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SUMMARY 

Parkinson's disease (PD) is a neurodegenerative disease characterized by 

a set of motor and non-motor symptoms. Gait disorders are among the most 

disabling motor impairments in PD patients, as they severely affect their 

quality of life. 

In recent decades, the treadmill has been explored as a tool for improving 

gait in PD. Understanding the mechanisms underlying these improvements 

will ameliorate the efficacy and prescription of physical therapy in PD. 

However, in spite of the growing body of evidence that links gait to cognitive 

function, the role played by attention in the gait improvements associated to 

treadmill walking in PD is still unknown. In the same way, the possible 

associated neurophysiological mechanisms have never been explored.  

However, transcranial direct current stimulation (tDCS), a form of non-

invasive brain stimulation, has been explored recently in order to improve 

gait in PD, and offers a promising tool in increasing the efficacy of 

rehabilitative interventions. It could also enhance our understanding of PD-

pathophysiology. Nevertheless, the combined use of tDCS and the treadmill 

in PD has not yet been investigated. 

The work presented here consists of three studies. The first explores the 

attentional demands involved in gait improvements associated with the 

treadmill in PD. The second investigates the immediate kinematics and 

neurophysiological effects of a single treadmill walking session on PD. The 

third study investigates the kinematic and neurophysiological effects of the 

combined use of tDCS and treadmill walking in patients with PD. 

The results of this thesis do not support attentional resources as a possible 

mechanism for treadmill-associated gait improvements in PD. Likewise, a 

specific therapeutic effect of a single treadmill walking session on gait in PD 

was observed, with no associated neurophysiological changes in the 

outcomes measured. However, the combination of tDCS and treadmill 

resulted in a specific spinal excitability modulation. Further studies would be 

recommended to explore the role of belt displacement and constant speed as 
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main underlying mechanisms. Additional studies are also needed to 

investigate the functional significance of the interaction of tDCS and treadmill 

walking in PD. 
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RESUMEN 

La enfermedad de Parkinson (EP) es una enfermedad neurodegenerativa, 

caracterizada por un conjunto de síntomas motores y no motores. Los 

trastornos de la marcha se consideran entre los síntomas motores más 

incapacitantes que afectan severamente a la calidad de vida de los pacientes 

con EP. 

En las últimas décadas, el tapiz rodante ha sido explorado como una 

herramienta que mejora la marcha de los pacientes con EP. Conocer los 

mecanismos subyacentes a estas mejoras, ayudará a aumentar la eficacia y 

la prescripción de la fisioterapia en la EP. Sin embargo, a pesar de la creciente 

evidencia que vincula la marcha a la función cognitiva, todavía no sabemos 

el papel de la atención como mecanismo subyacente a las mejoras de la 

marcha asociadas al tapiz rodante en la EP. De la misma manera, no se han 

explorado los posibles mecanismos neurofisiológicos asociados. 

Por otro lado, se ha explorado recientemente la estimulación transcraneal 

de corriente continua directa (tDCS), una modalidad de estimulación cerebral 

no invasiva, para mejorar la marcha en la EP, ofreciendo una herramienta 

prometedora para potenciar la eficacia de las estrategias de rehabilitación, 

además de mejorar nuestra comprensión de la fisiopatología en la EP. Sin 

embargo, todavía no ha investigado la combinación de tDCS con el tapiz 

rodante en la EP. 

El trabajo presentado aquí consta de tres estudios. El primero explora si 

las demandas atencionales están involucradas en las mejoras de la marcha 

asociadas con el tapiz rodante en la EP. El segundo investiga los efectos 

cinemáticos y neurofisiológicos inmediatos de una sesión de tapiz rodante en 

la EP. El tercer estudio explora los efectos cinemáticos y neurofisiológicos de 

la combinación de tDCS y tapiz rodante en la EP. 

Los resultados de esta tesis indican que los recursos atencionales no 

explican las mejoras de la marcha asociadas sobre el tapiz rodante en la EP. 

Del mismo modo, se observó un efecto terapéutico específico de sola sesión 

de tapiz rodante sobre la marcha en la EP, sin cambios neurofisiológicos 
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asociados. Sin embargo, la combinación de tDCS y tapiz resultó en una 

modulación específica a nivel espinal. Recomendamos más estudios que 

exploren el papel del desplazamiento de la banda rodante y la velocidad 

constante como principales mecanismos subyacentes, así como, se necesitan 

más estudios para investigar la importancia funcional de la combinación de 

la tDCS y el tapiz rodante en la EP. 
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RESUMO 

A enfermidade de Parkinson (EP) é unha enfermidade neurodexenerativa, 

caracterizada por un conxunto de síntomas motores e non motores. Os 

trastornos da marcha considéranse entre os síntomas motores máis 

incapacitantes que afectan severamente á calidade de vida dos pacientes con 

EP. 

Nas últimas décadas, o tapiz rodante foi explorado como unha ferramenta 

que mellora a marcha na EP. Coñecer os mecanismos subxacentes a estas 

melloras, incrementará a eficacia e a prescrición da fisioterapia na EP. Con 

todo, a pesar do crecente corpo de evidencia que vincula a marcha á función 

cognitiva, aínda non se sabe se a atención xoga aquí un papel primordial. Da 

mesma maneira, os posibles mecanismos neurofisiolóxicos asociados nunca 

foron explorados. 

Doutra banda, explorouse recentemente a estimulación cerebral 

transcraneal de corrente contínua directa (tDCS), unha modalidade de 

estimulación cerebral non invasiva, para mellorar a marcha na EP, ofrecendo 

unha ferramenta prometedora para potenciar a eficacia das intervencións de 

rehabilitación, ademais de mellorar a nosa comprensión da fisiopatoloxía na 

EP. Con todo, aínda non investigou a combinación de tDCS co tapiz rodante 

na EP. 

O traballo presentado aquí consta de tres estudos. O primeiro explora se 

as demandas atencionais están involucradas nas melloras da marcha 

asociadas co tapiz rodante na EP. O segundo investiga os efectos cinemáticos 

e neurofisiolóxicos inmediatos dunha sesión de tapiz rodante na EP. O terceiro 

estudo explora os efectos cinemáticos e neurofisiolóxicos da combinación de 

tDCS e tapiz rodante na EP. 

Os resultados desta tese indican que os recursos atencionais non explican 

as melloras da marcha asociadas sobre o tapiz rodante na EP. Do mesmo 

xeito, observouse un efecto terapéutico específico de soa sesión de tapiz 

rodante sobre a marcha na EP, sen cambios neurofisiolóxicos asociados. Con 

todo, a combinación de tDCS e tapiz rodante resultou nunha modulación 
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específica a nivel espinal. Recomendamos máis estudos que exploren o papel 

do desprazamento da banda rodante e a velocidade constante como 

principais mecanismos subxacentes, así como, necesítanse máis estudos para 

investigar a importancia funcional da combinación da tDCS e o tapiz rodante 

na EP. 
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PREFACE 

The present work, the thesis titled Treadmill walking in the gait 

rehabilitation in Parkinson's disease: neurophysiological mechanisms and 

their combination with the non invasive brain stimulation contains 

experimental work performed between 2013 and 2017 at Faculty of Sports 

Science and Physical Education of University of A Coruña, Department of 

Sports Science. Also, some work was performed during an stance in the 

laboratoy at the Department of Nutrition, Exercise and Sport Sciences at 

University of Copenhagen under the supervision of Dr. Jens Bo Nielsen from 

September to December 2014. 

Three original experimental studies are included. The first and third 

studies have already been published in the international peer review journal 

American Journal of Physical and Rehablitation Medicine. The second study is 

under review in the peer review journal Human Movement Science. 
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1.1 GENERAL OVERVIEW OF PARKINSON´S DISEASE 

Parkinson’s disease (PD) is a common progressive neurodegenerative 

disorder described in 1817 by James Parkinson in the classic “Essay on the 

Shaking Palsy” (Parkinson, 2002). The cardinal signs of PD are related to 

motor dysfunction, including resting tremor, bradykinesia, rigidity, gait 

disturbances and postural instability (Jankovic, 2008; Berardelli et al., 2013). 

Nevertheless, PD is characterized clinically by a combination of motor and 

non-motor symptoms that severely threaten the quality of life (QoL) (Schrag 

et al., 2000; Barone et al., 2009; Soh et al., 2011) and poses a significant 

economic burden on patients and society (Noyes et al., 2006; Findley, 2007). 

The main pathological finding associated with the motor deficits of PD is 

the degeneration of the dopaminergic neurons of the substantia nigra pars 

compacta (SNc) (Halliday et al., 2011). The motor symptoms appear when 

at least 60% of dopaminergic neurons are lost and 80–85% of dopamine 

content in the striatum is depleted (Jankovic, 2008). Catecholaminergic and 

serotoninergic brainstem neurons may also degenerate. Lewy bodies 

(eosinophilic inclusion bodies containing many different proteins) are present 

mainly in the surviving neurons (Braak et al., 2003). The pathogenesis 

mechanisms that cause dopaminergic cell death may include defective 

handling of proteins, mitochondrial dysfunction, oxidative stress, and 

inflammation (Schapira & Jenner, 2011). 

1.1.1 Epidemiology 

PD is considered to be the second most common neurodegenerative 

disorder after Alzheimer’s disease, and affects 0.3% of the entire population 

in industrialized countries. Standardized incidence rates of reported PD are 

10-20 per 100,000 people per year (Twelves et al., 2003). Incidence varies 

depending on age, gender and ethnicity (Van Den Eeden, 2003). Incidence 

and prevalence are consistently higher in men than in women, and the 

average age of onset in PD is established at about 60 years old, so it is 

principally considered to be a disease of the elderly (Wirdefeld et al., 2011). 
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The number of patients is expected to rise considerably in the coming 

decades, due to the ageing of the population. 

1.1.2 Etiology 

The purely sporadic etiologic basis in PD has changed now to a view where 

both environmental and genetic factors contribute to the onset of the illness 

(Schapira & Jenner, 2011). 

In 1980s was discovered the 1-methyl-4-phenyl-1, 2, 3, 6,-

tetrahydropyridine (MPTP), a substance structurally similar to the herbicide 

paraquat, that could destroy dopaminergic neurons causing chronic 

parkinsonism (Langston & Irwin, 1984). MPTP finding was stimulated studies 

focus on environmental factors, and most important, generated novel 

experimental models of PD. 

Environmental factors on the occurrence of PD range from the general, in 

terms of a potential role for industrialization, rural environment, well water, 

plant-derived toxins, and bacterial and viral infection, to the specific, as 

occurs with exposure to organic solvents, carbon monoxide, and carbon 

disulfide (Schapira & Jenner, 2011). Despite of the wide literature, the degree 

of evidence of some environmental factors, for instance, pesticides, metals 

or magnetic fields are few (Richardson et al., 2009; Kieburtz & Wunderle, 

2013). The evidence for cigarette smoking and caffeine intake as protective 

factors appears clear, but there is still uncertainty over the role of others, for 

example, exercise, anti-inflammatories, antihypertensive (most notably 

calcium antagonists), and antilipidaemics (Warner & Schapira, 2003; Chin-

Chan et al., 2015; Kalinderi et al., 2016). 

On the other hand, the last decade has been characterized by a 

remarkable acceleration in the identification of genes that appear to cause an 

illness very similar to PD or PD itself (Wirdefeldt et al., 2011). So far 18 

mutations in genes / loci have been identified, that include autosomal 

dominant forms (PARK1-4, PARK5, and PARK8), recessive autosomal forms 

(PARK2, PARK6, PARK7, and PARK9) locus and mutations of genes associated 

with PARK10-16. Despite of these, only 10 to 15% of patients with the disease 
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show a familiar form, indicating that more PD genes and loci remain to be 

identified. The increasing knowledge about genetics of PD has provided clues 

about the molecular mechanisms involved in its pathogenesis. For instance, 

Park1 and Park4 are α-synuclein genes located on chromosome 1 and 4 

respectively, that carries the genetic code for the production of α-synuclein 

protein present in Lewy bodies (Fujioka &Wszolek, 2014). 

1.1.3 Basal ganglia circuitry in PD 

The term Basal Ganglia (BG) refers to a group of nuclei in the forebrain 

and midbrain that are extensively connected to different parts of the cerebral 

cortex, thalamic nuclei and specific mesencephalic structures. These sets of 

nuclei include the striatum (caudate and putamen), the globus pallidus pars 

externa (GPe) and pars interna (GPi), the subthalamic nucleus (STN) and the 

substantia nigra pars compacta (SNc), and pars reticulata (SNr). The 

organization of the connectional relationships of the BG has had a great 

impact on the insight into the pathophysiology of PD and other movement 

disorders.  

The main BG inputs come from the cerebral cortex and from the thalamus, 

while the projections of the BG have an ascending component and a 

descending component. The ascending component, the so-called basal 

ganglia-thalamo-cortical loops, projects to the cortical areas. The BG loops 

are functionally subdivided as motor, oculo-motor, associative, limbic, and 

orbitofrontal, according to the main cortical projection areas (DeLong, 1990). 

This arrangement explains the influence of BG on sensorimotor, 

cognitive/executive and emotional-motivational functions. The descending 

component consists of the BG projections directed to mesencephalic 

structures and, in turn, to motor output structures in the lower brainstem and 

spinal cord. These projections form the neuronal basis for the influence of the 

BG on posture and balance, as well as on muscle tone.  

The classical model of BG organization was also developed in the late 

1980s and was focused on motor control (Albin et al., 1989; DeLong, 1990). 

This model was based on the following findings: 
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1) Cortical motor areas and the primary somatosensory cortex project to 

the striatum in a somatotopical manner. 

2) Striatal efferent neurons are GABAergic medium spiny neurons (MSNs) 

that project to BG output, i.e., GPi and SNr, through two different pathways: 

‘‘direct’’ and ‘‘indirect’’. MSNs of the “direct” monosynaptic pathway contain 

dopamine (DA) D-1 receptors, co-express the peptides substance-P and 

dynorphin, and project directly from putamen to GPi/SNr. MSNs of the 

“indirect” polysynaptic pathway contain DA D-2 receptors and co-express 

enkephalin, and pass to the GPe and from there to both output nuclei (GPi 

and SNr), either directly or via the intercalated STN.  

3) DA modulates glutamatergic effects of corticostriatal inputs by exerting 

a dual effect on striatal neurons, exciting D1 neurons in the direct pathway 

and inhibiting D2 neurons in the indirect circuit (Gerfen & Surmeier, 2011), 

which in turn exert a tonic inhibition of the thalamus. 

4) Reduced BG output leads to movement facilitation and increased BG 

activity to movement inhibition. 

According to this model, DA deficiency in the parkinsonian state causes a 

hyperactivity of the indirect pathway and hypoactivity of the direct pathway 

(DeLong, 2001), promoting increased activity in the STN and GPi/ SNr, which 

in turn causes increased thalamic inhibition and finally a decrease in the 

excitation of the cortical motor systems and the brainstem (Obeso et al., 

2000). Thus, the balance of BG activity shifts toward the “indirect” circuit, 

where the GPe-STN-GPi microcircuit plays a paramount role (Figure 1). 
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Figure 1 Parkinsonism-related changes in overall activity (“rate model”) in 
the basal ganglia-thalamocortical motor circuit.  

Black arrows indicate inhibitory connections; gray arrows indicate excitatory 
connections. Abbreviations: CM, centromedian nucleus of thalamus; CMA, cingulate 
motor area; Dir., direct pathway; D1, D2, dopamine receptor subtypes; Indir., 
indirect pathway; M1, primary motor cortex; Pf, parafascicular nucleus of the 
thalamus; PMC, premotor cortex; PPN, pedunculopontine nucleus; SMA, 
supplementary motor area; VA, ventral anterior nucleus of thalamus; VL, 
ventrolateral nucleus of thalamus (Wichmann, Delong, Guridi, & Obeso, 2011). 

 

The classical model provides a reasonable explanation for the origin of 

akinetic features in PD, such as movement initiation, and the response to 

drugs and surgery. Other typical features in PD such as reduced blinking rate, 

a positive Meyerson’s sign, and decreased arm swing are probably mediated 

by brainstem mechanisms, which are also functionally impaired by excessive 

basal ganglia inhibitory outputs. 

However, despite the existence of more complex BG models, they do not 

provide a definitive explanation for the two other cardinal features of PD, that 

is, rigidity and tremor, as well as gait dysfunction, attention and learning 

deficits, emotional disturbances, and cognitive disorders, all of which have 

now been acknowledged to form part of the global clinical picture of PD 

(Marsden & Obeso, 1994; Obeso, Marin, et al., 2008; Obeso, Rodríguez-Oroz, 

et al., 2008). 
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1.1.4 Clinical manifestations 

The clinical PD hallmarks include motor parkinsonism. Despite the 

diagnosis of PD being mainly dependent on motor symptoms, a period called 

the premotor phase has been described in which non-motor symptoms can 

precede PD motor impairments. 

PD is diagnosed on clinical criteria and there is no definitive test for its 

diagnosis. However, there are some established criteria to make the diagnosis 

as objective as possible. According to the Parkinson's UK Brain Bank, the 

diagnosis of PD is based on the presence of at least two cardinal symptoms 

(bradykinesia combined with one of the three other cardinal signs, i.e., 

rigidity, resting tremor or postural instability) of progressive, unilateral onset 

and response to levodopa. In addition, none of a number of exclusion criteria 

must be present, and other typical PD signs might support the diagnosis.  

1.1.4.1 Motor features 

Motor features comprise mainly the four cardinal signs of PD (resting 

tremor, bradykinesia, rigidity, and gait disturbances/postural instability), plus 

a widespread number of other motor abnormalities, called secondary motor 

symptoms, such as dysarthria, hypophonia, dysphagia and sialorrhoea, 

among others (Table 1). In addition, flexed posture, gait disorders and 

freezing (motor blocks) have been included among the classic features of PD 

(Shahed & Jankovic, 2007). 

Table 1 PD motor symptoms. 

 

Tremor, bradykinesia, rigidity, postural instability  

Hypomimia, dysarthria, dysphagia, sialorrhoea 

Decreased arm swing, shuffling gait, festination difficulty arising from 
chair, turning in bed  

Micrographia, cutting food, feeding, hygiene, slow activities of daily 
living 

Glabellar reflex, blepharospasm, dystonia, striatal deformity, scoliosis, 
camptocormia 
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a) Bradykinesia 

From a purist perspective, bradykinesia refers to slowness of movement, 

akinesia refers to poverty of spontaneous movement and the term 

hypokinesia means smaller amplitude of movement. However, in the 

literature the term bradykinesia tends to group these motor features within 

the same construct. Bradykinesia encompasses difficulties with planning, 

initiating and executing movement with performing sequential and 

simultaneous tasks (Berardelli et al., 2001). Bradykinesia is the motor sign 

that appears to correlate best with a degree of dopamine loss, due to the 

potentially correlations with disease severity and response to treatment 

(Rodríguez-Oroz et al., 2009). 

b) Classic tremor  

Classic tremor is the most common and easily recognized symptom of PD. 

It is characterized by a low frequency rhythmic oscillation within a bandwidth 

of 4 or 6 Hz that occurs at rest (Shahed & Jankovic, 2007). Hand-tremor is 

described as a supination-pronation tremor (“pill-rolling”), but rest tremor in 

PD can also involve the lips, chin, jaw and legs. This type of tremor is 

pathophysiologically separated from bradykinesia and rigidity, and the 

response of tremor to dopaminergic agents is less than bradykinesia 

(Jellinger, 2012). It is now realized that classical tremor in PD is mediated by 

an abnormal oscillatory activity in an extensive motor network that involves 

the BG, cerebellum, thalamus, and motor cortex (Hallett, 2014). 

c) Rigidity 

Rigidity is essentially an increase in resistance to passive movement. It 

has been thought for decades that rigidity should be related to an 

enhancement of stretch reflex excitability (Cantello et al., 1991; Delwaide et 

al., 1993; Moreau et al., 2002). It is known that rigid patients present an 

enhanced cortical excitability, coupled with DA depletion and increased BG 

output (Rodríguez-Oroz et al., 2009). However, it has not yet been clarified 

how BG changes associated with dopamine depletion modify the excitability 

of stretch reflex mechanisms. 
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d) Postural stability and gait disorders 

Parkinson's patients have difficulties with balance, both sitting and 

standing, and also with walking. When PD patients are standing, they adopt 

a flexed posture, with the body inclined slightly forward, with flexed knees 

and arms in front of the body (Kim et al., 2013). The typical gait of these 

patients is slow with short, shuffling steps, swinging arms and a flexed 

posture. The pathophysiology of postural instability and gait problems is 

complex and is not caused by a single factor, but is the result of a combination 

that includes changes in postural reflexes (anticipatory postural reflexes and 

automatic postural reactions), rigidity and akinesia (Hanakawa et al., 1999b).  

1.1.4.2 Non-motor features 

PD not only involves the degeneration of mesencephalic dopaminergic 

structures, but also of the peripheral autonomic nervous system, dorsal 

motor vagal nucleus, olfactory bulb, brainstem centers and the neocortex 

(Wolters et al., 2014).  

Pending the exact localizations and severity of the pathological condition, 

autonomic nervous system dysfunctions, sleep-wake disorders, sensory 

disorders, and neuropsychiatric disorders are part of the non-motor 

symptomatology of PD (Table 2) (Chaudhuri et al., 2006). 

Table 2 The non-motor symptom complex of PD. 

Neuropsychiatric symptoms  Depression, apathy, anxiety 
 Anhedonia 
 Cognitive impairment (executive dysfunction) 
 Hallucinations, illusion, delusions 
 Dementia 
 Obsessional behaviour (usually drug induced), 

repetitive behaviour 
 Confusion 
 Delirium (could be drug induced) 
 Panic attacks 

Sleep disorders  Restless legs and periodic limb movements 
 Rapid eye movement (REM) sleep behaviour 

disorder and REM loss of atonia 
 Non-REM-sleep related movement disorders 
 Excessive daytime somnolence 
 Vivid dreaming 
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 Insomnia 
 Sleep disordered breathing 

Autonomic symptoms  Bladder disturbances 
 Urgency 
 Nocturia 
 Frequency 
 Sweating 
 Orthostatic hypotension 
 Falls related to orthostatic hypotension 
 Coat-hanger pain 
 Sexual dysfunction 
 Hypersexuality (likely to be drug induced) 
 Erectile impotence 
 Dry eyes (xerostomia) 

Gastrointestinal symptoms 

(overlaps with autonomic 
symptoms) 

 Dribbling of saliva 
 Ageusia 
 Dysphagia and choking 
 Reflux, vomiting 
 Nausea 
 Constipation 
 Unsatisfactory voiding of bowel 
 Faecal incontinence 

Sensory symptoms  Pain 
 Paraesthesia 
 Olfactory disturbance 

Other symptoms  Fatigue 
 Diplopia 
 Blurred vision 
 Seborrhoea 
 Weight loss 
 Weight gain (possibly drug induced) 

 

Some non-motor symptoms, such as olfactory problems, constipation, 

depression, mid cognitive impairment (executive domain) and rapid eye 

movement disorder may precede the first motor manifestations (Marras & 

Chaudhuri, 2016). This primary clinical phase is called premotor stage (Table 

3). For instance, cognitive dysfunction may be present from the early stages 

of PD and might involve a more extensive cognitive dysfunction in the future 

stages. Impairment may be mild or severe enough to justify the diagnosis of 

dementia (Tolosa & Pont-Sunyer, 2011). Mild cognitive impairment can 

include executive dysfunction and impairment of attention and working 
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memory, as well as deficits confined to language, memory, or visuospatial 

domains. 

Table 3 Survey of primary (premotor) non-motor symptoms in PD. 

Autonomic 
dysfunction 

Parasympatheic cholinergic: Dry mouth, gastrioaresis, 
constipation, pollakisuria, incontinence, erectile dysfuncion, 
pupillomotor abnormalities 

Sympathetic cholinergic: thermoregulatory dysfunction, 
hypo/hyperhidrosos (drenching sweats) 

Sympathetic noradrenergic: cardiovascular dysfunction, 
baroreflex failure, orthostatic hypotension 

Sleep-wake 
disorders 

Insomnia and sleep fragmentation, fatigue, excessive 
daytime sleepiness and sleep attacks, REM sleep behavioral 
disporder 

Sensory disorders Pain, hyposmia, impaired color vision 

Neuropsychiatric 
disorders 

Apathy, anxiety and panic attacks, depression, mid cognitive 
impairment (executive domain) and psychosis 

 

1.1.5 Treatment 

Nowadays, treatment approaches in PD are focused on alleviating 

symptoms and maximizing functions. The mainstay of intervention for people 

with PD is medical management, including pharmacology and, to a lesser 

extent, surgical options (Kakkar & Dahiya, 2015). Nevertheless, patients 

require an holistic and multispecialty approach to maximize their QoL, and 

the QoL of their carers (Johnson, 2015).  

In recent years, there have been remarkable advances in the knowledge 

of the etiology and pathophysiology of the disease, helping the development 

of new treatments. Although cellular and genetic research is advancing in the 

clinical domain, the current treatments for PD continue to show important 

limitations, such as medication-related complications and surgical risks. 

These facts highlight the need to improve the current treatments, and to 

investigate adjunctive therapies. 
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a) Pharmacological therapy 

Levodopa is the precursor to DA, norepinephrine and epinephrine, and 

crosses the blood-brain barrier and is converted into DA in the nigrostriatal 

nerve terminals. Levodopa is usually administrated with carbidopa, a 

peripheral dopa decarboxylase inhibitor, which enhances the therapeutic 

benefits of levodopa. It remains the most potent drug for controlling 

symptoms in PD, principally bradykinesia.  

Despite  the advances in levodopa therapy, such as  rapid-onset 

formulations and duodenal infusion therapy, the response to levodopa 

becomes less reliable and less predictable over time, and after 5 years of 

therapy, medication-related complications develop in the majority of patients 

(Jankovic, 2008). Motor complications, such as dyskinesia, wearing-off, and 

“on–off” fluctuations, are well-recognized (Nutt, 2001; Stacy, 2009). 

DA agonists and non-dopaminergic therapy, such as catechol-o-methyl-

transferase (COMT) inhibitors, Monoamine oxidase B (MAO-B) inhibitors, 

amantadine, etc. are other modalities in the pharmacological management of 

PD and may be used concomitantly or sequentially with levodopa. For 

instance, DA agonists activate DA receptors and only provide a modest 

improvement in parkinsonian symptoms, but this improvement may be 

sufficient in the early stages in order to delay the introduction of levodopa. 

COMT inhibitors prolong DA response, improving the percentage of levodopa 

that enters the brain. MAO-B inhibitors degrade dopamine and can be used 

to prolong the effect of dopaminergic agents or as a monotherapy 

(Katzenschlager et al., 2011).  

Future pharmacological therapies involve the use of neurotrophic factors 

to enhance the survival of midbrain dopaminergic neurons in vitro and to save 

degenerating neurons in vivo (Zhang et al., 2012; De Munter et al., 2014). 

b) Surgical treatment 

Deep brain stimulation (DBS) is the gold standard for surgical treatment 

in PD, such as levodopa is for pharmacotherapy. DBS was introduced as a 

validated therapy in the 1990s. It uses a device called a neurostimulator to 
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deliver electrical signals to the different areas of the brain. The two main 

targets for DBS are STN and GPi. DBS of the STN leads to improvements in 

rigidity, tremor and bradykinesia, while dyskinesias are dramatically 

improved with GPi-DBS (Bronstein et al., 2011). A new target of DBS is the 

pedunculopontine  nucleus (PPN), with promising results in gait function 

(Pierantozzi et al., 2008; Ferraye et al., 2010; Hariz et al., 2013). 

Nevertheless, DBS has some disadvantages, such as the need for careful 

patient selection to achieve favorable outcomes, and adverse effects, which 

include perioperative, hardware-associated complications and stimulation-

induced complications (Huys et al., 2014). 

Lesional procedures have been largely replaced by DBS, but under certain 

conditions, unilateral pallidotomy, unilateral thalamotomy, and even 

subthalamotomy remain useful alternatives. Other innovative surgical 

treatments include magnetic resonance–guided focused ultrasound (MRgFU), 

a new lesioning modality that may have some advantages over current 

lesioning procedures; and gene and cellular therapies, including stem cells, 

which remain avenues to be investigated (Fox et al., 2011). 

Based on DBS studies, new treatment techniques for PD patients have 

been developed, such as repetitive transcranial magnetic stimulation (rTMS) 

(Benninger & Hallett, 2015) and transcranial direct current stimulation (tDCS) 

(Fregni et al., 2005a). The rationale behind these techniques, which are 

known as non-invasive brain stimulation (NIBS) techniques, is that they are 

based on attempting to reverse the clinical deficits of abnormal brain 

functioning and physiology. RTMS modulates cortical excitability. High-

frequency (≥5 Hz) rTMS has proved to be facilitatory (Pascual- Leone et al., 

1994), and low-frequency rTMS (≤1 Hz) has proved to be inhibitory (Chen et 

al., 1997). tDCS delivers a continuous current to the scalp that modulates 

membrane excitability and induces shifts in cortical excitability, with  polarity 

defining the effects (Nitsche & Paulus, 2000; Lang et al., 2005; Nitsche et al., 

2008). Recent studies have suggested that these techniques may have 

additional therapeutic potential that goes beyond that of conventional 

therapies (Fregni et al., 2005b; Elahi et al., 2009; Zhu et al., 2015). However, 

more studies are necessary in order to demonstrate substantial clinical 

effects. 
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c) Multispecialty care 

Despite medical management, most patients with PD continue to 

experience a wide range of motor and non-motor symptoms. A multispecialty 

approach seems to be preferable over a single-clinician approach in order to 

improve QoL, motor functioning, day-to-day activities and the psychosocial 

burden involved. A wide range of disciplines might have potential value for 

PD care (Van der Marck & Bloem, 2014), including medical specialists, 

specialized nurses, and allied healthcare professionals (such as physical 

therapists, occupational therapists, speech–language therapists, dieticians, 

social workers, sexologists and neuropsychologists). In recent years, several 

allied health disciplines have become more evidence-based. The evidence 

grade is highest for physical therapy (Keus et al., 2009) and speech–language 

therapy (Ramig et al., 2001), followed by occupational therapy (Dixon et al., 

2007). 



16 | G a i t  D i s o r d e r s  o f  P D  

 

1.2 GAIT DISORDERS OF PARKINSON´S DISEASE 

1.2.1 Features of PD gait 

Gait disturbances are one of the classic features of PD, which manifest 

themselves in almost all patients and often lead to a decline in their QoL 

(Ebersbach et al., 2013). Gait difficulties become progressively more 

levodopa-resistant, and thus are considered the hallmarks of the advanced 

stages of PD. 

PD gait is mainly characterized by the inability to generate an appropriate 

stride length (Morris et al., 1996). Associated disturbances include a reduced 

gait speed, reduced arm swing (Wood et al., 2002), increased stride-to-stride 

variability, increased double limb support time, gait instability, stooping, 

difficulty turning, and forward-flexed posture (Nieuwboer et al., 2009; Huang 

et al., 2012; Ebersbach et al., 2013). In advanced stages, more complex gait 

disturbances may appear, including FOG, motor blocks, festination and 

disequilibrium. All these gait features cause significant disabilities resulting 

from falls, immobility, and loss of independence (Bloem et al., 2016). Falls 

are considered to be one of the most serious complications of motion in PD, 

with an incidence of 70% during a 1-year follow-up, when recurrent falls have 

been shown to occur in approximately 50% of cases (Bloem et al., 2004; 

Okuma, 2014).  

a) Stride length, gait speed and cadence 

PD patients typically show a reduced walking velocity, which is associated 

with reduced stride length and a compensatory increase in cadence. An 

abnormal slowness of gait speed has already been reported in early and 

middle stages of PD, compared with healthy subjects (Ebersbach et al., 

2013). The reduced stride length of PD subjects is present even though the 

cadence (steps per minute) remains intact (Morris et al., 1996). Thus, the 

main problem of gait hypokinesia is PD subjects’ particular difficulty in the 

internal regulation of stride length.  PD subjects have higher cadence rate 
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than control subjects for any given velocity, but this is a compensation for 

reduced step size (Morris et al., 1994).  

b) Gait variability 

The ability to maintain a steady gait pattern is also impaired in PD 

subjects, which is thought to reflect reduced motor automaticity. Gait 

variability typically means walking fluctuations from one stride to the next. 

PD patients show a higher variability of stride duration, and even an increased 

variability of leg muscle activation during walking (Schaafsma, 2003; Baker 

et al., 2008; Lord et al., 2011). Increased gait variability is associated with 

an increased fall risk in older adults, as well as in patients with PD (Hausdorff, 

2003).  

c) Complex gait disturbances 

As the disease progress, more complex gait disturbances can appear, such 

as FOG and festination. FOG is defined as a “brief, episodic absence or marked 

reduction of forward progression of the feet despite the intention to walk” 

(Bloem et al., 2004; Nutt et al., 2011). This definition includes episodes in 

which the patient cannot initiate gait (“start hesitation”) and arrests forward 

progression during walking (“turn” and “destination” hesitation). Festination 

is the tendency to move the center of gravity forward, walking increasingly 

rapidly with smaller steps (Nutt et al., 2011). Festination is mostly shown in 

patients suffering from FOG; however, it may occur independently. 

1.2.2 Associations between cognition and gait in PD 

Gait impairments in PD include a reduced gait speed, increased stride-to-

stride variability, and a specific difficulty in regulating stride length. In 

addition, people with PD suffer from a deficit in executive functions and 

attention abilities. A growing body of evidence links gait to cognitive function 

in healthy young subjects (Marquis et al., 2002; Verghese et al., 2002b; 

Hausdorff et al., 2005) and also in PD subjects (Amboni et al., 2010), 

suggesting that gait is not quite automatic, but consumes some attention 

resources (Camicioli et al., 1997; Brauer et al., 2002; Woollacott & 

Shumway-Cook, 2002). A 2-year follow-up study of 26 PD patients 
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established that “on” state FOG correlated with a faster progression of 

executive dysfunction. Thus, in early PD, better attention and executive 

function can compensate for a loss of gait automaticity, but this is no longer 

an efficient strategy when the disease progresses and both attention and 

executive function deteriorate too. These results emphasize the interrelation 

that exists between gait and cognitive symptoms in PD. 

The dual-task (DT) paradigm has been used to study this dependence 

(Canning, 2005). Dual tasking is a component of the executive function (Della 

et al., 1995) and refers to the ability to divide attention between tasks that 

are performed at the same time (Yogev-Seligmann et al., 2008). Several 

theories have been proposed to explain DT interference, such as the “capacity 

sharing model” and the “bottleneck model”. All of them agree that when two 

tasks are performed concurrently, performance decrements in one or both 

tasks (Marois et al., 2005; Yogev-Seligmann et al., 2008). For instance, 

according to the capacity sharing model, when two attentionally demanding 

tasks are performed simultaneously, competition of attentional resources 

results in the deterioration of performance in one or both of the tasks (Tombu 

& Jolicœur, 2003). 

It has been shown that gait impairments are exacerbated under DT 

conditions in PD. When PD patients perform an additional motor or cognitive 

task when walking, they manifest a slower gait speed, shorter strides, 

increased double support time, and increased stride-to-stride variability, 

exacerbating their risk of falling in DT situations (Morris et al., 1996; Bloem, 

2000; Bond, 2000; O’Shea et al., 2002; Hausdorff, 2003; Galletly & Brauer, 

2005; Yogev et al., 2005). 

DT causes competition for attention, but also poses a challenge in 

prioritizing one of the two tasks. It has been shown that, while healthy 

controls give attentional priority to posture and gait, PD patients are at higher 

risk of falling because they use a “posture second” strategy (Bloem et al., 

2006). Fallers had poorer scores on executive function tests than non-fallers, 

while the gait speed and coordination of fallers were worse than those of non-

fallers, particularly under DT conditions (Plotnik et al., 2011). 
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When considering the effects of various interventions on PD gait, single-

task walking in PD has been well described, but there is less research that 

examines the efficacy of different pharmacological, surgical, or rehabilitative 

therapies on DT walking in this population (Kelly et al., 2012). It is important 

to point out the functional significance of DT, since it is a common activity in 

daily life. Further studies are therefore required to evaluate the efficacy of 

the treatment on gait under DT conditions, and consequently, on the 

interaction of gait and executive functions.  

1.2.3  The physiopathology of gait disorders in PD 

Firstly, it is interesting to consider the pathogenesis of hypokinesia within 

the physiopathology of PD gait, since the reduced stride length is the main 

hallmark of PD gait disturbances (Morris et al., 1996). Studies on primates 

and in people with PD reported that the interaction between BG and the 

supplementary motor area (SMA) is disrupted during movement performance 

in hypokinesia. The reduced amplitude of a movement in hypokinesia could 

result from a disorder in a motor set-related activity within the BG, which is 

needed for the running of the entire sequences of a movement (Brotchie et 

al., 1991). The set-related activity in the BG contributes to set-related activity 

in the SMA, so as to maintain the entire sequence in preparedness for running 

(Cunnington et al., 1995; Iansek et al., 1995). Thus, an abnormal motor set-

related activity from BG to the cortex, for a whole gait sequence, could affect 

the ability to elicit a normal step in PD subjects (Morris et al., 1994). 

Several studies indicate that the cortico-frontal regions are likely to be 

involved in the physiopathology of gait disorders in PD patients. The 

hypoperfusion of the SMA and other parts of the frontal lobe were found to 

be associated with severe gait disturbances and bradykinesia in PD (Matsui 

et al., 2005; Mito et al., 2006; Nutt et al., 2011). SPECT has been used to 

investigate the mechanisms underlying the improvement of gait in PD 

patients when exposed to visual stimuli. In these conditions, it seems that PD 

patients can compensate for the impaired SMA function by the activation in 

the lateral premotor cortex (Hanakawa et al., 1999). Even, a dysfunctional 

striato-frontal (in the “executive-attention” networks) and downstream 
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cortico-pontine pathways  may both play a critical role in the physiopathology 

of FOG (Herman et al., 2013). 

Secondly, a subject’s walking pattern is adjusted according to individual 

EMG bursts and relative timings. Orlovsky et al. (1999) stated (Orlovskiĭ et 

al., 1999). 

“…the locomotor activity in humans has been much more thoroughly 

studied than its neural control and in this matter we have to rely mainly on 

extrapolations from simpler animal models”.  

The neural networks that generate locomotor bursts have been 

extensively investigated in animals. These networks are hierarchically 

structured, including: 1) Lower effector levels; 2) Center pattern generators 

(CPGs) for locomotion; 3) Several locomotor areas located in the brainstem, 

which controls CPGs; 4) Higher level control systems, such as basal ganglia 

and neocortex (Grabli et al., 2012). Thus, we should regard research in 

animals in order to understand the neural control of PD gait. 

On the one hand, forward propulsion of the body is mainly powered by 

contraction of the calf muscles, with a contribution from the knee extensors 

(Neptune et al., 2001). Thus, it is important to highlight the reflex control of 

the ankle extensors on gait. The stretch reflex has been suggested as making 

a substantial contribution to motor output during animal and human walking 

(Andersen et al., 1994; Nielsen & Sinkjaer, 2002). The electrical stimulation 

of Ia fibers in peripheral nerves elicits the monosynaptic component of the 

stretch reflex, which can be recorded from the muscles as an action potential 

(H-reflex) (Capaday, 2002). For the interpretation of the H-reflex, it is 

important to note that its circuit is embedded in a complex neural system, 

and its behavior reflects the integral activity of the whole (Figure 2). 
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Figure 2 Basic spinal circutry and its corticospinal control.  

At the peripheral end, the sensitivity of the receptor organ, the muscle spindle, to 
muscle stretch is controlled by the independent γ-motoneuron system (not shown). 
Centrally, collaterals of group Ia afferents from muscle spindles inhibit the 
antagonistic α-motoneuron pool, via Ia-inhibitory interneurons (Ia-Int.). These form 
part of the neural circuits that mediate reciprocal inhibition between antagonistic 
muscles. Additionally, a presynaptic inhibitory network (Pre-Inh.) controls the 
efficacy of synaptic transmission from the Ia-afferent terminals to α-motoneurons. 
The presynaptic inhibition circuit can be activated from the periphery by stimulation 
of muscle flexor nerves. The last order of interneurons inhibits Ia-neurons, and 
consequently reduce the reflex response. At the same time, stimulation of the motor 
cortex reduces presynaptic inhibition (i.e. inhibits presynaptic inhibition). 
Corticospinal neurons that project to a given motoneuron pool also inhibit the 
antagonistic motoneuron pool via Ia-inhibitory interneurons, adding an extra layer of 
complexity to the reciprocal inhibitory pathway. Several other circuits could be added 
to the figure, but what is important is that descending pathways act simultaneously 
on α-motoneurons and interneurons (Adapted from Capaday et al., 2002) 

 

The amplitude of the H-reflex and its relationship  with the background 

level of motor activity is strongly dependent on the motor task (Sinkjaer et 

al., 2000; Nielsen & Sinkjær, 2002). In human gait, neural mechanisms that 

modulate the SOL H-reflex during the normal step cycle include increased 

activity of α-motoneurons during the stance phase (Capaday & Stein, 1986), 
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increased postsynaptic inhibition of α-motoneurons during the swing phase 

(Lavoie et al., 2013), and a tonic increase in presynaptic inhibition of group 

Ia afferent terminals projecting to the α-motoneurons. 

In PD, only a few studies have evaluated some spinal reflex related to 

gait. Pierantozzi et al. (2008) showed that DBS of the PPN provides a 

distinctive influence on H-reflex, suggesting that it has a role in gait 

impairments in PD (Pierantozzi et al., 2008). Hiraoka et al. (2005) found a 

reduction of the SOL H-reflex during gait initiation in PD (Hiraoka et al., 2006) 

and, finally, Meunier and colleagues (2000) reported a correlation between 

the decreased reciprocal Ia-inhibition, at the onset of voluntary ankle 

dorsiflexion, with axial signs of PD patients (Meunier, et al., 2000a).  

On the other hand, in non-mammalian vertebrates and quadrupedal 

mammals, such as rats and cats, the isolated spinal cord can generate 

spontaneous locomotor bursts in the complete absence of peripheral 

feedback. CPGs are the neural networks of the spinal cord that generate these 

bursts. At the same time, CPGs are regulated by descendent supraspinal 

signals and afferent input of the limbs (Golgi tendon organs, Ia-muscle 

spindles, mechanoreceptors in the foot), which regulate the stance phase and 

the swing phase of the step cycle (Crommertet al., 1998). In humans, there 

is indirect evidence of the existence of spinal CPGs, and if they exist, they are 

much less robust than in mammals. 

Given the mechanical complexity of human bipedal locomotion, and that 

complete spinal cord lesion in humans leads to paralyses with no recovery of 

gait, it is often suggested that the corticospinal tract has a more predominant 

role in the control of walking in humans than in other animals. The 

involvement of cortical structures in the control of human gait can be 

assessed using several non-invasive methods, such as neuroimaging, 

transcranial magnetic and electrical stimulation (TMS and TES, respectively). 

As has been noted, neuroimaging studies showed the involvement of the SMA 

(among other regions) on hypokinetic PD gait. Moreover, recent TMS studies 

revealed abnormalities in intracortical facilitation (ICF) of the primary motor 

cortex that may be related to decreased stride length and slower gait speed 

in PD subjects (Vacherot et al., 2010a). 
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Finally, experiments in decerebrate cats demonstrated that electrical 

stimulation of an area of the brainstem region triggered walking and even 

galloping. This area is called the mesencephalic locomotor region (MLR), 

which is gaining importance in the physiology of gait. MLR is composed by 

the PPN and the cuneiform nucleus (CN). Both nuclei have reciprocal 

connections with BG (SNc, STN, pallidum) and have major outputs to the 

descending reticulo-spinal pathway and the ascending thalamo-cortical 

pathway. The neurons of the MLR are mainly cholinergic and GABAergic.  

Recently the dysfunction of the MLR of the brainstem has been 

emphasized in the physiopathology of gait and balance disorders in PD 

(Pahapill & Lozano, 2000; Grabli et al., 2012). In normal monkeys, lesions in 

the PPN induce akinesia and gait and balance disorders. In people with PD, 

DBS of the PPT region can improve gait function (Alam, Schwabe, & Krauss, 

2010). Furthermore, post-mortem studies have shown that the degree of 

cholinergic neuronal loss within the PPN in PD patients has a correlation with 

the level of dopamine cell loss (Zweig et al., 1989) and, importantly, with the 

occurrence of falls (Karachi et al., 2010).  

In summary, the physiopathology of PD gait is certainly complex, and the 

neurophysiology of gait has not been extensively studied in people with PD, 

which hinders the targeting of successful treatment strategies. The inclusion 

of neurophysiological measures in studies related to PD gait can help to 

increase knowledge about it and, ultimately, to improve the effectiveness of 

medical and rehabilitation treatments. 

1.2.4 Gait rehabilitation in PD 

Although pharmacological therapies ameliorate many parkinsonian 

symptoms, especially in the early stages of the disease, as the disease 

progresses the effectiveness of pharmacological therapy is diminished, 

leading to the worsening of gait disorders and the appearance of more 

complex gait symptoms. Even certain temporal aspects of parkinsonian gait 

disorder remain therapeutically resistant, both in the short-and  long- term 

(Pötter-Nerger & Volkmann, 2013) with other gait difficulties persisting or 
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worsening after surgical treatment, such as FOG and postural instability. 

Therefore, the treatment of gait disorders is crucial in PD patients’ 

rehabilitation programs in order to maximize exercise tolerance, improve the 

gait pattern, maintain or increase independence regarding mobility, and 

reduce the risk of falls (Gage & Storey, 2004; Keus et al., 2009; Van der Eijk 

et al., 2011). 

The most widely used form of non-pharmacological therapy for improved 

gait in PD is physical therapy. In 2000, Morris was the first to describe a 

theoretical framework supporting the use of physical therapy in PD (Morris, 

2000). Morris described specific approaches to improve the performance of 

functional motor tasks, with emphasis on gait, postural instability and 

prevention of falls. These strategies incorporate the use of external cues 

(visual, auditory, or proprioceptive cues) and cognitive strategies, such as 

attentional strategies, in order to activate alternative pathways in the brain 

bypassing the defective BG circuitries of PD patients (Morris et al., 1996). 

A Cochrane meta-analysis that included 33 randomized controlled trials 

with a total of 1,518 participants, showed that physical therapy provides 

short-term benefits in the treatment of PD gait (Tomlinson et al., 2012). The 

trials included were categorized as follows: general physical therapist, 

exercise, treadmill, cueing, dance, and martial arts. Significant benefits on 

gait with clinical relevance after physical therapy intervention compared with 

a placebo or no intervention were considered in this review for the two- or 

six-minute walk test, speed, Berg Balance Scale, and Unified Parkinson´s 

Disease Rating Scale (UPDRS) total. Improvements were also demonstrated 

for other walking outcomes, such as stride length (Fisher et al., 2008a; Sage 

& Almeida, 2009; Boehm et al., 2011; Almeida & Bhatt, 2012). Later, Gisbert 

et al. (2015) published a patient- intervention-comparison-outcome analysis, 

showing that the results of the Cochrane review could be applied to patients 

(Gisbert, 2015).



C h a p t e r  1  I n t r o d u c t i o n  | 25 
 

 
 

1.3 TREADMILL WALKING IN GAIT REHABILITATION IN 

PD 

The treadmill is a device used for walking or running while staying in the 

same place. The motorized treadmill began to be employed in the medical 

field for ergometry studies in the middle of the 20th century (Yu et al., 1951). 

Nowadays, the treadmill is a familiar device employed in gyms, hospitals and 

research centers. 

In the physiological field the treadmill has been used to explore the 

neurophysiology of locomotion in mammals. Pioneering studies in spinalized 

cats showed that these animals could step on the treadmill with their hind-

limbs, if their body weight was externally supported (Edgerton et al., 1992). 

On the basis of these experiments, the same approach was applied to humans 

with spinal cord injury (Wernig & Müller, 1992). A harness that supported a 

part of the patient’s body weight was used in order for them to maintain an 

erect posture when they walked on the treadmill. More recently, the use of 

the treadmill has been introduced for gait rehabilitation in other neurological 

pathologies such as PD. 

1.3.1 Treadmill walking studies in gait rehabilitation in 

PD 

Over the last few decades, the treadmill has become a therapeutic tool for 

gait rehabilitation in PD. Miyai et al. (2000) conducted the two initial studies 

to study treadmill training with supported body weight in people with PD, and 

found improvements in UPDRS, ambulation speed and number of steps (Miyai 

et al., 2000, 2002). Later, their findings were replicated and extended. 

Several weeks of treadmill training without body weight support led to 

improvements in some lower limb tasks, such as walking along a corridor 

(Kurtais et al., 2008), and also in specific gait parameters of PD patients, 

such as enlarged stride length, increased speed, decreased double support 

time, and reduced swing time variability. In 2010, Mehrholz et al. (2010) 

conducted a meta-analysis that included 8 trials with a total of 203 

participants. The review provided evidence of the use of treadmill training in 
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patients with PD in order to improve gait parameters that included speed and 

stride length (Mehrholz et al., 2010). 

One important feature of treadmill training programs is the reported long-

lasting effects (Miyai et al., 2002; Toole et al., 2005; Herman et al., 2007; 

Bello, 2013; Nadeau, 2014). After 4 weeks of treadmill training, 

improvements in balance, gait, range of motion and motor UPDRS were 

maintained for one month (Toole et al., 2005). Recently, improvements in 

speed, cadence and stride length have been reported that persisted until 6 

months after the treadmill training (Nadeau et al., 2014).  

In addition to the long-term effects, the immediate effects of one treadmill 

session have also been investigated. Gait speed, stride length and double 

stance improved immediately after one session of treadmill walking (Miyai et 

al., 2000; Pohl et al., 2003). Improvements in gait speed were also found 10 

minutes after a treadmill gait session, where advanced PD patients increased 

their gait speed as a result of an improvement in stride length (Bello et al., 

2008). 

In order to discover the effect of the treadmill in gait rehabilitation in PD 

patients, it is necessary to determine the differences between treadmill 

walking and overground walking. When walking on the treadmill, a group of 

advanced PD patients (H&Y 3) improved their step length while walking in 

comparison with overground walking (Bello et al., 2008). Moreover, PD 

patients increased their step length, but no other gait parameters, after 

treadmill training in comparison with overground training (Bello, 2013). The 

immediate effects of one treadmill session in comparison with one session of 

overground walking have not yet been investigated. This is of importance in 

order to determine whether the treadmill has a specific therapeutic effect in 

PD. 
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1.3.2 Mechanisms implicated in treadmill gait benefits 

in PD 

An understanding of the mechanisms underlying the gait improvements 

associated with the treadmill will improve the prescription and efficacy of 

physical therapy in PD. Several mechanisms have been proposed (Bello & 

Fernández-Del-Olmo, 2012). Some of them are related to the different 

contexts in which the walking took place, such as the external cues provided 

by the treadmill and the attentional strategies used by PD patients; and 

others are related to the features of the treadmill itself, such as constant 

speed or the use of handrails (see Table 4). 

Table 4 Summary of the main mechanisms implicated in treadmill gait 
benefits in PD (Adapted from Bello et al., 2012).  

Mechanism Arguments to Support 
this Theory 

Arguments to Question this 
Theory 

Central 
Pattern 
Generator 

Treadmill training could 
provide adequate sensory 
inputs, which may 
stimulate the spinal 
locomotor circuitry 

It is undetermined whether CPG is 
relevant in the gait improvement 
of PD patients 

External 
sensory cues 

Treadmill walking provides 
propioceptive signals that 
may be used by PD 
patients, triggering intact 
circuits and by- passing 
the defective 
pallidocortical circuit, in 
order to control movement 

Changes in regional flow evaluated 
with SPECT during treadmill 
walking, showed absence of the 
lateral premotor cortex-parietal 
overactivation that seems to 
accompany externally triggered 
movements in PD patients, 
indicating that treadmill-walking 
has an internally driven 
mechanism 

Visual 
feedback 

Modifications in the optical 
flow lead to modification in 
the gait pattern. 

Absence of visual flow may 
force the subject to look for 
another source of visual 
information, as an anchor 
for maintaining a stable 
position 

Only the absence of visual flow do 
not increase the step length in PD 
patients 



28 | T r e a d m i l l  W a l k i n g  i n  P D  

 

Attentional 
strategies 

PD patients can use 
attentional strategies and 
compensate for the 
damaged automaticity 

 

Imposed 
and constant 
gait speed 

The constant speed of the 
treadmill could reduce the 
de- grees of freedom and 
help to minimize stride-to-
stride variations in gait 
timing 

 

Hand 
support 

Walking aids that have 
hand support, can improve 
balance and mobility in 
older adults and people 
with other clinical 
conditions 

PD patients reduce their speed and 
stride length when they walk with 
a wheeled walker in comparison 
with normal gait. 

Motor 
learning 

Improvement in gait is 
sustained several months 
after the treadmill training 
is completed. 

 

 

The visual cues and the handrail support are two of the possible 

explanations that have already been rejected. A recent study that used a 

treadmill simulator built by extracting the belt showed that visual feedback 

was not the main mechanism involved in the step length increase in PD 

patients during treadmill walking (Bello et al., 2010). Moreover, the fact that 

the patients held their arms on the handrail of the treadmill could improve 

their balance and may account for the adaptation of the step length observed 

over the treadmill (Bateni & Maki, 2005). However, two studies have shown 

that PD patients reduce their speed and stride length when they walk with a 

wheeled walker in comparison to normal gait (Frenkel-Toledo et al., 2005; 

Bello et al., 2010). 

One of the most plausible explanations so far is related to belt movement 

and proprioceptive signals. It is well known that PD patients can generate a 

normal gait pattern in the presence of adequate regulatory sensory 

stimulation. Lines placed on the floor at the desired step length, or rhythmic 

auditory cues, can assist the initiation and execution of gait in PD. These cues 
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would bypass the defective internal pallidocortical projections in PD, 

activating compensatory cortical pathways, possibly via the lateral premotor 

cortex, which controls externally guided movements (Hanakawa et al., 

1999a; Fukuyama et al., 2004). Frenkel-Toledo et al. (2005) suggested that 

the treadmill provides external cues to reduce gait variability (Frenkel-Toledo 

et al., 2005). Moreover, a recent study confirmed that improvements in stride 

length in PD are due to the belt movement itself, probably due to 

proprioceptive afferents generated by belt displacement (Bello et al., 2010). 

Thus, treadmill walking can provide proprioceptive signals that could bypass 

the defective pallidocortical circuit in PD.  

In this way, the proprioceptive afferents generated by the belt movement 

could provide suitable sensory inputs for the stimulation of the CPGs, i.e., the 

spinal locomotor circuitry (see 1.2.3) (Protas et al., 2005; Herman et al., 

2007; Fisher, 2008).The positive effect of the treadmill in humans with a 

spinal lesion has been attributed to the activation of the CPGs (Dietz, 2003; 

Shepherd, 1999). Thus, treadmill walking would stimulate the spinal 

locomotor circuitry in PD. Another explanation for the treadmill improvements 

is related to the assumption that treadmill gait can induce motor learning in 

PD (Protas et al., 2005; Herman et al., 2007; Fisher, 2008). This could explain 

why the improvement in gait is sustained several months after the treadmill 

training is completed (Herman et al., 2007). The motor learning induced by 

treadmill training can also be mediated by CPGs, since learning occurs at the 

spinal level in PD. Another possibility is that the neural changes may occur at 

cortical level. A recent study reported normalization of corticomotor 

excitability after treadmill walking exercise at high-intensity, as well gait 

improvements in early PD (Fisher et al., 2008).  

Besides belt movement and proprioceptive signals, attentional resources 

have also been proposed as a mechanism involved in the gait improvements 

associated with treadmill use in PD (Bello & Fernández-Del-Olmo, 2012). 

Although regulation of gait pattern is an automatic process that does not 

require attention in healthy adults, people with PD are able to improve their 

gait when they direct their attention to their walking movement, suggesting 

an impairment in the automatic control of their gait (Morris et al., 1996). 

Thus, it is plausible that the stable environment and absence of distracters 
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associated with walking over the treadmill could allow PD patients to allocate 

attention to their gait in comparison with an overground walking condition, 

and consequentially, bypass the defective pallidocortical circuit in PD. 

Having reported the several hypotheses underlying the improvements 

associated with the use of a treadmill in PD, it must be emphasized that there 

are no studies that have explored the role of attention as an underlying 

mechanism, notwithstanding the current association between attention and 

gait in PD. In the same way, there are no studies that investigate the possible 

neural mechanisms involved in treadmill gait benefits in PD. 
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1.4 TRANSCRANIAL DIRECT CURRENT STIMULATION 

(TDCS) IN GAIT REHABILITATION IN PD 

 

1.4.1 Basis of application of tDCS in PD 

TDCS is a model of NIBS that could enhance or reduce cerebral excitability 

by the use of low direct current delivered via two surface electrodes on the 

head, anode and cathode. Although the scalp possesses high impedance, 

sufficient intracranial current flows to produce changes in membrane resting 

thresholds within the cortex beneath each electrode. This results in an 

increase in activity under the anode and a decrease in activity beneath the 

cathode (Nitsche et al., 2005).  

TDCS has the capability to promote motor learning and consolidation, and 

may enhance long-term retention in healthy subjects (Nitsche et al., 2003). 

This provides the rationale for combining tDCS with a rehabilitative 

intervention, and has been shown to promote motor recovery in chronic 

stroke (Hummel et al., 2005). In recent years, there has been increased 

interest in tDCS as an intervention in PD. 

In PD, cortical excitability is increased during rest and decreased during 

voluntary activity which corresponds to reduced facilitation (Cantello et al., 

1991; Valls-Solé et al., 1994; Cantello et al., 2002). Impaired facilitation 

likely results from a deficient thalamo-cortical drive, while the increased 

activity during rest may be compensatory (Berardelli et al., 1996). The first 

placebo-controlled study that investigated the effects of a single tDCS session 

in PD reported that anodal tDCS of the primary motor cortex (M1) results in 

a motor function enhancement, along with a restoration of the reduced 

activity in motor and prefrontal cortices (Fregni et al., 2006). 

The physiological effects of anodal tDCS in PD have not been extensively 

investigated. RTMS release dopamine in the caudate and putamen 

corresponding to their cortico-striatal projections and could contribute to the 

acute effects of transcranial stimulation. Anodal tDCS causes widespread 

activation (Lang et al., 2005) that may trigger similar effects.  
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In view of the above, the use of tDCS in PD offers a promising rationale 

for improving the efficiency of rehabilitative interventions, as well as possibly 

enhancing our understanding of PD pathophysiology. 

1.4.2 tDCS studies in gait function in PD 

he rationale behind the application of tDCS on gait in PD comes from the 

DBS of the PPN (Plaha & Gill, 2005; Stefani et al., 2007), which has been 

reported to improve gait disturbances refractory to conventional therapy. In 

addition, tDCS has the capability to modulate spinal reflexes such as 

reciprocal Ia-inhibition in healthy people, demonstrating that the effects of 

the low direct current at the cortex reach spinal levels. 

Several studies have evaluated the effect of anodal tDCS on gait function 

in PD. TDCS has been suggested by some to improve gait, while others have 

found no benefit in PD. Several sessions of anodal tDCS delivered over the 

M1 and the premotor area improved upper-extremity bradykinesia and, to a 

lesser extent, walking time (Benninger et al., 2010). In a cross-over RCT, 5 

sessions of anodal tDCS of M1 in 10 patients had a beneficial effect on gait, 

FOG and motor performance, and these effects lasted throughout the 

observation period of 1 month (Valentino et al., 2014). However, a single 

session of anodal tDCS over M1 did not induce improvements on gait function 

measured with the 10-m walking test (Verheyden et al., 2013). 

It has also recently been shown that anodal tDCS, combined with physical 

training, increased gait velocity and improved balance in PD more than 

isolated physical training or tDCS alone, which did not produce motor 

improvements (Kaski, et al., 2014).  

Another possibility that has not been studied is the combination of 

treadmill walking and tDCS. This combined therapy could increase the effects 

of treadmill walking or tDCS alone on gait function in PD. 
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After a brief review of the current data related to the topic of this thesis, 

some questions of interest remain unresolved: 

1) Are attentional demands a reliable underlying mechanism related to 

the gait improvements associated to treadmill walking in PD? 

2) What is the cognitive cost of treadmill walking and overground walking 

under dual-task conditions in PD? 

3) Could one session of treadmill walking lead to gait improvements in PD 

patients in comparison with one session of overground walking? 

4) What are the neural mechanisms that underlie gait improvements 

related to treadmill walking in individuals with PD? 

5) What are the effects of combining tDCS and treadmill walking in gait 

function in PD subjects? 

6) What are the effects of combining tDCS and treadmill walking in the 

neurophysiological function of PD subjects? 

This piece of research is an attempt to address these questions. Questions 

1 and 2 will be addressed in the first study. Question 3 and 4 will be addressed 

in the second study. Questions 5 and 6 will be addressed in the third study. 
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3.1 Study I: Gait Pattern and Cognitive Performance 

During Treadmill Walking in Parkinson’s Disease 

3.1.1 Hypothesis 

Performance of a cognitive task during treadmill walking will lead to an 

impairment in one or both of the tasks in PD subjects. 

3.1.2 Aims 

 To explore whether attentional demands are involved in gait 

improvements in PD patients when they walk on a treadmill. 

 To investigate the gait pattern in PD subjects and controls when walking 

over the treadmill and when walking overground during the performance 

of a concurrent cognitive task. 

 To explore the cognitive performance in PD subjects and controls when 

walking over the treadmill and when walking overground during the 

performance of a concurrent cognitive task. 
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3.2 Study II: Acute kinematic and neurophysiological 

effects of treadmill and overground walking in 

Parkinson´s disease 

3.2.1 Hypothesis 

A single treadmill walking session, unlike a single overground walking 

session, would lead to gait improvements in PD, accompanied by walking-

related neurophysiological modulations. 

3.2.2 Aims 

 To explore the short-term effects of a single session of either treadmill or 

overground walking on kinematics in PD patients. 

 To address the immediate effects of a single session of either treadmill or 

overground walking on the excitatory and inhibitory cortical networks in 

PD patients. 

 To address the immediate effects of a single session of either treadmill or 

overground walking on spinal excitability in PD patients. 
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3.3 Study III: Treadmill walking combined with anodal 

tDCS in Parkinson's Disease: kinematic and 

neurophysiological effects 

3.3.1 Hypothesis 

The combination of treadmill walking with tDCS enhances the gait 

improvements associated with treadmill walking in PD subjects. 

3.3.2 Aims 

 To explore the acute effect of treadmill walking combined with anodal 

tDCS on gait function both on overground and treadmill walking in 

individuals with PD.  

 To investigate the possible spinal and cortical neural mechanisms involved 

in the effects of this combined therapy in PD individuals. 
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4.1 STUDY I: Gait Pattern and Cognitive Performance 

During Treadmill Walking in Parkinson’s Disease 

4.1.1 Abstract 

The aim of this study was to explore whether attentional demands are 

involved in gait improvements in PD patients when they walk on a treadmill. 

Nineteen individuals with idiopathic PD and 19 age-matched healthy controls 

participated in this study. Participants walked on a treadmill and on 

overground under single task (walk only) and DT (walk performing a 

simultaneous cognitive task) conditions. The DT paradigm was used to reveal 

the attention allocation behaviour. Gait pattern and cognitive performance 

was measured. The PD group showed reduced gait variability when walking 

on a treadmill in comparison with overground. However, this reduction did 

not deteriorate during the DT. Moreover, there were no differences in the 

cognitive performance between treadmill and overground walking. This study 

does not support the proposition attentional resource allocation as a possible 

mechanism for the treadmill-associated gait improvements observed in PD. 
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4.1.2 Introduction 

Gait disorders are among the most significant impairments in PD that 

severely affect the individual’s QoL (Keus et al., 2009). PD gait is 

characterized by a reduced gait speed, increased stride-to-stride variability 

and a specific difficulty to regulate stride length (Keus et al., 2009). In 

addition, people with PD suffer a deficit in executive functions and attention 

abilities, (see Dirbenger and Jahanshahi (2013), for an extensive review of 

executive deficits in PD; and Yogev-Seligmann et al. (2008), for a review of 

the role of executive function and attention in gait) (Yogev-Seligmann et al., 

2008; Dirnberger & Jahanshahi, 2013). These cognitive dysfunctions could 

explain the exacerbated gait impairments in PD subjects (i.e. reduced walking 

speed and stride length, and increased stride-to-stride variability) when they 

perform a concurrent task (O’Shea et al., 2002; Rochester et al., 2004; Yogev 

et al., 2005). Previous studies have examined the relationship between 

cognition and gait performance in people with PD using a secondary task 

during walking (DT paradigm) (Yogev et al., 2005; Yogev-Seligmann et al., 

2012; Kelly et al., 2012; Brauer & Morris, 2010; Chawla et al., 2015). DT is 

a component of executive function, which refers to the ability to allocate 

attention to tasks that are performed at the same time (Ivanoff, 2005). 

Although, several theories have been proposed to explain DT interference, all 

of them agree that when two tasks are performed concurrently, performance 

decrements are observed in one or both tasks (Marois et al., 2005; Kelly et 

al., 2012). For instance, and according to the capacity sharing model (O’Shea 

et al., 2002; Herman et al., 2007), when two attentionally demanding tasks 

are performed simultaneously, competition of attentional resources results in 

the deterioration of performance in one or both of the tasks. Therefore, it is 

important to explore the role of attention associated with therapeutic 

strategies to improve the gait in subjects with PD. 

In the last decade, several studies have shown the therapeutic use of 

treadmill training for gait rehabilitation in PD (Mehrholz et al., 2010). Several 

weeks of treadmill training lead to an improvements in several gait 

parameters such as enlarged stride length, increased speed, decreased 

double support, reduced swing time variability and reduced stride length 
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variability between others (Herman et al., 2007; Bello, 2013; Nadeau et al. 

2014; Tseng et al. 2015). Notably, subjects with PD increased their stride 

length after 5 weeks of treadmill training but not when the training consisted 

of walking overground (Bello, 2013). A recent study showed improvements 

in walking speed and walking endurance even 6 month after the treadmill 

training (Nadeau et al., 2014). In addition to these long term effects of 

treadmill training, immediate improvements on overground gait, such as 

faster speed and longer step length, have been reported after a single 

treadmill session in PD (Bello et al., 2008). 

The therapeutic effect of treadmill could be explained as a specific gait 

modulation in PD subjects when walking over this device. PD subjects walk 

on a treadmill with lower stride-to-stride variability (Frenkel-Toledo et al., 

2005) and higher length step in comparison with walking overground (Bello 

et al., 2008). However, the mechanisms underlying these positive treadmill 

effects in PD remain unknown, even though several theories have been 

postulated (Bello et al., 2010; Bello & Fernández-Del-Olmo, 2012). One of 

these theories refers to attentional resources. Although, regulation of gait 

pattern is an automatic process that does not require attention in healthy 

adults (Yogev et al., 2005), people with PD are able to improve their gait 

when they direct their attention to their walking movement (Morris et al., 

1996; Canning, 2005) suggesting an impairment in the automatic control of 

the gait. Thus, it is plausible that the stable environment and absence of 

distracters associated with walking over the treadmill allow PD patients to 

allocate attention to their gait in comparison with an overground walking 

condition. However, to the best of our knowledge there are no studies that 

have explored the role of attention during treadmill walking in subjects with 

PD. 

Therefore, the main goal of this study was to investigate whether attention 

could be an underlying mechanism for the gait improvements observed 

during treadmill walking in PD. To this end, and using a DT paradigm, the 

present work compared the gait pattern in PD and controls, when walking 

over the treadmill and when walking overground during the performance of 

a concurrent cognitive task. The proposed hypothesis was that if the gait 

improvements observed while walking over a treadmill depend on attentional 
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resources, performance of a cognitive task will lead to impairment in one or 

both of the tasks. 

4.1.3 Material and methods 

Subjects 

Nineteen individuals diagnosed with idiopathic PD by a neurologist, 

according to the United Kingdom Bank Criteria (Hughes et al., 1992) (11 

males and 8 females, mean age = 59.79 ± 12.63), and nineteen age-matched 

healthy controls (11 males and 8 females, mean age = 59.53 ± 12.1) were 

recruited for the study from a local community. Inclusion criteria for 

participants with PD was: diagnosis of idiopathic PD, the ability to walk for 10 

min without stopping or walking assistance, absence of neurologic disorders 

other than PD and absence of orthopedic, cardiovascular or visual 

disturbances that could affect gait. Healthy controls were included if they did 

not have history of neurological pathology or other disease that could affect 

the ability to walk. All participants did not use a treadmill for at least 12 

months prior to the experiment. No participant showed dementia as assessed 

by a mini-mental state examination (MMSE). The level of severity of motor 

signs associated with PD was measured in ON state (45 minutes – 1.5 hours 

after medication intake) using the Unified Parkinson´s Disease Rating Scale 

Part-III (Fahn et al.; 1987) (UPDRS-III) and Hoehn and Yahr scale (Hoehn 

MM, 1967) (H&Y). A neurologist confirmed the ON state. All participants gave 

their written informed consent according to the Declaration of Helsinki (1964), 

before entering the study. The experimental procedures were approved by 

the local ethics committee.  

Apparatus 

A treadmill with handrails (SportsArt 6300, Sports Arts Fitness) was used. 

Gait performance overground and on the treadmill was recorded using an 

optical detection system (Optogait, Microgait, USA). This optical and modular 

system included transmitting and receiving bars of infrared LEDs. The 

apparatus detected the interruptions of the communication between the bars 
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during walking. Wireless headphones (Philips Hi-Fi, SHD8600UG) were used 

for the cognitive task. 

Testing procedure 

All participants were tested in four conditions: overground single task (ST: 

walk only), overground dual task (DT: walk and perform a cognitive task), 

treadmill ST and treadmill DT. Single and dual task conditions were arranged 

in a random order. However, overground and treadmill conditions were not 

counterbalanced since it has been reported that treadmill walking has 

significant and long lasting effects on the speed and frequency of consequent 

overground walking(Bello et al., 2008). The experimental sessions were 

carried out while patients were ON medication, confirmed by a neurologist 

evaluating the motor items of the UPRDS scale (Figure 3). 

 

 

Figure 3 Flow chart of Study I. 
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The cognitive task consisted of a phoneme monitoring paradigm (Connine, 

1996). The phoneme monitoring task has been previously used in several 

studies of PD and gait (Springer et al., 2006; Bello, 2013; Wild et al., 2013). 

Participants were asked to listen to a 1-minute-long narration through 

wireless headphones and they had to count the number of times that two 

pre-specified words were repeated in the narration. At the end of the task, 

participants reported the number of times the words were repeated in the 

text. They were not allowed to use their voice or fingers to help in the count. 

The subjects were not given any instructions or information regarding 

prioritization of the tasks. Baseline measurement of the cognitive task 

(without walking) was performed in a sitting position at the beginning of the 

session. A total number of fourteen texts were used, that were arranged in a 

randomized order for the different cognitive tests (baseline measurement, 

overground DT and treadmill DT). The two pre-specified words differed for 

each text. For the DT condition, the subjects were not given any instructions 

or information regarding prioritization of the tasks. 

The overground walking tests started with a practical trial of 3 minutes to 

familiarize the subjects with the walkway and with them self-select 

comfortable speed. Participants were tested at their self-selected comfortable 

speed, up and down an 8 meters walkway, for a total time of 1 minute. The 

gait parameters were recorded during the straight walk but not during the 

turns. Thus, each overground condition (ST or DT) was repeated twice to 

obtain the same number of steps to that in the treadmill conditions. The only 

instruction that participants received was to walk at their preferred speed. 

The treadmill walking tests started with a period of familiarization of 3 

minutes to reach, on the treadmill, the gait speed previously established 

during the overground condition (ST). During the familiarization period, all 

participants were instructed to keep their steps close to the front of the 

treadmill to keep their body erected. The treadmill tests consisted of two new 

blocks of 3-minutes for ST and DT conditions. During the first minute, belt 

speed was increased to reach the overground speed. The measurements were 

taken in the second minute of each block (ST and DT). All participants walked 

on the treadmill holding the handrails (Bello, 2013; Bello et al., 2010) since 

some subjects, specifically individuals with PD, did not feel safe to walk 
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without the handrail support. Participants walked on the treadmill under the 

close supervision of a physical therapist. To minimize fatigue effects, rest 

periods of 3 minutes between treadmill blocks and over-ground measures 

were included.  

Data analysis 

The following variables of gait were evaluated: overground speed (m/s), 

stride length (m), stride frequency (Hz), coefficient of variation (CV) of stride 

length (%) and CV of stride frequency (%). Coefficients of variation were 

calculated using the following formulas: (standard deviation/ stride length) 

x100; (standard deviation/stride frequency) x100. The outcomes of gait 

measurements were recorded during the tests with Software OptoGait 

v.1.9.9.0, (Microgait, USA) and were exported to excel format for offline 

analysis.  

The variable of the cognitive task was called “cognitive performance”. The 

cognitive performance was evaluated by calculating the percentage of 

mistakes made when counting the two pre-specified words.  

Statistical analysis 

To determine group and gait differences, a t-test was performed using the 

demographic and anthropometric measures. A repeated-measures analysis 

of variance (ANOVA) was carried out to compare the changes in gait in 

different conditions. Two-way ANOVA was used for gait speed (analysed only 

overground), with “task” as the within subject factor and “group” as the 

between subject factor. For the remaining variables of gait, three-way ANOVA 

was used with “surface” (overground and treadmill) and “task” (single task 

and dual task) as within-subject´s factors, and “group” (PD and control) as 

between subject´s factor. Post Hoc t-tests were computed. Wilcoxon rank 

test was applied for each group to compare cognitive performance between 

baseline, over-ground and treadmill conditions. Mann-Whitney test was used 

to compare cognitive performance between PD patients and controls for 

baseline, overground and treadmill conditions. All statistical analysis was 

performed using PASW Statistics 18. With the exception of percentage of 
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mistakes, none of the data violated the normality assumption according to 

Shapiro-Wilk test. A P value ≤ 0, 05 was considered statistically significant. 

4.1.4 Results 

T-tests showed no significant differences for age, leg length, weight and 

height between PD and control groups (Table 5). 

Table 5. Characteristics of PD and control groups. 

 

Two-way ANOVA for gait speed showed a significant main effect for group 

and task factors (Table 6B), with higher overground speed in control 

participants compared with PD patients and also during ST compared with DT. 

No significant task*group interaction was found. 

Three-way ANOVA for stride frequency showed a significant main effect 

for group factor (Table 6B). The control group walked with a higher stride 

frequency than the PD group.  

 PD CONTROL Group 
Differences 

Age (years) 59.68 ± 12.81 59.53 ± 12.10 NS 

Weight (Kg) 79.91 ± 14.66 73.63 ± 8.6 NS 

Leg lengtha (m) 87.37 ± 7.22 85.64 ± 6.97 NS 

Height (m) 1.65 ± 0.072 1.65 ± 0.08 NS 

MMSE 29.38 ± 1.02 29.52 ± 0.89 NS 

Disease duration 
(years) 

5.08 ± 3.83 __ __ 

UPDRS-III 21.06 ± 10.69 __ __ 

H&Y stage 
(subjects in each 
stage) 

1 (n= 4); 1.5 
(n=3); 2  (n=6); 
2.5 (n= 6) 

__ __ 

Values are mean ± SD. t -test analysis for group differences. aDistance from 
the great trocanter to the floor. PD, Parkinson´s Disease; MMSE, Mini-Mental 
State Examination; H&Y, Hoen and Yahr; UPDRS-III, Unified Parkinson´s 
Disease Rating Scale motor section; NS, Not Significant; n; sample. 
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Three-way ANOVA for stride length revealed a significant surface*task 

interaction (Table 6B). The Post Hoc analysis showed that for the ST condition, 

there were no significant differences in stride length between surfaces. 

However, the stride length was shorter for DT than for ST, while walking 

overground (F = 44.30; P < 0.001), but there were no differences between 

DT and ST conditions during treadmill walking. On the treadmill, stride length 

for the DT condition was larger than for overground walking (F = 24.26; P < 

0.001). 
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Table 6 Means, standard deviations and ANOVA results of gait variables. 

A. Gait variables in PD and control groups 

 PD CONTROL 

 Overground Treadmill Overground Treadmill 

 ST DT ST DT ST DT ST DT 

Gait speed 
(m/s) 

1.07 ± 
0.23 

1.01 ± 
0.24 

1.07 ± 
0.23 

1.07 ± 
0.23 

1.33 ± 
0.20 

1.25 ± 
0.22 

1.33 ± 
0.20 

1.33 ± 
0.20 

Stride 
length (m) 

1.18 ± 
0.20 

1.13 ± 
0.20 

1.20 ± 
0.23 

1.19 ± 
0.24 

1.35 ± 
0.17 

1.31 ± 
0.17 

1.34 ± 
0.18 

1.36 ± 
0.16 

Stride 
frequency 
(Hz) 

0.90 ± 
0.07 

0.93 ± 
0.15 

0.90 ± 
0.07 

0.93 ± 
0.09 

0.98 ± 
0.07 

0.95 ± 
0.09 

1.00 ± 
0.09 

0.98 ± 
0.08 

CV of stride 
length (%) 

4.27 ± 
2.52 

4.63 ± 
2.44 

1.73 ± 
0.93 

1.54 ± 
0.76 

2.65 ± 
1.00 

3.35 ± 
1.41 

1.56 ± 
0.84 

1.56 ± 
0.83 

CV of stride 
frequency 
(%) 

2.60 ± 
0.80 

2.96 ± 
0.94 

1.90 ± 
1.12 

1.88 ± 
1.07 

1.84 ± 
0.53 

2.37 ± 
0.91 

2.91 ± 
1.97 

2.80 ± 
2.01 

Values are mean ± SD.  PD, Parkinson´s disease; ST, single task; DT, dual task; CV, 
coefficient of variation. 

B. ANOVA results of gait variables 

 Surface Task Group Surface× 
Task 

Surface× 
Group 

Task× 
Group 

Surface× 
Task× 
Group 

Gait speed 
(m/s) __ F=46.76 

P<0.001 
F=12.03 
P=0.001 __ __ NS NS 

Stride length 
(m) 

F=8.00 
P=0.008 

F=21.32 
P<0.001 

F=6.73 
P=0.01 

F= 29.77 
P<0.001 NS NS NS 

Stride 
frequency 
(Hz) 

NS NS F=7.37 
P=0.01 NS NS NS NS 

CV of stride 
length (%) 

F=73.35 
P<0.001 NS F=4.11 

P=0.05 
F=5.72 
P=0.02 

F=7.67 
P=0.009 NS NS 

CV of stride 
frequency 
(%) 

NS NS NS F=4.65 
P=0.04 

F=11.71 
P=0.002 NS NS 

CV, coefficient of variation; NS, Not significant. 
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The analysis of the CV of stride frequency showed significant 

surface*group and surface*task interactions (Table 6B) (Figure 4). Therefore, 

there were no specific group effects of the task in this parameter. The Post 

Hoc analysis of the surface*group interaction showed that overground PD 

patients walked with a higher CV of stride frequency than control subjects (F 

= 8.67; P = 0.006). However, PD patients showed a lower CV than control 

subjects while walking on the treadmill (F = 4.10; P = 0.050) due to a 

decrease of the CV values in the PD group (F = 6.93; P = 0.01) and an 

increase of CV in control subjects when walking on the treadmill in 

comparison with walking overground (F = 4.87; P = 0.03). The Post-Hoc 

analysis of the surface*task interaction indicated that the CV of stride 

frequency was higher during DT than during ST in the overground condition 

(F = 11.39; P = 0.002) but not in the treadmill condition. 

 

 

Figure 4 Comparison of the coefficient of variation of stride frequency 
between single and dual task, in PD and control groups.  

PD indicates Parkinson disease; CV, coefficient of variation; ST, single task; DT, 
dual task. 

 

ANOVA showed significant surface*group and surface*task interactions 

(Table 6B) for CV of stride length (Figure 5). These results indicated there 

were no specific group effects of the task on the CV of stride length. The Post 

Hoc analysis of the surface*group interaction showed that in overground 

condition PD subjects walked with a higher CV of stride length compared with 
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control participants (F = 6.21; P = 0.017). However, these differences were 

not significant on the treadmill. This was due to a significant reduction of the 

CV, in both PD and control subjects, for treadmill versus overground walking 

(F = 64.23; P < 0.001 and F = 16.79; P < 0.001). The Post Hoc analysis of 

the surface*task interaction showed that the CV of stride length was higher 

for DT compared with ST while walking overground (F = 4.39; P = 0.04), but 

there were no significant differences between the tasks on the treadmill. For 

treadmill walking the CV was significantly lower than for overground walking 

for both the ST and DT condition (F = 48.20; P < 0.001 and F = 66.45; P < 

0.001, respectively). 

 

 

Figure 5 Comparison of the coefficient of variation of stride length between 
single and dual task, in PD and control groups.  

PD indicates Parkinson disease; CV, coefficient of variation; ST, single task; DT, 
dual task. 

 

The Wilcoxon test in the control group did not show differences on 

cognitive performance between baseline, overground and treadmill conditions. 

However, the PD group showed significant differences between baseline and 

treadmill (Z = 2.550; P = 0.011). PD patients had a greater percentage of 

mistakes during treadmill walking compared with baseline. No differences 

were found between baseline and overground (Z = 1.221; P = 0.222) or 

between overground and treadmill walking (Z = 0.101; P = 0.92) in the PD 

group. Mann-Whitney tests did not show cognitive differences between 
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groups in the three task conditions. However, there was a tendency for a 

higher percentage of mistakes in PD participants in comparison with controls 

during overground (Z = 1.929; P=0.054) and treadmill (Z =1.875; P = 0.061) 

walking (Figure 6). 

 

 

Figure 6 Comparison of cognitive performance between control and PD 
subjects for baseline, overground, and treadmill conditions. 

 

4.1.5 Discussion 

The main goal of this study was to explore whether attentional resources 

may explain the gait improvements observed during treadmill walking in PD. 

The results show that during treadmill walking with and without the cognitive 

tasks, individuals with PD reduced their gait variability. These gait 

improvements did not deteriorate during the performance of a concurrent 

cognitive task. Moreover, cognitive performance did not show statistical 

differences between treadmill and overground walking. Therefore, these 

findings suggest that improvements of gait in PD patients during treadmill 

walking are independent of attentional demands to the task of walking. 
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Differences in gait parameters between surfaces 

The results showed that the PD group demonstrated a shorter stride 

length, lower velocity and higher gait variability compared with the control 

group while walking overground. However, the PD group reduced the CV of 

stride frequency and the CV of stride length when walking on the treadmill. 

The reduction of the stride frequency variability during treadmill walking has 

been previously reported in PD (Frenkel-Toledo et al., 2005). However, to our 

knowledge, the current study is the first to report a reduction in the variability 

of stride length. This is of relevance since a high stride to stride variability 

was associated with an increased risk of falls in PD (Schaafsma, 2003; 

Hausdorff et al., 2007). Therefore, the present investigation extends the 

benefits of this device, suggesting that walking on the treadmill could 

normalize the temporal variability as well as spatial gait variability in PD. 

Differences in gait between tasks  

The present data clearly demonstrate that during the performance of a 

secondary cognitive task all the participants displayed a decrease in the 

length of the step and speed together with an increase in the spatial and 

temporal variability of overground gait. This is in line with previous studies 

that showed a deterioration of gait disturbances in people with PD when they 

walk and perform a secondary task at the same time (Canning, 2005; 

Springer et al., 2006; Yogev-Seligmann et al., 2008; Bello et al., 2010). 

Other studies have also shown alterations of the gait pattern in healthy older 

adults while simultaneously performing a cognitive task, suggesting an age-

related reduction in dual task capacity (Morris et al., 1996; Rochester et al., 

2014). Moreover, there was a non-significant tendency, in PD participants, to 

perform the cognitive task during walking worse than control subjects. This 

tendency is in agreement with previous studies showing that PD individuals 

require more attention to regulate the gait pattern in order to compensate 

their damaged automaticity (Morris et al., 1996). Therefore, this report 

reinforces the hypothesis that walking during the performance of a cognitive 

task requires greater levels of cognitive function in PD patients (Plotniket al., 

2011). 
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The cognitive task did not affect any gait parameters during treadmill 

walking, in PD and control subjects. Overall, the gait variability reduction in 

PD participants, as a result of walking on the treadmill, did not deteriorate 

during the performance of the cognitive task. Therefore, the present study 

suggests that the adaptive changes of the gait pattern while walking on a 

treadmill are not related to increased attentional demands in comparison with 

walking overground. 

In the present work PD patients showed deterioration in their cognitive 

performance during treadmill walking in comparison with performing a 

cognitive task in a static position (baseline cognitive measurement). Previous 

studies showed that when the environment becomes more demanding, 

focusing on the cognitive task becomes too risky and the attention is allocated 

toward postural stability in order to reduce the likelihood of falling and secure 

safety (Yogev-Seligmann et al., 2012). Although, the handrail support during 

treadmill walking could improve the postural stability, it is likely that this 

effect was counteracted by the balance instability induced by the belt 

movement. This study suggests that, despite the handrail support, DT on a 

treadmill could be more demanding for PD participants compared with 

performing a cognitive task in a rest position without a simultaneous motor 

task. 

Mechanisms of treadmill walking in PD 

This article provides additional data in order to elucidate the role of 

attentional resource allocation in the treadmill associated gait improvements 

observed in patients with PD.  

One of the hypotheses to explain the gait improvements in PD subjects is 

that they are able to allocate more attention to walking on a treadmill than 

walking overground (Bello & Fernández-Del-Olmo, 2012). Previous studies 

showed that people with PD can normalize gait pattern when focusing 

attention on gait (Morris et al., 1996). However, during the performance of 

daily activities, distracters impede attention allocation with the consequent 

gait deterioration (Rochester et al., 2004). During treadmill walking, the 

environment is more stable and the absence of distracters could help PD 
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subjects to maintain their focus on the gait. The present study does not 

support this hypothesis. The results reported that CV of stride frequency was 

reduced during treadmill walking in both ST and DT conditions (Fig. 4). 

Moreover, an absence of differences in cognitive performance between 

treadmill and overground walking in PD was observed. Therefore, these 

findings suggest that attentional demands do not contribute to the gait 

improvements in PD.  

Alternative explanations for the gait improvements are the belt 

displacement and the constant speed provided by the treadmill (Frenkel-

Toledo et al., 2005; Bello et al., 2010; Bello & Fernández-Del-Olmo, 2012). 

The belt displacement enhances the hip extension movements during 

treadmill walking. These proprioceptive inputs (repeated contraction and 

relaxation of muscles groups) may act as an external rhythmical cue 

bypassing the defective pallidocortical projections, resulting in a normalized 

gait pattern (Bello et al., 2010). In addition, the propioceptive inputs during 

treadmill walking could stimulate the CPG. CPG refers to neural spinal circuits 

that can produce rhythmic movements. However, the role of CPG in human 

control remains unknown (Dietz, 2003). The constant speed provided by the 

treadmill could also contribute to minimizing the stride-to-stride variation in 

gait timing (Frenkel-Toledo et al., 2005), in contrast to overground walking 

where there are ongoing fluctuations in gait speed. The study results showed 

a reduction in both stride length and frequency variability on the treadmill in 

PD patients, in comparison with overground. Thus, PD patients could benefit 

from a constant speed, which improves gait timing. A recent study has 

suggested that the improvement in the step length may be due to the belt 

movement but that changes in variability may be influenced further by the 

imposed treadmill speed (Bello et al., 2010). 

Although, all subjects walked on the treadmill with the handrail support, 

it is unlikely that this could account for the gait improvement in subjects with 

PD. A previous study from our group clearly showed that, when PD subjects 

walked with a treadmill simulator without the belt but with hand support, 

stable environment and imposed speed, their step length did not improve in 

comparison with normal overground walking (Bello et al., 2010). Thus, hand 
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support may not be responsible for the gait improvements during treadmill 

walking that were observed in the present study.  

In summary, this is the first study that explores the role of attention in 

the gait improvements observed in PD subjects during treadmill walking. The 

present results show that PD subjects walking on a treadmill, while 

simultaneously performing a cognitive task, are able to maintain the 

reduction of their gait variability. Moreover, their cognitive execution was 

similar during treadmill and overground walking. These findings suggest that 

attentional resources are not involved in the gait treadmill improvements in 

PD subjects and point to belt displacement and constant speed as alternative 

explanations. 

Clinical implications 

The present study provides additional information that may be useful 

when considering the treadmill as a therapeutic tool to improve the gait in 

subjects with PD. The reduction of gait variability walking on a treadmill did 

not deteriorate during the performance of a concurrent cognitive task. 

Therefore, therapists may include performance of cognitive tasks during the 

treadmill walking in order to simulate real life conditions (i.e. walking while 

keeping a conversation). In addition, we recommend further studies that 

investigate the role of belt displacement and constant speed in gait 

improvements using treadmill walking in PD and to determine how these 

improvements translate to real life conditions. 
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4.2 STUDY II: Acute kinematic and neurophysiological 

effects of treadmill and overground walking in 

Parkinson’s disease 

4.2.1 Abstract 

The use of the treadmill as a gait rehabilitation tool has provided novel 

options for treatment of gait impairments in PD. However, the neural 

mechanisms underlying these therapeutic effects in PD remain unknown. Our 

goal was to examine the immediate short-term effects of a single session of 

treadmill and overground walking on gait, spinal and corticospinal parameters 

in PD. Fifteen PD participants were evaluated in two separate sessions and 

walking conditions: walking over a treadmill and walking overground. The 

following measurements were evaluated before and after each condition: 

overground walking performance, the Soleus (SOL) H-reflex, Reciprocal Ia-

Inhibition from the TA to the SOL muscle, ICF and Short Intracortical 

Inhibition (SICI) of the TA muscle. We found that treadmill walking, but not 

overground walking, lead to an improvement in the stride length and gait 

speed in the PD patients. Both walking conditions modulated spinal and 

corticospinal parameters in a similar way. This study provides evidence of a 

specific therapeutic effect of a single session of treadmill walking on gait in 

PD. Further studies are needed to explore other possible neural mechanisms. 
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4.2.2 Introduction 

Gait disturbances are one of the principal and most incapacitating 

symptoms of PD (Keus et al., 2009). PD gait is characterized by the inability 

to regulate an appropriate stride length, a reduced gait speed and an 

increased stride-to-stride variability (Ebersbach et al., 2013). Gait disorders 

in PD may also include festination, start hesitation during gait initiation, 

freezing of gait and falls (Ebersbach et al., 2013). The physiopathology of 

these gait disorders has not been studied extensively and only a few studies 

have investigated the neurophysiological aspects of parkinsonian gait. A 

recent study showed a reduction of the SOL H-reflex during gait initiation in 

PD (Hiraoka et al., 2006). Others have reported a correlation between the 

decreased reciprocal Ia-inhibition at the onset of a voluntary ankle 

dorsiflexion during axial swings in PD patients (Meunier et al., 2000a). In 

addition, TMS studies revealed abnormalities in ICF, that may be related with 

the decreased stride length and the slower gait speed in PD (Vacherot et al., 

2010a). 

In recent years, there has been an increased interest in the treadmill 

as a potential gait rehabilitation tool in PD. Several studies have shown that 

treadmill training enlarge stride length, increase gait speed, decrease double 

support and reduce gait in PD subjects (Miyai et al., 2000, 2002; Bello et al., 

2010; Bello, 2013). Gait benefits have been observed immediately after a 

single session of treadmill walking. For example, after walking on a treadmill 

for 20 minutes, PD patients were able to walk overground with lower stride-

to-stride variability (Frenkel-Toledo et al., 2005) and higher stride length 

(Fernández-Lago et al., 2015). Although, these short-term gait 

improvements were attributed to the treadmill walking, the studies did not 

examine whether these effects could also be achieved by a single session of 

overground walking. This is of relevance in order to determine whether the 

treadmill has a specific therapeutic effect in PD. 

In addition, although several hypotheses have been suggested in order 

to explain the beneficial effects associated with the use of a treadmill in PD 

(see review of Bello et al. 2012) (Bello & Fernández-Del-Olmo, 2012), the 
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neural mechanisms underlying these improvements still remain largely 

unknown.  

The aim of the current study was to explore the immediate effects of a 

single session of either treadmill or overground walking on gait, spinal and 

corticospinal measurements in PD. We hypothesized that only the treadmill 

walking session would lead to an improvement in the gait kinematics in PD 

subjects, as well as walking-related neurophysiological modulations. 

4.2.3 Material and methods 

Participants 

Fifteen individuals, diagnosed with idiopathic PD by a neurologist 

according to the United Kingdom Bank Criteria (Hugheset al., 1992), were 

recruited for the study from a local community. Inclusion criteria for 

participants was diagnosis of idiopathic PD, the ability to walk for 10 minutes 

without stopping or walking assistance, absence of neurologic disorders other 

than PD, not being treated with deep brain stimulation, and absence of 

orthopaedic, cardiovascular or visual disturbances that could affect gait. The 

participants did not use a treadmill for at least 12 months before the 

experiment. No participant showed dementia as assessed by the MMSE. The 

level of severity of the motor signs associated with PD was measured using 

the UPDRS-III (Fahn et al.,1987) and H&Y scale (Hoehn, 1967). Tests were 

conducted with the patients in the “ON” state (45 minutes – 1.5 hours after 

medication intake) when they were moving freely and easily without dystonia, 

excessive rigidity or tremor. All participants gave their informed consent 

according to the Declaration of Helsinki (1964), before entering the study. 

The experimental procedures were approved by the local ethics committee. 

Details of participants are shown in Table 7. 
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Table 7 Details of PD participants. 

 

 Sex Age 
(Yr) 

Weig
ht 
(Kg) 

Heig
ht 
(cm) 

Leg 
lengt
h 
(cm) 

Dise
ase  
Dura
tion 
 (yr) 

H&Y UPD
RS 
III 

MMS
E 

More 
sym
ptom
atic 
or 
onse
t side 

Medication 

1 M 45 84 170 87.5 7 2 30 30 L 

Levodopa/Carbidopa 
750/187.5, Entacapone 
1000, Pramipexole 2.1, 
Rasagiline 1 

2 M 85 69 180 90.1 16 3 58 27 R Levodopa/Carbidopa 
600/150, Entacapone 800 

3 M 42 87 175 92 2 1.5 18 28 L Levodopa/Carbidopa 
200/50, Entacapone 200 

4 F 67 51 151 80.5 4 1.5 21 29 L Levodopa/Benserazide 
250/50, Rasagiline 1 

5 F 51 62 160 88 10 2 21 29 I 
Levodopa/Carbidopa 
800/400, Pramipexole 3.15, 
Amantadine 300 

6 M 67 81 174 91 8 1.5 9 30 L 
Levodopa/Carbidopa 
450/112.5, Entacapone 600, 
Pramipexole 3.6 

7 F 45 64 171 93 7 1.5 21 30 L Levodopa/Carbidopa 
150/25, Trihexyphenidyl 2 

8 M 60 85 165 82 5 1.5 23 30 R Levodopa/Benserazide 
175/43.75, Pramipexole 2.1 

9 M 36 86 168 90 4 1 9 29 R 
Levodopa/Carbidopa 
150/37.5 Entacapone 600, 
Rotigotine 4, Rasagiline 1 

10 M 59 75 170 83.5 2 1.5 32 30 R Rasagiline 1, Pramipexole 1 

11 M 56 75 173 90 3 2.5 26 30 L Levodopa/Carbidopa 350/75 
Rasagiline 1, Rotigotine 8 

12 F 67 67 147 74 3 1.5 18 29 R Rasagiline 1 

13 F 49 73 150 77.5 8 1.5 12 26 R Levodopa/Carbidopa 
500/125 Pramipexole 1 

14 F 62 76 160 85 10 1.5 12 30 L 
Levodopa/Benserazide 
900/225, Ropinirole 16, 
Rasigiline 1 

15 M 59 75 165 91.1 9 2 16 27 R 
Levodopa/Carbidopa 
300/75, Rasagiline 1, 
Ropinirole 6 

Mean  56.67 74.00 154.18 86.35 6.53 1.68 21.23 28.93   
DS  12.48 10.13 43.32 5.73 3.86 0.46 12.20 1.33   

Yr, years; M, male; F, female; R, right; L, left. 
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Study protocol 

All participants performed three sessions, one familiarization session 

with the treadmill and two experimental sessions corresponding to the two 

walking conditions: overground walking and treadmill walking. The 

experimental sessions were arranged in random order and separated by a 

period of one week. A summary of the protocol is shown in Figure 7. 

 

 

Figure 7 Scheme of an experimental session of Study II.  
Walking protocol consisted of 4 blocks (5 minutes per block) of either treadmill or 
overground walking, with 3 minutes of rest between blocks. 

 

Spinal measurements, gait overground test performance and 

corticospinal measurements were recorded, in that order, before (pre) and 

after (post) each walking condition. Spinal measurements were tested first, 

to exclude the possibility that the post-measurements of the gait overground 

test may mask possible spinal modulations. Corticospinal parameters were 

measured at the end, to ensure that the post-measurements of the gait 

overground test took place at least 10 minutes after each of the walking 

conditions (Bello et al., 2008). The self-selected gait speed obtained during 

the first gait overground test, was used for the subsequent walking 

conditions.  

The treadmill walking condition consisted of four 5-minutes blocks of 

treadmill walking with a 3-minutes rest period between blocks. During the 

first minute of each block, the belt speed was increased to the overground 
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self-selected, preferred speed. All the participants walked on the treadmill 

holding the handrails since some participants did not feel safe to walk without 

the handrail support. The subjects walked on a motorized treadmill (SporsArt 

6300, Sports Arts Fitness) under the close supervision of a physical therapist.  

The overground condition consisted of four 5-minutes blocks of 

overground walking with a 3-minutes rest period between blocks. The 

overground walking session was conducted in an indoor facility. PD 

participants had to walk forming a square marked with cones (20x20m). The 

walking direction was alternated in each block, either clockwise or counter-

clockwise. The walking speed was monitored during the session, in order to 

confirm that each patient maintained the overground walking speed obtained 

at the beginning of the experimental session. 

Outcome measures 

The gait overground test 

Gait performance was recorded overground using an optical detection 

system (Optogait, Microgait, USA), after a familiarization trial. Participants 

were recorded walking up and down an 8 meters walkway at their self-

selected comfortable speed, for a total time of 2 minutes. The gait parameters 

were recorded during the straight walking portion, but not during the turns.  

The following gait variables were evaluated: speed (m/s), stride length 

(m), stride frequency (Hz), CV of the stride length (%) and of the stride 

frequency (%). CV is an indicator of variability, where CV = (standard 

deviation/ mean) x100. 

Neurophysiologic measurements  

Spinal and corticospinal recordings were performed at rest before and 

after each walking condition. Subjects were seated comfortably in a reclining 

armchair; with the feet resting on a foot support so that the hips were flexed 

at a 120 degrees, the knees semi-flexed at 160 degrees, and the ankles were 

positioned at 110 degrees of a plantar flexion. 
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Electromyographic (EMG) was recorded by a pair of adhesive surface 

electrodes 2-cm apart (bipolar), placed over the SOL and Tibial Anterior 

muscles bellies, according to SENIAM recommendations (Hermens et al., 

2000). Muscles from the more symptomatic side of the PD patients were 

recorded. The reference electrode was placed over the medial malleolus bone 

surface. The recording sites were shaved, abraded and cleaned with isopropyl 

alcohol to obtain low impedance (Z, 5kΩ). The EMG signals were 

simultaneously digitized using an acquisition car at a sampling rate of 5kHz 

per channel (Digitimer D360, Welwyn Garden City, UK), and then recorded 

using a Signal script software (Cambridge Electronic Devices, Cambridge, UK).  

Hmax/Mmax ratio 

Transcutaneous electrical stimulation of the posterior tibial nerve was 

used to elicit the H-reflex in the SOL muscle using a Digitimer stimulator 

(model DS7, Welwyn Garden City, UK). The optimum site of nerve stimulation 

was first located using a hand-held electrode. The cathode (2 cm diameter 

brass hemisphere) was placed on the popliteal fossa and the anode (5 cm2) 

above the patella. The adhesive electrodes were fixed with an elastic strap. 

The stimulus that was used was a rectangular pulse with a duration of 1 ms. 

The maximum H-reflex response (Hmax) and the maximum M amplitude 

(Mmax) were recorded. 

Reciprocal Ia-inhibition 

To evaluate the reciprocal Ia-inhibition from the TA to the SOL muscles, 

the size of the SOL control H-reflex was adjusted to Hmax/2 (Crone, 1990) 

and to 20- 25% of the Mmax, and kept constant throughout the experiment. 

The conditioning stimulus was applied to the common peroneal nerve through 

bipolar electrodes placed at the neck of the fibula. Rectangular pulses of 1 

ms duration were used. The conditioning stimulus was adjusted to the Tibialis 

Anterior (TA) motor threshold intensity. Special care was taken to ensure a 

pure TA contraction (Meunier et al., 2000b). The conditioning–test 

interstimulus interval was determined using 0.5 ms steps until the maximum 

reciprocal Ia-inhibition of SOL H-reflex response was reached, and this value 

was then kept constant throughout the experiment. Ten unconditioned and 
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ten conditioned reflexes were recorded. Mean as well as standard error of the 

mean (SEM) values are reported. The amount of inhibition was defined as: 

[(mean control H value – mean conditioned H value)/mean control H value)] 

×100. 

Corticospinal measurements 

The following measures, elicited by TMS, were recorded: the motor 

evoked potential (MEP), SICI and ICF of the TA muscle. TMS was delivered 

using a double cone coil connected to a Magstim 200 magnetic stimulator 

(Magstim, Dyfed, United Kingdom). The optimal scalp location was 

determined by placing the coil over the inter hemispheric scissura and by 

moving it around until the hotspot that was contralateral to the most affected 

side, was located. We determined the resting motor threshold (RMT) in 

accordance with the International Guidelines (Rossini et al., 1994): the 

nearest 1% of the maximum stimulator output was defined as the minimum 

stimulus intensity required to produce MEPs of >50 µV in at least 5 of 10 

consecutive trials. In the paired-pulse TMS recordings, a subthreshold 

conditioning stimulus was delivered at 80% of the RMT, following a 

suprathreshold test stimulus intensity set at 130% of the RMT. Based on 

results observed by Vacherot et al. (2010), SICI was elicited at an 

interstimulus interval of 3 ms, whereas ICF was elicited at an interstimulus 

interval of 15 ms (Vacherot et al., 2010a). A total of 10 tests, 10 SICIs and 

10 ICFs stimuli were randomly delivered and recorded in a single block 

(Kujirai et al., 1993). SICI and ICF amplitudes were expressed as the 

percentage of the mean amplitude of the unconditioned MEP.  

Statistical analysis 

To explore the changes in walking performance and of the 

neurophysiological parameters before and after each walking condition, a 

two-way ANOVA, with “condition” (treadmill and overground) and “time” (pre 

and post) as the main factors, was performed for each of the following 

variables: gait speed, stride length, stride frequency, CV of stride length and 

CV of stride frequency, Hmax/Mmax ratio, Reciprocal Ia-inhibition, MEP, ICF 

and SICI. 
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Post Hoc t-tests were computed. Variables did not violate assumption 

of normality, except for the SICI and ICF variables. The analyses of these 

variables were conducted using logarithmic transformation values. All 

statistical analyses were performed using PASW Statistics 18. A P value ≤ 0, 

05 was considered statistically significant. 

4.2.4 Results 

The gait overground test 

The results of the gait parameters are shown in Table 8. 

Table 8 Mean and standard deviations of gait variables before, and after a 
single session intervention. 

 

 TREADMILL OVERGROUND 

 PRE POST PRE POST 

Gait speed 
(m/s) 1.17±0.26 1.25±0.24 1.21±0.19 1.20±0.22 

Stride length 
(m) 1.23±0.19 1.29±0.18 1.26±0.17 1.23±0.16 

Stride 
frequency 
(Hz) 

0.94±0.09 0.95±0.09 0.95±0.07 0.97±0.09 

CV of stride 
length (%) 4.52±2.01 3.94±1.78 4.30±1.78 4.22±2.29 

CV of stride 
frequency 
(%) 

3.08±1.41 2.84±1.06 2.90±1.32 2.85±1.47 

PRE, pretest; POST, postest; CV, coefficient of variation. 

 

The analysis of the overground gait speed showed a significant 

condition×time interaction (F=6.981, p=0.019) without significant main 

effects for condition and time. Post hoc analysis showed that gait speed was 

faster for post-treadmill compared with pre-treadmill (p=0.001). No 

significant gait speed changes were found for the pre vs. post-overground 

condition (Figure 8). 
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The analysis of the stride length also showed a significant 

condition×time interaction (F=4.94, p=0.043) without significant main 

effects for condition and time. Post hoc analysis showed that the stride length 

was larger post-treadmill compared with pre-treadmill (p=0.007). No 

significant changes were found for the overground condition (Figure 8). The 

analysis for the remaining gait parameters did not show significant main 

effects or interactions (Figure 8). 
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Figure 8 Results of walking performance. 

PRE, pretest; POST, postest; #, (p<0.005). 
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Neurophysiological measurements 

The analysis of the Hmax/Mmax ratio revealed a significant main effect 

for time (F=23.308, p<0.001), without a significant main effect for condition 

nor a significant condition×time interaction. The Hmax/Mmax ratio was lower 

after than before the two walking conditions (Figure 9). No significant main 

effects or interactions were found for the reciprocal Ia-inhibition. 

The analysis of the absolute MEP amplitudes for single TMS pulses did 

not show significant main effects nor a significant interaction. The analysis of 

ICF values showed a significant main effect for time (F=7.053, p=0.019), 

without a significant effect of condition or a condition×time interaction. ICF 

values decreased after, compared with before, the two walking conditions 

(Figure 9). No significant main effects or interactions were found for 

measurements of SICI (Figure 9). 
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Figure 9 Results of spinal and cortical excitability.  

PRE, pretest; POST, postest; ICF, intracortical facilitation; *, significant main effect 
(p<0.005). 
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4.2.5 Discussion 

The current study demonstrated that a single session of treadmill 

walking, but not of overground walking, lead to immediate gait improvements 

in PD patients. However, the spinal and corticospinal modulations that were 

observed in our study were not specific to the therapeutic effect of treadmill 

walking.  

Our study showed that PD participants increased their overground gaits 

peed and stride length after, compared to before, a 20 minutes session of 

treadmill walking. Previous findings have reported similar improvements in 

PD gait after a single session of treadmill walking (Miyai et al., 2000; Bello et 

al., 2008; Kurtais et al., 2008). For instance, overground gait speed, stride 

length and double stance duration have been shown to improve after a single 

session of treadmill walking with weight support. However, none of these 

studies have compared a single session of treadmill walking with a single 

session of overground walking. To our knowledge the current study is the 

first to show that 20 minutes of overground walking does not improve gait in 

PD. Therefore, our results suggest a specific therapeutic effect of treadmill 

walking in PD subjects.  

The current investigation showed that the changes in the 

neurophysiological parameters were comparable across the two walking 

conditions, i.e. treadmill and overground walking. We found that ICF values 

decreased after both walking interventions in PD patients. Thus, the observed 

ICF reduction was not specific to the treadmill, but instead as a result of the 

walking movement itself. The ICF of the lower limb areas has not been 

investigated extensively in PD, and to date only one study has reported ICF 

impairments in the TA muscle (Vacherot et al., 2010). In this study PD 

patients manifested an abnormal reduced ICF that correlated with the 

observed shortened stride length and reduced gait velocity. However, it is 

difficult to compare the results of this study with our current findings since, 

unlike our study, ICF values were measured before any walking activity was 

performed and half of the patients manifested freezing of gait (Vacherot et 
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al., 2010b). Our findings suggest that ICF is not a mechanism underlying the 

gait improvement associated with treadmill walking in PD. 

The current study showed that the SICI values did not change after a 

single session of treadmill and overground walking. SICI has been shown to 

be mediated by cortical GABAa activity (Werhahn et al., 1999; Ziemann et al., 

1996) and can be modulated by a short period of motor skill training involving 

ankle muscles (Perez et al., 2004). Several studies have suggested that gait 

improvements associated with treadmill walking may be related to motor 

learning mechanisms, since the improvements are sustained for several 

months after the treadmill training has been completed (Protas et al., 2005; 

Herman et al., 2007; Fisher et al., 2008b). However, our SICI findings 

suggest that it is unlikely that the gait improvements, observed after a single 

session of treadmill walking, are related to the acquisition of a motor skill. 

In addition, we observed spinal modulations after both the treadmill 

and walking sessions as indicated by a reduction of the Hmax/Mmax ratio 

values. However, we did not observe any significant changes in the reciprocal 

Ia-inhibition. A previous study showed that the SOL Hmax/Mmax ratio and 

the recruitment curve of H-reflex at rest are similar in PD and control subjects 

(Dietrichson, 1971). However, several other studies have suggested that this 

reflex has a role in the gait impairments that are observed in PD (Hiraoka et 

al., 2005; Hiraoka et al., 2006; Pierantozzi et al., 2008). There is some 

evidence to suggest that the depression of the SOL H-reflexes can occur after 

different training tasks such as a single training session of cycling (Meunier 

et al., 2007), balance (Freyler et al., 2014), and co-contraction (Perez et al., 

2007) in healthy adults. Thus, it is likely that the depression of the 

Hmax/Mmax ratio observed in the present study may be due to the actual 

walking activity. Our findings suggest that both the H-reflex and the 

reciprocal Ia-inhibition are not involved in the gait improvements associated 

with a single session of treadmill walking in PD. Further studies are needed 

to elucidate the neural mechanisms involved in treadmill walking 

improvements in PD, perhaps using other neurophysiologic parameters. 
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4.3 STUDY III: Treadmill walking combined with anodal 

tDCS in Parkinson's Disease: kinematic and 

neurophysiological effects. 

4.3.1 Abstract 

The use of treadmill as a gait rehabilitation tool and advances in NIBS has 

provided novel and low-risk options for treatment of gait impairments in PD. 

We tested the hypothesis that combining treadmill walking with tDCS 

enhances the gait improvements associated with treadmill walking in PD 

subjects. We explored the effects of these combined methodologies on spinal 

and corticospinal parameters. Eighteen PD participants were evaluated in 

separate sessions under three treadmill walking conditions: treadmill walking 

alone (treadmill), treadmill walking combined with anodal tDCS 

(AtDCS+treadmill), and treadmill walking combined with sham tDCS 

(StDCS+treadmill). Overground walking performance, the SOL H-reflex, 

Reciprocal Ia-Inhibition from the TA to the SOL muscle, ICF and SICI of the 

TA muscle, were measured before and after each treadmill condition. The SOL 

H-reflex and walking performance on the treadmill were also evaluated. All 

treadmill conditions improved walking performance and modulated spinal and 

corticospinal parameters in a similar way. However, AtDCS+treadmill lead to 

a different modulation of Reciprocal Ia-Inhibition from the TA muscle to the 

SOL in comparison with the other treadmill conditions. Although, a single 

session combining treadmill walking and anodal tDCS did not enhance the 

improvements of gait parameters associated with treadmill walking in PD, the 

specific modulation of the Reciprocal Ia-Inhibition point out to an interaction 

of the effects of these tools. Further studies are needed to explore the 

functional significance of this interaction. 
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4.3.2 Introduction 

Gait disturbances are among the most significant impairments in PD that 

severely affect the individual's QoL (Keus et al., 2009). PD gait is 

characterized by a particular difficulty with the internal regulation of stride 

length. This is often accompanied by a reduced gait speed, and an increase 

of the double support phase and stride variability (Ebersbach et al., 2013).  

Gait disturbances in PD may be linked with the degeneration of the PPN 

of the MLR (Grabli et al., 2013), coupled with bidirectional disruptions of 

signals to the BG (Mena-Segovia et al., 2004). However, neurophysiological 

features associated with parkinsonian gait have been not been investigated 

extensively. Findings suggest that PD subjects show an inhibited SOL H-reflex 

during gait initiation (Hiraoka et al., 2006). This H-reflex inhibition is removed 

after deep brain stimulation of the PPN (Pierantozzi et al., 2008), suggesting 

a role of this reflex in the gait impairments in PD. In addition, abnormalities 

in ICF detected by TMS may also be involved in the shortened stride length 

and reduced gait speed that are observed in PD patients (Vacherot et al., 

2010a). 

Although, dopaminergic therapies ameliorate many of the parkinsonian 

symptoms especially in the early stages of the disease, as the disease 

progresses, effectivity of pharmacological therapy is diminished 

(Katzenschlager & Lees, 2002). Therefore, treatment of gait symptoms 

continues to be a challenge. As a result, a significant number of rehabilitation 

strategies have been explored in order to improve the gait in this population 

(Tomlinson, 2012). The use of treadmill as a gait rehabilitation tool and 

advances in NIBS has provided novel and low-risk options for treatment of 

gait impairments in PD. 

Several studies have shown that treadmill training leads to improvements 

of gait parameters in people with PD, such as enlarged stride length, 

increased gait speed, decreased double support and reduced gait variability 

(Miyai et al., 2000; Kurtais et al., 2008; Fisher, 2008; Bello, 2013). These 

improvements could even occur after one single treadmill walking session in 

PD (Bello et al., 2008) and may be related with the gait modulation that takes 
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place when the patients walk on the treadmill. Treadmill walking has been 

shown to be associated with longer stride length and a more stable gait 

pattern in PD patients,  compared with overground walking at an identical 

speed (Frenkel-Toledo et al., 2005; Fernández-Lago et al., 2015). 

TDCS is a NIBS technique that consists of delivering weak currents 

through a pair of electrodes placed on the scalp, with the capability to 

modulate corticomotor excitability (Nitsche et al., 2008) and spinal reflexes 

such as reciprocal Ia-inhibition in healthy people (Roche et al., 2012). In PD, 

tDCS application over motor cortex produced a polarity-dependent effect on 

corticospinal motor excitability that seemed to correlate with motor function 

enhancements (Fregni et al., 2006). Anodal tDCS over motor cortex resulted 

in modest improvements of gait function in PD subjects (Benninger et al., 

2010). In addition, the combination of anodal tDCS and physical training 

seems to be more efficient than the application of tDCS alone (Kaski et al., 

2014). Therefore, combining treadmill walking with tDCS may be an effective 

strategy for enhancing the therapeutic effects of treadmill walking in PD 

patients. 

The aim of the current study was to explore the effects of a single session 

of anodal tDCS during treadmill walking on gait parameters in PD. In addition, 

we recorded spinal and corticospinalparameters in order to investigate the 

possible neural mechanisms involved in the effects of the combined therapy. 

Our hypothesis was that anodal tDCS will enhance the effect of treadmill 

walking on gait parameters in PD. 

4.3.3 Material and methods 

Participants 

Eighteen individuals diagnosed with idiopathic PD by a neurologist, 

according to the United Kingdom Bank Criteria (Hughes et al., 1992) were 

recruited for the study from a local community. Inclusion criteria for 

participants were: diagnosis of idiopathic PD, the ability to walk for 10 

minutes without stopping or walking assistance, absence of neurologic 

disorders other than PD, not being treated with deep brain stimulation, and 
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absence of orthopaedic, cardiovascular or visual disturbances that could 

affect the gait. No participant showed dementia as assessed by the MMSE. 

The severity of the motor signs associated with PD was measured using the 

UPDRS-III (Fahn et al., 1987) and H&Y scale (Hoehn, 1967). Tests were 

conducted with the patients in the “ON” state (45 minutes – 1.5 hours after 

medication intake) when they were moving freely and easily without dystonia, 

excessive rigidity or tremor. All participants gave their informed consent 

according to the Declaration of Helsinki (1964) before entering the study and 

the protocol were approved by the local ethics committee. Details of 

participants are shown on Table 9. 
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Table 9 Details of participants. 

 Sex Age 
(Yr) 

Wei
ght 
(Kg) 

Heig
ht 
(cm) 

Leg 
len
gth 
(cm
) 

Dise
ase  
Dur
atio
n 
 (yr) 

H&Y UPD
RS 
III 

MM
SE 

Bod
y 
side  
mor
e 
affe
cted 

Medication 

1 M 59 74 165 83.5 5 1.5 24 29 R Levodopa/Carbidopa 600/150, 
Rasagiline 1, Rotigotine 14 

2 M 63 79 166 82 6 1.5 13 29 R Pramipexole 3.15, 
Levodopa/Carbidopa 100/25, 
Rasagiline 1 

3 M 45 84 170 87.5 7 2 30 30 L Levodopa/Carbidopa 750/187.5, 
Entacapone 1000, Pramipexole 2.1, 
Rasagiline 1 

4 M 85 69 180 90.1 16 3 58 27 R Levodopa/Carbidopa 600/150, 
Entacapone 800 

5 M 42 87 175 92 2 1.5 18 28 L Levodopa/Carbidopa 200/50, 
Entacapone 200 

6 F 67 51 151 80.5 4 1.5 21 29 L Levodopa/Benserazide 250/50, 
Rasagiline 1 

7 F 51 62 160 88 10 2 21 29 I Levodopa/Carbidopa 800/400, 
Pramipexole 3.15, Amantadine 300 

8 M 67 81 174 91 8 1.5 9 30 L Levodopa/Carbidopa 450/112.5, 
Entacapone 600, Pramipexole 3.6 

9 F 45 64 171 93 7 1.5 21 30 L Levodopa/Carbidopa 150/25, 
Trihexyphenidyl 2 

10 M 60 85 165 82 5 1.5 23 30 R Levodopa/Benserazide 175/43.75, 
Pramipexole 2.1 

11 M 36 86 1.68 90 4 1 9 29 R Levodopa/Carbidopa 150/37.5 
Entacapone 600, Rotigotine 4, 
Rasagiline 1 

12 M 59 75 170 83.5 2 1.5 32 30 R Rasagiline 1, Pramipexole 1 
13 M 56 75 173 90 3 2.5 26 30 L Levodopa/Carbidopa 350/75 

Rasagiline 1, Rotigotine 8 
14 F 67 67 147 74 3 1.5 18 29 R Rasagiline 1 
15 F 49 73 150 77.5 8 1.5 12 26 R Levodopa/Carbidopa 500/125 

Pramipexole 1 
16 F 62 76 160 85 10 1.5 12 30 L Levodopa/Benserazide 900/225, 

Ropinirole 16, Rasigiline 1 
17 M 59 75 165 91.1 9 2 16 27 R Levodopa/Carbidopa 300/75, 

Rasagiline 1, Ropinirole 6 
18 F 48 56 1.68 91.5 2 1.5 18 27 L Levodopa/Benserazide 100/25, 

Ropirinole 16 
Mean  56.67 73.28 146.96 86.23 6.17 1.65 21.17 28.83   
DS  11.63 10.23 53.60 5.49 3.65 0.42 11.31 1.29   
Yr, years; M, male; F, female; R, right; L, left. 
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Study protocol 

All participants performed four sessions, one familiarization session with 

the treadmill and tDCS, and three experimental sessions corresponding to 

three treadmill walking conditions: treadmill walking alone (treadmill), 

treadmill walking combined with anodal transcranial direct current stimulation 

(AtDCS+treadmill), and treadmill walking combined with sham stimulation 

(StDCS+treadmill). The experimental sessions were arranged in random 

order and separated by a period of one week. 

A description of the experimental procedure is summarized in Figure 10. 

Spinal, walking overground performance and corticospinalmeasurements 

were recorded, in that order, before (pre) and after (post) the treadmill 

walking conditions. Cortical measurements were tested at the end, since it 

has been shown that the maximum increase in cortical excitability occurs 15 

minutes post-AtDCS stimulation (López-Alonso et al., 2015). The individual 

velocity obtained during overground walking at the beginning of each 

experimental session was used for the subsequent treadmill walking 

conditions. Subjects walked on a motorized treadmill (SporsArt 6300, Sports 

Arts Fitness) under the close supervision of a physical therapist. 

The treadmill conditions consisted on four 5 minutes blocks (T1–T4) of 

treadmill walking holding the handrails with a rest period between blocks of 

3 minutes. In all treadmill blocks, during the first minute, the belt speed was 

progressively increased to the overground speed.  

The AtDCS+treadmill condition was the same as the treadmill condition 

but was combined with a 20 minutes session of anodal tDCS stimulation. 

Anodal tDCS was delivered at 2 mA through a pair of saline-soaked sponge 

surface electrodes (3.5 cm2) connected to a DC stimulator (neuroConn, 

Germany). The active electrode (anode) was placed over the motor cortex 

and positioned in the hotspot of the TA muscle contralateral to the most 

affected body side. This area was localized using a TMS procedure. The 

cathode was placed contralateral to the anode, over the supraorbital region. 

The stimulator was turned on at the first rest period. Subjects received a 

continuous 20 minutes anodal tDCS stimulation session (during the 
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corresponding blocks and rest periods). The current was faded in and faded 

out for 8 seconds. 

The StDCS+treadmill condition was identical to the AtDCS+treadmill 

condition except that the current of the anodal tDCS was switched off after 8 

seconds of stimulation. 

Walking performance and H-reflex amplitudes were evaluated during each 

treadmill walking condition (during block T3 at 3 and 4 minutes for walking 

performance and H-reflex, respectively). 

 

Figure 10 Scheme of one experimental session od Study III.  

 

 

PRE, overground pre-treadmill; DURING, tests during treadmill walking; POST, 
overground post-treadmill. Treadmill walking protocol consists of 4 blocks (5 minutes 
per block) of treadmill walking (T1, T2, T3, T4) and 3 periods of 3 minutes of rest 
between blocks (R). Hatched part of the scheme represents 20 minutes of brain 
stimulation (ANODAL tDCS). 
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Outcome measurements 

Walking performance 

Gait performance was recorded overground and on the treadmill using an 

optical detection system (Optogait, Microgait, USA). Overground gait was 

evaluated after a familiarization trial. Participants walked up and down an 8 

meters walkway, for a total time of 2 minutes, at a self-selected comfortable 

speed. The gait parameters were recorded during the straight walking portion 

and not when the subjects were turning. 

The following variables of gait were evaluated: speed (m/s), stride length 

(m), stride frequency (Hz), CV of the stride length (%) and of the stride 

frequency (%). CV is an indicator of variability, where CV = (standard 

deviation/ mean) x100. 

Neurophysiologic measurements  

EMG: A pair of adhesive surface electrodes 2-cm apart (bipolar) were 

placed over the muscle bellies of the SOL and TA muscles (on the 

symptomatic side). The reference electrode was placed over the medial 

malleolus bone surface. EMG signals were amplified and filtered with a 

bandwidth frequency ranging from 10 Hz to 1 kHz. The EMG signals were 

recorded at a sampling rate of 5 kHz per channel (Digitimer D360, Welwyn 

Garden City, UK). 

Spinal and corticospinalmeasurements were obtained at rest position 

before and after each treadmill walking condition. Subjects were comfortably 

seated in a reclining armchair; with the hips and the knees semi-flexed at 

120 degrees and 160 degrees, respectively, and the ankles at 110 degrees 

plantar flexion with the feet resting on a foot support. Subjects remained in 

this position during the recordings, ensuring that there was no voluntary 

activity or excessive tremor. 

Hmax/Mmax ratio: Transcutaneous electrical stimulation of the posterior 

tibial nerve was used to elicit the SOL H-reflex using a Digitimer stimulator 

(model DS7, Welwyn Garden City, UK). The optimum site of nerve stimulation 

was located using a hand-held electrode. The cathode (2 cm diameter brass 
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hemisphere) was placed in the popliteal fossa and the anode (5 cm2) above 

the patella. These adhesive electrodes were fixed with an elastic strap. The 

stimulus used was a rectangular pulse of 1 ms duration. The Hmax and the 

Mmax were recorded. 

Reciprocal Ia-inhibition: To record reciprocal Ia-inhibition from the TA to 

the SOL muscle, the size of the SOL control H-reflexes was adjusted to 

Hmax/2 and to the 20-25% of Mmax, and kept constant throughout the 

experiment (Crone et al., 1990). The conditioning stimulus of the common 

peroneal nerve was elicited through bipolar electrodes at the neck of the 

fibulae. Rectangular pulses of 1 ms at TA motor threshold intensity were used. 

Special care was taken to ensure a pure TA muscle contraction without any 

peroneal muscle contraction (Meunier et al., 1993). The conditioning–test 

interstimulus interval was determined using 0.5 ms steps until the maximum 

reflex response was reached and this value was then kept constant 

throughout the experiment. Ten unconditioned and 10 conditioned reflexes 

were recorded in randomized order. The amount of inhibition was defined as: 

[(mean control H amplitude – mean conditioned H amplitude)/mean control 

H amplitude)] ×100. 

H-reflex amplitude during walking: The SOL H-reflex was evoked by 

stimulation of the posterior tibial nerve. Test stimuli were 1 ms rectangular 

pulses delivered every 5 s. The H-reflexes during walking were elicited in 2 

cycle phases: in the middle of the stance phase and in the middle of the swing 

phase. To determine the electric stimulus in the stance and swing phases, 

the latency between the stride marker and the stimulus was adjusted to each 

stride cycle. The beginning of a stride cycle was defined as the time when a 

stride marker, placed on the heel of the shoe, makes contact with the ground. 

To acquire H-reflexes evoked by the same stimulus intensity at each phase 

of the step cycle, the corresponding M-waves were used as indicators of the 

effective stimulus strength. The peak-to-peak amplitude of M-wave between 

25% of Mmax was used to check the stability of stimulation conditions within 

the given phase of step cycle (Capaday & Stein, 1986). Mmax amplitude was 

measured during rest with the patients in a standing position. H-reflexes were 

elicited after 2 minutes of treadmill walking (T3). The amplitude of 10-H reflex 

was averaged in each step phase.  



88 | S T U D Y  3 :  T D C S  c o m b i n e d  w i t h  T r e a d m i l l  
 

 

Corticospinal measurements: MEP, SICI and ICF of the TA muscle elicited 

by TMS were recorded. A double cone coil connected to a Magstim 200 

magnetic stimulator (Magstim, Dyfed, United Kingdom) was used. The coil 

was placed over inter hemispheric scissura and moved around until the 

hotspot of the TA muscle, contralateral to the affected side, was localized. 

RMT was determined to the nearest 1% of the maximum stimulator output 

and defined as the minimum stimulus intensity required to produce MEPs of 

>50 µV in at least 5 of 10 consecutive trials (Rossini et al., 1994). In the 

paired-pulse TMS recordings, a subthreshold conditioning stimulus was 

delivered at 80% of the RMT, following a suprathreshold test stimulus 

intensity set at 130% of the RMT. SICI and ICF were elicited at an 

interstimulus intervals of 3 ms and 15 ms, respectively (Vacherot et al., 

2010a). A total of 10 tests, 10 SICIs and 10 ICFs stimuli were randomly 

delivered and recorded in one single block (Kujirai et al., 1993). SICI and ICF 

amplitudes were expressed as a percentage of the mean amplitude of the 

unconditioned MEP.  

Statistical analysis 

To compare the gait pattern between overground pre-treadmill walking 

and the treadmill walking conditions, three-way ANOVAs with “treadmill 

condition” (AtDCS+treadmill, StDCS+treadmill and treadmill) and “time” (pre 

and during) as main factors were performed for the following variables: stride 

length, stride frequency, CV of stride length and CV of stride frequency.  

To explore the changes in overground gait and of the neurophysiological 

parameters before and after each treadmill walking condition, three-way 

ANOVAs, with “treadmill condition” (AtDCS+treadmill, StDCS+treadmill and 

treadmill) and "time" (pre and post) as main factors, were used for the 

following variables: speed, stride length, stride frequency, CV of stride length 

and CV of stride frequency, Hmax/Mmax ratio, reciprocal Ia-inhibition, MEP, 

ICF and SICI. 

To analyse the modulation of the H-reflex amplitudes of the gait phases 

during the treadmill walking conditions, a three-way ANOVA, with “treadmill 
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condition” (AtDCS+treadmill, StDCS+treadmill and treadmill) and “phase” 

(stance and swing) as main factors was conducted. 

Post Hoc t-tests were computed when required. Variables did not violate 

assumption of normality, except for SICI and ICF. Therefore, analyses of 

these variables were conducted on logarithmic transformation values. All 

statistical analyses were performed using PASW Statistics 18. A P value ≤ 0, 

05 was considered statistically significant. 

4.3.4 Results 

Pre-treadmill overground walking vs. Treadmill walking 

Results of gait parameters are shown in Table 10.  

Table 10 Results of gait parameters. 

    

 AtDCS+Treadmill StDCS+treadmill Treadmill 

 PRE DU POST PRE DU POST PRE DU POST 

Gait 
speed 
(m/s) 

1.18±
0.21  1.24±

0.21 
1.17±
0.25  1.21±

0.26 
1.16±
0.25  1.23±

0.23 

Stride 
length 
(m) 

1.24±
0.16 

1.28±
0.18 

1.29±
0.16 

1.24±
0.19 

1.27±
0.21 

1.27±
0.19 

1.23±
0.18 

1.29±
0.21 

1.29±
0.17 

Stride 
frequency 
(Hz) 

0.95±
0.08 

0.90±
0.18 

0.96±
0.09 

0.94±
0.1 

0.90±
0.09 

0.94±
0.1 

0.94±
0.09 

0.88±
0.12 

0.94±
0.08 

CV of 
stride 
length 
(%) 

4.35±
2.21 

2.16±
1.41 

4.17±
2.33 

4.1±1.
76 

2.51±
1.42 

4.60±
2.93 

4.37±
1.91 

3.69±
5.95 

3.90±
1.69 

CV of 
stride 
frequency 
(%) 

2.78±
1.19 

1.96±
2.13 

2.65±
1.09 

2.71±
0.78 

1.74±
1.27 

3.07±
1.42 

2.99±
1.31 

2.85±
5.66 

2.83±
0.97 

PRE, pretests; DU, tests during treadmill walking; POST, postests; CV, coeffiecient 
of variation. 

 

  



90 | S T U D Y  3 :  T D C S  c o m b i n e d  w i t h  T r e a d m i l l  
 

 

The analysis of the stride length showed a significant main effect for time 

(F=16.211, p=0.001), without a significant treadmill condition effect or a 

condition×time interaction. The stride length was longer during the treadmill 

conditions compared with pre-treadmill overground walking (Figure 11). For 

the stride frequency, the analysis showed a significant main effect for time 

(F=9.538, p=0.007). However, there was no significant effect for treadmill 

condition nor any significant interactions. Stride frequency decreased during 

all treadmill walking conditions compared with pre-treadmill overground 

walking (Figure 11). The ANOVA for CV of stride length showed a significant 

main effect for time (F=5.693, p=0.034), without a significant effect for 

treadmill condition, nor any significant interactions. The CV of stride length 

was smaller during all treadmill walking conditions in comparison with pre-

treadmill walking (Figure 11). No significant main effects or interactions were 

found for CV of stride frequency. 
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Figure 11 Results of walking performance before and during treadmill 
walking conditions.  

PRE, overground pre-treadmill; DURING, during treadmill walking; *, significant main 
effect (p<0.005). 
 

Overground gait pre-treadmill vs. post-treadmill 

The analysis of the gait speed showed a significant main effect for time 

(F=11.524, p=0.003), without significant effect for treadmill condition or a 

significant condition×time interaction. Overground gait speed was greater 

post-treadmill compared with pre-treadmill walking (Figure 12). For the stride 

length, the analysis showed a significant main effect for time (F=16.211, 

p=0.001), without a significant treadmill condition effect or a condition×time 

interaction. PD participants walked with a longer stride length post-treadmill 

compared with pre-treadmill walking (Figure 12). The analysis for the 

remaining gait parameters did not show significant main effects or 

interactions (Figure 12). 
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Figure 12 Results of walking performance before and after treadmill walking 
conditions.  

PRE, overground pre-treadmill; POST, overground post-treadmill; *, significant main 
effect (p<0.005). 

 

Neurophysiological measurements 

The analysis of the Hmax/Mmax ratio revealed a significant main effect 

for time (F=25.451, p<0.001), without a significant effect of treadmill 

condition nor a significant interaction. The Hmax/Mmax ratio was lower post-

treadmill compared with pre-treadmill walking (Figure 13A). 

For the reciprocal Ia-inhibition, the ANOVA showed a significant 

condition×time interaction (F=4.429, p=0.02). However, there were no 

significant main effects for treadmill condition and time. Post hoc analysis 

showed that the reciprocal Ia-inhibition significantly decreased after the 

StDCS+treadmill (p=0.019) and treadmill (p=0.048) conditions compared 

with pre-treadmill walking. No significant reciprocal Ia-inhibition changes 

were found pre vs post the AtDCS+treadmill condition (Figure 13B). 
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The analysis of the absolute MEP amplitudes for single TMS pulses did not 

show significant main effects nor a significant interaction. The analysis of the 

ICF showed a significant main effect for time (F=7.506, p=0.016), without a 

significant effect for the treadmill condition or a condition×time interaction. 

ICF values decreased post-treadmill compared with pre-treadmill walking 

(Figure 13C). The analysis of the SICI revealed a significant main effect for 

time (F=6.446, p=0.024), without a significant treadmill condition effect nor 

any significant interactions. The SICI increased post-treadmill compared with 

pre-treadmill walking (Figure 13D). 

The analysis of the H-reflex amplitude during treadmill walking showed a 

significant main effect for phase (F=83.824; p<0.001), without a significant 

effect for treadmill condition or a significant interaction. Greater H-reflex 

amplitudes were observed during the stance phase compared with the swing 

phase across treadmill walking conditions (Figure 13E). 
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Figure 13 Results of neurophysiological measurements.  

A-D: Spinal and cortical measurements at rest. E: H-reflex during treadmill walking. 
PRE, overground pre-treadmill; POST, overground post-treadmill; SICI, 
intracorticalinhibition; ICF, intracortical facilitation; Stance, stance phase; Swing, 
swing phase; *, significant main effect (p<0.005); #, significanton post hoc test 
(p<0.005). 



C h a p t e r  4  S t u d i e s  | 95 
 

 

4.3.5 Discussion 

The current study demonstrated that a single session of treadmill walking 

combined with anodal tDCS did not enhance the effects of treadmill walking 

on gait parameters in PD. Concurrently, the application of anodal tDCS to the 

leg motor cortex during treadmill walking modulated the reciprocal Ia-

inhibition reflex in the patients. As far as we are aware, this is the first 

randomised, sham controlled study that evaluated gait and neurophysiologic 

effects of treadmill walking combined with anodal tDCS in PD.  

The current investigation showed that PD participants increased their 

overground gait speed and stride length after 20 minutes of three different 

treadmill walking conditions: treadmill, AtDCS+treadmill and 

StDCS+treadmill. These results reinforce previous findings showing 

immediate improvements in gait speed, stride length and double stance 

support time during overground walking, following a single session of 

treadmill walking, in PD patients (Miyai et al., 2000; Bello et al., 2008; Kurtais 

et al., 2008). Moreover, the PD participants in our study walked with longer 

stride length, reduced stride frequency and reduced gait variability (CV of 

stride length) during the three treadmill walking conditions, compared with 

overground walking at the same speed. Only two studies have investigated 

differences between treadmill and overground walking, showing that people 

with PD walked with a more stable pattern over the treadmill (Frenkel-Toledo 

et al., 2005; Bello et al., 2008). Therefore, our data support the evidence 

that during and after treadmill walking, people with PD improve their gait 

performance. 

Our results showed that the combination of treadmill walking with anodal 

tDCS stimulation did not lead to enhanced improvements in PD gait 

(compared with those observed with treadmill walking alone or with sham 

tDCS stimulation). This finding does not support our initial hypothesis that 

the combination of both techniques could be a more efficient strategy 

compared with the single use of a treadmill device. Given the novelty of this 

approach and thus, the lack of similar studies, we can only speculate as to 

the explanation for this finding. Several studies have reported that motor 

training programs with anodal tDCS lead to significantly greater 
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improvements in motor function compared with motor training alone, in 

healthy, stroke and PD subjects (Filmer et al., 2014; Kaski et al., 2014; 

Márquez et al., 2015). Therefore, it is possible that more sessions would be 

needed in order to obtain an additive effect of the tDCS stimulation on 

treadmill walking. In addition, several factors related with the tDCS technique 

could have influenced the current results, such as the electrode 

configuration/location and the inter-individual variability demonstrated in 

response to tDCS (Van Asseldonk, 2015). 

In addition to the improvements in gait parameters, changes in 

neurophysiological parameters were, with the exception of the reciprocal Ia-

inhibition, comparable across treadmill conditions. 

All treadmill conditions lead to SICI increases and ICF decreases in the TA 

muscle in comparison with values recorded before the treadmill interventions. 

The increase in SICI suggests that the mechanisms involved in intracortical 

inhibition are also involved in the gait improvements associated with treadmill 

walking. Improvements in PD gait together with an increase in intracortical 

inhibition of the first digital interosseous muscle have been reported following 

a high intensity treadmill training program (Fisher, 2008). The authors 

interpreted these changes as a normalization of cortical excitability since SICI 

is abnormally reduced in PD (Valls-Solé & Valldeoriola, 2002). Although, they 

related this increment to the intensity of the exercise, it may also have been 

due to the treadmill walking itself. The decrease in ICF after treadmill walking 

that we observed is difficult to interpret since a previous study found that ICF 

reductions in the TA muscle correlated with stride length and velocity 

impairments in PD (Vacherot et al., 2010a). However, half of the PD subjects 

included in that study manifested freezing of gait episodes, which reflect a 

more severe gait impairment than that observed in the participants of the 

current study. It is possible that the severity of the disease may affect 

intracortical facilitation mechanisms and could thus account for the 

contrasting findings. Further studies are needed to explore the relationship 

between ICF and gait parameters in PD. 

We found that the H-reflex modulations were similar across the three 

treadmill conditions. During all treadmill walking conditions H-reflex 
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amplitudes were larger in the stance phase compared to the swing phase. In 

addition, values of the SOL muscle Hmax/Mmax ratio at rest were lower post-

treadmill compared with pre-treadmill walking. The modulation that we 

observed in PD patients during walking is similar to that reported in healthy 

subjects (Capaday & Stein, 1986). This is in line with previous findings 

showing that the recruitment curve and the Hmax/Mmax ratio at rest in PD 

patients are not significantly different from normal subjects (Dietrichson, 

1971; Krassoievitch and Tissot, 1971). However, our study is the first study 

that has recorded the H-reflex during treadmill walking. Our findings suggest 

that the contribution of this reflex pathway to treadmill walking is not 

impaired in PD.  

The reciprocal Ia-inhibition from the TA muscle to the SOL muscle 

decreased after treadmill walking alone and after treadmill walking combined 

with sham tDCS, compared with pre-treadmill walking. This reduction may 

indicate abnormalities of the spinal interneuron activity in PD that are related 

to a dysfunction in the descending reticulospinal tract, directly influencing Ia 

and Ib spinal interneurons (Delwaide et al., 2000). For instance, Meunier and 

colleagues (2000) found a reduction of the reciprocal Ia-inhibition from the 

TA to the SOL muscle at the onset of a voluntary ankle dorsiflexion, which 

correlated with axial signs in PD patients (Meunier et al., 2000a). 

Interestingly, in our study treadmill walking in combination with anodal tDCS 

did not induce a reduction in this reflex. This specific effect may result from 

an interaction between anodal tDCS and treadmill walking since anodal tDCS 

by itself, applied to the leg motor cortex, decreases reciprocal Ia-inhibition 

from the TA to the SOL muscle (Roche et al., 2011). However, since the 

combination of treadmill and anodal tDCS did not lead to enhanced 

improvements in walking compared with the other conditions, the functional 

meaning of this reflex modulation remains unknown. Rather than being 

controversial, we view such puzzling finding as a motivation to keep exploring 

the combination of treadmill and anodal tDCS in futures studies. 
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There are several limitations in this thesis that must be addressed. 

 The severity of PD symptoms in participants was moderate. Gait 

improvements as a result of treadmill training have been shown to be 

more marked in the advanced stages when compared with subjects 

with moderate PD (Bello et al., 2008). Moreover, it has been reported 

that anodal tDCS combined with physical training gives enhanced gait 

improvements in advanced PD patients (Kaski et al., 2014). There may 

be a ceiling effect of gait improvements and of neural effects in 

moderate PD patients. Thus, it would be important to replicate the 

studies included in this thesis in more advanced PD patients. 

 PD patients were tested only in the “on” state. “On” medication may 

have impacted cognitive and gait performance, since it is known that 

dual-task walking deficits are improved by anti-Parkinson medications 

(Lord et al., 2011). In addition, the effects of combined AtDCS 

stimulation and treadmill walking may not be applicable to patients in 

the “off” state. However, from a rehabilitation point of view, it is more 

informative to explore this in the “on” state, rather than in the “off” 

state.  

 In studies 2 and 3 control subjects were not included, since one of the 

main goals of this study was to compare neurophysiological 

parameters in PD patients across different walking conditions, rather 

than with healthy subjects. However, future studies including control 

subjects are warranted in order to determine whether the spinal and 

cortical modulations that are associated with treadmill, overground 

walking and treadmill combined with tDCS, are specific to PD. 

 Several neurophysiological parameters (i.e. SICI and ICF) were 

obtained at rest rather than during walking. However, it was thought 

that these parameters would be functionally more informative if 

recorded during movement rather than at rest, as it would have been 

a methodological challenge to do so while the patients were walking on 

the treadmill.  



 

 

 

 



 

 

 

 

CHAPTER 6.  
CONCLUSIONS 

 



 

 

 

 



C o n c l u s i o n s  | 105 
 

 

 Attentional resources do not influence the gait improvements observed 

in individuals with PD during treadmill walking.  

 The improvements of gait in PD patients during treadmill walking are 

independent of attentional demands to the task of walking. 

 The belt displacement and constant speed are the main underlying 

mechanisms of treadmill walking improvements in PD subjects. 

 A single session of treadmill walking, but not of overground walking, 

led to gait improvements in PD patients, suggesting a specific 

therapeutic effect of treadmill walking in PD subjects. 

 The measurements of spinal and cortical modulations included in this 

thesis, such as monosynaptic stretch reflex and reciprocal inhibition 

reflex, as well as SICI and ICF, are not associated with the specific 

therapeutic effect of treadmill walking in PD patients. 

 The modulation of the H-reflex in PD patients during treadmill walking 

is similar to that reported in healthy subjects, thus the contribution of 

this reflex pathway to treadmill walking is not impaired in PD. 

 A single session of treadmill walking combined with anodal tDCS 

stimulation of the primary motor cortex does not enhance the 

improvements of gait parameters associated with treadmill walking in 

PD subjects. 

 The combination of both techniques resulted in a specific modulation 

of the reciprocal Ia-inhibition from the TA to the SOL muscle. Further 

studies are needed to explore the functional significance of this 

interaction. 
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8.1 Resumen 

La enfermedad de Parkinson (EP) es una enfermedad neurodegenerativa, 

caracterizada por un conjunto de síntomas motores y no motores. Los 

trastornos de la marcha se consideran entre los síntomas motores más 

incapacitantes que afectan severamente a la calidad de vida de los pacientes 

con EP. 

En las últimas décadas, el tapiz rodante ha sido explorado como una 

herramienta que mejora la marcha de los pacientes con EP. Varias semanas 

de entrenamiento en tapiz rodante condujeron a mejoras en varios 

parámetros cinemáticos, tales como un aumento de la longitud de zancada y 

la velocidad de la marcha, como también una menor variabilidad temporal de 

la marcha (Bello, 2013, Nadeau Et al., 2014, Tseng et al., 2015). Un estudio 

reciente mostró que las  mejoras de la marcha perduraron incluso 6 meses 

después del entrenamiento en tapiz rodante (Nadeau et al., 2014). Además 

de estos efectos a largo plazo, también se han reportado mejoras inmediatas 

después de una sola sesión de tapiz rodante en la EP (Bello et al., 2008). 

Conocer los mecanismos subyacentes a estas mejoras, ayudará a aumentar 

la eficacia y la prescripción de la fisioterapia en la EP. Sin embargo, a pesar 

de la creciente evidencia que vincula la marcha a la función cognitiva, todavía 

no sabemos el papel de la atención como mecanismo subyacente a las 

mejoras de la marcha asociadas al tapiz rodante en la EP. De la misma 

manera, no se han explorado los posibles mecanismos neurofisiológicos 

asociados. 

Por otro lado, se ha explorado recientemente la estimulación transcraneal 

de corriente continua directa (tDCS), una modalidad de estimulación cerebral 

no invasiva, para mejorar la marcha en la EP, ofreciendo una herramienta 

prometedora para potenciar la eficacia de las estrategias de rehabilitación, 

además de mejorar nuestra comprensión de la fisiopatología en la EP. Sin 

embargo, todavía no ha investigado la combinación de tDCS con el tapiz 

rodante en la EP. 
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Por lo tanto, pese a la literatura existente en torno al uso del tapiz rodante 

en la rehabilitación de la marcha en la EP, algunas cuestiones de interés 

siguen sin resolverse: 

1) ¿Las demandas atencionales son un mecanismo subyacente a las 

mejoras de la marcha asociadas al uso del tapiz rondante en la EP? 

2) ¿Cuál es el coste cognitivo de la marcha en el tapiz rodante y en el suelo 

bajo la condición de doble tarea en la EP? 

3) ¿Podría una sesión de tapiz rodante conducir a mejoras en la marcha en 

pacientes con EP en comparación con una sesión de marcha sobre el suelo? 

4) ¿Cuáles son los mecanismos neurales que subyacen a las mejoras de la 

marcha relacionadas con el tapiz rondate en individuos con EP? 

5) ¿Cuáles son los efectos de la combinación de la tDCS y el tapiz rodante 

sobre la marcha de personas con EP? 

6) ¿Cuáles son los efectos neurofisiológicos de la combinación de la tDCS 

y el tapiz rodante en personas con de EP? 

Para responder a estas preguntas se han llevado a cabo tres estudios. Las 

preguntas 1 y 2 se abordarán en el primer estudio. Las preguntas 3 y 4 se 

abordarán en el segundo estudio. Las preguntas 5 y 6 se abordarán en el 

tercer estudio. 
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8.2 Estudio 1: Patrón de la marcha y rendimiento cognitivo 

durante la marcha en tapiz rodante en la EP 

El objetivo del primer estudio fue explorar si las demandas atencionales 

están involucradas en las mejoras de la marcha en pacientes con EP cuando 

caminan en un tapiz rodante.  

Para ello se contó con una muestra de 19 individuos con EP idiopático y 

19 controles sanos. Los participantes caminaron sobre un tapiz rodante y 

sobre el suelo bajo las condiciones de tarea simple (caminar solamente) y 

doble tarea (DT) (caminar realizando una tarea cognitiva simultánea). El 

paradigma de la DT se utilizó para evaluar a la influencia de la atención sobre 

la marcha. La tarea cognitiva utilizada fue el "paradigma del monitoreo de 

fonemas". Éste consistió en contar las veces que se repetían dos palabras, 

especificadas previamente, en un texto que se escuchaba a través de unos 

auriculares.  

Se midieron la velocidad, la longitud de zancada, la frecuencia de zancada, 

el CV de la longitud de zancada y el CV de la frecuencia de zancada. También 

se evaluó el rendimiento cognitivo, medido en función del porcentaje de 

errores cometidos en la tarea cognitiva. Nuestra hipótesis inicial fue que el 

desempeño de una tarea cognitiva durante la marcha en tapiz rodante 

conduciría a un deterioro en una o ambas de las tareas en los individuos con 

EP. En cuanto al análisis estadístico se utilizó una ANOVA de medidas 

repetidas de tres factores y comparaciones post hoc, para las variables de la 

marcha. Se utilizó la prueba de rango de Wilcoxon y la prueba de Mann-

Whitney para la variable de no paramétrica del rendimiento cognitivo. 

Los resultados revelaron que el grupo con EP caminó con una menor 

variabilidad temporal y espacial de la marcha sobre el tapiz rodante en 

comparación con el suelo. Sin embargo, esta reducción de la variabilidad no 

se deterioró durante la DT. Por otra parte, no hubo diferencias en el 

rendimiento cognitivo entre el tapiz y el suelo (TablaA1). 
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Tabla A1. Media, desviación típica y resultados de la ANOVA de las variables 
de la marcha. 

A. Variables de la marcha en los grupos EP y control.  

 EP CONTROL 

 Suelo Tapizl Suelo Tapiz 

 ST DT ST DT ST DT ST DT 

Velocidad 
(m/s) 

1.07 ± 
0.23 

1.01 ± 
0.24 

1.07 ± 
0.23 

1.07 ± 
0.23 

1.33 ± 
0.20 

1.25 ± 
0.22 

1.33 ± 
0.20 

1.33 ± 
0.20 

Longitud de 
zancada 
(m) 

1.18 ± 
0.20 

1.13 ± 
0.20 

1.20 ± 
0.23 

1.19 ± 
0.24 

1.35 ± 
0.17 

1.31 ± 
0.17 

1.34 ± 
0.18 

1.36 ± 
0.16 

Frecuencia 
de zancada 
(Hz) 

0.90 ± 
0.07 

0.93 ± 
0.15 

0.90 ± 
0.07 

0.93 ± 
0.09 

0.98 ± 
0.07 

0.95 ± 
0.09 

1.00 ± 
0.09 

0.98 ± 
0.08 

CV de la 
longitud de 
zancada 
(%) 

4.27 ± 
2.52 

4.63 ± 
2.44 

1.73 ± 
0.93 

1.54 ± 
0.76 

2.65 ± 
1.00 

3.35 ± 
1.41 

1.56 ± 
0.84 

1.56 ± 
0.83 

CV de la 
frecuencia 
de zancada 
(%) 

2.60 ± 
0.80 

2.96 ± 
0.94 

1.90 ± 
1.12 

1.88 ± 
1.07 

1.84 ± 
0.53 

2.37 ± 
0.91 

2.91 ± 
1.97 

2.80 ± 
2.01 

Los valores son media ± SD.  EP, Enfermedad de Parkinson; ST, Tarea simple; DT, doble 
tarea; CV, Coeficiente de Variación. 

B. Resultados de la ANOVA de las variables de la marcha. 

 Superficie Tarea Grupo 
Superficie
× 
Tarea 

Surperfici
e× 
Grupo 

Tarea× 
Grupo 

Superficie
× 
Tarea× 
Grupo 

Velocidad 
(m/s) __ F=46.76 

P<0.001 
F=12.03 
P=0.001 __ __ NS NS 

Logitud de 
zancada (m) 

F=8.00 
P=0.008 

F=21.32 
P<0.001 

F=6.73 
P=0.01 

F= 29.77 
P<0.001 NS NS NS 

Frecuencia 
de zancada 
(Hz) 

NS NS F=7.37 
P=0.01 NS NS NS NS 

CV de la 
longitud de 
zancada (%) 

F=73.35 
P<0.001 NS F=4.11 

P=0.05 
F=5.72 
P=0.02 

F=7.67 
P=0.009 NS NS 

CV de la 
frecuencia de 
zancada (%) 

NS NS NS F=4.65 
P=0.04 

F=11.71 
P=0.002 NS NS 

CV, Coeficiente de Variación; NS, No significativo. 
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Por lo tanto, los resultados de este estudio mostraron que durante la 

marcha en el tapiz rodante, los individuos con EP redujeron su variabilidad 

de la marcha. Redujeron tanto la variabilidad temporal, de acuerdo con 

estudios previos, como espacial, siendo este el primer estudio que lo indica. 

Por lo tanto, el presente trabajo extiende los beneficios del tapiz rodante en 

la EP. 

Además, las mejoras de la marcha observadas no se deterioraron con el 

desempeño de una tarea cognitiva concurrente. Y, por otra parte, el 

rendimiento cognitivo no mostró diferencias estadísticas entre la el tapiz y 

suelo. Lo que sugiere que las mejoras la marcha observadas en este estudio 

en personas con EP no se deben únicamente a los mecanismos atencionales. 
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8.3 Estudio 2: Efectos cinemáticos y neurofisiológicos 

inmediatos de la marcha sobre el tapiz rodante y en 

suelo en la EP 

El uso del tapiz rodante como una herramienta de rehabilitación de la 

marcha ha proporcionado nuevas opciones para el tratamiento de los 

desórdenes de la marcha en la EP. Sin embargo, los mecanismos neuronales 

subyacentes a estos efectos terapéuticos en la EP siguen siendo 

desconocidos.  

El objetivo del segundo estudio fue examinar los efectos inmediatos a 

corto plazo de una sola sesión de marcha en tapiz y de una sesión de marcha 

en suelo sobre los parámetros espinales y corticales en la EP.  

Quince participantes con EP idiopático se evaluaron bajo estas dos 

condiciones de marcha, en sesiones separadas: marcha en tapiz rodante y 

marcha en suelo. Se realizaron las siguientes mediciones antes y después de 

cada condición: se evaluó la cinemática de la marcha en el suelo, el reflejo H 

de músculo sóleo, el reflejo de inhibición recíproca-Ia del músculo tibial al 

músculo sóleo, la facilitación intracortical (ICF) y la inhibición intracortical 

(SICI) del músculo tibial (Figura A1). En cuanto al Análisis estadístico se 

utilizó una ANOVA de medidas repetidas y comparaciones post hoc. 

 

 

Figura 1A. Esquema de una sesión experimental del estudio II.. 

El protocolo de la marcha consistió en 4 bloques (5 minutos por bloque) de narcha 
en tapiz y marcha en suelo, con tres minutos de descanso entre bloques. 
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Se observó que la velocidad de la marcha aumentó significativamente 

después de la sesión tapiz y no después de la sesión suelo. Lo mismo ocurrió 

con la longitud de zancada, que fue significativamente mayor después de que 

los participantes caminaran en el tapiz, pero no después de que caminasen 

en suelo. El resto de las variables de la marcha no mostraron diferencias 

significativas. Por otra parte, en cuanto a las variables neurofisiológicas, el 

reflejo H del sóleo, expresado como el ratio entre la onda H máxima de la 

respuesta motora refleja y la máxima onda M, de la respuesta de las 

motoneuronas alfa estimuladas directamente, disminuyó significativamente 

después de ambas sesiones. Lo mismo ha ocurrido con la ICF, cuyos valores 

fueron menores después de la sesión tapiz y de la sesión suelo. Mientras que 

la SICI y el reflejo de inhibición recíproca-Ia, no mostraron diferencias 

significativas. 

Según nuestro conocimiento, el estudio actual es el primero en demostrar 

que 20 minutos de marcha en suelo no produce mejoras en la marcha en los 

sujetos con EP, sugiriendo un efecto terapéutico inmediato específico del tapiz 

rodante en la EP. Sin embargo, ambas condiciones de marcha modulaban los 

parámetros espinales y corticales de una manera similar. Al no haber 

diferencias entre las superficies, estos hallazgos sugieren que los cambios 

observados tanto el reflejo H como la facilitación intracortical, se deben al 

simple hecho de caminar y no están relacionados con las mejoras de la 

marcha asociadas a una sesión de tapiz rodante en la EP. 

Por lo tanto, este estudio proporciona evidencia de un efecto terapéutico 

específico de una sola sesión de marcha en tapiz rodante en la EP, siendo 

necesarios más estudios para explorar otros posibles mecanismos 

neuronales. 
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8.4 Estudio 3: La marcha en tapiz rodante en combinación 

con la tDCS en la EP: Un estudio piloto de los efectos 

cinemáticos y neurofisiológicos 

El uso del tapiz rodante como una herramienta de rehabilitación de la 

marcha y los avances en la estimulación cerebral no invasiva han 

proporcionado opciones nuevas y de bajo riesgo para el tratamiento de los 

desórdenes de la marcha en la EP. 

En el presente estudio se ha investigado si la tDCS en combinación con el 

tapiz rodante potencia las mejoras en la marcha asociadas a caminar sobre 

este dispositivo en la EP. Se exploraron los efectos de la terapia combinada 

en los parámetros cinemáticos de la marcha y en los neurofisiológicos, tanto 

espinales como corticales.  

Se evaluaron 18 participantes con EP idiopático en sesiones separadas, 

bajo tres condiciones de marcha en tapiz: marcha en tapiz rodante solamente 

(tapiz), marcha en tapiz rodante combinada con tDCS anódica (AtDCS + 

tapiz) y marcha en tapiz rodante con tDCS simulada (stDCS + tapiz rodante). 

Se midió la cinemática de la marcha en suelo, el reflejo H del SOL, el reflejo 

de inhibición recíproca-Ia del músculo TA al SOL, la ICF y SICI del músculo 

TA. También se evaluó el reflejo H del SOL y la cinemática de la marcha sobre 

el tapiz rodante. En cuanto al análisis estadístico se utilizó una ANOVA de 

medidas repetidas y comparaciones post hoc. 

En cuanto a los resultados de la cinemática de la marcha, se observó que 

la longitud de zancada aumentó significativamente durante la marcha en 

tapiz, en comparación con la marcha previa en suelo, sin distinción entre las 

sesiones. Mientras que el CV de la longitud de zancada disminuyó durante la 

marcha en tapiz en comparación con la marcha en suelo medida previamente, 

para todas las sesiones.  

Por otra parte, se observó que la longitud de zancada y la velocidad de la 

marcha aumentaron significativamente después de las sesiones para todas 

las condiciones.   
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Por lo tanto, estos datos apoyan la evidencia de que durante y después 

de una sesión sobre el tapiz rodante, las personas con EP mejoran el 

rendimiento de su marcha. Sin embargo, la combinación de marcha en tapiz 

rodante y tDCS anodal no condujo a unas mejoras mayores. 

En cuanto a los parámetros neurofisiológicos, observamos que la ICF 

disminuyó significativamente después de todas las sesiones en comparación 

con antes, mientras que el SICI aumentó significativamente después de todas 

las sesiones en comparación con antes. El reflejo H, expresado como el ratio 

entre la onda H máxima y la onda M máxima, disminuyó significativamente 

después en comparación con antes, de nuevo sin distinción entre las 

sesiones. De nuevo, la excitabilidad del reflejo H durante la marcha en tapiz 

mostró un comportamiento similar entre las tres sesiones. Por lo tanto, todas 

las condiciones de marcha en tapiz mejoraron la cinemática de la marcha y 

modularon los parámetros espinales y corticales de manera similar 

Sin embrago, la inhibición recíproca del músculo TA al SOL disminuyó 

significativamente después de la sesión tDCS simulada y de la sesión tapiz 

solamente. Pero, curiosamente, la sesión combinada con tDCS anodal, no 

indujo una reducción en este reflejo. Este efecto específico puede ser el 

resultado de una interacción entre el tDCS anodal y la marcha en tapiz 

rodante.  

Por lo tanto, a pesar de que una sola sesión combinada de marcha en tapiz 

y tDCS anodal no potenció las mejoras de los parámetros de la marcha 

asociados con la marcha en tapiz en la EP, la modulación específica del refejo 

de Inhibición Recíproc-Ia apunta a una interacción de los efectos de estas 

herramientas. Se necesitan más estudios para explorar el significado 

funcional de esta interacción. 
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8.5 Conclusiones 

• Los recursos atencionales no influyen en las mejoras de la marcha 

observadas en los individuos con EP cuando caminan sobre un tapiz 

rodante. 

• Las mejoras de la marcha en pacientes con EP durante la caminata 

en tapiz rodante son independientes de la focalización de la 

atención sobre la tarea de caminar.  

• El desplazamiento de la banda rodante y la velocidad constante son 

los principales mecanismos subyacentes a las mejoras de la marcha 

asociadas al tapiz rodante en personas con EP. 

• Una sola sesión de marcha en tapiz rodante, pero no de marcha 

sobre el suelo, condujo a unas mejoras de la marcha en sujetos con 

EP, lo que sugiere un efecto terapéutico específico del tapiz en la 

EP. 

• Las medidas de las modulaciones espinales y corticales incluidas en 

esta tesis, como el reflejo de estiramiento monosináptico y reflejo 

de inhibición recíproca, así como SICI e ICF, no están asociadas con 

el efecto terapéutico específico de la marcha en tapiz rodante en 

pacientes con EP. 

• La modulación del reflejo H en los pacientes con EP durante la 

marcha en tapiz rodante es similar a la reportada en sujetos sanos, 

por lo que la contribución de esta vía refleja durante la marcha en 

el tapiz rodante no se ve afectada en la EP. 

• Una sola sesión de marcha en tapiz rodante combinada con la tDCS 

anodal aplicada sobre la corteza motora primaria no potencia las 

mejoras de los parámetros de la marcha asociados con la marcha 

en tapiz rodante en sujetos con EP. 

• La combinación de ambas técnicas resultó en una modulación 

específica del reflejo de inhibición recíproca Ia del músculo TA al 

músculo SOL. Se necesitan más estudios para explorar el 

significado funcional de esta interacción. 
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8.6 Limitaciones 

Hay varias limitaciones en esta tesis que deben ser abordadas. 

• La gravedad de los síntomas de la EP en los participantes fue 

moderada. Se ha demostrado que las mejoras en la marcha como 

resultado del entrenamiento en tapiz rodante son más marcadas en 

las etapas avanzadas en comparación con sujetos con EP moderada 

(Bello et al., 2008). Además, se ha informado de que la tDCS anodal 

combinado con el entrenamiento físico proporciona mejoras en la 

marcha en pacientes con EP avanzado (Kaski et al., 2014). Puede 

haber un efecto techo sobre las mejoras en la marcha y de los 

efectos neurales en pacientes con EP moderado. Por lo tanto, sería 

importante replicar los estudios incluidos en esta tesis en pacientes 

con EP avanzado. 

• Los pacientes de EP se sometieron a las pruebas sólo en estado 

"ON". La medicación puede haber influido en el rendimiento 

cognitivo y de la marcha, ya que se sabe que los desórdenes de la 

marcha durante la doble tarea se mejoran con los medicamentos 

antiparkinsonianos (Lord et al., 2011). Además, los efectos de la 

marcha en tapiz combinada con la tDCS de tipo anodal no pueden 

ser aplicables a pacientes en estado "OFF". Sin embargo, desde el 

punto de vista de la rehabilitación, es más informativo explorar esto 

en el estado "ON". 

• En los estudios 2 y 3 no se incluyeron los sujetos control, ya que 

uno de los principales objetivos fue comparar parámetros 

neurofisiológicos en pacientes con EP en diferentes condiciones de 

la marcha, en lugar de en sujetos sanos. Sin embargo, estudios 

futuros incluyendo sujetos controles sanos, están justificados para 

determinar si las modulaciones espinales y corticales son 

específicas para la EP. 

• Varios de los parámetros neurofisiológicos medidos 

(concretamente, SICI e ICF) se obtuvieron en reposo. A pesar de 

que se contempló que estos parámetros serían funcionalmente más 

informativos si se registraran durante el movimiento, supuso un 
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reto metodológico hacerlo mientras los pacientes estuvieran 

caminando sobre el tapiz rodante. 
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