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Abstract  

Ontology matching consists of finding the semantic relations between different ontologies and is widely 

recognized as an essential process to achieve an adequate interoperability between people, systems or 

organizations that use different, overlapping ontologies to represent the same knowledge. There are several 

techniques to measure the semantic similarity of elements from separate ontologies, which must be 

adequately combined in order to obtain precise and complete results. Nevertheless, combining multiple 

similarity measures into a single metric is a complex problem, which has been traditionally solved using 

weights determined manually by an expert, or through general methods that do not provide optimal results. In 

this paper, a genetic algorithms based approach to aggregate different similarity metrics into a single function 

is presented. Starting from an initial population of individuals, each one representing a combination of 

similarity measures, our approach allows to find the combination that provides the optimal matching quality.  
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1. Introduction  

At present, the role of ontologies as the essential artifact for allowing a more effective data and 

knowledge sharing and reusing in the Semantic Web [1] is widely recognized [2] and a variety of 

public ontologies exist for different areas. This innovative knowledge representation method is 

considered to be an appropriate solution to the problem of heterogeneity in data, since ontological 

methods make it possible to reach a common understanding of concepts in a particular domain, 

supporting the exchange of information between people (or systems) that utilize different 

representations for the same or similar knowledge [3, 4].    

 

Nevertheless, given that different tasks or different points of view usually require different 

conceptualizations, utilizing a single ontology is neither always possible nor advisable. This can 

lead to the usage of different ontologies, although in some cases they might contain information 

that could be overlapping. This, in turn, represents another type of heterogeneity that can result in 

inefficient processing or misinterpretation of data, information, and knowledge. Addressing this 

problem requires to find the correspondences, or mappings, that exist between the elements of the 

different ontologies being used. This process is commonly known as ontology matching, mapping 

or alignment [5]. The resulting set of inter-ontology relations can be used to adequately exchange 

information between people, systems and organizations.  

 

During the last years, multiple ontology alignment techniques have been conceived to identify 

these correspondences [6]. These methods are based on computing a similarity (or distance) value 

between elements of different ontologies. When computing the ontology alignment between two 

ontologies, it is frequently to use several ontology alignment techniques, based on different 

similarity approaches (e.g. lexical similarity, structural similarity, etc.) and then aggregating them 

into a unique similarity value. However, calculating the optimal similarity aggregation is a 

computationally expensive task that requires new, more efficient methods to get precise and 

complete alignments [5, 7, 8].  

 

In this work, we propose an approach based on genetic algorithms (GAs) to ascertain how to 

combine multiple similarity measures into a single aggregated metric, in order to provide the 

optimal matching result. Our work can be useful to automatically tune an ontology matching 

system in environments where a reference matching is provided.  

 

Qazvinian et al. [9] are among the small number of authors who have tried, up to the moment, 

to apply GAs to the ontology matching task. They considered ontology matching as an 

optimization problem in which the objective is maximizing the overall similarity value between 

the input ontologies, and they used a GA to find the optimal mapping. In a similar way, another 

interesting approach to ontology matching by using GAs is GAOM [10]. In this work, ontology 

features are defined from two aspects: intensional and extensional, and the ontology matching 

problem is modeled as a global optimization of a mapping between two ontologies. Then GAs are 

used to achieve an approximate optimal solution.  

2. A New Approach to Optimize Similarity Aggregation  

In this section, a genetic algorithm to find the optimal aggregation of multiple similarity 

measures is presented. The GA starts from a randomly generated aggregation of similarity 

measures (set of weights), and tries to find the weights that optimize the global matching quality. 

In order to reliably describe the proposed strategy, it is necessary to define the following elements 

(see Fig. 1):  

  



 
 

 
Fig. 1. Graphical representation of the ontology matching problem. The figure shows the taxonomy of two ontologies (A 

and B), and a set of semantic mappings (sij) between them. 

 A and B are two ontologies with n and m elements (entities) respectively. A is composed by the 

entities a1,...,an while B has the entities b1,..., bm .  

 

 S is an existing set of semantic mappings or correspondences sij between A and B, being sij a 

semantic mapping between the entity ai from A and the entity bj from B, with 0 < i ≤ n and 0 < j 

≤ m .   

 

 F = {F1(ai,bj),...,Fp(ai,bj)}= {F1(sij),...,Fp(sij)} is a set composed by p functions, or ontology 

matching metrics, to compute a value of semantic similarity (in the [0, 1] interval) between 

pairs of entities from separate ontologies. 

 

 t is a similarity threshold belonging to the interval [0, 1], which indicates the minimum 

similarity value required to consider that exists a semantic correspondence between two 

different entities. 

 

 𝐹𝑎𝑔𝑔(𝑎𝑖 , 𝑏𝑗) = ∑ 𝑤𝑘 · 𝐹𝑘(𝑎𝑖 , 𝑏𝑗), with
𝑝
𝑘=1  ∑ 𝑤𝑘 = 1

𝑝
𝑘=1  , is a function to compute an 

aggregated similarity value between two entities. This function combines the similarity values 

provided by p different similarity functions into a single value belonging to the interval [0, 1]. 

The aggregation is based on the values of a set of p weights wk, which quantify the contribution 

of each separate similarity measure to the aggregated value. 

 

 Q(S)→[0,1] is a function that measures the quality of a set of semantic correspondences 

between two ontologies. A good example of quality measure is the f-measure metric, which 

considers both the precision and the recall to compute the score. 

 

The approach is addressed to find the values of the weights wk that maximize the quality of the 

matching between the input ontologies A and B, that is, the function Q(S). The obtained set of 

weights could be subsequently used to compute the matching of ontologies with similar 

characteristics, or belonging to the same domain as the ontologies whose matching was selected as 

a reference. 

2.1 Encoding Mechanism and Initialization 

Each individual in the population represents a potential solution to the problem, that is, a set of 

weights wk that indicate the contribution of each similarity metric to the aggregated similarity 

function. We propose an encoding mechanism based on that each position in the chromosome 

contains a value in the interval [0, 1], which represents a cut, or separation point that limits the 



value of a weight (remember that the summation of all weights is equal to 1). Considering that p is 

the number of required weights, the set of cuts could be formally represented as C’ = {c1’, …, cp-

1’}. The chromosome decoding is carried out by ordering C’ from lower to higher, which 

constitutes the ordered set of values C = {c1, …, cp-1}, and calculating the weights according to the 

following expression: 

 

𝑤𝑘 = {

𝑐1 𝑘 = 1
𝑐𝑖 − 𝑐𝑖−1, 𝑙 < 𝑘 < 𝑝

𝑙 − 𝑐𝑝−1, 𝑘 = 𝑝
 

 

A graphical representation of the chromosome and the decoded values is presented in Fig. 2, 

while Fig. 3 shows an example that can be useful to understand the decoding mechanism. 

 
 

 

Fig. 2. Graphical representation of a chromosome and the set of weights obtained after decoding it. 

Each gene in the chromosome contains a value belonging to the interval [0, 1] that represents a 

cut, or separation point between weights. C’ = {c1’, …, cp-1’} is an unordered set of cuts, while C = 

{c1, …, cp-1} is the result obtained after ordering C’ from lower to higher. W = {w1, …, wp} is the 

set of weights that constitute the solution to the problem. 

 
 

 

Fig. 3. Example of a specific individual and the weights obtained after decoding it. In this 

example, 7 different weights were considered. 

  



2.2 Reproduction Methods 

To go from one generation to the next one, we suggest using the following operators: 

 

 Selection. We propose to use a roulette wheel selection method, which consists in that 

individuals are given a probability of being selected that is directly proportionate to their 

fitness, so the best individuals will have more opportunities of reproduction. Two individuals 

are then chosen randomly based on these probabilities and produce offspring. 

 Crossover. Crossover will use a non-destructive strategy, in such a way that the descendants 

will pass to the following generation only if they exceed the fitness of their parents. A single-

point crossover will be used, which consists in randomly selecting a crossover point on both 

parent chromosomes and then interchanging the two parent chromosomes to produce two new 

offspring. 

 Copy. The best individual from one generation will be also copied to the following generation 

(elitist strategy). This decision has been taken to keep the best set of weights (best solution) 

that has been obtained up to the moment. 

 Mutation. When the crossover has been achieved, genes will be mutated with a low 

probability. This mutation will consist in replacing the selected gene by a randomly generated 

one. 

2.3 Fitness Function 

For the smooth running of a GA, it is necessary to have a method that allows to show if the 

individuals of the population are or are not good solutions to the problem. That is the aim of the 

fitness or objective function. As our fitness function, we propose to use the f-measure [11], which 

is the uniformly weighted harmonic mean of precision and recall. F-measure will be used as the 

reference quality metric, in such a way that we will consider that the best alignment is the 

alignment with highest f-measure.   

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ·
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

2.4 Stop Criterion 

We propose to use a hybrid stop criterion: the GA will stop when one of the following 

conditions is true: (1) A fixed number of iterations have been reached; (2) The value for the fitness 

function is higher than a particular threshold. 

3 Execution Example 

In this section we provide a “toy” example with two small ontologies, which can be useful to 

understand how the proposed GA works. We will assume that: 

 

 A and B are two ontologies from a specific domain. Both ontology A and ontology B have 3 

entities (n = 3, m = 3). 

 S is the reference matching between A and B. In this example S = {s12, s33}, that is, it will be 

supposed that there is a semantic mapping between the pairs of entities (a1, b2) and (a3, b3), as 

shown in Fig. 4. We will also suppose that there are some similarity between the entities (a1, 

b1) and (a2, b2) , but not enough to be considered semantic mappings. 

 F = {F1(sij), F1(sij), F2(sij), F3(sij), F4(sij), F5(sij)}is a set composed by fivedifferent similarity 

functions. We need to aggregate the similarity valuesprovided by these functions into a single 

measure. We will also suppose that thefunctions F3(sij) and F5(sij) ,due to the particular 

characteristics of A and B, arenot adequate to align them, so they will not provide reliable 

similarity values. 



 The similarity threshold t is set to 0.7, which means that the algorithm will consider that exists 

a mapping between a pair of entities (ai, bj) if the similarity function for such entities provides 

a value higher than 0.7. We will also suppose that the algorithm will finish if the value of the 

fitness function is higher than 0.8 (stop criterion). 

 
 

 
Fig. 4. Graphical view of ontologies A and B, and the reference matching S (gold standard) 

Considering the previous information, the aggregated similarity function would be: Fagg(ai,bj) = 

w1 ⋅ F1(sij) + w2 ⋅ F2(sij) + w3 ⋅ F3(sij) + w4 ⋅ F4(sij) + w5 ⋅ F5(sij) , with w1 + w2 + w3 + w4 + w5 =1. 

The GA will be used to find the values of weights w1, w2, w3, w4 and w5 that provide the optimal 

matching. 

 

Firstly, it is necessary to compute the values of similarity for the n x m possible 

correspondences between A and B, according to the five different similarity functions. In this 

example, we will suppose that the results of this computation are the ones in Table 1. Remember 

that it has been supposed that the correct mappings are s12 and s33, and that F3(sij) and F5(sij) are 

not adequate to align the given ontologies, so they are not able to identify s12 and s33 as the valid 

mappings. 

Table 1. Results of initial similarity computation 

 s11 s12 s13 s21 s22 s23 s31 s32 s33 

          

F1(sij) 0.56 0.93 0.12 0.05 0.66 0.31 0.08 0.18 0.97 
F2(sij) 0.65 0.99 0.20 0.03 0.68 0.49 0.03 0.23 0.81 

F3(sij) 0.11 0.17 0.23 0.41 0.56 0.11 0.65 0.09 0.21 

F4(sij) 0.72 0.72 0.44 0.50 0.45 0.11 0.01 0.13 0.98 
F5(sij) 0.77 0.28 0.81 0.74 0.98 0.79 0.87 0.17 0.09 

          

 

 

 

 

  



The following step would be to generate the initial population. In this case, it is composed by 

10 randomly generated individuals, which are shown in Table 2. 

Table 2. Initial population (first generation) 

Individual Values Individual Values 

          

1 0.37 0.62 0.23 0.43 6 0.30 0.27 0.92 0.71 
2 0.32 0.08 0.07 0.56 7 0.69 0.22 0.17 0.94 

3 0.53 0.91 0.11 0.73 8 0.22 0.66 0.45 0.21 

4 0.65 0.63 0.01 0.70 9 0.20 0.14 0.25 0.12 
5 0.86 0.19 0.59 0.21 10 0.85 0.53 0.41 0.19 

          

 

The next step would be to calculate the fitness value for each individual. Each chromosome is 

decoded in order to obtain the values for the 5 weights (see Table 3). 

Table 3. Weights for the 1st generation, obtained after decoding the chromosomes in Table 2 

Individual w1 w2 w3 w4 w5 

      
1 0.23 0.14 0.06 0.19 0.38 

2 0.07 0.01 0.24 0.24 0.44 

3 0.11 0.42 0.20 0.18 0.09 
4 0.01 0.62 0.02 0.05 0.30 

5 0.19 0.02 0.38 0.27 0.14 

6 0.27 0.03 0.41 0.21 0.08 
7 0.17 0.05 0.47 0.25 0.06 

8 0.21 0.01 0.23 0.21 0.34 

9 0.12 0.02 0.06 0.05 0.75 
10 0.19 0.22 0.12 0.32 0.15 

      

 

The obtained weights are then used to compute the aggregated similarity value for each 

possible correspondence. These values are shown in Table 4. As an example, the aggregated value 

for the correspondence (a1, b1) and the weights obtained after decoding the individual 1, would be 

calculated as: 

 

𝐹𝑎𝑔𝑔(𝑎1, 𝑏1) = 𝑤1 · 𝐹1(𝑠11) + 𝑤2 · 𝐹2(𝑠11) + 𝑤3 · 𝐹3(𝑠11) + 𝑤4 · 𝐹4(𝑠11) + 𝑤5 · 𝐹5(𝑠11)

= 0.23 · 0.56 + 0.14 · 0.65 + 0.06 · 0.11 + 0.19 · 0.72 + 0.38 · 0.77 = 0.66 

  



Table 4. Aggregated similarity values for the initial population. The table also shows the mappings that exceed the 
similarity threshold (0.70), which are used to calculate the fitness value for each individual. 

Ind. Fagg11 Fagg12 Fagg13 Fagg21 Fagg22 Fagg23 Fagg31 Fagg32 Fagg33 Mappings Fitness 

            
1 0.66 0.61 0.46 0.42 0.74 0.47 0.39 0.17 0.57 s22 - 

2 0.58 0.41 0.53 0.55 0.73 0.43 0.55 0.14 0.40 s22 - 

3 0.56 0.71 0.30 0.26 0.64 0.35 0.23 0.17 0.67 s12 0.67 
4 0.68 0.75 0.39 0.27 0.76 0.55 0.29 0.20 0.59 s12, s22 0.50 

5 0.46 0.49 0.35 0.40 0.61 0.25 0.39 0.13 0.56 - - 

6 0.43 0.52 0.29 0.35 0.60 0.23 0.36 0.13 0.59 - - 
7 0.41 0.48 0.30 0.37 0.58 0.20 0.38 0.13 0.55 - - 

8 0.56 0.49 0.45 0.46 0.70 0.39 0.46 0.15 0.50 - - 

9 0.70 0.39 0.66 0.61 0.88 0.65 0.70 0.17 0.26 s22 - 
10 0.61 0.69 0.36 0.34 0.63 0.33 0.23 0.16 0.71 s33 0.67 

            

 

The correspondences with a similarity value higher than the given threshold (0.7) are 

considered valid semantic mappings. Using these mappings and the reference matching (gold 

standard), the fitness value (f-measure) is calculated. There are two individuals (3 and 10) that 

provide a fitness value of 0.67, but this value is not enough to stop the algorithm according to the 

fitness threshold that has been set (0.8). As a consequence, the next step is to select the individuals 

that will reproduce themselves to create the next generation.  

 

The individuals that form the second generation are shown in Table 5. According to an elitist 

strategy, the individuals 3 and 10 are copied to the second generation (they are named 11 and 12). 

We suppose that the roulette selection method selects the individuals 3 and 10 to reproduce 

themselves and that a single-point crossover is applied between genes 1 and 2, giving as a result 

individuals 13 and 14; in the middle point (individuals 15 and 16); and between genes 3 and 4 

(individuals 17 and 18). Individuals 19 and 20 are obtained by mutating one gene from the 

individuals 3 (gene 1) and 10 (gene 2), respectively. The corresponding weights are shown in 

Table 6.    

Table 5. Second generation 

Individual Values Individual Values 

          
11 0.53 0.91 0.11 0.73 16 0.85 0.53 0.11 0.73 

12 0.85 0.53 0.41 0.19 17 0.53 0.91 0.11 0.19 

13 0.53 0.53 0.41 0.19 18 0.85 0.53 0.41 0.73 
14 0.85 0.91 0.11 0.73 19 0.25 0.91 0.11 0.73 

15 0.53 0.91 0.41 0.19 20 0.85 0.87 0.41 0.19 

          

 

  



Table 6. Weights for the 2nd generation, obtained after decoding the chromosomes in Table 5 

Individual w1 w2 w3 w4 w5 

      
11 0.11 0.42 0.20 0.18 0.09 

12 0.19 0.22 0.12 0.32 0.15 

13 0.19 0.22 0.12 0.00 0.47 
14 0.11 0.62 0.12 0.06 0.09 

15 0.19 0.22 0.12 0.38 0.09 

16 0.11 0.42 0.20 0.12 0.15 
17 0.11 0.08 0.34 0.38 0.09 

18 0.41 0.12 0.20 0.12 0.15 

19 0.11 0.14 0.48 0.18 0.09 
20 0.19 0.22 0.44 0.02 0.13 

      

 

Table 7. Aggregated similarity values, mappings and fitness for the second generation 

Ind. Fagg11 Fagg12 Fagg13 Fagg21 Fagg22 Fagg23 Fagg31 Fagg32 Fagg33 Mappings Fitness 

            

11 0.56 0.71 0.30 0.26 0.64 0.35 0.23 0.17 0.67 s12 0.67 

12 0.61 0.69 0.36 0.34 0.63 0.33 0.23 0.16 0.71 s33 0.67 
13 0.62 0.55 0.48 0.41 0.80 0.55 0.51 0.18 0.43 s22 - 

14 0.59 0.80 0.26 0.17 0.68 0.43 0.18 0.20 0.70 s12 0.67 

15 0.61 0.71 0.33 0.32 0.60 0.29 0.18 0.16 0.77 s12, s33 1 
16 0.56 0.68 0.32 0.27 0.67 0.39 0.28 0.18 0.62 - - 

17 0.49 0.54 0.35 0.40 0.58 0.22 0.31 0.13 0.62 - - 

18 0.53 0.66 0.29 0.28 0.67 0.34 0.30 0.16 0.67 - - 
19 0.40 0.48 0.30 0.36 0.61 0.25 0.41 0.13 0.51 - - 

20 0.41 0.52 0.28 0.30 0.66 0.32 0.42 0.15 0.49 - - 

            

 

The aggregated similarity values for the second generation are shown in Table 7. It is possible 

to see that the individual 15 has a fitness value of 1, which is the maximum value for the fitness 

function. Having reached this value, the GA stops (according to the stop criterion). The GA has 

provided the following solution to the problem, obtained after decoding the individual 15: 

 

𝑤1 = 0.19; 𝑤2 = 0.22; 𝑤3 = 0.12; 𝑤4 = 0.38; 𝑤5 = 0.09 
 

Given these weights, the aggregated similarity function for this example would be calculated 

according the following expression: 

 

𝐹𝑎𝑔𝑔(𝑠𝑖𝑗) = 0.19 · 𝐹1(𝑠𝑖𝑗) + 0.22 · 𝐹2(𝑠𝑖𝑗) + 0.12 · 𝐹3(𝑠𝑖𝑗) + 0.38 · 𝐹4(𝑠𝑖𝑗) + 0.09 · 𝐹5(𝑠𝑖𝑗) 

 

As it can be observed, this function gives a low weight to the functions F3(sij) and F 5(sij ). We 

had supposed that F3 and F5 were not reliable, so the result provided by the approach makes sense. 

Using this function, we could align any pair of ontologies with similar characteristics to A and B. 

4 Conclusion and Future Research 

Although a lot has been done towards tackling ontology matching, the research community still 

reports open issues that impose new challenges for researchers and underline new directions for 

the future. One of these issues, which represents an emerging research area, is the aggregation of 

different similarity measures into a single one. In this work, we have proposed a GA-based 

approach to combine different measures into a single metric, optimizing the quality of the 

matching results. The presented GA can be useful to automatically configure the similarity 

aggregation process in ontology matching systems addressed to provide precise and complete 



results in domains that require rapid processing. Through a simple example, we have showed how 

the GA can find the similarity combination that provides an optimal matching result between two 

ontologies.  

 

The most immediate future work is to embed our GA into a real existing ontology matching 

system that achieves similarity aggregation in a traditional manner (i.e., either through manual, 

user-based aggregation or by means of general methods), in order to measure the improvement of 

matching quality. We are also interested in extending our theory and mechanisms for providing an 

ontology matching system with full self-configuration capabilities, in order to obtain good results 

in dynamic environments that require immediate response, without requiring user interaction.  
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