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Abstract 

Background. Frailty is a multidimensional syndrome correlated to the loss of homeostasis and increased 

vulnerability to stressors, which is associated with increase in the risk of disability, comorbidity, 

hospitalization, and death in the elderly. It is based on the interplay of physiological, psychological, social, 

and environmental factors. 

Objectives. Because aging involves a detrimental immune response, this work aimed to assess the possible 

role of chronic low-grade immune stimulation on frailty status in the elderly. 

Methods. Biomarkers involved in indoleamine 2,3-dioxygenase 1 and guanosine triphosphate cyclohydrolase 

I enzymatic pathways (namely neopterin, tryptophan, kynurenine, phenylalanine, tyrosine, and nitrite) were 

analyzed in a population of Spanish older adults aged 65 years and above, and their relationships with frailty 

status were evaluated. 

Results. Significant increases in neopterin levels, kynurenine/tryptophan ratio, and phenylalanine/tyrosine 

ratio, and significant decreases in tryptophan, nitrite and tyrosine concentrations in frail individuals compared 

with nonfrail persons were obtained. Significant correlations were also observed between immune 

biomarkers, indicating they change in parallel, thus, pointing to interrelated causes. Besides, reference ranges 

for a number of immune biomarkers in the population of robust older adults were established for the first 

time. 

Conclusions. Results obtained in the present study are consistent with the idea that frailty status in the elderly 

is associated with an additional degree of immune stimulation, manifested in a more intense disturbance of 

indoleamine 2,3-dioxygenase 1 and guanosine triphosphate cyclohydrolase I pathways than in nonfrail or 

prefrail older adults. 
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Average age of populations around the world is rapidly increasing, and this trend is evident 

from the most developed countries to the lowest income regions.
1
 In Europe, by 2060, those aged 

65 ± years will comprise 30% of the population, and 1 person in 8 will be aged 80 years or more.
2
 

This aging situation leads to an increase in future healthcare expenditure. Because of that, 

researchers and governments are interested in increasing our knowledge about aging and 

agerelated conditions and disorders, to reduce sanitary and socioeconomic costs in the future.   

 

Chronological age is normally used to classify elderly people; however, because of the great 

heterogeneity reported in the aging process, chronological age is not a good indicator of aging 

signs and symptoms. In this regard, the term “frailty” represents an approach to age-related 

conditions by replacing the obsolete concept of “chronological age” with the more accurate and 

person-tailored parameter of “biological age.”
3
 Frailty has been defined as a medical syndrome 

with multiple causes and contributors that is characterized by diminished strength, endurance, and 

reduced physiologic function that increases an individual’s vulnerability for developing increased 

dependency and/or death.
4
 It may be initiated by disease, lack of activity, inadequate nutritional 

intake, stress, and/or the physiologic changes of aging. It is manifested as loss of skeletal muscle 

mass (sarcopenia), abnormal function of immune and neuroendocrine systems, and poor energy 

regulation.
5
 Causes of frailty are complex; it is a multidimensional syndrome based on the 

interplay of genetic, biological (hormonal, metabolic, and immune-inflammatory systems), 

physical, psychological, social, and environmental factors.
6,7

 Prevalence of frailty is highly 

variable and dependent on a number of factors including features of the population evaluated and 

frailty scale applied. This prevalence has been estimated to range from 4% to 59.1%.
8
 In 

community-dwelling Spanish populations, it was established to be 8.6%
9
 and 16.3%

10
 in different 

studies employing Fried’s criteria
11

 for frailty identification. However, according to a recent cross-

sectional study with 331 Spanish participants of both sexes, this prevalence can reach 68.8% in the 

case of institutionalized older people.
12

  

 

Normally in later life, immune response becomes chronic and detrimental, contributing to the 

development of a number of agerelated chronic diseases such as atherosclerosis,
13

 type-2 

diabetes,
14

 Alzheimer disease,
15

 and osteoporosis.
16

 Thus, the term “immunosenescence” reflects 

those age-related changes in immune responses, both cellular and serologic, affecting the process 

of generating specific responses to foreign and self-antigens.
17

 Although inflammation is an acute 

and fundamental response to cope with internal and external damaging agents, the continuous 

antigenic stress means the immune system can become overstimulated over time and inefficient 

with age; this process has been proposed to be named “inflammaging.”
18  

 

Upon immune activation, inflammatory factors (eg, Th1-type cytokine interferon-g) induce the 

expression of the enzymes indoleamine 2,3-dioxygenase 1 (IDO) (EC 1.13.11.52) and guanosine 

triphosphate cyclohydrolase I (GCH) (EC 3.5.4.16) in monocytes/macrophages and dendritic cells 

(Figure 1). IDO is involved in transforming tryptophan into kynurenine. In vivo, 

kynurenine/tryptophan (Kyn/Trp) ratio reflects tryptophan breakdown, and in inflammatory 

conditions is considered to represent IDO enzyme activity.
19

 Several clinical conditions associated 

with increased immune activation are characterized by intensified tryptophan degradation [eg, 

several infections including human immunodeficiency virus (HIV) infection, autoimmune 

syndromes, a number of cancers, neurodegenerative disorders, and cardiovascular disease, among 

others].
20

 When GCH, the key enzyme of pteridine biosynthesis, is activated, it produces 7,8- 

dihydroneopterin triphosphate (NH2TP), which is a precursor of neopterin and tetrahydrobiopterin 

(BH4). BH4 is an essential cofactor of amino acid monooxygenases, including phenylalanine 4- 

hydroxylase (PHA) (EC 1.14.13.39), involved in the conversion of phenylalanine to tyrosine, and 

nitric oxide synthases (NOS) (EC 1.14.13.39), which catalyze the conversion of arginine to nitric 

oxide (NO).
21

 In conditions of immune activation, neopterin is released by activated human 

monocytic cells at the expense of the formation of BH4.
22

 Thus, neopterin concentration in body 

fluids, including serum, urine, and cerebrospinal fluid, is considered a sensitive marker of immune 

system activation. In fact, neopterin levels are increased in malignant tumors, in autoimmune, 

cardiovascular, infectious, and neurodegenerative diseases, and during rejection episodes in 

allograft recipients.
23

 Likewise, the spectrum of diseases in which elevated serum phenylalanine 

levels, as consequence of low PHA activity, have been reported, including sepsis, HIV infection, 

cancer, burns, and trauma,
24

 is very similar to the one with increased degradation of tryptophan 

and neopterin production.  

  



 
 

 
Fig. 1. Immune stimulation through inflammation factors involves activation of IDO and GCH pathways, which leads to 

increase in tryptophan breakdown, increase in neopterin production from 7,8-dihydroneopterin triphosphate (NH2TP) at the 

expense of BH4 and, consequently, decrease in PHA and NOS activities, resulting in decline of tyrosine and NO 
production. Italic letter indicates immune biomarkers analyzed in this study. 

The present work aimed to assess the possible role of chronic low-grade immune stimulation 

on frailty status in the elderly. Our hypothesis was that immune stimulation biomarkers involved 

in IDO and GCH enzymatic pathways would have a significant association with frailty. To test this 

hypothesis, we conducted a cross-sectional study in a population of Spanish older adults analyzing 

neopterin, tryptophan, and phenylalanine metabolism parameters, and nitrite as an estimate of NO 

production, and evaluated their relationship with frailty status. In addition, we explored the 

potential relationship between the immune biomarkers and nutritional and functional status in 

older adults. 

Methods 

Study Population 

Participants were recruited from several associations of retired or older people, nursing homes, 

and daycare centers located in Galicia, North-western Spain. The final cohort included 259 

individuals (85 male and 174 female) aged 65 years and above. A clinical evaluation was carried 

out by trained interviewers to unify criteria, and participants completed a questionnaire to collect 

medical, lifestyle, and demographic information. In addition, whole blood samples were collected 

into vacutainer tubes without anticoagulant or containing sodium heparin between 9:30 AM and 

12:30 PM, and were transported to the laboratory immediately. Serum and plasma samples were 

obtained by centrifugation at 2300 rpm for 10 minutes, aliquoted, and stored at −80ºC until 

analysis. All laboratory measurements were performed in a blinded manner because of all samples 

were coded at the moment of collection. Exclusion criteria included taking medications known to 

affect the immune system and having autoimmune diseases, neoplasia, or any chronic infection, 

such as HIV, hepatitis C virus, and hepatitis B virus.  

 

The general characteristics of the study population are collected in Table 1. The number of 

current smokers and ex-smokers was quite low (N = 5 and N = 49, respectively); hence, they were 

combined in the category “ever smokers.” Similarly, participants with low comorbidity (Charlson 

comorbidity index total score = 2, N = 47) and high comorbidity (total score ≥ 3, N = 33)
25

 were 

grouped together. And malnourished individuals (N = 14) were combined with those at risk of 

malnutrition (N = 80) in a single category.  

  



Table 1. Description of the Study Population 

Characteristic  Nonfrail  Prefrail  Frail  P 

     

Total individuals N (%)  40 (15.4)  131 (50.6)  88 (34.0)  

Age (y)*  73.2 ± 5.5 (65−85)  77.05 ± 7.7 (65−100)  85.8 ± 7.9 (65−102)  <.001† 
Sex N (%)     

Male  27 (67.5)  36 (27.5)  22 (25.0)  <.001‡ 

Female  13 (32.5)  95 (72.5)  66 (75.0)  
Living conditions N (%)     

Family home  40 (100)  113 (86.3)  5 (5.7)  <.001‡ 

Family home + daycare center  —  4 (3.1)  23 (26.1)  
Nursing home  —  14 (10.7)  60 (68.2)  

Smoking habits N (%)     

Nonsmokers  22 (55.0)  102 (78.5)  76 (90.5)  <.001‡ 
Ever smokers  18 (45.0)  28 (21.5)  8 (9.5)  

No. cigarettes/d*  16.1 ± 8.8 (3−40)  15.7 ± 13.9 (2−60)  31.4 ± 15.7 (2−60)  .020† 
Years smoking*  19.4 ± 9.1 (10−34)  30.4 ± 18.7 (4−66)  29.3 ± 18.2 (6−52)  .154† 

Nutrition N (%)     

Normal nutrition status  36 (90.0)  106 (80.9)  18 (21.7)  <.001‡ 
At risk of malnutrition  4 (10.0)  23 (17.6)  53 (63.9)  

Malnourished  —  2 (1.5)  12 (14.5)  

At risk or malnourished  4 (10.0)  25 (19.1)  65 (70.3)  
MNA-SF score*  13.3 ± 1.4 (8−14)  12.8 ± 1.7 (4−14)  9.7 ± 2.4 (4−14) <.001† 

Functional status N (%)     

No dependence  38 (95.0)  109 (83.2)  5 (5.7)  <.001‡ 
Dependence  2 (5.0)  22 (16.8)  82 (94.3)  

Comorbidity N (%)     

No comorbidity  34 (85.0)  92 (70.2)  52 (59.8)  .015‡ 
Comorbidity  6 (15.0)  39 (29.8)  35 (40.2)  

     

 
ANOVA, analysis of variance; MNA-SF, Mini-Nutritional Assessment-Short Form. 
*Mean ± standard deviation (range). 
†ANOVA test (bilateral). 
‡χ2 test (bilateral). 

 

All participants, or their relatives in case of inability, gave informed consent to be included in 

this study. The study protocol conformed to the principles embodied in the Declaration of Helsinki 

and was approved by the University of A Coruña Ethics Committee.  

 

Frailty Status  

Frailty status of each participant was determined according to the criteria proposed by Fried et 

al.
11

 These criteria are based on the presence or absence of 5 specific and phenotypic components 

(1) unintentional weight loss: at least 4.5 kg in the past year; (2) self reported exhaustion, 

identified by 2 questions from the modified 10-item Center for Epidemiological Studies-

Depression scale
26

 using the Spanish version
27

; (3)weakness: grip strength in the lowest 20% at 

baseline, adjusted for sex and body mass index; (4) slow walking speed: the slowest 20% at 

baseline, based on time to walk 4.6 m, adjusting for sex and standing height; and (5) low physical 

activity: the lowest 20% at baseline, based on a weighted score of kilocalories expended per week, 

calculated according to the Spanish validation of the Minnesota Leisure Time Activity 

questionnaire,
28

 according to each participant’s report, and adjusting for sex. Individuals 

presenting 3 or more of these characteristics were considered frail, while the presence of 1 or 2 of 

them was considered as a prefrailty state, and the absence of all 5 indicated a nonfrail state.  

  



Comorbidity  

Charlson comorbidity index
25

 was used to assess general comorbidity and number of comorbid 

diseases. A Charlson comorbidity index age-adjusted score was computed for each participant, 

coding the absence of comorbid diseases as 0, and the presence as 1 to 6.  

Nutritional and Functional Status  

Nutritional screening was carried out with the Mini-Nutritional Assessment-Short Form 

(MNA-SF) questionnaire
29

 (Spanish version
30

), composed of 6 questions from the full MNA 

questionnaire. 
31

 The functional status [ie, the participant’s capacity to perform basic activities of 

daily living (ADL)], was evaluated by an occupational therapist using the Barthel index
32

 validated 

for Spanish population.
33 

Neopterin Measurement 

Serum neopterin levels were determined by using a commercially available ELISA kit 

(BRAHMS GmbH, Hennigsdorf, Germany), following the manufacturer’s instructions. Sensitivity 

of the test was 2 nmol/L neopterin. 

Tryptophan, Kynurenine, Phenylalanine, and Tyrosine Analyses 

Serum concentrations of tryptophan and kynurenine on one hand, and plasma concentrations of 

phenylalanine and tyrosine on the other hand, were simultaneously determined by high 

performance liquid chromatography with the use of an external albumin-based calibrator and an 

internal calibrator (3-nitro-L-tyrosine), following the general protocols proposed by Laich et al
34

 

and Neurauter et al,
35

 respectively. The extent of tryptophan breakdown and PHA activity were 

estimated by calculating the kynurenine to tryptophan ratio (Kyn/Trp) and the phenylalanine to 

tyrosine ratio (Phe/Tyr), respectively. Limits of detection were 0.1 μmol/L tryptophan, 0.5 μmol/L 

kynurenine, and 0.3 μmol/L phenylalanine and tyrosine. 

Nitrite Determination 

The stable NO metabolite nitrite (NO2¯) was measured in plasma samples as an estimation of 

NOS activity and NO production,
36

 according to the Griess method. A standard curve was 

prepared with different NaNO2 concentrations; then 50 mL of plasma or standard curve samples 

and 125 μL of Griess reagent (Merck, Darmstadt, Germany) were added onto a microplate. After 

10 minutes of incubation at room temperature without shaking, color development was measured 

at 562 nm in a power wave X microplate reader (Bio-Tek Instruments, Winooski, VT), equipped 

with kinetic analysis software (KC4 v.2.5; Bio-Tek Instruments). Limit of detection was 1.5 

μmol/L nitrite. 

Statistical Analysis 

A general description of the study population was conducted by univariate analysis, comparing 

sociodemographic features (ie, sex, age, and living conditions), lifestyle factors (ie, tobacco 

consumption, nutritional status), and several clinical factors (ie, functional status, comorbidity) in 

the 3 groups of older adults classified according to their frailty status (nonfrail, prefrail, and frail). 

Analysis of variance was applied for continuous variables and c2 test was used for categorical 

variables.  

 

Preliminary univariate analyses through analysis of variance and Tuckey post-hoc test were 

performed to assess the effect of frailty status on the immune biomarkers. The effect of nutritional 

and functional status was preliminarily evaluated by Student t test. Data from tryptophan, 



kynurenine, and tyrosine followed a normal distribution (Kolmogorov-Smirnov goodness-of-fit 

test). To achieve a better approximation to the normal distribution, a log-transformation of the data 

was applied to Kyn/Trp ratio. As no improvement was achieved with transformation, the Kruskal-

Wallis and Mann-Whitney U tests were applied for statistical evaluation of neopterin, nitrite, 

phenylalanine concentrations, and Phe/Tyr ratios.  

 

Reference ranges were calculated for the immune biomarkers on the basis of values from 

nonfrail and prefrail individuals. For those biomarkers following a normal distribution, reference 

ranges were defined by the mean ± 2 standard deviation. When data were considered to have a 

non-Gaussian distribution, reference ranges were defined as the central 95% of the area under the 

distribution curve (from 2.5% to 97.5%).  

 

Linear regression models were applied on the log-transformed data to estimate the effect of 

frailty status, nutritional status, and functional status. All models included sex, age, and smoking 

habits (never/ever smokers). The results are presented as mean ratios and 95% confidence 

intervals.  

 

Associations between immune biomarkers were estimated by partial correlation coefficients, 

adjusting for sex, age, and smoking habits. The critical limit for significance was set at P < .05. 

Analyses were carried out using the IBM SPSS software package V. 20 (SPSS, Inc, Chicago, IL) 

and the STATA/SE software package V. 12.0 (StataCorp LP, College Station, TX).  

Results 

The population analyzed (Table 1) was composed of 259 participants, mainly female 

participants (67%), age range 65−102 years. The prefrail group was the most numerous, followed 

by frail participants. Among all 131 prefrail participants, 89 (68%) were positive for only 1 frailty 

criterion, and 42 (32%) were positive for 2 frailty criteria. The low grip strength criterion, 

indicative of muscle weakness, was present in most prefrail individuals (N = 126, 96%). Most frail 

patients lived in nursing homes, whereas all nonfrail participants lived at family home, not 

attending daycare centers. Prevalence of smoking habits was quite balanced in the group of 

nonfrail participants, but nonsmokers were clearly more frequent in the other 2 groups. Regarding 

nutrition, few individuals were malnourished, most of them frail and none nonfrail; accordingly 

the mean MNA-SF score was lower in frail participants. Only 2 nonfrail participants were 

classified as ADL dependent, according to their functional status, whereas most frail patients were 

ADL dependent. Moreover, comorbidity was present in only 15% of nonfrail participants, but in 

40% of frail individuals.  

 

Results of the immune biomarkers analyzed in the nonfrail, prefrail, and frail groups are shown 

in Table 2. According to univariate analyses, significant and progressive changes were observed in 

concentrations of several biomarkers. Significant increases were obtained of neopterin 

concentrations and Kyn/Trp ratio in the frail group with regard to the other 2 groups. On the 

contrary, tryptophan, nitrite and tyrosine levels decreased significantly in the presence of frailty; 

only in the case of nitrite were the 3 population groups significantly different. 

  



Table 2. Results of Immune Biomarkers in the Study Group, Classified According to Frailty Status (Univariate Analysis) 

Immune Biomarker  Nonfrail   Prefrail   Frail   P Value* 

 N (Mean ± SE)   N (Mean ± SE)   N (Mean ± SE)   

        
Neopterin (nmol/L)  37 (5.96 ± 0.30a)   120 (7.53 ± 0.44a)   86 (13.04 ± 0.85b)   <.001 

Tryptophan (μmol/L)  35 (82.30 ± 2.52a)   118 (75.72 ± 1.42a)   86 (62.71 ± 1.64b)   <.001 

Kynurenine (μmol/L)  35 (2.26 ± 0.09)   118 (2.44 ± 0.07)   86 (2.41 ± 0.08)   .467 
Kyn/Trp (μmol/mmol)  35 (37.60 ± 3.20a)   118 (42.93 ± 2.14a)   86 (81.70 ± 3.98b)   <.001 

Nitrite (μmol/L)  37 (13.09 ± 2.66a)   121 (8.16 ± 0.79b)   77 (1.90 ± 0.41c)   <.001 

Tyrosine (μmol/L)  37 (112.21 ± 4.98a)   123 (108.85 ± 2.80a)   86 (96.34 ± 2.37b)   .002 

Phenylalanine (μmol/L)  37 (79.56 ± 3.54)   123 (73.26 ± 1.51)   86 (76.52 ± 3.56)   .336 

Phe/Tyr (μmol/μmol)  37 (0.72 ± 0.02)   123 (0.70 ± 0.01)   86 (0.81 ± 0.04)   .061 

        

 
Note. Bold values are statistically significant (P < .05). 

ANOVA, Analysis of variance. 

Different superscript letters (a, b, c) indicate statistically different groups (Tukey test or Mann-Whitney U test). 
*Multiple group comparison (ANOVA or Kruskal-Wallis test). 

Because reference ranges specific for robust older adults were not available for any of the 

biomarkers analyzed in this work, values obtained from nonfrail and prefrail participants were 

used for calculating the lower and upper limits of the corresponding reference ranges (Table 3), 

since no significant differences between these 2 groupswere observed, with the exception of 

nitrite. Percentages of concentrations registered in frail participants out of the calculated reference 

ranges were notable for Kyn/Trp ratio (above) and tryptophan (below), and moderate for neopterin 

(above) and nitrite (below). Values exceeding the reference range in both directions were observed 

for phenylalanine and Phe/Tyr ratio.  

Table 3. Reference Ranges of the Immune Biomarkers Analyzed, Calculated on the Basis of Results Obtained in Nonfrail 

and Prefrail Participants 

Immune Biomarker  N 

Values in 

“Healthy” 

Participants* 

Reference Range  

Percent of Frail 

Participants Out of the 

Reference Range 

   
Lower 

Limit 

Upper 

Limit 
 Below  Above 

        

Neopterin (nmol/L)  157  5.94 (1.58)  3.50  22.40   —  10.5 
Tryptophan (μmol/L)  153  67.4 (10.2)  46.14  108.30   16.3  — 

Kynurenine (μmol/L)  153  1.78 (0.42)  0.88  3.92   —  3.5 

Kyn/Trp (μmol/mmol)  153  26.7 (6.2)  16.69  99.43   —  22.1 
Nitrite (μmol/L)  158  44.9 (32.0)  0.59  36.19   9.1  — 

Tyrosine (μmol/L)  160  90.6 (22.9)  47.95  171.31   —  1.2 

Phenylalanine (μmol/L)  160  65.2 (11.1)  48.11  118.72   5.8  7.0 
Phe/Tyr  160  0.75 (0.14)  0.36  1.05   1.2  9.3 

        

 
*According to Geisler et al37 (2015) (mean age ± standard deviation: 49 ± 11.4 years). 

Remarkable significant correlations were obtained between biomarkers (Table 4). Neopterin 

showed strong associations with tryptophan breakdown parameters and slight association with 

nitrite and Phe/Tyr. In turn, nitrite and phenylalanine metabolism products were moderately 

associated with tryptophan breakdown products. Frailty presented significant direct associations 

with neopterin, Kyn/Trp and Phe/Tyr, and inverse associations with tryptophan, nitrite, and 

tyrosine.  

  



Table 4. Partial Correlation Coefficients Between Biomarkers Analyzed, Adjusted by Age, Sex and Smoking Habits (Cells 

in Light Gray: Moderate Associations, Cell in Dark Gray: Strong Association) 

Biomarker  Neopterin  Tryptophan  Kynurenine  Kyn/Trp  Nitrite  
Phenyl-

alanine  
Tyrosine  Phe/Tyr 

         
Frailty  0.209**  −0.294***  −0.070  0.344***  −0.328***  −0.049  −0.223**  0.162* 

Neopterin   −0.233  0.365***  0.565***  −0.219**  0.038  −0.122  0.151* 
Tryptophan    0.268***   0.119  0.304***  0.410***  −0.094 

Kynurenine      −0.031  0.080  0.167*  −0.078 

Kyn/Trp      −0.367***  −0.041  −0.134*  0.086 
Nitrite       −0.055  −0.074  0.039 

Phenylalanine        0.491***  

         

 
*P < .05; **P < .01, ***P < .001. 

Table 5 summarizes the results from the multivariate statistical analyses. All models were 

significant and adjusted by age, sex, and smoking habits. Results were essentially in agreement 

with those obtained from the univariate analyses (ie, significant increases in neopterin and 

Kyn/Trp, together with Phe/Tyr levels, and significant decreases in tryptophan, nitrite, and 

tyrosine concentrations in frail individuals compared with nonfrail participants). No significant 

differences were observed between nonfrail and prefrail participants, except in the case of nitrite 

concentrations, which showed a progressive decline with increasing frailty severity. Significant 

positive influence of age was obtained in neopterin, kynurenine, and Kyn/Trp levels, and inverse 

influence was observed in tryptophan concentrations.  

Table 5. Effect of Frailty Status on Immunologic Biomarkers; Models Adjusted by Age, Sex, and Smoking Habits 

Frailty Status 

Group  
Neopterin   Tryptophan   Kynurenine   Kyn/Trp 

 
Mean Ratio (95% 

CI)  
 

Mean Ratio (95% 

CI)  
 

Mean Ratio (95% 

CI)  
 

Mean Ratio (95% 

CI) 

        
Frailty status        

Nonfrail  1.00   1.00   1.00   1.00 

Prefrail  1.06 (0.88−1.27)   0.93 (0.85−1.01)   1.03 (0.91−1.16)   1.08 (0.91−1.29) 
Frail  1.41 (1.15−1.76)**   0.81 (0.73−0.89)**   0.94 (0.81−1.08)   1.76 (1.43−2.17)** 

 Nitrite   Tyrosine   Phenylalanine   Phe/Tyr 

 
Mean Ratio (95% 
CI)  

 
Mean Ratio (95% 
CI)  

 
Mean Ratio (95% 
CI)  

 
Mean Ratio (95% 
CI) 

Frailty status        

Nonfrail  1.00   1.00   1.00   1.00 
Prefrail 0.65 (0.44−10.97)*   0.94 (0.85−1.04)   0.93 (0.84−1.04)   1.00 (0.90e1.10) 

Frail  0.18 (0.11−0.30)**   0.82 (0.73−0.92)**   0.92 (0.81−1.04)   1.12 (1.00−1.26)* 

        

 
Note. Bold values are statistically significant (P < .05). 

CI, confidence interval. 

*P < .05; **P < .01. 

Nutritional status and functional status were also shown to significantly influence some 

biomarkers (Table 6). Specifically, individuals malnourished or at risk of malnutrition presented 

significantly higher levels of neopterin, Kyn/Trp, and Phe/Tyr, and significantly lower 

concentrations of tryptophan, nitrite, and tyrosine (borderline significant P =.053, in the last case) 

than participants with normal nutrition. Similar results were obtained in ADL dependent patients 

compared with nondependent individuals.  

 

  



Table 6. Effect of Nutritional Status and Functional Status on Immunologic Biomarkers; Models Adjusted by Age, Sex, 

and Smoking Habits 

Group  Neopterin   Tryptophan   Kynurenine   Kyn/Trp 

 
Mean Ratio (95% 

CI)  
 

Mean Ratio (95% 

CI)  
 

Mean Ratio (95% 

CI)  
 

Mean Ratio (95% 

CI) 

        
Nutritional status        

Normal nutrition 1.00   1.00   1.00   1.00 

At risk or 
malnourished  

1.22 (1.07−1.39)**   0.92 (0.87−0.98)**   0.96 (0.88−1.04)   1.30 (1.36−1.48)** 

Functional status        

Nondependent  1.00   1.00   1.00   1.00 

Dependent  1.40 (1.21−1.61)**   0.89 (0.83−0.95)**   0.99 (0.90−1.10)   1.77 (1.55−2.02)** 

 Nitrite   Tyrosine   Phenylalanine   Phe/Tyr 

 
Mean Ratio (95% 
CI)  

 
Mean Ratio (95% 
CI)  

 
Mean Ratio (95% 
CI)  

 
Mean Ratio (95% 
CI) 

Nutritional status        

Normal nutrition  1.00   1.00   1.00   1.00 

At risk or 

malnourished  
0.47 (0.34−0.65)**   0.93 (0.87−1.00)†  1.03 (0.96−1.11)   1.11 (1.03e1.19)** 

Functional status        

Nondependent  1.00  1.00   1.00   1.00 
Dependent  0.27 (0.19−0.38)**   0.88 (0.81−0.96)**   0.97 (0.89−1.06)   1.10 (1.02−1.19)* 

        

 
Note. Bold values are statistically significant (P < .05). 
CI, confidence interval. 

*P < .05; **P < .01. 

†P = .053. 

Discussion 

A huge body of evidence supports the age-related chronic lowgrade inflammation 

(inflammaging).
38−40

 Further, chronic low-grade inflammation is considered to be involved in age-

related maladies, such as neurodegenerative diseases,
41

 cardiovascular diseases,
42

 osteoporosis,
43

 

or cancer.
44

 Associations between several proinflammatory factors, namely interleukin 6, C 

reactive protein, and tumor necrosis factor alpha, and frailty have been previously reported.
45−48

 

Besides, purified monocytes from frail participants were reported to have upregulated expression 

of stress-responsive inflammatory pathway genes, compared with monocytes from nonfrail 

individuals, in ex vivo studies with or without lipopolysaccharide stimulation.
49,50 

Still, data on in 

vivo immune stimulation and monocyte/macrophage activity related to frailty status are very 

scarce. To our knowledge, no studies addressed so far the possible relationship of frailty status 

with immunologic biomarkers involved in GCH or IDO enzymatic pathways, except for 

neopterin.
51,52

 Hence, the possible disturbance of the mentioned immune stimulation-related 

enzymatic pathways was analyzed in the present work in a population of Spanish older adults, 

classified according to their frailty status following the 5 phenotypic criteria proposed by Fried et 

al.
11

  

 

Although concentrations of the immune biomarkers assessed in this work were previously 

reported in populations or subpopulations of older adults,
53−58

 frailty status of the participants in 

these studies was not determined; at most some reports specified they were “healthy.” Thus, it was 

necessary to establish reference ranges of these biomarkers specifically in the group of robust 

older adults (ie, in the absence of frailty). For some of the immune biomarkers, namely neopterin, 

nitrite, and especially Kyn/Trp and tryptophan, the rate of concentrations in the frail group out of 

the reference range was remarkable and entirely in the same direction (only above reference range 

in the case of neopterin and Kyn/Trp, and only below range in tryptophan and nitrite), indicating a 

clear tendency of disturbance related to frailty status.   

 

  



Neopterin concentration in body fluids is considered as a marker of activation of the immune 

system, in particular of Th1 or cell-mediated response.
2
3 Higher concentrations of neopterin in 

older age were previously reported,
51,58,59 

and association between increased neopterin 

concentrations and enhanced tryptophan breakdown (as indicated by Kyn/Trp ratio) has been 

documented in older adults as well.
54,60−62

 Similarly, our results show significant and positive 

influence of age on neopterin and kynurenine concentrations and Kyn/ Trp ratio, and inverse 

influence on tryptophan levels.  

 

To date, only very few studies evaluated neopterin serum levels in older adults in association 

with frailty, finding significantly higher neopterin concentrations in frail older adults than in 

nonfrail controls, either equally older
51

 or younger (median 38 years).
52

 Current results support 

those previous ones and also indicate association of frailty with tryptophan breakdown because 

significant influence was observed for frailty status on neopterin, tryptophan, and Kyn/Trp ratio. 

Moreover, our results are also in line with other studies reporting that neopterin urinary 

concentrations and Kyn/Trp ratio predict mortality in nonagenarians
60,61

 because frailty is related 

to increased vulnerability to stressors and increases the risk of death
4,63

  

 

Alterations of Kyn/Trp ratio may be due to an enhanced activity of 2 enzymes, namely IDO 

and tryptophan 2,3-dioyxgenase (TDO), an IDO isoenzyme not induced by proinflammatory 

cytokines but rather upregulated by tryptophan itself and corticosteroids.
64,65

 However, in the 

presence of immune stimulation, Kyn/Trp together with concentrations of neopterin reflect the 

degree of Th1-type immune activation.
66

 The strong correlation found in this study between 

neopterin concentration and Kyn/Trp points to enhanced IDO activity and immune stimulation as 

the cause behind tryptophan parameters disturbance. Besides, in many cases, the tryptophan 

breakdown rate not only correlates with neopterin concentrations, but also with the extent and the 

activity of the disease (eg, in viral infections or malignant tumors).
20,67,68

 The moderate significant 

correlations obtained in the current study between frailty status and tryptophan breakdown 

parameters, and also with nitrite and tyrosine, suggest that the level of these markers may be 

indicative (directly or inversely) of frailty severity. This also indicates that, although neopterin and 

tryptophan breakdown products are not specific biomarkers for frailty, development of frailty 

status takes most likely place when these immune biomarkers increase, being the immune system 

activation a strong driving force for frailty development.  

 

Activated human monocytes/macrophages produce neopterin at the expense of BH4.
69

 BH4 

deficiency affects PHA and NOS enzymatic activities, consequently diminishing tyrosine and NO 

production and increasing the ratio Phe/Tyr, considered a useful measure to estimate PAH 

activity.
70

 Indeed, increases in phenylalanine concentration and in Phe/Tyr have been reported in 

patients with different chronic inflammatory conditions, and correlations with neopterin 

concentrations were also found.
21,71−73

 Our results showed a significant influence of frailty status 

on Phe/Tyr (direct) and on tyrosine and nitrite concentrations (inverse), supporting the view that 

both PAH and NOS activities are impaired in frail older adults. The significant correlation found 

between Phe/Tyr and neopterin, and the inverse associations observed of nitrite with neopterin 

concentrations and Kyn/Trp, also point toward parallel disturbance of GCH and IDO enzymatic 

pathways caused by Th1-type immune activation in frail older adults.  

 

No significant association was obtained in this work between nitrite and any of the 

phenylalanine breakdown parameters. Several reasons may help to explain this lack of association. 

On one hand, even though the majority of plasma nitrite is derived from constitutive NOS 

activity,
36

 serum nitrite concentrations only serve as a rough estimate of NO production rates
71

; 

indeed food is an important exogenous factor influencing serum nitrite concentrations.
37

 And, on 

the other hand, tyrosine is not an end-product and its concentrations are also influenced by the 

activity of another BH4-dependent enzyme (tyrosine hydroxylase), which forms L-DOPA (L-3,4-

dihydroxyphenylalanine) from tyrosine.
22

  

 

In elderly persons, nutrition-related problems are very common. In the study population,14.5% 

of frail peoplewere malnourished and 90% of participants at risk or malnourished were prefrail or 

frail. In addition, 93% frail participants were dependent to perform ADL activities. When the 

potential influence of nutritional status or functional status on the immune biomarkers was tested 

in the current study, results obtained were parallel to those for frailty status. This was not 

surprising because an association and overlap between frailty and impaired nutritional status has 



been previously demonstrated, revealing that patients who are at risk of malnutrition are more 

likely to be frail and have impaired mobility.
74

 Besides, a 12-year prospective population-based 

study reported that some particularly unhealthy dietary patterns may increase the risk of frailty in 

older adults.
75

 And a recent meta-analysis revealed that malnutrition and physical frailty in 

community-dwelling older adults are related, but prevalence of physical frailty is much higher than 

the prevalence of malnutrition (19% vs 2.3%, respectively), indicating that these syndromes are 

not interchangeable.
76

  

 

Moreover, significant relationship between frailty and functional status (disabilities in 

instrumental ADL scale, which precede disabilities in ADL and loss of autonomy)was reported.
77

 

And it has also been shown that malnutrition compromises the functional status.
78

 Hence, our 

results show the interrelationship between frailty, nutritional status, and functional status; still, 

frailty is a more a holistic concept involving not only nutritional and functional features, but also a 

general physiological decline.  

 

Besides, age-related decline of the immune system can undermine the dynamic homeostatic 

balance between the microbiota and the gut-associated immune system, leading to changes in 

intestinal microbial structure and composition.
79

 Indeed, immunosenescence and inflammaging 

have been connected to changes in microbiota composition in older adults.
80,81

 Moreover, 

alterations in the gut microbiota composition have been associated with several chronic conditions, 

including frailty.
82−84

 The composition of the microbiome will certainly influence the degree of 

immune system-derived metabolic alterations. Immune response strongly affects biochemical 

pathways that are most relevant in the control of pathogens growth. Thus, restricting availability of 

the essential amino acid tryptophan is of great relevance limiting protein biosynthesis, but it also 

interferes with the biochemistry of tryptophan for serotonin production and the kynurenine 

pathway (thus, affecting mood). Therefore, microbiome composition can play a role in the 

relationship between frailty and the immune stimulation biomarkers analyzed in this study, but 

further investigation is required to explore this possibility.  

 

In summary, results obtained in the present study are consistent with the idea that chronic 

immune system stimulation in frail older adults is higher than expected according only to their age 

(ie, frailty status in the elderly is associated with an additional degree of immune stimulation, 

manifested in more intense disturbance of IDO and GCH pathways than in nonfrail or prefrail 

older adults). Nevertheless, because this study was carried out in an older adult population, a major 

limitation is that participants are not completely healthy, but most of them present different 

pathologic conditions (in some cases comorbidity), and take medications to treat them. Although 

exclusion criteria adopted included having autoimmune diseases, neoplasia or any chronic 

infection, and taking medications known to affect the immune system, it is possible that some of 

the chronic diseases that are usually found in older adults modify the levels of immune 

systemrelated molecules.  

Conclusions  

This work establishes, for the first time, reference ranges for a number of immune biomarkers 

related to IDO and GCH enzymatic pathways in the population of robust older adults (ie, 

excluding the presence of frailty).  

 

Furthermore, results from this study provide evidence for the existence of significant influence 

of frailty status on circulating concentrations of immune biomarkers involved in IDO and GCH 

enzymatic pathways. Significant correlations observed between immune biomarkers indicate they 

change in parallel, not independently, thus, pointing to interrelated causes. Altogether these results 

suggest that the presence and intensity of immune stimulation in frail participants is not only due 

to their age itself. In other words, our data support the involvement of monocyte/macrophage 

mediated Th1 immune activation and disturbed amino acid biochemistry in the pathophysiology of 

the frailty geriatric syndrome.  

 

These findings provide a basis for further investigations on the underlying immune 

mechanisms that contribute to frailty status in the elderly to determine the orientation and 

feasibility of future interventional strategies focused on prevention and treatment of frailty.   
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