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Abstract 

In awake monkeys, we used repetitive transcranial magnetic stimulation (rTMS) to focally inactivate visual 

cortex while measuring the responsiveness of parvocellular lateral geniculate nucleus (LGN) neurons. Effects 

were noted in 64/75 neurons, and could be divided into 2 main groups: (1) for 39 neurons, visual responsiveness 

decreased and visual latency increased without apparent shift in receptive field (RF) position and (2) a second 

group (n = 25, 33% of the recorded cells) whose excitability was not compromised, but whose RF position 

shifted an average of 4.5°. This change is related to the retinotopic correspondence observed between the 

recorded thalamic area and the affected cortical zone. The effect of inactivation for this group of neurons was 

compatible with silencing the original retinal drive and unmasking a second latent retinal drive onto the studied 

neuron. These results indicate novel and remarkable dynamics in thalamocortical circuitry that force us to 

reassess constraints on retinogeniculate transmission. 
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Introduction 

Cortical feedback represents the most numerous input to the lateral geniculate nucleus (LGN), and 

from the classic work by Tsumoto et al. (1978), its influence on the physiology of LGN neurons has 

been broadly documented (for comprehensive reviews on the field, see references Wörgötter et al. 

2002; Cudeiro and Sillito 2006; Sillito et al. 2006; Briggs and Usrey 2011). This evidence has shown 

a variety of effects exerted by the cortical feedback, including enhancement of the surround 

antagonism (Cudeiro and Sillito 1996), excitatory and inhibitory responses due to stimulation beyond 

classical receptive field (RF) (Marrocco et al. 1982), dynamic sharpening of the spatial focus (Jones 

et al. 2012), contribution to length tuning properties of LGN cells (Murphy and Sillito 1987), 

increasing the gain in a focal window at the thalamus (Rivadulla et al. 2002), introducing orientation 

discontinuity in the LGN (Sillito et al. 1993), gain control (Przybyszewski et al. 2000), or 

synchronization of relay cell firing and increased reliability and precision of spiking timing (Sillito et 

al. 1994; Wörgötter et al. 1998; Andolina et al. 2007). All these experiments have been carried out in 

anaesthetized animals, which could be masking some cortical influences as perceptual responses to 

sensory input critically depends upon brain state and, for instance, attention during alertness can 

affect our visual perception. In fact, when awake mammals have been studied, ranging from mice to 

nonhuman primates and humans, cortical feedback has been implicated in complex tasks, such as 

spatial attention, figure-ground modulation, or stimulus detection (Vanduffel 2000; O'Connor et al. 

2002; McAlonan et al. 2008; Ortuño et al. 2014; Jones et al. 2015). 

 

Cortical feedback has multiple opportunities for modulating LGN properties. Cortical afferents 

make excitatory contact on relay cells but also on γ-aminobutyric acid (GABA)ergic interneurons 

inside the nucleus and at the thalamic reticular nucleus (TRN) (Erisir et al. 1997; Van Horn et al. 

2000). GABAergic neurons have an inhibitory effect on relay cells. The net balance appears to be 

excitatory as the cortical blockade tends to decrease thalamic activity, but subtle effects are visible 

with more spatially restricted cortical manipulation. 

 

In the monkey, available data indicate that LGN neurons are essentially driven by one ganglion 

cell afferent (Lee et al. 1983; Kaplan and Shapley 1984; Sincich et al. 2007). These observations are 

consistent with Michael's (1988) study of the termination patterns of retinal axons in the LGN who 

stressed the restricted nature of the termination arrangement. The discrete retinopy characterizing 

retinogeniculate wiring seems echoed by the strong retinopy characterizing the cortical feedback 

(Cudeiro and Sillito 2006), meaning that the characteristic signature of any retinal image will in turn 

evoke a unique pattern of feedback from the visual cortex to the thalamus. This reflection of the 

influence of the cortical mechanism, therefore, would have the capacity to produce a selective 

retinotopic pattern of change in the thalamic mechanisms (Ichida and Casagrande 2002; Cudeiro and 

Sillito 2006; Andolina et al. 2013; Wang et al. 2016). 

 

In this study, we investigate the influence of the feedback pathway from the striate cortex (V1) on 

the responses of LGN cells of behaving monkeys by decreasing cortical activity using low-frequency 

repetitive transcranial magnetic stimulation (rTMS). rTMS creates a magnetic field pulse that is 

highly focused and extremely short in time (less than 1 ms) and is able to modulate brain activity. It 

is well known that low-frequency repetitive stimulation (1 Hz and below) has an inhibitory effect on 

cerebral cortex activity. For instance, low-frequency rTMS usually results in suppression of 

corticospinal excitability. A 15 min train of 0.9 Hz at 115% resting motor threshold (RMT) applied 

over the primary motor cortex reduced corticospinal excitability for at least 15 min after the end of 

the stimulation (Chen et al. 1997; Muellbacher et al. 2000). It is also known that the duration of the 

effect is dose-dependent and, for example, a 4 min train of 1 Hz rTMS at 90% RMT reduced the 

motor evoked potential amplitude just for 2 min (Maeda et al. 2000). Similar effects have been shown 

in the visual system. For instance, 1 Hz rTMS applied to the cat visual cortex for 20 min significantly 

reduced early visual evoked potential amplitudes (Aydin-Abidin et al. 2006), and low rTMS (1 Hz, 

30 min) applied to the visuo-parietal cortex of the cat induced a significant reduction of 14 C-2DG 

uptake in the stimulated cortex. High rTMS produced opposite effects. To reduce cortical input to 

LGN cells, we used an inhibitory rTMS protocol over the primary visual cortex (V1) that is known to 

induce the suppression of cortical activity: repetitive stimulation (intensity = 60% maximal output) 

for 4 min at low frequency (0.7 Hz) (Maccabee et al. 1990; Gangitano et al. 2002; De Labra et al. 

2007; Ortuño et al. 2014). 

  



Our data show unexpected and powerful effect on the LGN RF: focal cortical blockade shifted the 

field position by an average of >4°. We argue that such shifts under focal blockade silence the normal 

retinal drive and unmask latent retinal drives whose RF position lies beyond the retinotopic extent of 

our inactivation. These effects cannot be accounted for by our current understanding of retino-

geniculo-cortical circuits and show the great capacity of cortical feedback to influence thalamic 

activity in awake states, demonstrating that RFs are dynamic structures regulated by the thalamo-

cortico-thalamic interplay. 

Materials and Methods 

We recorded activity from 75 LGN parvocellular neurons from 2 awake male primates 

(Macacamulatta) following the rules of the Spanish Society of Physiology, the International Council 

for Laboratory Animal Science, and the European Union (Bylaw No. 86/809) and were approved by 

the ethics committee of the University of Coruña (Ortuño et al. 2014). 

Visual Stimuli for LGN Recordings 

We used a simple fixation task. Animals were trained using fluid reward, in conjunction with 

fluid control where necessary, to fixate a small spot (0.1°) presented on a video monitor placed at a 

distance of 57 cm from the animal. Animals had their head fixed, and their eye position was 

continuously monitored using an eye tracking system (iView; SR Research) recording at 250 Hz. 

After 500 ms of maintained fixation within a 0.5 ° window, the stimuli appeared on the monitor 

(1900 Belinea CRT monitor, 100 Hz refresh rate) for 1000 ms. The stimuli we used consisted of 

circular patches of 2 different diameters (0.6° and 6°) centered over the RF of the cell under test. 

Patches were filled with an achromatic sinusoidal grating (drifting or static) of 2 cycles/degree and 

were shown at a Michelson contrast of 0.6 and 2 Hz of temporal frequency (in the case of drifting 

gratings). The size of the stimuli was chosen to be sure that the RF center, in the case of small 

grating, and center plus surround, in the case of large grating, were fully covered. Visual stimulus 

presentation and control of the task were carried out using the Cortex software package (NIMH). 

Stimuli were presented on a gray background (17.9 cd/m
2
), and monkeys had to maintain fixation 

during the task to receive a reward (a drop of juice or water). The trial was automatically aborted if 

fixation was broken at any time during the task. 

 

To locate the RF position of the recorded cell, we presented visual stimuli covering each quadrant 

of the screen. The stimuli consisted of 16 luminance gratings with different orientations randomly 

presented at 15 Hz. In the quadrant where a visual response was obtained, we repeated the operation, 

dividing this region into 4 (and reducing the size of the grating accordingly), and so on, 6 times, 

allowing us to define the RF with a precision greater than 1 °. 

 

The visual task (10 trials per stimulus) was performed in the control condition and immediately 

after rTMS over V1 (Fig. 1), ipsilateral to the recorded LGN. Biphasic pulses of rTMS were applied 

using a Magstim Rapid (Magstim Company Ltd, UK) with a figure-8 coil (25 mm inner coil radius) 

that generates a magnetic pulse of 1.5 T over the cortical surface (Deng et al. 2013). To obtain full 

recoveries, visual stimuli were presented 30 min after the end of rTMS and every subsequent 15 min 

until visual responses statistically similar to those obtained in the control were found (typically, 

responses were averaged over 10 stimulus presentations and were assessed from the accumulated 

count in the binned peristimulus time histograms (PSTHs) using separate epochs for baseline and 

visual responses). In those cases, where we did not find visual responses to smaller gratings after 

rTMS, the RF location was remapped, and the visual task was performed again.  

  



 
 

 
(A) The trial starts with the fixation spot; 500 ms after fixation the visual stimulus is ON (stimulus duration 1000 ms). The 
animal must keep fixation until the stimulus disappear and then obtains the reward. If fixation is broken the trial is aborted. (B) 

Schematic representation of a standard recording session. Once a spike was isolated, the RF was mapped and then visual 

responses (4 different stimuli, 10 trials each) were obtained in control conditions. rTMS (0.7 Hz, 4 min) was applied over V1 
ipsilateral to the LGN we recorded from. Visual responses were evaluated at different time intervals after rTMS. RF position 

was evaluated before each visual stimulation protocol and a complete RF mapping was made when necessary. 

Extracellular Recordings 

Extracellular single-unit recordings were made in the LGN using tungsten electrodes (FHC, Inc.) 

of 9–12 Mohm impedance. A recording chamber was centered 5.5 mm anterior to interaural 0 and 

11.6 mm lateral to the midline. Dura mater was maintained intact during the experiment, and a guide 

tube was used to place the electrode into the brain; the guide tube remained well above the LGN. 

LGN recordings were verified by the nature of the visual response and the alternation of the ocular 

input of the responses as the electrode progressed through the LGN layers. LGN cells were recorded 

at eccentricities ranging from 1 to 18° (mean: 8.091 ± 4.289°). 

Data Analysis 

Spike waveforms from each neuron were sampled at 25 kHz, filtered between 250 and 8 kHz, and 

collected with a Spike2 System (Cambridge Electronic Design, UK). Offline analyses were carried 

out using custom Spike2 (CED, UK) and Matlab R2015a (Mathworks, Inc.) scripts. Recordings were 

sorted offline using principal component analysis (PCA). To ensure that the recorded cell waveform 

was the same during the full protocol, spikes were analyzed using a gamma-index analysis (GIA) 

(Low et al. 1998). GIA was performed by measuring the acceptability as the multidimensional 

distance between the data points of 2 spike waveforms in both the voltage and time values, scaled as 

a fraction of the acceptance criteria. In a space composed of voltage and time coordinates, the 

acceptance criteria create an ellipsoid surface (tolerance ellipse):   
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where r2 is the difference between points on the x-axis (time difference) and δ2 is the difference on 

the y-axis (voltage difference). ΔD2m and Δd2m are the time and voltage tolerance values, 

respectively: 3% of a voltage point for the voltage-axis and 0.025 ms for the time-axis. The axis 

scales are determined by individual acceptance criteria, and the center is located at the comparison 

data point. The minimum radial distance between both waveform points is termed the γ-index, so if γ 

< 1, then the comparison passes the test. If more than 85% of the points have a gamma index below 

one, then GIA passes the acceptance test, so we are comparing the same waveform profiles. All 

recorded cells passed the GIA. 

 

Repeated presentations of the same stimuli were used to generate PSTHs. A PSTH provides a 

means of correlating the discharges of neurons with the stimuli onset. These histograms were made 

using the optimal bin size following the Freedman–Diaconis Theorem (Freedman and Diaconis 

1981), which provides the optimal number of bins calculated by the expression:   

 

 

#𝑜𝑓 𝑏𝑖𝑛𝑠 = 2[𝑄3 − 𝑄1]𝑛−1/3 , 

 

 

where [Q3−Q1] is the interquartile range of the data, and n is the number of observations in the 

sample. 

 

Phase-shifts were measured by fitting PSTHs using a sinusoidal equation:   

 

 

𝑦(𝑡) = 𝑎 ∗ sin(𝑏 ∗ 𝑡 + 𝑐) + 𝑑, 
 

 

where a, b, c, and d are fit parameters. Phase difference was calculated by the absolute value of the 

difference between sinusoidal arguments:   

 

 

Δ𝜑 = |[𝑏 ∗ 𝑡 + 𝑐]𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − [𝑏 ∗ 𝑡 + 𝑐]𝑛𝑒𝑤 𝑅𝐹 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛|. 

 

 

Statistically, the data were analyzed with a 3-way analysis of variance for repeated measures 

(ANOVA-RM), performing the Greenhouse–Greiser correction for nonsphericity when necessary. 

Three within-subjects factors were set, the factor CONDITION with 3 levels (Control, rTMS, and 

Recovery), the factor SUBJECT with 2 levels (monkey A and monkey B) and the factor STIMULUS 

with 4 levels. In the case of significant differences, post hoc analysis was performed using the Tukey 

HSD test (Honestly Significantly Different). Results were considered significant when P < 0.05. 

Results 

We recorded 75 LGN cells from 2 awake behaving monkeys during spontaneous and visual 

guided activity: Monkey#1, 50 cells from the right LGN, plus 10 cells from the left one; Monkey#2, 

15 cells from the right LGN. Physiological response properties, electrode depth and stereotypical 

shifts in eye preference were compatible with recordings obtained from parvocellular layers. To 

explore the effect of the cortical feedback on LGN responses, we used simple visual stimuli (as 

employed in the classical experiments with anaesthetized animals). The stimulation consisted of the 

presentation of 2 sets of stimuli: static gratings, temporally modulated, considered to drive LGN 

neurons strongly but not to activate corticothalamic cells very well, and drifting gratings, 

spatiotemporally modulated, which should be more effective at driving cortical neurons. Two 

different sizes of gratings were used: One adjusted to cover only the RF center and the other 

including center plus surround. 

  



Our results can be divided into 3 groups: Cells whose RF position was modified after rTMS to V1 

(33% of the whole sample, 25 cells; see below), cells whose firing rate was reduced but RF position 

was not modified (39 out of 75, 52%) and those not affected by our protocol (11 out of 75, 15%). 

Group 1: Cortical Blockade Reduces LGN Cell Responsiveness 

For those cells that did not shift the RF position (n = 50), the most common effect observed (39 

out of 50 cells, 34 in monkey#1 and 5 in monkey#2) after low-frequency rTMS application to V1 was 

a reduction of visual responses (P < 0.001, ANOVA with Repeated Measures; ANOVA-RM). The 

PSTHs shown in Figure 2 illustrate these findings. rTMS produced a decrease in the response to all 

stimuli (A–D) for an individual cell (top panels) and for the averaged population. There was a 

tendency for a higher decrease in the responses evoked by the small drifting grating, but these 

differences were not statistically significant (P > 0.05, ANOVA-RM). Additionally, there was a 

significant reduction in spontaneous activity after rTMS (11.64 ± 1.02%, P < 0.01 ANOVA-RM).  

 
 

 
Visually evoked responses obtained with the 4 stimuli employed in the different experimental situations. (A) Small drifting 

grating, (B) Large drifting grating, (C) Small static grating, and (D) Large static grating. In each of the panels, a representative 

cell (top) and the population data averaged across the whole stimuli and normalized (bottom) are shown. Recovery data were 
recorded 30 min after rTMS. (***) P < 0.001.  



Interestingly, after applying rTMS the reduction in firing rate was accompanied by an increase in 

peak latency, defined as the time from the stimulus appearance to the maximum response. The 

latency was calculated and averaged only for the static stimulus as drifting grating could introduce 

variability in the responses due to trial by trial variations between the stimulus phase, the start of the 

movement and the RF position. After cortical blockade, there was a significant increase (P < 0.05, 

ANOVA-RM) for both small and large gratings of 5.58% (3 ms) and 6.14% (3.3 ms), respectively 

(Fig. 3). There were not specific differences related to the stimulus size (P > 0.05, ANOVA-RM). 

 
 

 
Averaged latency for those cells that decreased firing rate after TMS in V1 (n = 39) obtained with center stimulation alone 

(continuous line) and center+surround (dashed line) stimulation in different experimental conditions. (*) P < 0.05. 

Group 2: Cortical Blockade Shifts RF Position 

Twenty-five cells (33% of the recorded sample, 16 in monkey#1 and 9 in monkey#2) showed a 

displacement in RF position after rTMS to V1. Figures 4 and 5 show raw records from 2 different 

LGN neurons under visual stimulation with a 0.6 ° drifting grating over the RF before (A) and after 

rTMS (B). After rTMS application, the neural response obtained during control was silenced, and the 

stimulus was not able to evoke visual response. When the RF was remapped, a new location for the 

cell was found, and it was located 5.39 ° apart from the original position in the case of the cell 

illustrated in Figure 4 and 3.92 ° for the cell shown in Figure 5. Again, a visual response was 

obtained (C). The insets at the upper left corner of each panel graphically represent (not to scale) the 

position of the stimulus for each condition. It is very clear that after TMS, there was a shift in the RF 

location.  

  



 
 

 
Visual responses (raw traces) recorded from one single cell when the visual stimulus (small drifting grating) was centered on 

the RF initial location in control (A), after rTMS (B), and in the new RF location (C). The RF position is schematically 

depicted in the insets. Three trials are shown for each stimulation position, and the area inside the square is expanded (upper 
trace in each case). (D) PSTHs representing the averaged response (10 trials) obtained from the same neuron in control 

(continuous black line) and 30 min after rTMS (dashed gray line). (E) PSTHs comparing the original response (black, same as 

in D) with the one obtained 30 min after rTMS once the RF was remapped and the visual stimulus was placed in the new 
location (gray line). Visual stimulus was a 0.6 ° diameter drifting grating, and the gray area represents stimulus duration. The 

displacement of the RF center was 5.39 ° in this particular example (F). The mean shift was 4.53 °. (G) All spikes obtained 

with visual stimulation at the original RF position for the same cell in control (top left) and at the new RF position after rTMS 
(top right). For each experimental session, we analyzed spike waveforms with a GIA (see Materials and Methods). We 

compared the average value of spikes recorded at the original and new (displaced) RF location, obtaining a gamma function as 

the output (bottom). If more than 15% of the points of the gamma function have a value above one, then the test fails, and we 

cannot ensure that the waveforms are the same. The results demonstrate that we were recording the same cell. Only those cells 

that passed the test were included in the study. 

  



 
 

 
Another example obtained from a different neuron (see legend for Fig. 4). Notice in this case the phase displacement in the 

visual response at the new location. 

The PSTHs in D are the averaged responses to the same grating when presented prior to rTMS 

(black) and after rTMS (gray). Visual stimulation over the “new RF” (E) induced a response very 

similar to the original (gray line). The X/Y chart shown in F represents the original and new positions 

of the RF for the cell. On average, for the 25 cells there was not significant decrease in visual activity 

at the new position, however, spontaneous activity was reduced by 24.04% ± 13.80 (P< 0.05 t-test). 

In Figure 4, phase of the response did not shift between the 2 locations (3.24°). However, in Figure 

5  the phase-shift was considerable (50.4 °). As we will argue, RF position shift imposed by rTMS is 

attributable to loss of retinal ganglion cell drive and unmasking of a second retinal ganglion cell 

whose RF is outside the topographic bounds of area 17 blockade. The shift in phase is consistent with 

this idea as there is no reason for the second retinal ganglion drive to possess the identical phase 

relationship. This is reinforced by the fact that the other group of cells (group 1, see above) showed 

no phase-shift (0.16 ° in average). Figure 6 shows the observed phase-shifts among the 25 LGN 

neurons that showed shifts in RF position. The phase-shifts appeared random, and there was no 

correlation between the magnitude of phase-shift and the size of RF displacement (Pearson index r = 

0.0624). 

  



 
 

 
Phase displacement in visual responses in the new RF location. The graph shows the phase changes for each of the 25 cells that 

experienced variations in the position of their RFs after TMS. 

The average displacement obtained for the whole population was 4.53 ± 1.95°. The displacement 

of the RF central location was calculated by the definition of Euclidian distance:   

 

 

𝑑 = √(𝑥1 − 𝑥0)2 + (𝑦1 − 𝑦0)2, 
 

 

where (x0,y0) and (x1,y1) are the original and new RF locations, respectively. This value could be an 

overestimation of the actual displacement as smaller shifts were probably not detected (see discussion 

below). 

 

To be sure that we were recording the same cell throughout the recording session, we performed a 

gamma-index test for every recorded neuron (see Materials and Methods), comparing the spike 

waveform in the control and after rTMS; those cells that did not pass the test were discarded from the 

study. Figures 4 and 5G show the spike waveform in the control (left) and after rTMS when the 

visual stimulus was placed on the new RF location (right). The comparison between the averaged 

waveforms recorded in both situations (superimposed) plus the result of the GIA for this cell are 

depicted in the bottom panel. All of the points have a gamma index that is lower than 1, so we 

determined that both waveforms correspond to the same cell. New RF position tended to exhibit 

longer visual latencies, but the difference was not significant (0.0601 ± 0.0056 sec in control, versus 

0.0636 ± 0.0062 after rTMS (P > 0.05) Supplementary Fig 1.). 

 

As a complementary analysis, when a shift in the RF of individual neurons was observed, we also 

compared the multiunit activity recorded at that location before and after rTMS. In all cases, a similar 

displacement in the visual space of the locus of activity was detected (see Supplementary Fig 2.). It 

seems that rTMS produced a scotoma-like effect affecting the neurons at the recording place. 

 

In 3 of the neurons whose RF was displaced after magnetic stimulation, it was possible to apply 

rTMS more than once after the RF was remapped. Figure 7 illustrates the results of one cell at 

different times after rTMS. After a second block of rTMS, the RF position shifted even more 

compared with the original situation but maintained the displacement direction. Interestingly, the first 

RF displacement resulted in a phase-shift in the response by 30.13 °, and the second RF displacement 

yielded a different phase-shift of 13.08 ° from the first displacement. Such dynamic shifts in phase 

and spatial position would be consistent with silencing the first retinal drive, unmasking a second 

(latent) retinal drive with the first rTMS block, and then silencing the second (latent) retinal drive and 

unmasking a third (latent) retinal drive with the second rTMS block.  

  



 
 

 
Single cell responses after 2 consecutive blocks of rTMS application. A and B illustrate the response of the cell in the original 
RF position in control and 30 min after the first block of rTMS. (C) Response of the neuron in the new location (position 2) 

after careful remapping of the RF. (D) Illustrates the response at this same position shown in (C) but after the end of the second 

block of rTMS. (E) Cell response after RF was remapped again, as the visual stimulus was centered in the new location 
(position 3). (F) Map of coordinates depicting RF positions at the beginning of the experimental protocol and, consecutively, 

after different blocks of rTMS. RF shift was 3.7 ° after the first rTMS block and 4.5° after the second. 

Once the RF displacement was detected, we always attempted to obtain a recovery of the initial 

situation (e.g., RF shift to the original position). After recovery times of up to 3 h, it never happened. 

It is worth mentioning that in several occasions, we have used the same coordinates for next day 

penetration. In all cases, the position of the RF was similar to the one at the beginning of the 

recording session of the previous day, suggesting that the scotoma-like effect had disappeared. 

 

These results would indicate that cells located in a particular area seem to be affected similarly 

regardless of cell type, but the possibility still exists that neurons that shift (a third of the recorded 

cells) might belong to a particular subset of neurons, such as interneurons. To minimize this 

possibility, we performed a series of analysis. A PCA for every average waveform of the sample (Fig. 

8A), including height, width at half-high, and slope. The Pearson product-moment correlation 

coefficient showed a linear correlation between height and slope (r2=0.8089) (Fig. 8B), while the 

width did not show any correlation with the other 2 variables (r2≤0.25) (Fig. 8C,D). The width at 

half-high is an independent variable characteristic of the cell under test, so we performed a histogram 

of this variable with a bin width of 0.045 ms (using the Freedman–Diaconis theorem, see Materials 

and Methods). This analysis reveals just one averaged width of 0.36 ± 0.02 ms. Hence, according to 

the parameters included in the analysis, we failed to detect differences that could be attributed to cell 

type. Specifically, we could not find evidence that those cells may be interneurons, whose spikes are 

known to be narrower than those of relay cells, as they have a faster repolarization (Pape and 

McCormick 1995). For these group of cells we also checked ocular movement dispersion during 

fixation (Fig. 8E), reasoning that if TMS produced an alteration in ocular movements coordination 

(temporary strabismus) this would be expressed during the fixation periods. We did not find 

differences before and after the RF shift (P  > 0.05). 

  



 
 

 
PCA was performed for all spike waveforms recorded (A). Pearson product-moment correlation coefficients reveal linear 

correlations between height and slope (B), while the width did not show any correlation with the other 2 variables (C,D). 
Example of ocular movement dispersion during fixation before and after TMS for those cells with RF shift. The circle shows 

the bidimensional standard deviation centered at the mean value for the points. (P > 0.05 t-test) (E). 

To know if different modes of thalamic activity (burst or tonic, see Sherman 2001) could account 

for the observed effects, the percentage of spikes in burst mode in each group was analyzed. A burst 

was defined as a minimum of 2 or more spikes with an interspike interval (ISI) of less than 4 ms, and 

with the cardinal spike following a quiescent period of at least 50 ms. Such patterns are thought to 

represent the extracellular signature of the activation of an underlying calcium current, the basis for 

the burst mode (Lu et al. 1992) which can occur in wakefulness (Guido and Weyand 1995). Both 

groups are almost identical, percentage of spikes in burst was 7.1 in those cells that did not jump, 

versus 7.8 for those that did, similar to previously reported in similar conditions (Ramcharan et al. 

2003; Ortuño et al. 2014). Finally, we performed an ISI analysis that could detect some differences 

on the cell properties. Supplementary Figure 3 shows the results of these analyses for each visual 

stimulus. Again, there were no evidence for support that cells in the 2 groups belong to different cell 

groups. 

 

We analyzed the direction for the RF displacement, and we found 2 principal angular directions 

for the shifts: ϑ1=(111.87±16.43)° 

 

(subgroup A) and ϑ2=(43.14±22.66)° (subgroup B) (see Fig. 9A). We studied both subgroups, and 

we found significant differences in their RF eccentricities (P < 0.05, t-test) (Fig. 9B), obtaining an 

average eccentricity of (8.51 ± 4.55)° for subgroup A and (4.88 ± 3.54)° for subgroup B. Figure 9C 

shows the original and the new RF position, after TMS for each cell. Moreover, when the same 

analysis was performed to compare the group of neurons whose RF position did not change compared 

with those who did, the eccentricity of cells whose RFs were displaced after cortical blockade (6.85 ± 

3.95)° was significantly less (P < 0.01, t-test) than that of the other cells (10.08 ± 4.35)° (Fig. 9B). 

Checking for possible unintentional bias during the recordings, we made a reconstruction of the 

recording position for each cell (Fig. 9D), no differences were found between both groups. 
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(A) Polar plot representing the RF shift direction. It is clear that there were 2 main angular directions for the displacement: 

111.87 (blue) and 43.14 ° (green). (B) Mean RF position of both subgroups and the bidimensional standard deviation. Dashed 

line shows the eccentricity of the RFs for each subgroup. (C) Representation of RF initial and final positions for cells whose 
RF shifted during TMS (n = 25). Displacement toward 111 °, continuous line; displacement towards 43 °, dashed line. (D) 

Schematic representation of the recording position for each recorded cell (n = 75). There is no obvious pattern of spatial 

distribution. 

Discussion 

rTMS Modifies Retinotopic Organization of LGN 

rTMS stimulation that should have focally depressed corticogeniculate activity altered retinopy in 

at least one-third of the LGN neurons. Such alteration is unprecedented and not supported by what we 

understand about retinogeniculate organization in the monkey. The shifts in RF position were 

sizeable, averaging 4.5 °. Because retinal input is necessary for LGN activity such shifts force us to 

explain 2 phenomena: focal inactivation silences a retinal drive and focal inactivation unleashes one 

or more latent retinal drives. 

 

It is not easy to account for the circuits unleashed here, especially the shift in RF position, as we 

have to account for 2 phenomena that have never been observed: silencing of the original drive and 

initiating activity in a latent retinal drive. Silencing the retinal drive could occur if we assume that 

loss of discrete circuits from cortex were somehow necessary for maintaining retinogeniculate 

transmission. The shift in RF position would posit the existence of latent retinal drives to the LGN 

neuron that are unmasked because of loss of focal cortical downflow. These new drives become 

functional as their cortical influence must be coming from cortical regions beyond the block. This 

seems to be supported by the fact that 72% of the affected neurons respond to visual stimulation at 

the new RF location with a shift of phase greater than 10 °. Such speculation would also be consistent 

with those LGN neurons whose RF did not shift, but whose responsiveness was compromised. This 



would be because their circuits are compromised, but not enough to silence the retinal drive, and the 

complete absence of a phase-shift would suggest that the original retinal drive is still intact. 

 

To interpret our findings, it would have been useful to simultaneously record from V1 neurons 

during rTMS application as the observed phenomenon could be related to a topographic 

reorganization of the primary visual cortex after rTMS. Unfortunately, at least in our hands, 

recordings under these circumstances (awake animal) for the long period needed, and at the same 

place were TMS has to be applied, were not technically possible. 

 

Even if we admit that small shifts (less than 1 °) could be classified as “not displaced RF” hence 

underestimating the percentage of “displaced” cells and, consequently, overestimating the average 

displacement; the magnitude of the RF shifts we observed is unprecedented; far greater than observed 

in anesthetized cats, below 0.5 ° (Espinosa et al. 2011; Wang et al. 2016). In the sensory system, 

there exists an organized topographic map of the sensory inputs (retinotopy, somatotopy, etc.) (Kaas 

1997). These maps, far from being immutable, exhibit a high degree of plasticity (Gilbert and Wiesel 

1992; Darian-Smith and Gilbert 1995; Gilbert 1998; Wandell and Smirnakis 2009), and there are 

different ways to induce changes in the topographic organization of the cortex. Studies in primates 

have shown changes in the cortical structure by learning in somatosensory (Recanzone et al. 1992) 

and auditory (Recanzone et al. 1993) cortices, increasing the population that responds to a stimulus. 

Similarly, several studies have reported plasticity effects in the visual cortex of mammals after 

training in a repetitive visual task, improving visual perception (Karmarkar and Dan 2006). Another 

way to induce topographic reorganization in the cortex is by manipulating sensory activity. In V1, the 

elegant work from Charles Gilbert's laboratory showed an increase of approximately 5° in the RF 

size, with changes in the RF spatial location of approximately 1° immediately after removing the 

sensorial input by a localized lesion in the retina (Gilbert and Wiesel 1992). RF displacement 

increased over time and became as large as 5° 2 months after retinal lesion. Furthermore, inactivation 

of cortical feedback from V2/V3 areas has been shown to induce changes in surround supression in 

V1 neurons of awake macaques, altering their RFs spatio-temporal properties (Nassi et al. 2013). 

Finally, lesions produced in the cortex itself also modify the cortical topography. Studies carried out 

in anesthetized cats (Eysel and Schweigart 1999) showed an increase in the RF size of V1 neurons 

surrounding a lesion induced by ibotenic acid. In the thalamus, Krupa et al. (1999) have reported in 

rats that blocking SI produces immediate changes in RF plasticity, unmasking novel responses and 

eliminating existing responses for the same neuron. Also in rats, Ghazanfar et al. (2001) have shown 

enlargements and reductions of RFs in the somatosensory thalamus during cortical inactivation, and it 

has been demonstrated that blocking cortical N-methyl-d-aspartate receptors induced a dramatic 

expansion of RFs in the ventroposterior thalamus (Ergenzinger et al. 1998). Furthermore, in the 

auditory system, Nelson et al. (2015) have described frequency tuning shifts (up to 5 Khz) in MGBv 

neurons after electrical stimulation of the inferior colliculus in control conditions, but not when 

auditory cortex was inactivated using muscimol. These results suggest the existence of dynamic 

sensory mechanisms regulating the interchange of information between cortex and thalamus able to 

re-shape the preexisting RFs. In our study, we used rTMS@0.7 Hz to decrease cortical activity in a 

focal area of V1. This magnetic stimulation protocol creates a temporal “virtual lesion” in the cortical 

surface. In this situation, the surrounding cortical areas assume the functionality of the lesioned area, 

as happens in the case of real lesions, reorganizing the RF topography. It is likely that this 

topographical reorganization is somehow transferred down to the LGN by cortical feedback and is 

able to induce changes in the retinotopic organization of LGN cells. Prior to our work, multiple 

studies had been done in anaesthetized animals addressing the contribution of visual cortex to LGN 

RF properties. Especially, relevant here is Baker and Malpeli (1977) because visual cortex 

inactivation was reversible (cooling), and carried out on unanesthetized (but paralyzed) monkeys. 

Effects obtained were relatively minor and, in any case, did not affect RF topography. However, the 

different animal preparation and the differences in visual stimulation protocols, (they used large, full 

field, stimuli) make it difficult to establish comparisons and may have masked any putative RF 

displacement. 

 

The remarkable shifts in RF position seem unlikely to be artifact. The animal's head was fixed to 

the chair, avoiding possible movements. Eye positions were continuously monitored by an eye 

tracker system that ensures that the animal is fixating at the center of the screen before stimulus 

presentation. Our results could easily be explained if the rTMS induced a shift in position of the 

nonmonitored eye (i.e., induced a strabismus) and we recorded through the nonmonitored eye. 

However, this did not happen. Some of the observed spatial effects occurred in the monitored eye. 



Second, we subsequently monitored both eyes during rTMS inactivation of visual cortex and 

observed no gaze shifts. Furthermore, we analyzed the spike waveforms of each neuron evoked by 

visual stimulation in each position of the visual space, and a gamma test was performed to confirm 

that we were recording the same neuron. Even if for some bizarre reason the recorded cell 

disappeared and was immediately substituted by an indistinguishable neuron, the RF should be 

overlapped. All of these arguments make us confident that there was an actual displacement on the 

cells’ RFs. 

 

These results were unexpected and surprising based on what we know about the monkey visual 

system. Parvocellular cells have a RF of about 1 ° within the central 10 °, nonetheless, our results 

indicate either the retinal ganglion axons have a much broader sampling distribution, or the dendrites 

of the LGN neurons are sampling more broadly. Furthermore, the classic view of the retino-thalamic 

connections in monkey (and cat) points to low convergence, and almost 1:1 connectivity between the 

retina and the LGN, seemingly excluding the possibility of latent connections (Mastronarde 1987; 

Michael 1988). This view was reinforced by more recent experiments recording simultaneously S 

potentials and LGN spikes (Lee et al. 1983; Sincich et al. 2007) indicating low convergence. 

However, it is important to notice that none of these studies can specifically discard the existence of 

silent retino-thalamic connections. All these experiments were done with intact visual cortex, and 

looking for the active inputs to the LGN cell at a particular moment; any silent synapse would not be 

evident. 

 

The possibility of the existence of dormant connections has been suggested in other species. 

Recent experiments in cats and mice (Moore et al. 2011; Hammer et al. 2015) support that idea and 

suggest that “functionally silent, nonspecific retinal inputs can serve as a substrate for rapid plasticity 

in the adult.” Therefore, a tempting hypothesis may be formulated grounded on the existence of a 

main input from the retina to the thalamus, that coexists with secondary inputs masked in control 

conditions that can be “wakened” in certain circumstances (Fig. 10). Whereas the scheme does not fit 

with anatomical data from monkey, it may turn out that the monkey is actually more similar to the cat 

where retinal axons can extend across several millimeter and could account for the size of “jumps” 

observed here (Alonso et al. 2006; Rathbun et al. 2016). Retinal inputs share the spotlight with the 

complex corticothalamic glutamatergic terminals targeting GABAergic interneurons, TRN neurons, 

dendrites of relay cells, and possibly terminals of retinal axons. This complexity is enhanced by the 

fact that the associated glutamatergic receptors can produce EPSPs or IPSPs, and the interneurons can 

produce disynaptic circuits to change sign and duration of influence. Then, following the cartoon 

shown in Figure 9, V1 can directly potentiate a given location in visual space (position 1) through 

corticofugal axons operating via metabotropic receptors (Lam and Sherman 2013) and, 

simultaneously, blocks afferents from position 2 due to presynaptic inhibition mediated by 

GABAergic interneurons (Chen and Regehr 2003).  

  



 
 

 
(A) This cartoon illustrates a possible explanation for the observed effects. Each subgroup had a different RF location at the 

LGN, hence it receives cortical feedback from different cortical locations within V1, one deeper than the other. As the TMS 

coil was always applied at the same position, it is conceivable that cortical cells were affected differently by the magnetic field, 
which rendered different modulatory effects on the LGN cells. (B) A given LGN neuron receives input from retinal cells 

covering an area higher than the classical RF, but cortical inputs potentiate those at the RF center (position 1) and 

simultaneously block the influence from peripheral inputs. For simplicity, we only show the circuit for the recorded neuron. 
Green represents excitatory inputs, red represents inhibitory ones. Input strength is represented by color intensity. (C) Cortical 

TMS on V1 at the frequency and intensity used in this work causes cortical depression (represented in the cartoon as pale 

color). This releases inhibition on peripheral inputs. Simultaneously, surrounding cortical areas increase their activity which 
inhibits inputs from position 2. Notice that the red line from relay cell represents presynaptic inhibition exerted by the cortical 

cell over the retino-thalamic synapse through metabotropic Glu receptors (Lam and Sherman 2013). 

During rTMS-induced cortical blockade, there is an immediate reorganization of the system; the 

affected area decreases its activity, releasing the inhibition affecting position 2. Simultaneously, there 

is an increment of activity in the periphery at cortical level which inhibits inputs from position 1. The 

whole process induces the RF shift. The cortical extension of the effect, plus the retinotopic 

relationships between cortex and LGN would determine the shift direction and magnitude. 

 

There were 2 principal angular directions for RF displacements: ϑ1 = (111.87 ± 16.43)° (subgroup 

A) and ϑ2 = (43.14 ± 22.66)° (subgroup B) (see Fig. 9). Each subgroup has different eccentricities, 

and, is therefore driven from different locations in the LGN (Fig. 9B). This implies that these 

subgroups receive different feedback from different cortical locations (Fig. 10). Although the TMS 

coil was always placed at the same cortical coordinates, the intensity and orientation of the magnetic 

field affecting those cortical locations seems to have been different, changing the cortical activity in 

complex ways that could explain 2 different displacement directions. The precise mechanism 

implicated will be the object of future studies, but the fact that rTMS stimulation can differently 

affect different groups of cells depending upon their location in the visual cortex could also explain 

why some neurons showed RF shifts and other did not. Furthermore, it could be related to different 

subpopulations of layer 6 corticofugal neurons (Briggs et al. 2016) differentially affected by our 

manipulation. 

 

Neurons whose RF's shifted after rTMS exhibit lower eccentricity values than those whose RF did 

not shift (P < 0.01, t-test), which would have a retinotopic representation in V1 innermost in the 

sulcus. In this case, the magnetic field would not be strong enough to affect the neurons or change the 

spatial properties of the LGN cells. Furthermore, we did not find any other distinctive aspect in those 

cells whose RF shifted versus those that did not in terms of firing rate, spike waveform, depth at the 

LGN, etc. However, taking into account the retinotopic relationship between visual cortex and 

thalamus a plausible possibility could involve an optimal alignment between TMS at V1 and the 

recording electrode at the LGN. Experiments to check for this possibility, would probably include 

tiny and focal blockades of a restricted area on V1, perhaps using pharmacological/optogenetic 

techniques, and recordings in the correspondent locus at the level of the LGN. In our hands and using 

a behaving primate, it is not possible.  



The observed effects lasted hours, waiting up to 3 h failed to show a recovery. We would like to 

emphasize, however, that when we used the same coordinates for next day penetration (we recorded 

from the same spatial location) the position of the RF was similar to the initial one of the recording 

session of preceding day. This long lasting effect may be related to the rTMS protocol employed. 

Although a single session of repetitive TMS at of 1 Hz produces short-term changes, continuous 

application, day after day (sometimes twice a day), induces long lasting effects (Chen et al. 1997; 

Muellbacher et al. 2000; Nyffeler et al. 2006; Plewnia et al. 2007). Such enduring changes form the 

basis for TMS treatment in various mental illnesses such as depression or anxiety (O'Reardon et al. 

2007; Diefenbach et al. 2016). It could be that the intrasession lack of recovery is just reflecting a 

cortical LTP-like effect that overcomes the recording period for a particular cell (up to 3 h). 

Interestingly, those cells that showed a reduction in response but not a RF shift, recovered their 

responsiveness about 30 min after rTMS. The simplest interpretation, following the hypothesis 

mentioned above (see Fig. 10), would be to assume that the strength of the effect observed in the 

LGN reflects the intensity of the cortical block produced by rTMS. It will depend on the retinotopic 

aligment, the geometry of the cortex and the relative location of affected corticofugal cells with 

respect to the coil, which will define the intensity of the magnetic field reaching those neurons. In 

some cases, the V1 blockade is just enough to reduce the descendant excitatory input to the LGN but 

without silencing it. In other cases, V1 suppression is stronger, blocks the cortical influence on the 

LGN neuron yielding a functional inactivation of its normal retinal drive. The influence of cortical 

downflow from beyond the rTMS block can allow the unmasking of other latent retinal drives. This 

explanation is speculative and needs further confirmation. 

rTMS to V1 

rTMS has been widely used for a number of years as a useful tool for modulating cortical activity. 

Based upon early evidence showing that trains of stimuli delivered to the motor cortex could produce 

either increased or decreased corticospinal excitability, rTMS has become an excellent procedure for 

testing and modulating neuronal excitability (Kobayashi and Pascual-Leone 2003). Previous work 

have shown that low-frequency rTMS, similar to the one used in this paper, produces a reduction of 

the cortical activity (Chen et al. 1997; De Labra et al. 2007; Ortuño et al. 2014) that lasts up to 15 

min after the magnetic stimulation is finished. In addition, previous work from our laboratory in 

anaesthetized animals (cat and monkey) where low rTMS was applied to V1 showed a reduction in 

responsiveness of LGN cells (De Labra et al. 2007; Espinosa et al. 2011). In this study, we report that 

rTMS at 0.7 Hz generates a significant decrease of both basal and evoked responses in the 49.3% of 

LGN cells recorded. We trust that this decrement is due to reduction of the corticothalamic input 

provoked by the cortical inhibition due to magnetic stimulation. The magnetic field magnitude is 

inversely proportional to the distance (B∝1/r) (Biot and Savart 1821), so a direct effect on subcortical 

structures is very unlikely (Deng et al. 2013). 

 

Furthermore, we found a significant increase in the latency of LGN cells after cortical blockade. 

This result fits well with previous work (Espinosa et al. 2011) performed in anesthetized cats that 

showed an increment of latency of approximately 1 ms, when a similar rTMS protocol was used. This 

change is smaller in magnitude than the one obtained here, which could be due to the experimental 

model used (awake primate vs. anesthetized cat). The increase in latency could be due to the decrease 

of excitability at the LGN induced by the decrease of a tonic cortical excitatory input. In other words, 

the result suggests that in physiological conditions, the cortex, by modulating the membrane potential 

of thalamic cells, is capable of generating a locus of increased activity in the thalamus, thus 

facilitating the transfer of information from specific areas of the visual space. 

 

In summary, we have shown that acute removal of feedback from V1 to LGN using rTMS in the 

awake monkey effectively shifts the RFs of LGN neurons by an average of 4.5°. These results, 

unpredictable based on our current understanding of sensory systems, suggest the existence of latent 

sensory inputs from the periphery that are being selected by feedback connections. In fact, our results 

evidence that the cortical feedback has an astonishing potential for modulating thalamic responses, 

being able to change even the RF position in some conditions, and hence demonstrating that RFs are 

dynamic structures. We would like to suggest that in normal conditions, this sort of iterative and 

dynamic reshaping of RFs happens in a much more controlled way, reflecting top-down influences 

related to attention or to other feedback-mediated processes. 
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