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Abstract: An overview of issues with environmental relevance that arise from the 

interaction between pollutants and surfaces of the built environment is presented in this 

paper. Two broad perspectives are considered: decay of materials and recording of 

pollution characteristics. In relation to the former, we consider the possible implications on 

human activities restrictions, materials and morphological options, consumption of 

resources and release of pollutants resulting from the alteration of materials, conservation 

and restoration procedures. In terms of pollution recording, the interest of the stony 

materials as passive monitors of pollution, the question of heterogeneous conditions on 

buildings and the interest of qualitative and quantitative studies are highlighted. The 

importance of longitudinal studies on new and cleaned surfaces is considered, both for the 

understanding of materials decay and for the assessment of pollution conditions. The use of 

tracers to record the characteristics of pollution sources, interaction with materials and 

pathways of pollutants is also discussed. Finally, some recommendations are presented, 

based on the issues discussed on this paper that might be relevant for environmental 

management programs, including environmental education. 
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1. Introduction 

Materials are an essential part of our culture and way of life being applied in a great diversity of 

surfaces of the built environment, from extensive outdoors walls to kitchen countertops. As has been 

recognized for a long time, they experience transformations after emplacement (Herodotus, Vitruvius 

and the Bible refer to alterations of materials). These alterations are related to characteristics of the 

materials and conditions of application, including environmental conditions and buildings.  

Diverse pollutants can interact with surfaces in the built environment causing unwanted alterations 

and leaving marks of these interactions. In this paper, we attempt to present an overview of the 

possible relevance of the study of these interactions for environmental policy, regarding both impact 

on materials (including materials with cultural value) and the use of decay features such as sources of 

information on pollution. 

The following two main sections of the paper represent different perspectives in relation to the built 

environment and pollutants. In the next section environmental issues arising from the study of the 

behavior of materials applied in the built environment are considered, both from the perspective of the 

conservation of the old (cultural heritage), applications on new constructions and building materials as 

sources of pollutants. This is followed by a discussion on the potentialities and problems on the use of 

built surfaces as records of pollution. The paper ends with some final considerations and 

recommendations based on the contents of the previous sections. 

2. Decay of Materials 

Extrinsic agents can affect materials’ surfaces causing alterations of their initial characteristics, 

either from changes in the initial substances, accretion of matter or erosive loss, resulting in 

macroscopic evidences. A detailed classification of the features resulting from alteration of stony 

materials (that can be applied to other materials) is found in [1]. These processes affect the generality 

of materials, namely porous materials such as stony materials [2-4] and woods [5,6], but also  

metals [7-9], polymers [10,11], glass [12,13], paints [14,15] and paintings [16-18] in both very ancient 

and recent works. 

In the case of alteration of building materials that are elements of cultural heritage, conservation 

would comprise measures for reduction of the decay process of building materials. When the processes 

are linked to pollutants resulting from antrophogenic activities, these measures could include reduction 

of emissions from vehicles and industry which might even imply the closure of roads and facilities (the 

impact of vibrations from circulating vehicles must also be considered). Favrel and Hecq [19] include 

the impact on buildings in their assessment of costs related to air traffic. Watt et al. [20] discuss the 

possible implications of the effects of pollution on buildings for the definition of air quality standards. 

As another example, the Portuguese municipal assembly of Batalha, in Portugal, recently expressed 

concern for the possible impact of increasing vehicle traffic near the Batalha’s monastery. The 
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circulation and access of people to museums and cultural elements, as well as climatic options, 

activities and materials may also impact such places of interest [21-24]. 

In this context, it is essential to assess the real impact of decay processes. For example, biological 

colonization can have a marked visual impact leading to visual hindering of decorative elements (and 

therefore it could obliterate its cultural value); however its impact in terms of physical transformation 

and material loss is usually minimal. Several studies have attempted to establish relations between 

decay of materials and pollution conditions through laboratory studies aiming to define damage or 

dose-response functions [9,13,20,25-28]. However, the application of these studies to actual structures 

is hindered by questions regarding size and time effects as well as the multiplicity of agents that are 

involved and the complexity of the interactions. There have been fewer studies comparing observed 

decay of materials in actual structures to the characteristics of the pollution load in the area (e.g., as 

was done by Nord et al. [29]). 

The evaluation of the decay of a material can be a matter of great controversy as is illustrated in 

Mostafavi and Leatherbarrow [30] where several points of view are considered, including the 

perspective that weathering can be seen as productively modifying a building over time. One can even 

find examples of intentional weathering [30-32]. The assessment of the alteration of a built element 

should consider intensity and extension (see Fitzner and Heinrichs [1]), the distribution of alteration 

features and the age of the element. For example irregular straining can be considered as dirt or  

soiling [30,33] especially in recent constructions (see Figure 1), while a generalized biological coating 

in older constructions can be considered as “patina” that mark the passage of time (for further 

considerations see Mostafavi and Leatherbarrow [30] and Kirkwood [31]). 

Figure 1. Irregular staining of limestone applied on a recent construction. 

 

 

Besides the obvious question of the balance between the value of the cultural elements and the 

consequences of the proposed restrictions, there is the more complex question of the assessment of the 

links between decay and agents and the even more complex questions of risk assessment as well as of 
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the effectiveness of the measures. Epidemiological observational studies of the alteration of materials 

can contribute significantly in this regard. An initial consideration that must be addressed is the 

possible diagnostic value of decay features. The identification of pollution sources that affect the built 

heritage suffers frequently from the problem of equifinality that affects many studies in the natural 

sciences (see discussion in Turkington and Paradise [34]). While it is hardly possible to relate a 

specific alteration feature to a specific pollution source, the study of the spatial distribution of decay 

features and substances (minerals, chemical elements, ions, isotopes) could help to pinpoint  

pollution sources. The identification of pollution sources would be important for planning of  

intervention measures. 

Some records of the characteristics, effects and pathways of pollutants in the built environment have 

been obtained by using geochemical tracers used with variable results. In particular, some chemical 

compounds can be used as tracers of pollution. Regarding particulate tracers, some of them are useful 

to record the effect of atmospheric pollution. Some atmospheric particles (such as N- or S-rich 

particles) can react with building materials to originate secondary compounds, products of decay. 

Other particles can be deposited on the materials’ surface, but some of them act as catalysts of 

sulfation reactions of atmospheric SO2 with Ca-rich building materials [2]. 

Some other common gaseous, dissolved and particulate pollutants are sulfur, nitrogen, and carbon 

oxides. They are key components involved in the deterioration of building materials that cause the 

deposition of crystallization of neoformation minerals. Stable isotopes of sulfur, oxygen and carbon 

have been used in studies of migration of water and pollutants into the building system and interaction 

with the building materials [35-38]. Stable isotopes of N and H and radioactive isotopes are scarcely 

used as tracers in the built environment but, as is discussed, they could provide useful information on 

the pathways and sources of pollutants, as in other cases such as atmospheric pollution dispersion, 

hydrological and geochemical studies in nature (see [39] for discussion). 

Given the possible impact of the proposed measures, it is essential to distinguish contribution of 

presently acting pollution source from the effects related to pollution events that occurred in the past, a 

distinction that can be extremely hard to assess in historical constructions since there are interactions 

of pollution agents over time on the built surfaces. This is illustrated in Figure 2 where several 

emissions of pollutants are considered as well as different sampling times. In the simplest case, 

admitting that there is no loss from the system, that deposition equals emission, and that the pollution 

effects act in a cumulative way, the pollution assessed at a given moment is the sum of the integrals of 

the pollution emission curve up to that time. In the case illustrated in Figure 2, the later the sampling 

the higher the contents and the higher the multiplicity and complexity of pollution. Additionally, it has 

been observed that pollutants deposits might evolve with time requiring more aggressive cleaning 

techniques [40]. The interaction between pollutants and of them with the substrate, and issues related 

to transport and deposition, would also need to be considered in real cases. 
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Figure 2. Simplified representation of pollutants deposition on a surface of the built 

environment. Four moments of sampling are considered. Under undisturbed conditions 

(S1-3) earlier sampling corresponds to more specific pollution conditions. In S4 only the 

pollutants deposited after cleaning are assessed, (admitting the success of the cleaning 

procedures and that no residue of cleaning substances remains). Prepared with OpenOffice 3. 

 

 

The previous paragraph illustrated the importance of understanding the relationship between 

pollution sources and decay processes, of studying new works located in the same area as the affected 

element and to develop longitudinal studies of materials surface. Considering this aim, longitudinal 

studies could be carried out on old and new materials surfaces as well as on cleaned surfaces. In  

Figure 2 cleaning is also taken into consideration. In the illustrated example, and admitting a 100% 

effective cleaning operation that leaves no residue, the system at S4 would present only the pollutants 

that were deposited after cleaning. Higher rates of decay after cleaning have been observed [41] and 

cleaned surfaces could constitute enhanced sampling elements. Periodically cleaned surfaces could be 

important instances for longitudinal studies regarding the action of pollutants. In this last case, 

however, it is necessary to assert the effects of the cleaning, namely whether there is a “reset” of the 

system, the permanence of residual amounts of pollutants or even the introduction of new substances. 

Cleaning and other conservation operations could also introduce restrictions on normal circulation 

of people and vehicles, causes spending of resources (namely water) and, more worrying, 

environmental risks, namely associated with some of the substances that are used [22,42,43] and the 

introduction of pollutants in the treated materials [42,44]. The issue of resources consumption, 

materials and energy, is a current concern for conservation installations such as museums [45,46]. The 

need for repeated maintenance would imply additional costs and can have an impact on the  

materials [20,41]. The previsions of decay rates can be used to estimate the periodicity of cleaning [47] 

and simulations of performance–degradation models have been considered in the discussion of 

maintenance budgeting [48]. Conservation intervention is strongly linked to diagnostics studies in 

order to define the measures that are adjusted to the problem and avoid excessive use of resources. 

Another environmental issue related to cultural heritage is the substitution of decayed materials for 

new materials, an operation that would imply consumption of new substances for the preparation of the 

new materials, with the associated financial and environmental costs, as well as environmental risks 

associated with the extraction operations. This links these previous considerations regarding cultural 

heritage with the more general issue of materials durability, which is also relevant for new works. 
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Therefore, the identification and selection of materials that have higher durability would promote 

required performance for a longer time and decrease the impact associated with these two aspects 

(expenditure of resources and release of contaminants). However, this must be balanced with the 

possible environmental costs of extraction of these more durable materials. The need to use stones with 

higher durability could imply measures such as the preservation of quarries of stones with higher 

durability value (with consequences for territory management). For example in Portuguese legislation, 

the recognition of quality and value of a certain rock types has lead to definition of geological reserves 

with restriction on the kind of activities that can be developed. Another related issue is the 

consideration of materials making allowance for the environmental impact of its fabrication as well as 

its recycling capability [46]. 

Besides the intrinsic properties of materials, there are architectural options that can promote 

depreciation of the built surfaces. There are studies of computer simulation of weathering of materials 

in relation to morphological features [49,50], an aspect that has been mostly considered in terms of 

virtual reality for applications such as videogames and movies. Certain characteristics of the built 

environment that promote infiltration or permanence of water could promote the development of decay 

features. Characteristics that promote or minimize alteration can be considered in the design of 

structures in order to minimize weathering processes [7,30,33,51-55]. 

There are important interrelations between studies of the old and of the new. Historical heritage 

elements could be important sources of information on the behavior of stones under real exposition 

conditions (in contrast to laboratory tests, perfectly controlled but limited in size, time and lacking the 

impact of interactions). The observations of the evolution of new constructions could be an important 

component for understanding decay of historical cultural heritage, following the old geology motto of 

“the present is the key to the past”. 

Another aspect related to alteration of building materials is the release of pollutants. Building 

materials can act as pollution sources affecting the surrounding environment (in relation to 

cementitious materials see [56]; regarding metallic materials several examples can be found in [57]). 

The release of substances from building materials can also affect those materials or other nearby 

materials. Pollutants from building materials can arise from the pore content such as soluble salts on 

natural rocks [21,58,59] and in the case of cements in the initial stages of setting (for the main 

chemical characteristics of the pore solutions in initial stages of setting of cements see [60] and 

references therein). In the case of artificial materials prepared with water (such as mortars and 

pavements) the water that is used is also a potential source of pollutants [61]. In the context of 

epidemiological studies of materials decay, one needs to study the release of pollutants due to the 

alteration of the constituents of materials, as mentioned in relation to the weathering of constituents of 

natural stone, specially calcite [62-68] but also dolomite [69], silicates [70,71], iron sulfides [72-75] or 

oxides [76-79] and organic components ([80]; see also several references in [81]), constituents of set 

mortars [80,82,83] and metals corrosion [3]. These aspects could be considered in relation to the 

formulation of materials (and the control of chemical composition of different constituents) but also 

regarding the way they are applied on the built environment (architectural options). 

Finally, one can note that there is currently research [84] that aims to develop new materials that 

interact actively with the surrounding environment (“metabolic materials”), promoting the preservation 
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of the building from the action of exterior agents and the positive impacts of the building on the 

surrounding environment (“living architecture”). 

3. Built Environment as Record of Pollution 

Elements of the built environment, since they react and fixate pollutants, have the potential to 

constitute records of the surrounding environment. This is a relatively common notion that is found, 

for example, when people refer to rust marks in metallic elements in regions near the sea. While the 

conditions of fixation of pollutants by humans and by materials surfaces have major differences, 

studies of surfaces can be valuable in the comparison of exposure conditions.  

Alterations of surfaces can be easily detectable (namely by visual inspection) indicators of 

pollution. At an initial stage and in a qualitative perspective one can consider the possible information 

that can be gained from the occurrence of alteration features and its typology (for a developed proposal 

of weathering features typology see Fitzner and Heinrichs [1]). The recording value of decay forms for 

the study of pollution can be very different. In general terms, one can argue that fixation increases 

while erosion decreases the recording potential and, in that sense, the most valuable decay features for 

the characterization of the pollution load are coatings. 

There is a great variety of coatings that develop as a consequence of the action of exogenous agents 

(absorption, reaction, deposition) and, hence, the presence of certain coatings might give general 

indications regarding the presence of pollutants. In general, soiling aspects constitute indicators of 

circulation of atmospheric particulate pollution (Figure 3). Coatings formed on façades can give 

qualitative information on the characteristics of the environment surrounding these buildings [85,86]. 

Figure 3. Soiling deposits evidencing circulation of particles (b is an enlarged portion of a). 

 

 
 

Simple dust deposits have been used for studies of pollution in outdoor and indoor locations [23]. 

On other, more complex, coatings, pollutants are fixated by organisms or by mineral aggregates. A 

(in)famous kind of coating related to mineral neoformations is the black crust, where gypsum 

aggregates fixate atmospheric particulate matter (Figure 4). In this case the gypsum aggregates (see 

Figure 4b) trapping atmospheric particles contribute to very evident visual features. Another type of 

widespread coating, especially in diverse modern constructions [87], are carbonate-rich coatings 
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(Figure 5). and the possible environmental monitoring potential of this frequent type of coating, which 

is usually very stable after formation, remains underexplored (natural carbonate deposits with similar 

characteristics such as tufas has been used in environmental monitoring even in modern environments, 

see [88,89]). 

Figure 4. Images of black crusts on granite buildings: (a) field observation; (b) scanning 

electron microscope observation showing gypsum aggregates. 

 

 

Figure 5. Example of carbonate crusts on granite stones. 

 

 
 

While it could be argued that the presence of erosive features indicates environmental 

aggressiveness, this could be less relevant from the ecological and human health perspectives. For 

example, water in its purest form can cause erosion of surfaces but this is not a matter of concern for 

humans and other organisms. 

Another aspect related to the possible assessment of the effects of pollution is the distribution of 

decay features, considering both the regional distribution and frequency and also the distribution 

according to morphological characteristics of the built element. This last issue is especially relevant 
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since it is essential to assess the heterogeneity of conditions for the development of decay features and 

hence the heterogeneity of recording conditions on the built environment. 

Under favorable conditions (assuming homogeneous fixation conditions), patterns of distribution 

can also help to study patterns of circulation of pollutants both horizontally and vertically. However, 

the recording conditions on a given element can be highly heterogeneous depending on morphology, 

surface irregularity, moisture and orientation. Fixation of pollutants would be different on horizontal 

and vertical surfaces [90]. Even in a straight-faced wall there would be differential patterns of  

alteration ([91] see also Figure 1). Temperature and relative humidity variations control formation by 

condensation of moisture films that promote reaction between the substrate and gases and the fixation 

of particulate matter [92,93]. Sheltering conditions can greatly affect the fixation of pollutants in 

outside portions as is illustrated in Figure 6. The characteristics of the location of the built elements 

can also affect distribution of pollutants. In canyon streets there are higher concentrations of pollutants 

from traffic of vehicles near the ground while pollutants related to more distant sources, such as 

industrial sources at the outskirts of the towns, are more concentrated at the upper level [94-96]. 

Figure 6. Heterogeneous development of coatings related to architectural characteristics 

with clear predominance in sheltered portions. 

 

 
 

Built surfaces can be used as passive samplers that are permanently exposed to the pollution agents, 

allowing the study of the cumulative load up to the moment of sampling (see Figure 2), avoiding the 

problem of definition of time interval for collection of samples and that, depending on the processes of 

transport and fixation of pollutants would develop sequences of pollutants that could be studied by 

depth profiling (as has been classically done in the study of sedimentary sequences). Indoor and 

sheltered outdoor surfaces would be specially valued places where there would be cumulative 
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absorption and dry deposition of pollutants without leaching. Sampling of products on surfaces of the 

built environment is generally possible, but sometimes restricted in terms of amounts (especially in the 

case of cultural heritage). 

A general problem in the use of decay features is to define unequivocal relations between a given 

substance and a given source, including the distinction between contribution of exogenous agents and 

the substrate and distinction between different sources. 

Regarding the characterization of the substances present in decay features, categorical and 

quantitative analytical studies can be performed. The expression “categorical analytical studies” is 

used here to represent all analytical studies whose result is placed in a given group, either as 

dichotomous presence/absence results, such as identification of compounds, or estimations that can be 

classified in ordered categories corresponding to different levels of abundance. Examples of 

dichotomous presence/absence studies are studies of identifications of substances by analytical 

methods such as x-ray diffraction, scanning electron microscopy and diverse spectroscopic techniques. 

The identified compounds can give information on the pollution sources and conditions using 

morphological, chemical and structural characteristics of particles [29,85,97] and the presence of 

specific substances such as organic compounds [98,99]. Isotopic signatures on living organisms [100] 

and mineral deposits [29,101] can also be used to characterize the surrounding pollution (for example, 

Klemm and Siedel [101] refer to a trend towards higher δ34S values with higher atmospheric 

pollution). A possible interesting application would be the fixation of radioactive isotopes on 

the substrates. 

Spatial analysis of categorical studies, including the distribution of the frequency of decay features 

and identified substances, can help to assess regions with higher pollution load (concentration of 

occurrences of a given substance) on the presence of substances on decay features and might be useful  

in the screening and selection of locals for more detailed studies as well as definition of  

monitoring networks. 

Quantitative analytical studies assess amounts of substances and could be used to compare samples 

of different regions, or different places in a built structure, or to compare the alteration features with 

the substrate [99,102,103]. One must be aware of the effect of differences in the length of exposure 

time and circumstances that might create diverse conditions of fixation, such as reactivity of substrates, 

environmental conditions and morphological aspects of buildings. To deal with these issues one can 

use normalization procedures such ratios to elements or ions of reference (using substances whose 

concentrations are considered to be unaffected by the presumed pollution sources) to compare 

contributions of possible pollution sources as well as the affected substrates [104,105]. Graphical 

procedures can also be used to compare elements or ions, considering possible mineralogical relations 

and signatures of pollution sources [106,107] and to classify atmospheric particles deposited on 

surfaces [108]. 

Besides the characterization of surfaces at any given time, longitudinal studies on cleaned materials 

can be of interest in the use of the built materials as records of pollution, following along the lines 

mentioned in the previous section. The study of the evolution of surfaces after cleaning might 

contribute to assess the persistence of pollution sources. In favorable conditions and depending on the 

time framework of interest, longitudinal studies of periodically cleaned surfaces might help to assess 

variations in time of the pollutants. 
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4. Conclusions 

As has been shown, several issues related to interactions between pollutants and surfaces of the 

built environment, both at any given moment and from a longitudinal perspective, can have relevance 

for environmental options and policies concerning aspects such as choices of materials and forms, 

consumption of resources, production and transport of pollutants, restrictions on activities and products 

and the assessment of pollution situations. This overview has also indicated some possible uses of built 

surfaces for monitoring of pollutants. 

Based on the aspects presented in the previous sections, some recommendations potentially relevant 

for environmental management programs are proposed: 

- To include assessments of the different impacts (substances and procedures in terms of 

consumption, release and restrictions) in the planning of interventions in the built environment 

(maintenance, conservation, restoration); 

- To specify choices of materials and forms that minimize environmental impacts (considering both 

durability and impacts of extraction); 

- To assess the performance of materials in the field in real structures and under real  

pollution conditions; 

- To evaluate the effects of restrictions on activities on the effects of pollutants in the  

built environment; 

- To develop criteria for acceptance of materials considering the risk of release of contaminants 

under the specific conditions of application of those materials; 

- To promote the existence of architectural sheltered built elements that would be useful for the 

monitoring of atmospheric pollution; 

- To consider a selection of surfaces that would be left unclean so as to be permanently available as 

records of pollution; 

- To promote citizens sensibility to monitoring of visual changes in new or cleaned surfaces and its 

possible significance in terms of the conservation of the built environment and as evidence of  

pollution characteristics. 

Acknowledgements 

The Centre of Geological Research, Management and Valorisation of Resources (CIG-R) is 

supported by the Fundação para a Ciência e Tecnologia (Portugal) Portuguese funds  

(pluriannual funding program for research units, PEst-OE/CTE/UI0697/2011). The collaboration 

between the authors in this subjected has benefited from Portuguese-Spanish collaboration Project 

“Ação Integrada E-141/10” (Fundação das Universidades Portuguesas)/“Acción Integrada PT2009-

0077” (Ministerio de Ciencia e Innovación). 

 

 

 

 

 



Geosciences 2011, 1              

 

 

37

References and Notes 

1. Fitzner, B.; Heinrichs, K. Damage diagnosis on stone monuments—Weathering forms, damage 

categories and damage indices. In Understanding and Managing Stone Decay; Prikryl, R., Viles, 

H.A., Eds.; The Karolinum Press: Prague, Czech Republic, 2002; pp. 11-56. Available online: 

http://www.stone.rwth-aachen.de/decay_diagnosis.pdf (accessed on 1 August 2010). 

2. Amoroso, G.G.; Fassina, V. Stone Decay and Conservation: Atmospheric Pollution, Cleaning, 

Consolidation and Protection; Elsevier: Amsterdam, The Netherlands, 1983. 

3. Winkler, E.M. Stone in Architecture. Properties, Durability; Springer-Verlag: Berlin,  

Germany, 1994. 

4. Goudie, A.S.; Viles, H.A. Salt Weathering Hazard; John Wiley & Sons: Chichester, UK, 1997. 

5. Feist, W.C. Natural weathering of wood and its control by water-repellent preservatives. Am. 

Painting Contractor 1992, 69, 18-25. 

6. Sandberg, D.; Söderström, O. Crack formation due to weathering of radial and tangential sections 

of pine and spruce. Wood Mat. Sci. Eng. 2006, 1, 12-20.  

7. Trethewey, K.R.; Chamberlain, J. Corrosion for Science and Engineering; Longman Scientific 

and Technical: Harlow, UK, 1995. 

8. Roberge, P.R. Handbook of Corrosion Engineering; McGraw-Hill: New York, NY, USA, 2000. 

9. Tidblad, V.; Kucera, J. Air pollution damage to metals. In The Effects of Air Pollution on the Built 

Environment; Brimblecombe, P., Ed.; Imperial College Press: London, UK, 2003; pp. 227-247. 

10. Delre, L.C.; Miller, R.W. Characterization of weather aging and radiation susceptibility. In 

Engineered Materials Handbook, Volume 2, Engineering Plastics; ASM International: Metals 

Park, OH, USA, 1988; pp. 575-580. 

11. Seymour, R.B. Determination of chemical susceptibility. In Engineered Materials Handbook, 

Volume 2, Engineering Plastics; ASM International: Metals Park, OH, USA, 1988; pp. 571-574. 

12. Lefèvre, R.A.; Chabas, A.; Munier, I.; Lombardo T. Modern and ancient glass in the polluted 

atmosphere. What is the prevailing phenomenon? Leaching, corrosion, soiling, encrusting…? In 

Cultural Heritage Conservation and Environmental Impact Assessment by Non-Destructive 

Testing and Micro-Analysis; Van Grieken, R., Janssens K., Eds.; Taylor & Francis Group: 

London, UK, 2005; pp. 77-90. 

13. Lombardo, T.; Ionescu, A.; Chabas, A.; Lefèvre, R.-A.; Ausset, P.; Candau, Y. Dose-response 

function for the soiling of silica-soda-lime glass due to dry deposition. Sci. Total Environ. 2010, 

408, 976-984. 

14. Koleske, J.V., Ed. Paint and Coating Testing Manual: 14th Edition of the Gardner-Sward 

Handbook; ASTM: Philadelphia, PA, USA, 1995. 

15. Wypych, G. Handbook of Material Weathering; ChemTec Publishing: Ontario, Canada, 1995. 

16. Eastaugh, N. The visual effects of dirt on paintings. In Dirt and Pictures Separated; In 

proceedings of The United Kingdom Institute of Conservation & Tate Gallery Conference, 

London, UK, January 1990; The United Kingdom Institute for Conservation: London, UK, 1990; 

pp. 19-23. 



Geosciences 2011, 1              

 

 

38

17. De Bock, L.A.; Van Grieken, R.E.; Camuffo, D.; Grime G.W. Microanalysis of museum aerosols 

to elucidate the soiling of paintings:  Case of the Correr Museum, Venice, Italy. Environ. Sci. 

Technol. 1996, 30, 3341-3350. 

18. Saunders, D. Pollution and the national gallery. National. Gallery. Technical. Bulletin. 2000, 21, 

77-94. 

19. Favrel, V.; Hecq, W. External costs of air pollution generated by road traffic in the Brussels urban 

area. IJVD 2001, 27, 129-139. 

20. Watt, J.; Jarrett, D.; Hamilton R. Dose-response functions for the soiling of heritage materials due 

to air pollution exposure. Sci. Total Environ. 2008, 400, 415-424.  

21. Arnold, A.; Zehnder, K. Monitoring wall paintings affected by soluble salts. In The Conservation 

of Wall Paintings; Getty Conservation Institute:  Los Angeles, CA, USA, 1991; pp 103-135, 

Available online: http://getty.edu/conservation/publications/pdf_publications/wall_paintings.pdf 

(accessed on 1 January 2011). 

22. Price, C.A. Stone Conservation: An Overview of Current Research; The J. Paul Getty Trust: Santa 

Monica, CA, USA, 1996. Available online:  http://www.getty.edu/conservation/publications/ 

pdf_publications/stoneconservation.pdf (accessed on 1 January 2011). 

23. Yoon, Y.H.; Brimblecombe, P. Contribution of dust at floor level to particle deposit within the 

Sainsbury Centre for Visual Arts. Stud. Conserv. 2000, 45, 127-137. 

24. Camuffo, D.; Van Grieken, R.; Busse, H.-J.; Sturaro, G.; Valentino, A.; Bernardi, A.; Blades, N.; 

Shooter, D.; Gysels, K.; Deutsch, F.; Wieser, M.; Kim, O.; Ulrych, U. Environmental monitoring 

in four European museums. Atmos. Environ. 2001, 35, 127-140. 

25. Steiger, W.; Dannecker, W. Determination of wet and dry deposition of atmospheric pollutants on 

building stones by field exposure experiments. In Proceedings of The III International Symposium 

on the Conservation of Monuments in the Mediterranean Basin, Venice, Italy, 1994; pp. 171-177. 

26. Roberge, P.R.; Klassen, R.D.; Haberecht, P.W. Atmospheric corrosivity modeling—A review. 

Mater. Design 2002, 23, 321-330.  

27. Sabbioni, C. Mechanisms of air pollution damage to stone. In The Effects of Air Pollution On The 

Built Environment; Brimblecombe, P., Ed.; Imperial College Press; London, UK, 2003; 

pp. 63-106. 

28. Brimblecombe, P.; Grossi, C.M. Potential damage to modern building materials from 21st century 

air pollution. TheScientificWorldJOURNAL 2010, 10, 116-125. 

29. Nord, A.G.; Tronner, K.; Boyce, A.J. Atmospheric bronze and copper corrosion as an 

environmental indicator. A study based on chemical and sulphur isotope data. Water Air Soil Poll. 

2001, 127, 193-204.  

30. Mostafavi, M.; Leatherbarrow, D. On Weathering: The life of Buildings in Time; MIT Press: 

Cambridge, MA, USA, 1993. 

31. Kirkwood, N. Weathering and Durability in Landscape Architecture: Fundamentals, Practices, 

and Case Studies; John Wiley & Sons: Hoboken, NJ, USA, 2004. 

32. Gorbushina, A. Life on the rocks. Environ. Microbiol. 2007, 9, 1613-1631.  

33. Parnham, P. Prevention of Premature Staining of New Buildings; Taylor & Francis: London,  

UK, 1997. 



Geosciences 2011, 1              

 

 

39

34. Turkington, A.V.; Paradise, T.R. Sandstone weathering: A century of research and innovation. 

Geomorphology 2005, 67, 229-253.  

35. Pye, K.; Schiavon N. Cause of sulphate attack on concrete, render and stone indicated by sulphur 

isotope ratios. Nature 1989, 342, 663-664.  

36. Macleod, G.; Fallick, A.E.; Hall A.J. The mechanism of carbonate growth on concrete structures, 

as elucidated by carbon and oxygen isotope analyses. Chem. Geol. 1991, 86, 335-343. 

37. Rafai, N.; Letolle, R.; Blanc, P.; Gegout, P.; Revertegat, E. Carbonation-decarbonation of 

concretes studied by the way of carbon and oxygen stable isotopes. Cem. Concr. Res. 1992, 22, 

882-890.  

38. Vallet, J.M.; Gosselin, C.; Bromblet, P.; Rolland, O.; Vergès-Belmin, V.; Kloppmann, W. Origin 

of salts in stone monument degradation using sulphur and oxygen isotopes: First results of the 

Bourges cathedral (France). J. Geochem. Explor. 2006, 88, 358-362.  

39. Sanjurjo-Sánchez, J, Alves, C. Decay effects of pollutants on materials applied in the built 

environment. In Environmental Chemistry for A Sustainable World, Volume 2: Remediation of Air 

and Water Pollution; Lichtfouse. E., Schwarzbauer, J., Robert, D., Eds.; Springer: Berlin, 

Germany, 2011, pp. 47-121. 

40. Lithgow, K.; Lloyd, H.; Brimblecombe, P.; Yoon, Y.H.; Thickett, D. Managing dust in historic 

houses—A visitor/conservator interface; In Proceedings 14th Triennial Meeting ICOM 

Committee for Conservation Triennial Meeting, The Hague, The Netherlands, 2005; Maney 

Publishing: London, UK, 2005; Vol. II, pp. 662-669. 

41. Young, M.E.; Urquhart, D.C.M.; Laing, R.A. Maintenance and repair issues for stone cleaned 

sandstone and granite building façades. Build. Environ. 2003, 38, 1125-1131. 

42. Warscheid, Th.; Braams, J. Biodeterioration of stone: A review. Int. Biodeterioration Biodegrad. 

2000, 46, 343-368. 

43. Silence, P. How are US conservators going green? Results of polling AIC members. Stud. 

Conserv. 2010, 55, 159-163. 

44. Seaward, M.R.D. Lichens, agents of monumental destruction. Microbiology Today 2003, 30,  

110-112. 

45. Hayton, B. Sustainability and public museum buildings: The UK legislative perspective. Stud. 

Conserv. 2010, 55, 150-154. 

46. O’Dwyer, D. The contribution of conservators to sustainability at the National Maritime Museum. 

Stud. Conserv. 2010, 55, 155-158. 

47. Pio, C.A.; Ramos, M.M.; Duarte, A.C. Atmospheric aerosol and soiling of external surfaces in an 

urban environment. Atmos. Environ. 1998, 32, 1979-1989.  

48. Flores-Colen, I.; de Brito, J. A systematic approach for maintenance budgeting of buildings 

facades based on predictive and preventive strategies. Constr. Build Mater. 2010, 24, 1718-1729.  

49. Dorsey, J.; Hanrahan P. Digital materials and virtual weathering. Sci. Am. 2000, 282, 64-71. 

50. Even, P.; Gobron S. Interactive three-dimensional reconstruction and weathering simulations on 

buildings. In Proceedings of the XXth international Symposia CIPA'05, Turin, Italy, 2005;  

pp. 796-801. 

51. Gaylarde, C.C.; Morton, L. Deteriogenic biofilms on buildings and their control: A review. 

Biofouling: J. Bioadhesion Biofilm Res. 1999, 14, 59-74.  



Geosciences 2011, 1              

 

 

40

52. Chew, M.Y.L.; Tan, P.P. Facade staining arising from design features. Constr. Build Mater. 2003, 

17, 181-187. 

53. Chew, M.Y.L.; Tan, S.S.; Kang, K.H. A technical evaluation index for curtain wall and cladding 

facades. Structural Survey 2004, 22, 210-227.  

54. Flores-Colen, I.; de Brito, J.; de Freitas, V.P. Stains in facades' rendering—Diagnosis and 

maintenance techniques’ classification. Constr. Build Mater. 2008, 22, 211-221. 

55. Barberousse, H.; Lombardo, R.J.; Tell, G.; Couté, A. Factors involved in the colonisation of 

building façades by algae and cyanobacteria in France. Biofouling: J. Bioadhesion Biofilm Res. 

2006, 22, 69-77. 

56. Van der Sloot, H.A. Comparison of the characteristic leaching behavior of cements using standard 

(EN 196-1) cement mortar and an assessment of their long-term environmental behavior in 

construction products during service life and recycling. Cem. Concr. Res. 2000, 30, 1079-1096. 

57. Townsend, H.E., Ed.; Outdoor Atmospheric Corrosion; STP 1421, ASTM International: West 

Conshohocken, PA, USA, 2002. 

58. Heiss, K.; Skalli, M.; Zallmanzig, J. Diagnosis study of the St. Marienkirche, Lippstadt, a 

mediaeval greensandstone monument, for conservatory planning. In Science, Technology and 

European Cultural Heritage; Baer, N.S., Sabbioni, C., Sors, A.I., Eds.; Butterworth Heinemann: 

Oxford, UK, 1991; pp. 939-942. 

59. Wüst, R.A.J.; Schlüchter, C. The Origin of soluble salts in rocks of the Thebes Mountains, Egypt: 

The damage potential to ancient Egyptian wall art. J. Archaeol. Sci. 2000, 27, 1161-1172.  

60. Odler, I.; Hydration, setting and hardening of Portland cement. In Lea’s Chemistry of Cement and 

Concrete; Hewlett, P.C., Ed.; Elsevier: Oxford, UK, 1998; pp. 241-297. 

61. Netterberg, F.; Bennet, R.A. Blisteing and cracking of airport runway surfacing due to salt 

crystallization. In Proceedings of the 8th Conference on Asphalt Pavements for Southern Africa 

CAPSA’04, Sun City, South Africa, 12–16 September 2004; paper 088. Available online: 

http://www.capsa-events.co.za/capsa04/Documents/088.pdf (accessed on October 2010). 

62. Cooper, T.P.; Dowding, P.; Lewis, J.O.; Mulvin, L.; O’Brien, P.; Olley, J.; O’Daly, G. 

Contribution of calcium from limestone and mortar to the decay of granite walling. In Science, 

Technology and European Cultural Heritage; Baer, N.S., Sabbioni, C., Sors, A.I., Eds.; 

Butterworth Heinemann: Oxford, UK, 1991; pp. 456-461. 

63. Zannini, A.; Zambon, L.; Pagnin, P. Restoration of the “Vasca del Pincio” in Rome. In Science, 

Technology and European Cultural Heritage; Baer, N.S.; Sabbioni, C.; Sors, A.I., Eds.; 

Butterworth Heinemann: Oxford, UK, 1991; pp. 745-746. 

64. Weaver, M.E. Acid rain and air pollution vs. the buildings and outdoor sculptures of Montreal. 

APT Bulletin 1991, 23, 13-19. 

65. Haneef, S.J.; Dickinson, C.; Johnson, J.B.; Thompson, G.E.; Wood, G.C. Simulation of the 

degradation of coupled stones by artificial acid rain. Stud. Conserv. 1992, 37, 105-112. 

66. Duffy, A.P.; O’Brien, P.F. A basis for evaluating the durability of new building stone. In 

Processes of Urban Stone Decay; Smith, B.J., Warke, P.A., Eds.; Donhead Publishing: London, 

UK, 1996; pp. 253-260. 

67. Smith, M.R., Ed. Stone: Building Stone, Rock Fill and Armourstone in Construction; Engineering 

Geology Special Publications 16; Geological Society: London, UK, 1999. 



Geosciences 2011, 1              

 

 

41

68. Figueiredo, C.A.M.; Aires Barros, L.; Basto, M.J.; Graça, R.C.; Maurício, A. The weathering and 

weatherability of Basílica da Estrela stones, Lisbon, Portugal. In Building Stone Decay: From 

Diagnosis to Conservation; Přikryl, R., Smith, B.J., Eds.; Special Publications, 271; Geological 

Society: London, UK, 2007; pp. 99-107. 

69. Rodríguez Navarro, C.; Sebastián, E.; Rodríguez Gallego, M. An urban model for dolomite 

precipitation: Authigenic dolomite on weathered building stones. Sediment. Geol. 1997, 109,  

1-11. 

70. Smith, B.J.; Turkington, A.V.; Warke, P.A.; Basheer, P.A.M.; McAlister, J.J.; Meneely, J.; 

Curran, J.M. Modelling the rapid retreat of building sandstones: A case study from a polluted 

maritime environment. In Natural Stone, Weathering Phenomena, Conservation Strategies and 

Case Studies; Siegesmund, G.S., Vollbrecht, A., Weiss T., Eds.; Special Publications 205; 

Geological Society: London, UK, 2002; pp. 347-362. 

71. Lopez Arce, P.; Doehne, E.; Martin, W.; Pinchin, S. Magnesium sulfate salts and historic building 

materials: Experimental simulation of limestone flaking by relative humidity cycling and 

crystallization of salts. Materiales de Construcción 2008, 58, 125-142.  

72. Benea, B. Representative stones and weathering forms at Histria Fortress, Romania. In Origin, 

Mechanisms, and Effects of Salts on Degradation of Monuments in Marine and Continental 

Environments; Zezza, F., Ed.; Protection and Conservation of the European Cultural Heritage 

Research Report No. 4; European Commission: Brussels, Belgium, 1996; pp. 205-216. 

73. Robert, M.; Bernabe, E.; Bromblet, Ph.; Jaunet, A.M.; Verges Belmin, V.; Penven, M.J. 

Identification of two alteration microsystems chemical and physical, causing granite and 

kersantite degradation in Brittany (France). In Degradation and Conservation of Granitic Rocks 

in Monument; Vicente, M.A., Delgado Rodrigues, J., Acevedo, J., Eds.; Protection and 

Conservation of the European Cultural Heritage Research Report No. 5; European Commission: 

Brussels, Belgium, 1996; pp. 67-71. 

74. Honeyborne, D.B. Weathering and decay of masonry. In Conservation of Building and Decorative 

Stone, Part I; Ashurst, J., Dimes F.G., Eds.; Butterworth-Heinemann: Oxford, UK, 1998;  

pp. 153-178. 

75. Dreesen, R.; Nielsen, P.; Lagrou, D. The staining of blue stone limestones petrographically 

unravelled. Mater. Charact. 2007, 58, 1070-1081. 

76. Bhargav, J.S.; Mishra, R.C.; Das, C.R. Environmental deterioration of stone monuments of 

Bhubaneswar, the temple city of India. Stud. Conserv. 1999, 44, 1-11. 

77. Storemyr, P. Weathering of soapstone in a historical perspective. Mater. Charact. 2004, 53,  

191-207. 

78. Trujillano, R.; Iñigo, A.C.; Rives, V.; Vicente, M.A. Behaviour of three different types of granite 

under forced alteration. In Degradation and Conservation of Granitic Rocks in Monument; 

Vicente, M.A., Delgado Rodrigues, J., Acevedo, J., Eds.; Protection and Conservation of the 

European Cultural Heritage Research Report No. 5; European Commission: Brussels, Belgium, 

1996; pp. 89-93. 

79. Alonso, F.J.; Vázquez, P.; Esbert, R.M.; Ordaz, J. Ornamental granite durability: Evaluation of 

damage caused by salt crystallization. Materiales de Construcción 2008, 58, 191-201.  

80. Lea, F.M. The Chemistry of Cement and Concrete; E. Arnold Publishers: London, UK, 1970. 



Geosciences 2011, 1              

 

 

42

81. Hartog, P.; McKenzie, P. The effects of alkaline solutions on limestone. Discovering Stone 2004, 

3, 34-49. 

82. Dow, C.; Glasser, F.P. Calcium carbonate efflorescence on Portland cement and building 

materials. Cem. Concr. Res. 2003, 33, 147-154. 

83. Anstice, D.J.; Page, C.L.; Page, M.M. The pore solution phase of carbonated cement pastes. Cem. 

Concr. Res. 2005, 35, 377-383. 

84. Armstrong, R. Living technology for sustainable cities. News in Conservation 2010, 20, 4-5. 

85. Del Monte, M.; Sabbioni, C. Gypsum crusts and fly ash particles on carbonatic outcrops. Arch. 

Meteor. Geophy. B 1984, 35, 105-111.  

86. Heasman, I.; Watt, J. Particulate pollution case studies which illustrate uses of individual particle 

analysis by scanning electron microscopy. Environ. Geochem. Hlth. 1989, 11, 157-162.  

87. Alves, C. “White” crusts on recent buildings. Mater. Sci. Forum 2010, 636–637, 1300-1305.  

88. Arenas, C.; Osacar, C.; Sancho, C.; Vazquez-Urbez, M.; Auque, L.; Pardo, G. Seasonal record 

from recent fluvial tufa deposits (Monasterio de Piedra, NE Spain); sedimentological and stable 

isotope data. In Tufas and Speleothems: Unravelling the Microbial and Physical Controls; Pedley, 

H.M., Rogerson, M., Eds.; Geological Society Special Publications 336; Geological Society: 

London, UK, 2010; pp. 119-142.  

89. Mattey, D.P.; Fairchild, I.J.; Atkinson, T.C.; Latin, J.-P.; Ainsworth, M.; Durell, R. Seasonal 

microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem 

from St Michaels Cave, Gibraltar. In Tufas and Speleothems: Unravelling the Microbial and 

Physical Controls; Pedley, H.M., Rogerson, M., Eds.; Geological Society Special Publications 

336; Geological Society: London, UK, 2010; pp. 323-344. 

90. Adams, S.J.; Ford, D. Monitoring of deposited particles in cultural properties: The influence of 

visitors. Atmos. Environ.2001, 35, 4073-4080.  

91. Gaspar, P.; de Brito, J. Mapping defect sensitivity in external mortar renders. Constr. Build Mater. 

2005, 19, 571-578. 

92. Camuffo, D.; Del Monte, M.; Sabbioni, C.; Vittori, O. Wetting, deterioration and visual features 

of stone surfaces in an urban area. Atmos. Environ. 1982, 16, 253-2259. 

93. Girardet, F.; Furlan, V. Réactivité des pierres au SO2 atmosphérique, etude en chamber de 

simulation et correlation avec les mesures en site réel. In Proceedings of the 8th International 

Congress on Deterioration of Conservation of Stone, Berlin, Germany, 1996; Riederer, J., Ed.;  

pp. 341-347. 

94. Gilbert, N.L.; Woodhouse, S.; Stieb, D.M.; Brook, J.R. Ambient nitrogen dioxide and distance 

from a major highway. Sci. Total Environ. 2003, 312, 43-46.  

95. Janhäll, S.; Olofsson, K.F.G.; Anderson, P.U.; Pettersson, J.B.C.; Hallquist, M. Evolution of the 

urban aerosol during winter temperature inversion episodes. Atmos. Environ. 2009, 40,  

5355-5366. 

96. Taseiko, O.V.; Mikhailuta, S.V.; Pitt, A.; Lezhenin, A.A.; Zakharov, Y.V. Air pollution 

dispersion within urban street canyons. Atmos. Environ. 2009, 43, 245–252.  

97. Sanjurjo-Sanchez, J.; Vidal Romani, J.R.; Alves, C. Deposition of particles on gypsum-rich 

coatings of historic buildings in urban and rural environments. Constr. Build Mater. 2010, 25, 

813-822. 



Geosciences 2011, 1              

 

 

43

98. Saiz-Jimenez, C. Deposition of airborne organic pollutants on historic buildings. Atmos. Environ. 

1993, 27B, 77-85. 

99. Sabbioni, C.; Ghedini, N.; Bonazza, A. Organic anions in damage layers on monuments and 

buildings. Atmos. Environ. 2003, 37, 1261-1269. 

100. Winner, W.E.; Bewley, J.D.; Krouse, H.R.; Brown, H.M. Stable sulfur isotope analysis of SO2 

pollution impact on vegetation. Oecologia 1978, 36, 351-361. 

101. Klemm, W.; Siedel, H. Evaluation of the origin of sulphate compounds in building stone by 

sulphur isotope ratio. In Natural Stone, Weathering Phenomena, Conservation Strategies and 

Case Studies; Siegesmund, G.S., Vollbrecht, A., Weiss T., Eds.; Special Publications 205; 

Geological Society: London, UK, 2002; pp. 419-429.  

102. Maravelaki-Kalaitzaki, P.; Biscontin, G. Origin, characteristics and morphology of weathering 

crusts on Istria stone in Venice. Atmos. Environ. 1999, 33, 1699-1709. 

103. Valls del Barrio, S.; Garcia Valles, M.; Pradell, T.; Vendrell Saz, M. The red-orange patina 

developed on a monumental dolostone. Eng. Geol. 2002, 63, 31-38.  

104. Sabbioni, C. Contribution of atmospheric deposition to the formation of damage layers. Sci. Total 

Environ. 1995, 167, 49-55. 

105. Torfs, K.; Van Grieken, R. Chemical relations between atmospheric aerosols, deposition and 

stone decay layers on historic buildings at the Mediterranean coast. Atmos. Environ. 1997, 31, 

2179-2192. 

106. Begonha, A.; Sequeira Braga, M.A. Black crusts and thin black layers in granitic monuments: 

their characterization and the role of air pollution. In Proceedings of the 8th International 

Congress on Deterioration of Conservation of Stone, Berlin, Germany, 1996; Riederer, J., Ed.;  

pp. 371-375. 

107. Begonha, A.; Sequeira Braga, M.A.; Gomes da Silva, F. Rain water as a source of the soluble salts 

responsible for stone decay in the granitic monuments of Oporto and Braga-Portugal. In 

Proceedings of the 8th International Congress on Deterioration of Conservation of Stone, Berlin, 

Germany, 1996; Riederer, J., Ed.; pp. 481-487. 

108. Derbez, M.; Lefèvre, R.A. Le contenu microparticulaire des croûtes gypseuses de la Cathédrale 

Saint-Gatien de Tours: Comparaison avec l'air et la pluie. In Proceedings of the 8th International 

Congress on Deterioration of Conservation of Stone, Berlin, Germany, 1996; Riederer, J., Ed.;  

pp. 359-370. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


