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Abstract

In this master thesis a mathematical model for an acoustic P-U probe
is stated and solved numerically. Firstly, the acoustic problem stated in
a bounded domain is studied, and then this analysis is extended to an
unbounded domain. The acoustic governing equation used in all cases is the
Helmholtz equation. Throughout this master thesis, the data associated to
boundary conditions are given by a monopole solution and plane waves of
di�erent heading angles. Moreover, the Perfect Matched Layers technique
is used to simulate the free �eld conditions. Any of the acoustic problems
described in this work are discretized by means of the Finite Element
Method, which is implemented in a computer code using the Python library,
FEniCS. Finally, the optimization of the geometry of the P-U probe is made
and the numerical results are shown in detail.

Keywords: Acoustic probe, Perfect Matched Layers, Finite Element
Method, mathematical modelling, numerical simulation, parametric
optimization.
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Introduction

The Micro�own device (see [8]) is the only Micro-Electro-Mechanical-System
(MEMS) acoustic sensor that measures the particle velocity instead of the
sound pressure, as conventional microphones usually do. Due to the heating
of two microscopical wires placed in parallel, this sensor can quantify the
velocity of air particles, which, combined with a pressure microphone, allows
us to describe completely the sound �eld [7].

This characteristic sensor supports innovative products used in diverse
acoustic applications, such as sound source location, airborne transfer path
analysis and panel contribution analysis, in situ determination of acoustic
properties, non-contact vibration measurements or micropore leak-testing [7].

The company

The enterprise that develops and markets these acoustic testing systems is
Micro�own Technologies. Located in Arnhem, a city situated in the eastern
part of the Netherlands, it is a technological company that sells its products
and services to an extensive range of market segments such as aerospace,
automotive, appliances, manufacturing industries and defence industry. As
it is said in [7] �within the industry, Micro�own based testing methods are

used from the development of new prototypes till the end of line acoustic

quality testing during manufacturing�.

The problem

One of the devices conceived by the company is a P-U probe [8] that
means that both, the pressure and the particle velocity, are measured.
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2 Introduction

Experimentally, it was proven that its structure a�ects the transducers
sensitivity, which is improved when a local increment of the gain associated
to the particle velocity is produced. In order to upgrade it, the aim of
this master thesis is the optimization of the geometry of the probe using
a Finite Element Method (FEM) simulation framework. In addition, the
behaviour of the device will be studied, namely, the frequency response
of the velocity and the pressure �eld and their directivity patterns. The
numerical results obtained in the simulations will be also compared with
experimental measurements.

During the �rst chapter some basic acoustic concepts are described (see
references [5] and [9]) under the assumption of time dependency and also in
the frequency domain. Moreover, the description of the scattering problem
(see reference [4]) is also introduced in this chapter. Then, in Chapter 2, the
acoustic models stated are described in detail. First, an acoustic problem
stated in a bounded domain is introduced for both cases, with and without
viscosity. These are preliminary academic problems, easier to be solved than
the acoustic problem stated in an unbounded domain. The technique used
to deal with unbounded domains is the Perfect Matched Layers [1].

Once the acoustic models are stated, the following step is solving them
using the Finite Element Method (see reference [1]), which is implemented
by using a FEniCS�Python code [6]. This computer code has been validated
with some test examples described in Chapter 5. As it has been mentioned
above, the programming language used in this master thesis has been
Python. It is a free interpreted software, which allows the users to
implement easily and e�ciently object-oriented codes. Another of their
characteristics is the extension facility: it is easy to write new modules for
Python, even using C or C++.

Furthermore, there are some modules included in Python, which can
be loaded as libraries to obtain enriched capabilities. Some examples are
NumPy [11], with advanced maths functions, matplotlib [3], used for data
analysis or plotting, and FEniCS, which has been used to implement the
�nite element method.

Finally, thanks to the use of the free design software Salome (see
reference [2]), di�erent geometries of the P-U probe have been de�ned.
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These geometrical con�gurations have been obtained varying the values of
a number of discrete parameters. The optimization has been performed
by using a sweeping procedure in a range of physical feasible values. The
numerical results obtained in this parametric optimization are fully described
in Chapter 6. Finally, some �nal remarks are included in the conclusion
chapter.
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Chapter 1

Acoustics background

According to [5], �acoustics is the science of sound, that is, wave motion

in gases, liquids and solids, and the e�ects of such wave motion.� In this
chapter, some basic concepts will be explained in order to easy the reading of
this master thesis and its full comprehension. Most of the de�nitions included
are based on [9]. First, the time dependent de�nitions will be introduced,
and then, those ones which related to the frequency domain.

1.1 Time domain

Since the aim of this work is focused on the numerical simulation of the
pressure and velocity �elds for an acoustic intensity probe, which allows us
improve its gain associated to the measurements of the particle velocity, it
is necessary to de�ne the acoustic concepts associated to that problem.

The �rst physical concept to be presented is the pressure one:

De�nition 1.1.1. The acoustic pressure P is the disturbance with respect
to the equilibrium state in the ambient, which depends on time and it is
caused, usually by a sound wave. The unit in the International System (SI)
are Pascals [Pa] (see Ref. [9]).

To describe completely the mathematical model associated to the acoustic
propagation phenomena, it is also necessary to introduce the displacement
and the velocity �elds.

De�nition 1.1.2. The acoustic displacement Ξ describes the
displacement variations of a sound �eld, i.e., of a region where sound waves

5



6 Acoustics background

are propagated, with respect to the equilibrium state. The SI units are meters
[m] (see Ref. [9]).

The particle velocity is de�ned straightforwardly as the time-derivative of
the displacement. It is denoted by U , and the units in the SI are meters per
seconds [m/s]. Another important concept to be introduced is the intensity
of the sound �eld:

De�nition 1.1.3. The intensity I is a magnitude which provides
information about the energy �ux associated with the acoustic wave
propagation. If the pressure and the particle velocity is known, I = PU .

Furthermore, the viscosity concept is also introduced:

De�nition 1.1.4. The viscosity ν of a �uid is the resistance that it is
exerted to �ow. The SI units are Pascals times second [Pa·s].

Taking into account the de�nitions written above, the linear motion
equation of a compressible viscous �uid is given by:

ρ ∂tU − ν∇(divU) = −∇P, (1.1)

where ρ is the mass density in kilograms per cubic meter [kg/m3] and ν
denotes the viscosity. Moreover, the constitutive law for compressible �uids
it is also necessary. It relates pressure and displacement as follows:

∂t P = −ρc2 divU , (1.2)

where c is �uid sound speed [m/s].

1.2 Frequency domain

Once it is assumed a time-harmonic dependency of the acoustic �elds, this
is, supposing to work in the frequency domain, the �rst concepts to be
introducing are frequencies and angular frequencies.

De�nition 1.2.1. Frequency is a name used in physics to denote the
number of waves that pass a �xed point in unit time. Its units are Hertz [Hz].
When this quantity is multiplied by 2π, it is named angular frequency ω,
and its units are radians per second [rad/s] (see Ref. [9]).
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Then, the wave number concept is described:

De�nition 1.2.2. The acoustic wave number (k) provides the number of
times that a wave is vibrating in a distance unit. Its units in the SI are m−1.
It is given by the formula

k =

√
ω2ρ

ρc2 − iων
∈ C.

When the viscosity is not taking in account, the wave number expressions
becomes a positive number: k = ω

c
∈ R.

It is possible to de�ne pressure, displacement and velocity as follows:

P (x, y, z; t) = Re
(
p(x, y, z)eiωt

)
,

Ξ (x, y, z; t) = Re
(
ξ(x, y, z)eiωt

)
,

U (x, y, z; t) = Re
(
u(x, y, z)eiωt

)
,

where p, ξ and u are complex-valued �elds that denote pressure, displacement
and velocity, respectively, in the frequency domain, i the imaginary unit; t,
the time and ω, the angular frequency. From here is easy to deduce that:

U(x, y, z; t) = Re
(
iωξ(x, y, z; t)eiωt

)
and hence

i ωu(x, y, z) = −ω2ξ.

Then, it is possible to write the Equation (1.1) in the frequency domain:

{
ρ i ωu− ν∇(divu) = −∇p,
u = i ωξ,

and writing it using the displacement and pressure �elds:

−ρω2ξ − ν i ω∇(div ξ) = −∇p.

If the divergence of �rst equation is computed, it holds
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−ω2ρ divξ − ν i ω div (∇ (divξ)) = −div (∇p) ,

and using (1.2) in the frequency domain and replacing divξ by −1
ρc2

p:

ω2ρ p+ ν i ω div (∇p) + ρc2 div (∇p) = 0

⇒ ω2ρ p+
(
ρc2 + ν i ω

)
∆p = 0

⇒ −ω2ρ p−
(
ρc2 + ν i ω

)
∆p = 0.

This last equation is known as the acoustic Helmholtz equation:

− ω2ρ p−
(
ρc2 + iων

)
∆p = 0, (1.3)

and it can be rewritten as follows:

−∆p− k2p = 0, (1.4)

where k denotes the wave number.

Finally, the pressure gain or the velocity gain is how is this magnitude
increased with respect to a prescribed reference. They will be computed as
the di�erence between numerical results and some known data. In this work
the gain that is going to be computed is for the sound pressure level and
for the particle velocity level, being a level the logarithm of the ratio of two
physical quantities.

De�nition 1.2.3. The sound pressure level (SPL) is the ratio between
the pressure and its reference value (pref = 2× 10−5Pa):

SPL = 20 log10

(
p

pref

)
,

where p is the modulus of the pressure �eld at a �xed spatial point.

De�nition 1.2.4. The particle velocity level (PVL) is the ratio between
the velocity and its reference value (uref = 2× 10−8m/s):

20PVL = log10

(
u

uref

)
,

where u is the modulus of the velocity at a given spatial point.
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Despite the fact that these two quantities are dimensionless, there is an
unit in acoustics that expresses this amount: its name is Decibels [dB].

In addition, the concepts of monopole source and plane wave is needed to
be described (the monopole equation is used in the validation test problems
described in Chapter 5 and the plane wave is used to obtain the numerical
results in Chapter 6).

De�nition 1.2.5. A monopole is a sound generation mechanism which
emits energy to all direction and it is given by the following Helmholtz
solution with a Dirac's delta source term:

p(x, y, z) =
A√

x2 + y2 + z2
e−i k
√
x2+y2+z2

, (1.5)

where A is the amplitude of the wave.

De�nition 1.2.6. A plane wave is a solution of Helmholtz equation, which
has the following expression:

p(x, y, z) = Ae−ik·(x,y,z), (1.6)

where k represents the wave number vector. This vector has the magnitude
of the wave number, introduced in De�nition (1.2.2), and shows the direction
in which the plane wave if propagating.

Finally, the concept of directivity pattern has to be introduced:

De�nition 1.2.7. The directivity pattern is a characteristic property of
the sound waves which expresses the sound pressure level or the particle
velocity level depending on an angle argument. Its value is computed
by solving an scattering problem and the value of the angle argument
corresponds to the angle of incidence of the plane wave involved in the
scattering problem. It is usually plotted in polar coordinates.

In general, the shape of the directivity pattern is arbitrary. However, the
numerical results obtained in this master thesis show omnidirectional ones,
that means that the SPL values are similar in all directions, and the �eight

shape� pattern, which receives this name because the shape is similar to a
horizontally rotated number eight.
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1.3 Scattering problem

The scattering problem is the name that receives a problem in which a plane
wave impinges into a structure surrounded by a �uid. In order to introduce
the plane wave as a boundary condition, it is necessary to apply a coupling
condition between the �uid and the structure, which means that the normal
displacements on the structure boundary are driven by the normal derivative
of the total pressure �eld. Denoting by pinc the pressure of the incident plane
wave, which impinges on the structure, the following equation is obtained:

ρω2ξ · n =
∂ (p+ pinc)

∂n
,

where, p is the scattering pressure �eld, ξ is the displacement �eld on
the structure, and n is the outward unit normal vector on this boundary.
Moreover, when the structure is considered as a rigid solid then ξ = 0, so

∂p

∂n
= −∂pinc

∂n
.

Consequently, taking into account the Helmholtz equation (see Eq. 1.4),
the scattering problem will be:


−∆p− k2p = 0 in Ω,
∂p
∂n = −∂pinc

∂n on Γ,

+ Sommerfeld radiation condition.

(1.7)

The pressure obtained when this problems is solved, is the scattering
pressure, so to obtain the total pressure �eld it is necessary to add the
one associated to the plane wave. Moreover, as it can be described in the
numerical results of Chapter 6, to compute the gain associated to a structure
it will be used the di�erence between the SPL and the PVL levels associated
to the total pressure �eld p and those ones associated to the incident pressure
�eld pinc.



Chapter 2

Mathematical models

The acoustic models presented in this chapter involve the Helmholtz
equation, this is it assumed that sound �eld have a time-harmonic
dependency. For the sake of simplicity in the exposition, �rst, the acoustic
problems will be stated in bounded domains, using with and without
viscosity, which will be detailed in the �rst section. Then, since the
industrial application of this master thesis involves an acoustic problem at
free �eld conditions, the Helmholtz problem will be stated in an unbounded
domain, where only the problem without viscosity will be considered.

Due to the fact that the pressure p is a complex-valued �eld, and due to
restrictions imposed by the code implementation (described in Chapter 4),
it will be necessary to split it in its real and imaginary parts, this is

p = pre + i pim.

2.1 Modelling acoustic propagation in bounded

domains

Firstly, a three dimensional bounded computational domain is introduced.
The considered consists in a solid structure surrounded by a �uid. Neumann
conditions were imposed in the structure boundary Γs, while Dirichlet

11



12 Mathematical models

conditions were placed in the outer �uid boundary Γout. Both cases, with
and without viscosity, are fully described in the following subsections.

2.1.1 Model without viscosity

The �rst problem to be introduced is the one which does not take in account
the viscosity. The equation that governs this problem is given by Eq. (1.3)
with ν = 0, so the model is:


−ω2ρ p− ρc2∆p = 0 in Ω,
∂p
∂n = g = gre + i gim on Γs,

p = f = fre + i fim on Γout.

(2.1)

Dividing it into its real and imaginary parts. It holds,


−ω2ρ pre − ρc2∆pre = 0 in Ω,

−ω2ρ pim − ρc2∆pim = 0 in Ω,
∂pre
∂n = gre,

∂pim
∂n = gim on Γs,

pre = fre, pim = fim on Γout.

(2.2)

In order to obtain the variational formulation of the problem (2.2), the
complex-valued tests functions will be divided in its real and imaginary parts,
denoted by ϕre and ϕim, respectively. The unknowns �elds pre and pim will
be assumed belonging to the following functional space:

H1 (Ω) =

{
f : Ω→ C :

∫
Ω

|f |2 dV +

∫
Ω

|∇f |2 dV <∞
}

whereas the test functions are in H1(Ω) satisfying the restrictions ϕre|Γout
= 0

and ϕim|Γout
= 0.

Therefore, using the Green's Identity∫
Ω

ψ∆ϕ dV +

∫
Ω

∇ψ · ∇ϕ dV =

∫
∂Ω

ψ (∇ϕ · n) dγ ∀ψ ∈ C1(Ω), ϕ ∈ C2(Ω)

(2.3)
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the weak formulation of the model (2.2) can be written as follows:

{∫
Ω
−ω2ρ pre ϕre dV +

∫
Ω
ρc2∇pre · ∇ϕre dV −

∫
Γs
ρc2 gre ϕre dγ = 0,∫

Ω
−ω2ρ pim ϕim dV +

∫
Ω
ρc2∇pim · ∇ϕim dV −

∫
Γs
ρc2 gim ϕim dγ = 0,

for all ϕre, ϕim ∈H1(Ω) such that ϕre|Γout
= ϕim|Γout

= 0.

Due ϕre and ϕim can be chosen separately, it was possible to sum both
equations in order to get the �nal weak formulation:



Given functions gre, gim ∈ L2(Γs), fre, fim ∈ H
1
2 (Γout) and ω, ρ, c > 0,

�nd pre, pim ∈ H1 (Ω) such that pre|Γout
= fre, pim|Γout

= fim and∫
Ω
−ω2ρ pre ϕre dV +

∫
Ω
ρc2∇pre · ∇ϕre dV +

∫
Ω
−ω2ρ pim ϕim dV+∫

Ω
ρc2∇pim · ∇ϕim dV =

∫
Γs
ρc2 gre ϕre dγ +

∫
Γs
ρc2 gim ϕim dγ

∀ϕre, ϕim ∈ H1 (Ω) with ϕre|Γout
= 0, ϕim|Γout

= 0,

(2.4)

where H
1
2 (Γout) is the trace space of H1-functions on Γout and L2(Γs) is the

following functional space:

L2 (Γs) =

{
f : Γs → C :

∫
Γs

|f |2 dγ <∞
}
.

The weak formulation described above can be rewritten as
A ((pre, pim) , (ϕre, ϕim)) = L (ϕre, ϕim), being

A ((pre, pim) , (ϕre, ϕim)) =

∫
Ω

−ω2ρ pre ϕre dV +

∫
Ω

ρc2∇pre · ∇ϕre dV

+

∫
Ω

−ω2ρ pim ϕim dV +

∫
Ω

ρc2∇pim · ∇ϕim dV

and
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L (ϕre, ϕim) =

∫
Γs

ρc2 gre ϕre dγ +

∫
Γs

ρc2 gim ϕim dγ.

However, it is important to clarify that it is possible to solve (2.2) working
with the real and the imaginary part of the variational problem separately,
because they are not coupled.

2.1.2 Model with viscosity

Secondly, the viscosity coe�cient was introduced in (2.1). In this case, the
main equation of the model is formally equivalent to Eq. (1.3), with ν 6= 0,
but with di�erent constant coe�cients. Then, including in the model the
boundary conditions, the completed problem is given as follows:


−ω2ρ p− (ρc2 + iων) ∆p = 0 in Ω,
∂p
∂n = g = gre + i gim on Γs,

p = f = fre + i fim on Γout.

(2.5)

Separating the pressure in its real and imaginary part and rewriting the
equations to have only real-valued coe�cients it holds,


−ω2ρ pre − (ρc2 ∆pre − ων ∆pim) = 0 in Ω,

−ω2ρ pim − (ρc2 ∆pim + ων ∆pre) = 0 in Ω,
∂pre
∂n = gre,

∂pim
∂n = gim on Γs,

pre = fre, pim = fim on Γout.

(2.6)

In this problem, on the contrary that in the one proposed in Section 2.1,
it was not possible to solve it as two separate di�erent problems, the real
and the imaginary one, since, both parts are coupled.

Once the problem (2.6) was written, the following step was to compute
the variational formulation. As it has been shown in Subsection 2.1.1, the
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solution, and the test function, should be divided into its real and imaginary
parts. Again, the test functions, ϕre, ϕim belong to H1(Ω), satisfying they
are null on Γout.

First, the variational formulation of the real and imaginary part of the
problem was computed separately using the Green's Identity (Eq. (2.3)), as
follows:

∫
Ω

−ω2ρ preϕre dV +

∫
Ω

ρc2∇pre · ∇ϕre dV +

∫
Ω

(−ων)∇pim · ∇ϕre dV =∫
Γs

ρc2greϕre dγ +

∫
Γs

(−ων)gimϕre dγ ∀ϕre ∈ H1 with ϕre|Γout
= 0,

∫
Ω

−ω2ρ pimϕim dV +

∫
Ω

ρc2∇pim · ∇ϕim dV +

∫
Ω

ων∇pre · ∇ϕim dV =∫
Γs

ρc2gimϕim dγ +

∫
Γs

ωνgreϕim dγ ∀ϕim ∈ H1 with ϕim|Γout
= 0.

Finally, adding both expressions, the complete weak formulation was
obtained:



Given functions gre, gim ∈ L2(Γs), fre, fim ∈ H
1
2 (Γout) and ω, ρ, c, ν > 0,

�nd pre, pim ∈ H1 (Ω) such that pre|Γout
= fre, pim|Γout

= fim and∫
Ω

(−ω2ρ) preϕre dV +
∫

Ω
(−ω2ρ) pimϕim dV +

∫
Ω
ρc2∇pre · ∇ϕre dV+∫

Ω
ρc2∇pim · ∇ϕim dV +

∫
Ω

(−ων)∇pim · ∇ϕre +
∫

Ω
ων∇pre · ∇ϕim =∫

Γs
ρc2 gre ϕre dγ +

∫
Γs
ρc2 gim ϕim dγ +

∫
Γs

(−ων) gim ϕre dγ +
∫

Γs
ων gre ϕim dγ

∀ϕre, ϕim ∈ H1 (Ω) with ϕre|Γout
= 0, ϕim|Γout

= 0.

(2.7)

2.2 Modelling acoustic propagation at free �eld

conditions

In order to simulate the acoustic probe, an unbounded domain has to be
introduced. So, the computational domain consisted in the expterior of a
structure surrounded by a �uid occupying the entire three-dimensional space.
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In this case, when the acoustic �elds are computed in unbounded domains,
it is called that the computations are performed at free �eld conditions. The
governing equations involve the Helmholtz equation (see Eq. (1.4)) without
viscosity (k = ω/c). The boundary conditions include a Neumann condition
settled on the boundary of the structure. However, this is not enough to
guarantee that there are not re�ection waves coming from the in�nity. To
avoid it, it is necessary to introduce the Sommerfeld radiation condition:

lim
r→∞

r

(
∂p

∂r
− ikp

)
= 0, (2.8)

where r =
√
x2 + y2 + z2.

Therefore, the problem, which models the acoustic propagation in an
unbounded domains with Neumann boundary conditions is described as
follows:


−∆p− k2 p = 0 in Ω,
∂p
∂n = g on Γs,

lim
r→∞

r

(
∂p

∂r
− ikp

)
= 0.

(2.9)

However, the condition given by (2.8) is not easy to implement directly in
a computer code. For this reason, the radiation conditions has been replaced
by using the Perfect Matched Layer technique.

2.2.1 Perfect Matched Layers

Perfect Matched Layer (PML) (see [1]) is a method to build absorbing
boundary conditions. The idea consists in introducing an outer layer to the
computational domain in order to absorb completely the waves that come
from the structure. This will avoid the spurious re�ections coming from the
outer boundary of a truncated computational domain. Consequently, the
PML technique is used to simulate numerically wave propagation problems
in unbounded domains (this is, to compute the pressure and the particle
velocity �elds at free �eld conditions).

In Figure 2.1 it is shown PML distribution for a Cartesian geometry
in three dimensions. As it can be observed, the PML is divided in seven
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subdomains, which surround the �uid domain. This division is made because
it is necessary to absorb the waves in every direction. If j denotes the
direction where the waves come from (j ∈ {x, y, z}), it is possible to denote
by dj the distance from the origin to the j-inner layer of the PML and by
Lj the distance from the j-inner PML boundary to the j-outer boundary. In
this manner, the di�erent subdomains are de�ned as follows:
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

Ωx = [dx, dx + Lx]× [−dy, dy]× [−dz, dz] ∪
[−dx − Lx, −dx]× [−dy, dy]× [−dz, dz] ,

Ωy = [−dx, dx]× [dy, dy + Ly]× [−dz, dz] ∪
[−dx, dx]× [−dy − Ly, −dy]× [−dz, dz] ,

Ωz = [−dx, dx]× [−dy, dy]× [dz, dz + Lz] ∪
[−dx, dx]× [−dy, dy]× [−dz − Lz, −dz] ,

Ωxy = [dx, dx + Lx]× [−dy − Ly, −dy]× [−dz, dz] ∪
[dx, dx + Lx]× [dy, dy + Ly]× [−dz, dz] ∪
[−dx − Lx, −dx]× [dy, dy + Ly]× [−dz, dz] ∪
[−dx − Lx, −dx]× [−dy − Ly, −dy]× [−dz, dz] ,

Ωxz = [dx, dx + Lx]× [−dy, dy]× [−dz − Lz, −dz] ∪
[dx, dx + Lx]× [−dy, dy]× [dz, dz + Lz] ∪
[−dx − Lx, −dx]× [−dy, dy]× [dz, dz + Lz] ∪
[−dx − Lx, −dx]× [−dy, dy]× [−dz − Lz, −dz] ,

Ωyz = [−dx, dx]× [−dy − Ly, −dy]× [−dz − Lz, −dz] ∪
[−dx, dx]× [−dy − Ly, −dy]× [dz, dz + Lz] ∪
[−dx, dx]× [dy, dy + Ly]× [dz, dz + Lz] ∪
[−dx, dx]× [dy, dy + Ly]× [−dz − Lz, −dz] ,

Ωxyz = [−dx − Lx, −dx]× [−dy − Ly, −dy]× [−dz − Lz, −dz]∪
[−dx − Lx, −dx]× [−dy − Ly, −dy]× [dz, dz + Lz]∪
[−dx − Lx, −dx]× [dy, dy + Ly]× [−dz − Lz, −dz]∪
[−dx − Lx, −dx]× [dy, dy + Ly]× [dz, dz + Lz]∪
[dx, dx + Lx]× [−dy − Ly, −dy]× [−dz − Lz, −dz]∪
[dx, dx + Lx]× [−dy − Ly, −dy]× [dz, dz + Lz]∪
[dx, dx + Lx]× [dy, dy + Ly]× [−dz − Lz, −dz]∪
[dx, dx + Lx]× [dy, dy + Ly]× [dz, dz + Lz].

(2.10)
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Besides, Ω0 denotes the �uid domain:

Ω0 = [−dx, dx]× [−dy, dy]× [−dz, dz]. (2.11)

Each subdomain absorbs one di�erent kind of waves: Ωx, Ωy, and Ωz are
the layers that absorb the waves coming only from the x, y and z directions,
respectively. Ωxy, Ωxz and Ωyz absorb the waves that come from two di�erent
directions, those are indicated by the subscripts in the notation. Finally,
Ωxyz absorbs the waves that come from the three Cartesian directions
simultaneously.

Figure 2.1: Sketch of the PML subdomain con�guration in a three
dimensional domain.

To obtain the partial di�erential equations associated to the PML, it is
necessary to introduce a complex-valued change of variables in the Helmholtz
equation (see Eq. (1.4)). This formal procedure consists in replacing the
partial derivatives ∂

∂x
, ∂
∂y
, ∂
∂z

by 1
γx

∂
∂x
, 1
γy

∂
∂y

and 1
γz

∂
∂z
, respectively, where γx,

γy, γz are given by



20 Mathematical models


γx = 1− iσx(x,y,z)

ω
,

γy = 1− iσy(x,y,z)

ω
,

γz = 1− iσz(x,y,z)
ω

,

(2.12)

being σx, σy and σz the absorption functions of the PML. Those functions
depend on the PML subdomain setting. this is, they are de�ned by

σx(x, y, z) =

{
σ0 if (x, y, z) ∈ {Ωx, Ωxy, Ωxz, Ωxyz},
0 in other case,

σy(x, y, z) =

{
σ0 if (x, y, z) ∈ {Ωy, Ωxy, Ωyz, Ωxyz},
0 in other case,

(2.13)

σz(x, y, z) =

{
σ0 if (x, y, z) ∈ {Ωz, Ωxz, Ωyz, Ωxyz},
0 in other case.

Notice that, throughout this master thesis, the absorbing functions in
(2.13) will be assumed piecewise constant, and in particular, taking the
same constant value σ0 on every PML subdomain. However, the optimal
value for σ0 is strongly dependent on the frequency of the problem and on
the thickness of the PML. Hence, it will be determined numerically (see
Chapters 5 and 6 for a detailed discussion).

When this complex-valued change of variables is introduced in the
Helmholtz equation (1.4), the PML governing equation is obtained:

− 1

γx

∂

∂x

(
1

γx

∂

∂x
p

)
− 1

γy

∂

∂y

(
1

γy

∂

∂y
p

)
− 1

γz

∂

∂z

(
1

γz

∂

∂z
p

)
− k2 p = 0.

In order to get the variational formulation, the whole equation is
multiplied by γxγyγz, and taking into account that each γj coe�cient is
constant in each PML subdomain, it leads to

− ∂

∂x

(
γyγz
γx

∂p

∂x

)
− ∂

∂y

(
γxγz
γy

∂p

∂y

)
− ∂

∂z

(
γxγy
γz

∂p

∂z

)
− k2 γxγyγz p = 0,
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or equivalently, using a tensor form writing,


−div




γyγz
γx

0 0

0 γxγz
γy

0

0 0 γxγy
γz
,

∇p
− k2 γxγyγz p = 0 in Ω,

∂p
∂n = g = gre + i gim on Γs,

p = 0 on Γout.

(2.14)

In what follows, C =


γyγz
γx

0 0

0 γxγz
γy

0

0 0 γxγy
γz

 and M = γxγyγz, which are

described in detail, writing explicitly how the coe�cients depend on the
PML subdomains.

.Ω0: In the �uid subdomain, all the coe�cients are equal to one, i.e., γx =
γy = γz = 1. So, if the matrix are denoted by C0 and M0, it was obtained:

C0 =

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

Re(C0)

, (2.15)

M0 = 1︸︷︷︸
Re(M0)

. (2.16)

.Ωx: In this PML layer, γx = 1 − iσx
ω

while γy = γz = 1. Then, the
coe�cients Cx and Mx are given by

Cx =

 1
γx

0 0

0 γx 0
0 0 γx

 =

 ω2

σ2
x+ω2 0 0

0 1 0
0 0 1


︸ ︷︷ ︸

Re(Cx)

+ i

 ωσx
σ2
x+ω2 0 0

0 −σx
ω

0
0 0 −σx

ω


︸ ︷︷ ︸

Im(Cx)

, (2.17)

Mx = γx = 1︸︷︷︸
Re(Mx)

+ i
−σx
ω︸︷︷︸

Im(Mx)

. (2.18)
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.Ωy and Ωz: Those cases are similar to the previous one. In the �rst one
γy = 1 − iσy

ω
and γx = γz = 1, while in the second one, γz = 1 − iσz

ω
and

γx = γy = 1. Then,

Cy =

1 0 0

0 ω2

σ2
y+ω2 0

0 0 1


︸ ︷︷ ︸

Re(Cy)

+ i

−σy
ω

0 0
0 ωσy

σ2
y+ω2 0

0 0 −σy
ω


︸ ︷︷ ︸

Im(Cy)

, (2.19)

My = 1︸︷︷︸
Re(My)

+ i
−σy
ω︸︷︷︸

Im(My)

. (2.20)

In the case of the PML subdomain Ωz, it holds

Cz =

1 0 0
0 1 0

0 0 ω2

σ2
z+ω2


︸ ︷︷ ︸

Re(Cz)

+ i

−σy
ω

0 0
0 −σz

ω
0

0 0 ωσz
σ2
z+ω2


︸ ︷︷ ︸

Im(Cz)

, (2.21)

Mz = 1︸︷︷︸
Re(Mz)

+ i (
−σz
ω

)︸ ︷︷ ︸
Im(Mz)

. (2.22)

.Ωxy: In this PML subdomain γx = 1− iσx
ω
, γy = 1− iσy

ω
and γz = 1, then,

the matrix Cxy and the coe�cient Mxy are given by
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Cxy =

γy
γx

0 0

0 γx
γy

0

0 0 γxγy

 =


ω2+σxσy
σ2
x+ω2 0 0

0 ω2+σxσy
σ2
y+ω2 0

0 0 1− σxσy
ω2


︸ ︷︷ ︸

Re(Cxy)

+

+ i


−ω(σy−σx)

σ2
x+ω2 0 0

0 −ω(σx−σy)

σ2
y+ω2 0

0 0 −(σx+σy)

ω


︸ ︷︷ ︸

Im(Cxy)

, (2.23)

Mxy = γxγy = 1− σxσy
ω2︸ ︷︷ ︸

Re(Mxy)

+ i
−(σx + σy)

ω︸ ︷︷ ︸
Im(Mxy)

. (2.24)

.Ωxz and Ωyz: In the PML subdomains where the waves are absorbed in
the xz and/or yz direction respectively, the PML coe�cients are given by

Cxz =

ω2+σxσz
σ2
x+ω2 0 0

0 1− σxσz
ω2 0

0 0 ω2+σxσz
σ2
z+ω2


︸ ︷︷ ︸

Re(Cxz)

+ i


−ω(σz−σx)
σ2
x+ω2 0 0

0 −(σx+σz)
ω

0

0 0 −ω(σx−σz)
σ2
z+ω2


︸ ︷︷ ︸

Im(Cxz)

,

(2.25)

Mxz = 1− σxσz
ω2︸ ︷︷ ︸

Re(Mxz)

+ i
−(σx + σz)

ω︸ ︷︷ ︸
Im(Mxz)

. (2.26)

Analogously, in the PML subdomain Ωyz, it is obtained
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Cyz =

1− σyσz
ω2 0 0

0 ω2+σyσz
σ2
y+ω2 0

0 0 ω2+σyσz
σ2
z+ω2


︸ ︷︷ ︸

Re(Cyz)

+ i


−(σy+σz)

ω
0 0

0 −ω(σz−σy)

σ2
y+ω2 0

0 0 −ω(σy−σz)

σ2
z+ω2


︸ ︷︷ ︸

Im(Cyz)

,

(2.27)

Myz = 1− σyσz
ω2︸ ︷︷ ︸

Re(Myz)

+ i
−(σy + σz)

ω︸ ︷︷ ︸
Im(Myz)

. (2.28)

.Ωxyz: Finally, in the PML corner subdomain, where the waves are
absorbed in all directions, the matrix denoted by Cxyz and the coe�cient
Mxyz are given by

(2.29)Cxyz =


γyγz
γx

0 0

0 γxγz
γy

0

0 0 γxγy
γz



=


σxσy+σxσz−σyσz+ω2

σ2
x+ω2 0 0

0 σxσy−σxσz+σyσz+ω2

σ2
y+ω2 0

0 0 −σxσy+σxσz+σyσz+ω2

σ2
z+ω2


︸ ︷︷ ︸

Re(Cxyz)

+ i


−σxσyσz−σxω2+σyω2+σzω2

ω(σ2
x+ω2)

0 0

0 −σxσyσz+σxω2−σyω2+σzω2

ω(σ2
y+ω2)

0

0 0 −σxσyσz+σxω2+σyω2−σzω2

ω(σ2
z+ω2)


︸ ︷︷ ︸

Im(Cxyz)

,
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Mxyz = γxγyγz =
−σxσy − σxσz − σyσz + ω2

ω2︸ ︷︷ ︸
Re(Mxyz)

+ i

σxσyσzw3
− σx + σy + σz

ω︸ ︷︷ ︸
Im(Mxyz)

 .

(2.30)

After introducing explicitly those coe�cients, Equation (2.14) is split into
the di�erent subdomain of the PML, so the following PML model is obtained:



−div [C0∇p]− k2M0 p = 0 in Ω0,

−div [Cx∇p]− k2Mx p = 0 in Ωx,

−div [Cy∇p]− k2My p = 0 in Ωy,

−div [Cz∇p]− k2Mz p = 0 in Ωz,

−div [Cxy∇p]− k2Mxy p = 0 in Ωxy,

−div [Cxz∇p]− k2Mxz p = 0 in Ωxz,

−div [Cyz∇p]− k2Myz p = 0 in Ωyz,

−div [Cxyz∇p]− k2Mxyz p = 0 in Ωxyz,
∂p
∂n = g = gre + i gim on Γs,

p = 0 on Γout,

[p] = 0 on ΓI,

[
(

1
γx

∂p
∂x
, 1
γy

∂p
∂y
, 1
γz

∂p
∂z

)
· n] = 0 on ΓI,

where ΓI is the coupling boundary among di�erent subdomains and brackets
[. . .] denote the jump among quantities at each side of ΓI.

As in the bounded problems, the solution, as well as the test functions,
should be divided into their real and imaginary parts. Again, the test
functions, ϕre, ϕim belong to H1(Ω) with ϕre|Γout

= 0 and ϕim|Γout
= 0. Firstly,

the variational formulation of the real and imaginary part of the problem is
computed separately using the Green's Identity (see Eq. (2.3)).
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Finally, taking in account the di�erent computational subdomains, the
variational formulation of the problem was


Find pre, pim ∈ H1 (Ω) such that pre|Γout

= 0, pim|Γout
= 0 and

A ((pre, pim) , (ϕre, ϕim)) = L (ϕre, ϕim)

∀ϕre, ϕim ∈ H1 (Ω) , with ϕre|Γout
= 0 and ϕim|Γout

= 0,

(2.31)

being gre, gim ∈ L2(Γs), k = ω/c > 0, Cj,Mj with j ∈ {x, y, z, xy, xz, yz, xyz}
given by Eq. (2.15)�(2.30) and A = A1 +A2, where A1, A2 and L are given
by

A1 ((pre, pim) , (ϕre, ϕim)) =

∫
Ω0

∇pre·∇ϕre dV+

∫
Ω0

∇pim·∇ϕim dV

+

∫
Ωx

(
Cxre∇pre − Cxim∇pim

)
·∇ϕre dV+

∫
Ωx

(
Cxre∇pim + Cxim∇pre

)
·∇ϕim dV

+

∫
Ωy

(
Cyre∇pre − Cyim∇pim

)
·∇ϕre dV+

∫
Ωy

(
Cyre∇pim + Cyim∇pre

)
·∇ϕim dV

+

∫
Ωz

(
Czre∇pre − Czim∇pim

)
·∇ϕre dV+

∫
Ωz

(
Czre∇pim + Czim∇pre

)
·∇ϕim dV

+

∫
Ωxy

(
Cxyre∇pre − Cxyim∇pim

)
·∇ϕre dV+

∫
Ωxy

(
Cxyre∇pim + Cxyim∇pre

)
·∇ϕim dV

+

∫
Ωxz

(
Cxzre∇pre − Cxzim∇pim

)
·∇ϕre dV+

∫
Ωxz

(
Cxzre∇pim + Cxzim∇pre

)
·∇ϕim dV

+

∫
Ωyz

(
Cyzre∇pre − Cyzim∇pim

)
·∇ϕre dV+

∫
Ωyz

(
Cyzre∇pim + Cyzim∇pre

)
·∇ϕim dV

+

∫
Ωxyz

(
Cxyzre∇pre − Cxyzim∇pim

)
·∇ϕre dV+

∫
Ωxyz

(
Cxyzre∇pim + Cxyzim∇pre

)
·∇ϕim dV

(2.32)
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A2 ((pre, pim) , (ϕre, ϕim)) =

−
∫

Ω0

(k2
re
pre − k2

im
pim)ϕre dV −

∫
Ω0

(
k2
im
pre + k2

re
pim
)
ϕim dV

−
∫

Ωx

(
(k2

re
Mxre − k2

im
Mxim

)pre − (k2
im
Mxre + k2

re
Mxim

)pim
)
ϕre dV

−
∫

Ωx

(
(k2

im
Mxre + k2

re
Mxim

)pre + (k2
re
Mxre − k2

im
Mxim

)pim
)
ϕim dV

−
∫

Ωy

(
(k2

re
Myre − k2

im
Myim

)pre − (k2
im
Myre + k2

re
Myim

)pim
)
ϕre dV

−
∫

Ωy

(
(k2

im
Myre + k2

re
Myim

)pre + (k2
re
Myre − k2

im
Myim

)pim
)
ϕim dV

−
∫

Ωz

(
(k2

re
Mzre − k2

im
Mzim

)pre − (k2
im
Mzre + k2

re
Mzim

)pim
)
ϕre dV

−
∫

Ωz

(
(k2

im
Mzre + k2

re
Mzim

)pre + (k2
re
Mzre − k2

im
Mzim

)pim
)
ϕim dV

−
∫

Ωxy

(
(k2

re
Mxyre − k2

im
Mxyim

)pre − (k2
im
Mxyre + k2

re
Mxyim

)pim
)
ϕre dV

−
∫

Ωxy

(
(k2

im
Mxyre + k2

re
Mxyim

)pre + (k2
re
Mxyre − k2

im
Mxyim

)pim
)
ϕim dV

−
∫

Ωxz

(
(k2

re
Mxzre − k2

im
Mxzim

)pre − (k2
im
Mxzre + k2

re
Mxzim

)pim
)
ϕre dV

−
∫

Ωxz

(
(k2

im
Mxzre + k2

re
Mxzim

)pre + (k2
re
Mxzre − k2

im
Mxzim

)pim
)
ϕim dV

−
∫

Ωyz

(
(k2

re
Myzre − k2

im
Myzim

)pre − (k2
im
Myzre + k2

re
Myzim

)pim
)
ϕre dV

−
∫

Ωyz

(
(k2

im
Myzre + k2

re
Myzim

)pre + (k2
re
Myzre − k2

im
Myzim

)pim
)
ϕim dV

−
∫

Ωxyz

(
(k2

re
Mxyzre − k2

im
Mxyzim

)pre − (k2
im
Mxyzre + k2

re
Mxyzim

)pim
)
ϕre dV

−
∫

Ωxyz

(
(k2

im
Mxyzre + k2

re
Mxyzim

)pre + (k2
re
Mxyzre − k2

im
Mxyzim

)pim
)
ϕim dV

(2.33)
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L (ϕre, ϕim) =

∫
Γs

gre ϕre dγ +

∫
Γs

gim ϕimdγ. (2.34)

Notice that the wave number can be split in its real and imaginary parts
k = kre + i kim. Since model (2.14) does not include the viscosity term, it
holds:

kre = k, kim = 0

Finally, it should be remarked that this master thesis does not include a
proof of the existence and uniqueness of this variational problem.



Chapter 3

Finite Element Method

In this chapter the Finite Element Method is described, which is the
numerical method used to approximate the solution of the models
introduced in Chapter 2. First, the problem stated in a bounded domain, in
both cases, with and without viscosity, is considered. Then, the solution of
the free �eld model with the PML technique is approximated.

The most di�cult task when solving numerically a variational problem
(as those ones described in Chapter 2) is to approximate accurately an
in�nite functional space by means of a �nite-dimensional discrete space.
The Finite Element Method consists in approaching this functional Sobolev
space by another one of �nite dimension. Then, using this discrete space, an
approximate problem is introduced and written as a linear matrix problem.
Finally, once it is solved, an approximate solution of the original problem is
obtained.

3.1 Acoustic problem stated in bounded

domains

This section describes the Finite Element Method for acoustic problems
stated in bounded domains. Both models, with and without viscosity
(see respectively (2.2) and (2.6)) are approximated by the Finite Element
Method in the following subsections.

Once the weak formulations of both problems are obtained (see (2.4) and
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(2.7)), it is necessary to �nd a �nite dimensional space to approach H1(Ω).
Due to the computational domain is three-dimensional, Ω is split in a set of
tetrahedra Th(Ω). It would be possible to divide it also in another geometric
forms (such as hexaedra, prisms, . . . ), but, the �nite element library, which
is used in the computer implementation only admits this kind of partition
(see [6] for further details). The set of all the tetrahedra and its connectivity
data forms a mesh.

It will be assumed that
⋃
T∈Th

T = Ω, and, in addition, there are some

restrictions, which must be satis�ed:

1. The interior of two di�erent tetrahedra has to be disjoint.

2. The vertex of a tetrahedron cannot be placed on the edges or faces of
another tetrahedra. In other words, the tetrahedra have to be adjacent.

Once the partition is given, the following step is to choose the type
of elements of the discretization space. In the present work, Lagrangian
elements that are continuous and piecewise linear have been chosen. This
kind of elements are named: Lagrange P1 elements. To de�ne the
discrete basis associated to the Lagrange P1 discretization, it is necessary
to enumerate all the vertex of the partition {vj}nj=1. Then, a continuous and
piecewise linear function ψj is associated to each vertex vj. The value of this
function is 1 in this vertex and 0 in the rest, i.e. ψl(vj) = δ|lj, where δ|lj is
the Kronecker's delta. Those are the base functions: ψl, l = 1, 2, . . . n, which
form the discrete basis of the �nite element space. Hence, the approaching
space of H1(Ω) is built as follows:

Vh(Ω) = {ψ ∈ H1(Ω) : ψ|T ◦ FT ∈ P1(T̂ ),∀T ∈ Th(Ω)} (3.1)

= 〈ψ1, ψ2, . . . , ψn〉 ⊂ H1(Ω),

where FT is the a�ne function: FT : T̂ → T , which associates each
tetrahedron T ∈ Th(Ω) with the reference tetrahedron T̂ , de�ned by the
vertices: (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1). Moreover, any ψ ∈ Vh(Ω), is
continuous in the whole domain Ω and, in each tetrahedron T , is a �rst
order polynomial.
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Consequently, the discrete variational problem is described as follows:



Given functions gre, gim ∈ L2(Γs), fre, fim ∈ H
1
2 (Γout), and ω, ρ, c > 0,

�nd ph
re
, ph

im
∈ Vh (Ω) such that ph

re|Γout
= Ihfre, phim|Γout

= Ihfim and∫
Ω
−ω2ρ ph

re
ϕh
re
dV +

∫
Ω
ρc2∇ph

re
· ∇ϕh

re
dV +

∫
Ω
−ω2ρ ph

im
ϕh
im
dV+∫

Ω
ρc2∇ph

im
· ∇ϕh

im
dV =

∫
Γs
ρc2 gre ϕ

h
re
dγ +

∫
Γs
ρc2 gim ϕ

h
im
dγ,

∀ϕh
re
, ϕh

im
∈ Vh (Ω) with ϕh

re|Γout
= 0, ϕh

im|Γout
= 0,

(3.2)

where Ih is the pointwise interpolation function of the discrete space Vh(Ω).

The Dirichlet boundary conditions, ph
re|Γout

= Ihfre, phim|Γout
= Ihfim will

not be taken into account at this point of the arguments. However, it will be
imposed when the linear matrix system is computed, blocking the degrees of
freedom associated to the vertices on the Dirichlet boundary, this is, imposing
that phre(vj) = fre(vj) and phim(vj) = fim(vj) for all those vertices vj ∈ Γout.
Now, since

ph
re
∈ Vh(Ω) ⇒ ph

re
(x, y, z) =

n∑
j=1

µjψj(x, y, z),

ph
im
∈ Vh(Ω) ⇒ ph

im
(x, y, z) =

n∑
j=1

λjψj(x, y, z),

and

(ϕh
re
, ϕh

im
) ∈ Vh(Ω)×Vh(Ω)⇒ (ϕh

re
, ϕh

im
) ∈ 〈(ψ1, 0), · · · , (ψn, 0), (0, ψ1), · · · , (0, ψn)〉,

then, the discrete problem (3.2) can be rewritten as follows:



n∑
j=1

[(∫
Ω

c2ρ∇ψj · ∇ψl dV +

∫
Ω

(−ω2ρ)ψjψl dV

)
µj

]
=

=
∫

Γs
ρc2 gre ψl dγ with l = 1, 2, . . . , n,

n∑
j=1

[(∫
Ω

c2ρ∇ψj · ∇ψl dV +

∫
Ω

(−ω2ρ)ψjψl dV

)
λj

]
=

=
∫

Γs
ρc2 gim ψl dγ, with l = 1, 2, . . . , n.
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This problem can be written in matrix form as follows:

(
A 0
0 A

)


µ1
...
µn
λ1
...
λn


=

(
b1

b2

)
,

being the matrix A ∈Mn×n(R) and vectors b1, b2 ∈ Rn given by

[A]lj = c2ρ

∫
Ω

∇ψj · ∇ψl dV − ω2ρ

∫
Ω

ψjψl dV,

[b1]l = ρ c2

∫
Γs

gre ϕl dγ,

[b2]l = ρ c2

∫
Γs

gim ϕl dγ,

for 1 ≤ l, j ≤ n.

One of the advantages of the �nite element discretization consists in
most of the matrix elements are null, this is, the matrix A of the linear
system is sparse. In fact, Alj 6= 0 if and only if the function supports of
ψl and ψj are not disjoint, in other words, if and only if the vertex l and j
belong to the same tetrahedron.

In order to impose the Dirichlet boundary conditions, phre|Γout
= Ihfre,

phim|Γout
= Ihfim, the degrees of freedom µj and λj which are associated to

vertices vj on the Dirichlet boundary of Ω are selected. Then, their values
are replaced by the value of the Dirichlet conditions, this is, µj = fre(vj)
and λj = fim(vj) for all those vertices vj ∈ Γout

The integrals of the matrix components coe�cients of matrix A, are
computed as the sum of the integrals in the partition elements:
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[A]lj = c2ρ

∫
Ω

∇ψj · ∇ψl dV − ω2ρ

∫
Ω

ψjψl dV =∑
T∈Th(Ω)

(
c2ρ

∫
T

∇ψj · ∇ψl dV − ω2ρ

∫
T

ψjψl dV

)
.

To perform these computations, all elements of the mesh are considered and
for each tetrahedron, the integrals associated to the multiplication of the
elemental functions ψj associated to the vertices at each tetrahedron, are
computed. This process is known as assembly. Finally, the linear matrix
system is solved with direct method.

After computing the weak formulation (see Eq. (2.7)) for the
problem (2.5), the �nite element discretization of the acoustic model with
viscosity is analogous. More precisely, it is described as follows:



Given functions gre, gim ∈ L2(Γs), fre, fim ∈ H
1
2 (Γout), and ω, ρ, c, ν > 0,

�nd ph
re
, ph

im
∈ Vh (Ω) such that ph

re|Γout
= Ihfre, phim|Γout = Ihfim, and∫

Ω
(−ω2ρ) ph

re
ϕh
re
dV +

∫
Ω
ρc2∇ph

re
· ∇ϕh

re
dV +

∫
Ω

(−ων)∇ph
im
· ∇ϕh

re
dV+∫

Ω
(−ω2ρ) ph

im
ϕh
im
dV +

∫
Ω
ρc2∇ph

im
· ∇ϕh

im
dV +

∫
Ω
ων∇ph

re
· ∇ϕh

im
dV =∫

Γs
ρc2gre ϕ

h
re
dγ +

∫
Γs
ρc2gim ϕ

h
im
dγ +

∫
Γs

(−ων)gim ϕ
h
re
dγ +

∫
Γs
ωνgre ϕ

h
im
dγ,

∀ϕh
re
, ϕh

re
∈ Vh (Ω) with ϕh

re|Γout
= 0, ϕh

im|Γout
= 0.

(3.3)

Using again the same discrete basis for the trial and test functions, the
discrete variational formulation leads to



n∑
j=1

n∑
m=1

[(∫
Ω

(−ω2ρ)ψj ψl dV +

∫
Ω

ρc2∇ψj · ∇ψl dV
)
µj +

(∫
Ω

(−ων)∇ψm · ∇ψl dV
)
λm

]
=
∫

Γs
ρc2gre ψl dγ +

∫
Γs

(−ων)gim ψl dγ, l = 1, 2, . . . , n,
n∑
j=1

n∑
m=1

[(∫
Ω

ων∇ψj · ∇ψl dV
)
µj +

(∫
Ω

(−ω2ρ)ψm ψl dV +

∫
Ω

ρc2∇ψm · ∇ψl dV
)
λj

]
=
∫

Γs
ρc2gim ψl dγ +

∫
Γs
ωνgre ψl dγ, l = 1, 2, . . . , n.
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This problem can be rewritten in matrix form as follows:

[
A11 A12

A21 A22

]


µ1
...
µn
λ1
...
λn


=

(
b1

b2

)
,

where matrices A11, A12, A21, A22 ∈ Mn×n(R) and vectors b1, b2 ∈ Rn are
given by

[A11]lj =

∫
Ω

(−ω2ρ)ψj ψl dV +

∫
Ω

ρc2∇ψj · ∇ψl dV,

[A12]lj =

∫
Ω

(−ων)∇ψj · ∇ψl dV,

[A21]lj =

∫
Ω

ων∇ψj · ∇ψl dV,

[A22]lj =

∫
Ω

(−ω2ρ)ψj ψl dV +

∫
Ω

ρc2∇ψj · ∇ψl dV,

[b1]l =

∫
Γs

ρc2gre ψl dγ +

∫
Γs

(−ων)gim ψl dγ,

[b2]l =

∫
Γs

ρc2gim ψl dγ +

∫
Γs

ωνgre ψl dγ,

for 1 ≤ j, l ≤ n.

As it has been discussed previously, [Aαβ]lj 6= 0 if and only if the supports
of ψl and ψj are not disjoint; i.e., if and only if the vertex l and j belong to
the same tetrahedron.

3.2 Acoustic problem stated in unbounded

domains

This section describes the Finite Element Method for acoustic problems
stated in unbounded domains for which the PML technique is used (see
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(2.14)). After computing the weak formulation (Eq. (2.7)), a �nite element
method is used to approximate the solution of the variational problem.
The �nite element discretization is identical to that one described for the
acoustic model stated in bounded domains.

Consequently, the variational discretized problem is:


Find ph

re
, ph

im
∈ Vh (Ω) such that ph

re|Γout
= 0, ph

im|Γout
= 0, and

A
((
ph
re
, ph

im

)
,
(
ϕh
re
, ϕh

im

))
= L

(
ϕh
re
, ϕh

im

)
∀ϕh

re
, ϕh

im
∈ Vh (Ω) with ϕh

re|Γout
= 0, ϕh

im|Γout
= 0.

(3.4)

where A and L are given by (2.32) and (2.34), respectively.

Using again the same discrete basis for the trial and test functions, the
discrete variational formulation leads to

n∑
j=1

n∑
m=1

(A ((ψj, 0) , (ψl, 0))µj +A ((0ψm) , (ψl, 0))λm) = L (ψl, 0) ,

n∑
j=1

n∑
m=1

(A ((ψj, 0) , (0, ψl))µj +A ((0, ψm) , (0, ψl))λm) = L (0, ψl) ,

for l = 1, 2, . . . , n.

This problem can be rewritten in a matrix form as follows:

[
A11 A12

A21 A22

]


µ1
...
µn
λ1
...
λn


=

(
b1

b2

)
,

where matrices A11, A12, A21, A22 ∈ Mn×n(R) and vectors b1, b2 ∈ Rn are
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given by

[A11]lj = A ((ψj, 0) , (ψl, 0)) ,

[A12]lj = A ((0, ψj) , (ψl, 0)) ,

[A21]lj = A ((ψj, 0) , (0, ψl)) ,

[A22]lj = A ((0, ψj) , (0, ψl)) ,

[b1]l = L (ψl, 0) ,

[b2]l = L (0, ψl) ,

for 1 ≤ j, l ≤ n and A and L are de�ned by (2.32)�(2.34).



Chapter 4

Code implementation

Once the mathematical models have been described (see Chapter 2), it was
necessary to solve them by a Finite Element Method (see Chapter 3). In
order to use them in a computer, they have been implemented using FEniCS

(see [6]). FEniCS is an open-source Python library, which allows us to use a
�nite element discretizacion in a simple way. One of its greatest advantages
is that the FEM implementation is done by setting the functional spaces,
the type of �nite element and the variational formulation. On the contrary,
one of its main disadvantages is the inability of working with complex
numbers. Consequently, any practitioner is enforced to work with the real
and imaginary parts separately.

Before describing the codes, it is important to remark that, none of them
are included in this report, however the following link contains all of them,
including the input and the output of the test problems:

https://www.dropbox.com/sh/qavg1zbc7io450s/

AACv9lZXYx1n1Hggjj2ANLGta?dl=0

4.1 Three dimensional acoustic problem stated

in a bounded domain

The acoustic model proposed in Section 2.1 was computed in two di�erent
codes, one for the problem without viscosity, and another one for the acoustic
problem with viscosity.

37

https://www.dropbox.com/sh/qavg1zbc7io450s/AACv9lZXYx1n1Hggjj2ANLGta?dl=0
https://www.dropbox.com/sh/qavg1zbc7io450s/AACv9lZXYx1n1Hggjj2ANLGta?dl=0


38 Code implementation

4.1.1 Model without viscosity

The �rst code solved the model (2.1). It is included in a �le where a variety
of functions have been implemented to compute the approximated solution.
On one hand, the main program contains all the data and it calls the rest of
the functions. It was run by the command:

python Helmholtz3D_boundedDomain.py

On the other hand, a test function was implemented. As the main program,
it also contains all the data variables and calls the computation function.
However, this program do not write any results to an external �le. On the
contrary, the relative error is computed for a numerical test where the exact
solution is known in closed-form. To run the unit test it was necessary to
type:

py.test -s -v Helmholtz3D_boundedDomain.py

The data variables used in the code are the following ones: mass density
ρ, angular frequency ω, sound speed c and the error tolerance tol (used as
threshold to decide the test fails).

Then, the compute function is called, where, �rst, the domain and the
mesh were created. Because of the simple geometry used to solve this test,
both, the geometry and the mesh have been created using the mshr library
(a module of the FEniCS library).

The following step has been to identify the boundaries. To do it, two
di�erent classes were created, one for the rigid wall (outer boundary) and
another one for the structure (inner boundary). Then, the mesh function
for the boundary was initialized and saved in a .pvd �le. This allows the
user to check that not only the boundaries, but also the geometry, are well
de�ned. Before setting the function space (Lagrange P1), the mesh function
for the physical domain was de�ned.

Subsequently, the boundary conditions were implemented, besides the
trial and the test functions. Finally, the variational formulation (2.4) was
written as follows:
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# Define variational problem

a = c**2*rho*inner(grad(u_re), grad(v_re))*dx

+ c**2*rho*inner(grad(u_im), grad(v_im))*dx

- omega**2*rho*(u_re*v_re)*dx

- omega**2*rho*(u_im*v_im)*dx

L = g_re*v_re*ds(2) + g_im*v_im*ds(2)

After assembling the matrix and the source vector and applying the
boundary conditions to them, the problem was solved by the use of the
solve command.

4.1.2 Model with viscosity

In this subsection, the code implemented to solve model (2.5) is described.
As it has been explained previously (see Subsection 4.1.1), there were two
ways to run the code, the main and the test one. To do this, it was necessary
to type:

python Helmholtz3D_boundedDomain_viscous.py

or

py.test -s -v Helmholtz3D_boundedDomain_viscous.py

Again, the data variables (mass density ρ, angular frequency ω, sound
speed c, viscosity ν and error tolerance tol) were settled in both of them.
Moreover, in the second one, the relative error is computed for a numerical
test, where the exact solution is known in closed-form. Then, the compute

function is called, where �rstly the domain and the mesh were created. Due
to the geometry and the mesh are identical to the previous one, they were
created using the mshr library.

The whole code was almost identical to that one without viscosity. Due
to the viscosity (and its associated complex-valued coe�cient), to split the
boundary conditions into its real and imaginary part is more di�cult. For
this reason, the boundary conditions were implemented into a class instead in
a expression as described above. The following code is an example that shows
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how the Neumann condition were de�ned (an analogous implementation has
been made for the Dirichlet conditions).

# Define Neumman boundary data for the real

# and the imaginary part

class RealNC(Expression):

def __init__(self, **kwargs):

self._omega = kwargs["omega"]

self._c = kwargs["c"]

self._rho = kwargs["rho"]

self._nu = kwargs["nu"]

def eval(self, value, x):

k = np.sqrt(self._omega**2*self._rho/(self._rho* \

self._c**2 - 1j*self._omega*self._nu))

r = np.sqrt(x[0]**2 + x[1]**2 + x[2]**2)

value[0] = -1*np.real(-1*np.exp(-1j * k * r) /r**2 \

- 1j * k * np.exp(-1j * k * r) / r)

g_re = RealNC(degree=4, omega=omega, c=c, rho=rho, nu=nu)

class ImagNC(Expression):

def __init__(self, **kwargs):

self._omega = kwargs["omega"]

self._c = kwargs["c"]

self._rho = kwargs["rho"]

self._nu = kwargs["nu"]

def eval(self, value, x):

k = np.sqrt(self._omega**2*self._rho/(self._rho*\

self._c**2 - 1j*self._omega*self._nu))

r = np.sqrt(x[0]**2 + x[1]**2 + x[2]**2)

value[0] = -1*np.imag(-1*np.exp(-1j * k * r) / r**2 \

- 1j * k * np.exp(-1j * k * r) / r)

g_im = ImagNC(degree=4, omega=omega, c=c, rho=rho, nu=nu)
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4.2 Three dimensional acoustic problem stated

in an unbounded domain

In order to solve the model (2.14), the PML program Helmholtz_3D_PML was
introduced. It was composed by nine di�erent �les, which are detailed below.

4.2.1 Main program: Helmholtz3D_PML_main.py

This program reads the default settings and it calls any of the di�erent
options, which can be selected. Those ones are optimization, frequency
response and computing the directivity pattern. To execute it, just type
in the console:

python Helmholtz3D_PML_main.py

4.2.2 Default settings: Defautl_settings.py

In this �le all the parameters can be changed in order to simulate a new
geometry. Each one will be explained in detail.

The �rst parameter consists in an index that allows the user to choose
the option that the program will execute depending on the number entered:
0, 1 or 3 for optimization, frequency response and directivity pattern,
respectively. If another number is entered, there will be an error message
and the program will not be executed. Then, the physical parameters, as
mass density, sound speed and viscosity, as well as the external position of
the PML are introduced. There are also options to re�ne the mesh or a
part of it and data to modify the boundary conditions. Then, depending
on the option that was chosen, input data can vary. For instance, for the
optimization, only one frequency is needed, while for the other choices, a
vector of frequency values has to be introduced. In all of them, the path
and the name of the mesh are written as well as the name of the �les, where
the output results will be saved.

There are three boundary conditions implemented in this �le. Two of
them are related with the tests designed to check it, and the last one is
used to simulate the probe in Chapter 6. The �rst boundary condition is
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a Dirichlet one and consists in a monopole, while the second has the same
exact solution but with a Neumann condition on the structure. Finally,
the last one consists in a plane wave sent from the outside of the domain
impinging the structure. Depending on which one must to be solve, it is
necessary to introduce a number to indicate it: 0 for the �rst problem, 1 for
the second one and 2 for the last one.

Furthermore, in the optimization code, values for the parameters to
optimize must be entered, such as the number of meshes and the number
of parameters to be optimized. Otherwise, for the frequency response,
not only the frequency vector is needed but also whether the exact
solution is known or not. Besides, in the directivity pattern, the number
of angle values and the elevation angle from z-axis are required as input data.

Finally, a spline is computed to obtain the optimal values of the PML
absorption coe�cient, based on some �xed numbers of optimal values of this
coe�cient (see Chapters 5 and 6 for a detailed discussion).

4.2.3 Optimization: Helmholtz_optimization.py

In this �le, the solution of model (2.14) is computed for di�erent geometries.
Because two di�erent parameters can be optimizing at the same time, it
is necessary to implement two loops, one for each parameter variation. In
the inner loop, the module that contains all the data needed for the FEM
simulation is called in addition to the computation one. Then, in the post
processing, the sound pressure level as well as the particle velocity level are
computed for a �xed measurement point. Moreover, the gain related with
both of them is also obtained.

Finally, the results are written in .txt �les and plotted. The type of graph
that is used depends on the number of parameters to optimize. If there is
only one, a line graph is drawn, if there are more, a 2D colour diagram is
considered.

4.2.4 Frequency response: Helmholtz_frf.py

The frequency response consists in studying the solution for a sweep in
frequencies, in other words, the solution will be obtained for a vector of
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frequencies not only for one, as in the optimization. Moreover, only one loop
is needed to change each frequency computation. While the computation
function is called inside the loop, the data for the FEM simulation are
pre-computed outside it.

In addition to the computation of pressure, velocity and gains in the
measurement point, the pressure and the intensity �elds are plotted for the
highest frequency in the whole domain. Moreover, if the exact solution is
known, the error will be also plotted there.

4.2.5 Directivity pattern: Helmholtz_directivity.py

The last choice consists in computing the directivity pattern. To do it, two
loops are needed. The outer one changes the frequency in which it was
computed, while the inner one varies the angle in which the plane wave is
impinging on the structure.

In this case, to plot the results it is necessary to use polar coordinates.
This is done as it is shown in what follows:

pplot = plt.figure('pres')

ap = pplot.add_axes([0.1,0.1,0.8,0.8], polar=True)

ap.set_ylim(-30,0)

ap.set_yticks(np.arange(-30,0,10))

ap.plot(phi,pressure[i] - np.amax(pressure), 'b-')

The maximum of the SPL and PVL levels is subtracted to normalize the
directivity patter, so the maximum value will be null and the rest of entries
will be negative.

4.2.6 Data for the FEM simulation: Datfem.py

This Python module initializes all the needed data for the FEM simulation.
Firstly, the mesh and its subdomains are read from a .txt.gz �le. Then,
the mesh can be re�ned if the option is chosen in Default_settings and
the domains are reorganized. After it, the boundaries are detected and the
functional spaced de�ned. Again, it is used Lagrange P1. Finally, external
unit normal vectors to the boundaries are computed as follows:
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# Compute normal vectors

class NormalExpression(Expression):

def __init__(self, mesh, **kwargs):

self.msh = mesh

def eval_cell(self, values, x, ufc_cell):

# Find normal

cell = Cell(self.msh, ufc_cell.index)

n = cell.normal(ufc_cell.local_facet)

values[0] = n[0]

values[1] = n[1]

values[2] = n[2]

def value_shape(self):

return (3,)

normals=NormalExpression(mesh=self.mesh, degree=1)

self.n_vec = normals

4.2.7 Computation: Helmholtz_computation.py

This �le contains the implementation of the computation of the problem.
To do that, the function that contains boundary conditions has been called,
and then, the obtained values are associated with the boundaries marked in
Datafem.py.

Moreover, the wave number is computed, as well as the coe�cients used
in the variational formulation (2.32)−(2.34). Later, trial and test functions
are initialized and the weak formulation is introduced. After assembling the
matrix and the right-hand side vector, the boundary conditions are applied
to the linear system. Finally, the linear matrix problem is solved.

Notice that, if the boundary condition is given by a plane wave, due to
the fact that the acoustic model only computes the scattering pressure, the
plane wave has to be added to the approximated solution.
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p_re = Function(Q)

p_im = Function(Q)

uex_re_interp = interpolate(uex_re, Q)

uex_im_interp = interpolate(uex_im, Q)

p_re = project(u_re + uex_re, Q)

p_im = project(u_im + uex_im, Q)

4.2.8 Boundary conditions: Boundary_conditions.py

Boundary_conditions.py contains all the possibilities for the boundary
conditions that has been explained in the previous sections. In order to
do it, an if statement is created. The �rst option contains the monopole
boundary conditions. Notice that the test problems stated in bounded
domains are similar but the take into account di�erent kinds of conditions:
Dirichlet and Neumann.

With this purpose, four classes are written. Two of them contain the
exact solution, one for the real part and the other one for the imaginary
one. The other ones, are the real and the imaginary part of the gradient of
the exact solution. Finally, the last option corresponds to the plane wave.
Not only its expression is entered, but also its gradient for computing the
Neumann conditions that has been imposed on the structure. It has also been
implemented an error message that is reached when the number entered for
choosing the boundary conditions is incorrect.

4.2.9 Computing the results: Evaluations.py

The last �le contains some functions that were needed to post-process the
numerical results. They are listed in what follows:

Eval_pressure: it contains the formula to compute the pressure at a point.

return u_re(p) + 1j*u_im(p)

Eval_velocity: it computes the gradient of the pressure and it is used to
obtain the velocity at a point.
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Write: This function is used to write the real and imaginary part of the
pressure. Their values in the whole domain are considered (not only at a
point). Moreover, the intensity is computed and also plotted in the whole
computational domain.

Write_error: This function is only used when the exact solution is known
and the error between it and the approximated solution is required to be
plotted in the whole domain.

4.3 Computation of the optimal PML

absorption coe�cient

This program is a simpli�cation of the previous one (Section 4.2). The
aim of creating it was to obtain the optimal absorption coe�cient for the
PML, so any option is included in the code. There are only four �les in
this program, because the main program, the compute and the evaluation
function are all included in one �le.

There are several di�erences between this program and the equivalent
described in the previous section. Due to no options are included, the loop
changes the value of the absorption coe�cient each time and compute the
error for each PML absorption coe�cient value. Moreover, the velocity is
not computed, because it is not needed to check which one is the best PML
absorption coe�cient at each frequency. The computation of this optimal
coe�cient will be explained in Chapter 6.

According to the default settings, the computation of the optimal PML
absorbing coe�cient is performed at a single and �xed frequency value. To
do it, a range of possible values of this coe�cient is introduced.

4.4 Experimental comparison

This code was written to compare the numerical results obtained by the
simulation with those ones obtained by the experimental measurements. In
order to do that, the frequencies that were used in the simulations have to
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be read from an external �le, as well as the gain associated to the particle
velocity level. Moreover, two di�erent data from the measurements are also
imported.

The following sept is comparing the calibration to check if the
measurements were done correctly, checking if the position of the sensor was
the same for both measurements. Then, the gain for the measurements are
computed. It is important to notice, that the gain is included in one of the
data, so it is necessary to subtract it before the comparison.

Finally, a spline is computed to obtain the values of the measurement
gain for those frequencies of the numerical simulation. Additionally, the
error between both gains is obtained.
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Chapter 5

Validation tests

Once the �nite element codes have been implemented (see Chapter 4), it was
necessary to validate them. In order to do that, some academic test problems
with a known solution in closed form have been considered. First, a problem
stated in a bounded domain was introduced. This problem was solved with
and without viscosity. Second, some problems were introduced in order to
validate the Helmholtz equation stated in an unbounded domain, where the
PML technique has been utilized.

5.1 Three dimensional problem stated in a

bounded domain

The model used to validate the implementation of the �nite element
codes involves a three dimensional problem stated in a bounded domain. It
is analogous for the viscosity problem and for that one without viscous terms.

The computational domain is a cube occupied by the �uid, in which
a sphere is embedded. The dimensions of the cube are 2 × 2 × 2 meters,
and the sphere is centred at origin with radius 0.5 m. Due to the sphere
is considered as a rigid structure, the motion associated to the spherical
surface is governed by a boundary condition. In both cases, the exact
solution will be settled as an outgoing radial solution.

49
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5.1.1 Problem without viscosity

The exact solution for the �rst test problem is given by the monopole equation
(1.5), in which the intensity goes from the body to in�nity. So, to obtain this
exact solution, the boundary data have been computed taking into account
the expression of the exact solution. Consequently, the test problem is given
by (2.1), being the boundary data

f =
cos(−k r)

r
+ i

sin(−k r)
r

,

and

g =

(
−k sin(−k r)

r
+

cos(−k r)
r2

)
+ i

(
k cos(−k r)

r
+

sin(−k r)
r2

)
,

with r =
√
x2 + y2 + z2.

In addition, the default data settings are ω = 200π rad/s, ρ = 1.2 kg/m3,
c = 340 m/s, and k = ω

c
.

Using a regular mesh where the maximum mesh size is hmax = 0.08, the
L2�relative error for the pressure �eld is given by 1.2%. The real part of
the approximated pressure is shown in the left plot of Figure 5.1. The right
plot of the same �gure shows the absolute error between the �nite element
approximation and the exact solution. In Figure 5.2, analogous results are
shown, but in this �gure corresponding to the imaginary part of the pressure
�eld.
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(a) FEM solution (b) Error

Figure 5.1: Cross section at the origin point in the plane yz of the
computational domain, where the numerical results associated to the inviscid
acoustic problem stated in a bounded domain are plotted. On the left, the
numerical solution of the real part of the pressure �eld is plotted. On the right
plot, the relative error between the real parts of the approximated solution
and the exact solution is plotted.
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(a) FEM solution (b) Error

Figure 5.2: Cross section at the origin point in the plane yz of the
computational domain, where the numerical results associated to the inviscid
acoustic problem stated in a bounded domain are plotted. On the left, the
numerical solution of the imaginary part of the pressure �eld is plotted.
On the right plot, the relative error between the imaginary parts of the
approximated solution and the exact solution is plotted.

5.1.2 Problem with viscosity

When the viscosity is introduced and the exact solution is the monopole
equation (see Eq. (1.5)), the test problem is described by (2.5) with the
following boundary data:

f =
e−i k r

r
,

g =
e−i k r

r2
+ i

k e−i k r

r
,

where r =
√
x2 + y2 + z2.
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In addition, the default settings are ω = 200π rad/s, ρ = 1.2 kg/m3,
c = 340 m/s, ν = 1.8× 10−5 Pa·s and k is given by De�nition 1.2.2.

Using a regular mesh where the maximum mesh size is hmax = 0.08, the
L2�relative error for the pressure �eld is given by 1.2%. The real part of
the approximated pressure is shown in the left plot of Figure 5.3. The right
plot of the same �gure shows the absolute error between the �nite element
approximation and the exact solution. In Figure 5.4, analogous results are
shown, but in this �gure corresponding to the imaginary part of the pressure
�eld.

(a) FEM solution (b) Error

Figure 5.3: Cross section at the origin point in the plane yz of the
computational domain, where the numerical results associated to the viscous
acoustic problem stated in a bounded domain are plotted. On the left, the
numerical solution of the real part of the pressure �eld is plotted. On the right
plot, the relative error between the real parts of the approximated solution
and the exact solution is plotted.
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(a) FEM solution (b) Error

Figure 5.4: Cross section at the origin point in the plane yz of the
computational domain, where the numerical results associated to the viscous
acoustic problem stated in a bounded domain are plotted. On the left, the
numerical solution of the imaginary part of the pressure �eld is plotted.
On the right plot, the relative error between the imaginary parts of the
approximated solution and the exact solution is plotted.

5.2 Three dimensional problem stated in an

unbounded domain

The test problem used to validate the codes for a three dimensional problem
stated in an unbounded domain has the same geometry as those ones
considered for the problems stated in bounded domains. In this case,
the sphere is centred at the origin with radius 0.05 m, the inner PML
boundaries are located to 0.2 m from the origin and the PML thickness is
0.2 m. However, in order to check the accuracy of the PML technique, �rst,
a Dirichlet condition was introduced on the structure. Then, Neumann
boundary conditions will be considered on the spherical boundary.
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The exact solution for the �rst test problem is given by the monopole
equation (1.5), in which the intensity goes from the body to in�nity. So, to
obtain this exact solution, the boundary data have been computed taking
into account the expression of the exact solution. Notice that, despite Model
(2.14) involves a Neumann boundary condition on the structure boundary,
in this �rst testing problem, it was decided to introduce a Dirichlet condition
in the spherical boundary with the following data:

p =
e−i k r

r
on Γs,

being r =
√
x2 + y2 + z2.

However, to obtain an accurate approximated solution for this problem,
it is necessary to compute the optimal value for PML absorption coe�cient
σ0 in the de�nition of the PML coe�cients. With this purpose, a sweeping
procedure has been performed to identify the value for σ0, which reaches the
minimum error level in the test problem (2.14). Since the computation of
the optimal value for σ0 is strongly dependent on the frequency value, the
sweeping procedure must be repeated for each frequency value.

In consequence, for each �xed frequency, a wide range of possible values
for σ0 are considered. A nested strategy is used to minimize the number of
times that the test problem has to be solved: �rst, a large interval with only
a reduced of number of σ0 values are taking into account; once the location
of the optimal value in this coarse grid is obtained, a more �ne grid search
is performed in a smaller interval. This nested search strategy is illustrated
in the plots of Figure 5.5.
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(a) (b)

Figure 5.5: L2-relative error for the pressure �eld, computed for di�erent
values of the PML absorption coe�cient σ0, at frequency 1000 Hz. The error
that is shown on the right plot does not have signi�cant variations, so the
optimal value for the absorption coe�cient is considered to be 3500.

Once the optimal value is obtained for some frequencies (see Table 5.1),
a spline is computed to obtain the optimal values for all the frequencies of
interest. This spline is plotted in Figure 5.6.

Frequency [Hz] 50 150 205 500 750 1000
Optimal value 840 1900 2800 2700 3800 3500

Table 5.1: Optimal values for σ0 [s/rad] at each frequency value of interest.

Taking into account these optimal values, the test problem is solved
obtaining a L2-relative error lower than 10% for all the frequencies considered.
The absolute error for the real part of the pressure �eld is shown in Figure
5.7 (where the numerical results are not plotted inside the PML domain).
Moreover, in Figure 5.8, analogous numerical results are shown for the
imaginary part of the pressure �eld.
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Figure 5.6: Values of the optimal absorption coe�cient for each frequency
computed by the spline, computed from the data of Table 5.1.

(a) Real pressure �eld (b) Real error

Figure 5.7: Cross section at the origin point in the plane yz of the
computational domain, where the numerical results associated to the inviscid
acoustic problem stated in an unbounded domain are plotted. On the left,
the numerical solution of the real part of the pressure �eld is plotted (in the
�uid and the PML domain). On the right plot, the relative error between
the real parts of the approximated solution and the exact solution is plotted
(only in the �uid domain).
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(a) Imaginary pressure �eld (b) Imaginary error

Figure 5.8: Cross section at the origin point in the plane yz of the
computational domain, where the numerical results associated to the inviscid
acoustic problem stated in an unbounded domain are plotted. On the left,
the numerical solution of the imaginary part of the pressure �eld is plotted (in
the �uid and the PML domain). On the right plot, the relative error between
the imaginary parts of the approximated solution and the exact solution is
plotted (only in the �uid domain).

Finally, the Dirichlet boundary condition is replaced by a Neumann one,
considering model (2.14) with following boundary data:

∂p

∂n
=

(
−k sin(−k r)

r
+

cos(−k r)
r2

)
+ i

(
k cos(−k r)

r
+

sin(−k r)
r2

)
,

being r =
√
x2 + y2 + z2.

Due to the computational domain and the mesh are exactly the same
as the previous one, the values for the PML absorption coe�cient are
not modi�ed and hence they are given by Table 5.1. Again, the problem
is approximated obtaining an error lower than 7% for all the frequencies
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considered. The absolute error for the �uid without taking into account the
PML layer is shown in Figure 5.9. On the left plot, it is shown the real error,
while on the left one, it is plotted the imaginary error for the pressure �eld.

(a) Real error (b) Imaginary error

Figure 5.9: Cross section at the origin point in the plane yz of the
computational domain, where the numerical results associated to the inviscid
acoustic problem stated in an unbounded domain are plotted. On the left,
the relative error between the real parts of the approximated solution and
the exact solution is plotted (only in the �uid domain). On the right plot,
the relative error between the imaginary parts of the approximated solution
and the exact solution is plotted (only in the �uid domain).
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Chapter 6

Optimization and numerical

results

The aim of this master thesis has been focused on the optimization of a
P-U probe. Therefore, after testing and validating the �nite element code,
the �nal step has consisted in modelling the current design of the probe and
trying to improve it. The parametric optimization of the probe structure
relies on a sweeping procedure to identify that geometry for which the
highest value for the velocity gain was reached at the spatial point where
the sensor is located. Once the optimal parameters have been computed,
it has been also necessary to check whether the frequency response of the
SPL and PVL levels remains �at for a wide frequency band and whether
the directivity patterns have not been changed from those ones associated
to the original shape of the probe structure. Furthermore, the numerical
results obtained with the current design have been compared with respect
to experimental measurements.

The software suite used to create the geometrical designs was Salome

(see reference [2]). This free CAD software allows the users to create a
Python script and to execute it in the console as an usual Python code. This
feature eases the parametrization of the geometry and hence, with a simple
loop, it is possible to create di�erent parametric settings leading to a wide
number of geometric con�gurations.
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6.1 The original design

The �rst design to be introduced was the current one. The idea was to
verify the model and the numerical simulation comparing the numerical
results obtained by the implemented computer code with respect to the
experimental measurements, which are provided by the company. In
addition, this original CAD design has been used as the reference to de�ne
further parametric modi�cations. In Figure 5.7 the original design of the
P-U probe is shown. In this design, the velocity sensor it is not included
because of con�dential restrictions imposed in the model by the company.
Notice that the size of the P-U probe is quite small: its length is 17 mm and
its diameter is 0.5 inches.

Figure 6.1: Original design of the P-U probe.

Firstly, as it has been discussed in Chapter 5, the PML absorption
coe�cient has to be optimized. Following the steps described in Section
5.2, the optimal values have been computed for a discrete set of 11 di�erent
frequencies (see Table 6.1).

Taking into account this computational domain, the scattering problem
is solved by assuming that a plane wave is impinging the probe. The goal in
the numerical simulation consists in computing the gain of the SPL and the
PVL levels.

Figure 6.2 shows both gains, which have a �at frequency response. While
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Frequency [Hz] Optimal values [s/rad]
50 1280
150 3708
250 5900
500 10700
750 14800
1000 18300
2000 29700
4000 43100
6000 44500
8000 49000
10000 48500

Table 6.1: Optimal values of the PML absorption coe�cient for 11 di�erent
frequencies. The computational domain is the exterior of the original P-U
probe, surrounded by a PML of thickness 13 mm located at 13 mm from the
probe.

the sound pressure level gain is around one decibel, the gain associated to
particle velocity level is approximately equal to 10 dB.

Figure 6.2: Gains associated to SPL and PVL, which are computing by using
the original P-U probe design.
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Finally, the directivity pattern is studied and the numerical results are
shown in Figure 6.3. It can be observed that the directivity pattern associated
to the pressure �eld is omnidirectional. However, the pattern associated to
velocity �eld has an eight shape rotated horizontally.

(a) Pressure in dB (b) Velocity in dB

Figure 6.3: Directivity pattern for the SPL and PVL levels computed with
the original P-U probe design for a frequency of 10000 Hz.

6.2 Modifying the eccentricity of the pillars

The �rst part of the geometry to be changed was the pillars. In the
company, the �rst goal was focused on the gain response in the case of the
eccentricity of the pillars had been changed. With this purpose, the radius
of the elliptic cross-sections of the pillars were modi�ed for a feasible range
of values (see di�erent geometries associated to di�erent values in Figure 6.4).



6.2. ECCENTRICITY OF THE PILLARS 65

(a) (b)

(c) (d)

Figure 6.4: Di�erent examples of probe designs when the eccentricity of the
pillars is modi�ed. In plot (a), both, the radius in the x- and y-axis are the
smallest ones. In plot (b), the radius in the x-axis is larger than in the y-axis,
while in plot (c), the relation between radius of x- and y- is reciprocal. Finally
in panel (d), the radius are the largest ones that have been considered.
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The optimization results (see Figure 6.5) show that the sound level
pressure never changes no matter how the eccentricity does. However, the
particle velocity level is higher when the radius in the x-axis (perpendicular
axis to the blank space between pillars) is smaller and the radius of the
y-axis is larger. In the plots of Figure 6.5, the red squares mark the
computed values associated to the original shape of the cylindrical pillars.

(a) Pressure in dB (b) Velocity in dB

Figure 6.5: Gain results computed for the optimization of the pillars. On the
left, the gain associated to the sound pressure level variations are plotted,
while on the right it is the plotted the gain associated to the particle velocity
level. The red squares in both cases mark the value computed with the
original design of the probe.

Then, for the optimal con�guration, which is shown in Figure 6.6, the
frequency response of the gains is studied numerically. As it can be observed
in Figure 6.7, the gain of the SPL is pretty similar for the optimized
geometry and for the original one. However, the gain of the PVL level is
increased two decibels with the new pillars design.
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Figure 6.6: Optimal design for the parametric pillars varying the radius in
the x- and y-axis.

Figure 6.7: Frequency response of the SPL and PVL gains computed with
the original P-U geometry and with the optimal design of the pillars.
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Finally, the directivity pattern is studied. In Figure 6.8, the patterns
of the sound pressure level and particle velocity level are plotted at
a frequency of 1000 Hz. Both patterns are almost identical to those
ones obtained for the original design of the acoustic probe. Due to
this fact and taking into account that the frequency response of the gains
are �at, it is possible to admit this new con�guration as feasible and optimal.

(a) Pressure in dB (b) Velocity in dB

Figure 6.8: Directivity patterns for SPL and PVL levels computed with the
optimal design of the pillars at a frequency of 10000 Hz.

In view of the numerical results obtained for the optimization of the
pillars, the following goal in the parametric optimization was focused on
maximizing the acoustic intensity through the pillars, where the sensor
should be placed. With this purpose, the elliptical cylinders are made larger
and symmetrically truncated, as it is shown in Figure 6.9. In this �gure,
two di�erent examples of this kind of geometry are plotted with opposite
con�gurations. On the left, the width of the truncated part is the smallest
one, while on the right, the diameter of the truncated cylinders is as large
as possible.
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(a) (b)

Figure 6.9: Two di�erent examples of probe design when the elliptical pillars
are truncated symmetrically. On plot (a), the width of the truncated part is
the smallest one. In plot (b), the diameter of the truncated cylinders is as
large as possible.

The obtained results are plotted in Figure 6.10, where it can be checked
that the largest is the truncated part, the highest is the gain associated with
the particle velocity level. Again, the sound pressure level is not a�ected by
the changes in the geometry.

Once the optimal con�guration has been identi�ed (see Figure 6.11), the
frequency response of the gains is studied. In Figure 6.12, it is shown that
the SPL and PVL gains are almost �at. Moreover, despite the fact that the
gain associated to the sound pressure level is almost identical in the original
P-U design, the gain of the particle velocity level is higher in this new design.
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Figure 6.10: Gains associated to SPL and PVL, which have been computed
by using di�erent truncated pillars con�gurations.

Figure 6.11: Optimal design for the parametric truncated pillars.
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Figure 6.12: Frequency response of the SPL and PVL gains computed with
the original P-U geometry and with the optimal design of the truncated
pillars.

(a) Pressure in dB (b) Velocity in dB

Figure 6.13: Directivity patterns for the SPL and PVL levels computed with
the optimal design of the truncated pillars at a frequency of 10000 Hz.

The numerical study of the directivity pattern con�rms that this
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geometry is not only optimal in terms of increasing the PVL gain but also
feasible. Again, in Figure 6.13, it is shown that the SPL directivity pattern
is omnidirectional and the PVL pattern is described by an horizontally
rotated �eight�shape� angle distribution.

Finally, a comparative plot among the frequency response of the gains
for the original probe and the two new optimized geometries is made. Due
to the sound pressure level was almost identical in the three cases, only the
gain associated to the particle velocity level is plotted in Figure 6.14. In
this plot, it is easy to check that the geometry with the largest PVL gain is
that one computed with the optimal truncated pillars. This con�guration
provides a PVL gain of 2.5 dB larger than the original one, and 0.5 dB larger
than the geometry with the optimal elliptical cylinders. Hence, taking into
account the parametric optimization of the pillars, it is possible to conclude
that the optimal truncated elliptical cylinders con�guration is the optimal
one among all the probe designs tested in this master thesis.

Figure 6.14: Frequency response of the gain associated to the PVL using
three di�erent designs: the original one, that one with optimal elliptical
pillars and that one with optimal symmetrically truncated pillars.
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6.3 Modifying the width of the probe

Another completely di�erent approach has been also considered: it has
consisted in enlarging the probe, re-scaling its geometrical dimensions but
without changing the ratios between lengths, thickness or radius of its
di�erent parts. The diameter of the original probe is 0.5 inches, so the idea
is to increase it �rst, to 0.75 inch and second, to 1 inch.

In this case, no sweeping procedure is required to identify the optimal
geometric parameters, since the aim of the numerical study is just to obtain
the frequency response of a new probe with a �xed set of parameters. Due
to this fact, only the frequency response of the gains is analysed.

However, the modi�cation of the width of the probe implies to vary the
position of the PML, since the dimensions of the �uid domain surrounding
the probe are also modi�ed. For this reason, it is necessary to optimize the
PML absorption coe�cient for these two new geometries.

6.3.1 Diameter of 0.75 inch

The optimal values for the absorption coe�cient of the PML are written in
Table 6.2, while the geometry is plotted in Figure 6.15.
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Frequency [Hz] Optimal values [s/rad]
50 1400
150 4000
250 6400
500 11600
750 16000
1000 19600
2000 31000
4000 45000
6000 47000
8000 51000
10000 48000

Table 6.2: Optimal values of the PML absorption coe�cient for 11 di�erent
frequencies. The computational domain is the exterior of the P-U probe with
a diameter of 0.75 inches, surrounded by a PML of thickness 13 mm located
at 13 mm from the probe.

Figure 6.15: Geometry of the P-U probe with a diameter of 0.75 inches.

The numerical results obtained for the gains associated to this geometry
are plotted in Figure 6.16. Despite the gain associated to the particle
velocity level is almost �at, the gain associated to the sound pressure level
varies in a range between 1 to 10 dB, which becomes infeasible to consider
this geometrical design for experimental measurements.
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Figure 6.16: Frequency response of the SPL and PVL gains, which have been
computed with the P-U probe with a diameter of 0.75 inch.

6.3.2 Diameter of one inch

The optimal values for the absorption coe�cient of the PML are written in
Table 6.3, while the geometry is plotted in Figure 6.17.
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Frequency [Hz] Optimal value [s/rad]
50 1600
150 4500
250 7100
500 12700
750 17300
1000 20900
2000 32400
4000 44700
6000 48500
8000 51600
10000 48400

Table 6.3: Optimal values of the PML absorption coe�cient for 11 di�erent
frequencies. The computational domain is the exterior of the P-U probe with
a diameter of 1 inch, surrounded by a PML of thickness 13 mm located at
13 mm from the probe.

Figure 6.17: Geometry of the P-U probe with a diameter of one inch.

As it was expected from the numerical results obtained with the 0.75
inch probe, the results are far from being optimal or feasible. In Figure 6.18,
not only the gain associated to the sound pressure level, but also the gain
associated with the particle velocity level are not �at. For this reason, the
probe with this geometry is neither optimal nor feasible to perform reliable
measurements.
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Figure 6.18: Frequency response of the SPL and PVL gains, which have been
computed with the P-U probe with a diameter of 1 inch.

Taking into account the numerical results obtained for the 0.75 and 1
inch designs, it could be concluded that it is not feasible to design a P-U
probe with larger diameter than the original one.

6.4 Comparison with experimental

measurements

Finally, the numerical results are compared with respect to the experimental
measurements obtained with the original probe. With this purpose, two
identical sensors have been used. The �rst sensor measures the PVL without
being surrounded by an structure, while the second one is introduced into a
P-U probe. The use of a pair of sensors makes possible to compute the gain
of the PVL level. The computation of the PVL gain from the experimental
measurements is performed by using an in-house Micro�own software. This
software allows the user to made acoustic measurements and to analyse the
obtained results. Then, to compare these experimental results with respect
to the numerical ones, the Python code described in Section 4.4 is used. In
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what follows, it was described the steps to compare both results.

The �rst step consists in checking the calibration of both measurements,
this is, to check that both sensors are exactly at the same locations. In
Figure 6.19 it can be observed that the signals of both sensors are quite
similar and the calibration error is almost null in the frequency band of
interest, lower than 10000 Hz.

Figure 6.19: Comparison of the calibration of the experimental
measurements.

Secondly, the PVL gain of the experimental measurements is computed.
Due to the gain associated to the sensor packing is included in the
calibration, it has been necessary to subtract it from the probe to obtain an
accurate gain estimation. Both, numerical and experimental PVL gains are
plotted in Figure 6.20. Finally, the error between both gains is computed. It
is shown in Figure 6.20, that the error is around 2 dB. These di�erent values
on the PVL gain could be explained thanks to the fact that the probe design
used in the numerical simulations does not include the geometrical details
regarding the sensor location. In fact, it is well-known by the company that
the sensor geometry increases the PVL gain in 2 dB approximately.



6.4. EXPERIMENTAL MEASUREMENTS 79

Figure 6.20: Comparison of the PVL gains of the experimental measurements
and the the PVL gains obtained from numerical simulations.
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Chapter 7

Conclusions

Nowadays, the so-called new industry 4.0 is rising. More and more
technological companies are including modelling strategies and simulation
procedures in their work chains, and not only in the industry. Furthermore,
the company goals are focused on designing novel products faster, cheaper
and safer. Consequently, mathematical modelling and numerical simulation
tools are becoming important key tools in a variety of applications (see for
instance [10]). Currently, it is possible to understand the behaviour of a
product or a complex process without building it or letting it happens.

Throughout the present work, it was demonstrated how the numerical
simulation can describe accurately the vibro-acoustic behaviour of P-U
probe. More precisely, the comparison of the numerical results and the
experimental measurements shows that the numerical simulation techniques
used in this master thesis provide an accurate procedure.

Regarding the conclusions with respect to the optimization of the P-U
probe, it is also possible to infer the smaller the space between pillars, the
higher the particle velocity is. Moreover, if the pressure and velocity �elds
are focused on the blank space between the pillars, the increment is higher,
as it was expected by the company.

Three di�erent mathematical models were described in this master
thesis. Two of them (with and without viscosity) were stated in a bounded
domain. However, the third one was stated in an unbounded domain.
Comparing the size of the probe with respect to the surrounding �uid
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domain in the experimental measurements, the �uid seems to be unbounded.
For this reason, even if the viscosity is not taking into account in this last
model, the problem stated in an unbounded domain is a suitable choice to
simulate the behaviour of a P-U probe. In addition, due to the facts that
the numerical simulation involves a reduced number of wavelengths (below
10000 Hz in a computational domain size around ten millimetres) and that
the viscous coe�cient in the air is quite small, it is possible to conclude that
the numerical results obtained in an inviscid mathematical model will be
accurate.

Furthermore, the model stated in an unbounded domain involves the
Sommerfeld radiation condition, which describes the free �eld conditions.
However, in Finite Element Methods it is quite hard to implement this kind
of conditions. Therefore it has to be replaced for a new one. The technique
used to simulate an unbounded domain was the Perfect Matched Layer
technique. The PML method mimics accurately the free �eld conditions, by
surrounding the domain with some sponge layers, which absorb the re�ected
waves that go to the in�nity.

Finally, the implementation and validation of the Finite Element Method
has to be done. The numerical results of the test problems (see Chapter 5)
show that the numerical results obtained with the FEniCS computer code
are reliable and accurate. In all cases, the relative errors between the exact
solution and the approximated solutions was lower than 10% for all the
frequency range of interest, which illustrate the accuracy and validate the
implementation of the FEM code.
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