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Decrypting Strong and Weak 
Single-Walled Carbon Nanotubes 
Interactions with Mitochondrial 
Voltage-Dependent Anion Channels 
Using Molecular Docking and 
Perturbation Theory
Michael González-Durruthy  1, Adriano V. Werhli  2, Vinicius Seus2, Karina S. Machado2, 
Alejandro Pazos3,4, Cristian R. Munteanu4, Humberto González-Díaz  5,6 & José M. 
Monserrat 1

The current molecular docking study provided the Free Energy of Binding (FEB) for the interaction 
(nanotoxicity) between VDAC mitochondrial channels of three species (VDAC1-Mus musculus, VDAC1-
Homo sapiens, VDAC2-Danio rerio) with SWCNT-H, SWCNT-OH, SWCNT-COOH carbon nanotubes. 
The general results showed that the FEB values were statistically more negative (p < 0.05) in the 
following order: (SWCNT-VDAC2-Danio rerio) > (SWCNT-VDAC1-Mus musculus) > (SWCNT-VDAC1-
Homo sapiens) > (ATP-VDAC). More negative FEB values for SWCNT-COOH and OH were found in 
VDAC2-Danio rerio when compared with VDAC1-Mus musculus and VDAC1-Homo sapiens (p < 0.05). 
In addition, a significant correlation (0.66 > r2 > 0.97) was observed between n-Hamada index and 
VDAC nanotoxicity (or FEB) for the zigzag topologies of SWCNT-COOH and SWCNT-OH. Predictive 
Nanoparticles-Quantitative-Structure Binding-Relationship models (nano-QSBR) for strong and 
weak SWCNT-VDAC docking interactions were performed using Perturbation Theory, regression 
and classification models. Thus, 405 SWCNT-VDAC interactions were predicted using a nano-PT-
QSBR classifications model with high accuracy, specificity, and sensitivity (73–98%) in training and 
validation series, and a maximum AUROC value of 0.978. In addition, the best regression model was 
obtained with Random Forest (R2 of 0.833, RMSE of 0.0844), suggesting an excellent potential to 
predict SWCNT-VDAC channel nanotoxicity. All study data are available at https://doi.org/10.6084/
m9.figshare.4802320.v2.

VDAC is the most abundant and highly conserved channel-protein in outer mitochondrial membrane of cells 
from all eukaryotic kingdoms including human (Homo sapiens). VDAC is the main communication route 
between this organelle and cytosol, generating the mitochondrial membrane potential, sucrose exchange, mito-
chondrial [Ca2+] dynamics and ATP-efflux between these two cellular compartments1–4. Besides, VDAC is an 
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essential component of the induced-structure of mitochondrial permeability transition pore (MPTP-VDAC), a 
multi-protein complex that is directly involved in mitochondrial dysfunction (apoptosis)5–9.

Carbon nanotubes (CNT) are nanomaterials considered for biomedical applications due to their flexi-
ble nature and versatility for chemical functionalization/oxidation (e.g. OH, COOH)10,11. More specifically, 
single-walled carbon nanotubes (SWCNT) have rapidly become one of the most widely studied nanomaterials, 
based on their unique physico-chemical properties that allow their potential use in new nanomedicine applica-
tions like pharmaceutical excipients for the design of several drug delivery systems10,11.

The VDAC channel inhibition by SWCNT could be an attractive therapeutic strategy to induce mitotoxic-
ity based on specific VDAC-modulation. Following this idea, the chemo-informatics tools based on Docking 
Simulation (DS)12 appears to be an efficient strategy for the potential nanotoxicity prediction and SWCNT envi-
ronmental impact. The use of Docking Simulation coupled to a Virtual Screening Framework (DS-VSF)12,13 is 
a powerful new platform for the rational design of a new SWCNT before its mass production, allowing for the 
computational interaction analysis of a large volume of SWCNT designs with key molecular targets14,15. Several 
in vitro studies have demonstrated that SWCNTs exert their cytotoxicity mechanism after their accumulation in 
the mitochondria matrix16,17.

In this context, chemoinformatics algorithms may be also very useful to predict carbon nanomate-
rial structure-activity relationships (QSAR models). Specifically, the term Quantitative Structure-Binding 
Relationships (QSBR) model is used for ligand-protein interactions. In the particular case of Nanoparticles we 
can talk about Nano-QSAR (NQSAR) or Nano-QSBR (NQSBR) models, by analogy. In general, these NQSAR/
NQSBR models use as input physico-chemical properties of nanoparticles (nanodescriptors) to predict their 
biological activity, toxicity, and/or target-binding affinity18–29. The main assumption of classic QSAR algorithms 
in general form is that the similar structures (ligands) have similar properties. Consequently, small structural 
changes (“perturbations”) should correlate linearly with small changes in the values of their properties biolog-
ical (endpoints). NQSAR/NQSBR models based on Perturbation Theory use as a first parameter the value of 
an exact solution to the problem. This first parameter represents a known value of biological property used as 
reference value (or an expected value of this endpoint). After that, the PT-NQSAR model add small correc-
tions (functions of nanodescriptors for one specific case) to predict a solution to a related problem18,30–32. In 
principle, there is a large variety of data analysis techniques that have proven to be effective in QSAR/QSBR 
modeling in general (including NQSAR and PT-NQSAR models). Examples of these techniques are: Linear 
Discriminant Analysis (LDA), Neural Networks (NN), Random Forest (RF), etc.33–38. Last, we should note that, 
NQSAR/NQSBR algorithms should have the ability of feature selection (FS) to exclude redundant nanodescrip-
tors before NQSAR model building39,40. Specifically, (n, m)-Hamada indices (related to SWCNT-chiral topol-
ogy and SWCNT-diameter) may become interesting candidates to input variables in NQSAR/NQSBR studies18. 
The electro-topological and constitutional SWCNT nanodescriptors for pristine SWCNT and oxidized SWCNT 
(SWCNT-OH, SWCNT-COOH), based on the information of SWCNT-periodic properties41–45, have not yet 
been considered from the perspective of NQSAR with respect to their relevant interactions with mitochondrial 
channels, such as voltage-dependent anion channel (VDAC).

In this context, the main objective of this study was to evaluate in silico interactions (or mitochondrial channel 
nanotoxicity) between pristine and oxidized SWCNT and VDAC from different species (VDAC1-Mus muscu-
lus, VDAC1-Homo sapiens, and VDAC2-Danio rerio) using DS-VSF Chemoinformatic tools. These models are 
expected to be able to predict the strength of SWCNT-interaction and to quantify the structural requirements of 
SWCNT family governing the strong or weak SWCNT-VDAC interactions. In this sense, after docking studies 
we developed a new PT-NQSBR model using as input SWCNT-structural properties (Hamada indices, etc.) and 
Free Energy of Binding (FEB values), obtained after DS to perform a PT-NQSBR model based on LDA tech-
nique. LDA was implemented because it allows explaining the linear relationship between the input variables 
(SWCNT-structural properties) and ‘nanotoxicological endpoint’ (FEB values). To verify potential errors in the 
linear relationship hypothesis on SWCNT nanodescriptors/VDAC channel nanotoxicity, new non-linear classifi-
cation and regression models were proposed. These non-linear PT-NQSBR models are based on machine learning 
algorithms implemented on Weka and RRegrs (R package)33–38. The present work could pave the way for the use 
of chemo-informatics tools based on SWCNT-ligand and mitotarget docking interactions for making regulatory 
decisions in Nanotoxicology, allowing the prediction of potential human health impact and environment risks.

Results and Discussion
Mechanistic interpretation of molecular docking results. The present work evaluated the relation-
ships between all the semi-empirical geometric and physico-chemical SWCNT-nanodescriptors inspired by their 
periodic properties41–46 and FEB values from the different SWCNT-VDAC complexes formed. Herein, FEB-mean 
values of the SWCNT-VDAC complexes were significantly negative (p < 0.05) when compared with FEB-mean 
values of the ATP-VDAC complexes, following a higher binding stability for SWCNT-VDAC complexes formed 
like FEB (SWCNT-VDAC2-Danio rerio complexes) > FEB (SWCNT-VDAC1-Mus musculus complexes) > FEB 
(SWCNT-VDAC1-Homo sapiens complexes) in all cases. Nevertheless, higher values of oxidized SWCNT 
interactions for FEB (SWCNT-COOH > SWCNT-OH) were found in VDAC2-Danio rerio when compared to 
VDAC1-Homo sapiens and VDAC1-Mus musculus (p < 0.05) (Fig. 1).

According to the evidence obtained by Hiller et al.47 the VDAC channel diameter of wall-to-wall is ~34–38 Å, 
the maximum dimension limits being those allowing SWCNT-interaction with the VDAC-binding active site. 
Indeed, the assayed SWCNT diameters oscillated from 2.35 to 12.21 Å in the DS and, in all cases, the length 
was 10 Å, meaning that under the in silico conditions employed here, there were no steric constraints for the 
SWCNT-VDAC interaction with the VDAC-catalytic site. However, in general, a high proximity of the SWCNT 
family members with the voltage-sensing N-terminal α segment was observed, which is interesting because 
it explains the toxicodynamic mechanisms based on SWCNT properties and interatomic distances to key 
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VDAC-functional and regulatory residues. The oxidized SWCNT-moieties (COO− and OH) could be relevant 
for electrostatic interactions with the VDAC hydrophobic binding active site formed by cationic residues (argi-
nine and lysine) closely involved in the each of the phases of mitochondrial ATP-transportation1. Moreover, the 
FEB docking results obtained for the electro-topological SWCNT-properties (diameter-chiral topology and func-
tionalization) and the VDAC-affinity relationship suggest that the Hamada index n is a valuable SWCNT nan-
odescriptor, able to predict the SWCNT-VDAC interactions in zigzag SWCNT topologies (n > 0; m = 0) based 
on the determination coefficient (R2). In this regard, a significant linear correlation (0.66 ≤ R2 ≤ 0.97; p < 0.05) 
was observed between n and FEB for all zigzag SWCNT topologies. However, theR2 between n and FEB varied 
for different CNT-types, following the order: SWCNT-COOH > SWCNT-OH > SWCNT (Fig. 2). Particularly, 
the affinity of zigzag SWCNT based on R2 takes high values according to VDAC-interspecies criteria following 
the order VDAC1-Mus musculus (0.78 ≤ R2 ≤ 0.96), VDAC2-Danio rerio (0.58 ≤ R2 ≤ 0.96) and VDAC1-Homo 
sapiens (0.66 ≤ R2 ≤ 0.75).

On the other hand, the m-Hamada index does not seem to be an important nanodescriptor of SWCNT-VDAC 
interactions, since a lack of significant correlation (p > 0.05) with the FEB values was observed for the three 
SWCNT-topologies (zigzag, armchair, and chiral), for all the SWCNT-functional groups (H, OH, and COOH) 
considered and considering the VDAC-channels from different species see Figshare48 (Fig. SM01).

VDAC-active binding site residues (Arg 15, Arg 163, Arg 218, Lys 12, Lys 20, Lys 109, Lys 113, Lys 115, Lys 
161, Lys174, Lys 256) that are involved in the ATP-transport have been shown to be fully-conserved in all the 
species considered (Fig. 3).

In this sense, a “common binding site substrate” can be proposed for ATP-VDAC interaction in the same 
biophysical environment to that where the SWCNT-family members were tested by DS with VDAC channel. 
This would support extrapolation criteria of the potential VDAC-nanotoxicity induced by SWCNT (SWCNT-H, 
SWCNT-OH, SWCNT-COOH) from any species assayed to other eukaryotic species not tested, independently 
of their phylogenetic location.

It is important to note that to avoid obtaining false positives on flexible-docking interactions 
(SWCNT-VDAC-channels) it was verified the absence of restricted-flexibility for each VDAC-residues from the 
three VDAC.pdb x-ray structures (PDB ID: 3EMN, 4BUM, and 2JK4) through Ramachandran plots. All the 
possible conformations of each VDAC-residue is defined by the torsion values of the dihedral angles (Psi) and 
(Phi) around the Calfa of the peptide-bond of the VDAC-residues and can be represented by Ramachandran plot. 
For this instance, allowed torsion values of Ψ (Psi) versus Φ (Phi) of a given VDAC-residue are found within the 
contour lines of the Ramachandran plot (Ramachandran favored). Otherwise, is considered as disallowed and 
the torsion values of dihedral angles Ψ (psi) versus Φ (phi) appear outside of the Ramachandran contour line 
(Ramachandran outliers). Note that the VDAC-active binding site residues (Arg15, Arg163, Arg218, Lys12, Lys20, 

Figure 1. Free energy binding (FEB, in kcal mol−1) of mitochondrial voltage-dependent anion channel 
(VDAC) with pristine, hydroxylated and carboxylated single-walled carbon nanotubes (SWCNT, SWCNT-OH 
and SWCNT-COOH, respectively). Each FEB-value is expressed in terms of the mean ±1 error standard 
(n = 14–93) from the different SWCNT-VDAC complexes evaluated. Equal letters indicate the absence of 
significant differences (p > 0.05) between the different single-walled carbon nanotubes. The dotted red line 
represents the average FEB value (−5.6 ± 1 Kcal/mol) determined for the adenosine triphosphate (ATP), a 
natural substrate of the VDAC channel from the three different species like VDAC1-Homo sapiens (PDB ID: 
2JK4, Resolution 4.1 Å), VDAC1-Mus musculus (PDB ID:3EMN, Resolution 2.3 Å), VDAC2-Danio rerio (PDB 
ID:4BUM, Resolution 2.8 Å) used as control. In all cases, the results were obtained using docking simulations 
(see Methods for details).

http://SM01
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Lys109, Lys113, Lys115, Lys161, Lys174, Lys256) of the VDAC-cavity domain of the voltage-sensing N-terminal 
α-helix and also for VDAC- phosphorylation binding site regulatory residues (Ser13, Ser43, Ser102, Ser104, 
Ser240, Ser57, Ser215, Tyr225) considered as flexible in the docking study were not identified as Ramachandran 
outliers49–51 (Fig. 4).

It should be pointed out that the identified Ramachandran outliers were not key residues for ATP-transport 
and phosphorylation (showed in Fig. 3)49–51.

In silico results for the Euclidean SWCNT-interatomic distance values (Å) relative to ATP-VDAC active bind-
ing site residues used R code letter for arginine (R15, R163, R218), K code letter for lysine (K12, K20, K109, K113, 
K115, K161, K174, K256) and E code letter for glutamate (E280). For most of the SWCNT analyzed, the inter 
atomic distances for the SWCNT-VDAC interaction with the amino acid residues cited above were very similar 
or, in some cases, lower than the interatomic distance of these residues for the ATP-VDAC interaction (Fig. 5).

Figure 2. Linear relationships between free energy binding (FEB, in kcal mol−1) and the n-Hamada index for 
zigzag single-walled carbon nanotubes (n > 0, m = 0) regarding the VDAC channels from different species 
(mouse: Mus musculus, zebrafish: Danio rerio, human: Homo sapiens). (a) Pristine carbon nanotubes (SWCNT), 
(b) hydroxylated carbon nanotubes (SWCNT-OH), (c) carboxylated carbon nanotubes (SWCNTs-COOH). For 
all relationships, the determination coefficient (R2) is included.
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Figure 3. Primary sequence alignment with the position of VDAC-active binding site residues for the 
ATP transport. The figure includes details of 3D VDAC alignment of amino acid residues known to be 
phosphorylated (in yellow) (REF) and of the ATP transport (light blue). Note the high homology for VDAC 
critical residues both for ATP transport and phosphorylation. The alignment was performed for the three 
analyzed species: VDAC1-Homo sapiens (HS), VDAC1-Mus musculus (MM) and VDAC2-Danio rerio (DR). 
Note that in the case of residue lysine (K161), it is replaced by the basic residue arginine (R) with a similar 
ability to that of ATP transport, and the regulatory residue serine (S57) is replaced by tyrosine (T57) with the 
same ability to be phosphorylated in VDAC2-D. rerio (light green).
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Figure 4. Representation of Ramachandran diagrams (general cases) (left) and spatial distribution of 
Ramachandran outliers in each VDAC.pdb x-ray structure analyzed (right). Figure shows the similar patterns 
of the VDAC geometry based on all the possible combinations of dihedral angles of torsion Ψ (Psi) versus Φ 
(Phi) of the each amino acid residues of VDAC of the different species analyzed: VDAC1-Homo sapiens PDB 
ID: 2JK4 resolution 4.1 Å (A); VDAC1-Mus musculus PDB ID:3EMN resolution 2.3 Å (B), and VDAC2-Danio 
rerio PDB ID:4BUM resolution 2.8 Å (C). The stereochemical spatial distribution of the Ramachandran outlier 
residues (marked in violet) in each VDAC.pdb x-ray structure analyzed (right) confirms that these residues do 
not belong to the ATP-VDAC active binding site of the VDAC pore domain of the voltage-sensing N-terminal 
α-helix on the polypeptide formed by the basic residues (Lys12, Lys20, Lys109, Lys113, Lys115, Lys161, Lys174, 
Lys256).
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The atoms-proximity (C, O, H atoms) for each SWCNT-type to key binding residue atoms of VDAC-channels 
(for the ATP-transport and VDAC-phosphorylation binding site residues) could offer relevant information about 
VDAC physiological function. Interatomic distances lower than 7 Å imply a high probability of interaction in 
terms of free energy of binding and low probability of obtaining false contacts52,53 (Fig. 6).

Considering the docking results the SWCNT-VDAC-interactions (VDAC-channel nanotoxicity) it should be 
reasonable to hypothesize that the deprotonated SWCNT-COO− moiety of SWCNT-COOH should disrupt the 
association of the ATP4− anion (phosphate tail) with the positively charged ε-amino group (N+ primary amines) 
of Arg15 or Lys residues (Lys12, Lys20) present at the bottom of the VDAC cavity in the three species studied by 
forming stable complexes of salt bridges.

Moreover, the presence of pristine SWCNT and oxidized SWCNT in the cavity of the VDAC pore could cause 
a partial or total narrowing in the VDAC-active site, and thus affect the VDAC conductance through weakness 
of the function of Lys256 and Glu280, which are associated with electrostatic stabilization of the ATP4− with 
Arg 15-(N+) during the ATP passage through formation of hydrogen bonds in the voltage-sensing N-terminal 
α-helical segment. Potential SWCNT-interactions (H-bond) with Arg15 and other important positive residues, 
such as Lys113 and Lys115 in the VDAC-binding active site, could alter the rate of ATP-dissociation from the 
helix. This happens when the adenosine ring is released and ATP passes to Lys12, Lys20, and Lys109 on the 
N-terminal α-helix segment via Lys174 on the β-barrel wall, which is considered a limiting step in the ATP-efflux 
when the Euclidean SWCNTi-VDACj interatomic distance dij ≤ 7Å52–54. It is important to note that interatomic 
distance values relative to VDAC-phosphorylation binding site residues (Ser13) associated to regulation of 
ATP-efflux in VDAC-pore exhibit values of dij ≤ 5 Å for all the SWCNT-types tested.

Phosphorylation is an important mechanism involved in mitochondrial signaling pathways9,55,56. Then, these 
potential biochemical events could explain the difference observed for FEB-values (of SWCNT-VDAC complexes 
formed) and could still be viewed as a friend or a foe depending on the toxicological condition considered57 
like the presence of zigzag SWCNT topologies with high n Hamada index. Besides, a recognized phenom-
enon of “edge effects”, which only appears in semiconducting zigzag SWCNT topologies, plays an important 
role in the mitochondrial channel nanotoxicity of zigzag SWCNTs18. The “edge effects” were not observed for 
metallic-armchair SWCNT, wherein the cycloparaphenylene aromatic system of the SWCNT-extremes were 
closed and without tips charge variation18,58.

Perturbation Theory Modeling and Mechanistic interpretation. Herein, a PT-NQSBR approach for 
the prediction of SWCNT-VDAC docking free energy of binding (FEB values) was applied. The output of the 
PT-NQSBR model is the scoring function f(FEB)query (or f(FEBij)calc) of the FEB value for the query SWCNT. The 

Figure 5. Radar plots showing the relative interatomic distances (scale: 0, 5, 10, 15, 20, 25, and 30 Å) of SWCNT 
family member (pristine-SWCNT, SWCNT-OH, SWCNT-COOH) with different n, m-Hamada index for the 
most negative FEB value results based on the final position after SWCNT-VDAC docking simulations for the 
three VDAC channels (HS: Homo sapiens; DR: Danio rerio; MM: Mus musculus). The amino acid residues of 
ATP-VDAC active binding site are marked with R for arginine (R15, R163, R218); K for lysine (K12, K20, K109, 
K113, K115, K161, K174, K256) and E for glutamate (E280). Red asterisks (*) show VDAC-phosphorylation 
binding site experimentally determined residues9: *S code for serine (*S13, *S43, *S102, *S104, *S240, *S57, 
*S215) and *Y code for tyrosine (*Y225). Radar plots show that the relative interatomic distances (Å) for 
SWCNT members with different geometric configurations such as armchair (blue line), zigzag (red line), chiral 
(orange line) and different types of SWCNT oxidation (OH, COOH) are similar and, in some cases, lower than 
ATP-relative interatomic distances (green line) used as control.
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scoring function f(FEBij)calc increases for higher values of probability of binding, with FEB < −5.6 kcal/mol as a 
cutoff value that represents the FEB value for the ATP-VDAC interaction calculated in this work (see Fig. 1). The 
best NQSBR model found is shown below, according the following equation (1):

χ

= . ⋅ + . ⋅

+ . ⋅ + . ⋅ − .

= = . < .

f FEB f FEB V

N p

( ) 0 044984 ( ) 0 124831
0 386548 V 0 004531 V 0 519378

405 206 47 0 005 (1)

ij calc ij ectedexp 01

11 14

total
2

This equation is able to discriminate between the SWCNTs that bind strongly to VDAC (FEB < −5.6 kcal/
mol) and those with a weak binding site (FEB ≥ −5.6 kcal/mol), only by including the FEB-expected value  
(f (FEBij)expected), n-Hamada index (V01), Ch-Chiral vector (V11), and the semi-empirical radial breathing mode 
VRBM (V14). This LDA model has values of accuracy, specificity, and sensitivity in the range of 73.0–94.7% for the 
training series, and in the range of 78.0–98.0% for the external validation series (Table 1).

These results obtained with the LDA-NQSBR model support the hypothesis of a linear relationship for the 
strength of SWCNT-VDAC interactions based on the input variables (SWCNT nanodescriptors) and the output 
variables f(FEBij)calc (Table 2).

However, both linear and non-linear Artificial Neural Networks (ANN) analyses were carried out to calculate 
the Receiver Operating Characteristic (ROC) curves and obtain more evidence to support the linear hypothesis 
of SWCNT-VDAC interactions. The ROC analysis may also contribute to discard more extreme alternatives, such 
as the non-linear hypothesis or the random classification59, due to the large number of SWCNT-nanodescriptors 
used. In fact, the ROC graph shows high values of the area under the ROC curve (AUROC) of ≈0.9 in training 

Figure 6. (A) Cartoon representation of the docking results in VDAC1-Mus musculus showing the calculated 
lower interatomic distances (dij cutoff value ≤ 7 Å) represented by yellow dashed lines for overlapping pristine-
SWCNT with different n,m-Hamada indexes such as SWCNT (7.7) (blue), SWCNT (9.0) (orange), SWCNT 
(9.7) (red) compared to ATP (natural substrate of VDAC) from the supercritical ATP-VDAC active binding 
site residues (Lys 20; Lys 12; Arg 15). (B) Supercritical VDAC phosphorylation binding site regulatory residue 
(Ser 13) located in the VDAC pore domain of the voltage-sensing N-terminal α-helix show the calculated lower 
interatomic distances (dij < 2 Å) for overlapping pristine-SWCNT with different n,m-Hamada indexes such as 
SWCNT (7.7) (blue), SWCNT (9.0) (orange), SWCNT (9.7) (red) compared to ATP. (C and D) The calculated 
lower interatomic distances (dij ≤ 5 Å) from the supercritical ATP-VDAC active binding site residues (Lys 20; 
Lys 12; Arg 15) and also from the phosphorylation regulatory residue (Ser 13) on zigzag oxidized SWCNT 
members, such as SWCNT-OH (9.0) and SWCNT-COOH (9.0) compared to ATP in the VDAC voltage sensing 
pore domain, depicted as van der Waals surface (red is acidic, blue is basic). All docking images were designed 
using open-source Pymol 1.7.x. This pattern is representative of the remaining cases, as shown previously in the 
radar plots.
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and validation series for the Linear Neural Network (LNN) model with the same input variables used in the LDA 
NQSBR model (Fig. 7).

These values are notably higher than the expected values of AUROC = 0.5, typical of a random classification. 
The non-linear model corresponding to a Multiple Layer Perceptron (MLP) has also a very high AUROC = 0.92 
to 0.94, but the values of accuracy, specificity, and sensitivity (in the range of 80.9–84.2%) are not higher than 
those for the LDA and LNN linear models. Finally, the Radial Basis Function (RBF) topology shows also notably 

Data subset Statistical Observed values

Training Parameter % (FEB ≥ −5.6)calc (FEB < −5.6)calc

(FEB ≥ −5.6)obs Specificity 73.0 111 41

(FEB < −5.6)obs Sensitivity 94.7 8 144

Total Accuracy 83.9

Validation (FEB ≥ −5.6)calc (FEB < −5.6)calc

(FEB ≥ −5.6)obs Specificity 78.0 39 11

(FEB < −5.6)obs Sensitivity 98.0 1 50

Total Accuracy 88.1

Table 1. Results of the LDA analysis using a PT-QSBR model that discriminates between SWCNT strong 
binding interactions (FEB < −5.6 kcal/mol) and SWCT weak interactions (FEB ≥ −5.6 kcal/mol) with VDAC. 
The data in the table show the statistical parameters (Stat. Param.) for specificity, sensitivity, and accuracy for 
both the training dataset (for model estimation) and the validation dataset (for model evaluation). In each case, 
the numbers of cases correctly or incorrectly classified are mentioned in the table. FEB stands for Free Binding 
Energy.

Species
SWCNT 
type

SWCNT 
function

Mitochondrial 
Channel <FEB>

Danio rerio

Pristine H VDAC2 −10.20

oxidized COOH VDAC2 −29.06

oxidized OH VDAC2 −22.80

Mus musculus

Pristine H VDAC1 −10.44

oxidized COOH VDAC1 −20.63

oxidized OH VDAC1 −17.44

Homo sapiens

Pristine H VDAC1 −12.87

oxidized COOH VDAC1 −5.44

oxidized OH VDAC1 −17.11

Table 2. Expected values of free energy of binding (FEB, in kcal/mol) of SWCNT-VDAC interaction.

Figure 7. Results of the ROC curve analysis. Training and validation sets of the statistical parameters are 
represented by the area under receiver operating characteristic curve (AUROC) according to multiple layer 
perceptron (MLP), radial basis function (RBF) and linear neural network (LNN). The AUROC values are 
presented in brackets.
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lower AUROC ≈ 0.7 values in the training and validation datasets. Overall, the ROC curve analysis supports our 
selection of a linear hypothesis to predict the SWCNT-VDAC interaction represented by the LDA model. Vide 
infra in the Materials and Methods section. To verify the results obtained with the LDA classification NQSBR 
model from the external dataset, the empirical physico-chemical parameter of pristine SWCNT was used, not 
tested in our original dataset obtained by Bachilo (2002)44.

The multiple factors involved in VDAC channel nanotoxicity were represented based on the 
SWCNT-nanodescriptors using Two Way Joining Cluster (TWJC) (Fig. 8) from the external dataset available in 
Figshare48 (Table SM02).

A detailed analysis of the two-way contingency table with heat map contributes to verify the VDAC-affinity 
levels between similar clusters of relevant SWCNT-nanodescriptors. Particularly, the cluster obtained from 
xn row vectors for n-Hamada index, Ch-Chiral vector, VRBM and expected f(FEB) is consistent with the theo-
retical evidences obtained by the linear NQSBR model based on the classification power of strong and weak 
SWCNT-VDAC interactions, following the heat map intensity of the contingency table from pristine SWCNT 
(yi) in individual layers.

Futhermore, to explain SWCNT-VDAC interactions based on non-linear relationships classification and 
regression approaches using feature selection (FS) based on QSAR/QSPR non-linear algorithms were efficiently 
implemented. This procedure allowed eliminating redundant SWCNT-nanodescriptors that could cause a poor 
predictive potential and generalization of the results, as mentioned in the introduction of this work.

In this sense, J48 model could be used to filter SWCNT-nanodescriptors of new mitochondrial channel inter-
actions based on VRBM (V14), n-Hamada index (V01) and FEB-expected value see Figshare48 (Fig. SM03-A and 
Fig. SM03-B).

The results of this decision tree (J48 model) are consistent with our goal and have previously been verified in 
the linear NQSBR model. The VRBM is a low frequency mode observed in the SWCNT-Raman spectrum linked 
to the CNT chiral-index assignments and it has a direct influence on the SWCNT-diameter (V06). Particularly, 
the n-Hamada chirality-index (V01) has a relevant meaning from the biophysical point of view to predict the 
SWCNT-VDAC interactions. This is because the n-Hamada index has a direct proportionality and strong linear 
relationship with the SWCNT-diameter (V06) following equation (2):

= . + +d n nm m0 783 (2)SWCNT n m( , )
2 2

Note that this relationship also applies for zig-zag topology SWCNT, where m = 0, which showed the most 
negative FEB-values (Kcal/mol). The average cavity-diameter wall-to-wall from the three VDAC-channel stud-
ied (VDAC1-Homo sapiens, VDAC1-Mus musculus, and VDAC2-Danio rerio) is about ~34–38 Å and these 

Figure 8. Two Way Joining Cluster (TWJC) analyses for the validation prediction of VDAC nanotoxicity of 
pristine SWCNTs using an external dataset (SM02.xlsx)44,60 by applying the obtained LDA classification NQSBR 
model. Each y-axis describes a vector of the elements corresponding to pristine SWCNT (yi) in individual 
layers. x-axis represents the main clusters of parameters from xn row vectors used to predict the VDAC channel 
nanotoxicity for individual pristine SWCNT (xi), such as n: Hamada index, Ch: Chiral vector, VRBM: Radial 
Breathing Mode (cm−1) and expected f(FEB), as predictive function of free energy of binding used to classify 
strong and weak SWCNT-VDAC interactions in different species. The m-Hamada index was included in the 
TWJC analysis, but no correlation was observed in the performed NQSBR model for this SWCNT geometric 
parameter. Code numbers for SWCNT-VDAC interactions: very strong = 3; strong = 2; moderate = 1; and 
weak = −1. The results for the three species (zebrafish, D. rerio; mouse, M. musculus; and human, H. sapiens) 
are shown.

http://SM02
http://SM03-A
http://SM03-B
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dimensions should the maximum to allow interaction with SWCNT. As mentioned previously this was in fact the 
case since the assayed SWCNT presented diameters raging from 2.35 to 12.21 Å.

We strongly suggest that SWCNT tested could cause partial or total distortions in the VDAC-active site 
affecting the ATP-efflux and/or modulate potential post-translational modifications in VDAC phosphorylation 
binding-site residues for large n-Hamada index (high SWCNT diameter) directly influencing the strength of 
interactions (more negatives FEB values) of the formed SWCNT-VDAC complexes available in Figshare48 (Fig. 
SM01).

The results based on the FS1 dataset are in general slightly better than the Pool dataset with all SWCNT nan-
odescriptors. Thus, Random Forest and K Star model were the best classifiers of SWCNT nanotoxicity on VDAC 
with the same TPR of 0.916, but AUROC of 0.978 and 0.968 see Figshare48 (Table SM04 and Table SM04-1).

FS3 dataset was used to decrease the dimensionality of the full dataset (Pool) by transforming the 19 dimen-
sions based on SWCNT nanodescriptors into only 8 Principal Components to identify an optimal subset of 
SWCNT nanodescriptors that best map a relationship between structure and VDAC nanotoxicity see Figshare48 
(Table SM04).

The Random Forest and Multilayer Perceptron are the best classifiers for SWCNT-VDAC interactions. The 
maximum AUROC/TPR was lower than FS0, FS1, FS2, with values of only 0.956/0.872. OneR model pointed 
to SWCNT molecular weight (V02) as an important SWCNT nanodescriptor see Figshare48 (Table SM04), 
SWCNT-molecular weight was not identified as a relevant SWCNT-nanodescriptor in the previous LDA NQSBR 
model. However, an increased SWCNT-molecular mass could be associated with a proportional increase in 
SWCNT diameter (V06). This affected the FEB values through potential steric collisions of the SWCNT-atoms 
with key binding site residues atoms near to N-terminal α-helical segment in the VDAC channels. Similarly, 
the FEBexp and SWCNT-molecular weight (V02) were used in FS4 dataset with a minimal dataset of SWCNT 
nanodescriptors. The Random Forest model demonstrated a similar performance by using FS1 and FS2 dataset 
of SWCNT nanodescriptors (AUROC = 0.978, TPR = 0.919). J48 classifier model was performed as a simple 
set of rules using only V02 and FEBexp with good performance for the predictive classification with AUROC 
of 0.897 and TPR of 0.889: SWCNT with molecular mass ≤ 2337 g/mol will have weak SWCNT-VDAC inter-
actions, SWCNT with molecular mass = 2,337–6,245 g/mol and FEBexp ≤ −29.1 Kcal/mol will have strong 
SWCNT-VDAC interactions see Figshare48 (Fig. SM03-A and Fig. SM03-B).

In general, a better performance of the predictive classification model is obtained for the non-linear Random 
Forest model when all 19 SWCNT-nanodescriptors are used (Pool dataset) with an AUROC value of 0.973 and 
true positive rate (TPR) of 0.916. In this case, the MLP classifier (1 hidden layer with 19 neurons = number of 
SWCNT nanodescriptors (19) + no. of classes (2)) is better than the one used for the FS0 dataset (AUROC of 
0.970 and TPR of 0.904) see Figshare48 (Table SM04 and Table SM04-1).

The last predictive test included additional categorical information, such as SWCNT Electroconductivity 
(metallic, semimetallic, semiconducting), SWCNT type (pristine SWCNT, oxidized SWCNT), SWCNT func-
tion (H, OH, COOH), VDAC isoform (VDAC1, VDAC2) and species (Mus musculus, Homo sapiens and Danio 
rerio) using Weka classifiers see details in Figshare48 (Table SM04 and Table SM04-1). Thus, by the addition 
of these categorical information to the Pool dataset with REPTree method, we obtained good prediction with 
AUROC/TPR/FPR = 0.926/0.889/0.111 (FPR = false positive rate). The classifier chooses only the information of 
FEBexp, n-Hamada index of the SWCNT (V01), SWCNT Molecular Weight (V02), SWCNT No. Bonds (V03), 
SWCNT Radio Rt (V05), SWCNT Nanotube diameter (V06), and species. Simple rules could be decrypted to 
predict the SWCNT-VDAC interaction from the plot: if V03 < 202 or if V03 ≥ 202 and V02 < 2,772 (g/mol) see 
Figshare48 (Fig. SM05-A). According to the species type, the SWCNT-VDAC interaction varies: for Mus musculus 
and Danio rerio, the SWCNT-VDAC interaction is strong, but in the case of Homo sapiens, there is a need for 
n-Hamada index and SWCNT Molecular Weight values to decide on the strength of interactions see Figshare48 
(Fig. SM05-B). It should be noted that in the case of VDAC2-Danio rerio, the basic residue Lys161 is replaced 
by another basic residue (Arg161), with an equivalent physiological role in the ATP passage to cytosol1. The 
calculated interatomic distances relative to basic residues (Lys12, Lys20, Arg15, Arg163, Arg218, Lys109, Lys113, 
Lys115, Lys174, Lys256) for the SWCNT members with higher values of n-Hamada index and lower FEB values 
from pristine SWCNT and oxidized SWCNT are lower than 5 Å in most cases. The different single-walled carbon 
nanotubes followed the order SWCNT-COOH ~ SWCNT-OH < SWCNT, according to the interatomic distance 
values, as shown in the radar plot in Fig. 5, and considering a cutoff value of 7 Å.

To search for the best regression NQSBR model which predicts the FEB values, linear and non-linear method-
ologies were implemented by using the full dataset of nanodescriptors (Pool) as input. As an initial test, regression 
models were obtained by excluding the expected free energy of binding (FEBexp) to check the importance of the 
Perturbation Theory for this type of NQSBR models. All the methods provided regression models with very low 
performance (R2

test < 0.50). Thus, the importance of free energy of binding expected value (FEBexp) is confirmed 
for the prediction of new FEB values.

Finally, the best regression model that predicts FEB values for SWCNT-VDAC interactions based on the Pool 
dataset (all 19 SWCNT nanodescriptors) was provided by non-linear regression Random Forest models with 
R2

test = 0.833 and RMSEtest = 0.0844. Besides, NN provided a performance of R2
test/RMSEtest = 0.757/0.0953. In 

addition, Random Forest Recursive Feature Elimination (RF-RFE) results were between RF and NN by select-
ing only 2 SWCNT nanodescriptors (9 out of 10 splits): FEBexp and V02 (the same SWCNT nanodescriptors 
used in the classification with the minimal dataset, FS4). With only two SWCNT-nanodescriptors, RF-RFE has 
a good performance to classify the SWCNT-VDAC nanotoxicity docking interactions, with R2

test of 0.798 and 
RMSEtest = 0.0953. If filters are applied in order to select optimal SWCNT nanodescriptors in RRegrs, the perfor-
mance slightly decreases see Figshare48 (Table SM06 and Table SM06-1). However, the linear methods (LM and 
GLM) and the parametrical models (Lasso, PLS and ENET) show very low performance (R2

test < 0.50), whereas 
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the applying of non-linear methods showed an increased R2
test over 0.75. See the pairwise model comparisons of 

R2
test (A) and RMSEtest (B) for multiple linear and non-linear regression models in Figshare48 (Fig. SM07).

Conclusions
The Free Energy of Binding was determined using Molecular Docking Simulation with Virtual Screening 
Framework. The results showed that the affinity was statistically more negative for FEB values following the 
order (SWCNT-VDAC2-Danio rerio) > (SWCNT-VDAC1-Mus musculus > (SWCNT-VDAC1-Homo sapiens) ≈ 
(ATP-VDAC). In addition, the presence of zigzag topology and the COOH, OH functionalization are geomet-
ric, and toxicophoric SWCNT nanodescriptors are useful to describe their interactions with VDAC (order: 
COOH > OH > H). The FEB values of interactions based on these SWCNT nanodescriptors were shown to be 
stronger than the VDAC-natural substrate (ATP). However, some geometric and electronic properties, such as 
armchair and chiral configuration are uncorrelated with the VDAC affinity.

The broader theoretical importance of this work is not limited only to molecular docking simulation for 
solving nanotoxicological problems. The relevant alignments of sequences for the key functional and regulatory 
residues of VDAC channels from different species (represented as 3D-objects) should be relevant for the extrapo-
lation of potential toxic effects of SWCNT to animal models, commonly used for nano-ecotoxicological studies on 
Danio rerio. Furthermore, classification and regression models able to predict strong and weak SWCNT-VDAC 
interactions (FEB values) were performed for the first time. Several decision trees were constructed to extract 
simple rules for the prediction of classes and exact values for the SWCNT-VDAC as channel nanotoxicity criteria 
linked to optimal SWCNT nanodescriptors, and involving interspecies comparison. The classification models 
demonstrated high accuracy, specificity, and sensitivity in training and validation series (73–98%) and area under 
receiver operating characteristic (AUROC) up to 0.978. The best regression method to predict the complex free 
binding energy was Random Forest with R2

test of 0.833 and RMSEtest of 0.0844. These in silico results pave the 
way for the rational designing of novel carbon nanomaterials with higher benefit-risk relationships, and for the 
creation of new regulatory decisions in nanotoxicology for the prediction/assessment of human health impact 
and environment nano-risks.

Methods
Docking simulation. To evaluate the interaction between the VDAC from three different species (VDAC1-
Mus musculus, VDAC1-Homo sapiens, VDAC2-Danio rerio) and various types of SWCNT, a NQSBR flowchart 
was performed see Figshare48 (Fig. SM08). The first step consists of preparing the VDAC macromolecule struc-
ture files (receptor), which was obtained from the RCSB Protein Data Bank (PDB) x-ray structures49. Before 
the molecular docking, VDAC molecular structures were optimized using the AutoDock Tools 4 software for 
AutoDock Vina. The algorithm includes the removal of crystallographic water molecules and all the co-crystal-
lized VDAC ligand molecules, such as Lauryl dimethyl-amine-N-oxide (LDA) or C14H31NO from VDAC2-Danio 
rerio.

Moreover, hydrogen atoms were added, according to appropriate hybridization geometry, to those atoms 
based on built-in modules to add partial charges, protonation states followed by bond orders assignment and set 
up rotatable bonds of the different VDAC channels.pdb x-ray structures.

In the second step, the SWCNT ligands (pristine SWCNT or SWCNT-H) structures were carefully modeled 
taking into account general SWCNT nanodescriptors such as semi-empirical values for [n] and [m]-Hamada 
indexes, calculated by H. Yorikawa and S. Muramatsu in 1995, and other SWCNT parameters such as molecular 
weight, no. bonds, no. atoms, radio, diameter, hexagons number/1D unit cell, metallic and/or semiconducting; 
SC)42–45. Herein, the software Nanotube Modeler (http://jcrystal.com/products/wincnt/) version 1.7.5, registered 
by one of the authors (J.M. Monserrat), was used. Some SWCNT-H structures were oxidized either with carboxyl 
(-COOH) or hydroxyl (-OH) moieties using an advanced semantic chemical editor, Avogrado (Version 1.1.1 free 
software). The minimization of all the SWCNT ligands was performed using the MOPAC extension for geometry 
optimization based on the AM1-Hamiltonian method.

An in silico framework was developed to configure the virtual screening (VS) experiments in order to evaluate 
the various parameters. This framework has a Web interface in which the user configures the docking experi-
ment and obtains the respective Python script to automatically perform the VS steps. In the framework inter-
face, the user provides information regarding the receptor files (VDAC channels) and the folder in which all 
the SWCNT structures are stored. To evaluate the SWCNT-VDAC in silico interactions, Autodock Vina flexible 
molecular docking was implemented, open source software developed by Trott & Olson (2010). The cationic 
cluster formed by ATP-VDAC-active binding site residues (Lys12, Lys20, Arg15, Arg163, Arg218, Lys109, Lys113, 
Lys115, Lys161, Lys174, Lys256, Glu280) and the VDAC phosphorylation binding site residues, experimentally 
determined by Martel & Brenner (2014)9 (Ser13, Ser43, Ser102, Ser104, Ser240, Ser57, Ser215, Tyr225), obtained 
from Homo sapiens-VDAC, Mus musculus-VDAC and Danio rerio-VDAC were tested as flexible residues and the 
ligands (SWCNTs) were considered a rigid molecules61. In this context, the SWCNT-VDAC complexes of free 
energy of binding (FEB) from different species were calculated based on the score function which approximates 
the standard chemical potentials (ΔGbind). The implemented ΔG scoring function combines the knowledge-based 
potential and empirical information obtained from experimental binding affinity measurements. The FEB opti-
mization algorithm for SWCNT-VDAC complexes from the different species were implemented in Autodock 
Vina scoring function with default Amber force-field parameters. The FEB of SWCNT-VDAC complex opti-
mization was performed with a gradient and efficient local optimization algorithm of the free energy of bind-
ing based on a quasi-Newton method, such as Broyden-Fletcher-Goldfarb-Shanno (BFGS). The algorithm is a 
succession of steps consisting of a mutation and a local optimization, with each step being accepted according 
to the Metropolis criterion. The components are the position and orientation of the SWCNT (as rigid mole-
cules), as well as the torsions values of the VDAC-flexible residues. Conformational relaxation (flexible docking) 

http://SM07
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favors a significant gain of enthalpy of SWCNT-VDAC complexes non-associated with SWCNT intra-molecular 
deformation or vibrational decrease within VDAC active sites. This theoretical procedure was performed for 
the receptor binding cavity using Cartesian coordinates for VDAC1-Homo sapiens grid box size, with dimen-
sions of X = 20 Å, Y = 22 Å, Z = 20 Å and the VDAC1- Homo sapiens receptor grid box center X = 28.036 Å, 
Y = 0.361 Å, Z = 5.176 Å. Cartesian coordinates for VDAC1-Mus musculus grid box size, with the average dimen-
sions of X = 22 Å, Y = 26 Å, Z = 22 Å and the VDAC1- Mus musculus grid box center X = 14.826 Å, Y = 32.707 Å, 
Z = 13.009 Å. Finally, the Cartesian coordinates for VDAC2-Danio rerio grid box size, with the average dimen-
sions of X = 24 Å, Y = 24 Å, Z = 22 Å and the VDAC2-Danio rerio grid box center X = -14.894 Å, Y = 20.794 Å, 
Z = -9.617 Å were used to evaluate the SWCNT-VDAC interaction of the three species studied, considering the 
ATP biophysical environment (VDAC active site) as control to evaluate the SWCNT-VDAC affinity. Several runs 
starting from random conformations were performed, and the number of iterations in a run was adapted accord-
ing to the problem complexity. An exhaustiveness option set to 50 (average accuracy) in each docking calculation 
was used61. Furthermore, it was verified whether a high increase of the exhaustiveness docking parameter of 100 
increased the simulation time keeping the same FEB results.

The docking free energy of binding output results (or FEB values) is defined by ΔGbind values (affinity) for all 
docked poses of the formed complexes (SWCNT-VDAC) and include the internal steric energy of a given ligands 
(SWCNT) which can be expressed as the sum of individual molecular mechanics terms of standard-chemical 
potentials like: van der Waals interactions (ΔGvdW), hydrogen bond (ΔGH-bond), electrostatic interactions 
(ΔGelectrost), and intramolecular ligands interactions (ΔGinternal) from empirically validated Autodock Vina scor-
ing function based on default Amber force-field parameters.

In fact, the force field parameters were validated from experimental data which are molecular mechanics 
terms based on the scoring function to ligand-receptor conformation-dependent parameters (SWCNTi-VDACj 
inter-atomic interactions) and the ligand conformation-independent parameters (SWCNTi-i′ internal interac-
tion). These mechanistic force-field parameters included in the Autodock Vina scoring function were validated 
on the basis of a strong linear correlation (scoring capability) of experimental binding-affinity data (Kd, Ki, and 
IC50-values) of the original crystallographic protein-ligand complexes (>16,000 complexes from >114,000 
x-ray crystallographic structure). Besides, Autodock Vina scoring function considers optimal-linear free bind-
ing energy coefficients from experimentally determined chemical potentials (ΔGinternal) of ligands (SWCNT). 
Following this idea, Autodock Vina scoring function has an optimal docking performance, which can be effi-
ciently applied to multiple ligand-receptor affinity problems (as SWCNT-VDAC interactions). It is important 
to note that overall docking force field parameters are based on distance-dependent atom-pair interactions (dij) 
according to the general thermodynamic equations represented below:
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ΔG = −RT(ln Ki), R (gas constant) is 1.98 cal*(mol*K)−1, and Ki represents the predicted inhibition constants 
at T = 298.15 K. The first term of a 12-6/Lennard-Jones potential (with 0.5 Å smoothing) describes the van der 
Waals interaction as Aij/dij

12 (attractive Guassian function) and Bij/dij
6 (repulsive or hyparabolic function) to 

represent a typical Lennard-Jones interactions (SWCNT-VDACs), provided the Gaussian term is negative and 
the parabolic positive, dij is the surface distance calculated as dij = rij − Ri − Rj, where rij is the interatomic distance 
and Ri and Rj are the radii of the atoms in the pair of interaction of SWCNTi-VDACj atoms. The second term 
is the pair consisting of an H-bond donor and an H-bond acceptor as a directional 12–10 hydrogen-bonding 
potential term such as Bij/dij

12 and Cij/dij
10 (H-bonding potential with Goodford directionality), where E(t) is 

an angular weight factor which represents the directionality of the hydrogen bonds and dij follows the criteria 
mentioned above. The third term represents the Coulomb electrostatic potential stored in the formed complex 
(SWCNT-VDAC)ij of N charges (qi, qj) of pairs of charged atoms of SWCNT(i) and VDAC(j). For this instance, 
appropriated Gasteiger partial atomic charges of the VDAC-channels (VDAC1-Homo sapiens, VDAC1-Mus 
musculus, VDAC2-Danio rerio) were assigned. Herein, dij is the interatomic distance between the point charges 
as the reference positions of interaction based on distance-dependent dielectric constant. In the present study 
Autodock Vina based on Amber force field was parameterized with default options for the SWCNT-data set 
(pristine-SWCNT, SWCNT-OH and SWCNT-COOH) by summing up individual molecular mechanic con-
tributions like: SWCNT-intra-molecular contributions, SWCNT-aromaticity criterion and the set number of 
active torsions moving of each SWCNT-ligand following to general preparation procedures of ligand61. For this 
instance, the fourth term of the equation (3) as (ΔGinternal) was used to validate the internal steric energy of each 
SWCNT-ligand including dispersion-repulsion energy and a torsional energy through the sum of the default 
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Amber force field parameters (ligand conformation-independent parameters of the Autodock Vina scoring 
function).

By the other hand, the electrostatic components were considered and the SWCNT-partial atomic charges 
were properly assigned with the Gasteiger-Huckel algorithm using partial equalization of orbital electronega-
tivities (PEOE) after the addition of polar and non-polar hydrogen atoms. These steps were empirically cali-
brated by default Amber force-field parameters. Furthermore, Autodock conformational search space for the 
ligands (SWCNT-structures) were experimentally-validated with Autodock default options which include a ran-
domized large training dataset for ligands properties, 50 genetic algorithm runs, and 25 million evaluations in 
each, and also including all default structural-parameters to predict the best position and orientation of the ligand 
(SWCNT-docking capability) taking into consideration the coordinate systems of the receptor (VDAC-channels). 
It is important to note that, molecular docking dimensionality based on degree of freedom (DOF) of the each 
member of the SWCNT-data set (pristine-SWCNT, SWCNT-OH and SWCNT-COOH) like: SWCNT-atom 
position/translation (xi, yi, zi = 3), SWCNT-atom orientation/quarternion (q(xi), q(yi), q(zi), q(wi) = 4), 
SWCNT-number of rotable bonds/torsion (tor1, tor2, …, torn = Ntor) and SWCNT-total dimensionality (total 
DOF = 3 + 4 + n) not have a significant weight in the FEBdock based on the very small intra-molecular contribu-
tions of force field parameters of the SWCNT-ligand which were considered as rigid-bodies61 and considering the 
aforementioned SWCNT-geometry optimization based on the ΔGinternal minimization of all the SWCNT-ligands 
used in the present study.

Docking was found as energetically unfavorable when a FEB for SWCNT-VDAC complex ≥ 0 kcal/mol (worst 
crystallographic pose) shows either an extremely low or complete absence of binding affinity according to repul-
sive interactions. Following this criterion, SWCNT conformations with the lowest Gibbs docking free energy of 
binding (FEB negatives value) were obtained. The best root-mean-square deviation (RMSD) was considered as 
a criterion of correct docking pose accuracy for atomic positions below 2 Å52,53. This is comparable to the best of 
several knowledge-based docking scoring functions according to the equation (5).

RMSD pose pose
atom atom

n
( , )

( )

(5)i j
n i j( ) ( )

2
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∑ −

The next step consists of analyzing the results obtained from the molecular docking with respect to the final 
free energy of binding - FEB for the SWCNT-VDAC complex of each experiment. The minimum distances 
(interatomic distances) were calculated between VDAC atoms of the key amino acids of the receptor (VDAC: 
VDAC1-Mus musculus, VDAC1-Homo sapiens, VDAC2-Danio rerio) and SWCNT atoms at the best docking 
crystallographic binding position for ligands (SWCNT family: pristine SWCNT, SWCNT-OH, SWCNT-COOH 
and their respective geometric configuration like amchair, chiral and zigzag). The only considered interatomic 
distances were related to VDAC active binding site residues (Lys12, Lys20, Arg15, Lys 109, Lys 113, Lys115, Lys 
161, Arg163, Lys174, Arg 218, Lys256) involved in the ATP transport to compare with the ATP-VDAC intera-
tomic distances as reference control of potential ATP efflux inhibition. In addition, we calculated the interatomic 
distances of SWCNT related to VDAC phosphorylation binding site residues, experimentally determined by 
Martel & Brenner (2014)9: *S code letters (Ser 13, Ser 43, Ser 102, Ser 104, Ser 240, Ser 57, Ser 215) and *Y code 
letter (Tyr 225) from VDAC1-Homo sapiens, VDAC1-Mus musculus and VDAC2-Danio rerio.

Next, the Euclidean distances (dij: SWCNT-VDAC interatomic distance) were calculated from all the atoms in 
the SWCNT to all the atoms in the VDAC channel in each species under study. The xyz-coordinates of all atoms 
of a VDAC channel (x: VDAC, y: VDAC, z: VDAC) were taken as input, and the xyz-coordinates (x: SWCNT, y: 
SWCNT, z: SWCNT) of all atoms of a SWCNT were taken as output (or a minimum distance) between a SWCNTi 
atom and a VDACj atom, according to the following equation (6):

= − + − + −d x x y y z z( ) ( ) ( ) (6)ij i swcnt j vdac i swcnt j vdac i swcnt j vdac( ) ( )
2

( ) ( )
2

( ) ( )
2

To evaluate the SWCNTi-VDACj interaction, a cutoff value of 7 Å was used, i.e., all atoms with distances 
dij ≤ 7 Å were considered as interacting atoms according to standard docking studies52,53.

Performed molecular docking. For the docking tests, the following were used: VDAC channels from 
VDAC1-Homo sapiens (PDB ID:2JK4, resolution 4.1 Å), VDAC1-Mus musculus (PDB ID:3EMN, resolution 
2.3 Å), VDAC2-Danio rerio (PDB ID:4BUM, Resolution 2.8 Å), and a combination of SWCNT ligands, such as 
armchair-H, armchair-COOH and armchair-OH (Hamada index n = m; 21 nanotubes); chiral-H, chiral-COOH 
and chiral-OH (no reflection symmetry; 93 nanotubes); zigzag-H, zigzag- COOH and zigzag-OH (Hamada index 
m = 0, n > 0; 21 nanotubes) and the ATP ligand molecule as reference control (C10 H16 N5 O13 P3, ATP model, 
SDF format from PubChem CID: 5957). All docking simulations were performed using the default values for 
Autodock Vina parameters.

Statistical analysis. Mean values of free energy binding (FEB) from the various single-walled carbon nano-
tubes were compared through two-way analysis of variance in which the factors were SWCNT functionalization 
(-H, -OH and -COOH) and SWCNT electrotopological properties (chiral, armchair and zigzag). Normality and 
variance homogeneity assumptions have been previously verified. Pairwise comparisons were performed using 
the Newman-Keuls post-hoc test. In all cases, type I error was set at 0.05 (α = 5%). Quantitative structure-binding 
affinity relationships were evaluated through the use of stepwise multiple regressions, considering the FEB values 
of the SWCNT (SWCNT-H, SWCNT-OH and SWCNT-COOH)-VDAC complexes obtained from the different 
species (Danio rerio; Mus musculus; Homo sapiens) as dependent variables and several semi-empirical SWCNT 
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quantitative nanodescriptors (n, m-Hamada indexes, chiral angle, molecular weight, diameter, etc.) as independ-
ent variables.

VDAC channel alignments. Sequences of VDAC-1 from human Homo sapiens (NP_003365.1), VDAC1 
from mouse Mus musculus (NP_035824.1) and VDAC2 from zebrafish Danio rerio (NP_001001404.1) were 
obtained from Gene Bank database (http://www.ncbi.nlm.nih.gov/genbank/). The alignments were performed 
on-line using the free software ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/). In addition, 3D struc-
tural alignment of VDAC from the different species tested was performed by VMD - Visual Molecular Graphics 
Software. Next, the PDB model X-ray structure validation from the different VDAC channels was performed by 
Ramachandran plots using MolProbity51.

Model construction
Dataset. The dataset contains 19 features or SWCNT nanodescriptors (see Table 3) based on the SWCNT 
periodic properties41–45 such as m-Hamada index (V00), n-Hamada index (V01), molecular weight (V02), num-
ber of bonds (V03), number of atoms (V04), CNT radio Rt in nm (V05), nanotube diameter dt in nm (V06), 
highest common divisor of (n, m) (V07), highest common divisor of (2n + m, 2 m + n) (V08), translation vector 
T in Å (V09), semi-empirical HOMO-LUMO band gap Eg in eV (V10), chiral vector in nm (V11), chiral angle 
θ (V12), mod(n−m, 3) (V13), estimated VRBM in cm−1 (V14), First van Hove Singularity Optical Transitions 
peak E11 in eV (V15), Second van Hove Singularity Optical Transitions peak E22 in eV (V16), and number of 
hexagons/unit cell (N/2) (V17). In addition, the Docking Free Energy of Binding (FEB expected) for the SWCNT 
groups (SWCNT type and SWCNT function as H, OH, COOH) was added using Perturbation Theory (PT).

Thus, 19 SWCNT nanodescriptors and 405 cases were used to build NQSBR classification and regression 
models that can predict whether the SWCNT-VDAC interactions are weak or strong, along with FEB values.

Performed NQSBR model based on Docking Perturbation Theory. In this section, a 
Nano-Quantitative Structure-Binding Relationship (PT-NQSBR model) was developed. To this end, a new pro-
spective docking scoring function is used to predict the strength of the binding bij between the ith CNT and 
the jth-VDAC from three different species. The free energies of binding (FEB), calculated in molecular docking 
experiments as the measure of bij, were also employed. bij = 1 was considered when FEBij < −5.6 kcal/mol (strong 
binding interaction), otherwise bij = 0 (weak binding interaction). The cut-off FEB value was set at −5.6 kcal/mol, 
which represents the FEB value for the molecular docking interaction of the natural ligand substrate ATP with 
VDAC (calculated in this work, vide infra).

The re-formulation of the QSAR/QSPR approach was described, based on the Perturbation Theory (PT) to 
develop a new type of PT-NQSBR model for prospective classification of single-walled carbon nanotubes asso-
ciated with VDAC channel nano-mitotoxicity. The main assumption of QSAR/QSPR models in general is that 
similar molecules have similar properties. Consequently, small changes (“perturbations”) in the structural system 
should correlate linearly with small changes in the values of their properties (biological activities). PT-QSPR 
models are very useful for the study of complex molecular systems with simultaneous multiple experimental 
boundary conditions.

SWCNT nanodescriptors (Vk) Symbol

FEB (ATP) (Kcal/mol) −5.6

Tube Length (Å) 10

m-Hamada index V00

n-Hamada index V01

Molecular Weight (g/mol) V02

No. Bonds V03

No. Atoms V04

Radio Rt (nm) V05

Nanotube diameter: dSWCNT (n; m) V06

Highest common divisor of (n, m) V07

Highest common divisor of (2n + m, 2 m + n) V08

Translation vector: T(Å) V09

Semi-empirical Homo-Lumo Bandgap Eg(eV) V10

Chiral vector: Ch (nm) V11

Chiral angle (θ) V12

mod (n−m, 3) V13

Semi-empirical VRBM (cm−1) V14

First van Hove Singularity Optical Transitions peak-
[E11] (eV) V15

Second van Hove Singularity Optical Transitions 
peak-[E22] (eV) V16

No. hexagon/unit cell (N/2) V17

Table 3. Variables used as input for the NQSBR model.

http://www.ncbi.nlm.nih.gov/genbank/
http://www.ebi.ac.uk/Tools/msa/clustalw2/
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In this regard, the QSPR approach of the Perturbation Theory is a mathematical formalism that starts by 
knowing the exact solution of a problem (for instance a SWCNT physico-chemical property for VDAC interac-
tion) and continues by adding corrections or “perturbations”, according to the variations of different experimental 
conditions in order to predict a solution to a related problem without a known exact solution9,30,31. In our previous 
studies, Moving Average (MA) has been used to measure the deviations of the different input variables in PT 
models for several molecular bio-systems18–20,31. The PT-NQSBR model proposed herein is an additive polyno-
mial equation expressed as follows:

f FEB e f FEB a V( ) a ( )
(7)calc ected

k

k

k k0 0 exp
1

14

∑= + ⋅ + ⋅ Δ
=

=

∑= + ⋅ + ⋅ −
=

=
f FEB e f FEB a V V( ) a ( ) [ ]

(8)calc expected
k

k

k k
query

k
ref

0 0
1

14

The first input term is the function f(FEB)expected =  < FEB > , which is the average value of FEB for a specific 
VDAC channel of one species for all SWCNTs of the same class with the same function (H, OH, or COOH), and 
the same electronic properties (metallic, semimetallic, semiconductor). It means that < FEB > can be considered 
as the expected value of FEB for the interaction of a SWCNT of the same class as the new SWCNT with the target 
protein VDAC (assuming a normal distribution). The second class of terms such as Vk, are values of the structural 
parameters (or SWCNT nanodescriptors) of the new SWCNT (or query SWCNT). Last, the difference (∆Vk = que-

ryVk − refVk) quantifies the perturbations (changes, distortions, etc.) of the SWCNT nanodescriptors (queryVk) of 
the new SWCNT compared to those of the original reference SWCNT (refVk). Please refer to Table 1 for further 
details on the employed model.

The Linear Discriminant Analysis (LDA) forward-stepwise algorithms from the STATISTICA software were 
used to fit the values of the parameters (a0, ak, bk and e0). In the PT-NQSBR model, the output f(FEB)calc is a func-
tion of the value of FEB for the new SWCNT structure, which contains the SWCNT nanodescriptors (Hamada index 
n and m, diameter, molecular weight, number of atoms, radial breathing mode or VRBM frequencies, etc).

Performed classification NQSBR models. Complex models, such as NQSBR classification models, 
were constructed using two types of applications: STATISTICA and Weka based on Machine Learning. With 
STATISTICA, the following models were calculated: Linear Discriminant Analysis (LDA), Multilayer Perceptron 
(MLP) and Radial basis function network (RBF). Weka provided an attribute selection tool where the process was 
separated into two parts: 1) Attribute Evaluator Method, through which attribute subsets were assessed and 2) 
Search Method, which allows searching for the space of possible subsets of features (SWCNT nanodescriptors)36.

Weka was used to search for models using other 12 non-linear methods grouped into classes of classifiers such 
as bayes (Bayes Network, Naïve Bayes), functions (Multilayer Perceptron - MLP), lazy (IBk, KStar or K*), rules 
(Decision Table, JRip, OneR, PART), and trees (J48, Random Forest, REP Tree). Thus, 14 Machine Learning36 
methods were used to compare the performance of prediction for weak or strong SWCNT-VDAC interactions.

The FEB values were transformed in two classes of SWCNT-VDAC nano-interactions: strong and weak, consid-
ering a FEB cut-off value (based on the FEB value of ATP-VDAC interaction) of −5.6 Kcal/mol, as mentioned above.

With STATISTICA, the datasets were randomly split into two subsets: training and test validation sets (75% 
training, 25% validation). Using Weka, the default 10-fold cross-validation (CV) was used. The performance of 
the classification models was measured with accuracy, specificity, and sensitivity. With Weka data mining algo-
rithms, several variations of the initial dataset of SWCNT nanodescriptors were generated using filter methods 
(or feature selection, FS) to verify the influence of a high or low number of SWCNT nanodescriptors in the 
NQSBR model. The group of SWCNT nanodescriptors is more important to obtain a better model in order to 
describe the SWCNT-VDAC interaction (channel nanotoxicity) such as:

•	 FS0 represents the dataset with the same SWCNT nanodescriptors of the best predictive linear NQSBR model 
obtained with STATISTICA (4 SWCNT nanodescriptors: FEBexp, V01, V11, V14);

•	 Pool contains all the features (SWCNT nanodescriptors: FEBexp, V00–V17);
•	 FS1 was obtained by feature selection with parameters, using Evaluator (CfsSubsetEval) to assess subsets of 

SWCNT nanodescriptors that highly correlate with the class value and have low correlation with each other. 
In addition, Search (Best First) was used for 6 SWCNT nanodescriptors: FEBexp, V02, V03, V04, V10, V12) 
with a best-first search strategy to navigate attribute subsets which reduce training time, overfitting, and 
improves accuracy.

•	 FS2 was obtained by feature selection with Evaluator (Correlation Attribute Eval) following the principle that 
features (SWCNT nanodescriptors) are relevant if their values vary systematically with the membership cat-
egory. Search (Ranker) was also used, based on 8 SWCNT nanodescriptors: FEBexp, V02, V03, V04, V09, 
V11, V12, V14);

•	 FS3 was obtained by Weka data mining feature selection using Evaluator (Principal Components) and Search 
(Ranker) based on 8 SWCNT nanodescriptors); the Principal Component62 transformation was used to study 
the influence of dataset dimension reduction by encoding the information of 19 SWCNT nanodescriptors 
into only 8 linear combinations of them;

•	 FS4 contains only 2 SWCNT nanodescriptors that have proven to be very important for the models (FEB 
expected, V02).
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The performance of the Classification Machine Learning NQSBR models from Weka are characterized by 3 
criteria: maximum AUROC63, maximum TP Rate (true positive rate), minimum FP Rate (false positive rate), 
commonly used in the field of chemoinformatics36 and currently in computational nanotoxicology. To visualize 
and verify the results obtained with the LDA classification NQSBR model from the external dataset, we used a 
set of empirical physico-chemical parameters of pristine SWCNT, not tested in our original dataset, obtained by 
Bachilo et al. (2002)44. In addition, to represent the multiple factors involved in VDAC channel nanotoxicity, a 
Two Way Joining Cluster (TWJC) analysis was performed through heat map of contingency table64.

Performed regression NQSBR models. The Pool dataset was used with the RRegrs methodology33,37 
taking into account all the SWCNT nanodescriptos (V00–V17) to find the best regression model that predicts 
FEB values for the SWCNT-VDAC interactions. The initial dataset was normalized using R scripts. RRegrs is 
an R integrated framework that provides ten linear and non-linear regression models. The following regression 
methods were tested: Multiple Linear regression (LM), Generalized Linear Model with Stepwise Feature Selection 
(GLM), Lasso regression (Lasso), Partial Least Squares Regression (PLS), Elastic Net regression (ENET), Neural 
Networks regression (NN), Random Forest (RF), and Random Forest Recursive Feature Elimination (RF-RFE)33. 
Standard RRegrs parameters and methodology were applied: dataset automatically devided by RRegrs using 10 
splits (train and test subsets)33. The selection of the best regression models used R2

test (regression coefficient for 
test subset) and RMSEtest (root-mean-square errors for test subset) values Figshare48 (Fig. SM02). As an initial test, 
regression models were sought by excluding the FEBexp, checking the importance of the Perturbation Theory for 
these regression models when predicting the SWCNT-VDAC interactions.
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