead cells before detachment (-) M3
Nmin Threshold for glucose impaired uptake (-) M3
ms Maintenance coefficient (1/s) M1, M2, M3
cmax Maximum biomass (kg/m3) M1, M2, M3
s0 Initial nutrients concentration (kg/m3) M1, M2, M3
C0 Initial biomass concentration (kg/m3) M1, M2, M3
ε Biomass diffusivity related constant (-) M1, M2
a Biomass diffusivity related constant (-) M1, M2
b Biomass diffusivity related constant (-) M1, M2
L Maximum length (m) M1, M2, M3
T Maximum time (s) M1, M2, M3

Table 1.1: Parameters involved in the different models.

In summary, the so called Eberl model is given by equations (1.11)-(1.18), with

the expressions for the involved functions given in (1.8)-(1.10). This formulation

corresponds to M1. The results concerning the mathematical analysis of the Eberl

model to prove the existence and uniqueness of solution are obtained in [28] and

recalled in Appendix A.

1.3 Second model: non-linear detachment

As will be shown in the experimental validation in Chapter 3, the previous model

can not predict L1A1 biofilm life cycle. Actually, the Eberl model predicts that cells

consume all nutrients. Once the nutrients are exhausted, the cells enter a phase
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of maintenance in which the thickness does not increase. Finally, the decay term

dominates the growth term, and biomass depletion starts once cells maintenance is

no longer possible. The maximum biofilm thickness is around the maximum found

by quantitative image, although the final decay is almost imperceptible in contrast

to the massive detachment observed in the experiments. In order to account for this

massive final decay, in this second model we modify the decay term.

The original term K4C is meant to represent the decay caused only by the fluid

friction. However, in our case we first assumed that the decay is due to the fact that

at certain moment, the nutrients are fully consumed or cannot reach the inner zones

of the biofilm, so cells start to die, the EPS weakens and a massive decay happens.

In the second model we change the linear decay term into a non-linear rational term,

so the second model becomes

∂S

∂t
= d1∇2S − F (S,C), (1.19)

∂C

∂t
= ∇ · (d2(C)∇C) +G(S,C), (1.20)

where

F (S,C) = K1
SC

K2 + S
, (1.21)

G(S,C) = K3
SC

K2 + S
−K4

C

Kd + S
, (1.22)

d2(C) = cb−amax

(
ε

1− C

)a
Cb. (1.23)

The new parameter Kd is the decay coefficient related to the nutrients concentra-

tion, and parameters K1 to K4 are defined as

K1 = cmax
k1

s0

, K2 =
k2

s0

, K3 = k3k1, K4 = k3k4,

with

k1 = cmax

(
µm
YXS

+ms

)
, k2 = Ks, k3 =

YXS
cmax

, k4 = mscmax.

The rest of the involved parameters are listed in Table 1.1. The model maintains

the same boundary and initial conditions (1.13)-(1.18).
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In summary, the so called second model or model with non-linear detachment

(M2), is given by equations (1.19)-(1.20), with the expressions for the involved func-

tions given in (1.21)-(1.23), and the boundary conditions (1.13)-(1.18).

1.4 Third model: nutrient uptake impairment plus

ageing

The second model provides a numerical solution where a significant final decay is

observed. However, the decay starts rather early and the model does not achieve

the expected maximum thickness. Besides, although slower than in the Eberl model,

nutrients are still fully consumed while in the real biological system nutrients are still

present in the bulk.

Several candidate models where tested including various mechanisms [9]. Here we

regard as the third model the most successful of them. In the third model, we drop

the assumption that the nutrients diffusion coefficient is constant, and instead we

consider the more realistic scenario in which nutrients diffuse differently in the bulk

and in the biofilm [94]. Therefore, we introduce for d1 the dependence on C in the

form:

d1(C) =

{
dN , if C = 0,

deffdN , if C > 0,
(1.24)

where dN is the glucose diffusivity in the bulk and deff is the effective glucose diffu-

sivity within the biofilm, its value being deff = 0.24 as stated in [94].

Since the calibration of models M1 and M2 led to the conclusion that non-linear

biomass diffusion is not relevant, a constant diffusion was considered. Furthermore,

since there are plenty of nutrients in the medium, we assume that biomass growth

(and therefore nutrients consumption), follows a mass action law description instead

of the usual Monod formulation. This assumption was also confirmed by parameter

estimation. The behaviour in the laboratory experiments showed that instead of
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depleting the system of all of the nutrients, at a certain time the biomass stopped

consuming them, so that a nutrients uptake impairment mechanism was introduced.

Finally, we assume that the large detachment observed in the laboratory experi-

ments is related to cells death and the degradation of the extracellular DNA, i.e., to

biofilm ageing. Therefore, as a measure of ageing, we used the measured covered area

of damaged or dead cells, CBD(t), in such a way that the decay starts once a given

value of damaged or dead cells appears in the biofilm. Mathematically, this can be

written as

G(S,C) = K3SC −K4
C

1 + exp(kd[Dmin − CBD(t)])
.

The resulting so called third model is expressed as follows

∂S

∂t
= ∇ · (d1(C)∇S)− F (S,C), (1.25)

∂C

∂t
= d2∇2C +G(S,C), (1.26)

where

F (S,C) = K1SC, (1.27)

G(S,C) = K3SC −K4
C

1 + exp(kd[Dmin − CBD(t)])
. (1.28)

The new parameter kd represents the rate of activation of detachment, Dmin is the

percentage of damaged or dead cells before detachment and parametersK1, K3 and K4

are defined as follows

K1 = cmax
k1

s0

, K3 = k3k1, K4 = k3k4,

with

k1 = cmax

(
µm
YXS

+ms

)
, k3 =

YXS
cmax

, k4 = mscmax.

The rest of the involved parameters are listed in Table 1.1. The model maintains

the same boundary and initial conditions (1.13)-(1.18).

In summary, the so called third model (M3), is given by equations (1.25)-(1.26),

with the expressions for the involved functions given in (1.27)-(1.28), and the bound-

ary conditions (1.13)-(1.18).
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Chapter 2

Numerical methods for the 1D case

2.1 Numerical methods

Sections 1.2.1, 1.3 and 1.4 present three different modelling approaches, all of them

consisting of a system of non-linear partial differential equations, the analytical solu-

tion of which is not available. Therefore, appropriate numerical methods are required

to efficiently compute the approximation of the solution. For the first model, Eberl et

al. [26] proposed a combination of explicit and implicit finite difference methods that

have been used to solve the system of equations in Section 1.2.1. More precisely, an

explicit time-stepping was used in (1.11) while a fully implicit scheme was applied to

(1.12). Note that the explicit scheme involves a stability constraint on the time step,

thus limiting the use of large time steps. In both equations, a classical centred scheme

is used in the spatial discretisation. The resulting non-linear system associated to the

fully discretised problem was solved with a Newton-BiCGSTAB method. The main

drawback of this numerical strategy comes from the use of an explicit scheme that

requires a large number of time steps to obtain the concentration of nutrients and

biomass at final time, thus leading to an extremely slow algorithm. Additionally, it

should be noted that the finite-differences scheme results to be first order in time.

In order to avoid the stability constraint, in a previous work [60] the fully implicit

scheme was applied in combination with a Newton algorithm for the non-linear fully
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discretised problem. However, this approach led to very large computational times in

order to properly approximate the slow non-linear diffusion processes that required

small time steps.

As a more efficient alternative, in this PhD work we propose the use of a Crank-

Nicolson finite difference scheme, which is second order in time and space [57], so that

larger time steps can be used for the same accuracy and thus the computational time

can be reduced.

For this purpose, we first consider a finite differences mesh, with N time inter-

vals, and J spatial nodes, in terms of which we define the time and spatial steps,

respectively, as

∆t =
T

N
, ∆x =

L

J − 1
.

Moreover, we introduce the notation Snj ≈ S(n∆t, j∆x) and Cn
j ≈ C(n∆t, j∆x)

to implement the finite differences approximations of the solution at the mesh points,

with n = 0, . . . , N y j = 0, . . . , J − 1.

Equations (1.11) and (1.12) in Section 1.2.1 are discretised with a Crank-Nicolson

finite differences scheme in time and a central differences scheme for the second order

derivative in space. The same process is applied to equations (1.19) and (1.20) in

section 1.3 and to equations (1.25) and (1.26) in section 1.4.

2.1.1 Discretisation of the Eberl model

First, for n = 0, . . . , N , applying Crank-Nicolson plus a central differences scheme to

the spatial second derivative to equation (1.11), leads to the system of equations

Sn+1
j − Snj

∆t
=

1

2

[
d1

(Sn+1
j+1 − 2Sn+1

j + Sn+1
j−1 )

(∆x)2
− F (Sn+1

j , Cn+1
j )

]
+ (2.1)

1

2

[
d1

(Snj+1 − 2Snj + Snj−1)

(∆x)2
− F (Snj , C

n
j )

]
,
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valid for j = 1, . . . , J − 2. The nodes corresponding to j = 0 and j = J − 1

will be discretised taking into account the boundary conditions, as will be explaind

in Section 2.2. By rearranging the terms in the previous equation, we get

Sn+1
j − Snj =

d1∆t

2(∆x)2
(Sn+1

j+1 − 2Sn+1
j + Sn+1

j−1 )−
∆tK1S

n+1
j Cn+1

j

2(K2 + Sn+1
j )

+ (2.2)

d1∆t

2(∆x)2
(Snj+1 − 2Snj + Snj−1)−

∆tK1S
n
j C

n
j

2(K2 + Snj )
,

or equivalently

−ωSn+1
j+1 + (1 + 2ω)Sn+1

j − ωSn+1
j−1 + σ1

Sn+1
j Cn+1

j

K2 + Sn+1
j

+[
−ωSnj+1 + (2ω − 1)Snj − ωSnj−1 + σ1

Snj C
n
j

K2 + Snj

]
= 0, (2.3)

with ω =
d1∆t

2(∆x)2
and σ1 =

∆tK1

2
.

Next, by applying a Crank-Nicolson plus a central scheme to approximate the

most external spatial partial derivatives in equation (1.12), we get

Cn+1
j − Cn

j

∆t
=

1

2

[
d2(Cn+1

j+1 )(Cn+1
j+1 )x − d2(Cn+1

j−1 )(Cn+1
j−1 )x

2∆x
+G(Sn+1

j , Cn+1
j )

]
+

1

2

[
d2(Cn

j+1)(Cn
j+1)x − d2(Cn

j−1)(Cn
j−1)x

2∆x
+G(Snj , C

n
j )

]
.

As d2 is positive, we use a backward scheme in space in the remaining spatial
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derivatives in the previous equation, thus obtaining

Cn+1
j − Cnj

∆t
=

1

2

[
d2(Cn+1

j+1 )(Cn+1
j+1 − C

n+1
j )− d2(Cn+1

j−1 )(Cn+1
j − Cn+1

j−1 )

2(∆x)2
+G(Sn+1

j , Cn+1
j )

]
+

1

2

[
d2(Cnj+1)(Cnj+1 − Cnj )− d2(Cnj−1)(Cnj − Cnj−1)

2(∆x)2
+G(Snj , C

n
j )

]
.

Furthermore, applying the definition of d2, we have

Cn+1
j − Cnj =

∆tmb−a
maxε

a

4(∆x)2

[
(Cn+1

j+1 )b+1 − (Cn+1
j+1 )bCn+1

j

(1− Cn+1
j+1 )a

−
(Cn+1

j−1 )bCn+1
j − (Cn+1

j−1 )b+1

(1− Cn+1
j−1 )a

]
+

∆t

2
G(Sn+1

j , Cn+1
j )+

∆tmb−a
maxε

a

4(∆x)2

[
(Cnj+1)b+1 − (Cnj+1)bCnj

(1− Cnj+1)a
−

(Cnj−1)bCnj − (Cnj−1)b+1

(1− Cnj−1)a

]
+

∆t

2
G(Snj , C

n
j ). (2.4)

Finally, by introducing the definition of G and rearranging terms, we have

(1 + σ4)Cn+1
j − σ3

Sn+1
j Cn+1

j

K2 + Sn+1
j

+

µ

[
(Cn+1

j+1 )bCn+1
j − (Cn+1

j+1 )b+1

(1− Cn+1
j+1 )a

+
(Cn+1

j−1 )bCn+1
j − (Cn+1

j−1 )b+1

(1− Cn+1
j−1 )a

]
+

(σ4 − 1)Cnj − σ3

Snj C
n
j

K2 + Snj
+

µ

[
(Cnj+1)bCnj − (Cnj+1)b+1

(1− Cnj+1)a
+

(Cnj−1)bCnj − (Cnj−1)b+1

(1− Cnj−1)a

]
= 0, (2.5)

with µ =
∆tcb−amaxε

a

4(∆x)2
, σ3 =

∆tK3

2
and σ4 =

∆tK4

2
.
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2.1.2 Discretisation of the non-linear detachment model

The discretisation process of equations (1.19)-(1.20) follows the same strategy as in

equations (1.11)-(1.12). In fact, as both functions (1.8) and (1.21) are the same, the

nutrients equation (1.19) leads to the discretised equation

−ωSn+1
j+1 + (1 + 2ω)Sn+1

j − ωSn+1
j−1 + σ1

Sn+1
j Cn+1

j

K2 + Sn+1
j

+[
−ωSnj+1 + (2ω − 1)Snj − ωSnj−1 + σ1

Snj C
n
j

K2 + Snj

]
= 0, (2.6)

with ω =
d1∆t

2(∆x)2
and σ1 =

∆tK1

2
, for j = 0, . . . , J − 1.

On the other hand, the term G(S,C) used in equations (1.12) and (1.20) differs.

The discretisation is the same until equation (2.4), where the definition of G is applied

and the resulting equation changes. By applying the definition of G(S,C), as regarded

in (1.22), equation (2.4) becomes

Cn+1
j − σ3

Sn+1
j Cn+1

j

K2 + Sn+1
j

+ σ4

Cn+1
j

Kd + Sn+1
j

+

µ

[
(Cn+1

j+1 )bCn+1
j − (Cn+1

j+1 )b+1

(1− Cn+1
j+1 )a

+
(Cn+1

j−1 )bCn+1
j − (Cn+1

j−1 )b+1

(1− Cn+1
j−1 )a

]
−

Cnj − σ3

Snj C
n
j

K2 + Snj
+ σ4

Cnj
Kd + Snj

+

µ

[
(Cnj+1)bCnj − (Cnj+1)b+1

(1− Cnj+1)a
+

(Cnj−1)bCnj − (Cnj−1)b+1

(1− Cnj−1)a

]
= 0, (2.7)

where µ =
∆tcb−amaxε

a

4(∆x)2
, σ3 =

∆tK3

2
and σ4 =

∆tK4

2
.

2.1.3 Discretisation of the nutrients uptake impairment plus

ageing model

Also, the discretisation process of equations (1.25)-(1.26) follows the same strategy

as in equations (1.11)-(1.12). In this case, functions F (S,C) and G(S,C), as well as
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the nutrients diffusion coefficient d1(C) change, so both equations must be analysed.

Let us start with equation (1.25) where the main difference is in the diffusion

coefficient, d1(C), given by (1.24) which is not constant unlike the constant coeffi-

cient taken in (1.11). The term F (S,C) also differs although it does not change the

discretisation techniques that much. Therefore, using a Crank-Nicolson scheme for

the time derivative, we can consider

Sn+1
j − Snj

∆t
=

1

2

[
d1(Cn

j )∇2Sn+1
j − F (Sn+1

j , Cn+1
j )

]
+

1

2

[
d1(Cn

j )∇2Snj − F (Snj , C
n
j )
]
,

where we use the diffusion coefficient at the previous time step, i.e.,

d1(Cn
j ) =

{
dN , if Cn

j ≤ Cmin,

deffdN , if Cn
j > Cmin,

(2.8)

for j = 0, . . . , J−1. The value Cmin is used to set a certain minimum of biomass con-

centration. If the numerical value of the biomass concentration is smaller than Cmin,

then we consider that it is zero, and proceed with the diffusion coefficient dN , which is

the diffusion coefficient in the bulk. Note that in our examples we choose Cmin = 10−5.

Next, we apply a central differences scheme to the spatial derivative, thus obtaining

Sn+1
j − Snj

∆t
=

1

2

[
d1(Cn

j )
(Sn+1

j+1 − 2Sn+1
j + Sn+1

j−1 )

(∆x)2
− F (Sn+1

j , Cn+1
j )

]
+

1

2

[
d1(Cn

j )
(Snj+1 − 2Snj + Snj−1)

(∆x)2
− F (Snj , C

n
j )

]
,

and finally, applying (1.27) we have the following discretised equation

−ωSn+1
j+1 + (1 + 2ω)Sn+1

j − ωSn+1
j−1 + σ1S

n+1
j Cn+1

j +[
−ωSnj+1 + (2ω − 1)Snj − ωSnj−1 + σ1S

n
j C

n
j

]
= 0, (2.9)

34



Chapter 2. Numerical methods for the 1D case 2.1. Numerical methods

where ω ≡ ω(Cn
j ) =

d1(Cn
j )∆t

2(∆x)2
and σ1 =

∆tK1

2
.

Now, for equation (1.26) we follow a similar procedure as for equation (1.11). In

equation (1.26) the diffusion coefficient is constant d2(C) ≡ d2 and the term G(S,C),

is

G(S,C) = K3SC −K4
C

1 + exp(kd[Dmin − CBD(t)])
,

where the values of CBD(t) are an input to the model and, thus, are treated as

known values. Applying a Crank-Nicolson finite differences scheme in time and a

central differences scheme for the second order derivative in space to equation (1.26),

we get

Cn+1
j − Cn

j

∆t
=

1

2

[
d2

(Cn+1
j+1 − 2Cn+1

j + Cn+1
j−1 )

(∆x)2
+G(Sn+1

j , Cn+1
j )

]
+

1

2

[
d2

(Cn
j+1 − 2Cn

j + Cn
j−1)

(∆x)2
+G(Snj , C

n
j )

]
,

for j = 0, . . . , J − 1. Rearranging terms, we get

Cn+1
j − Cn

j =

d2∆t

2(∆x)2
(Cn+1

j+1 − 2Cn+1
j + Cn+1

j−1 ) +
∆t

2
G(Sn+1

j , Cn+1
j )+

d2∆t

2(∆x)2
(Cn

j+1 − 2Cn
j + Cn

j−1) +
∆t

2
G(Snj , C

n
j ),

and, applying (1.28),

−µCn+1
j+1 + (1 + 2µ+ σCBD)Cn+1

j − µCn+1
j−1 − σ3S

n+1
j Cn+1

j +[
−µCn

j+1 + (2µ+ σCBD − 1)Cn
j − µCn

j−1 − σ3S
n
j C

n
j

]
= 0, (2.10)

with µ =
d2∆t

2(∆x)2
, σ3 =

∆tK3

2
and σCBD =

∆tK4

2 + 2 exp(kd[Dmin − CBD(t)])
.
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2.2 Discretisation of the boundary conditions

The discretised equations (2.3)-(2.5) for the Alpkvist model, (2.6)-(2.7) for the second

model and (2.9)-(2.10) for the third model, stand for nodes j = 1, . . . , J − 2. Nodes

j = 0 and j = J − 1 would require ghost data in order to be solved using the these

equations. Instead, we are applying a left- or right-biased finite difference scheme of

order 2 to discretise the boundary conditions. That way, we obtain equations that

stand for nodes j = 0 and j = J − 1. Therefore, let us start with equation (1.14). By

applying a right-biased finite differences scheme, we obtain

−3Cn
0 + 4Cn

1 − Cn
2

2∆x
= 0⇔ 3Cn

0 − 4Cn
1 + Cn

2 = 0. (2.11)

Next, by applying a left-biased finite differences scheme to equation (1.15), we

obtain

3Cn
J−1 − 4Cn

J−2 + Cn
J−3

2∆x
= 0⇔ 3Cn

J−1 − 4Cn
J−2 + Cn

J−3 = 0. (2.12)

In a similar way, by applying a right biased finite differences scheme to equation

(1.17), we obtain

−3Sn0 + 4Sn1 − Sn2
2∆x

= 0⇔ 3Sn0 − 4Sn1 + Sn2 = 0. (2.13)

Finally, by applying a left-biased finite differences scheme to equation (1.18), we

obtain

3SnJ−1 − 4SnJ−2 + SnJ−3

2∆x
= 0⇔ 3SnJ−1 − 4SnJ−2 + SnJ−3 = 0. (2.14)

As the boundary conditions (1.14)-(1.15) and (1.17)-(1.18) are valid for the three

models, equations (2.11)-(2.14) can be used to complete the discrete system used to

solve each of the models.
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Figure 2.1: Different nodes used in the discretisation of the equations of the three

models

2.3 Fully discretised problems

Once the boundary conditions are taken into account, each of the three discretised

models leads to a non-linear system that must be solved through a linearisation
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method. In all three cases, the non-linear system can be expressed as

F(Xn+1) = A(Xn+1)Xn+1 −B(Xn) = 0, (2.15)

where the definition of the function F depends on the particular model and boundary

conditions being considered. The elements of the system are

• Xn+1 is the vector of unknowns at time step n+1, the 2J elements of which are

the components of the vectors Sn+1 = (Sn+1
j )J−1

j=0 and Cn+1 = (Cn+1
j )J−1

j=0 , which

are ordered so that the system results as simple as possible:

Xn+1 =
(
Sn+1

0 , Cn+1
0 , . . . , Sn+1

j , Cn+1
j , . . . , Sn+1

J−1, C
n+1
J−1

)T
. (2.16)

• The vector B(Xn) ≡ B is constant through the iterations of the Newton method

when solving. Moreover, its 2J elements are given by each particular model

equations.

• Matrix A(Xn+1) is a square sparse matrix of order 2J , the coefficients of which

depend on the unknowns Xn+1. As with vector B, its elements depend on each

particular model equations.

As the function F is non-linear, in order to solve (2.15) we use a Newton method [30]

at each time step n. Thus, starting from Xn,0 = Xn, at the iteration p we compute

Xn,p+1 as follows:

JF(Xn,p)∆Xn,p = F(Xn,p), (2.17)

Xn,p+1 = Xn,p −∆Xn,p, (2.18)

where JF(Xn,p) denotes the jacobian matrix of F evaluated at Xn,p. At each Newton

iteration, the solution of the linear system (2.17), ∆Xn,p, is obtained using an op-

timized LU factorization with partial pivoting [80]. Finally, we find Xn+1 through

the calculation of the sequence Xn,p, until achieving an index, k, so that the required

relative error tolerance between two consecutive iterations is fulfilled. Then we take

Xn+1 = Xn,k.
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2.3.1 Fully discretised problem for the Eberl model

The set of discretised equations of the Eberl model (2.3)-(2.5), (2.11)-(2.12) and

(2.13)-(2.14) particularises the system of non-linear equations (2.15), so that, on one

hand the independent vector B is given by

B =



0

0

...

ωSn
j+1 − (2ω − 1)Sn

j + ωSn
j−1 − σ1

Sn
j C

n
j

K2 + Sn
j

− (σ4 − 1)Cn
j − µ

[
(Cn

j+1)bCn
j − (Cn

j+1)b+1

(1Cn
j+1)a

+
(Cn

j−1)bCn
j − (Cn

j−1)b+1

(1− Cn
j−1)

]
+ σ3

Sn
j C

n
j

K2 + Sn
j

...

0

0



. (2.19)

On the other hand, matrix A can be expressed in the form

A(Xn+1) = Ac + Anc(Xn+1),

with Ac independent of Xn+1 and Anc(Xn+1) holding all the dependency on Xn+1

and, therefore gathering the non-linearity of the system. For simplicity, let us denote

Anc(Xn+1) ≡ Anc.

Both matrices, Ac and Anc, are sparse and have a certain block structure. More

precisely, next we describe their respective block structures:
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• Matrix Ac

Ac =



γ1 γ2 γ3 0 . . .

α β α 0 . . .
. . . . . . . . . . . .

. . . α β α . . .
. . . . . . . . .

. . . 0 α β α

. . . 0 γ3 γ2 γ1


, (2.20)

where the involved 2× 2 block submatrices are given by

α =

 −ω 0

0 0

 , β =

 1 + 2ω 0

0 1 + σ4

 ,

γ1 =

 3 0

0 3

 , γ2 =

 −4 0

0 −4

 , γ3 =

 1 0

0 1

 .

• Matrix Anc

Anc =



0 0 0 . . .

α2
1 β1 α1

1 0 . . .
. . . . . . . . . . . .

. . . α2
j βj α1

j . . .
. . . . . . . . .

. . . 0 α2
J−2 βJ−2 α1

J−2

. . . 0 0 0


, (2.21)

where the involved 2× 2 block submatrices are given by

– Block α1
j , for j = 1, . . . , J − 2:

α1
j =


0 0

0 −µ
(Cn+1

j+1 )b

(1− Cn+1
j+1 )a

 .
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– Block α2
j , for j = 1, . . . , J − 2:

α2
j =


0 0

0 −µ
(Cn+1

j−1 )b

(1− Cn+1
j−1 )a

 .

– Block βj, for j = 1, · · · , J − 2:

βj =



σ1

Cn+1
j

K2 + Sn+1
j

0

0 µ

[
(Cn+1

j+1 )b

(1− Cn+1
j+1 )a

+
(Cn+1

j−1 )b

(1− Cn+1
j−1 )a

]
− σ3

Sn+1
j

K2 + Sn+1
j


.

Linear system for each Newton iteration

With the non-linear function F described, we need to build the linear system (2.17).

The Jacobian matrix, JF is evaluated in every Newton iteration at Xn,p. It can be

also decomposed in a constant part plus a non constant part

JF(Xn,p) = Ac + A(Xn,p),

where Ac is the matrix (2.20). Matrix A(Y) is a square sparse matrix of order 2J .

More precisely, let us describe its block structure,
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A(Y) =



0 0 0 . . .

α2
1 β1 α1

1 0 . . .
. . . . . . . . . . . .

. . . α2
j βj α1

j . . .
. . . . . . . . .

. . . 0 α2
J−2 βJ−2 α1

J−2

. . . 0 0 0


, (2.22)

where the involved 2× 2 block submatrices are given by

• Block α1
j , for j = 1, . . . , J − 2:

α1
j =

 0 0

0 α1
j,4

 ,

where

α1
j,4 = µ

[
bYb−1

2j+3Y2j+1 − (b+ 1)Yb
2j+3

]
(1− Y2j+3)a + a(1− Y2j+3)a−1(Yb

2j+3Y2j+1 − Yb+1
2j+3)

(1− Y2j+3)2a
.

• Block α2
j , for j = 1, . . . , J − 2:

α2
j =

 0 0

0 α2
j,4

 ,

where

α2
j,4 = µ

[
bYb−1

2j−1Y2j+1 − (b+ 1)Yb
2j−1

]
(1− Y2j−1)a + a(1− Y2j−1)a−1(Yb

2j−1Y2j+1 − Yb+1
2j−1)

(1− Y2j−1)2a
.
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• Block βj, for j = 1, · · · , J − 2:

βj =



σ1
Y2j+1K2

(K2 + Y2j)2
σ1

Y2j

K2 + Y2j

−σ3
Y2j+1K2

(K2 + Y2j)2
µ

[
Yb

2j+3

(1− Y2j+3)a
+

Yb
2j−1

(1− Y2j−1)a

]
− σ3

Y2j

K2 + Y2j


.

Using (2.19), (2.20), (2.21) and (2.22), we get the system of equations (2.17)-(2.18)

JF(Xn,p)∆Xn,p = F(Xn,p),

Xn,p+1 = Xn,p −∆Xn,p,

which is solved through an LU factorization with partial pivoting for every Newton

iteration, until the error tolerance is satisfied.

2.3.2 Fully discretised problem for the non-linear detach-

ment model

Following a similar procedure as in previous section, the set of discretised equations of

the second model (2.6)-(2.7), (2.11)-(2.12) and (2.13)-(2.14) particularises the system

of non-linear equations (2.15), so that, on one hand the independent vector B is given

by
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B =



0

0

...

ωSn
j+1 − (2ω − 1)Sn

j + ωSn
j−1 − σ1

Sn
j C

n
j

K2 + Sn
j

Cn
j − µ

[
(Cn

j+1)bCn
j − (Cn

j+1)b+1

(1Cn
j+1)a

+
(Cn

j−1)bCn
j − (Cn

j−1)b+1

(1− Cn
j−1)

]
+ σ3

Sn
j C

n
j

K2 + Sn
j

− σ4
Cn

j

Kd + Sn
j

...

0

0



.

(2.23)

On the other hand, matrix A can be expressed in the form

A(Xn+1) = Ac + Anc(Xn+1),

with Ac independent of Xn+1, and Anc(Xn+1) holding all the dependency on Xn+1 and,

therefore gathering the non-linearity of the system. Let us denote Anc(Xn+1) ≡ Anc.

Both matrices, Ac and Anc, are sparse and have a certain block structure. More

precisely, let us describe their respective block structures:
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• Matrix Ac

Ac =



γ1 γ2 γ3 0 . . .

α β α 0 . . .
. . . . . . . . . . . .

. . . α β α . . .
. . . . . . . . .

. . . 0 α β α

. . . 0 γ3 γ2 γ1


, (2.24)

where the involved 2× 2 block submatrices are given by

α =

 −ω 0

0 0

 , β =

 1 + 2ω 0

0 1

 ,

γ1 =

 3 0

0 3

 , γ2 =

 −4 0

0 −4

 , γ3 =

 1 0

0 1

 .

• Matrix Anc

Anc =



0 0 0 . . .

α2
1 β1 α1

1 0 . . .
. . . . . . . . . . . .

. . . α2
j βj α1

j . . .
. . . . . . . . .

. . . 0 α2
J−2 βJ−2 α1

J−2

. . . 0 0 0


, (2.25)

where the involved 2× 2 block submatrices are given by

– Block α1
j , for j = 1, . . . , J − 2:

α1
j =


0 0

0 −µ
(Cn+1

j+1 )b

(1− Cn+1
j+1 )a

 .
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– Block α2
j , for j = 1, . . . , J − 2:

α2
j =


0 0

0 −µ
(Cn+1

j−1 )b

(1− Cn+1
j−1 )a

 .

– Block βj, for j = 1, · · · , J − 2:

βj =


σ1

Cn+1
j

K2 + Sn+1
j

0

0 βj,4


, (2.26)

where

βj,4 = µ

[
(Cn+1

j+1 )b

(1− Cn+1
j+1 )a

+
(Cn+1

j−1 )b

(1− Cn+1
j−1 )a

]
− σ3

Sn+1
j

K2 + Sn+1
j

+ σ4
1

Kd + Sn+1
j

.

Linear system for each Newton iteration

With the non-linear function F described, we need to build the linear system (2.17).

The Jacobian matrix, JF is evaluated in every Newton iteration at Xn,p. It can be

decomposed in a constant part plus a non constant part

JF(Xn,p) = Ac + A(Xn,p),

where Ac is the matrix (2.24). Matrix A(Y) is a square sparse matrix of order 2J .

More precisely, next we describe its block structure,
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A(Y) =



0 0 0 . . .

α2
1 β1 α1

1 0 . . .
. . . . . . . . . . . .

. . . α2
j βj α1

j . . .
. . . . . . . . .

. . . 0 α2
J−2 βJ−2 α1

J−2

. . . 0 0 0


. (2.27)

where the involved 2× 2 block submatrices are given by

• Block α1
j , for j = 1, . . . , J − 2:

α1
j =

 0 0

0 α1
j,4

 ,

where

α1
j,4 = µ

[
bYb−1

2j+3Y2j+1 − (b+ 1)Yb
2j+3

]
(1− Y2j+3)a + a(1− Y2j+3)a−1(Yb

2j+3Y2j+1 − Yb+1
2j+3)

(1− Y2j+3)2a
.

• Block α2
j with j = 1, . . . , J − 2

α2
j =

 0 0

0 α2
j,4

 ,

where

α2
j,4 = µ

[
bYb−1

2j−1Y2j+1 − (b+ 1)Yb
2j−1

]
(1− Y2j−1)a + a(1− Y2j−1)a−1(Yb

2j−1Y2j+1 − Yb+1
2j−1)

(1− Y2j−1)2a
.
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• Block βj, for j = 1, · · · , J − 2:

βj =



σ1
Y2j+1K2

(K2 + Y2j)2
σ1

Y2j

K2 + Y2j

−σ3
Y2j+1K2

(K2 + Y2j)2
+ σ4

Y2j+1

(K2 + Y2j)2
βj,4


,

with

βj,4 = µ

[
Yb

2j+3

(1− Y2j+3)a
+

Yb
2j−1

(1− Y2j−1)a

]
− σ3

Y2j

K2 + Y2j

+
σ4

K2 + Y2j

.

Using (2.23), (2.24), (2.25) and (2.27) we get the system of equations (2.17)-(2.18)

JF(Xn,p)∆Xn,p = F(Xn,p)

Xn,p+1 = Xn,p −∆Xn,p,

which is solved through an LU factorization with partial pivoting for every Newton

iteration, until the error tolerance is satisfied.

2.3.3 Fully discretised problem for the nutrients uptake im-

pairment plus ageing model

Finally, as in the previous models, the set of discretised equations of the third model

(2.9)-(2.10), (2.11)-(2.12) and (2.13)-(2.14) particularises the system of non-linear
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equations (2.15), so that, on one hand, the independent vector B is given by

B =



0

0

...

ωSnj+1 − (2ω − 1)Snj + ωSnj−1 − σ1S
n
j C

n
j

µCn
j+1 − (2µ+ σCBD − 1)Cn

j + µCn
j−1 − σ3S

n
j C

n
j

...

0

0



. (2.28)

On the other hand, matrix A can be expressed in the form

A(Xn+1) = Ac + Anc(Xn+1),

with Ac independent of Xn+1, and Anc(Xn+1) holding all the dependency on Xn+1 and,

therefore gathering the non-linearity of the system. Let us denote Anc(Xn+1) ≡ Anc.

Matrix Ac is sparse and has a certain block structure. More precisely, next we describe

its block structure:
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Ac =



γ1 γ2 γ3 0 . . .

α β α 0 . . .
. . . . . . . . . . . .

. . . α β α . . .
. . . . . . . . .

. . . 0 α β α

. . . 0 γ3 γ2 γ1


, (2.29)

where the involved 2× 2 block submatrices are given by

α =

 −ω 0

0 −µ

 , β =

 1 + 2ω 0

0 1 + 2µ+ σCBD

 ,

γ1 =

 3 0

0 3

 , γ2 =

 −4 0

0 −4

 , γ3 =

 1 0

0 1

 .

Matrix Anc is a diagonal matrix where

(
Anc0,0, A

nc
1,1

)
= (0, 0),(

Anc2j,2j, A
nc
2j+1,2j+1

)
=
(
σ1C

n+1
j ,−σ3S

n+1
j

)
for j = 1, . . . , J − 2, (2.30)(

Anc2J−2,2J−2, A
nc
2J−1,2J−1

)
= (0, 0).

Linear system for each Newton iteration

With the non-linear function F described, we need to build the linear system (2.17).

The Jacobian matrix, JF is evaluated in every Newton iteration at Xn,p. It can be

also decomposed in a constant part plus a non constant part

JF(Xn,p) = Ac + A(Xn,p),

where Ac is the matrix (2.29). Matrix A(Y) is a square sparse matrix of order 2J .

More precisely, let us describe its block structure,
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A(Y) =



0 0 0 . . .

0 β1 0 0 . . .
. . . . . . . . . . . .

. . . 0 βj 0 . . .
. . . . . . . . .

. . . 0 0 βJ−2 0

. . . 0 0 0


, (2.31)

where the involved 2× 2 block submatrices are given by

βj =

 σ1Y2j+1 σ1Y2j

−σ3Y2j+1 −σ3Y2j

 ,

for j = 1, . . . , J − 2.

Using (2.28), (2.29), (2.30) and (2.31) we get the system of equations (2.17)-(2.18)

JF(Xn,p)∆Xn,p = F(Xn,p),

Xn,p+1 = Xn,p −∆Xn,p,

which is solved through an LU factorization with partial pivoting for every Newton

iteration, until the error tolerance is satisfied.

2.4 Academic tests

In order to test the reliability of the numerical schemes developed to solve the one-

dimensional models, we built an academic test and analysed the computed numerical

results. For this purpose, let us consider the following model

∂S

∂t
= ∇ · (d1(C)∇S)− F (S,C) + h1(x, t), (2.32)

∂C

∂t
= ∇ · (d2(C)∇M) +G(S,C) + h2(x, t), (2.33)
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with boundary conditions

C(0, x) = C0, t ∈ [0, T ], (2.34)
∂C

∂x
(t, 0) = 0, t ∈ [0, T ], (2.35)

∂C

∂x
(t, L) = 0, t ∈ [0, T ], (2.36)

S(0, x) = 1, x ∈ [0, L], (2.37)
∂S

∂x
(t, 0) = 0, t ∈ [0, T ], (2.38)

∂S

∂x
(t, L) = 0, t ∈ [0, T ], (2.39)

which is applied to models (1.11)-(1.12), (1.19)-(1.20) and (1.25)-(1.26). The addi-

tional terms h1 and h2 are introduced so that the system has the following exact

solution

S(t, x) = et(x−L), (2.40)

C(t, x) = C0e
−xt. (2.41)

More precisely, in terms of the functions defined in (2.40) and (2.41), the functions

h1 and h2 are obtained as

h1 =
∂S

∂t
−∇ · (d1(C)∇S) + F (S,C),

h2 =
∂C

∂t
−∇ · (d2(C)∇C)−G(S,C).

So, taking into account the expression of F, G, d1 and d2 in the Eberl model (1.11)-

(1.12), we get:

h1(x, t) = (x− L)et(x−L) − d1t
2et(x−L) +K1

et(x−L)C0e
−xt

K2 + et(x−L)
, (2.42)

and

h2(x, t) = −C0xe
−xt − cb−amaxε

at2C0
be−xtb + (1− b+ a)e−xt(b+1) − e−xt(b+2)

(1− C0e−xt)a+1
+

K4C0e
−xt −K3

et(x−L)C0e
−xt

K2 + et(x−L)
. (2.43)
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Note that in the numerical methods, the terms h1 and h2 modify the original vector

B(Xn) in (2.19), obtaining term B̂(Xn)

B̂(Xn) = B(Xn) +
∆t

2



0

0
...

h1(xj, tn+1) + h1(xj, tn)

h2(xj, tn+1 + h2(xj, tn))
...

0

0


. (2.44)

The same strategy can be applied for the second model and the third model. Thus, if

we take the expressions of terms F, G, d1 and d2 in the second model (1.19)-(1.20),

then the functions h1 and h2 become

h1(x, t) = (x− L)et(x−L) − d1t
2et(x−L) +K1

et(x−L)C0e
−xt

K2 + et(x−L)
, (2.45)

and

h2(x, t) = −C0xe
−xt − cb−amaxε

at2C0
be−xtb + (1− b+ a)e−xt(b+1) − e−xt(b+2)

(1− C0e−xt)a+1
+

K4
C0e

−xt

Kd + et(x−L)
−K3

et(x−L)C0e
−xt

K2 + et(x−L)
. (2.46)

Analogously, if we take the expressions of terms F, G, d1 and d2 in the third model

(1.25)-(1.26), then the functions h1 and h2 become

h1(x, t) = (x− L)et(x−L) − d1(C)t2et(x−L) +K1e
t(x−L)C0e

−xt, (2.47)

and

h2(x, t) = −C0xe
−xt − d2t

2C0xe
−xt +K4

C0e
−xt

1 + exp(kd[Dmin − CBD(t)])
−K3e

t(x−L)C0e
−xt.

(2.48)
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For both cases, once we have (2.45)-(2.46) and (2.47)-(2.48), the vector B(Xn) shall

be replaced by the new term B̂(Xn) in the numerical resolution.

Tables 2.2-2.4 show the magnitude of the relative numerical errors between the exact

solution and the numerical approximation at final time simulated with the parameters

shown in Table 2.1 for the three different models. The relative error is computed using

the relative L2 discrete norm, which is defined as follows

E =
||Se(tend)− Sa(tend)||L2

||Se(tend)||L2

. (2.49)

Function Se represents the exact solution of the problem, which is formed by the exact

nutrients, Se, and biomass, Ce, while function Sa represents the approximated solution

computed through the proposed algorithms, which is formed by the approximated

nutriens, Sa, and biomass, Ce. As we have the solution only at the mesh nodes, the

error formula (2.49) is computed as

E =

[
J−1∑
i=0

{(
SNei − S

N
ai

)2
+
(
CN
ei
− CN

ai

)2
}]1/2

[
J−1∑
i=0

{(
SNei
)2

+
(
CN
ei

)2
}]1/2

. (2.50)

In Table 2.2 we can observe the second order convergence in time when we choose a

fine enough mesh in space. Note that for 4096 elements, the error is divided by 4 in

the first levels of refinement in time until a certain value.

Concerning to the order in space, we achieve in practise nearly second order

convergence for small enough time steps. Actually, the error is divided by 3 in the

finer meshes in time.

In the case of M2 and M3, Tables 2.3 and 2.4 show a similar behaviour with respect

to the order of convergence.
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Parameter M1 M2 M3
d1 1.9752×10−9 9.2408×10−13 —
d2 — — 4.1110×10−16

dN — — 1.0708×10−11

µm 4.2556×10−6 1.6826×10−4 8.5001×10−3

YXS 1.4094×10−1 1.0134×10−2 0.9851
Ks 3.2227×10−5 3.1919×10−1 —
Kd — 6.1351×10−3 —
kd — — 311.4817
Dmin — — 5.2098×10−2

Nmin — — 0.139
ms 6.2528×10−5 3.4251×10−5 3.6649×10−5

cmax 211.14 0.96 211.14
s0 2.74 2.74 2.74
C0 0.8 0.8 0.8
ε 7.2762×10−5 6.4425×10−4 —
a 2 4 —
b 2 2 —
L 1 1 1
T 1 1 1

Table 2.1: Parameter values used in the academic tests

In all cases, the here considered academic examples illustrate the convergence of the

method when the time step or the spatial mesh step size tend to zero.
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N
J

512 1024 2048 4096

8 5.0614×10−4 5.0079×10−4 5.0028×10−4 5.0022×10−4

16 1.5337×10−4 1.2866×10−4 1.2548×10−4 1.2512×10−4

32 9.7334×10−5 4.5100×10−5 3.3360×10−5 3.1595×10−5

64 9.3436×10−5 3.4022×10−5 1.4353×10−5 9.1693×10−6

128 9.3336×10−5 3.3324×10−5 1.2308×10−5 5.2411×10−6

256 9.3381×10−5 3.3316×10−5 1.2187×10−5 4.9045×10−6

Table 2.2: Relative errors in the L2 norm obtained in the academic test of the Eberl
model.

N
J

512 1024 2048 4096

8 5.0578×10−4 5.0046×10−4 4.9996×10−4 4.9991×10−4

16 1.5320×10−4 1.2850×10−4 1.2535×10−4 1.2501×10−4

32 9.7121×10−5 4.4816×10−5 3.3148×10−5 3.1471×10−5

64 9.3180×10−5 3.3660×10−5 1.3896×10−5 8.7985×10−6

128 9.3081×10−5 3.2965×10−5 1.1791×10−5 4.5613×10−6

256 9.3127×10−5 3.2947×10−5 1.1665×10−5 4.1748×10−6

Table 2.3: Relative errors in the L2 norm obtained in the academic test of M2

N
J

512 1024 2048 4096

8 4.4522×10−4 4.4017×10−4 4.3989×10−4 4.3990×10−4

16 1.4017×10−4 1.1361×10−4 1.1029×10−4 1.0997×10−4

32 9.5632×10−5 4.2085×10−5 2.9553×10−5 2.7718×10−5

64 9.2997×10−5 3.3379×10−5 1.3367×10−5 7.9645×10−6

128 9.3052×10−5 3.2936×10−5 1.1744×10−5 4.5111×10−6

256 9.3127×10−5 3.2946×10−5 1.1651×10−5 4.2235×10−6

Table 2.4: Relative errors in the L2 norm obtained in the academic test of M3.
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Chapter 3

Experimental validation and

calibration of 1D models

The aim of this chapter is to use mathematical models described in Chapter 1 to

provide some novel insights into the mechanisms that drive the dynamics of the

biofilms formed by L1A1 L. monocytogenes strain. For this purpose, we used a

parametric identification strategy combining quantitative image analysis, cell counts,

nutrient uptake tests, simulation and optimization techniques to find those parameter

values that better fit the experimental data.

We base our study in the experimental set-up used in the recent work [66], in which

biofilms were grown in static flow conditions, restricting the study to the hydrostatic

case. According to it, L1A1 strains form almost flat and unstructured biofilms. After

the initial attachment, a thin biofilm forms before 24h. The flat structure is mostly

stable with a sustained increase on thickness until 96 hours after which the presence

of damaged or dead cells is quite important. After 120 hours the maximum thickness

greatly decreases, thus indicating a massive detachment in the last 24 h.

Biofilm dynamics were followed using Confocal Laser Scanning Microscopy (CLSM),

as shown in Figure 3.1. For the purpose of visualization, appropriate markers were

used to distinguish between viable and damaged or dead cells. IMARIS software

was used to compute the maximum thickness (MxT) of formed biofilms from CLSM
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images. MxT values were extracted for the eight replicas at each sampling time (up

to 120 h) when cells were organized forming a clearly differentiable biofilm. The

mean values obtained out of the eight replicas were used as the basis for parameter

identification. BIOFILMDIVER [65] was used to obtain the area covered by viable

and damaged or dead cells.

a) 1h b) 24 h c) 48 h

d) 72 h e) 96 h f) 120 h

Figure 3.1: Dynamics of L1A1 L. monocytogenes biofilms during life cycle.
(a–f) Present the three-dimensional reconstruction of the CLSM images captured at
different times of the biofilms life cycle. Viable cells can be visualised in green whereas
damaged or dead cells appear in red.

All models described in Chapter 1 were considered. All the models are discretised

following the numerical methods explained in Chapter 2, and the subsequent equation

system of equations has been implemented and solved in C++. The maximum height

was computed by using the equation for bacteria while nutrients equation was used to

compute the mean nutrient uptake. Each model incorporated different mechanisms

which in turn called for various unknown parameters. Unknown parameters were

estimated using data fitting techniques within the AMIGO2 toolbox [5]. The problem

of calibration of model parameters is formulated as finding the unknown parameters

that minimize a least squares function:

Jml(θ) =
ns∑
i

(mMxTi −MxTi(θ))2 +
ns∑
i

(mAvgNi − AvgNi(θ))2 , (3.1)
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subject to the dynamic constraints (the model), and bounds on the parameters

θL ≤ θ ≤ θU .

In Equation (3.1), ns represents the number of sampling times; AvgN the average

nutrient concentration in the bulk liquid; mMxT and mAvgN the measured MxT

and AvgN; θ corresponds to the vector of unknown model parameters. Specifities of

AMIGO2 and details on the identification procedure are presented in Appendix B.

The overall validation approach is shown in Figure 3.2.
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Figure 3.2: Model identification scheme based on CLSM and nutrients con-
sumption measurements. Biofilms were grown under static conditions. CLSM
was used to gather image stacks in several sampling times. IMARIS allowed recon-
structing 3D-structures and quantifying maximum biofilm thickness throughout time.
BIOFILMDIVER enabled computing biofilm covered area as a function of time and
z-axis. Nutrients consumed by cells were measured at each sampling time. We defined
candidate models, estimated unknown parameters and selected the most appropriate
model using data fitting in the AMIGO2 toolbox.

L1A1 cells consume glucose as the primary carbon source. Therefore, the nutrients
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Parameter Model 1 Model 2 Model 3
d1 1×10−12 1×10−12 —
d2 — — 4.1110×10−16

dN — — 1.0708×10−11

µm 3.6973×10−3 3.6078×10−1 8.5001×10−3

YXS 2.3396×10−1 2.9689×10−1 0.9851
Ks 9.3203×10−5 7.1682×102 —
Kd — 1.0568 —
kd — — 3.1148×102

Dmin — — 5.2098×10−2

Nmin — — 0.139
ms 5×10−5 5×10−5 3.6649×10−5

cmax 1.555×101 2.555×101 2.1114×102

s0 2.74 2.74 2.74
C0 3.149×10−3 1.9165×10−3 2.3192×10−4

ε 4.5234×10−3 4.5×10−3 —
a 4 4 —
b 7.5×10−1 2.4561×10−1 —
N 1.8×107 1.8×107 1.8×107

J 64 64 64
L 8×10−5 8×10−5 8×10−5

T 4.284×105 4.284×105 4.284×105

Table 3.1: Optimal parameter values found for the candidate models.

considered in the numerical resolution correspond to glucose. Experimental results

show that cells consume most of the glucose in the first 24h and after that period

glucose uptake stops even when there are viable cells.

Figure 3.3 presents models predictions for the optimal parameter values in Table 3.1.

The figure illustrates how models M1 and M2 fail to capture the L1A1 biofilm life

cycle.

M1 corresponds to the results obtained with the model proposed in Eberl et al.

[26]. The optimum value of the parameters results in a maximum height quite close
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Figure 3.3: Averaged nutrients and biofilm thickness dynamics as predicted by the
three candidate models

to the experimental measurements. However, the massive detachment that should

happen in the final moments is not observed. Therefore, a non-linear detachment

was proposed, in order to accelerate the detachment process when a certain nutrients

concentration was reached. The resolution of the model for the optimal value of

the parameters shows a greater detachment, much closer to the experimental data

obtained for the biomass height.

In order to validate the nutrients model, dynamic experimental data of the nutrients

concentration was obtained. The new data showed that the cells of L1A1 stopped

the nutrients consumption, leaving a remnant of nutrients in the bulk. However, the

optimal solutions for both M1 and M2 show a total consumption of the nutrients.
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Other intermediate candidates were analysed in the recent work of Balsa-Canto et

al. [9]. In this thesis, we will discuss further the most satisfactory model M3.

In light of the observed results for M1 and M2, another course of action was taken,

including several new mechanisms. First of all, as nutrients seemed to be consumed

too fast, in order to slow nutrients consumption, we considered a non-linear diffusion

mechanism for the glucose: diffusion in the bulk should be greater than inside the

biofilm. Also, to mimic the experimental behaviour, once a certain concentration

of glucose is achieved, biomass should stop consuming it, so a nutrients impairing

mechanism was added too (M3).

The original Monod terms were replaced for linear terms and the decay mechanism

was changed. Analysing the experimental data, as explained in [9], it seems that the

large detachment observed at 96 hours is related to cells death and the degradation

of the extracellular DNA (eDNA) or, in other words, to biofilm ageing. Therefore,

the hypothesis of the role of ageing was introduced in model 3, resulting in a decay

term related to the measured covered area of damaged or dead cells, CBD(t), as as

measure of ageing. The decay should start once a given value of damaged or dead

cells is present in the biofilm. Mathematically, this behaviour is expressed in the

second term of (1.28), a S-shaped function centred in Dmin and with slope kd. The

term CBD(t) was obtained from the experimental data measured at certain times (see

Table 3.2). Finally, we suppressed the non-linear biomass diffusion, in order to delay

the moment of maximum thickness and reduce the nutrients consumption speed. The

idea behind this change is due to the fact that with the non-linear coefficient (1.5), as

we have initially a small concentration of biomass, the diffusion mechanism is small in

the early phase and, therefore, biomass growth is limited to the starting region. The

small diffusion causes biomass concentration to rapidly reach the maximum biomass

bound, cmax, thus resulting in a large diffusion and, therefore, reaching the moment

of maximum thickness too soon. By making the coefficient linear, the diffusion starts
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Time (h) CBD(t)
0 2.1601×10−2

3 1.3957×10−2

23 3.9539×10−2

14 3.5725×10−2

71 2.1329×10−2

95 3.0902×10−2

119 9.0586×10−2

Table 3.2: Measured covered area of dead or damaged cells

earlier and the growth happens also outside the small initial region, thus resulting in

slower nutrients consumption.

It can be seen in Figure 3.3 how the evolution changes drastically with these modifi-

cations. First of all, it can be noted that biomass thickness is slowed down reaching

its peak around 100 hours. Nutrients consumption is also reduced and the nutrients

impairing mechanism prevents biomass from consuming all the glucose in the domain.

Also, it can be observed how the massive detachment happens in the final stage .

Figure 3.4 presents the best fit to the data which corresponds to model 3. Results

reveal that the model is in clear agreement with the experimental data. Therefore

concluding that the life cycle of L1A1 L. monocytogenes under the tested experimental

conditions may be explained by taking into account impaired nutrients uptake and a

massive detachement due to biofilm ageing.
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Figure 3.4: Model 3 analysis. (A,B) Present the best fit to the data obtained
for the most successful model M3. (C,D) Show the spatio-temporal dynamics of the
biomass and nutrients concentrations as predicted by model M3.
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Chapter 4

2D biofilm modelling

4.1 Motivation of two-dimensional models

Environmental conditions (such as nutrients availability or the hydrodynamic

regime), cells life cycle, EPS production or the presence of several species, influence

the structure of biofilms [47, 77].

L1A1 L. monocytogenes strain develops rather flat structures without much spatial

heterogeneity that could be quantitative explained with 1D models. However,

the presence of internal channels, inner voids or other biofilm structures (such as

rugose, mushroom-shaped or clustered biofilms), can not be explained with 1D

models. Thus, in order to explore those different structures we need to define 2D

or 3D models. In addition, models should incorporate several components and/or

species such as viable cells (from one or several microbial species), damaged or dead

cells, EPS, various nutrients, etc. From now on, these models will be regarded as

multi-species.

The first relevant multi-species model was presented in the work of Wanner and

Gujer [107], usually referred as W-G model. The model consists of a set of 1D

partial differential equations that describes the dynamics of a multi-microbial
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biofilm, usually with predefined microbial distributions. With the advent of better

experimental approaches to study biofilms, including Confocal Laser Microscopy,

it became clear that 1D models were insufficient to represent realistic structures.

This fact motivated the development of more elaborated models. Several authors

suggested individual based models (see for instance, [53, 54, 73, 98, 112, 113]) or cel-

lular automaton based models (like [46, 71]) to explain single and two-species biofilms.

In this work, a deterministic approach was selected. In particular, the model proposed

by Alpkvist et al. [1] was selected as the starting point to further elaborate on the

behaviour of L. monocytogenes biofilms. Alpkvist et al. [1] developed a continuum

model of the W-G type that allowed the inclusion of multi-species as well as the study

of spatial heterogeneities. When applying the model to a flat biofilm, it works as a

W-G one dimensional model, although it can also be used to capture different spatial

structures. The work [1] serves as an initial step to obtain a particular model that can

be used to study the evolution of different strains of L. monocytogenes with different

geometries. Our model will be able to reproduce mushroom-shaped biofilms as well

as flat biofilms, biofilms with channels between different clusters or honeycomb type

structures.

4.2 First model: the Alpkvist model

We begin our study of two-dimensional multi-species models by considering the

model developed by Alpkvist et al. [1]. This model takes into account the active and

inactive biomass of the same species and only one limiting nutrient. While referring

to active biomass (represented by its volumetric fraction, v1), we are considering the

components of the biofilm actively reacting with the nutrients, whose concentration

is denoted by s. By inactive biomass (also represented by its volumetric fraction, v2),

we refer to all other materials that do not explicitly affect the nutrients concentration

such as damaged cells, dead cells or EPS.
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The two dimensional domain of the problem, Ω = [0, L] × [0, H], is represented in

Figure 4.1. At each time t, the domain is decomposed into two disjoint subdomains:

the biomass region, Ωt
1, and the bulk (the region without biomass), Ωt

2. It must be

noted that the regions Ωt
1 and Ωt

2 change with the evolution of the biomasses with

time. Let us denote by Γt0 the free boundary separating Ωt
1 and Ωt

2. In order to track

the evolution of Γt0, we introduce in the model a time dependent level set function, φ,

so that, at every time t ≥ 0,

Γt0 = {(x, y) ∈ Ω/φ(x, y, t) = 0}.

In other words, Γt0 represents the level set zero of the function φ. Furthermore, the

domains Ωt
1 and Ωt

2 can be represented in terms of the function φ as

Ωt
1 = {(x, y) ∈ Ω/φ(x, y, t) < 0},

Ωt
2 = {(x, y) ∈ Ω/φ(x, y, t) ≥ 0}.

Similarly, at a fixed given distance from Γt0, Hb, we define the boundary

ΓtHb = {(x, y) ∈ Ω/φ(x, y, t) = Hb},

which is the level set Hb of the function φ. This is a non-physical frontier above which

there is enough availability of nutrients. ΓtHb also represents the upper boundary of

the following domain

Ωt
Hb

= {(x, y) ∈ Ω / φ(x, y, t) < Hb}.

Finally, the left and right boundaries of the domain Ω are denoted by

ΓL = {(x, y) ∈ Ω /x = 0},

ΓR = {(x, y) ∈ Ω /x = L},

whereas, the top and bottom boundaries are denoted by

ΓB = {(x, y) ∈ Ω /y = 0},

ΓH = {(x, y) ∈ Ω /y = H}.

This model takes into account the following assumptions [1], [2]:
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Figure 4.1: Dimensionless solving domain for the 2D case

i. The biofilm is described as a viscous fluid.

ii. Nutrients and biomasses concentrations are governed by a mass conservation

equation.

iii. Active and inactive biomasses are of the same microbial species, thus implying

that their density, ρ, is the same. Also, they are assumed to be incompressible,

so that the density is constant.

iv. The biofilm system hosts reaction processes (production or consumption of nu-

trients or biomasses), transport processes (movement inside the same domain)

or transference processes (movement between different domains).

v. Expansion or contraction of the biofilm is due to processes included in the

model.

vi. The processes associated to the biomasses are much slower that the ones con-

tributing to the nutrients evolution.
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vii. Nutrients production or consumption is due to biotic or abiotic reaction pro-

cesses.

viii. Nutrients are diluted in the media and, therefore, are present in the whole

system, whereas biomass is not diluted and exists only inside the biofilm.

The description of the biofilm postulated by i) allows to describe in a simple way

the different interactions between species. Due to vi), nutrients are considered in a

quasi-steady state.

Postulate viii) implies that nutrients transport is governed by a diffusion mechanism,

described by Fick’s Law. On the other hand, biomasses transport is regulated by

and advection process. The reaction processes of the biomasses ecuations cause an

increase or decrease of the biomasses concentration which, in turn, translates into

an increase or decrease of the volume of the biofilm. The evolution of the biomasses

concentration gives rise to a growth expansion pressure, p. The advective transport

of biomass is regarded as a movement away from the regions with high growth

expansion pressure and is described through an advective expansive velocity field,

~u, dependent on the pressure as stated in Darcy’s Law. As previously indicated,

the evolution of Γt0 depends on the evolution of the biomasses concentration.

More precisely, all of the level sets of φ are going to move following the normal

velocity, fe, which is an extension to all Ω of the normal component of ~u, at Γt0.

In other words, fe is the extension to Ω of (~u·~n)|
Γt0

, where ~n is the vector normal to Γt0.

Thus, the spatio-temporal variables of the model are

• t ≥ 0: time,

• (x, y) ∈ Ω: spatial coordinate,

• vi(x, y, t): biomasses volumetric fractions, active (i = 1), and inactive (i = 2),

• s(x, y, t): nutrients concentration,
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• p(x, y, t): growth expansion pressure.

• ~u(x, y, t): expansive growth velocity field,

• fe(x, y, t): extended normal expansive velocity to Ω for the level set method,

• φ(x, y, t): level set function.

As presented in Alpkvist et al. [1], the model is given by the following set of equations

−D∇2s = R(v1, v2, s) in Ωt
Hb
, (4.1)

−ρλ∇2p = G1(v1, v2, s) +G2(v1, v2, s) in Ωt
1, (4.2)

~u = −λ∇p in Ωt
1, (4.3)

∂tφ+ fe||∇φ|| = 0 in Ω, (4.4)

ρ (∂tvi +∇ · (~uvi)) = Gi(v1, v2, s), for i = 1, 2, in Ωt
1, (4.5)

where D is the diffusion coefficient, R(v1, v2, s) is the nutrients uptake rate and

Gi(v1, v2, s) are the biomasses growth rates (i = 1 for the active biomass and i = 2

for the inactive biomass). The second order elliptic partial differential equation

4.2 states that, when the biomass concentration increases, the pressure generated

causes an expansion on the biofilm volume, whereas, when the biomass concentration

decreases, the biofilm shrinks. The parameter λ is called the Darcy’s parameter and

depends on the viscosity of the media [25]. It can be proven [1] that p is proportional

to λ−1, therefore λ can be taken as one.

From equations (4.2) and (4.3) we get

− λ∇2p = −∇ · ~u =
2∑
i=1

Gi(v1, v2, s)

ρ
, (4.6)

Next, by considering

∇ · (~uvi) = ~u · ∇vi + vi∇ · ~u,
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and taking into account that λ = 1, equation (4.5) becomes

∂tvi −∇p · ∇vi =
Gi(v1, v2, s)

ρ
− vj

2∑
j=1

Gj(v1, v2, s)

ρ
, for i = 1, 2. (4.7)

Thus, we use this equation instead of (4.5).

4.2.1 Reaction terms and boundary conditions

For the first model, the uptake of nutrients follows a Monod expression given by:

R(v1, v2, s) =
−ρv1

Y
µs

Ks + s
, (4.8)

where

• Y : growth yield,

• µ: maximum growth rate,

• Ks: Monod saturation coefficient.

As previously explained, note that the inactive biomass does not contribute to the

uptake of nutrients.

Biomasses growths are described by

G1(v1, v2, s) = v1ρ
µs

Ks + s
− v1ρkd − v1ρki, (4.9)

G2(v1, v2, s) = v1ρki, (4.10)

where the new parameters are,

• ki: inactivation rate,

• kd: decay rate.

Active biomass follows a growth process caused by the consumption of nutrients and

is described by a Monod-like term. The parameter ki represents the inactivation
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rate, i.e., the rate at which active cells become damaged or die, whereas kd represents

the rate at which active cells are detached from the biofilm. Note that the yield

coefficient does not appear in the active biomass growth. That is because we are

considering that part of the consumed nutrients is used for other processes (such as

EPS generation). Therefore, only a certain part of the consumed nutrients is used

for the biomass growth.

In order to complete the model, boundary conditions must be imposed. First of all,

at the left and right boundaries, ΓL and ΓR respectively, we will consider periodic

boundary conditions, i.e,

f(0, ·) = f(L, ·),

for any function f . Secondly, we consider the bottom boundary of the domain, ΓB,

impermeable, so a no-flux condition is imposed, i.e,

∂f

∂n
= 0 on ΓB.

In a similar manner, at the top boundary of the domain, ΓH , a zero flux condition is

imposed for the level set function. The value of H is taken big enough so that the

boundary ΓtHb never leaves Ω. We assume that above ΓtHb there is enough nutrients

availability. Furthermore, the concentration and flux of nutrients through ΓtHb must

be continuous. Finally, active biomass, inactive biomass and pressure are set to be

zero at Γt0.

In summary, the model described by equations (4.1)-(4.4) and (4.7) is completed with

the following boundary conditions

s = s∗ on ΓtHb , ∂ys = 0 on ΓB, (4.11)

p = 0 on Γt0, ∂yp = 0 on ΓB, (4.12)

∂yφ = 0 on ΓH , ∂yφ = 0 on ΓB, (4.13)

v1 = v2 = 0 on Γt0, ∂yv1 = ∂yv2 = 0 on ΓB, (4.14)
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where s∗ is the maximum nutrients concentration. Moreover, we consider periodic

boundary conditions on ΓL and ΓR, and the following initial conditions:

Γ0
0 = {(x, y) ∈ Ω/y = 0.2H + 0.05H sin(4πx/L)}, (4.15)

Ω0
1 = {(x, y) ∈ Ω/y < 0.2H + 0.05H sin(4πx/L)}, (4.16)

v1(x, y, 0) = 1, v2(x, y, 0) = 0, in Ω0
1. (4.17)

4.2.2 The dimensionless Alpkvist model

For computational reasons, let us consider a dimensionless model by introducing the

dimensionless spatial and temporal variables

X =
x

H
, Y =

y

H
, τ =

t

tD
,

where tD is the number of seconds per day and H is the height of the domain.

The dimensionless nutrients, pressure, velocities, level set function and volumetric

fractions are defined by

S =
s

s∗
, P =

λtDp

H2
, ~U = ~u, Fe = fe, Φ = φ, Vi = vi.

Nutrients dimensionless equation

Taking into account the previously introduced dimensionless spatial variables, we

have

∇2s =
∂2s

∂x2
+
∂2s

∂y2
=

s∗

H2

(
∂2S

∂X2
+
∂2S

∂Y 2

)
=

s∗

H2
∇2S,

Therefore, equation (4.1) with the uptake term (4.8) becomes

−D s∗

H2
∇2S = −v1ρ

1

Y
µS

Ks
s∗

+ S
,

or, equivalently

−∇2S = −v1
ρH2µ

YDs∗
S

Ks
s∗

+ S
. (4.18)
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Pressure dimensionless equation

Taking into account the previously introduced dimensionless spatial variables, we

have

∇2p =
∂2p

∂x2
+
∂2p

∂y2
=

H2

λtD

1

H2

(
∂2P

∂X2
+
∂2P

∂Y 2

)
=

1

λtD
∇2P.

Therefore, equation (4.2) with the source terms (4.9) and (4.10) becomes

− 1

λtD
∇2P = v1

µS
Ks
s∗

+ S
− v1kd,

or, recalling that λ is assumed to be equal to one,

−∇2P = v1µtD
S

Ks
s∗

+ S
− v1tDkd. (4.19)

Active biomass dimensionless equation

Taking into account the previously introduced dimensionless variables, we have

∂tv1 =
1

tD
∂τV1, ∇v1 =

1

H
∇V1, ∇p =

H

λtD
∇P,

so that the left term of equation (4.7) particularised for i = 1, i.e., the active biomass,

becomes

∂tv1 −∇p · ∇v1 =
1

tD
∂τV1 −

H

λtD

1

H
∇P · ∇V1 =

1

tD
(∂τV1 −

1

λ
∇P · ∇V1).

On the other hand, the right term of equation (4.7) particularised for the active

biomass and the growth terms (4.9) and (4.10), becomes

v1
µs

Ks + s
− v1kd − v1ki − v1

(
v1

µs

Ks + s
− v1kd

)
=

V1
µS

Ks
s∗

+ S
− V1kd − V1ki − V1

(
V1

µS
Ks
s∗

+ S
− V1kd

)
.

Therefore, equation (4.7) particularised for i = 1 with the source terms (4.9) and

(4.10), becomes

1

tD
(∂τV1 −

1

λ
∇P · ∇V1) = V1

µS
Ks
s∗

+ S
− V1kd − V1ki − V1

(
v1

µS
Ks
s∗

+ S
− V1kd

)
,
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or equivalently

λ∂τV1 −∇P · ∇V1 = V1
λtDµS
Ks
s∗

+ S
− V1λtDkd − V1λtDki − V1

(
V1
λtDµS
Ks
s∗

+ S
− V1λtDkd

)
.

Finally, by recalling that λ is assumed to be equal to one, we get

∂τV1−∇P ·∇V1 = V1
tDµS
Ks
s∗

+ S
−V1tDkd−V1tDki−V1

(
V1

tDµS
Ks
s∗

+ S
− V1tDkd

)
. (4.20)

Inactive biomass dimensionless equation

Taking into account the previously introduced dimensionless variables, we have

∂tv2 =
1

tD
∂τV2, ∇v2 =

1

H
∇V2, ∇p =

H

λtD
∇P,

so that the left term of equation (4.7) particularised for i = 2, i.e., the inactive

biomass, becomes

∂tv2 −∇p · ∇v2 =
1

tD
∂τV2 −

H

λtD

1

H
∇P · ∇V2 =

1

tD
(∂τV2 −

1

λ
∇P · ∇V2).

On the other hand, the right term of equation (4.7) particularised for the inactive

biomass and the growth terms (4.9) and (4.10), becomes

v1ki − v2

(
v1

µs

Ks + s
− v1kd

)
= V1ki − V2

(
V1

µS
Ks
s∗

+ S
− V1kd

)
.

Therefore, equation (4.7) particularised for i = 2 with the source terms (4.9) and

(4.10), becomes

1

tD
(∂τV1 −

1

λ
∇P · ∇V1) = V1ki − V2

(
V1

µS
Ks
s∗

+ S
− V1kd

)
,

or equivalently,

λ∂τV1 −∇P · ∇V1 = V1λtDki − V2

(
V1
λtDµS
Ks
s∗

+ S
− V1λtDkd

)
.

Finally, by recalling that λ is assumed to be equal to one, we get

∂τV1 −∇P · ∇V1 = V1tDki − V2

(
V1

tDµS
Ks
s∗

+ S
− V1tDkd

)
. (4.21)
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The dimensionless model

Equations (4.18), (4.19), (4.20) and (4.21), with the corresponding dimensionless

variables, define the dimensionless model. At every time τ , the free boundary Γτ0,

divides the domain Ω = [0, L
H

] × [0, 1] into two disjoint subdomains, the biomass

region, Ωτ
1, and the bulk, Ωτ

2, so that Ω = Ωτ
1 ∪Ωτ

2. The boundaries of the domain are

ΓL = {(X, Y ) ∈ Ω /X = 0}, (4.22)

ΓR =

{
(X, Y ) ∈ Ω /X =

L

H

}
, (4.23)

ΓB = {(X, Y ) ∈ Ω /Y = 0}, (4.24)

ΓH = {(X, Y ) ∈ Ω /Y = 1}. (4.25)

The free boundary Γτ0 corresponds to the level set zero of the level set function Φ,

i.e.,

Γτ0 = {(X, Y ) ∈ Ω/Φ(X, Y, τ) = 0}, (4.26)

while Γτ
Ĥb

corresponds to the level set Ĥb = 0.125, i.e.,

Γτ
Ĥb

= {(X, Y ) ∈ Ω/Φ(X, Y, τ) = Ĥb}, (4.27)

and represents the upper boundary of the domain

Ωτ
Ĥb

= {(X, Y ) ∈ Ω/φ(X, Y, τ) < Ĥb}. (4.28)

Thus, we get the dimensionless Alpkvist model, given by the set of equations:

−∇2S = −V1
h2
TS

K + S
in Ωτ

Ĥb
, (4.29)

−∇2P = V1
ΨS

K + S
− V1ε1 in Ωτ

1, (4.30)

~U = −∇P in Ωτ
1, (4.31)

∂τΦ + Fe||∇Φ|| = 0 in Ω, (4.32)

∂τV1 −∇P · ∇V1 = V1

[
ΨS

K + S
− (ε1 + ε2)− V1(

ΨS

K + S
− ε1)

]
in Ωτ

1, (4.33)

∂τV2 −∇P · ∇V2 = V1ε2 − V2

(
V1

ΨS

K + S
− V1ε1

)
in Ωτ

1, (4.34)
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where the dimensionless constants are defined as

• h2
T =

H2µρ

YDs∗
(Thiele modulus),

• K =
Ks

s∗
,

• Ψ = µtD,

• ε1 = tDkd,

• ε2 = tDkI .

The model is completed with the dimensionless boundary conditions

S = 1 on Γτ
Ĥb
, ∂Y S = 0 on ΓB, (4.35)

P = 0 on Γτ0, ∂Y P = 0 on ΓB, (4.36)

∂Y φ = 0 on ΓH , ∂Y φ = 0 on ΓB, (4.37)

V1 = V2 = 0 on Γτ0, ∂Y V1 = ∂Y V2 = 0 on ΓB, (4.38)

together with periodic boundary conditions at ΓL and ΓR, and the following initial

conditions

Γ0
0 = {(X, Y ) ∈ Ω/Y = 0.2 + 0.05 sin(4πX)}, (4.39)

Ω0
1 = {(X, Y ) ∈ Ω/Y < 0.2 + 0.05 sin(4πX)}, (4.40)

V1(X, Y, 0) = 1, V2(X, Y, 0) = 0, in Ω0
1. (4.41)

4.3 Second model: non-linear detachment and

linear nutrients uptake

The modified Eberl model M3 considered in previous chapters led us to conclude

that, at least for L1A1, nutrient uptake is impaired and biofilm dynamics is clearly

affected by ageing, i.e. by the presence of inactive biomass. In this section, we
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Parameter Description
L,H Domain length and height
Hb Boundary layer height
ρ Biomass Density
D Diffusion coefficient
Y Growth yield
µ Maximum growth rate
Ks Monod saturation constant
kd Decay rate
ki Inactivation rate
tD Number of seconds per day
s∗ Maximum nutrients concentration

Table 4.1: Parameters involved in the 2D equations

introduce similar mechanisms in the 2D multi-species model. The aim is to obtain

a model that is able to explain both flat biofilms, as the ones showed by L1A1

strain (Figure 3.1), clustered biofilms, as the ones shown by CECT5873 strain

(Figure 6.6) or honeycomb profiles also discussed in the literature for various Listeria

monocytogenes strains. Assuming that in our experimental scheme nutrients are not

limited, we modified the Monod term and used a linear nutrients uptake formulation.

In addition, the linear decay was substituted by the inactive cell dependent decay

considered in 1D (M3). Note that the current model accounts for inactive cells, so

that both equations are also coupled by the decay term.

The new reaction terms can be expressed as

R(v1, v2, s) =
−ρv1µs

Y
, (4.42)

for the nutrients uptake, where

• Y : growth yield,

• µ: maximum growth rate.
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and

G1(v1, v2, s) = v1µs− v1
t−1
D

1 + exp(Kd(Dmin −mean(v2)))
− v1ki, (4.43)

G2(v1, v2, s) = v1ki, (4.44)

for the biomasses growth, where the new parameters are:

• ki: inactivation rate,

• Kd: rate of detachment activation,

• Dmin: percentage of damaged or dead cells before detachment,

• mean(v2): mean concentration of inactive biomass.

Next, by applying (4.42), (4.43) and (4.44) to the general model (4.1)-(4.4) and (4.7),

and considering the same dimensionless variables as in the Alpkvist model, we get

the so called second model, which is given by the set of equations

−∇2S = −V1ĥ
2
TS in Ωτ

Ĥb
, (4.45)

−∇2P = V1Ψ̂S − V1FD(V2) in Ωτ
1, (4.46)

~U = −∇P in Ωτ
1, (4.47)

∂τΦ + Fe||∇Φ|| = 0 in Ω, (4.48)

∂τV1 −∇P · ∇V1 = V1

[
Ψ̂S − (FD(V2) + ε2)− V1(Ψ̂S −FD(V2))

]
in Ωτ

1, (4.49)

∂τV2 −∇P · ∇V2 = V1ε2 − V2

(
V1Ψ̂S − V1FD(V2)

)
in Ωτ

1, (4.50)

where

FD(V2) =
1

1 + exp(Kd(Dmin −mean(V2)))
. (4.51)

The model is completed with the same boundary conditions (4.35)-(4.38), jointly with

periodic boundary conditions at ΓL and ΓR and the initial conditions (4.39)-(4.41),

whereas the involved dimensionless constants are

ĥ2
T =

H2µρ

YD
, Ψ̂ = µs∗tD, ε2 = tDki.
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Chapter 5

Numerical methods for the 2D case

5.1 Overview of the global numerical strategy

In order to describe the numerical methods, let us introduce certain general notations.

First of all, as we are working in a finite differences framework, let MX and MY be

the number of spatial intervals in directions X and Y , respectively, and let N be the

number of time intervals. For the sake of simplicity, let us consider a square domain

with H = L and let us take MX = MY = M . Therefore, we can define the temporal

and spatial steps, respectively, as

∆τ =
Tmax
N

, ∆X = ∆Y =
1

M
.

Moreover, let us introduce the following notations

• Xi = i∆X, Yj = j∆Y , with i, j = 0, . . . ,M ,

• τn = n∆τ , with n = 0, . . . , N ,

• Sni,j ≈ S(Xi, Yj, τn), with i, j = 0, . . . ,M and n = 0, . . . , N ,

• P n
i,j ≈ P (Xi, Yj, τn), with i, j = 0, . . . ,M and n = 0, . . . , N ,

• Φn
i,j ≈ Φ(Xi, Yj, τn), with i, j = 0, . . . ,M and n = 0, . . . , N ,

• V n
1i,j
≈ V1(Xi, Yj, τn), with i, j = 0, . . . ,M and n = 0, . . . , N ,
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• V n
2i,j
≈ V2(Xi, Yj, τn), with i, j = 0, . . . ,M and n = 0, . . . , N .

As we are dealing with a changing domain, it will come in handy to have ℵn, an

indicator function, that identifies the nodes of the discretisation that lie inside the

biofilm, Ωτn
1 at time τn, and those that do not lie inside. This function is defined as

ℵn(X, Y ) =

{
1, if Φ(X, Y, τn) < 0,

0, otherwise.
(5.1)

In a similar manner, as the solving domain of the nutrients equation , Ωτn
Ĥb

at time

τn, includes part of the bulk (see Figure 4.1), the indicator function ℵnS identifies the

nodes of the discretisation that lie inside Ωτn
Ĥb

, and those that do not lie inside. This

function is defined as

ℵnS(X, Y ) =

{
1, if Φ(X, Y, τn) < Ĥb,

0, otherwise.
(5.2)

As with the rest of the involved functions, we use the notation ℵni,j ≈ ℵn(Xi, Yj) and

ℵnSi,j ≈ ℵ
n
S(Xi, Yj), with i, j = 0, . . . ,M and n = 0, . . . , N .

Finally, another important feature of the problem is that we are imposing periodic

boundary conditions at ΓL and ΓR. Therefore, we impose that

Qnj,M = Qn0,j, ∀j = 0, . . . ,M, ∀n = 0, . . . , N,

where Qni,j ≈ Q(Xi, Yj, τn) for any function or unknown, Q, of the problem. In

practise, this means that we are only considering the unknowns corresponding to the

indices i = 0, . . . ,M − 1.

The models presented in Chapter 4 consist of a system of coupled differential equa-

tions. It is not possible to compute the analytical solution and solving the whole

system at once requires a great effort from the numerical point of view. Therefore,

the idea is to solve sequentially the involved equations at each time step. Thus, the

global algorithm reads as follows:
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1. Initialise the variables V 0
1 , V 0

2 and Φ0.

2. Start the temporal loop (indexed by n, corresponding to time τn).

3. Solve the nutrients equation, i.e., equation (4.29) in the Alpkvist model and

(4.45) in the second model.

4. Solve the pressure equation, i.e., equation (4.30) in the Alpkvist model and

(4.46) in the second model.

5. Compute the normal extended velocity, Fe, that moves the level sets by applying

equation (4.31), in the Alpkvist model, or (4.47), in the second model and the

velocity extension method.

6. Advance one time step in the level set equation, i.e., equation (4.32) in the

Alpkvist model and (4.48) in the second model.

7. With the new level set function, Φn+1, define the updated solving domains, Ω
τn+1

1

and Ω
τn+1

Ĥb
, the updated domain representing the bulk, Ω

τn+1

2 and the updated

boundaries, Γ
τn+1

0 and Γ
τn+1

Ĥb
.

8. Advance one time step in the active biomass equation, i.e., equation (4.33) in

the Alpkvist model and (4.49) in the second model.

9. Advance one time step in the inactive biomass equation, i.e., equation (4.34) in

the Alpkvist model and (4.50) in the second model.

10. If n+ 1 < N , repeat the process from step 3.

The sketch of the global algorithm is presented in Figure 5.1. The applied numerical

methods vary depending on which equation is being solved, due to the particularity

of each one. Those methods are described in the following sections.
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Initialise:
τ0 = 0, Φ0, V 0

1 , V
0
2

Solve the nutrients equation:
Sn+1 -Finite differences

-Gibou’s method
-Newton method (only for
non-linear equations)
-LU partial pivotingSolve the pressure equation:

Pn+1

Calculate the normal
extended velocity field:

Fe

-Numerical derivation
-FMM

Advance one time step
the level set:

Φn+1

-FMM
-Upwinding finite differences
-Bicubic interpolation
-Bilinear extrapolation

Define the updated domains:
Ωτn+1

1 , Ωτn+1

2 , Γτ
n+1

0

Advance one time step
the active biomass:

V n+1
1

-Crank-Nicolson
-Upwinding finite differences
-WENO
-Bicubic interpolation
-Bilinear extrapolation
-Newton method (only for
non-linear equations)
-LU partial pivoting

Advance one time step
the inactive biomass:

V n+1
2

τn+1 = Tmax?

End

τ1 = ∆τ

No

Yes

Figure 5.1: Flowchart of the global numerical algorithm in the 2D case
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5.2 Nutrients equation

The semi-linear Poisson equation governing the nutrients (equation (4.29) in the

Alpkvist model and (4.45) in the second model), is the first equation to be solved

at each time iteration for both models. As the solving process is decoupled by

solving the model sequentially, we must use the values of the active biomass from the

previous iteration (or the initial condition if we are in the first iteration), in order

to reach the steady-state of the nutrients. The time independence makes the resolu-

tion of this equation easier than the biomasses equations, although not entirely trivial.

Nutrients equation is solved in the domain Ωτ
ĤB

, the boundaries of which are ΓL,

ΓR, ΓB and Γτ
Ĥb

(see Figure 4.1). As stated before, the problem conditions grant

enough availability of nutrients above Γτ
Ĥb

, although in the region between Γτ
Ĥb

and

Γτ0 nutrients concentration is affected by the proximity to the biofilm.

In both models the spatial variables are discretised using standard finite differences,

modified as in Gibou et al. [36]. However, we must proceed in a different manner

depending on the model: equation (4.29) is non-linear, so that a Newton method

is required, whereas equation (4.45) is linear, so that the Newton method is not

required. In both cases, we end up obtaining a linear system of equations, at each

Newton iteration or at each iteration step respectively, which is solved through an

LU method with partial pivoting [80].

5.2.1 Gibou’s Ghost Nodes method

We have already stated that the spatial discretisation of equations (4.29) and (4.45)

follows a finite differences strategy, which can be problematic near the boundary Γτ
Ĥb

,

as we may need points that lie outside the computational domain. This is avoided

by following Gibou’s ghost nodes method [36].
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In order to explain Gibou’s method in a simple way, let us consider as model case the

following simple one dimensional equation

uxx = f in Ω = [0, L]. (5.3)

Let be {xi}Mi=0 the finite differences mesh of the domain Ω, with x0 = 0, xM = L and

∆x = xi − xi−1 ∀i, constant. We take u(xi) ≈ ui, f(xi) ≡ fi. Using standard finite

differences, the discretization of (5.3) leads to the system of equations:[
ui+1 − ui

∆x
− ui − ui−1

∆x

]
1

∆x
= fi, for i = 1, . . . ,M − 1. (5.4)

In a regular domain, discretization (5.4) does not cause any problems. However, in

our case, when approaching the boundary ΓτHb (or Γτ0 in the pressure equation), the

values above the respective boundary can not be used, because they are not defined.

Let us suppose that Ω has a free boundary, Γ, that divides the domain into two

disjoint subsets. As we are in the one-dimensional case, Γ = {xI}. Assume that we

have an index, k, such as xk ≤ xI ≤ xk+1, and let us assume a Dirichlet boundary

condition at xI , i.e., u(xI) = uI . We can use the discretisation (5.4) in every point

until reaching xk−1. When solving xk instead of using uk+1, we set a value for the

ghost node defined from a linear extrapolation as follows:

uGk+1 =
uI + (θ − 1)uk

θ
, (5.5)

where

θ =
|xI − xk|

∆x
∈ [0, 1].

Note that when θ is close to zero, equation (5.5) blows up. Therefore:

• If θ ≤ ∆x, we should take uk = uI , where uI is known.

• Otherwise, the value of the ghost node uk+1 = uGk+1 can be used in equation

(5.4) for i = k, thus obtaining the following second order discretization[
uI − uk
θ∆x

− uk − uk−1

∆x

]
1

∆x
= fk.
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Note that, as uI is a known value, it goes directly into the independent term of the

system, so that the final equation for xk is:

−
(

1 +
1

θ

)
uk + uk−1 = (∆x)2fk −

uI
θ
. (5.6)

In the 2D case, the modification is applied independently to both variables in an

analogous manner.

5.2.2 Numerical discretisation of the nutrients equation in

the Alpkvist model

For each time step we solve the nutrients equation (4.29). More precisely, at step

n+ 1 we have

−∇2Sn+1 = −V n
1

h2
TS

n+1

K + Sn+1
, in Ωτn

Ĥb
. (5.7)

In order to establish a non-linear system involving the value of the nutrients at all

mesh nodes, we extend the value S ≡ 1 on the boundary Γτn
Ĥb

to the set Ω\Ωτn
Ĥb

.

Therefore, in practise we add the following equation

Sn+1 = 1, in Ω\Ωτn
Ĥb
. (5.8)

Next, by applying a standard finite differences scheme coupled with Gibou’s method,

the discretisation of equations (5.7) and (5.8) leads to the system of equations

ℵnSi,j+1
Sn+1
i,j+1 + ℵnSi+1,jS

n+1
i+1,j −

[
4 + (θ − 1)ℵ̄nSi,j

θ
+

(∆X)2V n
1i,j
h2
T

K + Sn+1
i,j

]
Sn+1
i,j +

ℵnSi,j−1
Sn+1
i,j−1 + ℵnSi−1,j

Sn+1
i−1,j +

4− ℵ̄nSi,j
θ

Sn+1
I = 0, if ℵnSi,j = 1, (5.9)

Sn+1
i,j = 1, if ℵnSi,j = 0, (5.10)

for i = 0, . . . ,M − 1, j = 0, . . . ,M . The term ℵnSi,j is defined in (5.2), whereas ℵ̄nS
denotes

ℵ̄nSi,j = ℵnSi,j+1
+ ℵnSi,j−1

+ ℵnSi+1,j
+ ℵnSi−1,j

. (5.11)
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Moreover, note that Sn+1
I , the nutrients concentration on Γτn

Ĥb
, is set to be one.

For the sake of simplicity, we first write the non-linear system corresponding to the

case where all nodes belong to Ωτn
Ĥb

. Then, at those nodes belonging to Ω\Ωτn
Ĥb

,

condition (5.10) is imposed, thus substituting the corresponding linearised equations

from the system.

The non-linear system (5.9) is written in compact form as

F(Zn+1) = A(Zn+1)Zn+1 −Bn = 0, (5.12)

where

• Zn+1 is the vector of unknowns at iteration n+1. Although equation (4.29) is

time independent, the values of the nutrients must be updated every time step

because the biomasses change with time. The M(M + 1) elements of vector

Zn+1 are

Zn+1(jM + i) = Sn+1
i,j , with i = 0, . . . ,M − 1 and j = 0, . . . ,M. (5.13)

• Bn is a vector of M(M + 1) elements, the values of which are

Bn(jM + i) = −
4− ℵ̄nSi,j

θ
, with i = 0, . . . ,M − 1 and j = 0, . . . ,M. (5.14)

Note that when all nodes are in Ωτn
Ĥb

, Bn ≡ 0. However, the expression (5.14)

corresponds to the general case we are solving.

• A(Zn+1) is an M(M+1)×M(M+1) sparse matrix that contains the coefficients

of terms Sn+1
i,j from equation (5.9).

As we are dealing with the non-linear system of equations (5.12), we propose to

apply a Newton method that involves the solution of a linear system at each Newton
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iteration. In order to precise the use of the Newton method, matrix A(Zn+1) can be

decomposed as the sum of two matrices, i.e.,

A(Zn+1) = Anc + Anc(Z
n+1), (5.15)

where Anc contains the coefficients of the system of equations (5.12) that are indepen-

dent from S and Anc(Z
n+1) contains only the non-linear part of the system. Newton

method requires to calculate the Jacobian matrix of the function F in (5.12), JF(Y),

which takes the form

JF(Y) = Anc + JAnc(Y),

where JAnc(Y) is the Jacobian matrix related to Anc(Z
n+1). Matrix Anc is sparse and

has a certain block structure, whereas Anc(Z
n+1) and JAnc(Y) are diagonal matrices.

More precisely, the structure of these matrices is described in the next paragraphs:

• Matrix Anc

Anc =



β1 α1
0 0 . . .

α2
1 β0

1 α1
1 0 . . .

. . . . . . . . . . . .

. . . α2
j β0

j α1
j . . .

. . . . . . . . .

. . . 0 α2
M−1 β0

M−1 α1
M−1

. . . 0 α2
M β2


. (5.16)

There are M + 1 blocks of size M ×M , that can be described as

– α1
j a diagonal matrix, for j = 0, . . . ,M − 1, where

α1
j = diag(ℵnSi,j+1

)M−1
i=0 .

– α2
j a diagonal for, j = 1, . . . ,M , where

α2
j = diag(ℵnSi,j−1

)M−1
i=0 .
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– β0
j a sparse matrix, for j = 1, . . . ,M − 1, in the form:

β0
j =



β0
0,j ℵnS1,j

0 . . . ℵnSM−1,j

ℵnS0,j
β0

1,j ℵnS2,j
0 . . .

. . . . . . . . . . . .

. . . ℵnSi−1,j
β0
i,j ℵnSi+1,j

. . .
. . . . . . . . .

. . . 0 ℵnSM−3,j
β0
M−2,j ℵnSM−1,j

ℵnS0,j
. . . 0 ℵnSM−2,j

β0
M−1,j


, (5.17)

where

β0
0,j = −

4 + (θ − 1)(ℵnS0,j+1
+ ℵnS0,j−1

+ ℵnS1,j
+ ℵnSM−1,j

)

θ
,

β0
i,j = −

4 + (θ − 1)ℵ̄nSi,j
θ

, i = 1, . . . ,M − 2,

β0
M−1,j = −

4 + (θ − 1)(ℵnSM−1,j+1
+ ℵnSM−1,j−1

+ ℵnS0,j
+ ℵnSM−2,j

)

θ
.

– β1 a sparse matrix in the form:

β1 =



β1
0 ℵnS1,0

0 . . . ℵnSM−1,0

ℵnS0,0
β1

1 ℵnS2,0
0 . . .

. . . . . . . . . . . .

. . . ℵnSi−1,0
β1
i ℵnSi+1,0

. . .
. . . . . . . . .

. . . 0 ℵnSM−3,0
β1
M−2 ℵnSM−1,0

ℵnS0,0
. . . 0 ℵnSM−2,0

β1
M−1


, (5.18)

where

β1
0 = −

3 + (θ − 1)(ℵnS0,1
+ ℵnS1,0

+ ℵnSM−1,0
)

θ
,

β1
i = −

3 + (θ − 1)(ℵnSi,1 + ℵnSi+1,0
+ ℵnSi−1,0

)

θ
, i = 1, . . . ,M − 2,
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β1
M−1 = −

3 + (θ − 1)(ℵnSM−1,1
+ ℵnS0,0

+ ℵnSM−2,0
)

θ
.

– β2 a sparse matrix in the form:

β2 =



β2
0 ℵnS1,M

0 . . . ℵnSM−1,M

ℵnS0,M
β2

1 ℵnS2,M
0 . . .

. . . . . . . . . . . .

. . . ℵnSi−1,M
β2
i ℵnSi+1,M

. . .
. . . . . . . . .

. . . 0 ℵnSM−3,M
β2
M−2 ℵnSM−1,M

ℵnS0,M
. . . 0 ℵnSM−2,M

β2
M−1


,

(5.19)

where

β2
0 = −

3 + (θ − 1)(ℵnS0,M−1
+ ℵnS1,M

+ ℵnSM−1,M
)

θ
,

β2
i = −

3 + (θ − 1)(ℵnSi,M−1
+ ℵnSi+1,M

+ ℵnSi−1,M
)

θ
, i = 1, . . . ,M − 2,

β2
M−1 = −

3 + (θ − 1)(ℵnSM−1,M−1
+ ℵnS0,M

+ ℵnSM−2,M
)

θ
.

• Matrix Anc(Z
n+1) is a diagonal matrix, where

Anc(Z
n+1)jM+i,jM+i = −

(∆X2)V n
1i,j
h2
T

K + Sn+1
i,j

,

with i = 0, . . . ,M − 1 and j = 0, . . . ,M .

• Matrix JAnc(Y) is a diagonal matrix, where

JAnc(Y)jM+i,jM+i = −
(∆X2)V n

1i,j
h2
TK

(K + Yi,j)2
, (5.20)

with i = 0, . . . ,M − 1 and j = 0, . . . ,M .

Finally, in order to set the resulting system to be solved with LU factorisation, we

impose (5.10) to all nodes in Ω\Ωτn
Ĥb

.
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5.2.3 Numerical discretisation of the nutrients equation in

the second model

As in the Alpkvist model, for each time step we solve the nutrients equation (4.45).

However, in the second model, we changed the Monod-like nutrients uptake term by

a linear term, thus eliminating the non-linearity present in (4.29). Therefore, we no

longer require a Newton method to solve the resulting system of equations. At step

n+ 1 we need to solve

−∇2Sn+1 = −V n
1 ĥ

2
TS

n+1, in Ωτn
ĤB
. (5.21)

In order to establish a linear system involving the value of the nutrients at all mesh

nodes, we extend the value S ≡ 1 on the boundary Γτn
Ĥb

to the set Ω\Ωτn
Ĥb

. Therefore,

in practise we add the following equation

Sn+1 = 1, in Ω\Ωτn
ĤB
. (5.22)

Next, by applying a standard finite differences scheme coupled with Gibou’s method,

the discretisation of equations (5.21) and (5.22) leads to the system of equations

ℵnSi,j+1
Sn+1
i,j+1 + ℵnSi+1,jS

n+1
i+1,j −

[
4 + (θ − 1)ℵ̄nSi,j

θ
+ (∆X)2V n

1i,j ĥ
2
T

]
Sn+1
i,j +

ℵnSi,j−1
Sn+1
i,j−1 + ℵnSi−1,j

Sn+1
i−1,j +

4− ℵ̄nSi,j
θ

Sn+1
I = 0, if ℵnSi,j = 1, (5.23)

Sn+1
i,j = 1, if ℵnSi,j = 0, (5.24)

for i = 0, . . . ,M − 1, j = 0, . . . ,M . Moreover, note that Sn+1
I , the nutrients at the

interface Γτn
ĤB

, is set to be one.

For the sake of simplicity, we first write the linear system corresponding to the case

where all nodes belong to Ωτn
Ĥb

. Then, at those nodes belonging to Ω\Ωτn
Ĥb

, condition

(5.24) is imposed, thus substituting the corresponding linear equations from the

system.
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The set of equations (5.23) can be written in compact form as the linear system of

equations

AnZn+1 = Bn, (5.25)

where

• Zn+1 is the vector of unknowns at iteration n+1. As in the Alpkvist model,

although equation (4.45) is time independent, the values of the nutrients must

be updated every time step because the biomasses change with time. The

M(M + 1) elements of vector Zn+1 are

Zn+1(jM + i) = Sn+1
i,j , with i = 0, . . . ,M − 1 and j = 0, . . . ,M. (5.26)

• Bn is the independent term of the linear system, a vector of M(M+1) elements,

each of them being

Bn(jM + i) = −
4− ℵ̄nSi,j

θ
, with i = 0, . . . ,M − 1 and j = 0, . . . ,M. (5.27)

Note that when all nodes are in Ωτn
Ĥb

, Bn ≡ 0. However, the expression (5.27)

corresponds to the general case we are solving.

• An is an M(M + 1) ×M(M + 1) sparse matrix that contains the coefficients

of terms Sn+1
i,j from equation (5.23). The blocks of this matrix are described in

the following paragraphs:

An =



β1 α1
0 0 . . .

α2
1 β0

1 α1
1 0 . . .

. . . . . . . . . . . .

. . . α2
j β0

j α1
j . . .

. . . . . . . . .

. . . 0 α2
M−1 β0

M−1 α1
M−1

. . . 0 α2
M β2


. (5.28)

There are M + 1 blocks of size M ×M , that can be described as
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• α1
j a diagonal matrix, for j = 0, . . . ,M − 1, where

α1
j = diag(ℵnSi,j+1

)M−1
i=0 .

• α2
j a diagonal matrix, for j = 1, . . . ,M , where

α2
j = diag(ℵnSi,j−1

)M−1
i=0 .

• β0
j a sparse matrix, for j = 1, . . . ,M − 1, in the form:

β0
j =



β0
0,j ℵnS1,j

0 . . . ℵnSM−1,j

ℵnS0,j
β0

1,j ℵnS2,j
0 . . .

. . . . . . . . . . . .

. . . ℵnSi−1,j
β0
i,j ℵnSi+1,j

. . .
. . . . . . . . .

. . . 0 ℵnSM−3,j
β0
M−2,j ℵnSM−1,j

ℵnS0,j
. . . 0 ℵnSM−2,j

β0
M−1,j


, (5.29)

where

β0
0,j = −

4 + (θ − 1)(ℵnS0,j+1
+ ℵnS0,j−1

+ ℵnS1,j
+ ℵnSM−1,j

)

θ
+ (∆X)2V n

0,j ĥ
2
T ,

β0
i,j = −

4 + (θ − 1)ℵ̄nSi,j
θ

+ (∆X)2V n
i,j ĥ

2
T , i = 1, . . . ,M − 2,

β0
M−1,j = −

4 + (θ − 1)(ℵnSM−1,j+1
+ ℵnSM−1,j−1

+ ℵnS0,j
+ ℵnSM−2,j

)

θ
+ (∆X)2V n

M−1,j ĥ
2
T .

• β1 a sparse matrix, in the form:

β1 =



β1
0 ℵnS1,0

0 . . . ℵnSM−1,0

ℵnS0,0
β1

1 ℵnS2,0
0 . . .

. . . . . . . . . . . .

. . . ℵnSi−1,0
β1
i ℵnSi+1,0

. . .
. . . . . . . . .

. . . 0 ℵnSM−3,0
β1
M−2 ℵnSM−1,0

ℵnS0,0
. . . 0 ℵnSM−2,0

β1
M−1


, (5.30)

98



Chapter 5. Numerical methods for the 2D case 5.2. Nutrients equation

where

β1
0 = −

3 + (θ − 1)(ℵnS0,1
+ ℵnS1,0

+ ℵnSM−1,0
)

θ
+ (∆X)2V n

0,0ĥ
2
T ,

β1
i = −

3 + (θ − 1)(ℵnSi,1 + ℵnSi+1,0
+ ℵnSi−1,0

)

θ
+ (∆X)2V n

i,0ĥ
2
T , i = 1, . . . ,M − 2,

β1
M−1 = −

3 + (θ − 1)(ℵnSM−1,1
+ ℵnS0,0

+ ℵnSM−2,0
)

θ
+ (∆X)2V n

M−1,0ĥ
2
T .

• β2 a sparse matrix, in the form:

β2 =



β2
0 ℵnS1,M

0 . . . ℵnSM−1,M

ℵnS0,M
β2

1 ℵnS2,M
0 . . .

. . . . . . . . . . . .

. . . ℵnSi−1,M
β2
i ℵnSi+1,M

. . .
. . . . . . . . .

. . . 0 ℵnSM−3,M
β2
M−2 ℵnSM−1,M

ℵnS0,M
. . . 0 ℵnSM−2,M

β2
M−1


, (5.31)

where

β2
0 = −

3 + (θ − 1)(ℵnS0,M−1
+ ℵnS1,M

+ ℵnSM−1,M
)

θ
+ (∆X)2V n

0,M ĥ
2
T ,

β2
i = −

3 + (θ − 1)(ℵnSi,M−1
+ ℵnSi+1,M

+ ℵnSi−1,M
)

θ
+ (∆X)2V n

i,M ĥ
2
T , i = 1, . . . ,M − 2,

β2
M−1 = −

3 + (θ − 1)(ℵnSM−1,M−1
+ ℵnS0,M

+ ℵnSM−2,M
)

θ
+ (∆X)2V n

M−1,M ĥ
2
T .

Finally, in order to set the resulting system to be solved with LU factorisation, we

impose (5.24) to all nodes in Ω\Ωτn
Ĥb

.
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5.3 Pressure equation

Once the nutrients concentration has been updated, the linear Poisson equation

governing the pressure (equation (4.30) in the Alpkvist model and (4.46) in the sec-

ond model), is solved. We need the nutrients concentration at the current time step

and the active biomass concentration at the previous time step in order to solve the

pressure equation. The computational domain for this equation is Ωτn
1 , the boundaries

of which are ΓL, ΓR, ΓB and Γτn0 , as seen in Figure 4.1. The pressure appears in a

quasi-steady state, so the equation is time independent. Unlike equation (4.29), both

equations (4.30) and (4.46) are linear, therefore no Newton method is required, thus

making the numerical solution of this equation much easier and faster. We discre-

tised the equation by using the same finite differences method as in (4.29), including

Gibou’s Strategy.

5.3.1 Numerical discretisation of the pressure equation in

the Alpkvist model

At step n+ 1 we compute the pressure at time τn+1 = ∆τ(n+ 1). That is, we solve

−∇2P n+1 = V n
1

ΨSn+1

K + Sn+1
− V n

1 ε1, in Ωτn
1 , (5.32)

In order to establish a linear system involving the value of the pressure at all mesh

nodes, we extend the value P ≡ 0 on the boundary Γτn0 to the set Ωτn
2 . Therefore, in

practise we add the following equation

P n+1 = 0, in Ωτn
2 . (5.33)

Next, by applying a standard finite differences scheme coupled with Gibou’s method,
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we obtain the following set of equations:

ℵni,j+1P
n+1
i,j+1 + ℵni+1,jP

n+1
i+1,j −

[
4 + (θ − 1)ℵ̄ni,j

θ

]
Pn+1
i,j +

ℵni,j−1P
n+1
i,j−1 + ℵni−1,jP

n+1
i−1,j − (∆X)2V n

1i,j (ε1 −
ΨSn+1

i,j

K + Sn+1
i,j

) = 0 if ℵni,j = 1, (5.34)

Pn+1
i,j = 0 if ℵni,j = 0. (5.35)

for i = 0, . . . ,M − 1, j = 0, . . . ,M . The term ℵni,j is defined in (5.1), whereas ℵ̄ni,j
denotes

ℵ̄ni,j = ℵni,j+1 + ℵni,j−1 + ℵni+1,j + ℵni−1,j. (5.36)

Following the steps of Gibou’s method, there should be a term P n+1
I , the value of

the pressure at the interface Γτn0 , just like in (5.6). As the boundary conditions for

the pressure equation states that P n+1
I = 0, this term vanishes.

For the sake of simplicity, we first write the linear system corresponding to the case

where all nodes belong to Ωτn
1 . Then, at those nodes belonging to Ωτn

2 , condition

(5.35) is imposed, thus removing the corresponding linear equations from the system.

The discretised pressure equation leads to the linear system

AnZn+1 = Bn, (5.37)

where

• Zn+1 is the vector of unknowns at iteration n+1. Although equation (4.30) is

time independent, the values of the pressure must be updated every time step

because the biomasses change with time. The M(M + 1) elements of vector

Zn+1 are

Zn+1(jM + i) = P n+1
i,j , with i = 0, . . . ,M − 1 and j = 0, . . . ,M. (5.38)
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• Bn is the independent term of the linear system, a vector of M(M+1) elements,

the values of which are

Bn(jM + i) = (∆X)2V n
1i,j

(
ε1 −

ΨSn+1
i,j

K + Sn+1
i,j

)
, (5.39)

for i = 0, . . . ,M − 1 and j = 0, . . . ,M.

• An is an M(M + 1)×M(M + 1) sparse matrix with a certain block structure.

It contains the coefficients of terms Pi,j from equation (5.34). Described block

by block, matrix An takes the form

An =



β1 α1
0 0 . . .

α2
1 β0

1 α1
1 0 . . .

. . . . . . . . . . . .

. . . α2
j β0

j α1
j . . .

. . . . . . . . .

. . . 0 α2
M−1 β0

M−1 α1
M−1

. . . 0 α2
M β2


. (5.40)

There are M + 1 blocks of size M ×M , that can be described as:

– α1
j a diagonal matrix, for j = 0, . . . ,M − 1, where

α1
j = diag(ℵni,j+1)M−1

i=0 .

– α2
j a diagonal matrix, for j = 1, . . . ,M where

α2
j = diag(ℵni,j−1)M−1

i=0 .
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– β0
j a sparse matrix, for j = 1, . . . ,M − 1, taking the form:

β0
j =



β0
0,j ℵn1,j 0 . . . ℵnM−1,j

ℵn0,j β0
1,j ℵn2,j 0 . . .

. . . . . . . . . . . .

. . . ℵni−1,j β0
i,j ℵni+1,j . . .

. . . . . . . . .

. . . 0 ℵnM−3,j β0
M−2,j ℵnM−1,j

ℵn0,j . . . 0 ℵnM−2,j β0
M−1,j


, (5.41)

where

β0
0,j = −

4 + (θ − 1)(ℵn0,j+1 + ℵn0,j−1 + ℵn1,j + ℵnM−1,j)

θ
,

β0
i,j = −

4 + (θ − 1)ℵ̄ni,j
θ

, i = 1, . . . ,M − 2,

β0
M−1,j = −

4 + (θ − 1)(ℵnM−1,j+1 + ℵnM−1,j−1 + ℵn0,j + ℵnM−2,j)

θ
.

– β1 a sparse matrix that takes the form:

β1 =



β1
0 ℵn1,0 0 . . . ℵnM−1,0

ℵn0,0 β1
1 ℵn2,0 0 . . .

. . . . . . . . . . . .

. . . ℵni−1,0 β1
i ℵni+1,0 . . .

. . . . . . . . .

. . . 0 ℵnM−3,0 β1
M−2 ℵnM−1,0

ℵn0,0 . . . 0 ℵnM−2,0 β1
M−1


, (5.42)

where

β1
0 = −

3 + (θ − 1)(ℵn0,1 + ℵn1,0 + ℵnM−1,0)

θ
,

β1
i = −

3 + (θ − 1)(ℵni,1 + ℵni+1,0 + ℵni−1,0)

θ
, i = 1, . . . ,M − 2,
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β1
M−1 = −

3 + (θ − 1)(ℵnM−1,1 + ℵn0,0 + ℵnM−2,0)

θ
.

– β2 a sparse matrix that takes the form:

β2 =



β2
0 ℵn1,M 0 . . . ℵnM−1,M

ℵn0,M β2
1 ℵn2,M 0 . . .

. . . . . . . . . . . .

. . . ℵni−1,M β2
i ℵni+1,M . . .

. . . . . . . . .

. . . 0 ℵnM−3,M β2
M−2 ℵnM−1,M

ℵn0,M . . . 0 ℵnM−2,M β2
M−1


,

(5.43)

where

β2
0 = −

3 + (θ − 1)(ℵn0,M−1 + ℵn1,M + ℵnM−1,M )

θ
,

β2
i = −

3 + (θ − 1)(ℵni,M−1 + ℵni+1,M + ℵni−1,M )

θ
, i = 1, . . . ,M − 2,

β2
M−1 = −

3 + (θ − 1)(ℵnM−1,M−1 + ℵn0,M + ℵnM−2,M )

θ
.

Finally, in order to set the resulting system to be solved with LU factorisation, we

impose (5.35) to all nodes in Ωτn
2 .

5.3.2 Numerical discretisation of the pressure equation in

the second model

As in the Alpkvist model, for each time step we solve the pressure equation (4.46).

However, in the second model, the Monod-like terms that govern the nutrients uptake

mechanism (4.8) and the active biomass growth (4.9) are substituted by linear terms

(4.42) and (4.43). The decay mechanism present in (4.9) is also changed, from a
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constant decay to a decay dependent on the mean inactive biomass concentration

(4.43). All those changes modify the pressure equation of the second model. However,

this fact has no influence in the applied numerical methods. Therefore, proceeding

as in Section 5.3.1, at step n+ 1 we compute the pressure at time τn+1 = ∆τ(n+ 1)

by solving equation

−∇2P n+1 = V n
1 Ψ̂Sn+1 − V n

1 FD(V n
2 ), in Ωτn

1 , (5.44)

where

FD(V n
2 ) =

1

1 + exp(Kd(Dmin −mean(V n
2 )))

. (5.45)

In order to establish a linear system involving the value of the pressure at all mesh

nodes, we extend the value P ≡ 0 on the boundary Γτn0 to the set Ωτn
2 . Therefore, in

practise we add the following equation

P n+1 = 0, in Ωτn
2 . (5.46)

Next, by applying a standard finite differences scheme coupled with Gibou’s method,

we obtain the following set of equations:

ℵni,j+1P
n+1
i,j+1 + ℵni+1,jP

n+1
i+1,j −

[
4 + (θ − 1)ℵ̄ni,j

θ

]
Pn+1
i,j +

ℵni,j−1P
n+1
i,j−1 + ℵni−1,jP

n+1
i−1,j − (∆X)2V n

1i,j

(
FD(V n

2 )− Ψ̂Sn+1
i,j

)
= 0, if ℵni,j = 1, (5.47)

Pn+1
i,j = 0, if ℵni,j = 0. (5.48)

for i = 0, . . . ,M − 1, j = 0, . . . ,M . Following the steps of Gibou’s method, there

should be a term P n+1
I , the value of the pressure at the interface Γτn0 , just like in

(5.6). As the boundary conditions for the pressure equation states that P n+1
I = 0,

this term vanishes.

For the sake of simplicity, we first write the linear system corresponding to the case

where all nodes belong to Ωτn
1 . Then, at those nodes belonging to Ωτn

2 , condition

(5.48) is imposed, thus removing the corresponding linear equations from the system.
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The discretised pressure equation leads to the linear system

AnZn+1 = Bn, (5.49)

where

• Zn+1 is the vector of unknowns at iteration n+1. Although (4.30) is time

independent, the values of the pressure must be updated every time step because

the biomasses change with time. The M(M + 1) elements of vector Zn+1 are

Zn+1(jM + i) = P n+1
i,j , for i = 0, . . . ,M − 1 and j = 0, . . . ,M. (5.50)

• Bn is the independent term of the linear system, a vector of M(M+1) elements,

the values of which are

Bn(jM + i) = (∆X)2V n
1i,j

(
FD(V n

2 )− Ψ̂Sn+1
i,j

)
, (5.51)

for i = 0, . . . ,M − 1 and j = 0, . . . ,M.

• An is an M(M + 1)×M(M + 1) sparse matrix with a certain block structure.

It contains the coefficients of terms P n+1
i,j from equation (5.47). As the changes

on the pressure equation only affect to the independent term, matrix An is the

same as in the Alpkvist model, (5.40).

It can be observed that the modifications on the second model only affect to the

independent term. Therefore, from this point on, the solving strategy is the same as

in the Alpkvist model. For any further details, see Section 5.3.1.

5.4 Level set equation

In a biofilm system, certain processes happen in different domains. For instance,

in the models presented in Chapter 4, the evolution of biomasses concentration is

reasonably studied only inside the biofilm, Ωτ
1, and, likewise, the growth expansion
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pressure only appears where the biomass is present. However, the nutrients concen-

tration is affected not only by the presence of biomass but also by the proximity of

the biofilm, thus making its domain of solution, Ωτ
Ĥb

, slightly larger. Therefore, it

seems necessary to have any means to differentiate numerically between the different

regions of a biofilm. The Level Set method, helps with this task while also lowering

the computational cost by reducing the size of the domain of solution.

The Level Set method [89] is a mathematical tool used to track the movement of

free boundaries (in our case, Γτ0), under a certain velocity field. There are different

ways to represent the free boundary in the context of the level set framework. In our

problem, we are going to use two of them: time dependent eulerian representation

and time independent eulerian representation.

In the first case, the method considers such boundary as the level set zero of a

higher dimensional function called the level set function, Φ, which is a signed distance

function defined in all Ω. Thus, given a point, (X, Y ), the value Φ(X, Y, τ) is the

distance between the point and the free boundary, and its sign will be positive if

the point is outside the domain enclosed by Γτ0 and negative otherwise. In our case,

the free boundary does not enclose a domain but divides Ω into two subsets, Ωτ
1 and

Ωτ
2. Therefore, we will consider the positive sign if the point is in Ωτ

2, and negative

if it is in Ωτ
1. Another important feature about a distance function, which results

useful while extending velocities or reinitialising, is that, at every point, the following

condition holds:

||∇φ|| = 1. (5.52)

Finally, as Φ is defined in all Ω, other level sets can be tracked as well. In particular,

in our model it is necessary to keep track of the level set Ĥb that serves as upper

boundary of Ωτ
Ĥb

, the domain where the nutrients equation has to be solved.

In the time independent eulerian representation, the interface Γ is represented
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implicitly by the function Φ( ~X), called time of crossing map. The isocontour

z = Φ( ~X) is the position of the interface at time z, provided that it moves with

velocity S in the normal direction to Γ. This representation is only valid in time

independent problems. In our case, it is going to be used in the Fast Marching

method [16, 90]. Otherwise, we consider the time dependent Eulerian representation.

The definition of the level set equation and the numerical strategy used to solve it, is

described in the following sections.

5.4.1 Definition of the level set equation and overview of the

level set strategy

The level set function tracks the movement of all the level sets in Ω, in particular the

movement of Γτ0. Let ~X(τ) = (X(τ), Y (τ)) be a point on the interface Γτ0, moving with

velocity ~U . We can split ~U into its normal component and its tangential component

to Γτ0. Note that if the normal component is zero, then the flow is tangential to the

interface, meaning that the interface is stationary. This argument implies that only

the normal component contributes to the motion of the interface [18]. In our model,

the velocity that moves Γτ0 is an external advective velocity, ~U . As we only need the

normal component, we define

F = ~U · ~n,

where ~n =
∇Φ

||∇Φ||
, the unitary normal vector to Γτ0. So, the motion equation for point

~X(τ) on Γτ0 is,

d ~X

dτ
(τ) = F ( ~X(τ))~n( ~X(τ)). (5.53)

As ~X(τ) is always on Γτ0, then the following equation holds:

Φ( ~X(τ), τ) = 0, ∀τ. (5.54)

By differentiating (5.54) with respect to τ , we obtain

Φτ ( ~X(τ), τ) +∇Φ( ~X(τ), τ) · d
~X

dτ
(τ) = 0,
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and by using (5.53), we get

Φτ +∇Φ · F~n = 0,

Next, by using the definition of ~n, we obtain

Φt + F ||∇Φ|| = 0, (5.55)

which is the basic level set evolution equation.

The level set evolution equation is the most complex equation of the model to be

numerically solved, because it requires a series of steps as part of the level set method

developed in [89].

First of all, at the beginning of the numerical solution, the level set function must

be appropriately defined by using the initial expression for Γ0
0. Then, at every time

iteration, n+ 1, the following steps are executed:

1. computation of the advance normal velocity F n+1 = ~Un+1 · ~n at the level set

Γτn0 ,

2. extension of the velocity F n+1 from Γτn0 to Ω, thus obtaining F n+1
e ,

3. advance of one time step in the solution of the level set equation, (4.32) in the

Alpkvist model and (4.48) in the second model, obtaining Φn+1,

4. reinitialisation of Φn+1 (only when needed).

Figure 5.2 summarises the steps of the method. Once we have done all steps, we get

the new level set function, Φn+1 at time τn+1, that defines the solving domain for the

system equations, Ω
τn+1

1 and Ω
τn+1

Ĥb

5.4.2 The Fast Marching method

Before describing of each step of the level set strategy, we introduce a brief explana-

tion on the Fast Marching method (FMM), a useful tool for capturing the motion of
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Inputs:
Pn+1, Φn,

τn+1 = ∆τ(n+ 1)

Compute:
Fn+1 at Γτn

Extend: Fn+1 to Ω
obtaining Fe

Advance one time step
the level set:

Φn+1

Φn+1

signed distance? Reinitialise Φn+1

Output:
Φn+1

No

Yes

Figure 5.2: Flowchart of the level set method algorithm
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interfaces developed by Sethian [90]. It is a quite novel method although actually

fast when applicable. In our problem, it is used in the velocity extension step as well

as in the reinitialisation process.

For the sake of the explanation, let us consider the situation of the reinitialisation

step, even though this is the last step of the Level Set method. Assume that we

have already advanced the level set function from time τn to time τn+1, i.e., we have

already obtained the values of Φn+1 at the mesh points, although only the zero level

set moved correctly. This implies that Φn+1 does not represent the values of a level

set function. Therefore, condition (5.52) particularised on Φn+1 is only valid near

the zero level set Γn+1
0 . Otherwise, only Φn+1 holds the correct sign at the mesh points.

Let us denote Ψ = Φn+1, saving the values of Φn+1 in a new function so that we

can discard Φn+1 and obtain the correct reinitialised values by using Ψ as an input.

We freeze temporarily the global algorithm in order to reinitialise so, for the sake of

clarity, let us drop the temporal indices and denote Φ̃ ≡ Φn+1, Ω̃1 ≡ Ω
τn+1

1 , Ω̃2 ≡ Ω
τn+1

2

and Γ̃ ≡ Γ
τn+1

0 . We want to obtain Φ̃, a level set function so that

Φ̃−1(0) ≡ Γ̃, ||∇Φ̃|| = 1.

The FMM is a time independent method that uses the Eulerian time-independent

representation of the level set function. As previously stated, such representation

considers the interface Γ̃ represented implicitly by the function Φ̃( ~X), called time of

crossing map, with S the velocity in the normal direction to Γ̃.

The basic Fast Marching Equation (FME) is

S||∇Φ̃|| = 1. (5.56)

The velocity function S( ~X) must be monotonic and dependent only on ~X and not

on Φ̃, although these condition can be relaxed (see, for instance, [91, 16]). In the

reinitialisation step, the velocity is S ≡ 1.
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In order to solve the FME, we must take into account that the information

must travel outwards, i.e., from instant z′ to instant z, with z′ < z. Let be{
~Xi,j = (Xi, Yj) = (i∆X, j∆Y )

}M
i,j=0

the finite differences mesh of the domain Ω, with

X0 = Y0 = 0, XM = YM = 1,

∆X = Xi −Xi−1 ∀i, constant,

∆Y = Yj − Yj−1 ∀j, constant,

∆X = ∆Y.

Let us approximate Φ̃( ~Xi,j) ≈ Φ̃i,j and use the notation S( ~Xi,j) ≡ Si,j. The grid

points of the mesh are sorted into three disjoint sets:

• A represents the set of accepted points. Initially it contains the grid points

neighbouring Γ̃. The values of Φ̃ at these points are calculated differently,

depending on the available data.

• T represents the set of tentative points, which are the nodes adjacent the ones

belonging to A. For those nodes, a tentative value of Φ̃ will be computed and

one of those values is going to be accepted, thus moving the corresponding node

from T to A.

• F represents the set of far nodes, which are the remaining nodes of the grid.

When the value from a node belonging to T is accepted, its neighbouring nodes

are going to move from F to T.

The FMM algorithm, summarised in Figure 5.3, proceeds as follows [17]:

1. Initialise grid points neighbouring the curve Γ̃, by calculating directly its Φ̃

value. These are the initial points in A.

2. Compute tentative values of Φ̃ at those points adjacent to points in A that are

not yet in A. Those are the initial points in T. The remaining points constitute

the subset F.
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3. Choose the point ~Xi,j from T that satisfies

|Φ̃i,j| = min
~Xr,s∈T

|Φ̃r,s|

and move ~Xi,j to A.

4. Compute tentative values at the points adjacent to ~Xi,j that are not in A (in-

cluding points already belonging to T).

5. Repeat until F ∪ T = ∅.

Initialise:
A, T, F

Accept node from T

F ∪ T = ∅? End

Compute or update tentative
values of the neighbours

Yes

No

Figure 5.3: Flowchart of the Fast Marching Method

Initialising the set of accepted nodes

The available data for the initialisation of the set A depends on the problem and,

therefore, the strategies vary. As previously stated, the situation assumed to explain
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the FMM is the one observed in the reinitialisation step. Therefore, let us consider

the case were we have a function Ψ that is not a level set function, but satisfies

Ψ−1(0) = Γ̃ and is correctly oriented, i.e., for any grid point ~Xi,j, sign(Ψi,j) is positive

in Ω̃2 and negative in Ω̃1. Moreover, we only know the values of Ψ at the gridpoints.

In order to initialise A we proceed as follows.

First of all, let a voxel (denoted by V i,j) be a square of the grid, i.e., the region

bounded by grid points ~Xi,j, ~Xi,j+1, ~Xi+1,j, ~Xi+1,j+1 (see Figure 5.4). The points be-

longing to the initial accepted subset will be the corners of the voxels crossed by the

curve. Locating those points is not difficult, as we only need to check the sign of Ψ at

the corners of the voxel and check if it changes. Once a voxel in these conditions has

been found, the values of Φ̃ on the corners are computed by locating the zero level

set inside the voxel, so that the distance from each corner to Γ̃ can be approximated.

For this purpose, we use a bicubic interpolation algorithm. We compute a bicubic

polinomial p(X, Y ) such as p−1(0) ≈ Γ̃ inside the voxel V i,j. Now, for every corner of

V i,j we must find the closest point (u,w) belonging to p−1(0) and let

Φ̃i,j =
|| ~Xi,j − (u,w)||
S(u,w)

.

As previously mentioned, there are other possible situations. For instance, in some

cases the curve Γ̃ is given parametrically. In other cases, we may know the analytical

expression of Ψ. In the first case, the initial values may be obtained using a bisection

strategy, whereas in the second case, the same previously described strategy is used

to obtain the initial values.

The bicubic interpolant

As part of the FMM, the zero level set inside a particular voxel, V i,j, must be

located. However, unless we know explicitly the analytical expression of Γ̃, we need

to compute an approximation. In our case, the function Ψ satisfies Ψ−1(0) ≡ Γ̃.

Therefore, we can use the values of Ψ at the nodes of the mesh to locate Γ̃ inside
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~Xi+1,j

Ψi+1,j<0
~Xi,j

Ψi,j<0

~Xi,j+1

Ψi,j+1>0
~Xi+1,j+1

Ψi+1,j+1>0

V i,j

Γ̃

Figure 5.4: Definition of the voxel V i,j.

the voxel V i,j. For this purpose, we use a bicubic interpolation strategy mainly

because it is arguably easily computed and it can be shown that it results to give a

C(1) on the whole domain, thus contributing to greater stability and better results [18].

The bicubic interpolation strategy is a well known process (see for instance [88]). As

we are working in a rectangular domain, we can map the voxel V i,j to the unit square,

V̂ , where the interpolation is easier to compute (see Figure 5.5).

Finding the closest point

Let us assume that we are already in the reference voxel, V̂ , and we have already

computed the bicubic polynomial, p̂, that satisfies p̂−1(0) ≈ Γ̂, where Γ̂ represents

the mapping of the curve Γ̃ in V̂ . For each corner of the voxel, we want to locate the

nearest point (û, ŵ), belonging to Γ̂, so lets call ~Xc = (Xc, Y c) our candidate corner.

In order to compute the point (û, ŵ) we solve the following equations:

p̂(û, ŵ) = 0, (5.57)

~k · [((û, ŵ)− (Xc, Y c))×∇p̂(û, ŵ)] = 0, (5.58)
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0 1 i i+1 x
0

1

j

j+1

y

V i,j

V̂

Γ̂

Γ̃

Figure 5.5: Voxel mapping.

where ~k represents the unitary vector in the direction normal to the plane XY .

Equation (5.57) guarantees that the point (û, ŵ) is in the interface Γ̂0 and equation

(5.58) implies that (û, ŵ) is the closest point to (Xc, Y c).

In order to solve these equations, we follow an iterative strategy (see Figure 5.6). We

will consider as the initial iterate the centre of the voxel V̂ , denoted by ~X0 = (X0, Y 0).

The algorithm reads as follows:

1. We make one step in the gradient method to minimise the function p, that is

~X1 = ~X0 + α∇p̂( ~X0),

where

α =
−p̂( ~X0)

||∇p̂( ~X0)||2

Note that p is a bicubic polinomial. Therefore, its expression and gradient are

available, so that α can be easily computed and, thus, ~X1.

2. For η > 1, starting with (Xη−1, Y η−1) solve equation (5.58), obtaining the point

(X̃η, Ỹ η). For this purpose, we consider the vector ~mη−1, the unitary vector
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orthogonal to the gradient of p̂ at (Xη−1, Y η−1), i.e.,

~mη−1 · ∇p̂(Xη−1, Y η−1) = 0, (5.59)

The point (X̃η, Ỹ η) is the intersection of the line passing through (Xη−1, Y η−1)

with direction vector ~mη−1 with the line defined by (Xc, Y c) and the direction

vector ∇p̂(Xη−1, Y η−1).

3. Repeat step 1 using (X̃η, Ỹ η) as seed to obtain (Xη, Y η).

4. If the tolerance conditions are fulfilled, set (û, ŵ) = (Xη, Y η). Otherwise, we

repeat from step 2 until the tolerance conditions are fulfilled.

Once the point (û, ŵ) in the reference voxel, V̂ , is found, we can go back to V i,j by

using

(u,w) = (Xi, Yj) + (∆Xû,∆Y ŵ).

Note that the solution (u,w) may not lie inside the voxel V i,j . If that is the case,

then (û, ŵ) does not lie inside the reference voxel, V̂ . As the data used to construct

p̂ is related to V̂ , the polynomial is only accurate inside the voxel and p̂−1(0) may

be very different from the mapped curve, Γ̂. Therefore, we simply discard (u,w).

The correct solution will be obtained when the voxel adjacent to V i,j that shares the

candidate corner is analysed.

Computing tentative approximations

Once the initial accepted set is obtained, we can compute the tentative approxima-

tions for the neighbouring nodes. This is achieved discretising the FME (5.56) using

upwind finite differences. The upwinding direction depends on the available data.

For instance, assume that we want to calculate the tentative value of Φ̃ at ~Xi,j ∈ T.

Let us suppose that ~Xi+1,j and ~Xi,j+1 belong to A. In such a case, equation (5.56) is

discretised as

Si,j

(Φ̃i+1,j − Φ̃i,j

∆X

)2

+

(
Φ̃i,j+1 − Φ̃i,j

∆Y

)2
1/2

= 1. (5.60)
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~X0

~Xc

~X1

~̃X2

~̃X2

~X2

Figure 5.6: Sketch of the iterative process used to find the closest point.

which, in fact, is the only option available, as ~Xi−1,j and ~Xi,j−1 belong to T ∪ F.

Now, if we have more than one neighbour in the same direction providing data, we

should pick the one with smaller |Φ̃| value. For instance, let us assume that ~Xi+1,j,

~Xi−1,j and ~Xi,j+1 belong to A. In that case, we must compare the values |Φ̃i+1,j| and

|Φ̃i−1,j| so that

• If |Φ̃i+1,j| ≤ |Φ̃i−1,j|, we use discretisation 5.60.
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• Otherwise, equation (5.56) is discretised as

Si,j

(Φ̃i,j − Φ̃i−1,j

∆X

)2

+

(
Φ̃i,j+1 − Φ̃i,j

∆Y

)2
1/2

= 1. (5.61)

If the four neighbours of ~Xi,j belong to A, then we simply apply this argument to

each variable separately.

Finally, if we have data available only in one direction, we must discard the derivative

in the other direction. For instance, suppose that ~Xi+1,j belongs to A but ~Xi−1,j,

~Xi,j+1 and ~Xi,j−1 belong to T ∪ F. In that case, equation (5.56) is discretised as

Si,j

∣∣∣∣∣Φ̃i+1,j − Φ̃i,j

∆X

∣∣∣∣∣ = 1. (5.62)

Now, if we recall that the information travels from nodes with time of crossing z′ to

nodes with time of crossing z > z′, then if ~Xi+1,j ∈ A, the following must be satisfied

φ̃i+1,j ≤ φ̃i,j.

Therefore, (5.62) results in

Φ̃i,j = Φ̃i+1,j +
∆X

Si,j
, (5.63)

which is the solution of the FME (5.56) if the data available is located only in one

direction. When the data available is present in both direction, solving the FME is a

bit more complicated. Let us go back to the discretised FME (5.60). In this equation,

the terms Si,j, Φ̃i+1,j and Φ̃i,j+1 are known, whereas the unknown is Φ̃i,j. Rearranging

terms in equation (5.60) we obtain the quadratic equation(
∆X

∆Y
+

∆Y

∆X

)
Φ̃2
i,j−2

(
∆X

∆Y
Φ̃i,j+1 +

∆Y

∆X
Φ̃i+1,j

)
+

(
∆X

∆Y
Φ̃2
i,j+1 +

∆Y

∆X
Φ̃2
i+1,j −

∆X∆Y

Si,j

)
= 0,

(5.64)

the discriminant of which is

d = 4

(
∆X2 + ∆Y 2

S2
i,j

− (Φ̃i+1,j − Φ̃i,j+1)2

)
. (5.65)
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Depending on the value of d, equation (5.64) may have no solution (d < 0), one

solution (d = 0) or two solutions (d > 0). The case where d = 0 does not require

further discussion, but the others do. Since S is monotonic, let us assume that S > 0

(the negative case is analogous). Then, if d < 0

√
∆X2 + ∆Y 2

Si,j
< |Φ̃i+1,j − Φ̃i,j+1|. (5.66)

The left term in (5.66) represents the elapsed time to travel from ~Xi+1,j to ~Xi,j+1,

whereas the right term represents the assigned elapsed time, as Φ̃ is the time of

crossing map (see Figure 5.7). Therefore, the elapsed time is smaller that the currently

assigned elapsed time. This usually happens when the interface crosses ~Xi+1,j and

~Xi,j+1 almost simultaneously. Suppose that Φ̃i+1,j < Φ̃i,j+1, i.e., the interface arrives

at ~Xi+1,j before arriving at ~Xi,j+1. Then, as the time window is small, we simply

use the value of ~Xi+1,j and discard the other direction. The argument is analogous if

Φ̃i,j+1 < Φ̃i+1,j. Therefore, if d < 0, we simply take

Φ̃i,j = min(Φ̃i+1,j +
∆X

Si,j
, Φ̃i,j+1 +

∆Y

Si,j
). (5.67)

If d > 0, then the solutions of equation (5.64) are

Φ̃i,j =

(
∆Y

∆X
Φ̃i+1,j +

∆X

∆Y
Φ̃i,j+1

)
±
√

∆X2 + ∆Y 2

S2
i,j

− (Φ̃i+1,j − Φ̃i,j+1)2

∆X

∆Y
+

∆Y

∆X

(5.68)

Let us suppose that Φ̃i,j+1 = 0. Then (5.68) is

Φ̃i,j =

(
∆Y

∆X
Φ̃i+1,j

)
±
√

∆X2 + ∆Y 2

S2
i,j

− Φ̃2
i+1,j

∆X

∆Y
+

∆Y

∆X

(5.69)

Provided that we want φ̃i+1,j ≤ φ̃i,j, the root that gives the appropriate solution is

the positive root. Therefore, if d > 0 the solution of (5.64) is the positive root in

(5.68).
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~Xi+1,j
~Xi,j

~Xi,j+1

√
∆X2 + ∆Y 2

Figure 5.7: Elapsed time between nodes.

Accepting new nodes

Once the tentative values have been computed, the next step in the FMM algorithm

is to find the node ~Xi,j that satisfies

|Φ̃i,j| = min
~Xr,s∈T

|Φ̃r,s|.

Once it has been found, the node is moved from T to A, and the value Φ̃i,j is accepted.

After that, the tentative values at the neighbours of ~Xi,j must be computed, at those

neighbours in F, or updated, at those neighbours in T. The neighbours that already

belong to A maintain their Φ̃ value unchanged.

In order to speed up the process of accepting new nodes, it comes in handy to have

the set T ordered in a binary tree structure attending to the tentative values of Φ̃.

Each node of the tree represents a grid point belonging to T. Given a node of the

tree, the absolute tentative value associated to it must be smaller than the absolute

tentative value of its children (see Figure 5.8). That way, the accepted node is always

the top node.

When a tentative value is computed, if the corresponding node was moved from F to

T, then it must be placed at the bottom of the tree and moved upwards to its right

position. If the node was already in T, as its tentative value was updated, we may
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need to move it upwards (if its absolute tentative value is smaller than before), or

downwards (if its absolute tentative value has increased), to its right position.

Crescent
values of
|Φ|

Figure 5.8: Binary tree ordering.

5.4.3 Initialization of the level set function

The initial expression of the interface, Γ0
0, is given by the initial condition (4.39).

However, as we do not know the initial expression of the level set function, Φ0, we

must build it accordingly.

Let us recall that the level set function is a signed distance function. This is not

required arbitrarily, it is recommended for stability purposes. Therefore, to compute

the initial level set function, one has to take care of two things: the sign and the

distance.

a) The sign

Provided that we know at least a discretisation of the initial interface Γ0
0, we

can use a topological strategy for determining the sign at any point: counting

interface crossings. First, we must pick a given node with known sign. Then,
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to determine the sign of a target point, we draw a path following gridlines from

the target to the given node, and count the number of transversal interface

crossings. If the resulting number is even, then the target node is in the same

side as the given node so their signs are the same. If it is odd, they are in

opposite sides, so that the signs are opposite as well. One must take care to

count only transverse crossings and note that for, some points, zero crossings

can happen.

Although this is quite simple, the particular problem can make the task even

easier. In our case, as we explicitly know the analytical expression of the initial

Γ0
0, we can simply take the sign as negative if the grid point is in Ω0

2 and positive

if it is in Ω0
2 . Note that if a point is on Γ0

0, its level set value is zero.

b) The distance

Let us assume again that we have a discretisation of the initial interface

Γ0
0 ≈ {(Xck , Yck)}Kk=0, ordered clockwise. For each point belonging to the mesh,

~Xi,j, we need to compute the distance to Γ0
0. For this purpose, first we com-

pute the distance, di,jk , to every line segment of the discretised curve, defined by

(Xck , Yck) and (Xck+1
, Yck+1

). Then, we take the minimum of those distances as

the absolute value of the level set function at ~Xi,j, i.e,

|Φi,j| = min
k
{di,jk }.

Despite its simplicity, one must be cautious when computing those values. For

instance, note that di,jk are distances to a line segment and not to a line. Further-

more, if the curve is closed, the distance to the segment defined by (XcK , YcK )

and (Xc0 , Yc0) must be computed. However, in our case the curve is not closed.

As a side note, there are other possible initial situations. The best case scenario is

to know the initial expression of the level set function, Φ, although this is the least

common one. In this case, nothing needs to be done. In other cases, the available data
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is a discretisation of the initial interface Γ0
0, and we may proceed as described above.

Finally, the least common situation is to know the values of the level set function at

the grid points surrounding the interface. In this case, we can use the FMM to easily

and adequately compute the level set function at the rest of the domain. This process

is the same as in the reinitialisation step, and will be described later in this work.

5.4.4 Velocity extension

As indicated in Section 5.4.1, at each time iteration we need to compute the advance

velocity, F n+1, and its appropriate extension to Ω, F n+1
e , before advancing one time

step the level set equation.

The velocity that moves the level sets should come from the expansive growth of the

biofilm, as expressed in equation (4.31), in the Alpkvist model, and (4.47), in the

second model. This velocity can be computed after obtaining the updated values of

the pressure P n+1.

However, two problems arise. The first one is that P n+1, and therefore ~Un+1, is

known only in Ωn
1 , whereas Φn+1 has to be computed in Ω, the solving domain

for the level set equation. The second problem is that even if ~Un+1 were known

in Ω, we can only ensure that the only level set that is going to move correctly is

Γτn0 , whereas the rest may go offtrack. Therefore, we can only use ~Un+1 in points

belonging to Γτn0 . We need to extend accordingly ~Un+1 to all Ω, so that if ||∇Φn|| = 1

then ||∇Φn+1|| = 1. We will use the values of ~Un+1 at Γτn0 to obtain such an extension.

Finally, as explained in Section 5.4.1, we are only interested in the normal component

of ~Un+1. Therefore, we restrict ourselves to the computation of F n+1 = ~Un+1 · ~n at

Γτn0 and the extension F n+1
e to Ω.

Just as a reminder, note that at this point of the solving strategy, Φn and P n+1 are
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known at grid points, whereas F n+1 and F n+1
e are unknown.

Definition of the velocity extension equation

The velocity extension equation arises from the fact that we want the level set function

to move in such a way that it keeps being a signed distance function. Assume that we

have F , a scalar velocity, that preserves the level set function, Φ as a signed distance

function, i.e.,

||∇Φ|| = 1.

Then, we get

d

dτ
(∇Φ · ∇Φ) = 2∇Φτ · ∇Φ = 0,

Combining this identity with equation (5.55), we obtain

2∇(−F ||∇Φ||) · ∇Φ = 0. (5.70)

Finally, since Φ is a signed distance function, ||∇Φ|| = 1, so that equation (5.70)

becomes

∇F · ∇Φ = 0. (5.71)

Note that ∇Φ is normal to the interface, and ∇F is orthogonal to lines of constant

F , so that F is constant along the lines which are normal to the interface. Therefore,

we have here a propagation of information problem to which makes sense to apply

the FMM. The strategy of the FMM applied to (5.71) is the same as the one applied

for the FME (5.56) with certain specific issues [17].

Initialising the set of accepted nodes

In Section 5.4.2 we described the initialisation of the set of accepted nodes, A, for

the case where the function that needed to be extended was the level set function Φ.
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That was rather simple, because at those grid points located in the vicinity of the

interface, Γτn0 , we only needed to find the closest point belonging to the interface and

compute the distance.

In many problems, initialising the values of the speed function F n+1 is not much

more complicated. If ~Xi,j is a point neighbouring Γτn0 , we just need to locate the

closest point, ~XI , and simply set F n+1
ei,j

= F n+1( ~XI). However, we have another

difficulty here: we do not know the values of F at the interface, as they depend on

the values of the gradient of the pressure, which is a magnitude that we only know

at certain grid points.

This can be overcame by using the following strategy:

1. find a voxel, V i,j, crossed by the interface, Γτn0 .

2. at every corner of the voxel, ~Xc, find the closest point in the interface, ~XI , by

using the same strategy as described in Section 5.4.2. At this point the value of

the pressure, P n+1( ~XI), is going to be zero because of the boundary conditions

(4.36) of the problem.

3. at ~XI follow the direction normal to the interface, i.e., the gradient of Φn and

find the point located at (Φn)−1(−2∆x). Let us denote it ~X−2I .

4. locate the voxel where that point is enclosed, V p,q, and compute the bicubic in-

terpolation of the pressure in the voxel, p̃p,q. Approximate the value of the pres-

sure at that point by using the bicubic polinomial, P n+1( ~X−2I) ≈ p̃p,q( ~X−2I).

5. finally, recall that at Γτn0 , F n+1 = −∇P n+1 · ∇Φn, which is the negative normal

derivative of the pressure, F n+1 = −∂P
n+1

∂~n
. We can approximate the value of

the speed function at ~XI as

F n+1( ~XI) ≈ −
P n+1( ~XI)− P n+1( ~X−2I)

2∆X
≈ p̃p,q( ~X−2I)

2∆X
.
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Once we have F n+1( ~XI) we simply take F n+1
e ( ~Xc) = F n+1( ~XI).

When we are computing the bicubic interpolation of the pressure inside the voxel

V p,q, if we are too close to the level set zero, then we may need to use values of the

pressure outside the biofilm to compute the bicubic polynomial. If this is the case,

an extrapolation technique is required for the absent values, as it greatly improves

the result of the interpolation. This case should not be that usual, and even when it

happens, the number of absent values should be small.

The extrapolation method

In order to obtain the extrapolated values needed to compute the bicubic polynomial,

we solve equation

∆P n+1 = P n+1
xx + P n+1

yy = 0, (5.72)

in the discrete domain defined by the nodes used in the bicubic interpolation,

D = {Xp−1, Xp, Xp+1, Xp+2} × {Yq−1, Yq, Yq+1, Yq+2}.

Equation (5.72) is discretised using backward or forward finite differences, depending

on which node we are discretising at, and always using values at nodes belonging to

D. In particular,

• If we are extrapolating at nodes (Xp−1, Yη) and (Xp, Yη), for η = q−1, . . . , q+2,

then we use forward finite differences scheme to approximate P n+1
xx

P n+1
xxτ,η ≈

P n+1
ζ+2,η − 2P n+1

ζ+1,η + P n+1
ζ,η

∆X2
, for ζ = p− 1, p and η = q − 1, . . . , q + 2.

• If we are extrapolating at nodes (Xp+1, Yη) and (Xp+2, Yη), for η = q−1, . . . , q+2,

then we use backward finite differences scheme to approximate P n+1
xx

P n+1
xxτ,η ≈

P n+1
ζ−2,η − 2P n+1

ζ−1,η + P n+1
ζ,η

∆X2
, for ζ = p+1, p+2 and η = q−1, . . . , q+2.
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• If we are extrapolating at nodes (Xζ , Yq−1) and (Xζ , Yq), for ζ = p−1, . . . , p+2,

then we use forward finite differences scheme to approximate P n+1
yy

P n+1
yyτ,η ≈

P n+1
ζ,η+2 − 2P n+1

ζ,η+1 + P n+1
ζ,η

∆Y 2
, for ζ = p− 1, . . . , p+ 2 and η = q − 1, q.

• If we are extrapolating at nodes (Xζ , Yq+1) and (Xζ , Yq+2), for ζ = p−1, . . . , p+2,

then we use backward finite differences scheme to approximate P n+1
yy

P n+1
yyτ,η ≈

P n+1
ζ,η−2 − 2P n+1

ζ,η−1 + P n+1
ζ,η

∆Y 2
, for ζ = p−1, . . . , p+2, and η = q+1, q+2.

xi−1 i i+1 i+2

y

j−1

j

j+1

j+2 Unknown

Known

Figure 5.9: Example of missing values on D that need extrapolation.

Equation (5.72) is posed in the domain D, where the values of P n+1 at certain nodes

of D are known. These values are used as an input. Assume that the unknown values

of P n+1 are those related to the nodes ~Xp+2,q+1, ~Xp,q+2, ~Xp+1,q+2 and ~Xp+2,q+2, while

the rest are known values, as depicted in Figure 5.9. The discretised equations for
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those nodes are

∆Pn+1( ~Xp+2,q+1) ≈
Pn+1
p,q+1 − 2Pn+1

p+1,q+1 + Pn+1
p+2,q+1

∆X2
+
Pn+1
p+2,q−1 − 2Pn+1

p+2,q + Pn+1
p+2,q+1

∆Y 2
,

∆Pn+1( ~Xp,q+2) ≈
Pn+1
p+2,q+2 − 2Pn+1

p+1,q+2 + Pn+1
p,q+2

∆X2
+
Pn+1
p,q − 2Pn+1

p,q+1 + Pn+1
p,q+2

∆Y 2
,

∆Pn+1( ~Xp+1,q+2) ≈
Pn+1
p−1,q+2 − 2Pn+1

p,q+2 + Pn+1
p+1,q+2

∆X2
+
Pn+1
p+1,q − 2Pn+1

p+1,q+1 + Pn+1
p+1,q+2

∆Y 2
,

∆Pn+1( ~Xp+2,q+2) ≈
Pn+1
p,q+2 − 2Pn+1

p+1,q+2 + Pn+1
p+2,q+2

∆X2
+
Pn+1
p+2,q − 2Pn+1

p+2,q+1 + Pn+1
p+2,q+2

∆Y 2
.

By rearranging terms and considering ∆X = ∆Y , the discretised equations become

P n+1
p+2,q+1 = P n+1

p+1,q+1 + P n+1
p+2,q −

1

2
(P n+1

p,q+1 + P n+1
p+2,q−1), (5.73)

2P n+1
p,q+2 − 2P n+1

p+1,q+2 + P n+1
p+2,q+2 = 2P n+1

p,q+1 − P n+1
p,q , (5.74)

−P n+1
p,q+2 + P n+1

p+1,q+2 = P n+1
p+1,q+1 −

1

2
(P n+1

p−1,q+2 + P n+1
p+1,q), (5.75)

−2P n+1
p+2,q+1 + P n+1

p,q+2 − 2P n+1
p+1,q+2 + 2P n+1

p+2,q+2 = −P n+1
p+2,q. (5.76)

The system of equations (5.73)-(5.76) can be written in matrix form as
1 0 0 0

0 2 −2 1

0 −1 1 0

−2 1 −2 2




Pn+1
p+2,q+1

Pn+1
p,q+2

Pn+1
p+1,q+2

Pn+1
p+2,q+2

 =


Pn+1
p+1,q+1 + Pn+1

p+2,q −
1

2
(Pn+1

p,q+1 + Pn+1
p+2,q−1)

2Pn+1
p,q+1 − Pn+1

p,q

Pn+1
p+1,q+1 −

1

2
(Pn+1

p−1,q+2 + Pn+1
p+1,q)

−Pn+1
p+2,q

 ,

(5.77)

which is solved by using a LU algorithm with partial pivoting, thus obtaining the

extrapolated values of the pressure. With those values, and the rest of the known

values associated to nodes belonging to D, the bicubic polynomial can be obtained.

Computing the tentative values

Once the initial values are obtained, the tentative values must be calculated and

ordered in a tree structure following the crescent values of |Φn|, as explained in

129



5.4. Level set equation Chapter 5. Numerical methods for the 2D case

Section 5.4.2. In order to compute the tentative values, we need to solve equation

(5.71), particularised for |Φn|, and with unknown speed function F n+1
e . For this

purpose, we propose an upwind finite differences scheme for the spatial discretisation.

The upwinding direction depends on the available data and follows the direction of

increasing |Φn| values.

Let us assume that we need to compute the tentative values of the velocity at point

~Xi,j, that is, F n+1
ei,j

. Suppose that ~Xi+1,j and ~Xi,j+1 belong to A. Then, equation

(5.71) results in the following discretised equation

(
F n+1
ei+1,j

− F n+1
ei,j

∆X

)(
Φn
i+1,j − Φn

i,j

∆X

)
+

(
F n+1
ei,j+1

− F n+1
ei,j

∆Y

)(
Φn
i,j+1 − Φn

i,j

∆Y

)
= 0, (5.78)

which is the only option available, as ~Xi−1,j and ~Xi,j−1 belong to T ∪ F. The values

of Φn
i,j, Φn

i+1,j, Φn
i,j+1, F n+1

ei+1,j
and F n+1

ei,j+1
. are known, whereas F n+1

ei,j
is the unknown.

Therefore, by rearranging terms and recalling that ∆X = ∆Y , we obtain

F n+1
ei,j

=
F n+1
ei+1,j

(Φn
i+1,j − Φn

i,j) + F n+1
ei,j+1

(Φn
i,j+1 − Φn

i,j)

Φn
i+1,j − 2Φn

i,j + Φn
i,j+1

. (5.79)

Now, assume that we have more than one grid point accepted in one of the directions.

In this case, we simply choose the point with smaller |Φn| value. For instance, let us

suppose that ~Xi+1,j, ~Xi−1,j and ~Xi,j+1 belong to A. Then, we compare |Φn
i+1,j| and

|Φn
i−1,j| so that

• if |Φn
i+1,j| ≤ |Φn

i−1,j|, we use discretisation (5.78).

• otherwise, equation (5.71) is discretised as(
F n+1
ei,j
− F n+1

ei−1,j

∆X

)(
Φn
i,j − Φn

i−1,j

∆X

)
+

(
F n+1
ei,j+1

− F n+1
ei,j

∆Y

)(
Φn
i,j+1 − Φn

i,j

∆Y

)
= 0,

(5.80)

Note that, for the case where the four neighbours are in A, we simply apply this

argument to each variable separately.
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Finally, if we have available data only in one direction, we must discard the derivative

in the other direction. For instance, assume that ~Xi+1,j belongs to A but ~Xi−1,j, ~Xi,j+1

and ~Xi,j−1 belong to T ∪ F. In this case, equation (5.71) is discretised as(
F n+1
ei+1,j

− F n+1
ei,j

∆X

)(
Φn
i+1,j − Φn

i,j

∆X

)
= 0, (5.81)

thus, F n+1
ei,j

= F n+1
ei+1,j

These expressions are used to compute the values of the tentative points and also

while updating the tentative values. Once a tentative value is computed or updated,

the point must be placed at its right position in the tree, by moving it upwards or

downwards, as explained in Section 5.4.2.

5.4.5 The level set equation

With the appropriate velocity values computed at the whole domain, we can start

solving the level set equation, (4.32) in the Alpkvist model and (4.48) in the second

model. As both equations are similar, so from now on we will refer to (4.32).

At every time step we need to solve

∂τΦ + Fe||∇Φ|| = 0 in Ω. (5.82)

Remember that the velocity extension comes from the necessity of having a velocity

that preserves Φ as a signed distance function in all Ω, which is the computational

domain where we solve the level set equation. Note that, we move not only the level

set zero but also the rest of the level sets.

Equation (4.32) is fairly simple and straightforward, we simply apply an upwinding

scheme for the spatial derivatives determining its direction by using the sign of the

velocity and an explicit scheme for the time derivative. The construction of the

velocity guarantees that the solution of the level set is reliable, provided that we
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discretise taking into account the direction from which the information is travelling.

Therefore, by applying an explicit scheme for the time derivative we obtain

Φn+1 − Φn

∆τ
= −F n+1

e ||∇Φn||. (5.83)

Next, by applying an upwinding strategy in space that takes into account the sign of

F , we get

Φn+1
i,j = Φn

i,j −∆τF n
ei,j

[
max(sign(F n

ei,j
)D−XΦn

i,j,−sign(F n
ei,j

)D+XΦn
i,j)

2+

max(sign(F n
ei,j

)D−Y Φn
i,j,−sign(F n

ei,j
)D+Y Φn

i,j)
2
]1/2

, (5.84)

where

D−XΦn
i,j =

Φn
i,j − Φn

i−1,j

∆X
, D+XΦn

i,j =
Φn
i+1,j − Φn

i,j

∆X
,

D−Y Φn
i,j =

Φn
i,j − Φn

i,j−1

∆Y
, D+Y Φn

i,j =
Φn
i,j+1 − Φn

i,j

∆Y
.

Once equation (5.84) has been solved at each grid point, we obtain the values of Φn+1.

With these values we must define the new solving domain Ωn+1
1 , which is

Ω
τn+1

1 = {(X, Y ) ∈ Ω / Φn+1(X, Y ) < 0}.

Similarly, the domain Ω
τn+1

2 is defined as

Ω
τn+1

2 = {(X, Y ) ∈ Ω / Φn+1(X, Y ) ≥ 0},

whereas, the new boundary is

Γn+1
0 = ∂Ω

τn+1

1 ∩ ∂Ω
τn+1

2 .

Finally, the domain Ω
τn+1

Ĥb
is defined as

Ω
τn+1

Ĥb
= {(X, Y ) ∈ Ω / Φn+1(X, Y ) < Ĥb},

whereas Γ
τn+1

Ĥb
is

Γ
τn+1

Ĥb
= {(X, Y ) ∈ Ω / Φn+1(X, Y ) = Ĥb}.
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5.4.6 Reinitialisation

There are occasions where a well behaved problem comes to a point where the

solution becomes unstable, thus causing the level set function to stop from being

a signed distance function, or even leading to results far from acceptable. It is in

these situations when reinitialisation comes in handy: we just need to reset the

level set before everything breaks and continue working. Setting the condition for

a reinitialisation depends on each problem, although a good starting point is to

maintain ||∇Φ|| not far away from 1. We must proceed with certain flexibility, as

being too strict can lead into reinitialising too often.

Even though reinitialisation helps bringing back an stray level set function, it is

not a desirable procedure. This is because reinitialising affects the level set and

tends to smoothen it, so doing it too often can lead to incorrect solutions too. If

possible, not reinitialising at all is for the best. That is another reason to have a

well extended velocity function because a well behaved velocity field maintains Φ as

a signed distance.

The reinitialisation procedure has already been explained in Section 5.4.2: just

apply the Fast Marching Method to equation ||∇Φ|| = 1, which is the FME (5.56)

particularised for F = 1.

As a side note, in those problems when the initial available data are the values of

the level set function at grid points surrounding the interface, we use these values to

solve ||∇Φ0|| = 1 as if we were reinitialising in order to obtain the initial values of

Φ0.

5.4.7 A useful tip: modification of Gibou’s method

In section 5.2.1 we needed to know the position of the the point xI in order to compute

θ =
|xI − xk|

∆x
. However, as we only know points of the discretization, if xI is not one
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of those points, then it is unknown. In our problem we have a level set function Φ,

which is a signed distance function, where the level set zero is the interface. Therefore,

|xI − xk| = |Φ(xk)|.

The level set function measures the distance between xk and the boundary, which

can be used to substitute the value xI − xk that may not be possible to obtain. In a

1D scheme, the previous expression is an equality. In higher dimensions it is only an

approximation, although a reliable one.

5.5 Active biomass equation

As indicated in Section 5.1, the next step in the numerical strategy is to solve

the equation governing the active biomass (equation (4.33) in the Alpkvist model

and (4.49) in the second model), in the recently computed domain Ω
τn+1

1 , which is

bounded by ΓL, ΓR, ΓB and Γ
τn+1

0 .

The active biomass equation is an advection equation. The advection process is

due to the growth expansion pressure and is the source of biomass diffusion. Note

that this is a non-linear equation, so a Newton method is applied. This is the main

difference between the numerical strategies used in the active biomass and inactive

biomass equations. We also applied Crank-Nicolson for time discretisation and an

upwinding technique for the spatial discretisation, with the upwinding direction

determined by the sign of the pressure derivatives.

Special care must be taken while solving the active biomass equation. More precisely,

note that due to the application of the Crank-Nicolson method we have an explicit

part in which both the pressure and active biomass spatial derivatives in the previous

step are involved, that is ∇P n and ∇V n
1 . These derivatives, as well as the term

∇P n+1 used in the implicit part, are computed by using a WENO scheme.
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5.5.1 WENO method

Essentially non Oscillatory schemes (also known as ENO schemes), are finite

differences schemes developed in 1987 by Harten et al. [41]. The development of

these schemes arose from the need of finding a high order approximation that was

accurate for piecewise continuous functions, in the sense of reducing the magnitude

of the oscillation originated in the regions with discontinuities through the refinement

of the mesh [48]. In 1994, Liu et al. [58] developed the Weighted Essentially Non

Oscillatory method (also known as WENO method), which proposes a convex

combination of the different ENO schemes, thus taking into account the smoothness

of the function in each subinterval. The idea under the WENO schemes is that they

should behave similar to central schemes where the solution is regular, and similar

to ENO schemes near the singularities. In order to present the WENO scheme, first

we briefly introduce the ENO schemes.

Let f be Lipschitz-continuous in Ω = [0, L] × [0, H], a 2-D domain, with piecewise

smooth derivatives, the singularities of which are isolated. Let {~xi,j = (xi, yj)}Mi,j=0

be a finite differences mesh in Ω, with x0 = y0 = 0, xM = L and yM = H. Let

be ∆x = xi − xi−1 and ∆y = yj − yj−1 for i, j = 0, . . . ,M , the spatial steps with

∆x = ∆y, constant. We use the notation f(~xi,j) ≈ fi,j, and define

∆+
x fi,j = fi+1,j − fi,j, ∆−x fi,j = fi,j − fi−1,j,

∆+
y fi,j = fi,j+1 − fi,j, ∆−y fi,j = fi,j − fi,j−1.

The value fx(~xi,j) can be approximated through an ENO scheme by using the set of

left nodes, {~xk,j}i+2
k=i−3 for a fixed index j, and applying one of the following approxi-

mations

f−,0x,i,j =
1

3

∆+
x fi−3,j

∆x
− 7

6

∆+
x fi−2,j

∆x
+

11

6

∆+
x fi−1,j

∆x
, (5.85)

f−,1x,i,j = −1

6

∆+
x fi−2,j

∆x
+

5

6

∆+
x fi−1,j

∆x
+

1

3

∆+
x fi,j
∆x

, (5.86)

f−,2x,i,j =
1

3

∆+
x fi−1,j

∆x
+

5

6

∆+
x fi,j
∆x

− 1

6

∆+
x fi+1,j

∆x
. (5.87)
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Each option corresponds to a subset of 4 points of the set {~xk,j}i+2
k=i−3. More precisely,

f−,sx,i,j is associated to the subset Ns,j = {~xk,j}i+sk=i+s−3, with s = 0, 1, 2. The choice of

which estimation should be taken is based on the relative smoothness of the function

in each subset.

As previously mentioned, WENO method takes a convex combination of the three

approximations:

f−x,i,j =
2∑
s=0

ωs,jf
−,s
x,i,j,

where the coefficients ωs,j are the weights associated to the particular subsets Ns,j.

For a fixed index i, the value fy(~xi,j) can be approximated in an analogous way by

applying the previously explained techniques to the set of left nodes {~xi,k}j+2
k=j−3.

Analogously, for a fixed j, the value fx(~xi,j) can be approximated through the

WENO method by using the set of right nodes {~xk,j}i+3
k=i−2.

The choice of the set to be used depends on the particular problem. In our case,

when using a WENO approximation to compute ∇P n, and ∇P n+1 in the biomasses

equations, we choose the left-biased WENO scheme. However, near the boundaries,

when there is not enough data to apply the left-biased WENO scheme, we use the

right-biased one, provided that there are enough available data to use it. If neither

the left- or right-biased WENO can be applied, the derivatives are approximated

following the extrapolation-interpolation technique we explain in the following

section.

For the calculation of the gradient of the active biomass, ∇V n
1 , (or the inactive

biomass in the case of equations (4.34) and (4.50)), the selection on which set is

to be used for the WENO method is made attending to the sign of ∇P n: if P n
x > 0,

then we use a left-biased WENO to compute V n
1x ; otherwise, we use a right-biased
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WENO. An analogous argument is used for V n
1y .

5.5.2 Pressure and biomass derivatives near the boundaries

As explained in the previous section, WENO scheme uses the value of the function at

certain set of nodes to compute the derivatives. However, the values of the pressure

and active biomass are not available outside the domain Ω
τn+1

1 . Therefore, when

computing the values of the derivatives in the vicinity of the boundaries, we must

use other strategies.

At ΓL and ΓR we can use the periodic boundary conditions, wrapping the domain,

to get the values needed for the WENO method. At ΓB and Γ
τn+1

0 , instead of using

a WENO scheme, we apply an alternative strategy that involves the extrapolation

technique described in Section 5.4.4, as well as the bicubic interpolation described in

Section 5.4.2. For the sake of the explanation, we will restrict ourselves to the case of

the derivatives of the pressure, although the strategy is the same for the derivatives

of the active biomass. Therefore, suppose that we want to compute the gradient of

the pressure, ∇P n, at the grid point ~Xi,j, and that we are close to ΓB or Γ
τn+1

0 . We

proceed as follows:

1. We extrapolate the values of the pressure by using the extrapolation technique

described in Section 5.4.4, thus obtaining a set of accepted values at the domain

D = {Xi−1, Xi, Xi+1, Xi+2} × {Yj−1, Yj, Yj+1, Yj+2}.

2. With those values, we compute the bicubic polynomial, pi,j, that approximates

the value of the pressure as described in Section 5.4.2.

3. We calculate the spatial derivatives of pi,j, namely pi,jX and pi,jY , and evaluate

them at the point (Xi, Yj), thus obtaining the values pi,jX (Xi, Yj) and pi,jY (Xi, Yj).

4. Finally, we set P n
Xi,j

= pi,jX (Xi, Yj) and P n
Yi,j

= pi,jY (Xi, Yj).
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5.5.3 Numerical discretisation of the active biomass equation

in the Alpkvist model

At each iteration we must advance one time step in the active biomass equation. More

precisely, at step n+ 1, corresponding to time τn+1 = ∆τ(n+ 1), we need to compute

the values V n+1
1i,j

, the approximations of the active biomass at the mesh nodes. For

this purpose, first we apply a Crank-Nicolson scheme for time discretisation, so that

equation (4.33) is approximated by

V n+1
1 − V n

1

∆τ
=

1

2

[
∇P n+1 · ∇V n+1

1 + V n+1
1

(
ΨSn+1

K + Sn+1
− (ε1 + ε2)− V n+1

1 (
ΨSn+1

K + Sn+1
− ε1)

)]
+

1

2

[
∇P n · ∇V n

1 + V n
1

(
ΨSn

K + Sn
− (ε1 + ε2)− V n

1 (
ΨSn

K + Sn
− ε1)

)]
, in Ω

τn+1

1 .

(5.88)

In order to establish a non-linear system involving the value of the biomass at all

mesh nodes, we extend the value V1 ≡ 0 on the boundary Γ
τn+1

0 to the set Ω
τn+1

2 .

Therefore, we add the following equation

V n+1
1 = 0, in Ω

τn+1

2 . (5.89)

As mentioned in Section 5.1, the active biomass equation is the next-to-last to be

solved at each iteration. Therefore P n, P n+1, Sn, Sn+1 and V n
1 are known at the

mesh points. Thus, in order to compute ∇P n+1,∇P n and ∇V n
1 we use the methods

explained in Sections 5.5.1 and 5.5.2. Finally, in order to discretise ∇V n+1
1 we use an

upwind strategy. Therefore, the discretisation of equation (5.88) results in:

V n+1
1i,j
− 1

2
∆τ

[
max(Pn+1

X , 0)
V n+1

1i+1,j
− V n+1

1i,j

∆X
+ min(Pn+1

X , 0)
V n+1

1i,j
− V n+1

1i−1,j

∆X
+

max(Pn+1
Y , 0)

V n+1
1i,j+1

− V n+1
1i,j

∆Y
+ min(Pn+1

Y , 0)
V n+1

1i,j
− V n+1

1i,j−1

∆Y
+

V n+1
1i,j

(
ΨSn+1

i,j

K + Sn+1
i,j

− (ε1 + ε2)

)
− (V n+1

1i,j
)2

(
ΨSn+1

i,j

K + Sn+1
i,j

− ε1

)]
−
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1

2
∆τ

[
∇Pni,j · ∇V n

1i,j + V n
1i,j

(
ΨSni,j

K + Sni,j
− (ε1 + ε2)

)
−

(V n
1i,j )

2

(
ΨSni,j

K + Sni,j
− ε1

)]
− V n

1i,j = 0, if ℵn+1
i,j = 1,

(5.90)

whereas, equation (5.89) results in

V n+1
1i,j

= 0, if ℵn+1
i,j = 0, (5.91)

for i = 0, . . . ,M − 1, j = 0, . . . ,M . For the purpose of clarity, let us introduce the

following notation

P+
Xi,j

= max(P n+1
X , 0), P+

Yi,j
= max(P n+1

Y , 0), (5.92)

P−Xi,j = min(P n+1
X , 0), P−Yi,j = min(P n+1

Y , 0), (5.93)

α1 =
∆τ

2∆X
, (5.94)

θki,j ≡ θ(Ski,j) =
ΨSki,j

K + Ski,j
− ε1, with k = n, n+ 1, (5.95)

σki,j ≡ σ(Ski,j) =
ΨSki,j

K + Ski,j
− ε1 − ε2, with k = n, n+ 1, (5.96)

gni,j ≡ g(P n
i,j, V

n
1i,j

) = ∇P n
i,j · ∇V n

1i,j
+ V n

1i,j
σni,j − (V n

1i,j
)2θni,j, (5.97)

δn+1
i,j = 1 + α1P

+
Xi,j
− α1P

−
Xi,j

+ α1P
+
Yi,j
− α1P

−
Yi,j
− α1∆XV n+1

1i,j
σn+1
i,j . (5.98)

Then, the system of equations (5.90) and (5.91) can be written in equivalent form

−α1P
+
Xi,j

V n+1
1i+1,j

− α1P
+
Yi,j
V n+1

1i,j+1
+ δn+1

i,j V n+1
1i,j

+

α1∆X(V n
1i,j

)2θn+1
i,j + α1P

−
Xi,j

V n+1
1i−1,j

+ α1P
−
Yi,j
V n+1

1i,j−1
−

α1g
n
i,j − V n

1i,j
= 0, if ℵn+1

i,j = 1, (5.99)

V n+1
1i,j

= 0, if ℵn+1
i,j = 0, (5.100)

for i = 0, . . . ,M − 1, j = 0, . . . ,M .
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For the sake of simplicity, we first write the non-linear system corresponding to

the case where all nodes belong to Ω
τn+1

1 . Then, at those nodes belonging to Ω
τn+1

2

condition (5.100) is imposed, thus removing the corresponding linearised equations

from the system.

The non-linear system of equations (5.99) is written in compact form as

F(Zn+1) = A(Zn+1)Zn+1 −Bn = 0, (5.101)

where

• Zn+1 is the vector of unknowns at iteration n+1, the M(M + 1) elements of

which are

Zn+1(jM + i) = V n+1
1i,j

, with i = 0, . . . ,M − 1 and j = 0, . . . ,M. (5.102)

• Bn is a vector of M(M + 1) elements, the values of which are

Bn(jM + i) = α1g
n
i,j + V n

1i,j
, with i = 0, . . . ,M − 1 and j = 0, . . . ,M. (5.103)

• A(Zn+1) is an M(M+1)×M(M+1) sparse matrix that contains the coefficients

of terms V n+1
1i,j

from equation (5.99).

Just like we did in Section 5.2.2, as it is necessary to solve the non-linear system of

equations, we propose to apply a Newton method that involves the solution of a linear

system at each Newton iteration. In order to precise the use of the Newton method,

matrix A(Zn+1) can be decomposed as the sum of two matrices, i.e.,

A(Zn+1) = Anc + Anc(Z
n+1), (5.104)

where Anc contains the coefficients of the system of equations (5.101) that are indepen-

dent of V1 and Anc(Z
n+1) contains only the non-linear part of the equation. Newton

method requires to calculate the Jacobian matrix of the function F in (5.101), JF(Y)

which takes the form of

JF(Y) = Anc + JAnc(Y), (5.105)
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where, JAnc(Y) is the Jacobian matrix related to Anc(Z
n+1). Matrix Anc is sparse and

has a certain block structure, whereas Anc(Z
n+1) and JAnc(Y) are diagonal matrices.

More precisely, these matrices are described in next paragraphs. First of all, matrix

Anc is

Anc =



β1 κ1
0 0 . . .

κ2
1 β0

1 κ1
1 0 . . .

. . . . . . . . . . . .

. . . κ2
j β0

j κ1
j . . .

. . . . . . . . .

. . . 0 κ2
M−1 β0

M−1 κ1
M−1

. . . 0 κ2
M β2


, (5.106)

with M + 1 blocks of size M ×M , that can be described as

• κ1
j a diagonal matrix, for j = 0, . . . ,M − 1, where

κ1
j = diag(−α1P

+
Yi,j

)M−1
i=0 .

• κ2
j a diagonal matrix, for j = 1, . . . ,M , where

κ2
j = diag(α1P

−
Yi,j

)M−1
i=0 .

• β0
j a sparse matrix, for j = 1, . . . ,M − 1, in the form:

β0
j =



δn+1
0,j −α1P

+
X0,j

0 . . . α1P
−
X0,j

α1P
−
X1,j

δn+1
1,j −α1P

+
X1,j

0 . . .
. . . . . . . . . . . .

. . . α1P
−
Xi,j

δn+1
i,j −α1P

+
Xi,j

. . .
. . . . . . . . .

. . . 0 α1P
−
XM−2,j

δn+1
M−2,j −α1P

+
XM−2,j

−α1P
+
XM−1,j

. . . 0 α1P
−
XM−1,j

δn+1
M−1,j


.

(5.107)
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• β1 a sparse matrix in the form

β1 =



β1
0 −α1P

+
X0,0

0 . . . α1P
−
X0,0

α1P
−
X1,0

β1
1 −α1P

+
X1,0

0 . . .
. . . . . . . . . . . .

. . . α1P
−
X0,i

β1
i −α1P

+
X0,i

. . .
. . . . . . . . .

. . . 0 α1P
−
XM−2,0

β1
M−2 −α1P

+
XM−2,0

−α1P
+
XM−1,0

. . . 0 α1P
−
XM−1,0

β1
M−1


,

(5.108)

where

β1
i = δn+1

0,i + α1P
−
Y0,i
, i = 0, . . . ,M − 1.

• β2 a sparse matrix in the form:

β2 =



β2
0 −α1P

+
X0,M

0 . . . α1P
−
X0,M

α1P
−
X1,M

β2
1 −α1P

+
X1,M

0 . . .

. . .
. . .

. . .
. . .

. . . α1P
−
XM,i

β2
i −α1P

+
XM,i

. . .

. . .
. . .

. . .

. . . 0 α1P
−
XM−2,M

β2
M−2 −α1P

+
XM−2,M

−α1P
+
XM−1,M

. . . 0 α1P
−
XM−1,M

β2
M−1


,

(5.109)

where

β2
i = δn+1

M,i − α1P
+
YM,i

, i = 0, . . . ,M − 1.

Secondly, the diagonal matrix Anc(Z
n+1) is

Anc(Z
n+1)(jM+1) = α1∆XV n

1i,j
θn+1
i,j , (5.110)
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for i = 0, . . . ,M − 1 and j = 0, . . . ,M , whereas the Jacobian of Anc, JAnc(Y), is

JAnc(Y)(jM+1) = 2α1∆XYi,jθ
n+1
i,j , (5.111)

with i = 0, . . . ,M − 1 and j = 0, . . . ,M.

Finally, in order to set the resulting system to be solved with LU factorisation, we

impose (5.100) to all nodes in Ω
τn+1

2 .

5.5.4 Numerical discretisation of the active biomass equation

in the second model

As in the Alpkvist model, at each time iteration we must advance one time step in the

active biomass equation. However, in the second model, the nutrients consumption

and active biomass growth mechanisms are changed using the knowledge gained

from the experimental validation of the 1-D models. The original Monod-like terms

present in (4.9) are substituted with linear terms, as can be observed in (4.43). The

decay mechanism is also changed, thus being a function depending on the mean

concentration of inactive biomass. In order to decrease the difficulty of the problem,

instead of considering the mean inactive biomass of the current iteration, we use the

mean inactive biomass from the previous iteration. However, this does not affect to

the precision of the numerical results obtained as the biomass evolution dynamics

are slow enough.

At time step n+ 1, corresponding to time τn+1 = ∆τ(n+ 1), we need to compute the

values V n+1
1 , the approximation of the active biomass at the mesh nodes. For this

purpose, by applying a Crank-Nicolson scheme to equation (4.49), we obtain

V n+1
1 − V n

1

∆τ
=

1

2

[
∇Pn+1 · ∇V n+1

1 + V n+1
1

(
Ψ̂Sn+1 − (FD(V n

2 ) + ε2)− V n+1
1

(
Ψ̂Sn+1 −FD(V n

2 )
))]

+
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+
1

2

[
∇Pn · ∇V n

1 + V n
1

(
Ψ̂Sn − (FD(V n

2 ) + ε2)− V n
1

(
Ψ̂Sn −FD(V n

2 )
))]

, in Ω
τn+1

1 ,

(5.112)

where

FD(V n
2 ) =

1

1 + exp(Kd(Dmin −mean(V n
2 )))

.

In order to establish a linear system involving the value of the biomass at all mesh

nodes, we extend the value V1 ≡ 0 on the boundary Γ
τn+1

0 to the set Ω
τn+1

2 . Therefore,

we add the following equation

V n+1
1 = 0, in Ω

τn+1

2 . (5.113)

As mentioned in Section 5.1 the active biomass equation is the next-to-last to be

solved at every iteration. This fact still holds in the second model and, therefore,

P n, P n+1, Sn, Sn+1 and V n
1 are all known values. We have also established that we

are using V n
2 to compute the value mean(V n

2 ), so this is also a known value. In

order to compute ∇P n+1,∇P n and ∇V n
1 we use the methods explained in Sections

5.5.1 and 5.5.2. Finally, in order to discretise ∇V n+1
1 we use an upwind strategy, so

equation (5.112) results in:

V n+1
1i,j
− 1

2
∆τ

[
max(Pn+1

X , 0)
V n+1

1i+1,j
− V n+1

1i,j

∆X
+ min(Pn+1

X , 0)
V n+1

1i,j
− V n+1

1i−1,j

∆X
+

max(Pn+1
Y , 0)

V n+1
1i,j+1

− V n+1
1i,j

∆Y
+ min(Pn+1

Y , 0)
V n+1

1i,j
− V n+1

1i,j−1

∆Y
+

V n+1
1i,j

(
Ψ̂Sn+1

i,j − (FD(V n
2 ) + ε2)

)
− (V n+1

1i,j
)2
(

Ψ̂Sn+1
i,j −FD(V n

2 )
)]
−

1

2
∆τ
[
∇Pni,j · ∇V n

1i,j + V n
1i,j

(
Ψ̂Sni,j − (FD(V n

2 ) + ε2)
)
−

(V n
1i,j )

2
(

Ψ̂Sni,j −FD(V n
2 )
)]
− V n

1i,j = 0, if ℵn+1
i,j = 1, (5.114)

whereas, equation (5.113) becomes

V n+1
1i,j

= 0, if ℵn+1
i,j = 0, (5.115)

for i = 0, . . . ,M − 1, j = 0, . . . ,M . For the purpose of clarity, we use the notation
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defined in (5.92)-(5.98) with the following modifications to (5.95) and (5.96):

θki,j ≡ θ(Ski,j) = Ψ̂Ski,j −FD(V n
2 ), with k = n, n+ 1, (5.116)

σki,j ≡ σ(Ski,j) = Ψ̂Ski,j −FD(V n
2 )− ε2, with k = n, n+ 1, (5.117)

Then, the system of equations (5.114) and (5.115) can be written in equivalent form

−α1P
+
Xi,j

V n+1
1i+1,j

− α1P
+
Yi,j
V n+1

1i,j+1
+ δn+1

i,j V n+1
1i,j

+

α1∆X(V n
1i,j

)2θn+1
i,j + α1P

−
Xi,j

V n+1
1i−1,j

+ α1P
−
Yi,j
V n+1

1i,j−1
−

α1g
n
i,j − V n

1i,j
= 0, if ℵn+1

i,j = 1, (5.118)

V n+1
1i,j

= 0, if ℵn+1
i,j = 0, (5.119)

for i = 0, . . . ,M − 1, j = 0, . . . ,M . It can be noted that the system of equations

(5.114) and (5.115) holds a similar structure as the system of equations (5.99) and

(5.115). Therefore, from here onward, we follow the same procedure as described

for the Alpkvist model, obtaining a non-linear system of equations, which is solved

through a Newton method. For further details see Subsection 5.5.3.

5.6 Inactive biomass equation

The last step in the numerical strategy is to calculate the inactive biomass, which is

governed by equation (4.34) in the Alpkvist model, and equation (4.50) in the second

model. The inactive biomass equation is solved in the domain Ω
τn+1

1 , bounded by ΓL,

ΓR, ΓB and Γ
τn+1

0 .

As in the active biomass, equations (4.34) and (4.50) are also advection equations.

However, in this case we do not need to deal with a non-linearity, thus the Newton

method is not required. Apart from this particularity, we followed the same strategy as

with the active biomass, applying a Crank-Nicolson scheme for time discretisation and

an upwinding techniques for the spatial discretisation. The explicit part of the Crank-

Nicolson scheme also involves computing the gradient of the pressure and inactive
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biomass from the previous step which is achieved by using a WENO scheme in the

inner parts of the domain, whereas near the boundaries, the gradient is computed as

explained in Section 5.5.2.

5.6.1 Numerical discretisation of the inactive biomass

equation in the Alpkvist model

At each iteration we must advance one time step in the inactive biomass equation.

More precisely, at step n + 1, corresponding to time τn+1 = ∆τ(n + 1), we need to

compute the values V n+1
2 , the approximations of the active biomass at mesh nodes.

In order to do so, first we apply a Crank-Nicolson scheme for time discretisation, so

that equation (4.34) is approximated by

V n+1
2 − V n

2

∆τ
=

1

2

[
∇P n+1 · ∇V n+1

2 + V n+1
1 ε2 − V n+1

2

(
V n+1

1

ΨSn+1

K + Sn+1
− V n+1

1 ε1

)]
+

1

2

[
∇P n · ∇V n

2 + V n
1 ε2 − V n

2

(
V n

1

ΨSn

K + Sn
− V n

1 ε1

)]
, in Ω

τn+1

1 . (5.120)

In order to establish a linear system involving the value of the inactive biomass at

all mesh nodes, we extend the value V2 ≡ 0 on the boundary Γ
τn+1

0 to the set Ω
τn+1

2 .

Therefore, we add the following equation

V n+1
2 = 0, in Ω

τn+1

2 . (5.121)

As explained in Section 5.1, inactive biomass equation is the last to be solved at every

iteration. Therefore, P n, P n+1, V n
1 , V

n+1
1 , Sn, Sn+1 and V n

2 are all known values. Thus,

in order to compute ∇P n+1,∇P n and ∇V n
2 we use the methods explained in Sections

5.5.1 and 5.5.2. Finally, in order to discretise ∇V n+1
2 we use an upwind strategy.
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Therefore, equation (5.120) results in:

V n+1
2i,j
− 1

2
∆τ

[
max(Pn+1

X , 0)
V n+1

2i+1,j
− V n+1

2i,j

∆X
+

min(Pn+1
X , 0)

V n+1
2i,j
− V n+1

2i−1,j

∆X
+ max(Pn+1

Y , 0)
V n+1

2i,j+1
− V n+1

2i,j

∆Y
+

min(Pn+1
Y , 0)

V n+1
2i,j
− V n+1

2i,j−1

∆Y
+ V n+1

1i,j
ε2 − V n+1

2i,j
V n+1

1i,j

(
ΨSn+1

i,j

K + Sn+1
i,j

− ε1

)]
−

1

2
∆τ

[
∇Pni,j · ∇V n

2i,j + V n
1i,j ε2 − V

n
2i,jV

n
1i,j

(
ΨSni,j

K + Sni,j
− ε1

)]
− V n

2i,j = 0, if ℵn+1
i,j = 1,

(5.122)

whereas, equation (5.121) becomes

V n+1
2i,j

= 0, if ℵn+1
i,j = 0, (5.123)

for i = 0, . . . ,M − 1, j = 0, . . . ,M . For the purpose of clarity, we use the notation

defined in (5.92)-(5.98) with the following modifications to (5.97) and (5.98):

gni,j ≡ g(P n
i,j, V

n
1i,j
, V n

2i,j
) = ∇P n

i,j · ∇V n
2i,j

+ V n
1i,j
ε2 − V n

2i,j
V n

1i,j
θni,j, (5.124)

δn+1
i,j = 1 + α1P

+
Xi,j
− α1P

−
Xi,j

+ α1P
+
Yi,j
− α1P

−
Yi,j

+ α1∆XV n+1
1i,j

θn+1
i,j . (5.125)

Then, the system of equations (5.122) and (5.123) can be written in equivalent form

−α1P
+
Xi,j

V n+1
2i+1,j

− α1P
+
Yi,j

V n+1
2i,j+1

+ δn+1
i,j V n+1

2i,j
+

α1P
−
Xi,j

V n+1
2i−1,j

+ α1P
−
Yi,j

V n+1
2i,j−1

− α1g
n
i,j − α1∆XV n+1

1i,j
ε2 − V n

2i,j = 0, if ℵn+1
i,j = 1, (5.126)

V n+1
2i,j

= 0, if ℵn+1
i,j = 0, (5.127)

for i = 0, . . . ,M − 1, j = 0, . . . ,M .

For the sake of simplicity, we first write the linear system corresponding to the case

where all nodes belong to Ω
τn+1

1 . Then, at those nodes belonging Ω
τn+1

2 condition

(5.127) is imposed, thus removing the corresponding linear equations from the system.
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The linear system (5.126) is written in compact form as

AnZn+1 = Bn, (5.128)

where

• Zn+1 is the vector of unknowns at iteration n+1, the M(M + 1) elements of

which are

Zn+1(jM + i) = V n+1
2i,j

, for i = 0, . . . ,M − 1 and j = 0, . . . ,M. (5.129)

• Bn is the independent term of the linear system, a vector of M(M+1) elements,

the values of which are

B(jM + i) = α1g
n
i,j + α1V

n+1
1i,j

ε2 + V n
2i,j
, (5.130)

with i = 0, . . . ,M − 1 and j = 0, . . . ,M.

• An is an M(M + 1)×M(M + 1) sparse matrix with certain block structure. It

contains the coefficients of terms V n+1
2i,j

from equation (5.126). Described block

by block, matrix An takes the form

An =



β1 κ1
0 0 . . .

κ2
1 β0

1 κ1
1 0 . . .

. . . . . . . . . . . .

. . . κ2
j β0

j κ1
j . . .

. . . . . . . . .

. . . 0 κ2
M−1 β0

M−1 κ1
M−1

. . . 0 κ2
M β2


, (5.131)

There are M + 1 blocks, each one of size M ×M , that can be described as

– κ1
j a diagonal matrix, for j = 0, . . . ,M − 1, where

κ1
j = diag(−α1P

+
Yi,j

)M−1
i=0 .
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– κ2
j a diagonal matrix, for j = 1, . . . ,M , where

κ2
j = diag(α1P

−
Yi,j

)M−1
i=0 .

– β0
j a sparse matrix, for j = 1, . . . ,M − 1, taking the form:

β0
j =



δn+1
0,j −α1P

+
X0,j

0 . . . α1P
−
X0,j

α1P
−
X1,j

δn+1
1,j −α1P

+
X1,j

0 . . .

. . .
. . .

. . .
. . .

. . . α1P
−
Xi,j

δn+1
i,j −α1P

+
Xi,j

. . .

. . .
. . .

. . .

. . . 0 α1P
−
XM−2,j

δn+1
M−2,j −α1P

+
XM−2,j

−α1P
+
XM−1,j

. . . 0 α1P
−
XM−1,j

δn+1
M−1,j


,

(5.132)

– β1 a sparse matrix that takes the form:

β1 =



β1
0 −α1P

+
X0,0

0 . . . α1P
−
X0,0

α1P
−
X1,0

β1
1 −α1P

+
X1,0

0 . . .

. . .
. . .

. . .
. . .

. . . α1P
−
X0,i

β1
i −α1P

+
X0,i

. . .

. . .
. . .

. . .

. . . 0 α1P
−
XM−2,0

β1
M−2 −α1P

+
XM−2,0

−α1P
+
XM−1,0

. . . 0 α1P
−
XM−1,0

β1
M−1


,

(5.133)

where

β1
i = δn+1

0,i + α1P
−
Y0,i
, i = 0, . . . ,M − 1.

– β2 a sparse matrix that takes the form
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β2 =



β2
0 −α1P

+
X0,M

0 . . . α1P
−
X0,M

α1P
−
X1,M

β2
1 −α1P

+
X1,M

0 . . .

. . .
. . .

. . .
. . .

. . . α1P
−
XM,i

β2
i −α1P

+
XM,i

. . .

. . .
. . .

. . .

. . . 0 α1P
−
XM−2,M

β2
M−2 −α1P

+
XM−2,M

−α1P
+
XM−1,M

. . . 0 α1P
−
XM−1,M

β2
M−1


,

(5.134)

where

β2
i = δn+1

M,i − α1P
+
YM,i

, i = 0, . . . ,M − 1.

Finally, in order to set the resulting system to be solved with LU factorisation, we

impose (5.127) to all nodes in Ω
τn+1

2 .

5.6.2 Numerical discretisation of the inactive biomass equa-

tion in the second model

As in the Alpkvist model, at each time iteration we must advance one time step in

the active biomass equation. The modification of the nutrients consumption and the

decay mechanism presented in Section 4.3 also affects the inactive biomass equation.

This fact, however, does not alter the numerical strategy followed to solve the inac-

tive biomass equation. Therefore, proceeding as in subsection 5.6.1, at step n + 1,

corresponding to time τn+1 = ∆τ(n + 1), we need to compute the values V n+1
2 , the

approximation of the inactive biomass at the mesh nodes. In order to do so, by
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applying a Crank-Nicolson scheme for time discretisation to (4.50), we obtain

V n+1
2 − V n

2

∆τ
=

1

2

[
∇P n+1 · ∇V n+1

2 + V n+1
1 ε2 − V n+1

2

(
V n+1

1 Ψ̂Sn+1 − V n+1
1 FD(V n

2 )
)]

+

1

2

[
∇P n · ∇V n

2 + V n
1 ε2 − V n

2

(
V n

1 Ψ̂Sn − V n
1 FD(V n

2 )
)]
, in Ω

τn+1

1 , (5.135)

where

FD(V n
2 ) =

1

1 + exp(Kd(Dmin −mean(V n
2 )))

.

In order to establish a linear system involving the value of the biomass at all mesh

nodes, we extend the value V2 ≡ 0 on the boundary Γ
τn+1

0 to the set Ω
τn+1

2 . Therefore,

we add the following equation

V n+1
2 = 0, in Ω

τn+1

2 . (5.136)

As explained in Section 5.1, the inactive biomass equation is the last to be solved

at every iteration. Therefore, P n, P n+1, V n
1 , V

n+1
1 , Sn, Sn+1 and V n

2 are all known

values. In order to decrease the difficulty of the problem, instead of considering the

mean inactive biomass of the current iteration, we will use the mean inactive biomass

from the previous iteration. Therefore mean(V n
2 ) is also a known value. For the

computation of ∇P n+1,∇P n and ∇V n
2 we use the methods explained in Sections

5.5.1 and 5.5.2. Finally, in order to discretise ∇V n+1
2 we use an upwind strategy. The

discretisation of (5.135) results in:

V n+1
2i,j
− 1

2
∆τ

[
max(Pn+1

X , 0)
V n+1

2i+1,j
− V n+1

2i,j

∆X
+

min(Pn+1
X , 0)

V n+1
2i,j
− V n+1

2i−1,j

∆X
+ max(Pn+1

Y , 0)
V n+1

2i,j+1
− V n+1

2i,j

∆Y
+

min(Pn+1
Y , 0)

V n+1
2i,j
− V n+1

2i,j−1

∆Y
+ V n+1

1i,j
ε2 − V n+1

2i,j
V n+1

1i,j

(
Ψ̂Sn+1

i,j −FD(V n
2 )
)]
−

1

2
∆τ
[
∇Pni,j · ∇V n

2i,j + V n
1i,j ε2 − V

n
2i,jV

n
1i,j

(
Ψ̂Sni,j −FD(V n

2 )
)]
− V n

2i,j =0, if ℵn+1
i,j = 1,

(5.137)
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whereas, equation (5.136) becomes

V n+1
2i,j

= 0, if ℵn+1
i,j = 0. (5.138)

for i = 0, . . . ,M − 1, j = 0, . . . ,M . For the purpose of clarity, we use the notation

defined in (5.92)-(5.94), (5.124) and (5.125) with the following modification to (5.95):

θki,j ≡ θ(Ski,j) = Ψ̂Ski,j −FD(V n
2 ), with k = n, n+ 1. (5.139)

Then, the system of equations (5.137) and (5.138) can be written in equivalent form:

−α1P
+
Xi,j

V n+1
2i+1,j

− α1P
+
Yi,j

V n+1
2i,j+1

+ δn+1
i,j V n+1

2i,j
+

α1P
−
Xi,j

V n+1
2i−1,j

+ α1P
−
Yi,j

V n+1
2i,j−1

− α1g
n
i,j − α1∆XV n+1

1i,j
ε2 − V n

2i,j = 0, if ℵn+1
i,j = 1 (5.140)

V n+1
2i,j

= 0, if ℵn+1
i,j = 0. (5.141)

for i = 0, . . . ,M − 1, j = 0, . . . ,M . It can be noted that equation (5.140) holds

a similar structure as equation (5.126). Therefore, from here onward, we follow the

same procedure as described for the Alpkvist model, thus obtaining a linear system

of equations. For further details see subsection 5.6.1.
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Chapter 6

Biological validation of the 2D

models

This chapter focuses on the validation of the 2D models in the qualitative description

of bacterial biofilms. First, the developed numerical methods will be tested using the

Alpkvist model to predict mushroom-shaped biofilms. Later the second model will

be used to describe various biofilms formed by L. monocytogenes strains.

6.1 Validation of the numerical methods

Many bacterial species, such as the largely studied Pseudomonas aeruginosa,

form mushroom-shaped structures. Biofilms are composed of mushroom-shaped

microcolonies, in which cells are embedded in the exopolymeric matrix (EPS), and

channels separate the microcolonies.

The beauty and complexity of the mushroom-shaped biofilms led to the development

of sophisticated mathematical models and numerical approaches intended to find the

biological mechanisms underlying their formation. In fact, the case of mushroom-

shaped biofilms is typically used as a benchmark for the validation of biofilm models

(see, for example, [1, 2, 25, 27, 76] to name a few).
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The model considered here, based on the Alpkvist model (Section 4.2), consists of

two species, regarded as active and inert biomass. Active biomass corresponds to

viable bacteria while inert biomass corresponds to a mixture of dead or damaged

cells plus EPS. Active biomass has a single nutrient at disposal.

Model parameters, presented in Table 6.1, were taken from the literature ([1, 74,

79]). Initial conditions are defined to simulate the presence of two interconnected

microcolonies, often called stalks, as typically found at the initial times in mushroom-

type bacterial biofilms. Initially, there is no inert biomass. These initial conditions

are formulated as follows:

Γ0
0 = {(X, Y ) ∈ Ω/Y = 0.2 + 0.05 sin(4πX)}, (6.1)

Ω0
1 = {(X, Y ) ∈ Ω/Y < 0.2 + 0.05 sin(4πX)}, (6.2)

V1(X, Y, 0) = 1, V2(X, Y, 0) = 0, in Ω0
1. (6.3)

Parameter Value Unit
L,H 3×10−4 m
Hb 0.125H m

ρ 60 kg/m3

D 2×10−9 m2/s
Y 0.1 -
µ 1×10−5 s−1

Ks 1×10−5 kg/m3

kd 2×10−6 s−1

ki 1×10−6 s−1

tD 86400 s

s∗ 4×10−3 kg/m3

Table 6.1: Parameters values used in the Alpkvist model

Figure 6.1 presents the evolution of the biofilm structure for the given conditions

and parameters. Results illustrate the formation of mushrooms. Mushrooms grow

154



Chapter 6. Biological validation of the 2D models 6.2. Validation of the second 2D model

in height with time, while the presence of damaged cells increases. Inert biomass

appears in the deeper parts of the mushrooms. Mushroom-type structures have

been linked to sequential processes involving motile and non-motile bacteria or to a

limited substrate regime (see for instance, [35, 52, 81]).

The use of the level set method guarantees the robustness and good behaviour of

the numerical resolution. Figure 6.2 shows the evolution of the level sets in the

Alpkvist model. It can be seen how the extended velocity keeps the function as a

signed distance at every moment. The correct resolution of the level set equation is

fundamental to obtain the appropriate solving domains at each time step which, in

turn, gives rise to the correct resolution of the problem.

Finally, Figure 6.3 shows the evolution of nutrients and pressure. The growth of the

expansive pressure narrows the biofilm in the inner layer, whereas widens the biofilm

in the most external parts. The lack of nutrients in the inner parts, due to their fully

consumption, contributes to the inactivation of the cells, while at the top layers the

nutrients availability allows the growth of the biofilm.

6.2 Validation of the second 2D model

Several recent works considered the spatial characterisation of L. monocytogenes

biofilms at particular given times using microscopy and image analysis. In their

work, Rieu et al. [82] presented a comparison of biovolume and mean thickness

for L. monocytogenes biofilms under batch and flow conditions using CLSM and

PHLIP. Bridier et al. [12] quantified maximum thickness, biovolume and roughness

using PHLIP for biofilms formed by 10 L. monocytogenes strains at 24 h. Similarly

Guilbaud et al. [37] studied the structural diversity of biofilms formed by 96 L.

monocytogenes strains at 48 h using also mean thickness, biovolume and roughness.

Mosquera et al. [66] considered the dynamics of the structure of different strains

155



6.2. Validation of the second 2D model Chapter 6. Biological validation of the 2D models

throughout their life cycle.

These works will be the basis for the proposed model qualitative model validation.

6.2.1 Flat L. monocytogenes biofilms

As already discussed in previous chapters, visual inspection of the biofilms formed by

the L. monocytogenes strain L1A1 (see Figure 3.1) reveals thick almost flat biofilms.

The images at earlier times show the presence of small clusters, which eventually

joined to each other in a honeycomb pattern. Later this pattern disappears to form

an unstructured flat mass.

L1A1 is not the only strain in forming flat structures. Guilbaud et al. [37] observed

that L. monocytogenes strains without flagellum developed flat structures at 48 h.

Some examples include CIP 82110 (avirulent type strain from rabbit), LM 6298

(from soil) or H6 (from a healthy 30-year-old woman) strains. Pilchová et al. [78]

studied structures at 1, 3 and 6 days and suggested that the EGD-e strain isolated

from listeriosis outbreaks could skip the honeycomb-like pattern during the life cycle,

evolving to flat structures.

Model parameters are adapted to the L. monocytogenes species taking into account

model calibration results obtained in Chapter 3. Parameter values are presented in

Table 6.2.

As a first approximation we solve the 2D multi-species Alpkvist model by modifying

the parameters accordingly to the best set obtained with the 1D M3 model. Figure

6.4 shows the results achieved. Remarkably the model predicts a flat biofilm.

However, the dynamics are unrealisticaly fast both for nutrients consumption and

biofilm growth.
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Parameter Value Unit
L,H 3×10−4 m
Hb 0.125H m

ρ 17 kg/m3

D 2.568×10−12 m2/s
Y 0.98 -
µ Case dependent s−1

Kd 311.5 -
Dmin 5.21×10−2 -
ki Case dependent s−1

tD 86400 s

s∗ 2.74 kg/m3

Table 6.2: Parameters values used in the simulations of M2 for L. monocytogenes
strains

We now consider the modified 2D multi-species model M2. Since the modified Eberl

Model 3 led to conclude that a significant concentration of inert biomass was required

for L1A1 to form flat biofilms, ki was selected to be one order of magnitude higher

than the reference used in the simulation of the Alpkvist model (ki = 10−5s−1). The

growth rate was chosen to be µ = 4.25 × 10−5s−1 a standard value for L. monocy-

togenes species. As for the initial conditions, two joint microcolonies were considered.

In an initial attempt, the local concentration of inert biomass was used as a reference

for detachment. The results obtained reproduced the initial growth stages of the

biofilm accurately. However, when the inactive biomass exceeded the threshold for

detachment, an instantaneous massive detachment was produced in the deeper layers

of the biofilm. This effect resulted not only on unrealistic results but in numerical

instabilities. The detachment mechanism was reformulated to consider the mean

inert biomass as for the modified Eberl model 3. In this way, the detachment process

starts when there is a given mean inert biomass in the biofilm and cells detach in all

areas of the biofilm.
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Figure 6.5 shows how model 2 rapidly evolves to a dense flat biofilm. The dynamics

observed are much slower than the predicted by the 2D multi-species Alpkvist model.

Also the maximum height achieved is in good agreement with the observed experi-

mentaly. Inert biomass appears stratified in the biofilm with higher concentrations

in deeper layers as typically observed experimentally (Mosquera et al. [66]). At later

stages, inert biomass is abundant and can be readily observed on the surface of the

biofilm forming low-density layers with scattered higher concentration spots. These

profiles can be directly compared to those depicted for L1A1 in Chapter 3 and CIP

82110, LM6298 or H6 in Guilbaud et al. [37].

6.2.2 Clustered and honeycomb L. monocytogenes biofilms

Bridier et al. [12] observed that several L. monocytogenes strains produced rough

biofilms containing several small clusters of variable thickness in static cultures at

24h. Mosquera et al. [66] also reported the presence of clusters at early stages of

biofilm formation for the strains CECT 4032 and CECT 5873. At later stages, these

clusters may join to each other and form honey-comb patterns with small channels

or even voids such as those observed by Guilbaud et al. [37], Picholva et al. [78] or

Mosquera et al. [66].

Figure 6.6 presents the CLSM reconstructions at different times for the strain

CECT5873. The figures illustrate the presence of multiple microcolonies or small

clusters at the initial time. Those clusters evolve to form larger clusters which

eventually disappear to form an unstructured flatter biofilm once the amount of inert

biomass is substantial.

To test the capacity of the second model to describe both types of structures, values

for growth and inactivation rates as well as the initial conditions were modified.

Figure 6.7 presents a case in which two joint microcolonies evolve into thicker
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clusters which are separated by channels. For this simulation µ = 8.5× 10−3s−1 and

ki = 8.85 × 10−8 were used. Remark that growth rate is two orders of magnitude

larger than the one used in the previous example while the inactivation rate is

significantly lower.

Results reveal that the larger growth rate contributed to forming thick clusters while

the lower inactivation rate contributed to slowing down the detachment. As an

overall effect, dense clusters are observed in which channels are formed due to the

slow superficial detachment. Again inert biomass tends to accumulate inside the

clusters, as it can also be seen in the CLSM reconstructions (Figure 6.6).

Figure 6.8 presents the formation of honeycomb structures with hollow voids. The

hypothesis is that initially separated microcolonies may eventually join each other

while leaving channels or voids in deeper layers. To simulate for this scenario the

following initial conditions were selected:

Γ0
0 = Γ0

0,a ∪ Γ0
0,b, (6.4)

Γ0
0,a = {(X, Y ) ∈ Ω/X < 0.5, Y = −0.3565 + 0.6065 ∗ sin(2πX)}, (6.5)

Γ0
0,b = {(X, Y ) ∈ Ω/X >= 0.5, Y = −0.3565 + 0.6065 ∗ sin(2π(X − 0.5))}, (6.6)

Ω0
0 = Ω0

0,a ∪ Ω0
0,b, (6.7)

Ω0
0,a = {(X, Y ) ∈ Ω/X < 0.5, Y < −0.3565 + 0.6065 ∗ sin(2πX)}, (6.8)

Ω0
0,b = {(X, Y ) ∈ Ω/X >= 0.5, Y < −0.3565 + 0.6065 ∗ sin(2π(X − 0.5))}, (6.9)

that would correspond to two separated microcolonies. Again only the growth and

the inactivation rates were modified: µ = 8.5× 10−4s−1 and ki = 10−6.

Figure 6.8 presents the results showing how the microcolonies rapidly evolve to large

clusters which eventually connect to each other while showing void channels in the

deeper layers of the biofilms.
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All in all, results show that the proposed 2D multi-species model M2 is able to

qualitatively predict the interstain variability found in L. monocytogenes biofilms.

Initial attachment (initial conditions), and detachment rate (which relates to inactive

biomass), condition the development of flat, clustered or honeycomb type structures.
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Figure 6.1: Numerical results obtained for the Alpkvist model. In the left
column the active biomass concentration is shown, whereas the right corresponds to
the inert biomass concentration. Figures (1) correspond to the initial conditions and
(2), (3) and (4) correspond to the biofilm structure at 3.2 days, 9.6 days and 16 days,
respectively.
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Figure 6.2: Level set function evolution for the Alpkvist model. Frame (1)
corresponds to the initial conditions and (2), (3) and (4) correspond to the level set
function at 3.2, 9.6 days and 16 days, respectively.
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Figure 6.3: Pressure and nutrients obtained for the Alpkvist model. In the
left column the pressure concentration is shown, whereas the right corresponds to the
nutrients concentration. Figures (1), (2) and (3) correspond to the results obtained
at 3.2 days, 9.6 days and 16 days, respectively.
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Figure 6.4: Flat biofilms as predicted by the Alpkvist model. Active biomass
dynamic is shown in the left column, while the right column shows the dynamic of
inert biomass. Figures (1) present the initial conditions, (2) and (3) present biomass
at 5.76h and 9.6h, respectively.
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Figure 6.5: Flat biofilms as predicted by the second model. Active biomass
dynamic is shown in the left column, while the right column shows the dynamic of
inert biomass. (1) Present the initial conditions, (2) and (3) present biomass at 5.76h
and 9.6h, respectively.
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Figure 6.6: Dynamics of CECT 5873 strain L. monocytogenes biofilms during the
growth phase of the life cycle as obtained by CLSM and image reconstruction.
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Figure 6.7: Simulation of clustered biofilms as obtained by the second
model. In the left column the active biomass concentration is shown, whereas the
right corresponds to the inactive biomass concentration. The instants shown are (1)
initial situation, (2) 5.76h, (3) 9.6h.
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Figure 6.8: Honeycomb structures as obtained by the second model. In the
left column the active biomass concentration is shown, whereas the right corresponds
to the inactive biomass concentration. The instants shown are (1) initial situation,
(2) 5.76h, (3) 9.6h.
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Appendix A

Mathematical analysis of the Eberl

model

In this appendix we summarise some results on the mathematical analysis that

appear in the recent work [28]. This work is a comprehensive mathematical study of

the Eberl Model (1.11)-(1.12) that basically presents a complete set of demonstrations

validating the existence and uniqueness of solution for various types of boundary

condition, as well as some qualitative properties related to the solution.

Following the procedures of Efendiev, Eberl and Zelik [28], we have the following

model in a bounded spatial domain Ω ⊂ Rn with piecewise regular boundary Γ = ∂Ω,

where n ≥ 1:



∂tC = d1∆xC −K1
CM

K2 + C
, in Ω,

∂tM = d2∇x ·
(

M b

(1−M)a
∇xM

)
−K4M +K3

CM

K2 + C
, in Ω,

C = 1, M = 0, in ∂Ω,

C = C0, M = M0, in t = 0,

(A.1)
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where ∆x denotes the spatial laplacian x = (x1, . . . , xn), ∇x represents the

gradient/divergence operator, C(t, x) is the nutrients concentration and M(t, x) is

the biomass density at point x in time t. In Table A.1 are listed the rest of the

problem data:

Data Desecription

d1 > 0 Nutrients diffusion coefficient

d2 > 0 Biomass diffusion coefficient

K1 ≥ 0 Maximum specific consumption rate

K2 > 0 Monod half saturation constant (relative to C0)

K3 ≥ 0 Maximum specific growth rate

K4 ≥ 0 Biomass decay rate

a Biomass spreading parameter

b Biomass spreading parameter

Table A.1: Parameters involved in (A.1)

Nutrients evolution equation is a semi-linear standard reaction-diffusion equation. In

can be noted that the diffusion coefficient in the biomass equation is zero in absence

of biomass and presents a singularity when biomass reaches M = 1. Both equations

are coupled through the Monod Term, thus having a degenerate equations system.

In [28] an auxiliary non-degenerate system is introduced. The system depends on a

parameter but the estimations obtained are independent of said parameter. Through

that result, existence and uniqueness of the problem solution are obtained, under

certain hypothesis on the initial conditions. Besides, certain qualitative properties

related to stability are obtained.

It is worth noticing that the unknowns of (A.1) are non-dimensional magnitudes: C

scaled with respect to the nutrients concentration in the liquid region and M with
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respect to the maximum biomass density.

The following a priori hypothesis on the initial data (C0,M0) are required to obtain

the results:

C0,M0 ∈ L∞(Ω), 0 ≤ C0(x) ≤ 1, 0 ≤M0(x) ≤ 1, x ∈ Ω, (A.2)

and we look for solutions (C,M) to problem (A.1) verifying the following conditions,

according to the expected model properties:

C(t),M(t) ∈ L∞(Ω), 0 ≤ C(t, x) ≤ 1, 0 ≤M(t, x) ≤ 1, (A.3)

where (C(t),M(t)) = (C(t, .),M(t, .)). For the sake of simplicity, let us define the set

of acceptable initial conditions:

V :=
{

(C0,M0) ∈ L1(Ω)× L1(Ω) : (C0,M0) satisfies (A.2)
}
,

and a set of more regular initial conditions based on the following hypothesis:
C0 ∈ L∞(Ω) ∩H1(Ω), 0 ≤ C0(x) ≤ 1, C0|∂Ω

= 1,

M0 ∈ L∞(Ω), F (M0) ∈ H1
0 (Ω),

M0 ≥ 0, ||M0||L∞(Ω) < 1,

(A.4)

with

F (u) :=

∫ u

0

vb

(1− v)a
dv, 0 ≤ u < 1.

In particular, let us consider the set:

Vsmooth := {(C0,M0) ∈ L∞(Ω)× L∞(Ω) : (C0,M0) satisfies (A.4) } .

It can be shown that V = [Vsmooth]L1(Ω)×L1(Ω), where [ ]V denotes the closure operator

in V .

We start stating some particular results for (A.1). Then, we will treat only the case

with Neumann boundary conditions. This is a more complex problem, because the

diffusion mechanism is not strong enough to guarantee the upper bound M(t, x) ≤ 1.

171



A.1. Auxiliary problem Chapter A. Mathematical analysis of the Eberl model

In fact, depending on the values of the parameters from Table 2.1, it can be shown

that given any non trivial M0, exists a finite time at which the singularity M ≡ 1 is

reached.

A.1 Auxiliary problem

For (C0,M0) ∈ V y R > 1, we want to find (CR(t),MR(t)) solutions of the following

auxiliary problem:



∂tC = d1∆xC −K1
CM

K2 + C
, in Ω,

∂tM = d2∇x(fR(M)∇xM)−K4 +K3
CM

K4 + C
, in Ω,

C = 1, M = 0, in ∂Ω,

C = C0, M = M0, in t = 0,

(A.5)

with

fR(z) :=

{
(z + 1/R)b/(1− z)a, if z ≤ 1− 1/R,

Ra, if z > 1− 1/R.

The estimations of the solutions of (A.5) are shown in [28]. With those solutions,

one can pass to the limit R→ +∞ in the auxiliary problem to construct a Lipschitz

continuous semi-group associated with the degenerate problem (A.1).

A.2 Existence and uniqueness of the solution of

problem (A.1)

Using the estimates and results of the auxiliary problem, the following result on exis-

tence of the solution of the degenerated problem (A.1) with smooth data is obtained.

Theorem 1. Let be (C0,M0) ∈ Vsmooth, then there exists a solution (C,M) of the
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problem (A.1) (in the sense of distributions) that verifies:
C,M ∈ L∞(R+ × Ω) ∩ C([0,∞), L2(Ω)),

C, F (M) ∈ L∞(R+, H
1(Ω)) ∩ C([0,∞), L2(Ω)),

0 ≤ S(t, x),M(t, x) ≤ 1, ||M ||L∞(R+×Ω) < 1.

(A.6)

Using additional estimations satisfied by the solutions, the following theorem es-

tablishes uniform Lipschitz continuity properties with respect of the initial data of

solutions that satisfy (A.6).

Theorem 2. Let be (C1,M1) and C2,M2) two solutions of (A.1) satisfying (A.6),

then the following holds

|| C1(t, .)− C2(t, .) ||L1(Ω) + ||M1(t, .)−M2(t, .) ||L1(Ω) ≤

exp(Kt)(|| C1(0, .)− C2(0, .) ||L1(Ω) + ||M1(0, .)−M2(0, .) ||L1(Ω)), (A.7)

where K is a generic constant. In particular, the uniqueness of solution is granted

for problem (A.1).

As a consequence of the existence and uniqueness theorems, Theorems 1 and 2, re-

spectively, the model (A.1) generates a semi-group over Vsmooth, St, that is uniformly

Lipschitz continuous (in L1(Ω)× L1(Ω)), defined as:

St : Vsmooth → Vsmooth, St(C0,M0) := (C(t),M(t)),

where (C(t),M(t)) = (C(t, .),M(t, .)) is the solution of (A.1). That solution can

be obtained as the limit in L2 of the solution of the auxiliary problem when R→ +∞.

Using the fact that Vsmooth is dense in V and the property (A.7) we can extend in

a unique way the semi-group St to V verifying (A.7). Said extension is obtained as

follows:

St(C0,M0) := L1(Ω)− lim
k→∞
St(Ck

0 ,M
k
0 ),

where

(Ck
0 ,M

k
0 ) ∈ Vsmooth, ∀k,
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and

(C0,M0) = L1(Ω)× L1(Ω)− lim
k→∞

(Ck
0 ,M

k
0 ).

The extension gives the solution of problem (A.1) with initial conditions in V.

Theorem 3 (Existence of solution in the sense of distributions). Let be (C0,M0) ∈ V
and (C(t),M(t)) := Ct(C0.M0). Then

S,M ∈ L∞(R+ × Ω) ∩ C([0,∞), L1(Ω)). (A.8)

More over, the following is hold

mes {x ∈ Ω : M(t, x) = 1} = 0,∀t > 0, (A.9)

where mes{V } denotes the n-dimensional Lebesgue measure in Rn, and

||C(t)||2H1(Ω) + ||∂tC(t)||2H−1(Ω) + ||F (M(t))||2H1(Ω) + ||M(t)||2Hs(Ω) + ||∂tM(t)||H−1(Ω) ≤ C
tκ + 1

tκ
, t > 0,

with 0 < s < (b+1)−1, κ > 0 and C > 0 given constants independent of (C0,M0) ∈ V,

and the functions (C(t),M(t)) are solution of (A.1) in the sense of distributions.

Corollary 1. Let be (C0,M0) ∈ V and let be (CR(t),MR(t)) solution of the auxiliary

problem (A.5), then the solution of problem (A.1) can be calculated as

C(t) = L1(Ω)− lim
R→∞

CR(t), M(t) = L1(Ω)− lim
R→∞

MR(t). (A.10)

In other words, for each (C0,M0) ∈ V, the solutions of the auxiliary problem (A.5)

converge when R→ +∞ to the solution of (A.1) built in Theorem 3.

A.3 Other boundary conditions

Suppose now that we have the boundary Γ divided into two subsets, i.e., that there

exist ΓD ⊂ Γ and ΓN ⊂ Γ so that Γ = ΓN ∪ΓD ∪∂Γ, ∂Γ = ∂ΓD = ∂ΓN , ΓN ∩ΓD = ∅.
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Then, we consider homogeneous Dirichlet conditions in boundary ΓD and homoge-

neous Neumann conditions in boundary ΓN , i.e.:

M|ΓD = 0, ∂nM|ΓN = 0.

We have basically the following two possible cases:

1. ΓD 6= ∅, which corresponds to mixed conditions if ΓN 6= ∅ or pure Dirichlet

otherwise.

2. ΓD = ∅, which corresponds to pure Neumann conditions.

For the first case, analogous results can be obtained, similar to the ones established

for the case with pure Dirchlet conditions, just by repeating the demonstrations [28],

and therefore a solution for problem (A.1) with mixed conditions can be found. In the

second case, pure Neumann conditions, demonstrations of the existence of solutions

can not be repeated, because it can not be guaranteed that, whatever the initial data

(C0,M0) ∈ V are, the following holds

M(t, x) < 1, for almost all (t, x).

Moreover, as said in [28], if the following is not fulfilled

K3/(1 +K2)−K4 > 0, (A.11)

it can be demonstrated that the biomass density decays exponentially in time, which

guarantees trivially that the maximum biomass bound is not reached. But, if (A.11),

is fulfilled, the following result is obtained.

Proposition 1. Let (A.11) be satisfied, then there exist initial data (C0,M0) ∈ V,

such that

0 ≤ C0 < 1, and 0 ≤M0 < 1,

and there exist T = T (C0,M0), such that

〈M(t)〉 < 1, ∀t < T, and lim
t→T−
〈M(t)〉 = 1. (A.12)
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Proposition 2. There exist positive values for K1, K2, K3, K4, d1 and d2 such as

any solution of (A.1) with pure Neumann boundary conditions reaches the biomass

bound in finite time.

Remark 1. It can be proven that condition (A.12) determines the existence inter-

val for the solution (C(t),M(t)), i.e., problem (A.1) with pure Neumann boundary

conditions for M has a local solution in time for every (C0,M0) ∈ V with 〈M0〉 < 1.
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Appendix B

Theoretical background of the

parameter calibration using

AMIGO2 toolbox

As happens in the present work, mathematical models often consist of sets of differ-

ent equations with the presence of many parameters which are not accessible through

experimentation. Model identification and optimization is at the core of model build-

ing and requires the computation of unknown parameters by means of experimental

data fitting [104] . Parametric identification is, however, a bottleneck in the mod-

elling process due to the, usually, ill-posed and multimodal nature of the optimization

problems, so it is necessary the use of suitable optimization methods to avoid local

solutions.

AMIGO2 [5] is the first multi-platform environment that automatises the solution

of the parametric identification processes, fully covering the iterative identification of

dynamic models, allowing the use of optimality principles for predicting biological be-

haviour and dealing with the optimal control of biological systems using constrained

multi-objective dynamic optimisation. In this appendix, an explanation on the iden-

tification process as solved by AMIGO2 is presented, following Balsa-Canto et al.[6].
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B.1 Parameter identification iterative procedure

The predictive character of a mathematical model often relies on determining the

non-measurable parameters that represent the greatest influence over the response of

the model. These parameters can be usually estimated by fitting the model to the

experimental data, i.e, through parameter estimation or identification. However, it

is a challenging problem, specially when applied to the parametric identification of

non-linear dynamic models.

In what regards to parametric identification, AMIGO2 covers the numerical steps

summarised in Figure B.1 and described as follows:

• Simulation process where the system dynamics are solved for different param-

eter values under different schemes. It is a useful step to analyse the model

tendencies a priori and for the validation step a posteriori.

• Global ranking of the parameters that helps to decide which parameters are the

most relevant to the output. The global ranking may be used to make decision

like to reformulate the model or to select which parameters we need to estimate.

• Parameter estimation formulated as a non-linear optimisation problem whose

objective is to find unknown model parameters so that the measure of the

distance between the model predictions and the experimental data is minimised.

It is necessary the use of global optimisation methods to guarantee somehow

that the best possible solution is located.

• Statistical best fit post analysis.

• Practical identifiability analysis to evaluate the possibility of assigning unique

values to the parameters.

• Optimal experimental design via dynamic optimization in order to design dy-

namic experiments with the aim of maximising data quality and quantity for

the purpose of model calibration.
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Figure B.1: AMIGO2 iterative procedure. Source [6]

B.1.1 Elements for parametric identification

The model

The mathematical model will consist, on one hand, on the set of differential equations,

f , describing the system dynamics, a general deterministic non-linear dynamic model

f(ẋ, x, u, θ, t) = 0, (B.1)

and, on the other hand, the observation function, gε, describing the relationship

among the states in the model and the available measured quantities

yε = gε(x, u, θ, t), (B.2)

where x are the state variables, yε is the vector of observables, u is the vector of the

manipulable variables, θ is the vector of model parameters and t the set of admissible

parameters that may be fixed by physical, chemical or biological considerations.
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The experimental scheme and data

The experimental scheme collects the information related to the way experimental

data are obtained. The experimental data consist on matrices of values corresponding

to individual measurements obtained under the conditions stated by the experimental

scheme ε. This data and the model predictions are represented as

y = [y1, y2, . . . , yd, . . . , ynd ], ỹ = [ỹ1, ỹ2, . . . , ỹd, . . . , ỹnd ],

where d represents a certain experimental condition and nd represents the total num-

ber of such conditions (the total number of data). Note that is also desirable to

provide information about the type and quantity of noise in the experimental data.

In the homoscedastic case the noise can be constant or known for all data, while in

the heteroscedastic case it can be unknown and dependent on the data.

B.1.2 Parameter estimation

The parameter estimation problem is to find model unknown parameters so as to

minimise a given measure of the distance among the model predictions and the ex-

perimental data.

Distance measure

There are different ways to measure the distance between the experimental data and

the model predictions, depending on the available information of the experiment. The

most well known is the generalised least squares

Jglsq(θ) =

nd∑
d=1

qd (yd(θ)− ỹd)2 , (B.3)

where {qd}ndd=1 ≥ 0 are the weighting coefficients fixed a priori. This coefficients

determine the confidence in the experimental data and their importance in the model

performance with regards to each type of measurement, experiment and sampling

time.
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Instead of using the least-squares function, when there is information about the nature

of the experimental noise, the maximum (log-)likelihood function can be used

Jllk = ln (Π(ỹ|θ)) . (B.4)

This function, looks for the value of the parameters that give the highest probability

to the measured data. Function θ is the probability density function and conditions

the type of cost function.

In the Gaussian homoscedastic case, where the variance is known or constant, the

cost function is similar to the generalised least squares taking as weights the inverse

of the variance of the experimental data [104]

Jlsq(θ) =

nd∑
d=1

(yd(θ)− ỹd)2

σ2
d

. (B.5)

The estimation of this variances requires a great amount of a prior experiments and

involve multiple identification problems. Therefore, although not realistic, many ap-

plications select for all measurements a constant variance σd = σ, ∀d = 1, ..., nd. In

this case, the error must be carefully analysed.

Finally, in the Gaussian heteroscedastic case, the corresponding log-likelihood func-

tion is

Jllk(θ) =

nd∑
d=1

log |yd(θ)|+
(yd(θ)− ỹd)2

σ2(a, b, yd(θ))
, (B.6)

where the variance depends on what is being measured and is assumed to be

σ2(a, b, y(θ)) = |ay(θ)|b,

with a > 0 and 0 ≤ b ≤ 2. The case where b = 2 is the standard deviation proportional

to the output.

Single shooting v multiple shooting

As described above, the parameter estimation problem is formulated as a non-linear

optimisation problem where the objective is to find the set of model unknowns to
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minimize a certain cost function subject to the system dynamics and the possible

bounds on the unknowns. The numerical solution of this problem calls for a non-

linear programming method (NLP, an outer iterative method to generate values for

the unknowns and the inital conditions) and the initial value problem solver (IVP, an

iterative method to solve the differential equations).

In the single shooting approach, the IVP is solved from the initial conditions to the

final time for all the iterates generated by the NLP. On the other hand, the multiple

shooting approach discretises the process into several shooting interval solving an

IVP in every shooting so that at least one experimental data may be found. In this

case, the initial conditions for the different intervals are also to be computed during

optimisation, therefore, further constraints on the parameter estimation problem are

required so as to guarantee that the optimal solution is smooth. In this work the single

shooting approach was selected due for convenience to handle PDE based systems.

B.1.3 Practical identifiability analysis

There are two types of practical identifiability analysis: a priori, which anticipates

de quality of the selected experimental scheme in terms of the expected uncertainty

of the parameters; and a posteriori, which assesses the quality of the parameter

estimates after the model calibration in terms of the confidence region.

Note that a priori a maximum experimental error is assumed while a posteriori

the experimental error may be estimated through the available experimental data

manipulation or after the parameter estimation using the residuals.

The simplest approach to perform such analyses is to draw contours of the cost Jlsq

or Jllk by pairs of parameters, that help detect typical identifiability problems. An-

other possibility is the Crammér-Rao inequality [59] which establishes a relationship

between the Fisher Information Matrix (F) and the covariance matrix (C) for the
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case that the estimator is asymptotically unbiased

C ≥ F(θ∗),

where θ∗ an optimum value for the parameters. The confidence interval for a certain

parameter θ∗i is

tγα/2
√
Cii,

where tγα/2 is given by the Students t-distribution, γ the number of degrees of freedom

and α the (1− α)100% confidence interval selected by the user.

A final alternative for a most robust analysis are Monte-Carlo [8], [49] sampling

and bootstrap methods that can robustly quantify the expected uncertainty of

the parameters or the confidence region. The underlying idea is to stimulate the

possibility of performing hundreds of replicates of the same experimental scheme

for a certain experimental error. The model calibration problem is solved for each

replicate and the cloud of solutions is recorded in a matrix. It should be noted that

an efficient global optimization method is required to avoid convergence to local

solutions.

With the confidence intervals, a decision on the need to perform further experiments

to improve the quality of the parameter estimates can be taken, thus improving the

predictive capabilities of the model.

B.2 Numerical methods

B.2.1 Initial value problem solvers

AMIGO2 offers the possibility of handling ODE based models with different numer-

ical techniques, and also the possibility of linking your own numerical approaches

for model simulation or optimization. In this work we exploited that possibility and
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linked our numerical implementation of the Eberl model to AMIGO2 for the quanti-

tative validation of the model. For the case of linked models there is the possibility

of computing parametric sensitivities by means of finite differences schemes. In our

case we used 5 points FD formulae.

B.2.2 Non-linear programming solvers

The aim of the optimisation methods is to generate a sequence of solutions that,

eventually, converges to the the minimum of the cost function. The methods are

classified as local methods, able to handle convex non-linear problems, and global

methods, able to handle non-linear non-convex multimodal problems.

Local methods

The direct-search methods use the value of the cost function at several points in the

vicinity of the current iterate to generate new iterates. Its major disadvantage is

the slow convergence. As an alternative, indirect methods use the gradient or the

gradient and Hessian information to increase convergence speed. In the context of

least squares minimization, the most widely used is the Levenberg-Marquardt method,

a combination of the steepest descent with the Newton method for the least squares

cost function. The two major advantages of the indirect local method are

• Convergence to a minimum is guaranteed by the fact that the gradient of the

cost function evaluated at the optimum is zero, and the Hessian is positive

definite.

• The methods are highly efficient when started close to the solution.

The local methods have been also used in combination with the single and multiple

shooting approaches, although the non-linear character of the dynamic biological

models tends to lead to the presence of several suboptimal solutions so local methods

may end up in such a solution. Multiple shooting can evade some local minima

184



Chapter B. Parameter calibration with AMIGO2 B.2. Numerical methods

by allowing for discontinuous trajectories while searching the global minimum but

convergence to the global solution can not be guaranteed. Moreover, in the presence

of a bad fit, there is no way of knowing if that happens due to a wrong model or as

a consequence of local convergence.

Global methods

Global methods are an alternative to local methods. Suitable techniques for the solu-

tion of multi-modal optimization problems have been developed [72]. The successful

methodologies combine effective mechanisms of exploration of the search space and

exploitation of the previous knowledge obtained by the search. Depending on how the

search is performed and the information exploited, there are deterministic methods,

stochastic methods and hybrid methods.

Global deterministic methods take advantage of the structure of the problem and

guarantee convergence to the global minimum for some particular problems. Although

promising and powerful, there are still limitations to their application such as the

rapid increase of computational cost with the size of the system and the number of

its parameters.

Global stochastic methods do not require any assumptions about the structure of

the problem and make use of pseudorandom sequences to determine search directions

toward the global optimum, leading to an increasing probability of finding the global

optimum during the runtime of the algorithm. The main advantage is that they

rapidly arrive to the proximity of solution. Some of these strategies have been applied

to parameter estimation problems in the context of system biology.

As already stated, stochastic methods can locate the vicinity of global solution quite

rapidly, but the computational cost associated with the refinement of the solution

is very large. Hybrid methods aim to surmount this difficulty. They speed up the

methodologies while retaining their robustness. An excellent hybrid method is the

Scatter Search method [29].
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B.2.3 Numerical methods in AMIGO2

AMIGO2 offers state-of-the-art methods to cover all numerical tasks: simulation,

sensitivity analysis, and optimization. Figure B.2 summarize the currently available

numerical methods used in the non-linear solvers.

Models considered in this work resulted in multimodal parameter estimation prob-

lems. Therefore we used a global metaheuristics eSS (Egea et al. [29]) which com-

bines the Scatter search approach with a deterministic local method, in this case the

Nelder-Mead method.
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Figure B.2: AMIGO2 numerical methods for optimization. Source [6]
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Conclusions

The main objective of this work has been the study and statement of some mathe-

matical models for biofilms, so that they can be successfully applied to describe the

dynamics of the formation of biofilms by several strains of Listeria monocytogenes,

a pathogenic bacterium of serious concern in the food industry. These models are

based on systems of linear and non-linear partial differential equations jointly with

appropriate boundary and initial conditions, the solutions of which require the use

of efficient and accurate numerical methods. Once a model has been selected and

numerically solved, the computed results that reflect the model predictions are

compared with those obtained in ad hoc experiments in laboratory. In some cases

the parameters are optimised so that the matching with experimental results is

obtained.

In this methodological setting, in Part I of this work we have first addressed one-

dimensional biofilm models starting from the one proposed by Eberl et al. [26].

One-dimensional models are suited to describe flat biofilms as those formed by sev-

eral L. monocytogenes strains. In order to obtain a more realistic representation of

the life cycle followed by one particular strain, L1A1, we introduce a second model

that considers non-linear detachment and a third one, including nutrient uptake im-

pairment and ageing. As the three models are posed in terms of systems of linear and

non-linear time-dependent partial differential equations without analytical expression

for their respective solutions, we propose a set of suitable numerical techniques to ap-

proximate their solutions. These techniques mainly consist of a Crank-Nicolson for
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the time discretisation and appropriate finite differences schemes for the discretsation

in space, which are combined with Newton method for the involved non-linear terms

when they appear. The numerical methods have been implemented from scratch

in C++ and suitable academic examples with known analytical solution have been

used to validate their implementation and illustrate their performance and order of

convergence in practice. In a next step, the experimental validation of the models

was addressed through a calibration of the parameters using the data fitting tech-

nique included in AMIGO2 toolbox. From these procedures, we summarize several

conclusions that came up:

• Although in Eberl model the maximum height is close to the experimental

results, the final massive detachment that should occur is not observed.

• In view of the results of Eberl model, a non-linear detachment is introduced

in model 2, obtaining a greater final detachment closer to experimental values.

However, in both models an unrealistic total consumption of nutrients takes

place.

• In order to overcome the drawbacks of the previous models, a third model is

set up. This model replaces the non-linear detachment by a linear term that

considers biofilm ageing and includes nutrient impairment uptake. Once the

parameters are calibrated to the batch experiment of L1A1, the conclusion is

that this third new model results to be the one that better reflects the life cycle

of the selected biofilm.

Secondly, in Part II of the thesis we have addressed biofilm models involving two

spatial dimensions and several species. As previously indicated in this document,

the motivation of the so called two dimensional models comes from the fact that the

presence of internal tunnels, inner voids or other biofilm structures developed during

the life cycle of L1A1 or other structures including clusters or mushrooms formed by

other L. monocytogenes strains cannot be represented by means of one dimensional

models. The selection of a multi-species model allows describing the role of viable,
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damage or dead cells, together with several nutrients in the biofilms life cycle.

Thus, in the setting of two-dimensional models we start from the model proposed by

Alpkvist and Klapper [1] and then we propose a new model that takes into account

the conclusions observed in the analysis of one-dimensional models. More precisely,

this new model incorporates the non-linear detachment and linear nutrients uptake

to better reflect flat biofilms produced by L1A1 strain, clustered biofilms as those

formed by L1A1, CECT4032 or CECT5873 strains at initial stages of their life cycle

and honeycomb profiles observed in various L. Monocytogenes strains at different

stages of their life cycle. As the complexity of the biofilm models increases in the

case of two spatial dimensions, the set of suitable numerical techniques becomes

more sophisticated. These techniques include Crank-Nicolson discretisation in time;

central finite differences scheme in space modified with Gibou’s method [36] for the

nutrients and pressure equations; an upwinding finite differences scheme in space for

the biomasses equations; the level set method to track the evolution of the numerical

domains and a Newton method when non-linear terms appear. All of these numerical

techniques are described in Chapter 5, the larger of this document, and have been

implemented form scratch in C++. The step of qualitative validation of the two-

dimensional models is based on several works in the literature.

• Concerning to the validation of flat Listeria monocytogenes life cycle, we first

took advantage of some calibrated parameters in the more successful one-

dimensional model. Next, we observed that although Alpkvist model reproduces

the expected flat structures of L1A1, the dynamics of nutrients consumption and

biofilm growth result to be unrealistically fast.

• The consideration of the new proposed two-dimensional model including a de-

tachment mechanism that considers the mean inert biomass leads to a more

realistic model, so that the observed dynamics are much slower than in the

Alpkvist model.

191



• Furthermore, the manipulation of initial conditions and parameters in the sec-

ond two-dimensional model successfully allows to represent the development of

clustered or honeycomb structures, which are observed under certain conditions

in the literature.

In a general sense, the present work aims to be a contribution to the modelling

and numerical simulation of biofilms. Thus, we have studied some relevant biofilm

models in the literature and analysed their calibration to the experimental results in

the laboratory. This analysis motivated the introduction of new one-dimensional and

two-dimensional models that become more realistic to represent the experimental

results we observed and the expected dynamics of particular biofilms formed by L.

monocytogenes strains. Also, this work can be understood as another modest step

in the comprehension of the mechanisms of life cycles in certain biofilms by using

the relevant tools of mathematical modelling and numerical simulation from Applied

Mathematics.

Of course, the study opens the possibility of new research steps that were not covered

here. For example, among them are the mathematical analysis of these complex

models to obtain existence and uniqueness of solutions in the appropriate functional

spaces; the rigorous proof of convergence of some of the involved numerical methods

for specific or global problems; the adaptation of the models to include mechanisms

of biofilm elimination by biocides or antibiotics, cell motility or distinction between

cells and EPS; the optimisation of the numerical resolution in order to speed it up so

a parameter calibration of the two-dimensional models can be achieved; etc.
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Resumen extenso

Las biopeĺıculas bacterianas son esenciales tanto para el equilibrio de los ecosistemas

como para muchos procesos industriales. Una biopeĺıcula bacteriana es una capa

de células procariotas ancladas a una superficie que les proporciona sustrato,

mantieniéndolas alimentadas. Esta capa de células está integrada en una matriz

formada por poĺımeros, llamada matriz de exopolisacáridos o EPS, que mantiene

las bacterias agrupadas y dificulta su eliminación [21, 108]. De forma simplificada,

podemos decir que una biopeĺıcula es una agrupación de microorganismos anclados

a una superficie. Los estudios actuales estiman que menos de un 0.1% de la

vida acuática microbiana se encuentra en estado planctónico (flotando libremente)

[20]. Por ende, las biopeĺıculas constituyen la forma de vida preferida de las bacterias.

La razón de esta preferencia es la ventaja competitiva que supone la habilidad de

adherirse a superficies y formar biopeĺıculas, en comparación con las bacterias en

estado planctónico. Éstas últimas pueden ser barridas con facilidad por el flujo del

agua, mientras que las primeras están protegidas de ese fenómeno y viven en un en-

torno donde pueden crecer, siempre que haya suficiente disponibilidad de nutrientes.

La estructura f́ısica de una biopeĺıcula también permite la aparición de diferentes

nichos biológicos que facilitan el crecimiento y la supervivencia de microorganismos

que no podŕıan competir en un sistema completamente homogéneo. Más aún, la

actividad microbiana en el interior de una biopeĺıcula puede cambiar el entorno

interno, haciendo que la biopeĺıcula sea más hospitalaria que la región ĺıquida. Las

partes fundamentales de una biopeĺıcula son la superficie (a la que se adhieren las
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bacterias), la biopeĺıcula propiamente dicha (formada por una o más especies de mi-

croorganismos y los EPS), el medio (con los nutrientes) y las condiciones del entorno

que determinan el desarrollo de la biopeĺıcula (temperatura, pH, hidrodinámica, etc.).

Existen biopeĺıculas beneficiosas, tanto para los humanos como para el desarrollo

adecuado del medio ambiente, aśı como biopeĺıculas perjudiciales, que suelen

causar problemas de salud o bajos rendimientos en procesos industriales y, por

tanto, perdidas económicas. Ejemplos [108] de las primeras son las biopeĺıculas

empleadas en las plantas de tratamiento de aguas (RBC, reactores biológicos, etc.)

o en la industria fermentera (por ejemplo, en procesos de quick-vinegar), pero

también algunas biopeĺıculas creadas de forma natural presentes en el subsuelo

(contribuyendo a la descontaminación del suelo o de las aguas subterráneas), en ŕıos,

lagos y zonas costeras (colonizando rocas o suspendidas en el agua, normalmente

contribuyendo a la eliminación de contaminantes en el agua), o en las raices

de muchas plantas (aumentando la disponibilidad de nutrientes para las plantas).

Las biopeĺıculas creadas de forma natural son fundamentales para la biosfera terrestre.

Por otra parte, las biopeĺıculas perjudiciales aparecen en muchas situaciones. Por

ejemplo, las biopeĺıculas son un problema considerable en la higiene dental [61].

También son la causa de infecciones en implantes médicos y de complicaciones

en enfermedades infecciosas [115]. Otros ejemplos son las biopeĺıculas que causan

contaminación del agua o mal funcionamiento de los intercambiadores de calor [11].

Especialmente relevantes son las biopeĺıculas de bacterias patógenas que aparecen en

la industria alimentaria, pues constituyen una fuente importante de contaminación

alimentaria y pueden ser un grave problema de salud para los consumidores [93].

Prevenir la formación de biopeĺıculas es, en general, bastante dif́ıcil, debido a su habi-

lidad para desarrollarse incluso en condiciones adversas. Más aún, una vez formadas,

son dif́ıciles de eliminar, pues las bacterias que están formando biopeĺıculas son mucho
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más resistentes a la respuesta inmune del huésped o a agentes antimicrobianos [34, 44].

La necesidad de mejorar las propiedades de las biopeĺıculas beneficiosas o con-

trolar la formación de aquellas perjudiciales ha motivado numerosas lineas de

investigación que tienen en cuenta los mecanismos genéticos, bioqúımicos o f́ısicos

que contribuyen, no solo a la formación de biopeĺıculas, si no también a su estructura.

Numerosos estudios indican que la estructura de una biopeĺıcula determina la

magnitud de los procesos que tienen lugar en ella, como por ejemplo la tasa de

transferencia de nutrientes hacia las capas interiores, la tasa de difusión de agentes

microbianos o su resistencia a la fricción. El recuento de placas ha sido ampliamente

utilizado para analizar biopeĺıculas. Sin embargo, sólo incluye células cultivables

viables y no dan información acerca de la estructura [22]. Debido a esas limitaciones,

varias alternativas han sido propuestas.

Se ha prestado especial énfasis al desarrollo de varias técnicas microscópicas. La más

exitosa, la microscoṕıa confocal láser de barrido (CLSM), permite realizar escaneo

optico tridimensional in situ e in vivo [95]. Por otra parte, los microsensores pueden

ser utilizados para medir concentraciones de los diferentes componentes dentro de

una biopeĺıcula, permitiendo aśı el análisis de la disponibilidad de nutrientes en las

diferentes regiones de la biopeĺıcula [116]. Los avances en bioloǵıa molecular y en

técnicas de hibridación in situ contribuyeron al desarrollo de sondas genéticas y

técnicas de microscoṕıa, permitiendo el análisis detallado de comunidades micro-

bianas en el interior de la biopeĺıcula [23, 56, 97].

La combinación de tintes celulares utilizados en técnicas de tinción celular fluores-

cente junto con ténicas de obtención de imágenes permiten localizar células viables y

células dañadas o muertas [99] o la distribución de la sustancia polimérica extracelu-

lar, pero también la reconstrucción de estructuras tridimensionales, obteniendo aśı
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un estudio de las biopeĺıculas más exhaustivo. Cabe destacar que la técnica de CLSM

junto con el análisis cuantitativo de imágenes [114] permite determinar de forma

automática el grosor de una biopeĺıcula, su volumen o la rugosidad. Este enfoque

permite una comparación cuantitativa de biopeĺıculas de diferentes cepas y especies

o con diferentes condiciones ambientales (medio, temperatura, tipo de cultivo).

Algunos trabajos recientes sugieren varias estrategias de trabajo y herramientas

de software para el análisis sistemático de imágenes de microscoṕıa. IMARIS (un

software comercial) permite la reconstrucción de estructuras 3D. COMSTAT [43],

ISA 3D [10], o PHLIP [67] permiten cuantificar las imágenes obtenidas mediante

CLSM. BIOFILMDIVER [65] permite la cuantificación de la porosidad de una

biopeĺıcula, el área cubierta, las distancias de difusión o la distribución de población

espacio-temporal mediante imágenes 2D tomadas por epifluorescencia y CLSM.

Algoritmos tipo machine learning pueden ser empleados para analizar las imágenes

obtenidas por microscoṕıa electrónica de barrido [103].

El análisis de imagen cuantitativo puede complementarse con el modelado matemático

para ganar conocimiento acerca de los mecanismos que dan lugar a una determinada

estructura en una biopeĺıcula. Incluso las biopeĺıculas más homogéneas desarrollan

procesos internos complejos, entrelazados entre śı. El modelado matemático da la

posibilidad de explorar diferentes procesos internos y sus conexiones, su importancia

relativa y el rol que tiene el medio ambiente en el ciclo vital de una biopeĺıcula

[105]. Ese es, precisamente, el paso que da el presente trabajo, al combinar el

análisis de imágenes obtenidas mediante CLSM con nuevos modelos matemáticos y

técnicas numéricas avanzadas para explicar cuantitativamente y cualitativamente el

comportamiento de biopeĺıculas de Listeria monocytogenes.

Las biopeĺıculas de L. monocytogenes pueden llegar a desarrollar diferentes estruc-

turas: mono-capas de células adheridas, multi-capas planas desestructuradas, o
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estructuras en panal o clusters [12, 15, 24, 62, 78, 82]. Trabajos recientes [37] re-

construyeron imágenes obtenidas por CLSM para observar la diversidad intraespecie

de L. monocytogenes, concluyendo que la mayoŕıa de cepas forman estructuras tipo

panal complejas a las 48h. Otros trabajos, [65, 66] usan análisis cuantitativo de

imágenes para estudiar el ciclo vital de biopeĺıculas formadas por tres cepas de L.

monocytogenes, mostrando la presencia de, al menos, tres fases: una fase inicial de

clusters separados que evolucionan a clusters interconectados, estructuras tipo panal

o estructuras planas, y una fase final en la que las células se separan de la biopeĺıcula.

La duración de estas fases vaŕıa significativamente entre cepas.

En una primera aproximación, en este trabajo proponemos modelos 1D continuos

de reacción-difusión que permiten el análisis de la cepa L1A1 de L. monocytogenes.

Dicha cepa forma biopeĺıculas planas [66], por lo que parece apropiado utilizar

modelos 1D para explorar los mecanismos relevantes que causen este tipo de estruc-

turas. Los modelos aqúı presentados han sido resueltos numéricamente empleando

técnicas numéricas eficientes y robustas, que consisten fundamentalmente en un

método Crank-Nicolson para la discretización en tiempo y esquemas en diferencias

finitas apropiados para la discretización en espacio, todo ello junto con un método

de Newton alĺı donde aparecen términos no lineales. Los métodos numéricos han

sido implementados desde cero en C++ y validados numéricamente mediante tests

académicos apropiados.

El estudio se basa en la disposición experimental utilizada en el trabajo reciente [66]

que considera biopeĺıculas que crecen en condiciones de flujo estático, restringiendo el

estudio al caso hidrostático. De acuerdo con dicho estudio, las cepas de L1A1 desar-

rollan biopeĺıculas prácticamente planas y desestructuradas. Tras una sedimentación

inicial, se forma una biopeĺıcula delgada antes de 24 horas. La estructura plana es

estable con un aumento sostenido de su grosor hasta llegar a las 96 horas, momento

en el cual la presencia de células dañadas o muertas es importante. Tras 120 horas,
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la altúra máxima de la biopeĺıcla decrece fuertemente, indicando un desprendimiento

masivo en las últimas 24 horas.

Las células de L1A1 consumen glucosa como fuente primaria de carbono. Por

tanto, los datos de nutrientes considerados en la resolución numérica corresponden

a glucosa. Los datos experimentales muestran que las células consumen la mayor

parte de las reservas de glucosa en las primeras 24 horas, tras lo cual el consumo de

nutrientes cesa, incluso aunque aun se encuentren en el sistema celulas viables.

Empezamos nuestro estudio utilizando como punto de partida el modelo presentado

por Eberl et al. [26] y validado por resultados de análisis matemático [28],

∂S

∂t
= d1∇2S −K1

SC

K2 + S
, (1)

∂C

∂t
= ∇ ·

(
cb−amax

(
ε

1− C

)a
Cb∇C

)
+K3

SC

K2 + S
−K4C. (2)

C(0, x) =

{
C0, si 0 ≤ x ≤ 4.5× 10−5,

0, si 4.5 ≤ x ≤ L,
(3)

∂C

∂x
(t, 0) = 0, t ∈ [0, T ], (4)

∂C

∂x
(t, L) = 0, t ∈ [0, T ], (5)

(6)

S(0, x) = 1, x ∈ [0, L], (7)

∂S

∂x
(t, 0) = 0, t ∈ [0, T ], (8)

∂S

∂x
(t, L) = 0, t ∈ [0, T ]. (9)

siendo S la concentración de nutrientes y C la concentración de biomasa. El modelo,

denominado M1, junto con condiciones de contorno e iniciales apropiadas se utiliza
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para tratar de reproducir resultados que describan la dinámica de la cepa L1A1 de

Listeria monocytogenes. La calibración paramétrica del modelo se realizó a través de

técnicas de ajuste de datos incluidas en la herramienta AMIGO2 [5]. Los resultados

obtenidos, Figura 3.3, muestran que la altura máxima alcanzada es muy cercana

a la obtenida en los experimentos de laboratorio. Sin embargo, los nutrientes se

consumen prácticamente en su totalidad, mientras que el desprendimiento masivo

esperado en las últimas 24 horas no se aprecia.

Para tratar de obtener el desprendimiento masivo que aparece en las etapas finales de

la cepa L1A1, introdujimos un termino de desprendimiento no lineal, en contraste con

el término lineal presente en el modelo de Eberl, que representaba un desprendimiento

por fricción que no ocurre en los experimentos de laboratorio utilizados como datos.

Aśı pues, obtuvimos el modelo denominado M2, representado por

∂S

∂t
= d1∇2S −K1

SC

K2 + S
, (10)

∂C

∂t
= ∇ ·

(
cb−amax

(
ε

1− C

)a
Cb∇C

)
+K3

SC

K2 + S
−K4

C

Kd + S
, (11)

que se completa con condiciones de contorno e iniciales (3)-(9) y una calibración

paramétrica mediante AMIGO2. En los resultados obtenidos, Figura 3.3, se puede

observar que se produce un desprendimiento significativo. Sin embargo, dicho

desprendimiento empieza demasiado pronto y la altura máxima del biofilm no se

llega a conseguir. Además, la concentración de nutrientes desaparece, como ocurre

en el modelo de Eberl, aunque algo más despacio.

Aśı pues, tras analizar algunos candidatos más que incorporaban diferentes mecanis-

mos [9], obtuvimos un nuevo modelo exitoso, denotado por M3. En él, cambiamos el

coeficiente de difusión de nutrientes que deja de ser constante para depender de la con-

centración de biomasa, de forma que los nutrientes se difundan de manera diferente
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en la región ĺıquida y en la biopeĺıcula. Aśı,

d1(C) =

{
dN , si C = 0,

deffdN , si C > 0,
(12)

Al mismo tiempo, consideramos el coeficiente de difusión de la biomasa constante y un

crecimiento de biomasa descrito por una ley de masas en lugar del habitual coeficiente

de tipo Monod. Este cambio en el crecimiento de biomasa se debe a que consideramos

que hay suficiente disponibilidad de nutrientes en el medio. Para asegurar que los

nutrientes dejan de consumirse cuando se alcanza cierta concentración de biomasa, se

inlcuye un mecanismo de bloqueo de consumo de nutrientes. Finalmente, asumimos

un mecanismo de desprendimiento debido al envejecimiento del ADN extracelular.

Todo ello da lugar al siguiente modelo 1D

∂S

∂t
= ∇ · (d1(C)∇S)−K1SC, (13)

∂C

∂t
= d2∇2C +K3SC −K4

C

1 + exp(kd[Dmin − CBD(t)])
, (14)

que se completa con condiciones de contorno e iniciales (3)-(9) y una calibración

paramétrica mediante AMIGO2. El término CBD(t) se obtuvo mediante mediciones

experimentales a ciertos tiempos y representa el area cubierta por células muertas o

dañadas.

El modelo 1D obtenido prermite reproducir de manera fiable la dinamica de la cepa

L1A1 con gran acuerdo entre los datos numéricos y los datos experimentales, tanto

cualitativa como cuantitativamente. En la Figura 3.3 se puede observar el cambio

drástico en la evolución de la biopeĺıcula con los cambios realizados para el modelo

3. En primer lugar, el crecimiento de biomasa se ralentiza, alcanzando su máximo

en torno a las 100 horas. Por otro lado, el consumo de nutrientes se reduce y el

mecanismo de bloqueo evita que desaparezcan todos los nutrientes del sistema.

También se puede observar el desprendimiento masivo que tiene lugar en la etapa final.
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Los modelos 1D ofrecen buenos resultados para el caso de la cepa L1A1, pero no per-

miten reproducir otras estructuras complejas. Es por ello que es necesario desarrollar

modelos en dimensiones superiores. En este aspecto, este trabajo presenta un modelo

2D modificando adecuadamente el modelo propuesto por Alpkvist y Klapper [1], de

forma que se incluyen las nociones aprendidas del caso 1D. Aśı, obtenemos el modelo

2D adimensional

−∇2S = −V1ĥ
2
TS en Ωτ

Ĥb
, (15)

−∇2P = V1Ψ̂S − V1FD(V2) en Ωτ
1, (16)

~U = −∇P en Ωτ
1, (17)

∂τΦ + (~Ue · ~n)||∇Φ|| = 0 en Ω, (18)

∂τV1 −∇P · ∇V1 = V1

[
Ψ̂S − (FD(V2) + ε2)− V1(Ψ̂S −FD(V2))

]
en Ωτ

1, (19)

∂τV2 −∇P · ∇V2 = V1ε2 − V2

(
V1Ψ̂S − V1FD(V2)

)
en Ωτ

1, (20)

donde

FD(V2) =
1

1 + exp(Kd(Dmin −mean(V2)))
, (21)

siendo S la concentración de nutrientes, P la presión de expansión, ~U la velocidad

de expansión, Φ la función level set, V1 la concentración de biomasa activa y V2

la concentración de biomasa inerte. Estas ecuaciones se resuelven en los dominios

evolutivos Ωτ
1 (región con biomasa) y Ωτ

Ĥb
( región de consumo de nutrientes), en

los que se establecen condiciones de contorno apropiadas que, junto con la asunción

de condiciones iniciales y los parámetros derivados del caso 1D, permiten obtener

resultados de relevancia, que reproducen cualitativamente las fases iniciales de

diversas cepas de L. monocytogenes.

El modelo 2D entraña una complejidad superior, por lo que en su resolución están

involucradas técnicas numéricas avanzadas. En particular, este trabajo hace énfasis

en el método Level Set, un método para seguir la evolución de fronteras libres y

que permite, de forma sencilla, trabajar con la misma malla, pero con dominios
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evolutivos. Además, otras técnicas numéricas eficientes han sido empleadas: método

Crank-Nicolson para la discretización temporal, diferencias finitas modificadas con

el método de Gibou [36] o diferencias finitas descentradas para la discretización

espacial, método de Newton para trabajar con los términos no lineales, etc. Todas

estas técnicas numéricas han sido implementadas desde cero en C++.

La validación cualitativa del modelo 2D se basa en diferentes trabajos presentes en

la literatura:

• Para validar los resultados relativos a cepas planas de L. monocytogenes, em-

pleamos lo aprendido en el caso 1D, incluyendo los parámetros calibrados cor-

respondientes.

• El modelo de Alpkvist proporcionó como resultado una dinámica plana, pero

demasiado rápida, que no se correspond́ıa con el comportamiento esperado. El

modelo modificado ralentiza esa dinámica dando lugar a resultados mucho más

realistas.

• La manipulación de las condiciones iniciales y de los parámetros involucrados

permite reproducir la dinámica de otras cepas de L. monocytogenes, dando lugar

a estructuras con canales, agrupaciones o de tipo panal.

El presente trabajo se establece como una contribución novedosa al modelado y la

simulación numérica de biopeĺıculas. Por ello, hemos estudiado algunos modelos

de biopeĺıculas relevantes presentes en la literatura y analizado su calibración con

los resultados experimentales obetnidos en el laboratorio. Es este análisis lo que

motiva la introducción de nuevos modelos 1D y 2D que son capaces de reperesentar

de forma más realista los resultados experimentales observados y las dinámicas

esperadas de varios biofilms formados por cepas de L. monocytogenes. Del mismo

modo, este trabajo puede entenderse como un modesto paso en la comprensión de

los mecanismos que intervienen en el ciclo vital de ciertas biopeĺıculas gracias al uso
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de herramientas relevantes del modelado matemático y simulación numérica.

Aśı pues, el resultado de este trabajo es, partiendo de un modelo 1D presente en la

literatura [26] y validado por resultados de análisis matemático [28], la obtención de

un modelo 1D novedoso que refleja la evolución cualitativa y cuantitativa de la cepa

L1A1 con gran precisión. Del mismo modo, aplicando los conocimientos adquiridos

del caso unidimensional hemos obtenido un modelo 2D que permite reproducir

las estructuras formadas en las fases de crecimiento por diferentes cepas de de L.

monocytogenes, todo ello mediante técnicas numéricas refinadas y de gran eficiencia.

Este trabajo se estructura en dos partes.

En la Parte I nos centramos en el estudio y desarrollo de varios modelos unidimen-

sionales. En particular, nos enfocamos en modelos continuos deterministas. Los

modelos deterministas de reacción-difusión (RDM) tienen como ventaja la posibilidad

de ser reproducidos [105]. Además, este tipo de modelos puede ser resuelto con

técnicas numéricas avanzadas que garantizan la eficiencia computacional requerida

para una identificación de modelo mediante técnicas de optimización[3, 102]. El

Caṕıtulo 1 sirve, por un lado, como introducción al modelado de biopeĺıculas y,

por otro, como presentación de varios posibles modelos de reacción-difusión para

describir el sistema formado por biopeĺıculas de L. monocytogenes. Los modelos

candidatos incorporan diversos mecanismos de crecimiento, consumo de nutrientes

y desprendimiento. Cada modelo se ajusta a los datos medidos con un ajuste de

datos mediante técnicas de optimización. La elección del modelo óptimo se realiza

atendiendo al mejor compromiso entre el número de parámetros desconocidos y su

capacidad para reproducir cuantitativamente las mediciones experimentales.

El Caṕıtulo 2 describe los métodos y técnicas numéricas y muestra los pasos

necesarios para construir los sistemas numérios. El método de Crank-Nicolson en
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diferencias finitas junto con un esquema centrado en espacio, resulta en el sistema

numérico no lineal completamente discretizado, que se resuelve a través del sistema

lineal obtenido tras aplicar un método de Newton. Estos métodos numéricos fueron

elegidos de forma que el tiempo computacional sea reducido y la solución numérica

sea eficientemente calculada, tal y como se discute en el trabajo reciente [7]. El

Caṕıtulo 2 muestra también la resolución de algunos tests académicos que permiten

validar los métodos aplicados.

El Caṕıtulo 3 muestra los resultados numéricos de los distintos modelos, aśı como

una comparación entre los resultados numéricos obtenidos con los modelos y las

mediciones experimentales correspondientes, de forma que se validan los modelos y

los métodos numéricos utilizados desde un punto de vista biológico. El foco de la

discusión es el modelo más satisfactorio, aunque otros candidatos intermedios fueron

analizados también en el trabajo reciente [9].

La Parte II sigue un camino similar, enfocado en el estudio y desarrollo de varios

modelos bidimensionales. Del mismo modo que en el caso 1D, trabajamos con

modelos continuos deterministas, pero añadiendo las celulas dañadas o muertas

como segunda especie biológica y sustituyendo el proceso de difusión por un

proceso de advección que regula la evolución de la biopeĺıcula. El Caṕıtulo 4 sirve

como explicación de la necesidad de usar modelos bidimensionales en el modelado

de biopeĺıculas para capturar las diferentes heterogeneidades espaciales que una

biopeĺıcula puede desarrollarse. Tras esto, presenta los diferentes modelos estudiados

y desarrollados.

El Caṕıtulo 5 muestra la estrategia numérica usada en la resolución de los modelos

bidimensionales propuestos. Dado el aumento en la complejidad del sistema, son

necesarios nuevos métodos numéricos con mayor eficiencia y sofisticación. Aunque

nos mantenemos en el marco de las diferencias finitas, utilizamos un método upwind
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modificado mediante la estrategia propuesta por Gibou et al. [36] junto con el

método de Level Set [89], esquemas WENO [48], esquemas Crank-Nicolson y un

algoritmo de Newton para los sistemas completamente discretos no lineales.

Por último, el Caṕıtulo 6 muestra los resultados numéricos obtenidos en los diferentes

modelos, analizando su precisión de forma que sean validados desde un punto de

vista biológico.

El Anexo A resume algunos resultados del análisis teórico del modelo de Eberl que

aparecen el el trabajo reciente de Efendiev, Eberl y Zelik [28].

El Anexo B presenta una explicación breve de las técnicas de optimización incluidas

en la herramienta AMIGO2 [5], una herramienta de alto nivel para MATLAB

utilizada en el proceso de calibración de parámetros.

Finalmente, se incluye un apartado de Conclusiones que aglutina los resultados más

importantes de la tesis, las conclusiones más relevantes y la lineas futuras a seguir.
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Resumo extenso

As biopeĺıculas bacterianas son esenciais tanto para o equilibrio dos ecosistemas

como para moitos procesos industriais. Unha biopeĺıcula bacteriana é unha capa

de células procariotas ancoradas a unha superficie que lles proporciona substrato,

manténdoas alimentadas. Esta capa de células está integrada nunha matriz formada

por poĺımeros, chamada matriz de exopolisacáridos ou EPS, que manten as bacterias

agrupadas e dificulta a súa eliminación[21, 108]. Dun xeito sinxelo, podemos dicir

que unha biopeĺıcula é unha agrupación de microorganismos ancorados a unha

superficie. Os estudos actuais estiman que menos dun 0.1% da vida acúatica

microbiana atópase en estado planctónico (flotando libremente) [20]. Polo tanto, as

biopeĺıculas constitúen a forma de vida preferida das bacterias.

A razón desta preferencia é a vantaxe competitiva que supón a habilidade de

adherirse a superficies e formar biopeĺıculas, en comparación coas bacterias en estado

planctónico. Estas últimas poden ser varridas con facilidade polo fluxo da auga,

mentres que as primieras están protexidas dese fenómeno e viven nunha contorna

onde poden crecer, sempre que haxa suficiente dispoñibilidade de nutrientes. A

estrutura f́ısica dunha biopeĺıcula tamén permite a aparición de diferentes nichos

biolóxicos que facilitan o crecemento e a supervivencia de microorganismos que

non podeŕıan competir nun sistema completamente homoxéneo. Máis áında, a

actividade microbiana no interior dunha biopeĺıcula pode cambiar a contorna

interna, facendo que a biopeĺıcula sexa máis hospitalaria que a rexión ĺıquida.

As partes fundamentáis dunha biopeĺıcula son a superficia (á que se adhiren as
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bacterias), a biopeĺıcula propiamente dita (formada por unha ou máis especies de

microorganismos e os EPS), o medio (cos nutrientes) e as condicións da contorna que

determinan o desenvolvemento da biopeĺıcula (temperatura, pH, hidrodinámica, etc.).

Existen biopeĺıculas beneficiosas, tanto para os humanos como para o desen-

volvemento axeitado do medio ambiente, aśı como biopeĺıculas prexudiciais, que

adoitan causar problemas de saúde ou baixos rendementos en procesos industriais

e, polo tanto, perdas económicas. Exemplos [108] das primeiras son as biopeĺıculas

empregadas nas plantas de tratamento de augas (RBC, reactores biolóxicos, etc.) ou

na industria fermenteira (por exemplo, en procesos de quick-vinegar), pero tamén

algunhas biopeĺıculas creadas de xeito natural presentes no subsolo (contribúındo á

descontaminación do solo ou en augas subterráneas), en ŕıos, lagos e zonas costeiras

(colonizando as rochas ou suspendidas na auga, normalmente contribúındo á elim-

inación de contaminantes na auga), ou nas ráıces de moitas plantas (aumentando

a disponibilidade de nutrientes para as plantas). As biopeĺıculas creadas de xeito

natural son fundamentáis para a biosfera terrestre.

Por outra banda, as biopeĺıculas prexudiciáis aparecen en moitas situacións. Por

exemplo, as biopeĺıculas son un problema considerable na hixiene dental [61]. Tamén

son a causa de infeccións en implantes médicos e de complicacións en enfermidades

infecciosas [115]. Outros exemplos son as biopeĺıculas que causan contaminación

da auga ou mal funcionamento dos intercambiadores de calor [11]. Especialmente

relevantes son as biopeĺıculas de bacterias patóxenas que aparecen na industria

alimentaria, pois constitúen unha fonte importante de contaminación alimentaria e

poden ser un grave problema de saúde para os consumidores [93].

Previr a formación de biopeĺıculas é, en xeral, bastante dif́ıcil, debdo á súa habilidade

para desenvolverse incluso en condicións adversas. Máis áında, unha vez formadas,

son dif́ıciles de eliminar, xa que as bacterias que están formando biopeĺıculas son
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moito máis resistentes á resposta inmune do hóspede ou a axentes antimicrobianos

[34, 44].

A necesidade de mellorar as propiedades das biopeĺıculas beneficiosas ou controlar a

formación daquelas prexudiciais motivou numerosas liñas de investigación que teñen

en conta os mecanismos xenéticos, bioqúımicos ou f́ısicos que contribuen, non só á

formación de biopeĺıculas, se non tamén á súa estrutura.

Numerosos estudos indican que a estrutura dunha biopeĺıcula determina a magnitude

dos procesos que teñen lugar nela, como por exemplo a taxa de transferencia de

nutrientes cara ás capas interiores, a taxa de difusión de axentes microbianos ou

a súa resistencia á fricción. O reconto de placas foi amplamente empregado para

analizar biopeĺıculas. Con todo, só inclúe células cultivables viables e non da infor-

mació da estrutura [22]. Debido a esas limitacións, varias alternativas foron propostas.

Prestouse especial énfase ao desenvolvemento de varias técnicas microscópicas. A

máis exitosa, a microscoṕıa confocal láser de varrido (CLSM), permite realizar

escaneo óptico tridimensional in situ e in vivo [95]. Por outra banda, os microsen-

sores poden ser empregados para medir concentracións dos diferentes componentes

dentro dunha biopeĺıcula, permitindo aśı a análise da dispoñibilidade de nutrientes

nas diferentes rexións da biopeĺıcula [116]. Os avances en biolox́ıa molecular e nas

técnicas de hibridación in situ contribuiron ao desenvolvemento de sondas xenéticas

e ténicas de microscṕıa, permitindo a análise detallada de comunidades microbianas

no interior da biopeĺıcula [23, 56, 97].

A combinación de tinturas celulares empregadas en ténicas de tinguidura celular

fluorescente xunto coas técnicas de obtención de imaxes permiten localizar células

viables e células danadas ou mortas [99] ou a distribución da substancia polimérica

extracelular, pero tamén a reconstrucción de estruturas tridimensionais, obtendo
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aśı un estudo das biopeĺıculas máis exhaustivo. Cabe desetacar que a técnica de

CLSM xunto coa análise cuantitativa de imáxes [114] permite determinar dun xeito

automático o grosor dunha biopeĺıcula, o seu volumen ou a rugosidade. Este enfoque

permite unha comparación cualitativa de biopeĺıculas de diferentes cepas e especies

ou con diferentes condicións ambientais (medio, temperatura, tipo de cultivo).

Algúns traballos recentes suxiren varias estratexias de traballo e ferramentas de

software para a análise sitemática de imáxes de microscoṕıa. IMARIS (un software

comercial) permite a reconstrucción de estruturas 3D. COMSTAT [43], ISA 3D [10],

ou PHLIP [67] permiten cuantificar as imaxes obtidas mediante CLSM. BIOFILM-

DIVER [65] permite a cuantificación da porosidade dunha biopeĺıcula, a área cuberta,

as distancias de difusión ou a distribución de poboación espacio-temporal mediante

imáxes 2D tomadas por epifluorescencia e CLSM. Algoritmos tipo machine learning

poden ser empregados para analizar as imaxes obtidas por microscoṕıa electrónica

de varrido [103].

A análise de imáxe cuantitativa podese complementar co modelado matemático

para gañar coñecemento acerca dos mecanismos que dan lugar a unha determinada

estrutura nunha biopeĺıcula. Incluso as biopeĺıculas máis homoxéneas desenvolven

procesos internos complexos, entretecidos entre si. O modelado matemático dá

a posibilidade de explorar diferentes procesos internos e as súas conexións, a súa

importancia relativa e o rol que ten o medio ambiente no ciclo vital dunha biopeĺıcula

[105]. Ese é, precisamente, o paso que dá o presente traballo, ao combinar a análise

de imáxes obtidas mediante CLSM con novos modelos matemáticos e técnicas

numéricas avanzadas para explicar cuantitativa e cualitativamente o comportamento

de biopeĺıculas de Listeria monocytogenes.

As biopeĺıculas de L. monocytogenes poden chegar a desenvolver diferentes es-

truturas: mono-capas de células adheridas, multi-capas chás desestruturadas, ou
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estruturas en panal ou clusters [12, 15, 24, 62, 78, 82]. Traballos recentes [37]

reconstruiron imáxes obtidas por CLSM para observar a diversidade intraespecie

de L. monocytogenes, concluindo que a maioŕıa das cepas forman estruturas tipo

panal complexas ás 48h. Outros traballos, [65, 66] usan a análise cuantitativa de

imáxes para estudar o ciclo vital de biopeĺıculas formadas por tres cepas de textitL.

monocytogenes, amosando a presenza de, polo menos, tres fases: unha fase inicial de

clusters separados que avolucionan a clusters intercoñectados, estruturas tipo panal

ou estruturas chás, e unha fase final na que as células sepáranse da biopeĺıcula. A

duración destas fases vaŕıa significativamente entre cepas.

Nunha primeira aproximación, neste traballo propomos modelos 1D continuos de

reacción-difusión que permiten a análise da cepa L1A1 de L. monocytogenes. A

devandita cepa forma biopeĺıculas chás [66], polo que semella axeitado empregar

modelos 1D para explorar os mecanismos relevantes que causen este tipo de es-

truturas. Os modelos aqúı presentados foron resoltos numéricamente empregando

técnicas numéricas eficientes e robustas, que consisten fundamentalmente nun método

Crank-Nicolson para a discretización en tempo e esquemas en diferenzas finitas

axeitados para a discretización en espazo, todo iso xunto cun método de Newton

aĺı onde aparecen termos non lineais. Os métodos numéricos foron implementados

desde cero en C++ e validados numéricamente mediate tests académicos axeitados.

O estudo baséase na disposición experimental empregada no traballo recente [66]

que considera biopeĺıculas que crecen en condicións de fluxo estático, restrinxindo

o estudo ao caso hidrostático. Atendendo ao devandito estudo, as cepas de L1A1

desenvolven biopeĺıculas practicamente chás e desestruturadas. Despois dunha sedi-

mentación inicial, fórmase unha biopeĺıcula delgada antes de 24 horas. A estrutura

chá é estable, cun aumento sostido do seu grosor ata chegar ás 96 horas, momento no

cal a presenza de células danadas our mortas é imporante. Tras 120 horas, a altura

máxima da biopeĺıcula decrece fortemente, indicando un desprendemento masivo nas
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derradeiras 24 horas.

As células de L1A1 consomen glucosa como fonte primaria de carbono. Polo tanto,

os datos de nutrientes considerados na resolución numérica corresponde a glucosa.

Os datos experimentais amosan que as células consome a maior parte das reservas

de glucosa nas primeras 24 horas, tras o cal o consumo de nutrientes cesa, mesmo

que áında se atopen no sistema células viables.

Comezamos o noso estudo empregando como punto de partida o modelo presentado

por Eberl et al. [26] e validado por resultados da análise matemática [28],

∂S

∂t
= d1∇2S −K1

SC

K2 + S
, (1)

∂C

∂t
= ∇ ·

(
cb−amax

(
ε

1− C

)a
Cb∇C

)
+K3

SC

K2 + S
−K4C. (2)

C(0, x) =

{
C0, se 0 ≤ x ≤ 4.5× 10−5,

0, se 4.5 ≤ x ≤ L,
(3)

∂C

∂x
(t, 0) = 0, t ∈ [0, T ], (4)

∂C

∂x
(t, L) = 0, t ∈ [0, T ], (5)

(6)

S(0, x) = 1, x ∈ [0, L], (7)

∂S

∂x
(t, 0) = 0, t ∈ [0, T ], (8)

∂S

∂x
(t, L) = 0, t ∈ [0, T ]. (9)

sendo S a concentración de nutrientes e C a concentración de biomasa. O modelo,

denominado M1, xunto coas condicións de contorna e iniciais axeitadas, emprégase

para tratar de reproducir resultados que describan a dinámica da cepa L1A1 de
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Listeria monocytogenes. A calibración paramétrica do modelo realizouse ao través

de técnicas de axuste de datos incluidas na ferramenta AMIGO2 [5]. Os resultados

obtidos, Figura 3.3, amosan que a altura máxima alcanzada é moi próxima á obtida

nos experimentos de laboratorio. Con todo, os nutrientes consómense practicamente

na súa totalidade, mentres que o desprendemento masivo esperado nas derradeiras

24 horas non se aprecia.

Para tratar de obter o desprendemento masivo que aparece nas estapas finais da cepa

L1A1, introducimos un termo de desprendemento non lineal, en contraste co termo

lineal presente no modelo de Eberl, que representaba un desprendemento por fricción

que non ocorre nos experimentos de laboratorio empregados como datos. Aśı pois,

obtivemos o modelo denominado M2, representado por

∂S

∂t
= d1∇2S −K1

SC

K2 + S
, (10)

∂C

∂t
= ∇ ·

(
cb−amax

(
ε

1− C

)a
Cb∇C

)
+K3

SC

K2 + S
−K4

C

Kd + S
, (11)

que se completa con condicións de contorna e iniciais (3)-(9) e unha calibración

paramétrica mediante AMIGO2. Nos resultados obtidos, Figura 3.3, pódese observar

que se produce un desprendemento significativo. Con todo, o devandito despren-

demento comeza moi cedo e a altura máxima do biofilm non se chega a conseguir.

Ademáis, a concentración de nutrientes desaparece, como ocorre no modelo de Eberl,

ainda que algo máis amodo.

Aśı pois, tras analizar algúns candidatos máis que incorporaban diferentes mecanis-

mos [9], obtivemos un novo modelo exitoso, denotado M3. Nel, cambiamos o coe-

ficiente de difusión de nutrientes que deixa de ser constante para depender da con-

centración de biomasa, de xeito que os nutrientes difúndense de maneira diferente na

rexión ĺıquida e na biopeĺıcula. Aśı,

d1(C) =

{
dN , se C = 0,

deffdN , se C > 0,
(12)
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Ao mesmo tempo, consideramos o coeficiente de difusión da biomasa constante e un

crecemento da biomasa descrito por unha lei de masa no lugar do habitual coeficiente

de topo Monodo. Este cambio no crecemento da biomasa débese a que consider-

amos que hai suficiente dispoñibilidade de nutrientes no medio. Para asegurar que

os nutrientes deixan de consumirse cando se alcanza certa concentración de biomasa,

inclúese un mecanismo de bloque de consumo de nutrientes. Finalmente, asumimos

un mecanismo de desprendemento debido ao envellecemento do ADN extracelular.

Todo iso dá lugar ao seguinte modelo 1D

∂S

∂t
= ∇ · (d1(C)∇S)−K1SC, (13)

∂C

∂t
= d2∇2C +K3SC −K4

C

1 + exp(kd[Dmin − CBD(t)])
, (14)

que se completa con condicións de contorna e iniciais (3)-(9) e unha calibración

paramétrica mediante AMIGO2. O termo CBD(t) foi obtido mediante medicións

experimentais a certos tempos e representa a área cuberta por células mortas ou

danadas.

O modelo 1D obtido permite reproducir dun xeito fiable a dinámica da cepa L1A1

con gran acordo entre os datos numéricos e os datos experimentais, tanto cualitativa

como cuantitativamente. Na figura 3.3 pódese observar o cambio drástico na

evolución da biopeĺıcula cos cambios realizados para o modelo 3. No primeiro lugar,

o crecemento da biomasa retárdase, alcanzando o seu máximo ao redor das 100

horas. Por outra banda, o consumo de nutrientes redúcese e o mecanismo de bloqueo

evita que desaparezan todos os nutrientes do sistema. Tamén se pode observar o

desprendemento masivo que ten lugar na etapa final.

Os modelos 1D ofrecen bos resultados para o caso da cepa L1A1, pero non permiten

reproducir outras estruturas complexas. É por iso que é necesario desenvolver mod-

elos en dimensións superiores. Neste aspecto, este traballo presenta un modelo 2D

modificando axeitadamente o modelo proposto por Alpvist e Klapper [1], de forma que
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se inclúen as nocións aprendidas no caso 1D. Aśı, obtemos o modelo 2D adimensional

−∇2S = −V1ĥ
2
TS en Ωτ

Ĥb
, (15)

−∇2P = V1Ψ̂S − V1FD(V2) en Ωτ
1, (16)

~U = −∇P en Ωτ
1, (17)

∂τΦ + (~Ue · ~n)||∇Φ|| = 0 en Ω, (18)

∂τV1 −∇P · ∇V1 = V1

[
Ψ̂S − (FD(V2) + ε2)− V1(Ψ̂S −FD(V2))

]
en Ωτ

1, (19)

∂τV2 −∇P · ∇V2 = V1ε2 − V2

(
V1Ψ̂S − V1FD(V2)

)
en Ωτ

1, (20)

onde

FD(V2) =
1

1 + exp(Kd(Dmin −mean(V2)))
, (21)

sendo S a concentración de nutrientes, P a presión de expansión, ~U a velocidade de

expansión Φ a función level set, V1 a concentración de biomasa activa e V2 a concen-

tración de biomasa inerte. Estas ecuacións resólvense nos dominios evolutivos Ωτ
1

(rexión con biomasa) e Ωτ
Ĥb

( rexión de consumo de nutrientes), nos que se establecen

condicións de contorna axeitadas que, xunto coa asunción de condicións iniciais

e parámetros derivados do caso 1D, permiten obter resultados de relevancia que

reproducen cualitativamente as fases iniciais de diversas cepas de L. monocytogenes.

O modelo 2D entraña unha complexidade superior, polo que na súa resolución

están involucradas técnicas numéricas avanzadas. En particular, este traballo fai

énfase no método Level Set, un método para seguir a evolución de fronteiras libres

e que permite, dun xeito sinxelo, traballar coa mesma malla, pero con dominios

evolutivos. Ademais, outras técnicas numéricas eficientes foron empregadas: método

Crank-Nicolson para a discretización temporal, diferencias finitas modificadas co

método de Gibou [36] ou diferencias finitas descentradas para a discretización

espacial, método de Newton para traballar cos termos no lineais, etc. Todas estas

técnicas numéricas foron implementadas desde cero en C++.
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A validación cualitativa do modelo 2D baséase en diferentes traballos presentes na

literatura:

• Para validar os resultados relativos a cepas chás de L. monocytogenes, empreg-

amos o aprendido no caso 1D, inclúındo os parámetros calibrados correspon-

dentes.

• O modelo de Alpkvist proporcionou como resultado unha dinámica chá, pero

demasiado rápida, que non se correspond́ıa co comportamento esperado. O

modelo modificado retarda esa dinámica dando lugar a resultados moito máis

realistas.

• A manipulación das condicións iniciais e dos parámetros involucrados permite

reproducir a dinámica de outras cepas de L. monocytogenes dando lugar a es-

truturas con canles, agrupacións ou de tipo panal.

O presente traballo estabécese como unha contribución nova ao modelado e a simu-

lación numérica de biopeĺıculas. Por iso, estudamos algúns modelos de biopeĺıculas

relevantes presentes na literatura e analizado a súa calibración cos resultados

experimentais obtidos no laboratorio. É esta análise a que motiva a introducción

de novos modelos 1D e 2D que son capaces de reperesentar dun xeito máis realista

os resultados experimentais observados e as dinámicas esperadas de varios biofilms

formados por cepas de L. monocytogenes. Do mesmo xeito, este traballo podese

entender como un modesto paso na compresión dos mecanismos que interveñen no

ciclo vital de certas biopeĺıculas grazas ao uso de ferramentas relevantes do modelado

matemático e simulación numérica.

Aśı pois, o resultado deste traballo é, partindo dun modelo 1D presente na literatura

[26] e validado por resultados da análise matemática [28], a obtención dun modelo

1D novo que reflicte a evolución cualitativa e cuantitativa da cepa L1A1 con

gran precisión. Do mesmo xeito, aplicando os coñecementos adquiridos do caso

unidimensional, obtivemos un modelo 2D que premite reproducir as estruturas
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formadas nas fases de crecemento por diferentes cepas de L. monocytogenes, todo iso

mediante técnicas numéricas refinadas e de gran eficiencia.

Este traballo estruturase en dúas partes

Na Parte I centrámonos no estudo e desenvolvemento de varios modelos unidi-

mensionais. En particular, enfocámonos nos modelos continuos deterministas. Os

modelos deterministas de reacción-difusión (RDM) teñen como vantaxe a posibil-

idade de ser reproducidos [105]. Ademais, este tipo de modelos pode ser resolto

con técnicas numéricas avanzadas que garanten a eficiencia computacional requerida

para unha identificación do modelo mediante técnicas de optimización [3, 102]. O

Caṕıtulo 1 serve, por unha banda, como introducción ao modelado de biopeĺıculas

e, por outra, como presentación de varios pobles modelos de reacción-difusión para

describir o sistema formado por biopeĺıclas de L. monocytogenes. Os modelos

candidatos incorporan diversos mecanismos de crecemento, consumo de nutrientes

e desprendemento. CAda modelo axustase aos datos medidos cun axuste de datos

mediante técnicas de optimización. A elección do modelo óptimo reaĺızase atendendo

ao mellor compromismo entre o núimero de parámetros descoñecidos e a súa

capacidades para reproducir cuantitativamente as medicións experimentais.

O Caṕıtulo 2 describe os métodos e técnicas numéricas e amosa os pasos necesarios

para construir os sistémas numéricos. O método de Crank-Nicolson en diferenzas

finitas xunto cun esquema centrado en espacio, resulta no sistema numérico non

lineal completamente discretizado, que se resolve a través do sistema lineal obtido

tras aplicar un método de Newton. Estes métodos numéricos foron elixidos para que

o tempo computaciónal sexa reducido e a solución numérica sexa eficiemtemente

calculada, tal e como se discute no traballo recente [7]. O caṕıtulo 2 amosa tamén a

resolución dalgúns tests académicos que permiten validar os métodos aplicados.
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O Caṕıtulo 3 amosa os resultados numéricos dos distintos modelos, aśı como unha

comparación entre os resultados numéricos obtidos cos modelos e as medicións

experimentais correspondentes, de xeito que se validen os modelos e os métodos

numéricos empregados desde o punto de vista biolóxico. O foco da discusión é o

modelo máis satisfactorio, ainda que outros candidatos intermedios foron tamén

analizados no traballo recente [9].

A Parte II segue un camiño similar, enfocado no estudo e desenvolvemento de

varios modelos bidimensionais. Do mesmo xeito que no caso 1D, traballamos con

modelos continuos deterministas, pero engadindo as celulas danadas o mortas como

segunda especie biolóxica e substitúındo o proceso de difusión por un proceso de

advección que regula a evolución da biopeĺıcula. O Caṕıtulo 4 serve como explicación

da necesidade de empregar modelos bidimensionais no modelado de biopeĺıculas

para capturar as diferentes heteroxeneidades espaciais que unha biopeĺıcula pode

desenvolver. Tras isto, presenta os diferentes modelos estudados e desenvolvidos.

O Caṕıtulo 5 amosa a estratexia numérica empregada na resolución dos modelos

bidimensionais propostos. Dado o aumento na complexidade do sistema, son

necesarios novos métodos numéricos con maior eficiencia e sofisticación. Ainda

que nos mantemos no marco das diferenzas finitas, empregamos un método upwind

modificado mediante a estratexia proposta por Gibou et al. [36] xunto co método de

Level Set [89], esquemas WENO [48], esquemas Crank-Nicolson e un algoritmo de

Newton para os sistemas completamente discretos non lineais.

Para rematar, o Caṕıtulo 6 amosa os resultados numéricos obtidos nos diferentes

modelos, analizando a súa precisión de xeito que sexan validados desde o punto de

vista biolóxico.

O Anexo A resume alguns resultados da análise teórica do modelo de Eberl que
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aparecen no traballo recente de Efendiev, Eberl e Zelik [28].

O Anexo B presenta unha explicación breve das técnicas de optimización inclúıdas na

ferramenta AMIGO2 [5], unha ferramenta de alto nivel para MATLAB empregada

no proceso de calibración de parámetros.

Finalmente, inclúese un apartado de Conclusións que aglutina os resultados máis

importantes da tese, as conclusión máis relevantes e as liñas futuras a seguir.
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