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Abstract

This thesis presents new procedures to address the analysis cluster of time

series. First of all a two-stage procedure based on comparing frequencies and

magnitudes of the absolute maxima of the spectral densities is proposed. As-

suming that the clustering purpose is to group series according to the underlying

dependence structures, a detailed study of the behavior in clustering of a dissim-

ilarity based on comparing estimated quantile autocovariance functions (QAF)

is also carried out. A prediction-based resampling algorithm proposed by Du-

doit and Fridlyand is adjusted to select the optimal number of clusters. The

asymptotic behavior of the sample quantile autocovariances is studied and an

algorithm to determine optimal combinations of lags and pairs of quantile lev-

els to perform clustering is introduced. The proposed metric is used to perform

hard and soft partitioning-based clustering. First, a broad simulation study

examines the behavior of the proposed metric in crisp clustering using hierar-

chical and PAM procedure. Then, a novel fuzzy C-medoids algorithm based on

the QAF-dissimilarity is proposed. Three di�erent robust versions of this fuzzy

algorithm are also presented to deal with data containing outlier time series.

Finally, other ways of soft clustering analysis are explored, namely probabilistic

D-clustering and clustering based on mixture models.
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Resumo

Esta tese presenta novos procedementos para abordar a análise cluster de

series temporais. En primeiro lugar proponse un procedemento en duas etapas

basado na comparación de frecuencias y magnitudes dos máximos absolutos das

densidades espectrais. Supoñendo que o propósito é agrupar series de acordo

coas estruturas de dependencia subxacentes, tamén se leva a cabo un estudo

detallado do comportamento en clustering dunha disimilaridade baseada na

comparación deas funcións estimadas das autocovariancias cuantil (QAF). Un

algoritmo de remostraxe baseado na predición proposto por Dudoit e Fridlyand

adáptase para seleccionar o número óptimo de clusters. Tamén se estuda o

comportamento asintótico das autocovariancias cuantís e se introduce un algo-

ritmo para determinar as combinacións óptimas de lags e pares de niveles de

cuantís para levar a cabo a clasi�cación. A métrica proposta utilizase para re-

alizar análise cluster baseado en particións �hard� e �soft�. En primeiro lugar,

un amplo estudo de simulación examina o comportamento da métrica proposta

en clúster �hard� utilizando os procedementos xerárquico e PAM. A contin-

uación, proponse un novo algoritmo �fuzzy� C-medoides baseado na disimilari-

dade QAF. Tamén se presentan tres versións robustas deste algoritmo �fuzzy�

para tratar con datos que conteñan atípicos. Finalmente, se exploranse out-

ras vías de análise cluster �soft�, concretamente, D-clustering probabilístico e

clustering baseado en modelos mixtos.
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Resumen

Esta tesis presenta nuevos procedimientos para abordar el análisis cluster de

series temporales. En primer lugar se propone un procedimiento en dos etapas

basado en la comparación de frecuencias y magnitudes de los máximos absolu-

tos de las densidades espectrales. Suponiendo que el propósito es agrupar series

de acuerdo con las estructuras de dependencia subyacentes, también se lleva a

cabo un estudio detallado del comportamiento en clustering de una disimilari-

dad basada en la comparación de las funciones estimadas de las autocovariancias

cuantil (QAF). Un algoritmo de remuestreo basado en predicción propuesto por

Dudoit y Fridlyand se adapta para seleccionar el número óptimo de clusters.

También se estudia el comportamiento asintótico de las autocovariancias cuan-

tiles y se introduce un algoritmo para determinar las combinaciones óptimas de

lags y pares de niveles de cuantiles para llevar a cabo la clasi�cación. La métrica

propuesta se utiliza para realizar análisis cluster basado en particiones �hard�

y �soft�. En primer lugar, un amplio estudio de simulación examina el compor-

tamiento de la métrica propuesta en clúster �hard� utilizando los procedimientos

jerárquico y PAM. A continuación, se propone un nuevo algoritmo �fuzzy� C-

medoides basado en la disimilaridad QAF. También se presentan tres versiones

robustas de este algoritmo �fuzzy� para tratar con datos que contengan atípi-

cos. Finalmente, se exploran otras vías de análisis cluster �soft�, concretamente,

D-clustering probabilístico y clustering basado en modelos mixtos.
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Introduction
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1.1 Clustering of time series: An introduction

Time series clustering is aimed to split a set of partial realizations of time series into dif-

ferent categories or clusters. Partition is performed in such a way that series in the same

cluster are more similar to each other than series in di�erent clusters. Time series clustering

is a central problem in many application �elds and it is nowadays an active research area in

a vast range of �elds such as �nance and economics, medicine, engineering, physics, pattern

recognition, among many others. These arguments account for the growing interest on this

topic, which has resulted in a huge number of contributions. Some illustrative examples of

these applications are: classi�cation of industrial production series (Piccolo, 1990; Corduas

and Piccolo, 2008), comparison of seismological data as in the classical case of distinguish-

ing between earthquake and nuclear explosion waveforms (Kakizawa et al., 1998), cluster-

ing of ecological dynamics (Li et al., 2001), comparison of daily hydrological time series

(Grimaldi, 2004), clustering of industrialized countries according to historical data of CO2

emissions (Alonso et al., 2006), detection of similar immune response behaviors of CD4C cell

number progression in patients a�ected by immunode�ciency virus (HIV) (Chouakria and

Nagabhushan, 2007), identi�cation of active genes during the cell division process (Douzal-
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1 Introduction

Chouakria et al., 2009), classi�cation of chemometrical data (D'Urso and Giovanni, 2014),

clustering based on daily nitrogen monoxide emissions (D'Urso et al., 2015a), and analysis

of navigation patterns of users visiting news web sites (García-Magariños and Vilar, 2015),

among others.

A crucial issue in time series clustering is determining a suitable measure to assess dissim-

ilarity between two time series data. Unlike conventional clustering on static data objects,

time series are inherently dynamic, with underlying autocorrelation structures, and there-

fore the similarity searching must be governed by the behavior of the series over their periods

of observation. As an illustrative example, the Euclidean distance treats the observations

as if they were independent so that, in particular, it is invariant to permutations over time,

and hence it does not take into account the underlying correlation structure. This fact is

highlighted in Figure 1.1 with a simple example. Figure 1.1 (a) shows the pro�les of realiza-

tions simulated from AR(1) (black) and MA(1) (red) processes with parameters φ = 0.7 and

θ = 0.3, respectively. An arbitrary permutation of each one of these realizations is depicted

in Figure 1.1 (b). By de�nition, the Euclidean distance assumes the i-th observation in one

sequence is aligned with the i-th observation in the other, and therefore the realizations in

Figures 1.1 (a) and (b) are separated by the same Euclidean distance (18.65). Nevertheless,

one expects that changes and distortions in the temporal behaviors lead to di�erent levels

of dissimilarity. This goal can be attained by using distances or dissimilarities regarding the

underlying dynamic component. A simple way to tackle this issue is comparing sequences

of estimated autocorrelations, which involves information on the lineal dependence struc-

ture. In fact, the Euclidean distance between estimated autocorrelations leads to the values

2.55 and 0.57 for the realizations in the left and right panels of Figure 1.1, respectively.

In sum, the Euclidean distance between raw data cannot be considered a good measure of

dissimilarity between time series data. Overall the choice of a proper dissimilarity measure

between time series is a non trivial issue, and a large number of criteria have been proposed

in the last two decades. This point is one of the challenges in the current dissertation and

its importance motivates the short overview provided in Section 1.2 of this Introduction.

Although selecting a proper metric plays a key role, there are additional di�culties to be

addressed in time series clustering. For instance, many clustering applications in real-life

involve a huge number of very long series, i.e. one faces the high-dimensionality problem.

In fact, the observed time series often contain thousands of data, which in cluster analysis

translates into thousands of classi�cation variables. Therefore, algorithms working directly

on the raw time series could become ine�cient, or simply unfeasible. To overcome the

high-dimensionality problem, we will focus throughout the entire thesis on the feature-

based approach, where the raw data are replaced by a lower dimension vector of extracted
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Figure 1.1: Simulated realizations from AR(1) (black) and MA(1) (red) processes (a), and
arbitrary permutations of these realizations (b).

features that represent the dynamic structure of each series, thus allowing a dimensionality

reduction and a meaningful saving in computation time. This way, dissimilarity between

time series is measured in terms of discrepancy between these representations.

Also, when dealing with partitioning-based algorithms, the concept of centroid is particu-

larly complex. As it is well known, the centroids are representative objects for the clusters

and sometimes the target of the clustering process is to identify these prototypes rather than

performing an accurate classi�cation. In the time series setting, a centroid determines a

speci�c temporal pattern and it is often important to get insight into these patterns in order

to carry out predictions or establish di�erences between behaviors over time. Nevertheless,

caution must be taken to properly de�ne the centroid by dealing with time series. For

example, the most popular partitioning-based algorithm is the C-means procedure, where

the centroids are de�ned as the average objects within the clusters. Such an approach

might generate inconsistencies whether a distance based on feature vectors is used because

of the average of a set of features does not necessarily characterizes a time series model,

and therefore it cannot be a representative object of the temporal behavior of the cluster.

In other words, the centroids could be �ctitious time series and thus failing in providing a

suitable model of the cluster dynamics. Furthermore, it could be that the distance between

a single time series object and the average of the group is not well-de�ned. A natural way to

overcome these drawbacks is to perform a k-medoids-based algorithm where the candidates
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have to be selected among the data points. In fact, k-medoids-based procedures will be

adopted later in this thesis.

Other points to be considered in cluster analysis of time series are indeed related to the

nature of the series in study, the �nal clustering purpose and the computational complexity

of the employed procedures. Certainly, a suitable distance to deal with series generated

from the linear models may be inappropriate to face non-linear models, and a cluster

algorithm designed to discriminate between stationary processes will hardly be useful to

group series showing similar trends. In the big data era, algorithms with a very high

computational complexity will be unfeasible to perform clustering on databases including

many and very long time series so that the computational e�ciency and the capability to

manage unbalanced time series are not minor properties.

In summary, the high level of complexity and particularities associated to time series clus-

tering together with its enormous interest in a broad range of applications account for the

great focus of attraction that this topic has led over the past decades in research, mainly

into the �elds of Statistics, Data Mining and Arti�cial Intelligence. Comprehensive sur-

veys on time series clustering can be seen in Liao (2005), and more currently in Fu (2011).

Hence, signi�cant advances have been achieved, but undoubtedly time series clustering is

still an active research area nowadays, with serious problems and challenges to address.

This introductory chapter is structured as follows. Given the importance of the dissimilarity

notion between time series, this point is widely discussed in Section 1.2, and some popular

and commonly used metrics are shortly described. An overview of the thesis highlighting

motivation, structure and main contributions is provided in Section 1.3. Some preliminary

concepts used throughout the dissertation are presented in Section 1.4.

1.2 Measuring dissimilarity between a pair of time series

A clustering procedure is strongly in�uenced by the dissimilarity principle inherent to the

employed between-objects distance. Hence determining a proper dissimilarity measure be-

tween objects is a key issue in cluster analysis, and as mentioned, a particularly sensitive

issue by dealing with time series data. Commonly used dissimilarities in conventional clus-

ter ignore the temporal evolution of the series and may produce unsatisfactory results in a

time series context. To address this problem, di�erent dissimilarity criteria between series

have been introduced in the literature. An overview of these dissimilarities can be seen in

Montero and Vilar (2014a). According to the nature of the considered criteria, Montero

and Vilar (2014a) classify the dissimilarities in well-de�ned categories, which are enumer-
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ated below in order to shed some light on the most relevant approaches considered in the

literature.

One group is formed by the free-model distances, mainly including distances between raw

observations and those based on comparing features extracted from the original time se-

ries. Besides conventional distances like Minkowski and Fréchet distances, this category

involves distances properly adjusted to be invariant to speci�c and typical distortions of

temporal data such as local scaling (warping), phase, amplitude scaling, complexity, and

so on (Batista et al., 2011). Dynamic time warping (DTW) (Berndt and Cli�ord, 1994)

is surely the most commonly used metric within this distance type. As far as the mea-

sures using extracted features, many approaches have been explored, including distances

based on comparing autocorrelations (Kovacic, 1998; Struzik and Siebes, 1999; Galeano

and Peña, 2000; Caiado et al., 2006; D'Urso and Maharaj, 2009), cross-correlations (Golay

et al., 2005; Chouakria and Nagabhushan, 2007), spectral features (Kakizawa et al., 1998;

Vilar and Pértega, 2004; Pértega and Vilar, 2010; Casado de Lucas, 2010), wavelet coef-

�cients (Chan and Fu, 1999; Popivanov and Miller, 2002; Chan et al., 2003; Zhang et al.,

2006), and symbolic representations such as the SAX representation (symbolic aggregate

approximation) (Lin et al., 2003), among others.

Other group involves themodel-based dissimilarities, which assume speci�c underlying mod-

els and then assessing discrepancy between �tted models. The most common approach con-

sists in assuming that the time series are generated by ARIMA processes (see e.g., Piccolo,

1990; Maharaj, 1996, 2000; Kalpakis et al., 2001, among others) although also alternative

structures such as Markov chains (Ramoni et al., 2002) and hidden Markov models (Oates

et al., 1999) have been considered.

Other measures are aimed at comparing levels of complexity of the time series, that is

the amount of shared information by the two compared series. Two prominent approaches

to evaluate complexity di�erences between a pair of time series are: (i) using algorithms

based on data compression (see, e.g., Li et al., 2001; Keogh et al., 2004; Cilibrasi and

Vitanyi, 2005; Keogh et al., 2007), and (ii) considering di�erences between permutation

distributions (Brandmaier, 2012). This kind of measures have been intensively studied in

Machine Learning and received less attention in the Statistics �eld.

Although most of the time series dissimilarities can be assigned to one of these three cat-

egories, this classi�cation is not exhaustive at all. Sometimes the clustering objective

suggests the use of alternative dissimilarities speci�cally designed to deal with the problem

at hand. For instance, treating with time series, it is relatively simple to think on situa-

tions where the real interest of the clustering relies on the properties of the predictions at
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a pre-speci�ed future time. Note that time series with the same generating process might

produce very di�erent forecasts at a given horizon, and therefore a cluster partition gen-

erated from model- or feature-based dissimilarities could be inappropriate. Alonso et al.

(2006), Vilar et al. (2010) and Vilar et al. (2013) focused on this idea and considered a

notion of dissimilarity governed by the performance of future forecasts.

Related to the above consideration and given the broad range of available dissimilarities,

other major issue arises in a natural way, namely to decide which dissimilarity measure

should be used in a particular problem. Montero and Vilar (2014a) argue that this choice

must mainly rely on the speci�c purpose of the clustering task, and only doing so, the

cluster solution will admit an interpretation in terms of the grouping target. This argument

is congruent with the non-supervised classi�cation paradigm where the perception of a

�good� classi�cation could vary across users depending on the pursued target. Montero

and Vilar (2014a) highlight this problematic with illustrative and valuable examples. For

instance, sometimes the focus is to compare the geometric pro�les of the series but in other

situations the target is to identify similar generating processes. In the �rst case, which is

quite common by dealing with short series or in situations with a small noise signal ratio,

�shape-based� dissimilarities are required, i.e. dissimilarities emphasizing local di�erences

for which conventional distances or complexity-based measures should behave properly.

The second case requires �structure-based� dissimilarities aimed at capturing higher-level

dynamic structures describing the global performance of the series. Feature- and model-

based dissimilarities are expected to report better results in this framework. Nevertheless,

the relevant issue is to establish the clustering purpose because the use of di�erent metrics

may lead to very di�erent results. Montero and Vilar (2014a) illustrate this fact by using

a simple and intuitive synthetic dataset of nine time series generated from three di�erent

patterns denoted by P1, P2 and P3. The nine pro�les are depicted in Figure 1.21. It is

observed in panels (b) and (c) that di�erent cluster partitions are attained when shape-

and structure-based metrics are employed. Nevertheless both solutions can be reasonable

according the pursued objective.

Establishing innovative time series dissimilarity criteria is one of the topics addressed in

this dissertation. The focus is on the structure-based dissimilarities. Overall, this kind

of dissimilarities assume regularity conditions for the series subjected to clustering, and

users must be aware of it. For example, linearity and homoscedasticity are commonly

required. Thus, one of the challenges is to introduce structure-based dissimilarities capable

of performing reasonably well under very general conditions, showing robustness to di�erent

generating processes and with di�erent distributional forms. To show the capability of

1Figure reproduced from Montero and Vilar (2014a) with permission from the authors.
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dCORT  k = 2

Figure 1.2: Realizations of 9 time series generated from di�erent patterns P1, P2 and
P3 (a), and dendrograms from clustering based on the Euclidean distance (shape-based
dissimilarity) (b) and on a dissimilarity (dCORT in TSclust package) considering temporal
correlations (structure-based dissimilarity) (c).

these new approaches, experiments with series simulated from di�erent scenarios will be

carried out in order to compare the clustering results using di�erent model-free and model-

based metrics. In the following subsections, a brief description of the employed metrics is

provided in order to present their main characteristics and also avoiding to introduce them

in a reiterative way throughout the entire thesis. It is also worth to point out that a useful

tool for practitioners is the R package TSclust (Montero and Vilar, 2014b) where most of

the metrics enumerated along this section are available.

Herefater, Xt = (X1, . . . , XT )t and Y t = (Y1, . . . , YT )t denote partial realizations from two

real-valued processes X = {Xt, t ∈ Z} and Y = {Yt, t ∈ Z}, respectively.

1.2.1 Model-free approaches

A natural approach to measure the dissimilarity between Xt and Y t is to replace the ob-

served values by a feature vector of lower dimension and then evaluating a conventional

distance between the extracted feature vectors. This intuitive approach presents some nice

advantages, including: no assumptions on the generating processes are required, applica-

bility to unbalanced serial realizations, and frequently low computational complexity. The
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extracted features can be obtained either the time domain or the frequency domain. Some

of the most commonly used dissimilarities belonging to this category are detailed below.

Autocorrelation-based distances

Several authors have considered measures based on the estimated autocorrelation functions

(see e.g., Bohte et al., 1980; Galeano and Peña, 2000; Caiado et al., 2006; D'Urso and

Maharaj, 2009).

Let ρ̂Xt
= (ρ̂1,Xt

, .., ρ̂L,Xt
)t and ρ̂Y t

= (ρ̂1,Y t
, .., ρ̂L,Y t

)t be the estimated autocorrela-

tion vectors of Xt and Y t respectively, for some L such that ρ̂i,Xt
≈ 0 and ρ̂i,Y t

≈ 0 for

i > L. Galeano and Peña (2000) de�ne a distance between Xt and Y t as follows.

dACF (Xt,Y t) =

√(
ρ̂Xt

− ρ̂Y t

)t
Ω
(
ρ̂Xt

− ρ̂Y t

)
,

where Ω is a matrix of weights.

Some common choices of Ω are:

(i) Consider uniform weights by taking Ω = I. In such case dACF becomes the Euclidean

distance between the estimated autocorrelation functions:

dACFU (Xt,Y t) =

√√√√ L∑
i=1

(
ρ̂i,Xt

− ρ̂i,Y t

)2
.

(ii) Consider geometric weights decaying with the autocorrelation lag, so that dACF takes

the form:

dACFG (Xt,Y t) =

√√√√ L∑
i=1

p(1− p)i
(
ρ̂i,Xt

− ρ̂i,Y t

)2
, with 0 < p < 1.

Analogous distances can be constructed by considering the partial autocorrelation functions

(PACF's) instead of the ACF's. Hereafter, notation dPACFU and dPACFG will be used to

denote the Euclidean distance between the estimated partial autocorrelation coe�cients

with uniform weights and with geometric weights decaying with the lag, respectively.

As mentioned, the frequency domain can be also used to de�ne dissimilarities between time

series. A short overview of the main concepts in spectral analysis of series is provided in

Section 1.4.3, including de�nitions of spectral density and periodogram and some common

criteria to build nonparametric estimates of the spectral density. These notions are used
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below to introduce alternative dissimilarities between time series.

Periodogram-based distances

Let ÎXt
(λk) and ÎY t

(λk) be the estimated periodograms of Xt and Y t, respectively, at

frequencies λk = 2πk/T , k = 1, . . . ,M , with M = [(T − 1)/2].

Three dissimilarity measures based on periodograms were analyzed by Caiado et al. (2006).

(i) The Euclidean distance between the periodogram ordinates:

dP (Xt,Y t) =
1

n

√√√√ n∑
k=1

(
ÎXt

(λk)− ÎY t
(λk)

)2
.

(ii) If we are not interested in the process scale but only on its correlation structure, better

results can be obtained using the Euclidean distance between the normalized periodogram

ordinates:

dNP (Xt,Y t) =
1

n

√√√√ n∑
k=1

(
N̂IXt

(λk)− N̂IY t
(λk)

)2
,

where N̂IXt
(λk) = ÎXt

(λk)/γ̂0,Xt
and N̂IY t

(λk) = ÎY t
(λk)/γ̂0,Y t

with γ̂0,Xt
and γ̂0,Y t

being the sample variances of Xt and Y t, respectively.

(iii) As the variance of the periodogram ordinates is proportional to the spectrum value

at the corresponding frequencies, it makes sense to use the logarithm of the normalized

periodogram:

dLNP (Xt,Y t) =
1

n

√√√√ n∑
k=1

(
log N̂IXt

(λk)− log N̂IY t
(λk)

)2
.

Dissimilarity measures based on nonparametric spectral estimators

Kakizawa et al. (1998) proposed a general spectral disparity measure between two series

given by

dW (Xt,Y t) =
1

4π

∫ π

−π
W

(
fXt

(λ)

fY t
(λ)

)
dλ, (1.1)

where fXt
and fY t

denote the spectral densities of Xt and Y t, respectively, and W (·) is
a divergence function satisfying appropriate regular conditions to ensure that dW has the

quasi-distance property. Note that dW is not a real distance because it is not symmetric

and does not satisfy the triangle inequality. For clustering, it is more convenient to modify

9
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the divergence function by setting W̃ (x) = W (x) +W (x−1).

In practice the spectra fXt
and fY t

are unknown and has to be estimated. Three di�erent

versions of the dW are obtained depending on how the estimation of this spectrum is carried

out:

� dW (LS) when the spectra are replaced by the exponential transformation of local linear

smoothers of the log periodograms, via least squares (see (1.20)).

� dW (LK) when the spectra are estimated by the exponential transformation of local

linear smoothers of the log periodograms, by using the maximum local likelihood

criterion (see (1.22)).

� dW (DLS) when the spectra are estimated by local linear smoothers of the periodogram,

via least squares (see (1.23)).

An alternative nonparametric spectral dissimilarity measure introduced by Pértega and

Vilar (2010) is also used throughout this thesis. This distance evaluates the integrated

squared di�erences between nonparametric estimators of the log-spectra and it is given by

dISD (Xt,Y t) =

∫ π

−π

(
m̂Xt

(λ)− m̂Y t
(λ)
)2

dλ,

where m̂Xt
(λ) and m̂Y t

(λ) are local linear smoothers of the log-periodograms obtained

using the maximum local likelihood criterion.

1.2.2 Model-based approaches

Model-based dissimilarity measures assume that the underlying models are generated from

speci�c parametric structures. The main approach in the literature is to assume that the

generating processes of Xt and Y t follow invertible ARIMA models. In such case, the idea

is �tting an ARIMA model to each series and then measuring the dissimilarity between the

�tted models.

Piccolo distance

Piccolo (1990) de�nes a dissimilarity measure in the class of invertible ARIMA processes

as the Euclidean distance between the AR(∞) operators approximating the corresponding

ARIMA structures.
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If Π̂Xt
=
(
π̂1,Xt

, . . . , π̂k1,Xt

)t
and Π̂Y t

= (π̂1,Y t
, . . . , π̂k2,Y t

)t denote the vectors of

AR(k1) and AR(k2) parameter estimations for Xt and Y t, respectively, then the Piccolo's

distance takes the form

dPIC (Xt,Y t) =

√√√√ k∑
j=1

(
π̂′
j,Xt

− π̂′
j,Y t

)2
,

where k = max(k1, k2), π̂′
j,Xt

= π̂j,Xt
, if j ≤ k1, and π̂′j,Xt

= 0 otherwise, and analogously

π̂′
j,Y t

= π̂j,Y t
, if j ≤ k2, and π̂′j,Y t

= 0 otherwise.

Maharaj distance

For the class of invertible and stationary ARMA processes, Maharaj (1996) introduced two

discrepancy measures based on hypotheses testing to determine whether or not two time

series have signi�cantly di�erent generating processes. The �rst of these metrics is given

by the test statistic

dM (Xt,Y t) =
√
T
(
Π̂
′
Xt
− Π̂

′
Y t

)t
V̂
−1
(
Π̂
′
Xt
− Π̂

′
Y t

)
,

where Π̂
′
Xt

and Π̂
′
Y t

are the AR(k) parameter estimations of Xt and Y t, respectively,

with k selected as in the Piccolo's distance, and V̂ is an estimator of V = σ2
Xt
R−1

Xt
(k) +

σ2
Y t
R−1

Y t
(k), with σ2

Xt
and σ2

Y t
denoting the variances of the white noise processes as-

sociated with Xt and Y t, and RXt
and RY t

the sample covariance matrices of both

series.

1.3 Overview of this thesis: Motivation, structure and con-

tributions

In this dissertation, several new approaches to develop time series clustering are intro-

duced. The main intention has been to contribute to the advancement of knowledge on

this important topic by providing new tools (e.g. an innovative metric) but also discussing

and comparing di�erent methodological strategies (soft and hard paradigms, new cluster-

ing principles, robust approaches, and new algorithms designed to deal with time series).

This section is aimed at enumerating the main motivations behind this thesis and also

highlighting the major contributions.

The �rst motivation comes from considering a particular scenario of interest in the anal-
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ysis of oscillatory phenomena. In �elds such as medicine, biology and economics (among

others), it is often required to clustering temporal oscillatory records in such a way that

each group gathers together series with similar dominant periods of oscillation and also

similar power at that dominant period. Indeed, the natural framework to face this problem

is the frequency domain. Nevertheless, most of the dissimilarity measures introduced in

the frequency domain have been designed to compare whole estimated spectra. This is

not the natural approach here. In fact, two time series might eventually exhibit the main

spectral peaks at the same frequency and with similar amplitudes, but having di�erent

spectral densities. Motivated by this argument, a clustering algorithm aimed at testing

whether or not two time series signi�cantly di�er at their main spectral peak frequencies

and amplitudes is presented in Chapter 2. In a nutshell, the proposed procedure consists of

a two-stage algorithm combining ideas from the bootstrap method to test for a zero peak

frequency di�erence proposed by Timmer et al. (1999) with the hierarchical clustering tech-

nique based on the resulting p-values developed by Maharaj (2000). The algorithm showed

a good behavior in simulated scenarios, including standard linear and non-linear generat-

ing models characterized by reasonably separated dominant spectral peaks. In particular,

the obtained results were clearly competitive with the ones from other procedures based

on metrics relying on a di�erent clustering purpose, and therefore vulnerable to produce

erroneous partitions. Strengths and weaknesses of the proposed algorithm are discussed in

Chapter 2 and its usefulness is illustrated by the application a real data set.

As argued in the above sections of this introductory chapter, the selection of a suitable

dissimilarity between time series according the clustering purpose is basic. Although many

dissimilarities have been proposed to clustering series with similar generating processes,

most of them are restricted to work with linear models. As consequence of it, the clustering

e�cacy substantially decreases when these metrics are used to deal with more complex

dependence structures (e.g. non-linear or heteroskedastic models). Indeed, this is expected

by using model-based measures due to the model misspeci�cation, but many feature-based

dissimilarities also behave poorly because the extracted features are not able to properly

characterize di�erences between the involved processes. Therefore, introducing a metric

exhibiting a high capability to deal with a broad kind of processes constitutes a challenge

in time series clustering. Classi�cation of non-linear models and, above all, of heteroskedas-

tic models is an issue of special interest due to the enormous importance of these models

in many environmental and �nancial problems. With this purpose in mind, we propose

a feature-based dissimilarity measure comparing sequences of estimated quantile autoco-

variances. Quantile autocovariances provide a much richer view into the serial dependence

than other extracted features. They encompass a lot of appealing properties, including
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robustness to the non-existence of moments, treating properly with heavy tailed marginal

distributions, detecting nonlinear features and changes in conditional shapes, among others.

Chapters 3 and 4 develop an extensive analysis of time series clustering procedures based

on comparing quantile autocovariances.

The quantile autocovariance concept is �rstly introduced in Chapter 3. Its properties and

capability to time series clustering are presented and discussed via naive and illustrative ex-

amples. The asymptotic behavior of the quantile autocovariances is established, and then a

dissimilarity measure between two time series based on comparing their estimated quantile

autocovariances is formally stated. The rest of Chapter 3 focuses on assessing the behavior

of this metric in hard clustering, i.e. using clustering procedures designed to assign each

time series to exactly one cluster so that the resulting partition is formed by non-empty

and disjoint subsets. Hierarchical and partitional algorithms are taken into consideration,

and in both cases extensive simulation studies show that the proposed metric outperforms

or is highly competitive with a range of dissimilarities reported in the literature, partic-

ularly exhibiting high capability to cluster time series generated from a broad range of

dependence models and robustness against the kind of innovation distribution. Further-

more, two important additional issues are addressed in the development of this chapter,

namely the determination of an automatic optimal selector of the lags and pairs of quantile

levels required to construct the dissimilarity measure, and the estimation of the optimal

number of clusters when this value is requested to execute a partitioning-based clustering

approach. The algorithms introduced to solve both problems are properly tested by simula-

tion obtaining again satisfactory results. Following the general structure of every chapter,

Chapter 3 also includes the application of the proposed method to a speci�c study case

involving �nancial time series.

Chapter 4 is completely devoted to fuzzy clustering approach. Likewise the hard clustering

approaches, it is interesting to analyze the capability of the distance based on quantile

autocovariances when soft clustering is carried out, i.e. when the cluster solution is permit-

ted to include overlapping clusters so that some time series can exhibit temporal dynamics

close to more than one cluster prototype. Soft clustering of time series has received much

less attention in the literature and only some fuzzy approaches based on a few well known

metrics have been explored. The promising results of the metric based on quantile autoco-

variances in hard clustering allow us to suspect that good results could also been obtained

by performing soft clustering. Motivated by this intuition and the scarcity of results in this

framework, a fuzzy C-medoids procedure using quantile autocovariance is proposed and its

behavior is examined via simulations. In this case, the simulation scenarios add uncertainty

to the classi�cation procedure by generating variability over the parameters de�ning the

13
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underlying processes and involving clusters with di�erent levels of separation. Some time

series were generated in such a way that their generating structures are equidistant from

several clusters and hence they should present similar membership degrees for the corre-

sponding clusters. In sum, the clustering task is substantially more complex and indeed

the assessment criteria took into account the capability of the examined algorithms to de-

tect the fuzzy nature of these equidistant series. The main conclusion from our analysis

on simulated data was that the proposed approach reported the best results compared to

alternative procedures. Again, the proposed procedure is free of problems related to the

inaccurate estimation of the underlying parametric structures, and takes advantage of being

simpler to implement and computationally lighter than the analyzed competitors. In this

case, two comprehensive study cases considering air quality data and daily returns of stocks

are subjected to clustering by using di�erent fuzzy approaches to illustrate the behavior of

the proposed methodology with real data.

The second part of Chapter 4 deals with other additional issue deserving particular atten-

tion: obtaining robust versions of the proposed fuzzy algorithm. This is a very important

problem since the presence of time series presenting anomalous temporal behaviors could

a�ect severely the performance of the clustering procedure. To address this problem, three

di�erent extensions of robust techniques (D'Urso and Giovanni, 2014) considering the met-

ric based on quantile autocovariances are proposed, namely the metric approach (based

on smoothing the distance), the noise approach (by introducing an arti�cial noise clus-

ter) and the trimmed approach (by trimming away a small fraction of series). Simulations

show the enormous importance of using robust techniques in presence of atypical series,

the high capability of these techniques to alleviate the e�ect of anomalous, and an inter-

esting comparative analysis between the di�erent considered algorithms. In this setting,

it is observed that the procedures are very sensitive to the input parameters required by

each algorithm, but once again it is noticeable the excellent behavior of the metric using

quantile autocovariances.

Besides the fuzzy approach, there are other alternatives techniques to perform soft clus-

tering in the literature. Two well known techniques are the probabilistic D-clustering

(Ben-Israel and Iyigun, 2008) and clustering based on mixed models (see e.g. Bouveyron

and Brunet-Saumard, 2014). To the best of our knowledge, the former has not been em-

ployed to perform cluster analysis of time series, and the latter has been applied in a very

limited way. More precisely, we are only aware of the work by Chen and Maitra (2011)

where a model-based approach for clustering time series regression data is proposed by

assuming that each mixture component follows a Gaussian autoregressive regression model

of order p. Therefore, exploring new approaches considering probabilistic D-clustering and

14
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mixed models to perform times series clustering is fairly of interest for several reasons.

The probabilistic D-clustering is simple, requires a small number of cheap iterations and

is insensitive to outliers. Approaches based on mixed models are more expensive in com-

putational terms, but in contrast, they lead to membership degrees in an automatic way

without pre-establishing a fuzziness parameter.

In Chapter 5 two new clustering procedures based on both the probabilistic D-clustering

and mixed models are proposed. The �rst is constructed in a natural way by considering

that the probability of cluster membership for an arbitrary time series is inversely pro-

portional to the distance from the center of the cluster in question, when that distance is

computed by using the estimated quantile autocovariances. The cluster centers may change

so that the algorithm is carried out in an iterative manner until a stop rule determines the

�nal clustering solution. It is expected that this probabilistic D-clustering takes advantage

of the robust behavior of the metric based on quantile autocovariances. As far as the new

clustering algorithm based on mixture models, the key idea is to take into account that the

errors from the estimation of the smoothed log-periodogram follow a Gumbel distribution,

i.e. with probability density function given by ϕ(x) = exp (x− exp(x)). Therefore, the

values of an arbitrary log-periodogram are distributed by a mixture of these parametric

distributions whose k-th coe�cient represents the probability that the corresponding time

series belongs to the k-th cluster. Next step consists of estimating the parameters of the mix-

ture by maximizing the local log-likelihood function for all the collected log-periodograms,

which is carried out by developing an Expectation-Maximization (EM) algorithm. In this

case, the expectation step (E-step) requires an innovative criterion to compute the posterior

probabilities in order to attain interpretable solutions in the context of soft clustering. It

is also shown that the maximization of the complete log-likelihood in the M-step leads to

closed-form expressions. Once the algorithms are properly described, a comparison with the

fuzzy algorithm proposed in Chapter 4 is performed via simulation. Results reported from

this simulation study show that the three examined soft procedures exhibit a satisfactory

behavior, being capable to detect time series located between di�erent clusters.

The main conclusions of this thesis are shortly enumerated in the last chapter, where some

interesting open lines and additional challenges in the topic of time series clustering are

also pointed out for further research.

15



1 Introduction

1.4 Preliminary concepts

This section is devoted to establish some preliminary notions and tools which are of interest

in the development of this dissertation. Speci�cally, a formal de�nition of the stationary

concept, a short description of nonlinear models used in simulations later on, some basic

results in spectral analysis and some useful tools to evaluate the quality of a cluster solution

are presented in the following subsections.

1.4.1 Stationarity

All the clustering procedures developed throughout this thesis apply on strictly stationary

time series. As it is well known, stationarity is the most important form of time-homogeneity

used in time series analysis. Stationary property means time-invariance of the whole prob-

ability distribution of the data generating process (strict stationarity), or just of its �rst

two moments (weak stationarity or simply stationarity).

De�nition 1.4.1 (Stationarity) The process {Xt; t ∈ Z} is said to be stationary if for

all l, t ∈ Z, E(Xt) = µ and Cov(Xt, Xt+l) = γ(l), with γ(0) <∞.

The terms �weakly stationary�, �second-order stationary�, �covariance stationary� and �wide-

sense stationary� are also often used to refer to processes satisfying the above de�nition.

De�nition 1.4.2 (Strict stationarity) The process {Xt; t ∈ Z} is said to be strictly

stationary if the random vectors (Xt1 , . . . , Xtn) and (Xt1+l, . . . , Xtn+l) have the same joint

distribution for any t1, t2, . . . , tn ∈ Z} and for all integers l and n > 0. It can be written as

(Xt1 , . . . , Xtn)
d
= (Xt1+l, . . . , Xtn+l),

where
d
= means equal in distribution.

If Var(Xt) is assumed to exist, then strict stationarity implies stationarity. While stationar-

ity property is primarily used to deal with linear models, strict stationarity is often required

in the context of nonlinear time series analysis. In particular, the consistency result for the

estimates of the quantile autocovariances in Chapter 3 is obtained under the strict sta-

tionary assumption. Note that, by de�nition, all the �nite-dimensional distributions for a

Gaussian process are normal, and therefore a stationary Gaussian process is also strictly

stationary. It is also worth to remark that many time series are nonstationary in practice,

but they may be made stationary after some simple transformation, such as taking di�er-
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ences between consecutive observations, subtracting the estimated trend, etc. This kind of

transformations will be performed in several applications with real data in this thesis.

1.4.2 Some nonlinear time series models

The framework of this thesis is not limited to cluster analysis of realizations from lineal

time series. In fact, robustness against the generating model is one of the strengths of the

proposed approaches. Considering nonlinear models is of great interest because of these

models cover a much wider spectrum of potential dynamics for real time series data in many

�elds. On the other hand, the theory of nonlinear time series has received an increasing

attention since the early and motivating monograph by Tong (1993). Signi�cant advances

have been attained and many well-studied parametric and nonparametric approaches to

model nonlinear structures in time series are available nowadays. The monographs by Tong

(1993) and Fan and Yao (2005) are key references to obtain a comprehensive background.

A range of popular nonlinear models have been considered in simulation studies developed

throughout this thesis. For an easier and ordered reading, the used nonlinear models are

shortly presented in this subsection and the particular constraints required to ensure their

stationarity are also highlighted. Note that, in general, it is not simple to check whether

a nonlinear time series is strictly stationarity. The common practice is to represent the

series as a vector-valued Markov chain and to establish the geometrical ergodicity of the

induced Markov chain (see Tjostheim, 1990; Tong, 1993, and references therein). Then,

strict stationarity follows from the fact that an ergodic Markov chain is strictly stationary

(Theorem 2.2 in Fan and Yao, 2005).

Indeed, there are many ways a process can be nonlinear, but our experiments focused on two

main types of processes, namely parametric models for the conditional mean and parametric

models for the conditional variance. The former represent the conditional mean function

of the process as a nonlinear function of the past observations, keeping the conditional

variance constant. The used models within this category are presented below. Notice that

presentation is restricted to models of order one (with only one lag) because the experiments

were limited to this case for the sake of simplicity.

In what follows, the stochastic process is denoted by Xt and {εt, t ∈ Z} represents a

sequence of independent, identically distributed random variables with a positive density

and �nite �rst and second moments, and such that εt is independent of Xs, for all s < t.

Nonlinear autoregressive (NLAR) model. Nonlinear autoregression constitutes a very
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general class of nonlinear processes where Xt is assumed to satisfy the model de�ned by

Xt = f (Xt−1) + εt, t ∈ Z, (1.2)

with f : R2 → R being a function indexed by some parameters. For instance, experiments

in Chapter 4 involve the NLAR(1) given by

Xt =
0.3 |Xt−1|
3 + |Xt−1|

+ εt. (1.3)

The geometrical ergodicity of NLAR models is studied in detail by An and Huang (1996). In

particular, the uniform boundedness of the nonlinear autoregressive function f ensures that

Xt in (1.3) is geometrically ergodic and hence stationary (see Example 3.1 and Theorem

3.1 in An and Huang, 1996).

Threshold autoregressive (TAR) model. The TAR models capture the dynamic be-

havior by partitioning the real line with thresholds and considering a �nite parametric

model for each regime determined by these thresholds. They constitute a very important

class of nonlinear models and have been studied in depth. The simplest form for a �rst-order

TAR model with two regimes is given as

Xt = φ1Xt−1I (Xt−1 ≤ r) + φ2Xt−1I (Xt−1 > r) + εt, (1.4)

where I(·) denotes the indicator function and r is the threshold partitioning the real line.

Petruccelli and Woolford (1984) establish that a necessary and su�cient condition for the

geometrical ergodicity of the model (1.4) is φ1 < 1, φ2 < 1 and φ1φ2 < 1.

Exponential autoregressive (EXPAR) model. The EXPAR models introduced by

Ozaki (1980) are particularly suitable to capture well-known features of nonlinear vibrations

such as amplitude-dependent frequency, jump phenomena, and limit cycle behavior. The

basic form of an EXPAR(1) model is

Xt =
(
α+ β exp

(
−δX2

t−1

))
Xt−1 + εt, with δ > 0. (1.5)

Example 10.4.3 in Amendola and Francq (2009) states that the model (1.5) is geometrically

ergodic whenever |α| < 1, whatever β ∈ R.

Bilinear (BL) model. Bilinear models were introduced by Granger and Andersen (1978)

and represent a natural way to introduce nonlinearity into a linear ARMA model by adding
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product terms. The general formulation for a bilinear model of order (p, q, P,Q) is

Xt =

p∑
j=1

βjXt−j + εt +

q∑
k=1

αkεt−k +
P∑
j=1

Q∑
k=1

γjkXt−jεt−k,

which is usually denoted by BL(p, q, P,Q). Note that Xt is linear in Xi as well as in εi and

hence the name of 'bilinear'. Despite this intuitive de�nition, the analytical properties of

bilinear models are less-understood than the ones of other nonlinear time series models. As

in the above models, consider the �rst-order BL(1, 0, 1, 1) model given by

Xt = β1Xt−1 + εt + γ11Xt−1εt−1. (1.6)

Pham and Tran (1981) prove that condition β2
1 + σ2γ11 < 1, with σ2 = Varεt, implies the

stationarity of the model (1.6).

Nonlinear mean average (NLMA) model. A very simple way to obtain a nonlinear

model is to consider a nonlinear version of the moving average model, i.e.

Xt = α0 +
∑
i

αiεt−i +
∑
i

∑
j

αijεt−iεt−j + . . .

Our experiments include a simple NLMA structure given by

Xt = α0 + εt + α1εt−1 + α11ε
2
t−1. (1.7)

Since εt are i.i.d. variables, Xt in (1.7) is strictly stationary.

The listed models so far exhibit nonlinearity in the conditional mean but with constant

conditional second moment. It is well known that for example the temporal dynamic of

�nancial returns usually presents high volatility, i.e. the standard deviation of the �nancial

returns shows large changes over time. The most popular approach for modelling time-

varying conditional variance is to use the ARCH and GARCH models introduced by Engle

(1982) and Bollerslev (1986), respectively. These models are particularly useful to capture

some important stylized features of �nancial return series, including heavy-tailed errors and

volatility clustering. Nevertheless, they fail to model other stylized features such as an

asymmetric response of volatility. Motivated for this, extensions of the GARCH models

(EGARCH, FIARCH, ARCH-M, ST-GARCH, GJR-GARCH, DT-GARCH,. . . ) have been

proposed in the literature (see Shephard, 1996, for a comprhensive survey on extended

GARCH models). The particular models considered throughout this thesis are enumerated

below.
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Autoregressive conditional heteroskedastic (ARCH) model. An ARCH model of

order p (≥ 1) has the form Xt = σtεt, where the variance at time t, σ2
t , is conditional on

the past observations according to

σ2
t = γ +

p∑
j=1

βjX
2
t−j , (1.8)

where γ ≥ 0 and βj ≥ 0 are constants.

Theorem 4.3 in Fan and Yao (2005) states that
p∑
j=1

βj < 1 is a necessary and su�cient

condition for strict stationarity of the process Xt de�ned by (1.8).

Generalized autoregressive conditional heteroskedastic (GARCH) model. A

GARCH model is the extension of an ARCH to include a moving average structure. This

way, the conditional variance for a GARCH of order p (≥ 1) and q (≥ 0) follows the model

σ2
t = γ +

p∑
j=1

βjX
2
t−j +

q∑
j=1

αjσ
2
t−j (1.9)

where γ ≥ 0, βj ≥ 0 and αj ≥ 0 are constants.

The necessary and su�cient condition for strict stationarity of a GARCH time series is
p∑
j=1

βj +

q∑
j=1

αj < 1 (see Theorem 4.4 in Fan and Yao, 2005).

Exponential GARCH (EGARCH) model. In the EGARCH model introduced by

Nelson (1991), σ2
t takes the form

ln
(
σ2
t

)
= γ +

q∑
j=1

αj ln
(
σ2
t−j
)

+

s∑
j=1

gj (εt−j) , with gj(z) = ωjz + λj (|z| − E(|z|)) (1.10)

where parameters in (1.10) are not restricted to be nonnegative because the conditional

volatility is always positive. Unlike the GARCH model, the form of σ2
t depends on both the

size and the sign of the lagged εt by means of the functions gj(·). This allows the EGARCH
models to respond nonsymetrically to random shocks. Since {εt} is i.i.d., {gj (εt)} is also

i.i.d., and therefore Xt in (1.10) is strictly stationary if
q∑
j=1

αj < 1.

Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model. The GJR-GARCH

model introduced by Glosten et al. (1993) can be interpreted as a special case of threshold

model, where the conditional variance is formulated as follows for orders p (≥ 1) and q
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(≥ 0).

σ2
t = γ +

p∑
j=1

[βj + λjI (Xt−j < 0)]X2
t−j +

q∑
j=1

αjσ
2
t−j (1.11)

with all parameters in (1.11) being nonnegative constants. Note that the asymmetric

volatility phenomenon is modeled in (1.11) by using dummy variables so that the impact

on the conditional variance is di�erent according to the past returns are positive or negative.

Due to its simplicity, the GJR-GARCH model is very popular in the �nance literature. For

the case of p = q = 1, the conditions of stationarity for the GJR-GARCH model are

γ, β1, α1 > 0, β1 + λ1 ≥ 0 and β1 + α1 + 0.5λ1 < 1 (see Table 2 in Chen et al., 2011).

1.4.3 Spectral estimation

In this section, some essential aspects of the spectral theory of stationary processes are

described, paying attention to those concepts that will later be useful in the development

of this thesis. A more detailed study of spectral analysis theory can be found in Priestley

(1989) and Brillinger (1981).

Let X = {X(t), t ∈ Z} an stationary process with zero mean and autocovariance function

γ(·) such that
∞∑

h=−∞
|γ(h)| <∞.

The spectral density of an stochastic process {Xt} is de�ned as the Fourier transform of

the autocovariance function γ(h) = E (XtXt+h), i.e.

f(λ) =
1

2π

∑
h

γ(h)e2πλh, (1.12)

where the frequencies λ ∈ (−∞,∞).

Since functions cos(·) and sin(·) have both period 2π, the spectral density is periodic with

the same period, reason why it is enough to de�ne it in the interval (−π, π].

In practice, the theoretical spectral density function is unknown and it is necessary to obtain

an approximation. A procedure to estimate the spectrum is to use the periodogram. Given

XT = (X1, . . . , XT ) a partial realization of the stationary process X, the periodogram

IT (·) is de�ned as
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IT (λ) =
1

2πT

∣∣∣∣∣
T∑
t=1

Xte
−iλt

∣∣∣∣∣
2

, (1.13)

where λ ∈ (−π, π). Priestley (1989) proved that if λk denotes the Fourier frequencies, i.e.

λk = 2πk/T , with k = −M, . . . ,M , M = [(T − 1)/2], then

IT (λk) =
1

2π

∑
|h|<T

γ̃(h)e−ihλk , (1.14)

where γ̃(h) is the sample autocovariance function associated to XT .

For λk /∈ {−π, π}, the periodogram ordinates follow a distribution proportional to a chi-

squared with 2 degrees of freedom, according to

IT (λk) ∼
1

2
f (λk)χ

2
2, (1.15)

and thus expression (1.15) opens an approach to testing by the theoretical spectrum. Nev-

ertheless the periodogram is not a consistent estimator for the spectrum.

To estimate the spectrum consistently an estimator based on replacing the spectra by the

exponential transformation of local linear smoothers of the log-periodograms obtained via

least squares (Fan and Kreutzberger, 1998) is used.

If X is a Gaussian linear process, it can be proved that the coordinates of the periodogram

evaluated in the Fourier frequencies, IT (λk), are asymptotically distributed as an exponen-

tial of mean f(λk) and are approximately independents. More formally, they follow the

following heteroscedastic regression model:

IT (λk) = f(λk)Vk +Rk (1.16)

where f is the spectral density, Rk denotes an asymptotically null term and the Vk are

variables with a standard exponential distribution and independent for all k 6= 0.

By applying a logarithmic transformation to the model (1.16) we have

Yk = log(In(λk)) = m(λk) + εk + kk, (1.17)

where m(λk) = log(f(λk)), εk = log(Vk) are random variables iid with density function

ϕ(x) = exp(x − exp(x)), and rk = log{1 + Rk/f(λk)Vk} denotes an asymptotically null
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term.

Since rk is asymptotically null, it can be ignored in (1.17). Thus, if the regression model

(1.17) is centered by subtracting E(εk) = C0, with C0 being the Euler constant, and the

term rk is disregarded we have that

Yk − C0 = log(In(λk))− C0 = m(λk) + (εk − C0). (1.18)

Fan and Gijbels (1996) propose up to three possible nonparametric approaches to estimate

f . The �rst one is to smooth the logarithm of the periodogram using a least squares method.

Applying the least squares method to model (1.18) in order to obtain the best local linear

�t, the following estimator of the logarithm of the spectrum is attained

m̂LS(λ) =

M∑
k=−M

wk(λ)(Yk − C0), (1.19)

where wk(λ) denotes the weights of the corresponding local linear �t. Then the estimator

of the spectral density is obtained by back-transforming m̂LS ,

f̂(λ) = f̂LS(λ) = exp(mLS(λ)), (1.20)

which we refer to as smoothed log-periodogram.

The smoothed periodogram estimator m̂LS is not e�cient due to the non-normality of the

errors. The e�ciency of the least squares method can be improved by using the maximum

likelihood method. Assuming the model (1.18), for each λ the weighted log-likelihood is

constructed as follows:

L(a, b) =
M∑
k=1

[−exp {Yk − a− b(λk − λ)}+ Yk − a− b(λk − λ)]Kh(λk − λ), (1.21)

where Kh(·) = K(·/h)/h.

Let â and b̂ be the maximizer of (1.21). Then, the local likelihood estimator for m(x) is

m̂LK = â, and again the estimator for the spectral density is obtained by back-transforming

m̂LK ,

f̂(λ) = f̂LK(λ) = exp(mLK(λ)), (1.22)

A third way to estimate the spectral density is to smooth directly the periodogram, that is
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applying local linear smoothing directly to {λk, IT (λk)}, which leads to

f̂(λ) = f̂DLS(λ) =
M∑
k=1

Kn

(
λ− λk
h

)
IT (λk), (1.23)

1.4.4 Quality clustering indexes

In this section, some criteria related to the quality of a cluster solution are presented.

Namely, two di�erent indexes to estimate the number of clusters of a partition and an

index of agreement to compare the true cluster partition with the experimental one.

Let S =
{
XXX(1), . . . ,XXX(n)

}
denote a set of n time series of length T and Ek = {E1, . . . , Ek}

a given cluster partition of S.

One of the methods considered to estimate the number of clusters in S consists in maxi-

mizing the average Silhouette width, ASW, proposed by Kaufman and Rousseeuw (1990).

Given the partition Ek, ASW is de�ned by

ASW =
1

p

p∑
i=1

sil(i),

where sil(i) is called the Silhouette width for the ith individual series XXX(i) and de�ned by

sil(i) =
b(i)− a(i)

max{a(i), b(i)}
,

with a(i) denoting the average of the distances between XXX(i) and all other series in its

cluster, and b(i) the average of the distances between XXX(i) and all series in the closest

cluster (i.e. the second-best group for XXX(i)). By de�nition, a value of sil(i) close to one

indicates that XXX(i) is very well clustered, a small value (around 0) means that XXX(i) lies

between two clusters, and a value close to −1 indicates placement in the wrong cluster.

This way, ASW always takes values between −1 and 1 and provides an overall measure of

how well series are clustered.

A commonly used index proposed by Krzanowski and Lai (1988) is also used to estimate the

number of clusters. The objective is to select the value of k providing an optimal value for

these functions or internal indexes. Speci�cally, given the partition Ek, denote by Bk and

Wk the T×T matrices of between and within k-clusters sums of squares and cross-products,

respectively. Then, the mentioned indexes perform as follows.
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The Krzanowski and Lai index (KL) calculates

KL(k) =
|di�k|∣∣di�k+1

∣∣ ,
where di�k = (k−1)2/T tr(Wk−1)−k2/T tr(Wk). Likewise, the value of k maximizing KL(k),

k ≥ 2, is selected.

Finally, an index of agreement between the true cluster partition, T = {T1, . . . , TC}, and
the experimental partition R in order to measure the quality of the clustering procedure is

considered in chapters 2 and 3 of the dissertation. More speci�cally, the agreement index

(Gavrilov et al., 2000; Liao, 2005) is de�ned by

Ind1 (T,R) =
1

C

C∑
i=1

max
1≤j≤C

Ind1 (Ti, Rj) , (1.24)

where

Ind1 (Ti, Rj) =
2 |Ti ∩Rj |
|Ti|+ |Rj |

,

and |V | denotes the cardinality of a set V . Index Ind1 accounts for the number of series

sharing a same cluster in both partitions, taking exactly the value 0 if both partitions are

completely dissimilar and the value 1 if they are identical.
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Clustering based on frequencies and
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2.1 Introduction

The spectral representation of a stationary process X = {X(t), t ∈ Z} essentially decom-

poses X into a sum of sinusoidal components with random and uncorrelated coe�cients.

The spectral decomposition is thus, in the realm of the time series, a concept analogous to

the Fourier representation of deterministic functions. The analysis of stationary processes in

their spectral representation is usually called �analysis in the frequency domain� or �spectral

analysis�. While �time domain� analysis is based on the autocovariances function, spectral

approach replaces the covariance matrix representation by its corresponding spectral den-

sity representation, which provides a di�erent way of analyzing processes that may be more

interesting and useful in some applications. A detailed study of spectral analysis theory can

be found in specialized references (Brillinger, 1981; Priestley, 1989; Brockwell and Davis,

2002; Shumway and Sto�er, 2006).
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2 Clustering based on frequencies and amplitudes of spectral peaks

The frequency domain approach provides an alternative paradigm to perform cluster anal-

ysis of time series, since the concept of dissimilarity between processes can be thought in

terms of disparity between their spectral representations. A number of signi�cant contribu-

tions have followed this approach by introducing metrics comparing the underlying spectral

densities. Kakizawa et al. (1998) proposed a metric based on a general spectral disparity

between two time series. In practice, the spectra are unknown and must be previously esti-

mated. Vilar and Pértega (2004) studied the asymptotic properties of the metric proposed

by Kakizawa et al. (1998) when the spectra are replaced by nonparametric estimators con-

structed via local linear regression. These approximations can be done in three di�erent

ways (Fan and Kreutzberger, 1998), thus resulting three di�erent versions of the metric

proposed by Kakizawa et al. (1998). Speci�cally, (a) replacing the spectra by local lineal

smoothers of the periodograms obtained via least squares, (b) replacing the spectra by the

exponential transformation of local linear smoothers of the log-periodograms obtained via

least squares, and (c) proceeding as in (b) but here using the maximum local likelihood

criterion to obtain the local linear smoothers. Also, other two alternative nonparamet-

ric spectral dissimilarity measures were introduced by Pértega and Vilar (2010). In both

cases, the discrepancy measure is given by a nonparametric statistic originally introduced

to check the equality of the log-spectra of two processes. The �rst alternative comes from

the generalized likelihood ratio test approach introduced by Fan and Zhang (2004) to check

whether the density of an observed time series belongs to a parametric family. Pértega and

Vilar (2010) introduced a modi�cation of this test statistic in order to check the equality of

two log-spectra. The second distance evaluates the integrated squared di�erences between

nonparametric estimators of the log-spectra. Some of these distances have been brie�y

presented in Section 1.2 of Chapter 1.

Beyond the comparison of whole spectral densities, detecting di�erences between spectral

peak frequencies is often a problem of major interest in medical, biological and economic

applications. For instance, in clinical diagnosis di�erent pathologies might be determined

by deciding whether signi�cant spectral peaks are located into di�erent frequency ranges

(Findley and Koller, 1987). Relevant information about activations and artifacts in func-

tional magnetic resonance imaging (fMRI) data sets is sometimes obtained by determining

the location of signi�cant frequencies (Jarmasz and Somorjai, 2002). Motivated for this

interest, we focus on developing a clustering algorithm aimed at partitioning the observed

time series according to the location of their signi�cant spectral peaks. More speci�cally, a

two-stage clustering procedure based on comparing frequencies and magnitudes associated

to the highest spectral peaks is presented in this chapter. In the �rst stage, the dissimilarity

between each pair of series is evaluated in terms of the p-value associated to a bootstrap
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test of equality of the frequencies where the spectral maxima are reached (Timmer et al.,

1999). Based on the pairwise p-values matrix and following the clustering technique pro-

posed by Maharaj (2000), a �rst cluster partition is built up. As it will be detailed later, the

technique proposed by Maharaj proceeds in a similar way as an agglomerative hierarchical

clustering starting from the p-values matrix, but here will only group together those series

whose associated p-values are greater than a signi�cance level pre-�xed by the user. In this

�rst stage, each cluster brings together the series presenting the highest spectral peak at

similar frequencies, but these peaks could exhibit di�erent magnitudes. This fact accounts

for a second stage of the clustering algorithm addressed to check if the areas under the

spectral densities within each cluster di�er in a local environment of the peak frequency.

This task is separately carried out for each of the clusters generated at the �rst stage of

the process. For each group, a new matrix of p-values coming from testing by equality

of these local areas is constructed and used to perform again the hierarchical clustering

procedure proposed by Maharaj (2000), thus obtaining the �nal cluster partition. Indeed,

this procedure could be iteratively applied for the following signi�cant spectral peaks.

The performed simulations showed the good performance of the proposed procedure, but

it is important to notice about the limitations inherent to the method, particularly its

high computational complexity and the need of introducing relevant input parameters. As

it will be discussed in the section of conclusions, the recommendation is to consider this

approach only when the clustering purpose focuses on splitting the set of time series into

groups characterized by the location of their spectral peak frequencies. In a more general

context where the interest is to classify the series according to the underlying processes,

other metrics result more e�cient.

The rest of this chapter is organized as follows. In Section 2.2, the two-stage clustering

procedure based on comparing frequencies and magnitudes of the absolute peaks of the

spectral densities is introduced and described in detail. The performance of the proposed

clustering methodology is examined via simulations and compared to other alternative

clustering approaches in Section 2.3. Section 2.4 shows an application on real data set

involving economic time series, and the main conclusions are presented in Section 2.5.

2.2 The clustering procedure

Let S =
{
X(j);X(j) =

(
X

(j)
1 , . . . , X

(j)
T

)}
, for j = 1, . . . , n, be a set of n realizations of

time series of length T . The goal is to perform cluster analysis on S in such a way that

each cluster brings together those series having the same location and magnitude for their
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2 Clustering based on frequencies and amplitudes of spectral peaks

main spectral peaks. The proposed methodology consists on two stages.

The �rst stage focuses on the location problem, i.e. on checking whether the di�erence

between the peak frequencies of the spectra of the series in S are or not signi�cantly

di�erent from zero. The objective is to group series with the same spectral peak frequency.

The second stage separately applies to each of the clusters generated at the �rst stage, and

consists on splitting each cluster into a new partition discriminating between series whose

main peaks di�er in power. In other words, the new clustering process is based on checking

whether the areas under the spectral densities in a local neighborhood of the main peak

frequencies di�er signi�cantly.

In both stages, pairwise dissimilarities are evaluated by means of the p-values from boot-

strap tests for equality of the spectral features of interest, namely frequencies and powers

for the main spectral peaks. The test procedures were proposed by Timmer et al. (1999).

Note that the p-values associated with these tests can be used to measure the amount of

dissimilarity between these spectral features: the smaller is the p-value, the larger is the

discrepancy between them.

Once the n× n matrix of p-values is available, the hierarchical clustering algorithm based

on p-values introduced by Maharaj (2000) is carried out. This algorithm works as follows.

First, a signi�cance level α is previously speci�ed by the user. Then, the i-th series X(i)

will merge into a speci�c cluster formed by the m series
{
X(j1), . . . ,X(jm)

}
i� pi,jl ≥ α, for

all l = 1, . . . ,m. Analogously, two clusters will be joined together if and only if the p values

of all pairs of series across the two clusters are greater than α. Unlike the conventional

hierarchical methods, this algorithm presents the advantage of providing automatically the

number of clusters, which obviously depends on the pre�xed signi�cance level. Furthermore,

the amount of compactness of each cluster can be evaluated by examining the p-values

within each cluster.

A detailed description of the clustering procedure is provided below.

Stage 1:

1. Estimate the spectral density of each time series and, for each pair of series(
X(i),X(j)

)
, i 6= j, compute ∆̂λij = λ̂pi − λ̂

p
j , where λ̂

p
i denotes the estimator

of the main spectral peak frequency of the i-th series.

2. Generate B bootstrap resamples of the periodograms regarding that

IT (λk) ∼
1

2
f̂ (λk)χ

2
2,
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with λk ∈ (−π, π) the k-th Fourier frequency and f̂ (λk) the estimator of the

spectral density in λk.

3. For each set of resamples, the spectra are reestimated and the new di�erences

between the peak frequencies are computed to obtain bootsrap replicates of the

di�erences ∆̂λ
∗
ij .

4. Based on the bootstrap distribution of
(

∆̂λ
∗
ij − ∆̂λij

)
and the value of the

statistic ∆̂λij , obtain the p-value pij to check the null hypothesis H ij
0 : λpi = λpj .

The n × n matrix of p-values
(
p

(1)
ij

)
is considered as dissimilarity matrix to

develop hierarchical clustering.

5. According to a pre�xed signi�cance level α1, the hierarchical clustering algorithm

proposed by Maharaj (2000) is performed starting from the matrix
(
p

(1)
ij

)
.

Stage 2: For each cluster C generated in Stage 1, proceed as follows.

1. For each pair of series
(
X(i),X(j)

)
within the cluster C, estimate the area

∆̂Aij between the estimated spectra on a local neighborhood ΩC of the peak

frequencies for the series in the cluster by computing:

∆̂Aij =

∫
ΩC

|f̂i (λ)− f̂j (λ)| dλ,

2. Using the bootstrap resamples obtained in Stage 1, compute ∆̂A
∗
ij .

3. According to the bootstrap distribution of
(

∆̂A
∗
ij − ∆̂Aij

)
, obtain the p-value

p
(2)
ij to check H ij

0 : ∆Aij = 0.

4. Based on the matrix
(
p

(2)
ij

)
obtained in the above step, use again the hierarchical

clustering algorithm proposed by Maharaj (2000) with a signi�cance level α2 set

in this stage.

It is worth to highlight some remarks about the described algorithm. According to the

common choices for the signi�cance level of a test, the values of α1 and α2 will be set at 1%,

although depending on the number of series involved in the clustering process some kind of

adjustment for multiple testing could be carried out. As far as the estimation of the spectral

densities required in steps 1 and 2 of Stage 1, any of the nonparametric approximations

mentioned in the previous section can be used. In order to reduce the computational cost,

a reasonable choice may be the local linear smoother of the log-periodogram computed by

least squares. Note that the local linear �tting techniques present nice properties including

a good performance at boundary points (other smoothing techniques su�er from the well
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2 Clustering based on frequencies and amplitudes of spectral peaks

known �boundary e�ect�). This property is particularly useful here due to work on a

compact support. In fact, the largest spectral peak might correspond to a frequency close

to the boundary.

Other important remark refers to the determination of the local neighborhoods ΩC in step

1 of Stage 2. Roughly speaking, for a given cluster C, ΩC is the interval whose endpoints

are the frequencies of half estimated power on left and right of the maximum peak. As

all the series in C maximize the estimated power at the same (or similar) frequency, this

interval should contain all the main peak frequencies in the cluster and provide a reasonable

range for evaluating and comparing the curvatures at all peaks. More formally, assume that

C is formed by m series, C =
{
X(j1), . . . ,X(jm)

}
. For each series X(ji) in C, let λip be

the frequency maximizing f̂ji (λk), for all k ∈ {1, . . . , N}, and denote by Mi the attained

maximum. Construct the interval
[
λil, λ

i
u

]
with endpoints are given by

λil = max

{
0, max

1≤k≤N

(
λk / f̂ji(λk) ≤

1

2
Mi

)}
,

and

λiu = min

{
0.5, min

1≤k≤N

(
λk / f̂ji(λk) ≥

1

2
Mi

)}
.

Finally, ΩC is selected as the longest interval among all the
[
λil, λ

i
u

]
intervals, for i =

1, . . . ,m.

Hereafter, the proposed procedure will be refered to SP algorithm.

2.3 Simulation study

In this section, we present the results from a numerical study designed to compare the

behavior of a group of classic dissimilarity measures against the proposed method when

they are used to cluster a group of observed time series.

2.3.1 Main features of the simulation study

Simulations were conducted to assess the performance of the SP algorithm compared to a

wide selection of model-free dissimilarity measures, and considering two di�erent classi�-

cation setups, namely classi�cation of (i) ARMA models and (ii) non-linear models. The

generating models selected at each case are enumerated below.
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Scenario 2.1 Classi�cation of ARMA processes.

(a) AR(1) Xt = 0.5Xt−1 + εt

(b) MA(1) Xt = −0.9εt−1 + εt

(c) AR(2) Xt = 0.3Xt−1 − 0.6Xt−2 + εt

(d) MA(2) Xt = 0.8εt−1 − 0.6εt−2 + εt

Scenario 2.2 Classi�cation of non-linear processes.

(a) TAR Xt = 0.5Xt−1I (Xt−1 ≤ 0)− 2Xt−1I (Xt−1 > 0) + εt

(b) EXPAR Xt =
(
0.3− 10exp

(
−X2

t−1

))
Xt−1 + εt

(c) MA Xt = −0.4εt−1 + εt

(d) NLMA Xt = −0.5εt−1 + 0.8ε2
t−1 + εt

(e) Bilinear Xt = (0.3− 0.2εt−1)Xt−1 + 1.0 + εt

In all cases, process εt consisted of independent zero�mean Gaussian variables with unit

variance. One hundred trials (N = 100) of this scheme were carried out for each scenario

with three time series of length T = 500 generated from each model. Since all models are

stationary in mean but present di�erences in scale, the series were previously normalized to

have unit variance. The ARMA processes were generated using the R function arima.sim

and the non-linear ones with self-programed code in R. A burn-in period of length 500 was

considered in all cases, starting at X0 ∼ N(0, 1).

While clustering of linear models (Scenario 2.1) has been intensively studied and there are

metrics speci�cally designed to deal with this kind of models, Scenario 2.2 introduces a

major di�culty by including models with di�erent conditional means that gradually depart

from linearity. The models involved in Scenario 2.1 are similar to the ones previously

considered by Maharaj (1996) by performing clustering of ARMA processes, and the models

in Scenario 2.2 were used in a linearity test context by Tong and Yeung (1991).

To bring insight into the shapes of the true spectral density functions for the examined

models, plots of the theoretical spectra for the ARMA models and large sample approxi-

mations to the corresponding spectra for the non-linear ones were obtained and depicted

in Figure 2.1.

Plots in Figure 2.1 suggest that the SP algorithm should discriminate properly between

the underlying processes. For the linear scenario, Figures 2.1(a), the theoretical patterns

characterizing the clusters exhibit di�erent pro�les for the spectral densities and, in par-

ticular, well-separated peaks. The importance of the second stage in the SP algorithm is

also evident in this scenario. Notice that the AR(2) and MA(2) models present peaks in

frequencies close to each other, and therefore will be grouped together in the �rst stage.
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Figure 2.1: Theoretical spectral density functions for the models in the linear (a) scenario
and large sample approximation of the spectral density functions for the models in the
non-linear (b) scenario.

Nevertheless, they will be located into di�erent clusters in the second stage when the areas

on a local neighborhood are compared. Attending to the non-linear scenario, Figures 2.1

(b), discrimination between the EXPAR and BM models seems less hard than between the

MA, TAR and NLMA models. Overall, the complexity of this scenario is greater and worse

agreement indexes are expected.

For each data set generated, di�erent metrics were considered speci�cally designed for time

series clustering in order to compare the results with the proposed method.

� Periodogram-based distances (Caiado et al., 2006). In particular, the Euclidean dis-

tance between periodograms (dP ), ordinates of normalized periodograms (dNP ), log of

peridograms (dLP ) and logarithm of normalized peridograms (dLNP ) were considered.

� Autocorrelation-based distances (Caiado et al., 2006). Direct and weighted Euclidean

distances between simple and partial autocorrelations using a number of signi�cant

lags were taken into consideration, such as dACFG, dPACFG and dPACFU with L = 10

the number of signi�cant lags considered. In particular, dACFG and dPACFU were

computed with p = 0.05.

� Nonparametric dissimilarities in the frequency domain. An spectral disparity measure

de�ned as dW in 1.1, where the densities (dW (DLS)) were estimated by means of local

34



Simulation study 2.3

lineal smoothers of the periodograms, obtained via least squares (Kakizawa et al.,

1998).

All of these metrics were compared with the proposed clustering algorithm. We denote by

SP the spectral peak density method. For the computation of the algorithm, resamples

of size B = 200 were generated. The estimation of the spectral densities required in the

algorithm were carried out using the local linear smoother of the log-periodogram computed

via least squares. Two di�erent degrees of smoothing were tested for the implementation

of the SP algorithm by considering ĥ = ηĥPI , with η = {1, 2} and hPI denoting the

bandwidth selected via plug-in methodology. As for the signi�cance levels used in the two

stages of the algorithm, α1 = α2 = 0.001 were considered.

The SP algorithm automatically provides an estimate of the number of clusters that set up

the partition. To make a fair comparison, two di�erent criteria for determining the number

of clusters are used with the rest of the metrics.

Starting from each dissimilarity matrix, a hierarchical clustering algorithm using average

linkage method is applied. We consider two possible criteria for determining the number of

clusters: (i) maximize the average silhouette coe�cient (Kaufman and Rousseeuw, 1990)

and (ii) maximize the Krzanowski-Lai index (Krzanowski and Lai, 1988). Both of them

were de�ned in Section 1.4.

Other criteria for the selection of the number of clusters were considered but the best results

were obtained using ASW and KL. A wide discussion on di�erent methods for the selection

of the number of clusters can be seen in Section 3.4 of Chapter 3.

The results of the cluster analysis were evaluated by comparing cluster solutions obtained

experimentally with the true partition using the agreement index given by Liao (2005) (see

Section 1.4).

2.3.2 Results

The results of the simulation study averaged over the N = 100 trials of the experiment are

shown in Table 2.1.

According to Table 2.1, the algorithm based on the spectral peaks (SP ) obtained the

highest average scores in Scenario 2.2 and presented a little worse behaviour in Scenario

2.1. Nevertheless, this results are also competitive only being outperformed by metrics

based on autocorrelations. Results improve when the value of the smoothing parameter is

increased (η = 2). This seems reasonable because it makes the estimation of the spectrum
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2 Clustering based on frequencies and amplitudes of spectral peaks

Table 2.1: Averages of the cluster similarity index and the number of clusters (between
brackets) obtained from 100 trials of the simulation procedure for the classi�cation of linear
(Scenario 2.1) non-linear (Scenario 2.2) processes and each of the considered dissimilarity
measures.

Scenario 2.1 Scenario 2.2

Method ASW KL ASW KL

Periodograms
dP 0.749 (2.36) 0.713 (5.21) 0.548 (2.22) 0.543 (7.38)
dLP 0.750 (2.00) 0.701 (4.08) 0.554 (2.61) 0.536 (7.77)
dNP 0.749 (2.36) 0.713 (5.21) 0.548 (2.22) 0.543 (7.38)
dLNP 0.750 (2.00) 0.701 (4.08) 0.554 (2.61) 0.536 (7.77)

Autocorrelations
dACFG 0.977 (3.79) 0.977 (3.93) 0.635 (2.22) 0.638 (2.37)
dPACFG 0.911 (3.20) 0.962 (3.66) 0.621 (2.14) 0.642 (2.30)
dPACFU 0.891 (3.04) 0.936 (3.43) 0.619 (2.10) 0.630 (2.31)

Non-parametric
dW (DLS) 0.916 (3.38) 0.921 (4.12) 0.671 (2.49) 0.685 (3.21)

Spectral peaks η

SP
1 0.863 (4.79) 0.685 (5.54)
2 0.933 (4.43) 0.743 (4.81)

smoother and therefore, minimizes di�erences caused by errors in the estimation of the

spectral peaks. Attending to the estimation of the real number of clusters, it can be seen

that in both scenarios the total number is fairly well estimated with values really close to

the real ones, being slightly more accurate in Scenario 2.2 reaching a value of 4.81 when

η = 2 is considered.

The metrics based on autocorrelations performed very well in Scenario 2.1, with dACFG

obtaining the best results in this scenario (0.977) regardless of the method employed for

the estimation of the number of clusters, with an almost perfect estimation of the real

number of clusters (3.93). The behavior of this metrics clearly worsened in Scenario 2.2

with really low classi�cation indexes.

The non-parametric dissimilarity dW (DLS) produced very high average scores (0.921) in

Scenario 2.1 with similar classi�cation indexes despite of the system used for the selection

of the number of clusters. As for Scenario 2.2 the behavior is similar to the autocorrelation-

based metrics, the average scores clearly worsened with really low values, only achieving a

value of 0.685 when the KL index is considered.

The remaining metrics based on periodograms produced the worst results in both scenarios.

The periodograms are not able to separate properly the models considered in Scenario 2.2,
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and only produced acceptable results in Scenario 2.1. Similar agreement indexes were

obtained with the four versions of the periodogram metric being slightly better dLP and

dLNP .

To shed light on what processes were more di�cult to group, Tables 2.2 and 2.3 show the

percentage of times that each of the processes was correctly grouped in each scenario.

Table 2.2: Percentage of times that the series of each ARMA process in Scenario 2.1 were
correctly grouped in the experimental cluster solution.

AR(1) MA(1) AR(2) MA(2)

Periodograms
dP 41.00 43.00 8.00 17.00
dLP 8.00 73.00 5.00 2.00
dNP 41.00 43.00 8.00 17.00
dLNP 8.00 73.00 5.00 2.00

Autocorrelations
dACFG 98.00 99.00 84.00 84.00
dPACFG 100.00 100.00 66.00 66.00
dPACFU 100.00 100.00 43.00 43.00

Non-parametric
dW (DLS) 98.00 75.00 66.00 61.00

Spectral peaks
SP 94.00 78.00 81.00 72.00

Table 2.2 shows that all the dissimilarities exhibited low ability to group correctly the series

generated from the MA(1) and MA(2) processes, while the AR(1) and AR(2)) series form

the most compact groups.

Table 2.3 corroborates the poor performance of all the metrics to cluster non-linear series.

All the dissimilarities exhibited low ability to group correctly the series generated from

all the processes except the EXPAR series which forms the most compact group. It also

reveals that the SP algorithm showed the best performance, grouping correctly the series

generated from the EXPAR model. Unlike SP , all the other measures were unable to detect

homogeneity in the generating patterns of any of the series, and presented very poor success

percentages. De�nitively, the SP algorithm fairly outperformed the rest of dissimilarities

in this setup.

Both Table 2.2 also corroborate the poor performance of the metrics based on periodograms

cluster linear series and Table 2.3 shows the bad behavior of the metrics based on peri-

odograms and autocorrelations when classifying non-linear series.

Finally, we record the number of correct clusters at each trial, i.e. the number of clusters
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Table 2.3: Percentage of times that the series of each non-linear process in Scenario 2.2
were correctly grouped in the experimental cluster solution.

TAR EXPAR MA NLMA BM

Periodograms
dP 0.00 4.00 3.00 2.00 2.00
dLP 0.00 3.00 6.00 0.00 0.00
dNP 0.00 4.00 3.00 2.00 2.00
dLNP 0.00 3.00 6.00 0.00 0.00

Autocorrelations
dACFG 0.00 18.00 3.00 0.00 4.00
dPACFG 1.00 19.00 10.00 2.00 7.00
dPACFU 0.00 14.00 6.00 0.00 5.00

Non-parametric
dW (DLS) 2.00 31.00 26.00 7.00 9.00
Spectral peaks
SP 11.00 54.00 7.00 2.00 38.00

containing only the whole set of series with identical generating process. The distribution

(in percentage) of this variable for each of the mentioned metrics and each scenario is

depicted in Figure 2.2.

According to Figure 2.2 (a), the dACFG obtained the best result in Scenario 2.1, identify-

ing the genuine solution of 4 clusters more times than the rest of dissimilarities, exactly

83% of the times. The proposed algorithm, SP , 56% of the times drawn out the four

correct clusters becoming the third best metric only behind dACFG and dPACFG. Also

dW (DLS) obtained reasonable percentages of complete solutions, 43%. The metrics based

on periodograms presented the poorest results in this scenario.

Figure 2.2 (b), show that the SP algorithm led to the best results in Scenario 2.2. While

only dPACFG was able to identify correctly the true solution of 5 clusters 1% of the times,

the SP algorithm show a more consistent and better behavior identifying 3 clusters 8%

of times. The proposed algorithm, usually identi�ed one and two clusters (56% and 16%,

respectively). Despite the fact that the dPACFG detect one time the correct solution, 78% of

times failed to detect any of the 5 models. The remaining dissimilarities yielded signi�cantly

worse results. Once again, the metrics based on periodograms presented the poorest results

in this scenario. This results corroborate the di�culty of this speci�c scenario that was

previously observed when we represented estimation of the theoretical spectral densities of

each process.

The main limitation of the SP algorithm is the high computational complexity due to the
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Figure 2.2: Distribution (in percentage) of the number of clusters identi�ed at each iteration
with di�erent metrics for Scenarios 2.1 (a) and 2.2 (b). The true number of clusters at each
scenario is shown in bold in the legends.

reiterated computation of both bootstrap resamples and numerical integration. To obtain

accurate information about this, the computing time required for the SP algorithm at a

particular iteration of the simulation has been measured. The algorithm was run on a
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2 Clustering based on frequencies and amplitudes of spectral peaks

PC with the system speci�cations given by: Intel Core I7 - 3630QM processor, 2.4 Ghz

CPU, 16 GB of RAM, Windows 10. For the linear scenario it took 17.74 minutes, while for

the non-linear scenario 40.22 minutes were needed. Compared to the other distance-based

models, these times are not competitive.

2.4 A case-study with real data

In this section we perform clustering on a real data example involving economic time series.

The data set consists of a collection of 14 �nancial time series, each one recording the

weekly bank share price (in euros) in the Spanish stock market over a period of two years

(2001 and 2002).

The 14 banks considered are: Andalucía, Atlántico, BBVA, Banesto, Bankinter, Castilla,

Crédito�Balear, Galicia, Guipuzcoano, Pastor, Santander, Valencia, Vasconia and Zaragozano.

The measurements were recorded at the same time points for all series. In particular, each

series consists on T = 103 weekly observations and each observation indicates the price per

share taken on a Thursday. When Thursday fell on a public holiday, the observation was

taken on a Wednesday.

Our purpose is to classify the 14 banks according to the maximum of their spectral densities.

First of all, it is important to note that all series are non-stationary in mean. Following the

usual approach each of the time series was transformed using logarithms and taking one

regular di�erence. Graphs of the transformed series can be seen in Figure 2.3.

Just as in the simulation study, the spectral densities estimations were carried out by

smoothing the associated periodogram using local polynomial estimation and a plug-in

method to estimate the smoothing parameter. Figure 2.4 shows the representations of the

periodograms and the spectral density for each bank.

Again, following the results in the simulations, we chose a signi�cance level of α1 = α2 =

0.01 for the two stages of the SP algorithm and B = 500 bootstrap resamples of the

periodograms were considered.

The clustering procedure lead to a 3 cluster solution. First group, C1 = {BBVA,Bankinter,
Santander} forms a compact cluster, with some of the most important banks in Spain. All

banks in this cluster, belong to IBEX-35 (which groups the 35 companies with the highest

liquidity in the Spanish stock market) at the time the data was taken. The biggest cluster is

the one formed by C3 = {Andalucía,Castilla,Crédito Balear,Galicia,Guipuzcoano,Valencia,

Vasconia}. As regards to the rest, a secondary cluster emerge from the classi�cation:
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Figure 2.3: Transformed series of the weekly share price of the di�erent banks in the
Spanish stock market.

C2 = {Atlántico,Banesto,Pastor,Zaragozano}.

To bring some insight into the classi�cation, Figure 2.5 shows the banks spectral densities

in each cluster. As it can be seen, banks in cluster C2 (Figure 2.5 (b)) have the maximum
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Figure 2.4: Periodograms and the spectral density of the weekly share price of the di�erent
banks in the Spanish stock market.

on the left bound of the interval while clusters C1 and C3 (Figures 2.5 (a) and (c)) have the

peak around 0.4, but elements in cluster C1 take higher values. Some of the banks in cluster

C3 (Figure 2.5 (c)) present spectral densities without any signi�cative peak (their curves

are almost �at). Also it is important to note that clusters C1 and C3 were not separated
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Figure 2.5: Spectral densities of the series of weekly share price of the di�erent banks in
the Spanish stock market in each cluster.

until the second stage of the algorithm came into play due to having the spectral peak at

frequencies very close to each other.

2.5 Concluding remarks

A time series clustering procedure aimed at grouping series presenting the main spectral

peaks at similar frequencies and with similar spectrum power has been introduced. This

clustering principle is often of great interest in the analysis of oscillatory phenomena, where

identifying serial realizations with similar/di�erent predominant periods of oscillation and

similarities/di�erences in terms of amplitude of these oscillations is a relevant issue. A

typical example of application arises in the analysis of electrophysiological recordings like

EEG signals, but also by investigating oscillatory signals in biological or �nancial problems.

43



2 Clustering based on frequencies and amplitudes of spectral peaks

Therefore, unlike the rest of chapters in this dissertation, the clustering purpose is not to

grouping time series according the generating processes, and hence a comparison of the

whole estimated spectra is not here the proper approach. Two spectra can be di�erent but

presenting similar dominant frequencies.

To attain the clustering target, a two-stage approach has been proposed. The key point con-

sists of generating resamples of the periodograms based on the asymptotic χ2 distribution,

obtaining new estimated spectral densities, and hence: (i) measuring pairwise dissimilari-

ties by means of the p-value from a bootstrap test of equality of peak frequencies (stage 1),

and (ii) proceeding in a similar way checking by equality of spectrum power at the main

peaks separately within each group formed in the �rst stage (stage 2). In both stages, a

clustering procedure based on p-values is carried out.

The results from a simulation study showed a good performance of the proposed procedure,

particularly in scenarios with non-linear series. Overall, the clustering behavior was highly

competitive when compared to other approaches based on whole spectra or sequences of

autocorrelations (which have been designed to attain a di�erent clustering target). It was

also observed that considering a high level of smoothing to estimate the spectral densities

improves the classi�cation. This criterion also allows to avoid the disruptive e�ect of non-

signi�cant peaks. Its application to a real study case involving �nancial series provides a

cluster partition consistent with the main peaks and frequencies showed by the spectral

estimates. In summary, the clustering procedure behaves in a promising way.

A number of strengths and weaknesses are inherent to the proposed clustering procedure.

The most remarkable strength is that the procedure is speci�cally developed to attain the

mentioned clustering target by directly aiming to identify peaks with similar frequency and

amplitude. An additional advantage is that, by construction, the number of clusters is

automatically determined once the signi�cance levels for the hypothesis testing have been

�xed. Other alternative procedures require to use some kind of criterion to establish the

optimal number of clusters such as the average silhouette width or the Krazanowski-Lai

index, among others. The main limitation is the high computational cost derived from the

bootstrap procedures involved in both stages. In this sense, other clustering procedures

are fairly preferred. As consequence of these considerations, the proposed procedure is par-

ticularly recommendable when the clustering purpose relies on the location and amplitude

of the spectral peaks, the main peaks are clearly identi�able, and the number of series

subjected to clustering is not too large.
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Clustering of time series based on

quantile autocovariances
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3.1 Introduction

The main motivation behind this chapter is to propose an innovative dissimilarity measure

between time series in order to perform clustering governed by similarity between underly-

ing dependence structures. The new measure should exhibit nice properties of robustness

against the generating processes, thus enlarging the �eld of application to include complex

scenarios but also producing competitive results in simpler scenarios. According to the
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3 Clustering of time series based on quantile autocovariances

clustering purpose, a structure-based dissimilarity is required. Speci�cally, we focus on

the feature�based approach, where the raw observations are replaced by a reduced number

of features describing the temporal structure of the series, and then dissimilarity is eval-

uated in terms of these features. For instance, in the time domain, several authors have

considered measures based on comparing estimations of simple or partial autocorrelation

functions (Bohte et al., 1980; Caiado et al., 2006; D'Urso and Maharaj, 2009). Autocorre-

lations exhibit nice properties to discriminate between some kinds of processes (see Monte

Carlo experiments in Caiado et al., 2006), but also present some weaknesses such as the

lack of robustness to outliers and heavy tails or being unable to detect tail dependence.

Note that heavy tails and non-existence of higher moments are distributional features fre-

quently exhibited by, for instance, many �nancial time series (log-return series of stock

indices, share prices, exchange rates, etc). In fact, several clustering approaches speci�cally

developed to cluster �nancial time series have been currently introduced. For example,

De Luca and Zuccolotto (2011) propose to use a tail dependence coe�cient to group time

series with an association between extremely low values, and D'Urso et al. (2013a) consider

two fuzzy clustering procedures making use of GARCH models.

To overcome these limitations, we propose to measure dissimilarity comparing quantile

autocovariance functions (see, e.g., Linton and Whang, 2007; Lee and Rao, 2012). For a

given time series Xt, the quantile autocovariance function (QAF) is de�ned by means of

the cross-covariances

cov (I (Xt ≤ x) , I (Xt+l ≤ y)) ,

where I(·) denotes the indicator function. The quantile autocovariances examine the gen-

eral �pairwise� dependence structure (so-called serial dependence), i.e. the joint distribution

of (Xt, Xt+l), thus allowing to account for sophisticated serial features that simple autoco-

variances are unable to detect. A detailed discussion on the advantages of the QAF and its

representations in the frequency domain (quantile periodogram and quantile spectral den-

sity) compared to their respective classical counterparts can be seen in current references

by Lee and Rao (2012), Hagemann (2013), Li (2014) and Dette et al. (2014). Furthermore,

these works show the usefulness of the quantile versions in speci�c inference problems like

testing for pairwise independence or for equality of serial dependence, and also modeling

time series with time-dependent variance. Nevertheless, to the best of our knowledge, QAF

has not been considered to perform time series clustering, even though it satis�es suitable

properties to carry out this task, such as light computational complexity and robustness

inherent to quantile methods. Moreover, unlike the usual autocovariance function, QAF is

robust to the non-existence of moments, and thus a QAF-based dissimilarity should take ad-

vantage to discriminate between series generated from processes with di�erent heavy-tailed
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marginal distributions or following conditional heteroskedastic models.

The �rst objective in this chapter is introducing a QAF-based dissimilarity and then show-

ing its high capability to cluster time series generated from a broad range of dependence

models. We provide simulation results comparing this new metric with other alternative

dissimilarities frequently used in time series clustering by using two di�erent approaches:

an hierarchical method in which each observation starts in its own cluster, and pairs of

clusters are merged as one moves up the hierarchy, and a partitioning around medoids

(PAM) procedure (Kaufman and Rousseeuw, 1990), which returns a subset of series repre-

sentative of the identi�ed clusters (medoids). The attained results show the good behavior

of the QAF-based metric compared to other commonly used dissimilarities. In particular,

very good scores are reported by classifying heteroskedastic processes, which are frequently

used with economic or �nancial indicators (Bauwens and Rombouts, 2007; Otranto, 2008;

D'Urso et al., 2013a; Aielli and Caporin, 2014). Further, since Gaussian heteroskedastic

models cannot often capture the asymmetry and leptokurtosis exhibited by some �nancial

time series, e.g. log-return series of stock indices (Lazar and Alexander, 2006; Kipkoech,

2014), additional simulations based on heteroskedastic models with non-normal errors are

performed attaining even better results.

An important issue in cluster analysis is to obtain an initial estimation for the number

of clusters underlying the database. We propose to address this issue by adjusting the

prediction-based resampling algorithm (so-called Clest) introduced by Dudoit and Fridlyand

(2002). Clest is aimed to select the number of clusters k that provides the strongest evidence

against the null hypothesis H0 : k = 1. For each value of k, Clest evaluates the amount

of reproducibility, say Rk, of the k-cluster solution combining ideas from supervised and

unsupervised learning, and then examines whether the value of Rk is signi�cantly larger

than the expected one under the null hypothesis of no clusters. In the original procedure,

the expected value for Rk under the null is approximated by resampling a multivariate

uniform distribution. Nevertheless, this assumption is not reasonable when dependent

data are considered. To overcome this drawback, the uniformity assumption under H0

is marginally considered for each quantile autocovariance, i.e. the reference datasets are

successively generated from univariate uniform distributions (Step 3 of the Clest algorithm

in Section 3.4). The performance of this modi�ed version of Clest algorithm and other

existing methods is examined and compared by means of new Monte Carlo experiments.

As it will be shown in Section 3.4.1, Clest algorithm produced accurate estimations of k

and showed the most robust performance.

Other important contribution concerns the optimal selection of input parameters, i.e. es-

tablishing how many and which combinations of lags and quantile levels must be used to
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de�ne the QAF metric in order to optimize the clustering process. A proper adjustment of

the variable selection algorithm proposed by Andrews and McNicholas (2014) for clustering

and classi�cation allows us to address this problem. Nevertheless, it is worth remarking

that using a small number of quantiles with probability levels regularly spaced is enough

to reach satisfactory results.

The rest of the chapter is organized as follows. Section 3.2 proposes to measure dissimilarity

between a pair of observed series by comparing sequences of estimated quantile autocovari-

ances. The estimation procedure is detailed, the asymptotic behavior established, and the

dissimilarity de�ned and motivated. Section 3.3 focuses on the classi�cation task following

a hierarchical approach based on the introduced metric. The clustering behavior is analyzed

throughout a simulation study where three classi�cation scenarios featured by the kind of

generating process are considered, namely linear, non-linear and conditional heteroskedastic

models. The results with the proposed metric are compared with the ones obtained using

other dissimilarity measures. The algorithm proposed to estimate the optimal number of

clusters is described in Section 3.4, and its behaviour with �nite samples is analyzed and

compared with alternative procedures in a new simulation study. An application to clus-

ter real time series involving volatility records of daily Euro exchange rates against other

international currencies is presented in Section 3.5. Section 3.6 introduces an algorithm to

select the optimal combinations of lags and pairs of quantile levels in order to perform clus-

tering using the QAF-based dissimilarity. Section 3.7 focuses on the classi�cation using a

partitional aproach (PAM). Likewise the hierarchical procedure, the behavior in clustering

of the QAF-based dissimilarity with the PAM procedure is examined in Section 3.7.1 by

considering the same simulation scenarios but including di�erent distributional forms for

the errors. Finally, some concluding remarks are summarized in Section 3.8.

3.2 A dissimilarity measure between time series based on

quantile autocovariances

3.2.1 The quantile autocovariance function

Let X1, . . . , XT be an observed stretch of a strictly stationary process {Xt; t ∈ Z}. Denote
by F the marginal distribution of Xt and by qτ = F−1(τ), τ ∈ [0, 1], the corresponding

quantile function. Fixed l ∈ Z and an arbitrary couple of quantile levels (τ, τ ′) ∈ [0, 1]2,

consider the cross covariance of the indicator functions I (Xt ≤ qτ ) and I (Xt+l ≤ qτ ′) given
by
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γl(τ, τ
′) = cov {I (Xt ≤ qτ ) , I (Xt+l ≤ qτ ′)} = P (Xt ≤ qτ , Xt+l ≤ qτ ′)− τ τ ′. (3.1)

Function γl(τ, τ ′), with (τ, τ ′) ∈ [0, 1]2, is called quantile autocovariance function (QAF) of

lag l and can be seen as a generalization of the classical autocovariance function. While

the latter measures linear dependence between di�erent lags by evaluating co-variability

with respect to the average, the former studies the joint variability of the events {Xt ≤ qτ}
and {Xt+l ≤ qτ ′}, i.e. examines how a part of the range of variation of Xt helps to predict

whether the series will be below quantiles in a future time. By de�nition, QAF captures the

sequential dependence structure of a time series, thus accounting for serial features related

to the joint distribution of (Xt, Xt+l) that simple autocovariances cannot detect. Un-

like the usual autocovariance function, QAF is well-de�ned even for processes with in�nite

moments and takes advantage from the local distributional properties inherent to the quan-

tile methods, in particular showing a greater robustness against heavy tails, dependence

in the extremes and changes in the conditional shapes (skewness, kurtosis), see Mikosch

and St ric  (2000); Davis and Mikosch (2009); Lee and Rao (2012); Hagemann (2013); Li

(2014); Dette et al. (2014). Based on these nice properties, QAF and its representations

in the frequency domain (quantile periodogram and quantile spectral density) have been

considered in several inference problems, including evaluation of directional predictability

between time series (Linton and Whang, 2007; Han et al., 2016) and testing procedures for

speci�c aspects of serial dependence such as interrelatedness, conditional homoscedasticity

or conditional symmetry (Skaug and Tjøstheim, 1993; Hong, 2000; Kao et al., 2009).

An estimator of γl(τ, τ ′) can be constructed replacing the theoretical quantiles by the corre-

sponding empirical quantiles q̂τ and q̂τ ′ obtained from the observed realization X1, . . . , XT .

This way, the estimated QAF is given by

γ̂l(τ, τ
′) =

1

T − l

T−l∑
t=1

I (Xt ≤ q̂τ ) I (Xt+l ≤ q̂τ ′)− τ τ ′, (3.2)

where the empirical quantiles q̂α, for 0 ≤ α ≤ 1, can be formally seen as the solution of the

minimization problem (Koenker, 2005, page 7) given by

q̂α = arg minq∈R

T∑
t=1

ρα (Xt − q) ,

with ρα(x) = x(α− I(x < 0)).
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3.2.2 Asymptotic behavior

The asymptotic behavior of the sample quantile autocovariances de�ned by (3.2) is es-

tablished in Theorem 3.2.1 of this section by following the asymptotic analysis developed

by Han et al. (2016). Speci�cally, consider a two-dimensional strictly stationary process

Xt = {(X1t, X2t) ; t ∈ Z} with marginal distribution functions Fi(·) and quantiles qi,τ , for

i = 1, 2 and τ ∈ (0, 1). Under general weak dependence conditions on Xt, (Han et al.,

2016, Th.1) obtain the asymptotic distribution of the sample cross-correlation between the

events I (X1t ≤ q̂1,τ ) and I
(
X2(t+l) ≤ q̂2,τ ′

)
, for arbitrary lag l and quantile levels τ and τ ′.

Adapting this result to the univariate setting and considering the non-normalized version

of the mentioned cross-correlations, the limiting distribution stated in Theorem 3.2.1 for

the sample quantile autocovariances is directly derived. First, some useful notation and the

required assumptions are introduced.

Given an arbitrary lag l, let A ≡ At × At+l be a compact subset in (0, 1)2, where At and

At+l denote quantile ranges of interest for Xt and Xt+l, respectively. Denote by Fl(·, ·) the
joint distribution of (Xt, Xt+l), and for t = 1, . . . , T and (τ, τ ′) ∈ A, consider the vector

given by

ξt,l
(
τ, τ ′

)
=
(
I (Xt ≤ qτ , Xt+l ≤ qτ ′)− Fl (qτ , qτ ′) , I (Xt ≤ qτ )− τ, I (Xt+l ≤ qτ ′)− τ ′

)t
.

Now, de�ne the three-dimensional mean-zero Gaussian process {Bl (τ, τ ′) ; (τ, τ ′) ∈ (0, 1)2}
having covariance matrix given by

Γl
((
τ1, τ

′
1

)
,
(
τ2, τ

′
2

))
= E

(
Bl
(
τ1, τ

′
1

)
Btl
(
τ2, τ

′
2

))
=

∞∑
t=−∞

cov
(
ξt,l
(
τ1, τ

′
1

)
, ξ t0,l

(
τ2, τ

′
2

))
,

(3.3)

for (τi, τ
′
i) ∈ A, i = 1, 2.

The following conditions are assumed to hold.

A1. {Xt; t ∈ Z} is a strictly stationary and strongly mixing process with α-mixing coef-

�cients satisfying α(n) = O(n−a), for a > 1.

A2. The marginal distribution F (·) has continuous density f(·), which is bounded away

from 0 and ∞ at qτ over τ ∈ At ∪At+l.

A3. For any ε > 0 there exists a ν(ε) such that sup
τ∈At∪At+l

sup
|s|≤ν(ε)

|f (qτ ) f (qτ + s)| < ε.

A4. The joint distribution Fl(·, ·) is continuously di�erentiable over the neighborhood of

quantiles of interest.
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Assumptions A1-A4 are mild regularity conditions and not too restrictive. While A1 entails

a mixing condition for the dependence structure ofXt, A2 ensures that the quantile function

is uniquely determined, and A2 and A4 impose enough smoothness and regularity for f

and Fl, respectively. The weak convergence of the sample quantile autocovariance processes

indexed by (τ, τ ′) ∈ (0, 1)2 is stated in Theorem 3.2.1 below.

Theorem 3.2.1 Suppose that assumptions A1-A4 hold for a particular lag l. Then we have

√
T
(
γ̂l(τ, τ

′)− γl(τ, τ ′)
)

=⇒ λtl,(τ,τ ′)Bl
(
τ, τ ′

)
with

λl,(τ,τ ′) = diag

(
1,

1

f (qτ )
,

1

f (qτ ′)

)(
1

∇Fl (qτ , qτ ′)

)
, (3.4)

where ∇Fl (qτ , qτ ′) denotes the gradient vector of Fl(·, ·) computed at (qτ , qτ ′) and Bl (τ, τ ′)
is the above-mentioned zero-mean Gaussian process with covariance matrix given by (3.3).

Proof.

The convergence stated in Theorem 3.2.1 is established proceeding as in the proof of The-

orem 1 of Han et al. (2016).

Consider an arbitrary lag l and a pair of levels of probability (τ, τ ′) ∈ A ≡ At ×At+l. Ac-

cording to the de�nition of quantile autocovariance in (3.1) and the corresponding estimator

given in (3.2), we have

√
T
(
γ̂l(τ, τ

′)− γl(τ, τ ′)
)

=
√
T

[
T−1

T−l∑
t=1

I (Xt ≤ q̂τ , Xt+l ≤ q̂τ ′)− Fl (qτ , qτ ′)

]
. (3.5)

Let VT,l be the empirical process indexed by (u, u′)T ∈ R2 de�ned by

VT,l
(
u, u′

)
= T−1/2

T−l∑
t=1

ϕt
(
u, u′, l

)
, (3.6)

with ϕt
(
u, u′, l

)
= I

(
Xt ≤ u,Xt+l ≤ u′

)
− Fl

(
u, u′

)
.

By adding and subtracting the term T−1/2Fl (q̂τ , q̂τ ′) in (3.5), we obtain

√
T
(
γ̂l(τ, τ

′)− γl(τ, τ ′)
)

= VT,l (q̂τ , q̂τ ′) +
√
T [Fl (q̂τ , q̂τ ′)− Fl (qτ , qτ ′)] . (3.7)

As Fl(·, ·) is di�erentiable by Assumption A4, the mean value expansion leads to
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3 Clustering of time series based on quantile autocovariances

√
T [Fl (q̂τ , q̂τ ′)− Fl (qτ , qτ ′)] = ∇Fl (qτ , qτ ′)

t
√
T (q̂τ − qτ , q̂τ ′ − qτ ′) , (3.8)

uniformly in (τ, τ ′) ∈ A, where qα is between q̂α and qα for α = τ, τ ′.

Under Assumptions A1-A4, similar arguments as those used in Theorem 7.3 of Rio (2000)

allow to establish the weak convergence of VT,l (u, u′) to the mean-zero Gaussian process

V∞,l (u, u′) with covariance matrix given by

Ξl
((
u1, u

′
1

)
,
(
u2, u

′
2

))
= E

(
V∞,l

(
u1, u

′
1

)
V∞,l

(
u2, u

′
2

))
=

=
∞∑

t=−∞
cov

[
ϕt
(
u1, u

′
1, l
)
, ϕ0

(
u2, u

′
2, l
)]
.

(3.9)

Convergence from VT,l to V∞,l is part of Lemma 1 in Han et al. (2016), and it is a key result

in the proof. Note that when (ui, u
′
i) = (qτi , qτ ′i ), for i = 1, 2, then Ξl ((u1, u

′
1) , (u2, u

′
2))

is equivalent to the (1, 1)-th element of the covariance matrix Γl ((u1, u
′
1) , (u2, u

′
2)) for the

process Bl (τ, τ ′) in (3.3).

Based on the mentioned Lemma 1, Han et al. prove that

lim
T→∞

P

(
sup

(τ,τ ′)∈A
|VT,l (q̂τ , q̂τ ′)− VT,l (qτ , qτ ′) |

)
= 0. (3.10)

Combining (3.8) and (3.10), we can write (3.7) as follows.

√
T
(
γ̂l(τ, τ

′)− γl(τ, τ ′)
)

= VT,l (qτ , qτ ′) +∇Fl (qτ , qτ ′)t
√
T (q̂τ − qτ , q̂τ ′ − qτ ′) + op(1),

(3.11)

uniformly in (τ, τ ′) ∈ A.

De�ne WWWT,l (u1, u2) =
(
W(1)
T,l (u1) ,W(2)

T,l (u2)
)t
, where W(1)

T,l (u1) = limu2→∞VT,l (u1, u2)

and W(2)
T,l (u2) = limu1→∞VT,l (u1, u2). Based on the Bahadur representation of the sample

quantiles, it holds
√
T (q̂α − qα) =

1

f (qα)
W(i)
T,l (qα) + op(1), (3.12)

for i = 1, 2 and uniformly in α. Expression (3.12) combined with (3.11) leads to

√
T
(
γ̂l(τ, τ

′)− γl(τ, τ ′)
)

= λtl,(τ,τ ′)νT,l
(
τ, τ ′

)
+ op(1), (3.13)

uniformly in (τ, τ ′) ∈ A, where νT,l (τ, τ ′) =
[
VT,l (qτ , qτ ′) ,WWWT,l (qτ , qτ ′)

t]t, and λl,(τ,τ ′) is
given in (3.4).
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Now, since the convergence of VT,l (u, u′) to V∞,l (u, u′) leads to establish the �nite dimen-

sional distributions convergence of λtl,(τ,τ ′)νT,l (τ, τ
′) over (τ, τ ′) ∈ A, it su�ces to show the

stochastic continuity of λtl,(τ,τ ′)νT,l (τ, τ
′) to establish the convergence in Theorem 3.2.1.

This can be attained by following exactly the same arguments in the proof of Theorem 1

in Han et al. (2016).

Based on the uniform boundedness of λl,(τ,τ ′) over (τ, τ ′) ∈ A, for any (α, α′) and (β, β′) ∈
A, we have∥∥∥λtl,(α,α′)νT,l (α, α′)− λtl,(β,β′)νT,l (β, β′)∥∥∥ ≤ (3.14)

C
∥∥νT,l (α, α′)− νT,l (β, β′)∥∥+

∥∥λl,(α,α′) − λl,(β,β′)∥∥∥∥νT,l (α, α′)∥∥
Let α = (α, α′)t and β = (β, β′)t be two arbitrary elements in A satisfying that ‖α− β‖ ≤
δ, for some δ > 0. Then, it necessarily follows that

∥∥(qα − qβ, qα′ − qβ′)t
∥∥ ≤ δ̃ = C1δ, (3.15)

for some constant C1 > 0. In fact, for an arbitrary coordinate ?, considering the de�nition

of quantile and the Assumption A2, we have that

α? − β? =

∫ qα?

qβ?
f(v) dv ≥ |qα? − qβ? | inf

γ∈A?
f(qγ?) ≥ |qα? − qβ? |C2,

so that we can set C1 = C−1
2 in (3.15).

From (3.15) follows that

sup
α,β∈A, ‖α−β‖≤δ

∥∥νT,l (α, α′)− νT,l (β, β′)∥∥ ≤
sup
U(δ̃)

∣∣VT,l (u, u′)− VT,l
(
v, v′

)∣∣+ sup
U(δ̃)

∥∥WT,l

(
u, u′

)
−WT,l

(
v, v′

)∥∥
where U(δ̃) is formed by the elements u = (u, u′)t and v = (v, v′)t in R2 such that ‖u− v‖ ≤
δ̃.

Now, from the stochastic equicontinuity of VT,l(·) and WT,l(·) follows that given positive

constants η and ε, there exist a constant δ > 0 such that

lim
T→∞

P

(
sup

α,β∈A, ‖α−β‖≤δ

∥∥νT,l (α, α′)− νT,l (β, β′)∥∥ > η

)
< ε (3.16)

Finally, Assumptions A2 and A4 ensure that supα,β∈A, ‖α−β‖≤δ
∥∥λl,(α,α′) − λl,(β,β′)∥∥ =

53



3 Clustering of time series based on quantile autocovariances

o(1). The convergence of VT,l(·) implies that sup
(α,α′)∈A

∥∥νT,l (α, α′)∥∥ = OP (1). Both results

together with (3.16) allow us to conclude the stochastic equicontinuity of λtl,(τ,τ ′)νT,l (τ, τ
′)

in (3.15).

�

3.2.3 QAF-based dissimilarity

The great sensitivity of QAF to capture complex dynamic features also suggests high capa-

bility to discriminate between generating processes, and hence an interesting potential to

be applied on clustering and classi�cation problems (Lafuente-Rego and Vilar, 2016a). To

illustrate this point, we have obtained the sample QAF and the sample ordinary autoco-

variances for series simulated from a Gaussian white noise process, a GARCH-type process

and an exponential GARCH process with Gaussian innovations, respectively. Plots of the

sample autocovariance function and γ̂1(τ, τ ′), for τ = 0.1, 0.5 and 0.9, are simultaneously

depicted in Fig. 3.1 for the three series.

As the three processes are uncorrelated, the sample autocovariances in (a) are close to zero

with di�erences simply due to the noise, and therefore the conventional autocovariances

are not useful to discriminate between the generating processes. By contrast, QAF plots

in panels (b)-(d) show structural di�erences enabling us to discriminate between the un-

derlying processes. The graphs for the white noise are �at due to the independence, but

this is not the case for the GARCH models, which are uncorrelated but not independent.

For instance, the symmetry of the GARCH model produces a �at pro�le for γ̂1(0.5, ·), in-
dicating that if {Xt ≤ q0.5} then {Xt+1 ≤ q0.5} and {Xt+1 > q0.5} are events with equal

probability. However, the asymmetry of the EGARCH model leads to a di�erent pro�le for

γ̂1(0.5, ·) indicating that Xt+1 likely takes values higher than Xt. On the other hand, unlike

of the white noise, the heavy tails of the GARCH model are recognizable from γ̂1(0.1, ·)
and γ̂1(0.9, ·) since large and small values at time t tend to remain that way at time t+ 1.

In short, this simple example involving GARCH processes brings insight into the potential

of the quantile autocovariances to detect distinct underlying processes, providing a more

comprehensive understanding on the dependence structure than the traditional autocovari-

ances.

These considerations strongly support the idea of measuring dissimilarity between a pair

of times series X(1)
t and X(2)

t by comparing estimates of their quantile autocovariances

over a common range of selected quantiles, such as we propose in Lafuente-Rego and Vilar

(2016a). Speci�cally, each time series X(u)
t , u = 1, 2, is characterized by means of the
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Figure 3.1: Sample autocovariances (a) and sample quantile autocovariances γ̂1(τ, τ ′) for
τ = 0.1 (b), 0.5 (c) and 0.9 (d), obtained from simulated realizations of a Gaussian white
noise process, a GARCH-type process and an exponential GARCH with Gaussian innova-
tions.

vector Γ(u) constructed as follows. For pre�xed ranges of L lags, l1, . . . , lL, and r quantile

levels, 0 < τ1 < . . . < τr < 1, the vector Γ(u) is given by

Γ(u) =
(
Γ

(u)
l1
, . . . ,Γ

(u)
lL

)
, (3.17)

where each Γ
(u)
li

, i = 1, . . . , L, consists of a vector of length r2 formed by re-arranging by

rows the elements of the r × r matrix(
γ̂

(u)
li

(τj , τj ′)
)
j,j ′=1...,r

, (3.18)

being γ̂ the sample quantile autocovariance given in (3.2). This way, the dissimilarity

between X(1)
t and X(2)

t is de�ned as the squared Euclidean distance between the corre-

sponding representations Γ(1) and Γ(2), i.e.
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dQAF

(
X

(1)
t ,X

(2)
t

)
=
∥∥∥Γ(1) − Γ(2)

∥∥∥2
=

L∑
i=1

r∑
j=1

r∑
j ′=1

(
γ̂

(1)
li

(τj , τj ′)− γ̂
(2)
li

(τj , τj ′)
)2

(3.19)

By de�nition, dQAF belongs to the class of dissimilarities based on comparing features

extracted of the series instead of directly comparing the observed series. Others authors

have proposed feature-based dissimilarities considering distances between simple or par-

tial autocorrelations (Bohte et al., 1980; Galeano and Peña, 2000; D'Urso and Maharaj,

2009), ARMA representations (Piccolo, 1990; Maharaj, 1996, 2000), periodograms or log�

periodograms (Caiado et al., 2006), cepstral coe�cients Maharaj and D'Urso (2011) and

other spectral features (Vilar and Pértega, 2004; Pértega and Vilar, 2010), among others.

Obviously, all of these dissimilarities take advantage from the properties of the considered

feature, and analogously dQAF inherits the nice properties of the quantile autocovariances.

In particular, the quantile autocovariance function is able to capture many types of serial

dependence (including models with zero autocorrelation or exhibiting tail dependence) and

exhibits robustness against outliers and heavy tails. From a practical point of view, it is

also worthy remarking that dQAF presents an e�cient implementation at a very low cost

in terms of computing time. Further, by construction, dQAF can be evaluated on time

series with unequal length. All of these interesting properties suggest that dQAF has an

enormous potential to perform time series clustering, and our results will corroborate this

fact throughout a broad simulation study considering hierarchical and partitional cluster

analysis.

To gain some insight into the usefulness of dQAF in time series clustering, an illustrative

example is presented below. Consider three di�erent scenarios formed by two groups of

�fteen simulated series of length T = 500. Each group is generated from di�erent processes.

Speci�cally, the confronted processes are:

Scenario A: A Gaussian white noise process against an AR-type process:

WN Xt ∼ N(0, 1)

AR Yt = 0.5Yt−1 + εt, εt ∼ N(0, 1)

Scenario B. A Gaussian white noise process against a GARCH-type process:

WN Xt ∼ N(0, 1)

GARCH Yt = σtεt, σ2
t = 0.1 + 0.7Y 2

t−1 + 0.2σ2
t−1, εt ∼ N(0, 1)
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Scenario C. An AR-type process against a GARCH-type process:

AR Xt = 0.1 + 0.5Xt−1 + εt

GARCH Yt = 0.1 + 0.5Yt−1 + at

at = σtεt, σ2
t = 0.1 + 0.7a2

t−1 + 0.2σ2
t−1, εt ∼ N(0, 1)

In this simple example, we focus on examining the pairwise distances between series. For

each scenario, the distances between all pairs of series were obtained using two metrics,

namely dQAF and the squared Euclidean distance between autocorrelations (denoted by

dACF ). The �rst ten lags were used to compute dACF , while r = 3 quantiles of levels 0.1,

0.5 and 0.9 and only one lag (L = 1) were used to obtain dQAF . The averages of the

pairwise distances within each group and between series from di�erent groups are reported

in Table 3.1.

Table 3.1: Averages of pairwise distances for series within and between groups of Scenarios
A, B and C.

dQAF dACF

Scenario A (WN vs AR)

Within WN group 0.0244205 0.0717162
Within AR group 0.0209015 0.1387937
Between groups 0.1126435 0.4254393

Scenario B (WN vs GARCH)

Within WN group 0.0247152 0.0749827
Within GARCH group 0.0260225 0.1804724
Between groups 0.0393069 0.1290689

Scenario C (AR vs GARCH)

Within AR group 0.0247897 0.1141849
Within GARCH group 0.0290222 0.2393515
Between groups 0.0352631 0.1742244

It is observed that dQAF seems to present a high discriminatory power in the three consid-

ered scenarios. Note that by working with dQAF , the average distance between groups is

substantially greater than the ones within groups, presenting ratios around 4.6, 1.5 and 1.2

for Scenarios A, B and C, respectively. By contrast, dACF is unable to separate the processes

forming Scenarios B and C, where GARCH models are included. Although the processes in

these scenarios exhibit di�erent dynamics, they present similar correlograms and therefore

a based-autocorrelation metric easily fails to discriminate them. As expected, dACF prop-

erly works in Scenario A, where correlated and uncorrelated series are faced. Nevertheless,

dQAF also produces competitive results in this simple scenario, thus showing a promising

property of �exibility to deal with di�erent generating models.
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Results from this simple example suggest that a more accurate clustering could be obtained

if the quantile autocovariance function is used to set up the dissimilarity matrix. To support

this intuition, a simulation study involving a broad range of di�erent models and a number

of existing dissimilarities is presented in the following section.

3.3 Hierarchical clustering based on quantile autocovariances:

A simulation study

This section is devoted to examine the behavior of dQAF in hierarchical clustering by means

of simulated experiments. As mentioned, we must have in mind that the grouping principle

is to bring together series with the same generating process.

An agglomerative hierarchical clustering procedure using the complete linkage method was

carried out, although other linkage techniques provided similar results.

Simulations were designed to be able of comparing the performance of dQAF with a wide

selection of model-free and model�based dissimilarity measures. Speci�cally, three di�erent

classi�cation setups were considered, namely classi�cation of (i) ARMA models, (ii) non-

linear models, and (iii) several structures of conditional heteroskedasticity. The generating

models selected at each case are enumerated below.

Scenario 3.1 Classi�cation of ARMA processes.

(a) AR(1) Xt = 0.9Xt−1 + εt

(b) MA(1) Xt = −0.7εt−1 + εt

(c) AR(2) Xt = 0.3Xt−1 − 0.1Xt−2 + εt

(d) MA(2) Xt = 0.8εt−1 − 0.6εt−2 + εt

(e) ARMA(1,1) Xt = 0.8Xt−1 + 0.2εt−1 + εt

Scenario 3.2 Classi�cation of non-linear processes.

(a) NLMA Xt = −0.5εt−1 + 0.8ε2
t−1 + εt

(b) EXPAR Xt =
[
0.3− 10 exp

(
−X2

t−1

)]
Xt−1 + εt

(c) TAR Xt = 0.5Xt−1I (Xt−1 ≤ 0)− 2Xt−1I (Xt−1 > 0) + εt

To make more complex the clustering task in this scenario, we have added series

generated from the following linear model.

(d) MA Xt = −0.4εt−1 + εt

Scenario 3.3 Classi�cation of conditional heteroskedastic processes. Consider the linear

model Xt = 0.5at−1 + at, with the error term satisfying at = σtεt, where the variance
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at time t, σ2
t , is conditional on observations at t−1 by means of some of the following

models.

(a) ARCH σ2
t = 0.2 + 0.95a2

t−1

(b) GARCH σ2
t = 0.2 + 0.05a2

t−1 + 0.9σ2
t−1

(c) GJR�GARCH σ2
t = 0.2 + (0.05 + 1.2Nt−1) a2

t−1 + 0.1σ2
t−1,

with Nt−1 = I (at−1 < 0)

Likewise the above scenario, we included a linear model MA(1) given by

(d) MA Xt = 0.5εt−1 + εt

In all cases, process εt consisted of independent zero�mean Gaussian variables with unit

variance. The linear and non-linear processes were generated as in Section 2.3, and the

heteroskedastic ones using self-programed code in R. Again, a burn-in period of length 500

was used starting from X0 ∼ N(0, 1).

While clustering of linear models (Scenario 3.1) has been intensively studied and there are

metrics speci�cally designed to deal with this kind of models, Scenario 3.2 introduces a

major di�culty by including models with di�erent conditional means that gradually depart

from linearity. Scenario 3.3 proposes a more challenging task by involving models with

non-constant volatility. The autoregressive conditional heteroskedasticity models ARCH

and GARCH are able to capture both time-varying volatility clustering and some amount

of fat-tailedness of the distribution, features frequently exhibited for returns on assets.

Unlike of the GARCH models, the Glosten-Jagannathan-Runkle GARCH (GJR-GARCH)

models allow to capture asymmetric e�ects on the conditional variance due to positive or

negative past values, taking into account the leverage e�ect observed in many �nancial

series.

As far as the dissimilarities to be compared, our selection must take into account the

clustering purpose. We are not interested in measuring proximity between geometric pro�les

of series, thus shape-based dissimilarities (e.g. Lp distances) are not useful here because of

clustering would be governed by local �uctuations, that is by the noise. Our aim is to bring

together series generated from the same model. Hence, the selected metrics must capture

di�erences between high level dynamic structures, which describe the global performance

of the series. Given the parametric models chosen to set up the simulation scenarios, it is

expected that some commonly used model- and feature-based distances work �ne in our

experiments, at least in Scenario 3.1. We decided to examine a wide range of dissimilarities,

including measures comparing: estimated autocorrelations and partial autocorrelations,

cross-correlations, periodograms, nonparametric spectral estimators, �tted ARMA models

and cepstral coe�cients, among other. All of these measures were computed using the R
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package TSclust (see Chapter 1). We limit our report to the set of dissimilarities producing

the best results in our numerical experiments, which are enumerated below.

� Periodogram-based distances (Caiado et al., 2006). Euclidean distances between pe-

riodograms, log�periodograms, normalized periodograms and log-�normalized peri-

odograms were checked, reporting in this section the results for the Euclidean distance

between log�periodograms, denoted by dLP .

� Autocorrelation-based distances (Caiado et al., 2006). Direct and weighted Euclidean

distances between simple and partial autocorrelations using a number of signi�cant

lags were taken into consideration. Results showed here correspond to the weighted

Euclidean distance between partial autocorrelations (dPACFG) based on a number of

10 lags and with weights ωi decaying with the lag in the form ωi = π(1 − π)i, with

π = 0.5.

� Model�based distances. The AR metric introduced by Maharaj (1996) and denoted

by dM .

� Nonparametric dissimilarities in the frequency domain. Although several metrics were

considered within this group, we focus on the results attained with the integrated

squared di�erence between estimated log-spectra (dISD) proposed by Pértega and

Vilar (2010).

All of these metrics were compared with the proposed metric dQAF . In our experiments,

r = 3 quantiles of levels 0.1, 0.5 and 0.9 and only one lag (L = 1, with l1 = 1) were

considered to compute dQAF . Note that except for two models in Scenario 3.1, all the

remaining models present one signi�cant lag, thus accounting for our choice L = 1.

Each pairwise dissimilarity matrix is then processed by an agglomerative hierarchical clus-

tering algorithm using the complete linkage method.

The Monte Carlo study was conducted as follows. For each scenario, �ve time series of

length T = 200 for the linear and non�linear setups and length T = 1000 for the case

of conditionally heteroskedastic series are generated from each model, thus providing a

sample set of labeled series available to perform clustering. Larger realizations were nec-

essary with heteroskedastic models in order to estimate the quantile autocovariances with

higher accuracy. Pairwise dissimilarity matrices are obtained for each set of series using

the dissimilarities summarized below.

The algorithm output was the resulting partition, let us say R = {R1, . . . , RC}. Next step
consisted in measuring the quality of the clustering procedure by means of two indexes
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of agreement between the true cluster partition, T = {T1, . . . , TC}, and the experimental

partition R. Note that, according to the clustering target, each element Ti in T is a cluster

formed by all the series generated from the same model, and hence the true partition is

known. The two selected criteria take into account this fact and are described below.

The �rst considered agreement index (Gavrilov et al., 2000; Liao, 2005), Ind1, was de�ned

in Section 1.4. The second index, Ind2, is the well-known adjusted Rand index (Hubert

and Arabie, 1985), a corrected-for-chance version of the Rand index (Rand, 1971) which

computes the proportion of pairs of series that are located together in the same or di�erent

clusters for both partitions. The adjusted Rand index modi�es the Rand index in such a

way that its expected value is equal to zero when the partitions are picked up at random

(according to a generalized hypergeometric model) and the number of series in the clusters

remain �xed. Likewise Ind1, the maximum value of Ind2 is 1 and it is attained when

partitions agree perfectly. Nevertheless, the adjusted Rand index typically takes values

substantially lower than other agreement indexes, even occasionally negative values, and it

is known to exhibit a greater sensitivity on the cluster stability than other indexes.

Besides Ind1 and Ind2, we have also calculated a third index (Ind3) using the one-nearest-

neighbour (1-NN) classi�er evaluated by leave-one-out cross-validation. Speci�cally, Ind3

returns the proportion of series correctly classi�ed when each series has been assigned to

the element of T containing the nearest series according to the considered dissimilarity.

Notice that Ind3 does not evaluate the clustering algorithm, but providing insight into the

e�cacy of each of the used dissimilarities. This evaluation criterion has been intensively

used in a broad range of pattern recognition applications, including time series clustering

(see e.g. Keogh and Kasetty, 2003).

This simulation procedure was replicated N = 100 times for each scenario, and the cluster

similarity indexes obtained with each dissimilarity were averaged over the 100 trials.

According to results in Table 3.2, the dissimilarity based on quantile autocovariances dQAF

produced the highest average scores in Scenarios 3.2 and 3.3, and presented worse behaviour

in Scenario 3.1. dQAF always led to clustering quality indexes above 0.9 in Scenario 3.2,

with values GI and loo1NN very close to 1. With the ARMA series, dQAF outperformed the

metrics based on simple autocorrelations and periodograms, with quality indexes reasonably

high but lower than the ones obtained with the rest of dissimilarities.

As expected, the metric based on ARMA models, dM , is obviously a�ected by model

misspeci�cation, and hence it performed well in Scenario 3.1 but produced poor results in

Scenarios 3.2 and 3.3.

The non-parametric dissimilarity, dISD, performed fairly well in Scenarios 3.1 and 3.2. This
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3 Clustering of time series based on quantile autocovariances

Table 3.2: Averages and standard deviations (in brackets) of the cluster similarity indexes
obtained from 100 trials of the simulation procedure for Scenarios 3.1, 3.2 and 3.3 and each
of the considered dissimilarity measures.

Scenario 3.1 Scenario 3.2 Scenario 3.3

Measure Ind1 Ind2 Ind3 Ind1 Ind2 Ind3 Ind1 Ind2 Ind3

dLP 0.763 0.614 0.742 0.713 0.501 0.675 0.417 0.006 0.225
(.060) (.107) (.086) (.110) (.165) (.106) (.056) (.056) (.073)

dPACFG 0.927 0.857 0.935 0.667 0.397 0.613 0.429 0.043 0.252
(.071) (.114) (.058) (.093) (.136) (.146) (.058) (.066) (.105)

dM 0.902 0.842 0.959 0.680 0.453 0.746 0.416 0.045 0.273
(.094) (.135) (.047) (.094) (.135) (.114) (.053) (.053) (.108)

dISD 0.910 0.847 0.943 0.916 0.826 0.919 0.424 0.061 0.280
(.083) (.109) (.048) (.079) (.130) (.075) (.052) (.064) (.107)

dQAF 0.817 0.683 0.802 0.961 0.917 0.980 0.751 0.604 0.724
(.062) (.086) (.060) (.061) (.101) (.032) (.053) (.070) (.100)

measure takes advantage of its nonparametric nature, being free of the linearity restriction,

and hence its good behaviour. Nevertheless, the results worsened substantially by classify-

ing heteroskedastic models. In fact, dQAF noticeably outperforms dISD in Scenario 3.3.

The remaining metrics based on autocorrelations and periodograms produced worse results,

corresponding the worst indexes to the periodogram-based measure. Unlike the quantile

autocovariances, the PACF is not able to separate properly the models considered in Sce-

narios 3.2 and 3.3 and only produced good results in Scenario 3.1. This result corroborates

the intuition suggested from the illustrative example considered at the end of Section 3.2.3.

In order to illustrate graphically the above comments, Figure 3.2 shows boxplots based on

the cluster similarity indexes from the 100 simulated trials.

Boxplots in Figure 3.2(b) and (c) corroborate the good performance of dQAF in Scenarios

3.2 and 3.3. In Scenario 3.3 (Figure 3.2(c)), dQAF clearly appears like the best performed

dissimilarity regardless of the considered index. In Scenario 3.2 (Figure 3.2(b)), with non-

linear models, the nonparametric dissimilarity dISD also attains very good average scores.

Nevertheless, compared to the nonparametric competitors, dQAF presents smaller standard

deviations. Furthermore, dQAF seems to take a substantial advantage in this scenario as

the loo1NN index is considered, which is especially interesting because this goodness-of-

assignment criterion directly evaluates the e�cacy of the dissimilarity measure regardless

of the considered clustering algorithm. On the other hand, unlike dISD, dissimilarity dQAF

is computationally e�cient, thus enabling us to perform clustering on large databases in-

cluding very long series. For instance, dISD involves numerical integration of di�erences

between local linear smoothers computed by maximum local likelihood, which implies to
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Figure 3.2: Boxplots of the cluster similarity indexes obtained from 100 trials of the sim-
ulation procedure for Scenarios 3.1 (a), 3.2 (b) and 3.3 (c) and a relevant subset of the
dissimilarity measures.
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3 Clustering of time series based on quantile autocovariances

solve repeatedly an optimization problem in two variables. This computational complexity

could do unfeasible to perform clustering on large databases. Thus, computational e�ciency

is an additional strength of our proposal respect to the main competitors in Scenarios 3.2

and 3.3.

Boxplots in Figure 3.2(a) con�rm that the worst performance of dQAF occurs in Scenario

3.1, with linear models. Here, partial autocorrelations and Maharaj's distance (speci�cally

designed to deal with this kind of processes) work �ne. Nevertheless, Figure 3.2(a) also

shows a noticeable improvement of dQAF when two lags (L = 2) are used to construct

this dissimilarity, which is not surprising because two of the models in Scenario 3.1 exhibit

two signi�cant lags. This way, dQAF attains competitive scores in its worst scenario as the

number of lags is correctly established.

To gain further insight into the clustering procedure with each metric, the experimental

solutions were individually examined. We record the number of correct clusters at each trial,

i.e. the number of clusters containing only the whole set of series with identical generating

process. The distribution (in percentage) of this variable for each of the mentioned metrics

and each scenario is depicted in Figure 3.3.

According to Figure 3.3 (a), the Maharaj distance, dM , obtained the best result in Sce-

nario 3.1, identifying the genuine solution of 5 clusters more times than the rest of dissimi-

larities, exactly 35% of the times. This fact corroborates the good clustering behaviour by

using model-based metrics when the model is adequately speci�ed. Among the model-free

dissimilarities, the non-parametric dISD and the metric based on partial autocorrelations

dPACF obtained reasonable percentages of complete solutions, 21% and 28%, respectively.

Nevertheless, three correct clusters were frequently determined with these metrics. The

proposed metric, dQAF , usually identi�ed two clusters, although often moved between one

and three, and just one percent of the times drawn out the �ve correct clusters. The metric

based on periodograms presented the poorest results in this scenario.

Figure 3.3 (b) shows that the proposed metric dQAF led to the best results in Scenarios 3.2,

identifying the largest number of correct clusters. Clustering non-linear processes, dQAF was

able to obtain the whole solution around 59% of the trials, mixing some series of two di�erent

processes in the remaining iterations to form only two correct clusters. The remaining

dissimilarities yielded signi�cantly worse results. Only the non-parametric dissimilarity

dISD was able to generate the full correct solution at any iterations (26%).

Figure 3.3 (c) shows the real complexity of heteroskedastic scenarios. None of the presented

metrics were able to correctly classify all groups on any occasion. Only the QAF�based

metric was able to correctly identify in some case two of the four clusters. The rest of the
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Figure 3.3: Distribution (in percentage) of the number of clusters identi�ed at each iteration
with di�erent metrics for Scenarios 3.1 (a), 3.2 (b) and 3.3 (c). The true number of clusters
at each scenario is shown in bold in the legends.
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3 Clustering of time series based on quantile autocovariances

presented metrics clearly failed in the classi�cation of heteroskedastic time series.

3.4 A procedure to estimate the optimal number of clusters

In this section, we address the problem of estimating the number of clusters. As the dissimi-

larity based on quantile autocovariances reported good results in our clustering experiments,

we also consider this dissimilarity principle to determine the number of clusters. Speci�-

cally, we adopt the prediction�based resampling algorithm, so-called Clest, introduced by

Dudoit and Fridlyand (2002), but carrying out slight modi�cations in order to use dQAF

and tackle the dependence of the quantile autocovariances.

Clest is aimed to select the value of k, 2 ≤ k ≤ K, with K ≤ p denoting the maximum

possible of clusters, that provides the strongest evidence against the null hypothesis of

no clusters, H0 : k = 1. For each value of k, Clest determines partitions of size k using

supervised and unsupervised learning and evaluates the amount of agreement, say Rk,

between both partitions. High agreement indexes mean high capability to reproduce the

cluster structure. Then, a resampling procedure is used to examine whether the value of

Rk is signi�cantly larger than the expected one under a suitable distribution when k = 1.

The value of k yielding the largest signi�cance is established as the estimated number of

clusters, k̂.

To adapt the Clest algorithm to our framework including time series, some adjustments

might be appropriate. First, the unsupervised partitions involved in Clest should use a

proper dissimilarity between time series. In this point, we propose to use the dissimilarity

based on quantile autocovariances dQAF , i.e. the cluster partitions are based on the esti-

mated values γ̂l(τ, τ ′) given in (3.1). On the other hand, the expected value for Rk under

the null is approximated in the original procedure by resampling a multivariate uniform

distribution. In our framework, the new variables γ̂l(τ, τ ′) exhibit a strong dependence, and

for this reason we propose to obtain replicates using the uniformity assumption marginally

for each quantile autocovariance. This way, the support of the distribution for each auto-

covariance is the range of the estimated values for that autocovariance. The version of the

Clest algorithm including these adjustments is outlined below.

For each k, 2 ≤ k ≤ K, perform steps 1-4 below.

Step 1. Repeat the following B times:

1. Randomly split the original set of time series S into two non-overlapping sets, a

learning set Lb and a test set Tb.
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A procedure to estimate the optimal number of clusters 3.4

2. Apply the clustering procedure based on dQAF to the learning set Lb. Let P
(
Lb
)

be the obtained k-cluster solution.

3. Classify each series of the test set Tb using linear discriminant analysis based on

the learning partition P
(
Lb
)
. Denote by Ppred

(
Tb
)
the partition of the test set

obtained from this supervised learning approach.

4. Apply the clustering procedure based on dQAF to the test set Tb. Let Pclust
(
Tb
)

be the resulting partition.

5. Compute an index of agreement sk,b between Ppred
(
Tb
)
and Pclust

(
Tb
)
, the

partitions generated by supervised (prediction) and unsupervised (clustering)

approaches, respectively. A range of external indexes to measure the amount of

agreement between two partitions is available in the literature. Here, following

the original proposal by Dudoit and Fridlyand (2002), the Fowlkes and Mallows

index (Fowlkes and Mallows, 1983) has been considered.

Step 2. Compute the similarity statistic for the k-cluster partition by means of Rk =

median (sk,1, sk,2, . . . , sk,B). The null hypothesis H0 : k = 1 will be checked by using

Rk as test statistic.

Step 3. Obtain B0 resamples of the quantile autocovariances matrix under H0 : k = 1. As

the columns of this matrix are dependent, resamples of each column are separately

generated from an uniform distribution with support determined by the range of the

column. For each generated dataset, repeat the procedure described in Steps 1 and 2

to obtain B0 similarity statistics Rk,1, Rk,2, . . . , Rk,B0 . Based on this set of statistics,

compute Rk =
1

B0

B0∑
b=1

Rk,b and pk =
1

B0
#{Rk,b ≥ Rk : 1 ≤ b ≤ B0}.

Step 4. Denote by dk = Rk − Rk the di�erence between the observed similarity statistic

and its estimated expected value under H0 : k = 1. Then, de�ne the set K− as

K− = {2 ≤ k ≤ K : pk ≤ pmax, dk ≥ dmin}, (3.20)

where pmax and dmin are preset thresholds. If K− is empty, estimate the number of

clusters as k̂ = 1. Otherwise, take k̂ = argmaxk∈K− dk, i.e., select the number of

clusters k̂ corresponding to the largest signi�cant di�erence dk.
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3 Clustering of time series based on quantile autocovariances

3.4.1 Comparing procedures for estimating the number of clusters on

simulated data

The performance of this adjusted version of Clest was compared with �ve existing meth-

ods using di�erent simulated scenarios. Besides Scenarios 3.1, 3.2 and 3.3 considered in

Section 3.3, three new scenarios without underlying clustering structure were generated to

evaluate the procedures under the null hypothesis H0 : k = 1. The examined methods, the

selected scenarios and the main features of the simulation study are described below.

As before, S =
{
XXX(1), . . . ,XXX(n)

}
denotes a set of n time series of length T and Ek =

{E1, . . . , Ek} a given cluster partition of S. One of the methods considered to estimate

the number of clusters in S consists in maximizing the average Silhouette width, ASW,

proposed by Kaufman and Rousseeuw (1990) (see Section 1.4).

Three commonly used indexes proposed by Krzanowski and Lai (1988), Cali«ski and

Harabasz (1974) and Hartigan (1975) are also considered. Roughly speaking, these so-

called internal indexes are functions of between- and within-clusters sums of squares. In all

cases, the objective is to select the value of k providing an optimal value for these functions

or internal indexes. Speci�cally, given the partition Ek, denote by Bk and Wk the T × T
matrices of between and within k-clusters sums of squares and cross-products, respectively.

The Krzanowski and Lai index (KL) was de�ned in Section 1.4. The remaining mentioned

indexes perform as follows.

The Cali«ski and Harabasz index (CH) is de�ned as

CH(k) =
tr(Bk)/(k − 1)

tr(Wk)/(p− k)
,

where tr denotes the trace of a matrix. The value of k maximizing CH(k), k ≥ 2, is selected.

The Hartigan index (Hart) is given by

Hart(k) = (p− k − 1)

(
tr(Wk)

tr(Wk−1)
− 1

)
,

and the estimated number of clusters corresponds to the smallest k ≥ 1 satisfying Hart(k) ≤
10.

The last considered procedure is the Gap method proposed by Tibshirani et al. (2001). Gap

method is based on comparing the within-clusters sum of squares Wk with its expected

value under a reference null distribution (usually the uniform distribution with support

the range of observed values). Speci�cally, B reference datasets generated under the null

hypothesis are subjected to clustering, and values tr(W 1
k ), . . . , tr(WB

k ) are computed from
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A procedure to estimate the optimal number of clusters 3.4

each of obtained partitions. Then, the following values are calculated: (i) the estimated

Gap statistic, given by

Gap(k) =
1

B

B∑
b=1

log
(
tr(W b

k)
)
− log (tr(Wk)) ,

(ii) the standard deviation sd(k) of log
(
tr(W b

k)
)
, 1 ≤ b ≤ B, and (iii) the value of s(k) =

sd(k)
√

1 + 1/B. The estimated number of clusters is the smallest k ≥ 1 such that Gap(k) ≥
Gap(k + 1)− s(k + 1).

All of these methods were compared with the adjusted version of Clest through six simulated

scenarios, including Scenarios 3.1, 3.2 and 3.3 described in Section 3.3, with k = 4 or 5

underlying clusters, consisting of �fty series of length T = 500, for the linear and non�

linear scenarios, and T = 1500, for the heteroskedastic scenario, and three new scenarios

with unclustered data (k = 1). Each of the new scenarios consisted of �fty series of length

T = 500 generated from the same process. The selected processes are:

Scenario 3.4 AR process: Xt = 0.9Xt−1 + εt.

Scenario 3.5 EXPAR process: Xt =
[
0.3− 10 exp

(
−X2

t−1

)]
Xt−1 + εt.

Scenario 3.6 ARCH process: Xt = µt + at, with µt ∼ MA(1) and at = σtεt, with

σ2
t = 0.1 + 0.8a2

t−1.

The error εt consisted in all cases of independent zero�mean Gaussian variables with unit

variance. The speci�c parameters required by the Clest algorithm were established as

follows: as many learning-test iterations as reference datasets, namely B = B0 = 25, the

maximum number of clusters was K = 7, the size of each learning set was 2n/3, and the

thresholds required to construct K− in (3.20) were pmax = 0.05 and dmin = 0.05.

Results from our Monte Carlo study are based onN = 100 trials for each of the six simulated

scenarios. Note that the procedures ASW, CH and KL do not have, by de�nition, the ability

to estimate the presence of only one cluster, and our experiments showed that these methods

generally identi�ed two clusters in Scenarios 3.4, 3.5 and 3.6. For this reason, the simulation

results are separately presented for scenarios with k > 1 and k = 1, omitting the methods

ASW, CH and KL when k = 1. Figures 3.4 and 3.5 display barplots representing the

percentage of trials for which a given method estimated correctly the number of underlying

clusters in scenarios with k > 1 and k = 1, respectively. For a more detailed analysis, the

distribution of the number of clusters estimated with each method for each scenario are

provided in Tables 3.3 and 3.4.
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Figure 3.4: Percentage of simulations for which the number of clusters was correctly esti-
mated with each of the considered methods in Scenario 3.1, -k=5- (a), Scenario 3.2 -k=4-
(b), and Scenario 3.3 -k=4 (c).
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Figure 3.5: Percentage of simulations for which the number of clusters was correctly es-
timated with each of the considered methods in scenarios without underlying clustering
structure (k = 1), namely, Scenarios 3.4 (a), 3.5 (b), and 3.6 (c).

From Figure 3.4 and Table 3.3, it is observed that Clest, CH and KL gave uniformly very

good results over the scenarios with k > 1. The three methods identi�ed the correct

number of clusters above 90% of the times with both linear and non-linear time series, and

between 60 and 75% in the Scenario 3.3 with heteroskedastic series. Hart index performed

particularly well in Scenario 3.3, but presented a worse behaviour in the non-linear scenario

and fairly failed with linear series. Gap method places in an intermediate location, achieving

reasonably good results in Scenarios 3.1 and 3.2, but performing poorly in Scenario 3.3.

Lastly, the criterion based on the Silhouette width was uniformly the worst method, only
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Table 3.3: Distribution of the estimated number of clusters for the considered methods in
Scenarios 3.1 (k=5), 3.2 (k=4) and 3.3 (k=4). The true number of clusters is denoted by
asterisk and the modes for the 100 estimates are indicated in bold for each method.

Method Number of clusters, k̂

Scenario 3.1 1 2 3 4 5∗ 6 7

Clest 0 0 0 2 93 5 0
Gap 0 0 0 0 65 15 20
ASW � 12 78 10 0 0 0
CH � 0 0 0 98 2 0
KL � 0 0 1 94 5 0
Hart 0 0 12 71 17 0 0

Scenario 3.2 1 2 3 4∗ 5 6 7

Clest 0 0 0 98 2 0 0
Gap 0 0 0 80 11 7 2
ASW � 0 76 24 0 0 0
CH � 0 0 98 2 0 0
KL � 0 0 88 2 4 6
Hart 0 0 26 74 0 0 0

Scenario 3.3 1 2 3 4∗ 5 6 7

Clest 0 0 0 60 33 5 2
Gap 74 24 1 1 0 0 0
ASW � 0 17 72 10 1 0
CH � 0 10 72 14 0 0
KL � 0 7 73 9 5 6
Hart 0 0 20 74 6 0 0

Table 3.4: Distribution of the estimated number of clusters for the considered methods in
scenarios without underlying clustering structure (k = 1). The modes for the 100 estimates
are indicated in bold for each method.

Method Number of clusters, k̂

Scenario 3.4 1∗ 2 3 4 5 6 7

Clest 96 2 2 0 0 0 0
Gap 91 9 0 0 0 0 0
Hart 0 0 39 23 16 9 13

Scenario 3.5 1∗ 2 3 4 5 6 7

Clest 88 3 4 2 1 2
Gap 85 12 2 1 0 0
Hart 0 0 58 13 11 6 12

Scenario 3.6 1∗ 2 3 4 5 6 7

Clest 72 3 5 3 9 5 3
Gap 57 32 10 1 0 0 0
Hart 0 0 42 27 17 9 5

working reasonably well in Scenario 3.3.

With regard to the scenarios under the null hypothesis of no cluster structure in the data

(k = 1), Figure 3.5 and Table 3.4 show that Clest was always the best method, outperform-
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3 Clustering of time series based on quantile autocovariances

ing Gap method in the three considered scenarios. In Scenario 3.6, Clest was somewhat

less e�cient, but fairly outperformed Gap. The Hartigan index was not able to detect the

lack of clustering structure.

In sum, the Monte Carlo study allows us to conclude that Clest procedure yielded good

results in all considered scenarios, being a competitive method when a clustering structure

is present and the best one to detect the lack of cluster structure. Only Gap seems to show

similar robustness, but with worse success rates and tending to overestimate the number

of clusters in some scenarios.

3.5 A case study: Clustering series of daily returns of Euro

exchange rates

The dissimilarity based on the quantile autocovariance function dQAF is used to perform

clustering on a real data example involving time series of exchange rate. Speci�cally, our

database contains the daily closing values of Euro exchange rates against twenty-eight

international currencies. The sample period spans from 1st January 2010 to 28th February

2014, thus resulting serial realizations of length T = 1520. All data are sourced from the

website of the Bank of Italy1. Note that all series are non-stationary in mean, as expected

for this type of series and, therefore, the series of nominal exchange rates are transformed

to obtain series of daily returns, i.e. series formed by the �rst di�erences of the natural

logarithm of the nominal exchange rates. These new series are depicted in Figure 3.6.

Here, our concern is not to achieve a correct model speci�cation or accurate predictions for

the series of exchange rate returns, but classifying them into homogeneous groups charac-

terized by similar dependence structure. Likewise other �nancial time series, exchange rate

returns exhibit empirical statistical regularities, so-called �stylized facts�, which are crucial

to perform a proper analysis. The most common stylized facts include: heavy tails and

a peaked center compared to the normal distribution, volatility clustering (periods of low

volatility mingle with periods of high volatility), leverage e�ects (returns are negatively

correlated with volatility) and autocorrelation at much longer horizons than one would

expect. The GARCH models have been widely used (see, e.g. Taylor, 1986) to deal with

these peculiar features. For example, D'Urso et al. (2013a) have proposed two fuzzy clus-

tering procedures based on GARCH �ttings. In particular, a similar dataset, with shorter

observation period, was used to illustrate the merits of their approaches. Our proposal is to

1https://www.bancaditalia.it/banca_centrale/cambi/rif;internal&action=_setlan-

guage.action?LANGUAGE=en
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Figure 3.6: Daily returns of Euro exchange against against 28 currencies.

take advantage from the high capability of the quantile autocovariance functions to detect

these stylized facts and performing cluster analysis based on dQAF . In fact, dQAF fairly

yielded the best results classifying non-linear and heteroskedastic processes in simulations

of Section 3.3. This approach allows us to overcome the need of obtaining suitable GARCH

�ttings, which is not per se the objective, and to attain an e�cient implementation.

The 28 series of exchange rates returns were subjected to hierarchical clustering based on

the proposed dissimilarity dQAF . Just as in simulations, r = 3 quantiles of levels 0.1,

0.5 and 0.9, and one lag (L = 1, with l1 = 1) have been considered to compute dQAF .

Figure 3.7 shows the obtained dendrogram with the complete linkage method. Dendogram
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Figure 3.7: Complete linkage dendrogram based on dQAF for series of daily exchange rates
returns.

in Figure 3.7 suggests the existence of three major groups, although the exchange rate of the

Thailand currency (EUR/THB) might also be seen as an isolated point and hence a four-

cluster solution determined. The optimal number of clusters was estimated by means of the

adjusted Clest algorithm introduced in Section 3.4. Setting the algorithm inputs as K = 7,

B = B0 = 50, learning subset of size 18 and pmax = dmin = 0.05, the Clest algorithm led

to k̂ = 3, thus corroborating the intuitive solution derived from the dendogram.

The three-cluster solution involves a particularly large cluster, C1, formed by 18 exchange

rates. It is observed that C1 groups the Euro exchange rates against the major international

currencies and those linked to the US dollar, such as the Canadian dollar (CAD) and the

Great Britain pound (GBP), among others. The two other clusters, C2 and C3, are formed

by 4 and 6 memberships, respectively. While C2 is quite homogeneous by including three

South American currencies (Brazilian real -BRL-, Uruguayan peso -UYU- and Chilean peso

-CLP-), C3 ≡ {South African rand (ZAR), Russian ruble (RUB), Argentine peso (ARS),

South Korean won (KRW), Thailand baht (THB) and Hong Kong dollar (HKD)} is the

most heterogeneous cluster by involving Euro exchange rates against Asian, European,

South American and African currencies.

By studying this kind of series, an issue of great interest is the exchange rate volatility.

Volatility provides an idea on the �uctuations of the exchange rates over a given period,

and it is usually measured from the conditional variance of these movements. High volatility

implies high chance of a large rate change. The obtained cluster solution brings insight into

74



Optimal selection of lags and quantile levels for clustering 3.6

the patterns of underlying volatility structure. In fact, Figure 3.8 depicts the conditional

volatility of the medoids of the three-cluster solution. For each cluster, the medoid has

been determined by selecting the membership minimizing the average dissimilarity to all

the series in the cluster. Figure 3.8 fairly shows di�erent shapes for the conditional volatility

at each cluster. Clusters C1 and C2 have lower levels of �uctuation, although the currencies

within C1 show higher stability than the ones in C2. The most heterogeneous cluster C3

includes the series with the highest levels of �uctuation.
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Figure 3.8: Conditional volatility of the medoid of each cluster.

It is also worth remarking that similar cluster solutions are obtained as the average and

complete linkages are used, thus validating the stability of the encountered grouping. In

both cases, the most distinctive feature is that the Uruguayan peso (UYU) constitutes an

isolated point at the late stages of the hierarchical processes. Apart from it, the existence

of three groups formed by the same exchange rates (with minimum di�erences in the two

smallest groups) is observed.

3.6 Optimal selection of lags and quantile levels for clustering

In this section, the problem of the selection of the optimal number of parameters for the

correct computation of the metric dQAF is addressed. According to de�nition (3.19), com-

putation of dQAF requires setting a number of input parameters, namely the number L

of signi�cant lags and the set of quantile levels {τ1, . . . , τr}. Since our target is to use

this metric to perform time series clustering, our concern is to determine how many and

which combinations of lags and quantile levels (li, τj , τj ′) must be considered to optimize

the clustering process. The light computational complexity of dQAF enables us to employ a
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3 Clustering of time series based on quantile autocovariances

reasonably large number of lags and quantiles without a signi�cant loss of e�ciency. Nev-

ertheless, working with a large set of inputs does not necessarily improve the clustering

performance. In practice, introducing non�signi�cant lags or very close quantiles means to

supply noise to the classi�cation process, thus generating worse results. Therefore, the goal

is simple: starting from a preset grid of input parameters, determining a reasonably small

subset that conveys the more relevant information on the underlying clustering structure.

To reach this goal, we follow a novel approach proposed by Andrews and McNicholas (2014).

In a general context, Andrews and McNicholas introduce a variable selection stepwise al-

gorithm for clustering and classi�cation (called VSCC) based on determining the variables

that simultaneously minimize the within�group variance and maximize the between�group

variance. Indeed, if the variables have been standardized to have the same variance, then

minimization of the within�group variance also implies the maximization of the between�

group variance. Besides this criterion in terms of `within' and `between' variances, the

algorithm imposes that the correlation between the selected variables drops below a thresh-

old. The purpose is to ignore highly correlated variables, which does not provide new

information and may introduce noise. The correlation threshold is not a pre�xed value but

a sliding threshold allowed to be larger as the within�group variance is small. Speci�cally,

if S denotes the subset of selected variables at a particular step of the algorithm, then a

new variable s is added to S if for all r ∈ S we have

|ρsr| < 1−Wα
s (3.21)

where ρsr is the correlation between the variables s and r, Ws denotes the within�group

variance for the variable s, and α is a preset parameter determining the shape of the

relationship between the whitin�group variance and the between�variable correlation. Note

that the smaller α, more stringent is the correlation threshold.

Compared to other variable selection techniques in clustering, the VSCC algorithm is in-

tuitive, competitive and more computationally e�cient. Based on these arguments, we

decided to adapt this algorithm to address the optimal selection of lags and quantiles in

order to perform clustering using dQAF .

Consider a set of n realizations of time series subjected to clustering. Starting from a

grid of r regularly spaced quantile levels and a number L of lags, an initial set of vectors

of length Lr2, Γ(u) for u = 1, . . . , n, is computed according to (3.17), i.e. the observed

series are replaced by vectors of estimated quantile autocovariances. These vectors are

arranged by rows in a n × Lr2 matrix, A, whose columns represent the variables used to

perform clustering. The dissimilarity between two series X(u) and X(v) is given by the
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squared Euclidean distance between the rows u and v of A, that is dQAF
(
X

(u)
t , X

(v)
t

)
=∥∥∥Γ(u) − Γ(v)

∥∥∥2
, and the clustering procedure relies on this dissimilarity criterion.

Therefore, we start with Lr2 variables characterized by combinations of a lag and a pair of

quantile levels
(
li, τj , τ

′
j

)
, and our intention is to apply the VSCC algorithm to obtain an

optimal selection of these combinations. First, the columns of A are standardized to have

zero mean and unit variance, which allows us to concentrate our attention on minimizing

the within-group variance. Then, the VSCC procedure is carried out as follows.

Step 1. Set the initial grid of r regularly spaced quantile levels and L lags, the number C

of clusters and the value of α governing the relationship (3.21).

Step 2. Perform a partitional clustering procedure of the set of time series based on the

matrix A =
(
Γ(u) t

)
1≤u≤n

of estimated quantile autocovariances and dQAF .

Step 3. For each column of A, i.e. for each combination
(
li, τj , τ

′
j

)
, with i = 1, . . . , L and

j, j ′ = 1, . . . , r, compute the within�group variance W(li,τj ,τ ′j )
de�ned by

W(li,τj ,τ ′j )
=

1

n

C∑
c=1

n∑
s=1

zsc

(
γ̂

(s)
li

(τj , τj ′)− γ̂
(c)
li (τj , τj ′)

)2
,

where zsc is the group membership indicator function and γ̂
(c)
li (τj , τj ′) is the aver-

age of the corresponding estimated quantile autocovariances over the group c, that

is γ̂
(c)
li (τj , τj ′) =

1

n

n∑
s=1

zscγ̂
(s)
li

(τj , τj ′). By dealing with a hard partition, zsc =

I
(
Γ(s) ∈ c

)
is the indicator function taking the value 1 if the series s belongs to

the cluster c and 0 otherwise. In the case of a fuzzy partition, zsc takes the value

1 for the cluster c where the series s presents the highest membership degree and 0

otherwise.

Step 4. SortW(li,τj ,τ ′j )
in ascending order. Denote this sorted list byW =

{
W(1), . . . ,W(Lr2)

}
and the combination of lag and quantile levels associated with W(k) by

(
lik , τjk , τ

′
jk

)
.

Step 5. W(1) minimizesW and hence
(
li1 , τj1 , τ

′
j1

)
is automatically placed into the subset

of selected variables, denoted by S. Set count k = 2.

Step 6. If |ρsk| < 1 −Wα
(2), for all s ∈ S, then the combination associated with W(2),(

li2 , τj2 , τ
′
j2

)
is added to S.

Step 7. While k < Lr2, set k = k + 1 an return to Step 6. Then end algorithm.

77



3 Clustering of time series based on quantile autocovariances

In the rest of this chapter, the VSCC procedure is taken into consideration. In our exper-

iments, we have considered up to �ve di�erent values for α, namely α = 1, . . . , 5, exactly

as proposed in Andrews and McNicholas (2014). Overall, the most stringent choice α = 1

led to a small number of variables and good clustering behavior. Furthermore, in Section

3.7.1, the results from a sensitivity analysis conducted to test the e�cacy of the proposed

procedure against the use of di�erent sequences of quantile levels are presented.

3.7 Partitioning around medoids clustering based on quantile

autocovariances

In this section, we extend the analysis to cover partitioning-based clustering methods. As-

suming the existence of C clusters and starting from an initial partition, these methods

proceed by iteratively relocating objects between clusters until an optimal partition is at-

tained. At each iteration, C cluster centers (usually referred to as prototypes or centroids)

are estimated and a reassignment of objects based on the updated centers is carried out. The

most popular partitioning-based algorithm is the C-means procedure, where the centroids

are the means of objects in the clusters and the objective is to minimize the within-cluster

squared error. Nevertheless, C-means is not a proper choice in our framework because the

average of quantile autocovariances does not necessarily characterizes a time series model.

For instance, if ARMA or GARCH models are considered, then there are no guarantees that

the centroids represent one of these models. In fact, the resulting centroid could not satisfy

the constraints required on the coe�cients de�ning these models. This way the centroids

may be ��ctitious� time series, which leads to serious drawbacks. First, the distance dQAF

between observed time series objects and centroids could not be properly de�ned. On the

other hand, time series clustering is often aimed at �nding �representative� time series for

each cluster, let us say a set of C patterns summarizing the di�erent underlying dynam-

ics, and again this is not guaranteed and the resulting centroids could fail in providing a

suitable characterization of the cluster dynamics. A natural way to overcome these draw-

backs is to perform a C-medoids-based algorithm where the prototypes are restricted to be

chosen among the data points. The goal is to �nd C representative objects minimizing the

average dissimilarity of all objects to their closest representative object. This way, dQAF

(or whatever is the selected distance) directly determines the e�cacy of the clustering. In

fact, the C-medoid algorithms can be run using the pairwise distances without requiring

the data records. Unlike the C-means procedure, where optimization involves minimizing

within-group variance and maximizing between-group variance, and therefore a L2 analysis,

the C-medoids-based algorithms are L1 methods and therefore more robust to outliers and
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noise. Regarding these nice properties, we have carried out an extensive simulation study

using the standard version of the well-known PAM algorithm (from �Partitioning Around

Medoids�, Kaufman and Rousseeuw, 1990) which is currently available in R code.

3.7.1 Simulation study

A second set of simulations was conducted to assess the performance of dQAF using a

PAM algorithm considering the same three classi�cation setups as in Section 3.3, namely

Scenarios 3.1, 3.2, 3.3.

In this case, the error process εt consisted of iid variables following di�erent distributions,

namely Gaussian innovations with unit variance, Student-t innovations with 1 degree of

freedom, and exponential Exp(0.75) innovations. Using these distributions, we intend to

assess the behavior of the clustering procedure also when kurtosis or skewness are present.

The processes of every scenario were generated as in Section 3.3 but considering starting

points from an Student-t with 1 degree of freedom and an Exp(0.75) for the scenarios

considering heavy-tailed and non-symmetric innovations, respectively.

The behavior of the partitioning procedure based on dQAF was compared with its coun-

terpart based on the metrics considered in 3.3. The quantile levels for the computation

of dQAF were determined by means of the variable selection algorithm VSCC introduced

in Section 3.6. As a starting point, the VSCC algorithm was implemented over a grid of

regularly spaced quantile levels formed by all the combinations (0.05j, 0.05j ′), with j and

j ′ ranging from 1 to 19.

For each scenario, �ve time series of equal length T were generated from each model, thus

providing a sample set of labeled series available to perform clustering. The experiments

were carried out for three di�erent series lengths, T = 250, 500 and 1000. Note that all

models are stationary in mean but they present di�erences in scale. To avoid that these

di�erences dominate the clustering, the series were previously normalized to have unit

variance.

Each set of simulated series was subjected to partitional clustering using the PAM algorithm

together with each of the studied metrics. The algorithm inputs were the true number C of

clusters, the pairwise dissimilarity matrix, and the initial C medoids, which were randomly

determined among all the series.

Again, the quality of the clustering procedure is evaluated comparing the experimental

cluster solution with the true cluster partition using three di�erent agreement measures

based on known �ground-truth�, namely the Gavrilov index (Gavrilov et al., 2000), the ad-
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justed Rand index (Hubert and Arabie, 1985), and one-nearest-neighbour (1-NN) classi�er

evaluated by leave-one-out cross-validation (Keogh and Kasetty, 2003). All of them have

been previously presented in Section 3.3.

The simulation procedure was replicated N = 100 times for each scenario and the obtained

indexes were averaged over the 100 trials. The averages and standard deviations (in brack-

ets) obtained for the di�erent lengths of the series are reported in Tables 3.5, 3.6 and 3.7,

including results for the considered innovation distributions.

In the case of Gaussian innovations, the dissimilarity based on quantile autocovariances

dQAF led to the highest average scores in clustering of non-linear and heteroskedastic mod-

els, Scenarios 3.2 and 3.3 respectively. In fact, the results in these scenarios based on dQAF

were substantially better than the ones obtained with the rest of metrics for the three

indexes. In the linear framework (Scenario 3.1), dQAF produced reasonably high indexes

although a little worse than dPACFG, dM and dISD. It is worthy to point out the outstand-

ing behavior of dQAF in clustering of non-linear models, with average agreement indexes

always above 0.985 for the smallest length, and exactly 1 with series of length 1000 for all

the experiments (since sd = 0). Beyond the e�cacy of PAM algorithm, the scores of the

1-NN classi�er (Ind3) illustrate the high capability of dQAF to discriminate between these

processes, fairly superior to the other metrics. The worst clustering results were obtained

in the Scenario 3.3, thus showing the complexity of clustering heteroskedastic structures.

Only dQAF is able to draw out good classi�cation rates in this complex clustering frame-

work, specially with large series. Note even that, except for dQAF , the clustering results do

not improve as the length of the series increases.

Similar conclusions derive from the results obtained with non-symmetric and heavy-tailed

disturbances, although dQAF reported additional nice properties. First, dQAF was again the

best-performed metric in Scenarios 3.1 and 3.3, increasing the average quality indexes with

respect to the Gaussian setting. Specially noteworthy was the improvement with heavy-

tailed innovations where signi�cantly high scores are now attained. The rest of metrics

presented di�erent behaviors in these two scenarios. While they exhibited an improve-

ment with heavy�tailed innovations (although fairly below dQAF ), their results substan-

tially worsened with non-symmetric innovations, thus concluding that the asymmetry has

an important in�uence over these metrics. Finally, except for dQAF , all the metrics are

a�ected by asymmetry and kurtosis when classifying ARMA models, particularly the non�

parametric dissimilarity dISD. On the contrary, dQAF presents better results, being very

close to the best metrics also in the linear scenario.

In short, our numerical experiments illustrate the good performance of the proposed metric
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Table 3.5: Indexes of clustering quality in the Monte-Carlo simulation with series of length
T = 250.

Dissimilarity Scenario 3.1 Scenario 3.2 Scenario 3.3

Ind1 Ind2 Ind3 Ind1 Ind2 Ind3 Ind1 Ind2 Ind3

Gaussian innovations

dLP 0.729 0.596 0.736 0.483 0.109 0.381 0.414 -0.002 0.204
(.098) (.102) (.092) (.069) (.106) (.110) (.046) (.062) (.097)

dPACFG 0.873 0.775 0.883 0.714 0.444 0.683 0.437 0.017 0.233
(.070) (.098) (.077) (.088) (.138) (.114) (.061) (.073) (.105)

dM 0.875 0.811 0.937 0.749 0.554 0.789 0.428 0.018 0.258
(.102) (.139) (.068) (.095) (.145) (.132) (.051) (.066) (.095)

dISD 0.906 0.821 0.908 0.726 0.517 0.722 0.421 0.027 0.256
(.063) (.095) (.070) (.094) (.137) (.117) (.052) (.067) (.100)

dQAF 0.767 0.600 0.709 0.995 0.986 0.997 0.622 0.268 0.496
(.090) (.100) (.117) (.014) (.039) (.014) (.070) (.078) (.109)

Non�symmetric innovations

dLP 0.741 0.593 0.742 0.522 0.263 0.438 0.509 0.181 0.413
(.083) (.079) (.107) (.059) (.103) (.120) (.101) (.144) (.114)

dPACFG 0.876 0.779 0.884 0.627 0.401 0.560 0.625 0.398 0.619
(.073) (.103) (.070) (.089) (.091) (.137) (.103) (.166) (.120)

dM 0.888 0.817 0.945 0.631 0.433 0.623 0.569 0.286 0.599
(.092) (.126) (.054) (.093) (.078) (.156) (.089) (.145) (.145)

dISD 0.896 0.802 0.911 0.586 0.412 0.614 0.598 0.359 0.691
(.062) (.089) (.058) (.086) (.082) (.131) (.079) (.133) (.117)

dQAF 0.830 0.728 0.838 1.000 1.000 1.000 0.663 0.409 0.575
(.060) (.071) (.087) (.000) (.000) (.000) (.084) (.103) (.150)

Heavy�tailed innovations

dLP 0.614 0.514 0.714 0.416 0.070 0.535 0.483 0.138 0.391
(.043) (.050) (.104) (.076) (.122) (.107) (.051) (.076) (.103)

dPACFG 0.872 0.815 0.953 0.723 0.556 0.834 0.424 0.050 0.351
(.097) (.124) (.051) (.046) (.077) (.084) (.059) (.069) (.087)

dM 0.838 0.772 0.965 0.738 0.576 0.866 0.438 0.062 0.367
(.087) (.111) (.037) (.073) (.110) (.093) (.064) (.083) (.100)

dISD 0.743 0.641 0.905 0.652 0.428 0.757 0.481 0.144 0.458
(.100) (.111) (.060) (.086) (.146) (.105) (.055) (.067) (.101)

dQAF 0.830 0.735 0.846 0.998 0.996 0.999 0.676 0.392 0.600
(.067) (.084) (.087) (.009) (.024) (.007) (.077) (.110) (.123)

in partitional clustering for a wide range of time series models. Speci�cally, dQAF outper-

formed the rest of analyzed metrics in clustering of non-linear and heteroskedastc models,

but was also highly competitive in clustering of linear models. Furthermore, unlike the rest

of metrics, quality of the clustering results based on dQAF showed robustness to the kind

of disturbance distribution.
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Table 3.6: Indexes of clustering quality in the Monte-Carlo simulation with series of length
T = 500.

Dissimilarity Scenario 3.1 Scenario 3.2 Scenario 3.3

Ind1 Ind2 Ind3 Ind1 Ind2 Ind3 Ind1 Ind2 Ind3

Gaussian innovations

dLP 0.804 0.674 0.812 0.530 0.188 0.442 0.406 -0.002 0.206
(.093) (.115) (.100) (.070) (.107) (.122) (.046) (.048) (.088)

dPACFG 0.949 0.899 0.951 0.858 0.694 0.862 0.428 0.014 0.249
(.066) (.107) (.052) (.091) (.152) (.078) (.051) (.069) (.103)

dM 0.952 0.928 0.977 0.905 0.812 0.922 0.416 0.020 0.253
(.085) (.118) (.041) (.103) (.171) (.074) (.046) (.067) (.118)

dISD 0.952 0.896 0.958 0.869 0.748 0.895 0.405 0.016 0.246
(.047) (.084) (.044) (.108) (.170) (.078) (.039) (.057) (.125)

dQAF 0.855 0.730 0.832 0.999 0.999 1.000 0.714 0.459 0.643
(.089) (.131) (.099) (.005) (.014) (.000) (.075) (.135) (.117)

Non�symmetric innovations

dLP 0.775 0.637 0.789 0.556 0.342 0.459 0.554 0.263 0.495
(.083) (.092) (.096) (.079) (.101) (.116) (.098) (.135) (.111)

dPACFG 0.953 0.903 0.955 0.678 0.458 0.660 0.657 0.463 0.742
(.056) (.092) (.051) (.107) (.120) (.130) (.075) (.141) (.111)

dM 0.956 0.934 0.985 0.714 0.544 0.744 0.521 0.226 0.681
(.081) (.113) (.027) (.124) (.135) (.140) (.072) (.119) (.120)

dISD 0.945 0.888 0.960 0.664 0.492 0.770 0.647 0.436 0.797
(.054) (.089) (.042) (.099) (.104) (.137) (.070) (.119) (.090)

dQAF 0.877 0.791 0.916 1.000 1.000 1.000 0.777 0.592 0.737
(.084) (.117) (.062) (.000) (.000) (.000) (.109) (.146) (.154)

Heavy�tailed Errors

dLP 0.620 0.523 0.727 0.435 0.100 0.553 0.503 0.175 0.419
(.042) (.050) (.101) (.089) (.140) (.133) (.045) (.047) (.103)

dPACFG 0.934 0.900 0.984 0.757 0.611 0.890 0.415 0.040 0.379
(.091) (.126) (.030) (.080) (.117) (.070) (.052) (.051) (.077)

dM 0.901 0.860 0.987 0.756 0.611 0.607 0.905 0.046 0.388
(.105) (.141) (.023) (.079) (.124) (.062) (.051) (.055) (.082)

dISD 0.784 0.704 0.942 0.658 0.445 0.810 0.503 0.180 0.507
(.128) (.154) (.051) (.101) (.161) (.079) (.045) (.041) (.099)

dQAF 0.877 0.796 0.897 1.000 1.000 1.000 0.726 0.523 0.731
(.083) (.111) (.078) (.000) (.000) (.000) (.088) (.125) (.125)

3.7.2 The role of the lag number in the computation of dQAF

A sensitivity analysis experimenting with di�erent sequences of regularly spaced quantile

levels was conducted, including a comparison with the results based on the variable selection

VSCC algorithm. This way, we intend to analyze the e�ect of the selection of quantile levels

on the clustering results. Table 3.8 reports the averages of the cluster similarity indexes
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Table 3.7: Indexes of clustering quality in the Monte-Carlo simulation with series of length
T = 1000.

Dissimilarity Scenario 3.1 Scenario 3.2 Scenario 3.3

Ind1 Ind2 Ind3 Ind1 Ind2 Ind3 Ind1 Ind2 Ind3

Gaussian innovations

dLP 0.843 0.727 0.864 0.575 0.267 0.512 0.418 0.013 0.225
(.084) (.104) (.084) (.088) (.133) (.120) (.052) (.057) (.073)

dPACFG 0.995 0.988 0.994 0.976 0.936 0.978 0.420 0.015 0.252
(.018) (.040) (.016) (.038) (.091) (.041) (.050) (.065) (.104)

dM 0.998 0.995 0.998 0.989 0.973 0.987 0.426 0.044 0.273
(.009) (.023) (.011) (.031) (.063) (.032) (.051) (.060) (.107)

dISD 0.986 0.965 0.991 0.979 0.945 0.977 0.416 0.032 0.300
(.027) (.060) (.019) (.033) (.082) (.037) (.046) (.055) (.106)

dQAF 0.926 0.845 0.920 1.000 1.000 1.000 0.765 0.605 0.716
(.070) (.118) (.069) (.000) (.000) (.000) (.058) (.083) (.105)

Non�symmetric innovations

dLP 0.855 0.746 0.877 0.388 0.053 0.305 0.584 0.315 0.543
(.084) (.114) (.093) (.057) (.117) (.082) (.094) (.144) (.127)

dPACFG 0.991 0.978 0.992 0.726 0.552 0.812 0.657 0.476 0.832
(.022) (.050) (.023) (.114) (.142) (.094) (.063) (.125) (.106)

dM 0.997 0.995 0.996 0.781 0.674 0.920 0.518 0.217 0.750
(.023) (.033) (.016) (.149) (.175) (.073) (.063) (.107) (.091)

dISD 0.979 0.949 0.990 0.692 0.564 0.856 0.658 0.448 0.875
(.032) (.070) (.022) (.120) (.118) (.079) (.074) (.124) (.080)

dQAF 0.931 0.876 0.953 1.000 1.000 1.000 0.890 0.777 0.861
(.082) (.126) (.050) (.000) (.000) (.000) (.084) (.128) (.111)

Heavy�tailed innovations

dLP 0.615 0.526 0.740 0.426 0.086 0.554 0.520 0.199 0.459
(.044) (.043) (.101) (.084) (.134) (.153) (.043) (.039) (.113)

dPACFG 0.972 0.959 0.996 0.805 0.670 0.928 0.411 0.035 0.389
(.069) (.096) (.012) (.104) (.153) (.059) (.047) (.045) (.090)

dM 0.941 0.919 0.998 0.759 0.612 0.926 0.412 0.033 0.402
(.093) (.125) (.010) (.082) (.123) (.057) (.053) (.048) (.088)

dISD 0.789 0.708 0.948 0.665 0.453 0.837 0.519 0.201 0.540
(.112) (.131) (.046) (.098) (.159) (.092) (.043) (.039) (.087)

dQAF 0.957 0.920 0.963 1.000 1.000 1.000 0.702 0.515 0.766
(.068) (.107) (.056) (.000) (.000) (.000) (.083) (.110) (.126)

obtained from 100 trials of the simulation procedure for Scenarios 3.1, 3.2 and 3.3, with

Gaussian innovations, series of length T = 250, and the metric dQAF based on the following

combinations of quantile levels: (i) τ 1 = (0.1, 0.5, 0.9), (ii) τ 2 = (0.1, 0.3, 0.5, 0.7, 0.9), and

(iii) τ 3 = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).

Table 3.8 reveals that results get better as the number of quantiles is increased. Never-
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Table 3.8: In�uence of the selection of quantile levels

Vector of Scenario 3.1 Scenario 3.2 Scenario 3.3

quantile levels Ind1 Ind2 Ind3 Ind1 Ind2 Ind3 Ind1 Ind2 Ind3

τ 1 0.766 0.583 0.688 0.986 0.961 0.989 0.595 0.231 0.535

τ 2 0.753 0.586 0.696 0.993 0.982 0.996 0.607 0.256 0.537

τ 3 0.767 0.600 0.716 0.993 0.982 0.997 0.610 0.251 0.560

VSCC 0.767 0.600 0.709 0.995 0.986 0.997 0.622 0.268 0.496

theless, no large di�erences are observed, and acceptable results are reached using only

three quantile levels (τ 1). Except for Ind3 in Scenario 3.3, the VSCC algorithm leads

to the highest scores, with the additional advantage of determining a proper trade-o� be-

tween number of quantile levels and clustering quality on the basis of an objective criterion.

Anyway, results from Table 3.8 suggest that dQAF should produce satisfactory results in

clustering with a small number of regularly spaced quantile levels. Although this is indeed

a noteworthy property, it is also worth remarking that dQAF is computationally e�cient

because of an increase in the number quantiles does not mean a substantial cost in terms

of computing time.

3.8 Concluding remarks

In this chapter, our motivation has been to introduce an e�cient dissimilarity measure with

a high capability to cluster series generated from a broad range of dependence models. With

this objective in mind, a metric based on quantile autocovariance functions (dQAF ) has been

proposed. Quantile autocovariances provide valuable insight into the serial dependence and

present a much richer view than other extracted features about the underlying dependence

structure. Robustness to nonexistence of moments and capability to deal with heavy�tailed

marginal distributions, to analyze dependence of extreme values, and to detect nonlinear

features and changes in conditional shapes are appealing properties of the quantile autoco-

variances, which suggest their usefulness to classify a wide range of time series models. This

intuition has been illustrated by means of a motivating example addressed to discriminate

between realizations of Gaussian white noise, GARCH and exponential GARCH processes.

To perform hard clustering, we focus in two di�erent approaches. First an agglomera-

tive hierarchical clustering algorithm with complete linkage was considered. An exten-

sive simulation study showed that the proposed dissimilarity produces satisfactory results

by performing cluster analysis on di�erent types of processes. In complex scenarios in-
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cluding conditional heteroskedastic processes, dQAF led to the best results compared to

a range of representative dissimilarities introduced in the literature. In fact, apart from

dQAF , none of the remaining examined dissimilarities showed acceptable results by cluster-

ing heteroskedastic processes, thus emphasizing the usefulness of dQAF in this framework.

Dissimilarity dQAF also produced very good results by clustering non-linear processes, at-

taining so high scores as the ones obtained by the non-parametric dissimilarities, which

are particularly suitable to tackle this kind of processes. Only classifying linear models

dQAF showed worse behaviour than some dissimilarities speci�cally designed to deal with

linear processes. Nevertheless, clearly competitive scores can be also attained in this sce-

nario if the tuning parameters required to construct dQAF are properly adjusted. In short,

the dissimilarity based on quantile autocovariance functions seems to show great �exibility

to properly work with di�erent types of underlying processes. Furthermore, unlike other

dissimilarities, the proposed metric satis�es additional properties specially useful in time

series clustering. Speci�cally, dQAF presents an e�cient implementation at a very low cost

in terms of computing time and can be applied to series of unequal length.

Also a partitioning around C-medoids technique was considered to perform clusering anal-

ysis, and the results of the simulations have shown once again the good performance of the

C-crisp model based on the squared Euclidean distance between sample quantile autoco-

variances, dQAF . Compared to other distances measuring discrepancy between generating

models and other extracted features, our approach led to the best classi�cation rates by

grouping non-linear and heteroskedastic models in well�separated clusters. Likewise the hi-

erarchical approach, our proposal produced competitive success rates, by clustering linear

models in general close to the ones obtained with metrics speci�cally designed to deal with

ARMA models. The C-crisp model combined with dQAF also exhibited a remarkable prop-

erty of robustness against the kind of innovation distribution, unlike the rest of examined

metrics which have been noticeably a�ected by skewness and kurtosis.

In order to provide an automatic tool for clustering, an iterative algorithm to select the

lags and quantile levels optimizing the clustering process has been introduced. Overall, a

small number of quantiles is selected, and a further sensitivity analysis has illustrated that

a few quantiles are enough to obtain satisfactory results.

The problem of estimating the optimal number of clusters has been also addressed. A

range of existing procedures have been compared in a new simulation study considering

di�erent generating processes. The prediction-based resampling algorithm Clest proposed

by Dudoit and Fridlyand (2002), properly adjusted to use the dissimilarity dQAF , produced

good results in all considered scenarios. When a clustering structure was present, the

adjusted version of Clest led to accurate estimations of the true number of clusters, ranking
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among the best-performed methods, and it was clearly the best procedure to detect the

lack of clusters.

For illustrative purposes, the proposed methodology has been applied to classify the time

series of Euro exchange rates against 28 international currencies. The Clest algorithm

identi�ed three clusters, and the 3-cluster hierarchical solution based on dQAF allowed us

to characterize each cluster in terms of the di�erent volatility structures of their elements.

Therefore, we have taken here advantage of the capability of the quantile autocovariance

function to discriminate between non-linear and heteroskedastic models, which cannot be

accounted for by other structure-based dissimilarities.

Part of the material developed in the present chapter, including the introduction of the

QAF metric for hierarchical clustering of time series, the solution proposed to address the

optimal selection of the number of clusters and the case study have been published in

Lafuente-Rego and Vilar (2016a).
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Chapter 4

Fuzzy clustering of time series based

on quantile autocovariances. Robust

approaches.
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4.1 Introduction

In cluster analysis, attending to the cluster assignment, two di�erent paradigms are usually

considered depending on whether a �hard� or �soft� partition is constructed. Traditional

clustering methods assign each data object to exactly one cluster, thus producing a hard

partition of the data into non-empty and disjoint subsets. This approach can result too
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4 Fuzzy clustering of time series based on quantile autocovariances

rigid in situations with data objects equidistant from two or more groups or in presence of

overlapping clusters. Fuzzy cluster techniques (Döring et al., 2006; D'Urso, 2015) provide

a more versatile approach by allowing gradual membership of data objects to clusters. In

the resulting soft partition, the objects can belong to several clusters with speci�c mem-

bership levels indicating the amount of con�dence in the assignment of each data to the

clusters. Adoption of the fuzzy logic in time series clustering is interestingly motivated by

some authors. D'Urso and Maharaj (2009) and D'Urso et al. (2013b, 2015a) argue that

the dynamic of a time series may change over time in such a way that it could belong to

distinct clusters during di�erent periods of time, i.e. in a fuzzy way. Aielli and Caporin

(2013) motivate a soft clustering based on mixture models arguing that whether similarity

is based on estimated dynamic parameters, then the error estimation generates variability

causing overlapping clusters. Although hard methods have received greater attention in the

time series clustering literature, a number of recent contributions have adopted the fuzzy

approach combined with di�erent dissimilarity criteria between series, including distances

based on autocorrelation functions (D'Urso and Maharaj, 2009), features extracted in the

frequency domain such as normalized periodogram and its logarithm, and cepstral coe�-

cients (Maharaj and D'Urso, 2011), autoregressive approximations (D'Urso et al., 2013b),

wavelet analysis (Tseng et al., 2010; Maharaj et al., 2010; D'Urso and Maharaj, 2012) and

estimated GARCH coe�cients (D'Urso et al., 2013a, 2016).

This chapter is aimed at assessing the behavior of the distance based on estimated quan-

tile autocovariances (QAF) in partitional clustering of time series by considering a fuzzy

approach. Again, we assume that the target is to group series according to the underlying

dependence structures, i.e. similarity between series is measured in terms of similarity be-

tween generating processes. As mentioned, in this framework, the use of a metric robust

to the generating mechanism of the series is necessary to attain a proper cluster solution,

and the QAF-based distance introduced in the above chapter reported very satisfactory

results in hard clustering. Therefore, the motivation is clear: a fuzzy clustering algorithm

considering this metric would be expected to show a proper behavior. Furthermore, the

problem of dealing with anomalous fuzzy data is also addressed in the second part of the

present chapter. Anomalous time series might have a disruptive e�ect on the clustering

process, and hence the use of robust fuzzy clustering models is of great interest in practice.

The �rst contribution in this chapter consists of introducing a novel fuzzy procedure to

cluster time series. We adopt a fuzzy C-medoids approach where the QAF-based metric is

considered to compute distances between series and medoids. In this way, the proposed ap-

proach inherits the advantages of the fuzzy methods (�exibility to describe complex cluster

structures with overlapping clusters), the partitioning around medoids technique (selection

88



Introduction 4.1

of particular series representing the underlying cluster patterns) and the QAF-based metric

(high capability to discriminate between a broad range of dependence structures). Once the

fuzzy algorithm is introduced, its behavior is evaluated via simulations. Here, our exper-

iments mainly focused on the classi�cation of heteroskedastic models, a complex scenario

but frequently realistic when analyzing �nancial, industrial or environmental indicators,

among others. The capability of the proposed model to clustering GARCH models is ex-

amined, and its performance is tested against two fuzzy clustering algorithms considering

GARCH-based dissimilarities (D'Urso et al., 2013a), and therefore speci�cally designed to

work in the simulated scenario. The fuzzy clustering algorithm is applied to two study

cases considering air quality data and daily returns of stocks to illustrate its usefulness in

practice.

The second contribution deals with the problem of the detection and neutralization of

outliers. Overall, the presence of anomalous data can prevent from correctly identifying the

hidden clustering structure of the data at hand, and hence introducing robust fuzzy methods

is a valuable issue. In fact, performing fuzzy clustering in presence of anomalous data is a

very interesting line of research in the clustering literature, and di�erent approaches to face

this problem have been proposed. Dave (1991) and Dave and Sen (1997) attain robustness

by creating a �ctitious cluster called noise cluster where all the outliers are assigned. Kim

et al. (1996) use the least trimmed squares technique applied to prototype-based clustering

algorithms such as the C-means and the fuzzy C-Means to make them robust. Winkler

et al. (2011) present a fuzzy clustering algorithm with polynomial fuzzi�er function in

connection with M -estimators using a normalization function of the robust weights. Wu

and Yang (2002) propose to use a new metric (exponential metric) which is more robust

to the existence of outliers. An overview of several robust fuzzy methods can be seen in

Klawonn and Höppner (2009).

In the time series framework and regarding the clustering purpose in mind, a time series

is considered as an outlier when exhibits an atypical dynamic behavior, which substan-

tially di�ers from the rest of identi�ed prototypes. Three robust versions of the fuzzy

C-medoids clustering algorithm for the classi�cation of time series based on comparing es-

timated sequences of quantile autocovariances are introduced and compared. Speci�cally,

(i) QAF-based exponential fuzzy C-medoids clustering, (ii) QAF-based fuzzy C-medoids

clustering with noise cluster, and (iii) QAF-based trimmed fuzzy C-medoids clustering.

The �rst model uses a robust metric to neutralize and smooth the e�ect of outliers, the

second one is aimed at detecting outliers by classifying them into a noise cluster, and with

the third method the model achieves its robustness by trimming away a certain fraction of

the furthest time series. All of these models are robust extensions of the QAF-based fuzzy
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C-medoids clustering model introduced in the �rst part of the chapter. Recent works have

followed analogous robust approaches but using the AR distance (D'Urso et al., 2013b,

2015b, 2017) and distances considering underlying heteroskedastic models (D'Urso et al.,

2016). To gain insight on the capability of the proposed robust models, all of these pro-

cedures were compared by means of an extensive simulation study including ARMA and

GARCH models and in the presence of outliers. Obviously the alternative procedures take

advantage of being speci�cally constructed to discriminate between these processes, and

hence we can obtain a realistic measure of the capability of the QAF-based procedures.

The usefulness and e�ectiveness of the proposed robust fuzzy models is also highlighted by

considering an application in �nance.

The rest of the chapter is organized as follows. The proposed C�medoids fuzzy clustering

algorithm based on the estimated quantile autocovariances is described in Section 4.2. Sec-

tion 4.3 presents some results from a simulation study conducted to analyze its performance

under di�erent generating processes, including linear and conditional heteroskedastic pro-

cesses. Unlike the previous chapters, the simulation scenarios are now characterized by

the fuzzy nature of the clusters by introducing additional uncertainty on the parameters

de�ning the generating processes. Two applications on real data involving time series of

air quality data and daily returns of stocks in IBEX-35 are carried out in Section 4.4. The

robust models based on the C�medoids fuzzy clustering algorithm considering dQAF are

described and discussed in Section 4.5, and the results from simulations are presented in

Section 4.6. Illustrative application of these robust fuzzy approaches on an study case is

shown in Section 4.7, and some concluding remarks are summarized in Section 4.8.

4.2 QAF-based fuzzy C-medoids clustering model

Consider a set S of n realizations of univariate time series
{
X

(1)
t , . . . ,X

(n)
t

}
subjected

to clustering, and denote by Γ =
{

Γ(1), . . . ,Γ(n)
}
the corresponding vectors of estimated

quantile autocovariances computed as de�ned in (3.17). Assume that all vectors Γ(i) have

the same length Lr2, being L and r the numbers of lags and quantile levels considered for all

the series, respectively. This way, the pairwise dQAF distances between two arbitrary series

can be computed according to (3.19). In this framework, we propose to perform partitional

fuzzy clustering on S by means of the QAF-based Fuzzy C-Medoids Clustering model

(QAF-FCMdC), which aims at �nding the subset of Γ of size C, Γ̃ =
{

Γ̃
(1)
, . . . , Γ̃

(C)
}
, and

the n × C matrix of fuzzy coe�cients Ω = (uic) , i = 1, . . . , n, c = 1, . . . , C, that lead to

solve the minimization problem:
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
min
Γ̃,Ω

n∑
i=1

C∑
c=1

umic

∥∥∥∥Γ(i) − Γ̃
(c)
∥∥∥∥2

subject to:

C∑
c=1

uic = 1 and uic ≥ 0,

(4.1)

where uic ∈ [0, 1] represents the membership degree of the i-th series in the c-th cluster, Γ̃
(c)

is the vector of quantile autocovariances associated to the medoid series for the cluster c,

and m > 1 is a weighting exponent that controls the fuzziness of the partition. Constraints

on uic are standard requirements in fuzzy clustering. In particular, that the sum of the

membership degrees for each series equals 1 implies that all of them contribute with the same

weight to the clustering process. Parameter m determines the level of fuzziness introduced

in the clustering procedure. In the naive case m = 1, we have uic = 1 if the i-th series is

the medoid for the cluster c and 0 otherwise so that the crisp version of the procedure is

obtained. As the value of m increases, the boundaries between clusters become softer and

therefore the classi�cation is fuzzier.

In a nutshell, the aim of QAF-FCMdC model is to determine a fuzzy partition into C

clusters such that the QAF-distance between the clusters and their prototypes is minimized.

Likewise the crisp approach, the clustering quality strongly depends on the capability of

dQAF to identify di�erent dependence structures, but now the non-stochastic uncertainty

inherent to the assignment of series to clusters is incorporated to the procedure by means

of the membership degrees.

An iterative algorithm that alternately optimizes the membership degrees and the medoids

is used to solve the optimization problem in (4.1). First, the membership degrees are

optimized for a set of �xed medoids. The iterative solutions for the membership degrees

take the form (Höppner et al., 1999):

uic =

 C∑
c′=1


∥∥∥Γ(i) − Γ̃

(c)
∥∥∥2

∥∥∥Γ(i) − Γ̃
(c′)
∥∥∥2


1

m−1


−1

, for i = 1, . . . , n and c = 1, . . . , C. (4.2)

Then, based on the membership degrees obtained from (4.2), the C series minimizing (4.1)

are selected as new medoids. This two-step procedure is iterated until there is no change

in the medoids or a maximum number of iterations is achieved. The initial values for

the medoids are usually determined at random, but the procedure is very sensitive to an

unsuitable choice. In this case, the initial set of medoids was obtained after running a hard

PAM algorithm based on the QAF dissimilarity.
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The QAF-based fuzzy C-medoids clustering algorithm (QAF-FCMdC) is implemented as

outlined in Algorithm 1.

Algorithm 1 The QAF-based Fuzzy C-Medoids Clustering Algorithm (QAF�FCMdC)
1: Fix C, m and max.iter
2: Set iter = 0
3: Pick the initial medoids Γ̃ =

{
Γ̃

(1)
, . . . , Γ̃

(C)
}

4: repeat

5: Set Γ̃OLD = Γ̃ {Store the current medoids}
6: Compute uic, i = 1, . . . , n, c = 1, . . . , C, using (4.2)
7: For each c ∈ {1, . . . , C}, determine the index jc ∈ {1, . . . , n} satisfying:

jc = argmin
1≤j≤n

n∑
i=1

umic

∥∥∥Γ(i) − Γ(j)
∥∥∥2

8: return Γ̃
(c)

= Γ(jc), for c = 1, . . . , C {Update the medoids}
9: iter ← iter + 1
10: until Γ̃OLD = Γ̃ or iter = max.iter

4.3 Assessing the behavior of the QAF�FCMdC model: A

simulation study

A simulation study was conducted to evaluate the performance of the proposed QAF�

FCMdC algorithm. We intended to recreate fuzzy scenarios with di�erent time series

models, including realizations of AR, ARCH and GARCH processes. In all cases, the

base scenario consisted of two clusters with �ve series each, let us say C1 and C2, and

one additional time series located at equal distance from both clusters. Moreover, we add

uncertainty to the classi�cation procedure by two ways: (i) introducing variability over the

parameters de�ning the underlying model for each cluster, and (ii) considering di�erent

levels of separation between the clusters. Variability within clusters was generated by

drawing out the parameters at random according to uniform distributions with di�erent

support for each cluster. The distance between clusters is given by the distance between

the means of the uniform distributions. The speci�c scenarios and the generation schemes

for each scenario are described in detail in Table 4.1.

For all scenarios, innovations εt follow a Gaussian distribution with zero mean and unit

variance. Compared to scenarios denoted by B, scenarios A exhibit greater distance be-

tween the clusters C1 and C2, and hence less balanced memberships are expected. In other

terms, the �ve series generated from one speci�c cluster should group all together with

membership degrees more markedly close to one in scenarios A. As far as the time series
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Table 4.1: Simulation scenarios for evaluation of the QAF-FCMdC algorithm

Generating process Scenario Elements and structure

Scenario 4.1: Autoregressive processes AR(1)

Xt = φXt−1 + εt 4.1.A Cluster C1: 5 series with φ ∼ U(0, 0.2)
Cluster C2: 5 series with φ ∼ U(0.8, 1)
One equidistant series with: φ = 0.5

4.1.B Cluster C1: 5 series with φ ∼ U(0.2, 0.4)
Cluster C2: 5 series with φ ∼ U(0.6, 0.8)
One equidistant series with: φ = 0.5

Scenario 4.2: Autoregressive conditional heteroskedastic processes ARCH(1)

Xt = σtεt, with σ
2
t = 0.1 + αX2

t−1 4.2.A Cluster C1: 5 series with α ∼ U(0, 0.1)
Cluster C2: 5 series with α ∼ U(0.9, 1)
One equidistant series with: α = 0.5

4.2.B Cluster C1: 5 series with α ∼ U(0, 0.2)
Cluster C2: 5 series with α ∼ U(0.8, 1)
One equidistant series with: α = 0.5

Scenario 4.3: General autoregressive conditional heteroskedastic processes GARCH(1,1)

Xt = σtεt, with σ
2
t = 0.1 + αX2

t−1 + 0.1σ2
t−1 4.3.A Cluster C1: 5 series with α ∼ U(0, 0.15)

Cluster C2: 5 series with α ∼ U(0.85, 0.9)
One equidistant series with: α = 0.5

4.3.B Cluster C1: 5 series with α ∼ U(0.1, 0.2)
Cluster C2: 5 series with α ∼ U(0.8, 0.9)
One equidistant series with: α = 0.5

located at an intermediate situation between C1 and C2, it is expected that these series

belong simultaneously to the two clusters showing membership degrees close to 0.5.

The QAF�FCMdC algorithm was compared with other fuzzy clustering models based on

alternative dissimilarities. For Scenario 4.1, a fuzzy C-medoids algorithm considering Eu-

clidean distances between estimated autoregressive representations was used. According to

the fuzzy approach based on features extracted of the time series, a fuzzy model can be

formalized as solution of the general optimization problem:

min : Fm

(
Φ̃,Ω

)
=

n∑
i=1

C∑
c=1

umic

∥∥∥Φ(i) − Φ̃
(c)
∥∥∥2

, subject to:
C∑
c=1

uic = 1 and uic ≥ 0,

(4.3)

where Φ(i) represents the vector of estimated features for the i-th series, i = 1, . . . , n,

and Φ̃ denotes an arbitrary subset of C vectors Φ(i) denoted by Φ̃
(c)
, c = 1, . . . , C. The

subset Φ̃ minimizing the objective function Fm involves the solution with the C medoids or

prototype time series. The solution is iteratively reached by optimizing alternately medoids

and membership degrees. At each iteration, the membership degrees for �xed medoids are

obtained by using the Lagrangian multipliers method, resulting the update formula:
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uic =

 C∑
c′=1


∥∥∥Φ(i) − Φ̃

(c)
∥∥∥2

∥∥∥Φ(i) − Φ̃
(c′)
∥∥∥2


1

m−1


−1

, for i = 1, . . . , n and c = 1, . . . , C. (4.4)

The use of di�erent features in the class of fuzzy clustering models de�ned by (4.3) and (4.4)

leads to distinct fuzzy algorithms. We have considered various features including single

and partial autocorrelations but our best results were obtained by using autoregressive

representations, which leads to the following fuzzy model.

� AR-FCMdC: Fuzzy C-medoids clustering model based on the AR-metric (D'Urso

et al., 2013c). When the extracted features Φ(i), i = 1, . . . , n, are the autoregressive

representations of the time series, we take into consideration the distance introduced

by Piccolo (1990) to deal with ARIMA models (Pértega and Vilar, 2010; Piccolo, 1990;

Maharaj, 2000; Liao et al., 2008; Vilar et al., 2009). Each series X(i)
t is identi�ed by

the AR(∞) operator approximating its ARIMA structure. In practice, the truncated

AR(∞) representations are used, and thus X(i)
t is characterized by the vector of

AR(ri) parameter estimates, π̂(i) =
(
π̂

(i)
1 , . . . , π̂

(i)
ri

)
, where the ri signi�cant lags

are obtained by means of a model selection criterion such as Akaike's Information

Criterion (AIC). Then Φ(i) ≡ π(i), and we have in (4.3) and (4.4):

∥∥∥Φ(i) − Φ̃
(c)
∥∥∥2

=

ric∑
u=1

(
π̂(i)
u − ˜̂π(c)

u

)2

, (4.5)

where ric = max(ri, rc). When ri 6= rc, the shortest AR coe�cient vector is completed

by adding zeros up to have two vectors with the same length.

Scenarios 4.2 and 4.3 involve conditionally heteroskedastic models and the clustering task

is substantially more complex due to the peculiar features exhibited for these processes (re-

sults in experiments of Chapter 3 illustrate this assertion). As in Scenario 4.1, it is desirable

to examine our procedure against fuzzy clustering models based on suitable distances re-

garding the underlying heteroskedastic structures. At this aim, we select two partitioning

around medoids algorithms based on GARCH modeling recently proposed by D'Urso et al.

(2013a). Both models rely on distances employing the autoregressive representation of a

GARCH(p,q) process. More precisely, the GARCH(p,q) model allows to model the serial

dependence of the volatility by assuming that Xt = σtεt, where the innovations εt are

independent and identically distributed variables and the squared disturbances σ2
t satisfy
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the following ARMA(p,q) representation:

σ2
t = Var (Xt |Jt−1 ) = γ +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j , (4.6)

where Jt−1 = σ (Xt−1, Xt−2, . . .) represents the information available up to time (t−1), γ >

0, 0 ≤ αi < 1 and 0 ≤ βj < 1, for i = 1, . . . , p and j = 1, . . . , q, and (
∑p

i=1 αi +
∑q

j=1 βj) <

1. Based on expression (4.6), two distance measures between heteroskedastic processes are

introduced and plugged into the fuzzy C-medoids clustering model as described below.

� GARCH-FCMdC: Fuzzy C-medoids clustering model based on the AR distance be-

tween GARCH approximations (D'Urso et al., 2013a). Starting from (4.6) and after

some algebra, it can be shown that

X2
t = γ +

p?∑
i=1

(αi + βi)X
2
t−i +

q∑
j=1

βjηt−j + ηt, (4.7)

with p? = max(p, q), αi = 0 for i > p, βi = 0 for i > q, and ηt = X2
t − σ2

t a zero-

mean error uncorrelated with the past. Equation (4.20) establishes an ARMA(p?,q)

representation for X2
t , which can be approximated by an AR(∞) structure with au-

toregressive coe�cients πGu given by

πGu = (αu + βu) +

min(q,u)∑
j=1

βjπ
G
u−j

where πG0 = −1, αu = 0 for u > p, and βu = 0 for u > q. Then, GARCH-FCMdC

model proceeds in the same line as AR�FCMdC but using estimators of these new

autoregressive coe�cients to compute the AR distance, i.e. replacing
(
π̂

(i)
1 , . . . , π̂

(i)
ri

)
by
(
π̂
G,(i)
1 , . . . , π̂

G,(i)
ri

)
in (4.5).

� GARCH-FCMdCC: Fuzzy C-medoids clustering model based on the Caiado and

Crato distance between GARCH approximations (D'Urso et al., 2013a). Caiado and

Crato (2007) proposed an alternative approach to measure distance between GARCH

models by taking into account the covariance between the �tted GARCH coe�cients.

Speci�cally, the distance between a pair of series X(u)
t and X(v)

t is de�ned by

dGARCH

(
X

(u)
t ,X

(v)
t

)
=
(
L(u) −L(v)

) t (
V (u) + V (v)

)−1 (
L(u) −L(v)

)
, (4.8)

where L(u) =
(
α̂(u), β̂

(u)
)t

is the estimated vector of parameters in the GARCH
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representation (4.6) for X(u)
t , and V (u) = E

(
L(u)L(u), t

)
denotes the correspond-

ing covariance matrix between the estimated parameters. Based on dGARCH , the

GARCH-FCMdCC model is derived by solving the minimization problem:

min
L̃,Ω

n∑
i=1

C∑
c=1

umic

(
L(i) − L̃

(c)
) t (

V (i) + Ṽ
(c)
)−1 (

L(i) − L̃
(c)
)
,

subject to
C∑
c=1

uic = 1 and uic ≥ 0,

where L̃ is a subset of cardinality C of estimated GARCH vectors for the series in

study.

By comparing QAF-FCMdC with AR-FCMdC in Scenario 4.1 and with GARCH-FCMdC

and GARCH-FCMdCC in Scenarios 4.2 and 4.3, we choose competitors based on distances

properly adjusted to the dependence structures from each simulated scenario, and there-

fore valuable insight into the usefulness of the proposed model and its robustness to the

generating process should be obtained.

The experiments were carried out with di�erent lengths for the time series, namely T = 250,

500 and 1000 for Scenario 4.1, and T = 500, 1000 and 2000 for Scenarios 4.2 and 4.3. The

size of the series is increased for the heteroskedastic scenarios to face the high variability

of the estimated GARCH parameters. Based on a controlled simulation experiment, Aielli

and Caporin (2013) assert that the standard quasi maximum likelihood GARCH estimates

obtained from simulated realizations of a GARCH(1,1) process are characterized by higher

dispersion for smaller sample sizes. These arguments account for choosing large sample

sizes by treating with this kind of processes, and in fact the chosen lengths are commonly

used in the literature (Aielli and Caporin, 2013; Bauwens and Rombouts, 2007; Otranto,

2010). Furthermore, large sample sizes are also usual in applications. A typical example of

heteroskedastic series are the �nancial time series, which usually include longer sequences

formed by daily or intra-daily data. Some experiments were also performed in Scenarios 4.2

and 4.3 with short series, but the results were poor, being particularly a�ected the fuzzy

algorithms using GARCH-based distances due to inaccurate estimations of the GARCH

parameters.

The fuzziness parameter m also has an important role, and in practice its value must be

determined in advance. As already mentioned, m = 1 leads to a crisp partition, but very

large values for m are not recommendable. Kamdar and Joshi (2000) argue that very high

values for m may imply to lose mobility of the medoids because all membership degrees

would become very small except the one corresponding to the current medoid, which always

96



Simulation study 4.3

equals 1 within its cluster. To our knowledge, there are no theoretical arguments supporting

an optimal choice of m (see discussion in Yang et al., 2008). A popular choice is m = 2,

although based on di�erent heuristic arguments various authors suggest that the value of

the proper level of fuzziness should be between 1.5 and 2.5 (Pal and Bezdek, 1995; Hall

et al., 1992; Cannon et al., 1986). An interesting discussion on this point including related

references is given in Section 3.1.6 of Maharaj and D'Urso (2011). We were very interested

in checking the e�ect of moving the fuzzi�er m, and based on the previous considerations

we decided to take the values m = 1.5, 2.0, 2.2 and 2.5, which is also a consistent choice

with other recent experimental studies (Maharaj and D'Urso, 2011; de A.T. de Carvalho

et al., 2006).

The number of clusters was set at C = 2, and hence the equidistant series are forced to

belong simultaneously to both clusters. At all scenarios, ten sets of 100 simulations were

carried out. For each set was �rst calculated the percentage of times in which time series

were correctly classi�ed, and then these success rates were averaged over the ten replications.

At each trial, the correct classi�cation occurs when the �ve series generated from the model

de�ning C1 are located together in one cluster, the �ve series coming from C2 are grouped

together in another cluster, and the single series generated from an equidistant model is

simultaneously located in both clusters. Since grouping is performed in a fuzzy framework,

a cut-o� value for the membership degrees must be �xed to decide when a time series is

assigned to a speci�c cluster or to both clusters simultaneously. Our assignment rule was

to place the i-th series into the c-th if uic > 0.7. In other case, the series is simultaneously

located in the two clusters because of its membership degrees are reasonably similar (both

of them between 0.3 and 0.7). It is worthy remarking that the chosen cut-o� point is

compatible with the indications suggested in the literature (see e.g. D'Urso and Maharaj,

2009; D'Urso et al., 2013b; Maharaj and D'Urso, 2011; Maharaj et al., 2010; D'Urso and

Giordani, 2006; Dembélé and Kastner, 2003).

The average percentages of correct classi�cation were obtained with all the fuzzy models in

order to be compared. In the case of the QAF-FCMdC model, the distance dQAF between

estimated quantile autocovariances was evaluated over a grid of regularly spaced quantile

levels formed by all the combinations (0.05j, 0.05j ′), with j and j ′ ranging from 1 to 19.

Concerning the GARCH-based models, it is important to remark that the right number

of GARCH parameters was provided as an input in the computation of dAR and dGARCH .

Indeed, this is a substantial advantage in favour of these models since the signi�cant number

of GARCH parameters must be estimated in real scenarios. Table 4.2 shows the results for

Scenario 4.1.

The in�uence of the fuzziness parameter m is evident from Table 4.2. The value m = 1.5
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Table 4.2: Average percentage of correct classi�cation in Scenario 4.1

Scenario 4.1.A Scenario 4.1.B

Algorithm T = 250 T = 500 T = 1000 T = 250 T = 500 T = 1000

m = 1.5 AR-FCMdC 31.5 45.1 52.0 17.2 26.6 31.5
QAF-FCMdC 29.6 34.3 35.2 9.7 17.9 23.2

m = 2.0 AR-FCMdC 67.5 83.9 93.0 22.5 45.2 59.9
QAF-FCMd 69.1 76.2 77.6 28.7 44.1 58.3

m = 2.2 AR-FCMdC 76.9 91.8 97.5 21.1 44.3 65.2
QAF-FCMdC 80.8 84.3 88.0 33.8 51.2 67.5

m = 2.5 AR-FCMdC 84.0 97.1 99.7 16.6 40.1 65.6
QAF-FCMdC 88.8 93.7 96.1 34.1 56.0 75.7

produced uniformly the worst percentages, and it is observed that the results seem to

improve progressively when m increases. Note that using a high fuzzi�er means to smooth

the boundary between clusters, thus making more di�cult to separate them. In particular,

a reasonably high value for m implies a more uniform distribution of the membership

degrees, thus bene�ting the correct classi�cation of the equidistant series. As expected,

the success rates substantially decreased for the Scenario 4.1.B. By increasing the level of

proximity between clusters, both procedures are more sensitive to the noise and frequently

the equidistant series present a membership degree uic > 0.7 for some c, thus producing

an important number of failed trials and reducing noticeably the global success rate (even

though the series of each cluster are really well-classi�ed). Lastly, Table 4.2 also shows

that QAF-FCMdC produces competitive results compared to AR-FCMdC. In spite of AR-

FCMdC is designed to deal with ARMA series, the proposed algorithm QAF-FCMdC

exhibited a similar performance, drawing out a little worse success rates in the easiest

Scenario 4.1.A, but somewhat higher ones in the most di�cult Scenario 4.1.B, where the

clusters are closer each other.

Now, we focus on Tables 4.3 and 4.4 where the results using ARCH(1) (Scenarios 4.2) and

GARCH(1,1) (Scenarios 4.3) processes are presented, respectively.

The above considerations on the e�ect of the fuzziness parameter m also apply in these

scenarios, and it is observed that the success rates improve when m increases. In the sim-

plest Scenario 4.2, involving ARCH(1) models, the GARCH-based algorithms outperform

the QAF-based procedure when T = 1000. Nevertheless, by dealing with series of length

T = 2000, QAF-FCMdC is clearly competitive, exhibiting better behavior than GARCH-

FCMdCC and only a little worse than GARCH-FCMdC. As expected, again the success

rates in Scenario 4.2.B are worse then the ones in Scenario 4.2.A. For the largest length

of series (T = 5000) and regardless of the amount of separability of the clusters (Scenar-
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Table 4.3: Average percentage of correct classi�cation in Scenario 4.2

Scenario 4.2.A Scenario 4.2.B

Algorithm T = 1000 T = 2000 T = 5000 T = 1000 T = 2000 T = 5000

m = 1.5 GARCH-FCMdC 32.5 48.5 64.3 30.1 40.1 64.4
GARCH-FCMdCC 20.4 17.8 10.1 20.4 21.8 20.0
QAF-FCMdC 15.8 26.9 44.0 12.1 19.4 44.2

m = 2.0 GARCH-FCMdC 71.9 86.3 86.6 64.2 76.2 86.0
GARCH-FCMdCC 47.1 51.3 53.4 48.5 51.2 53.1
QAF-FCMdC 47.6 70.0 88.2 36.9 57.6 88.2

m = 2.2 GARCH-FCMdC 79.7 91.2 87.7 72.5 82.7 87.1
GARCH-FCMdCC 56.5 65.7 69.3 56.9 62.0 70.7
QAF-FCMdC 58.9 81.5 94.9 42.4 69.8 95.2

m = 2.5 GARCH-FCMdC 88.2 93.9 87.7 78.9 88.5 87.5
GARCH-FCMdCC 70.6 82.4 85.2 67.6 75.4 84.4
QAF-FCMdC 59.8 89.5 99.0 37.0 79.0 99.2

Table 4.4: Average percentage of correct classi�cation in Scenario 4.3

Scenario 4.3.A Scenario 4.3.B

Algorithm T = 1000 T = 2000 T = 5000 T = 1000 T = 2000 T = 5000

m = 1.5 GARCH-FCMdC 17.9 18.3 19.3 14.5 18.5 19.4
GARCH-FCMdCC 5.0 13.5 15.0 5.3 11.9 14.1
QAF-FCMdC 12.9 23.8 39.2 10.4 18.7 40.0

m = 2.0 GARCH-FCMdC 39.5 47.1 52.1 33.6 45.6 51.9
GARCH-FCMdCC 4.7 15.9 33.5 4.5 11.5 27.3
QAF-FCMdC 38.9 66.2 84.4 30.1 56.9 84.5

m = 2.2 GARCH-FCMdC 46.0 59.5 62.2 40.9 54.5 64.0
GARCH-FCMdCC 3.6 9.3 32.2 3.3 7.4 22.4
QAF-FCMdC 47.5 77.7 93.9 32.7 70.0 93.8

m = 2.5 GARCH-FCMdC 51.4 76.5 81.6 48.8 70.7 82.7
GARCH-FCMdCC 2.7 2.8 20.2 1.9 3.4 15.7
QAF-FCMdC 43.3 84.9 98.6 29.4 76.2 98.1

ios 4.2.A or 4.2.B), QAF-FCMdC is fairly the best procedure by attaining percentages of

correct classi�cation moving from 88% to 99%, while its competitors produced percentages

always below 88%. Therefore, in spite of the GARCH-based algorithms take advantage of

knowing the underlying parametric dependence structure (also the number of signi�cant

parameters in our simulations), QAF-FCMdC showed a similar behavior when high values

of T were considered, and particularly excellent results (percentages of correct classi�cation

close to 100%) for series of length T = 5000.

This good performance of the proposed fuzzy algorithm is still more noticeable in Sce-

nario 4.3, with GARCH(1,1) models. In fact, Table 4.4 shows that QAF-FCMdC produced
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very similar (slightly lower) results as the ones obtained in Table 4.3, thus exhibiting an in-

teresting robustness to the generating models. On the contrary, the fuzzy algorithms based

on the GARCH metrics were strongly a�ected by the high variability in the estimation

procedure of the GARCH parameters, corresponding to the GARCH-FCMdCC model the

worst behavior. It must be noted that GARCH-FCMdCC requires the additional estima-

tion of the covariance structure between GARCH parameters. The fuzzy approach based on

the distance between quantile autocovariances is free of determining the underlying para-

metric structure and takes advantage of its enormous potential to detect complex types

of dependence. These arguments account for the best results achieved by the proposed

algorithm in this scenario. Only with T = 1000, GARCH-FCMdC seems to outperform

QAF-FCMdC, but here is worthy to point out the importance of the length of the series in

these heteroskedastic scenarios. In fact, the success rates for T = 1000 were substantially

lower than using lengths 2000 and 5000, and always below 50%. Thus it is evident that

larger lengths should be used. In short, although the good bahavior of the QAF-based

distance in clustering of heteroskedastic series was already observed by performing hard

cluster analysis, the results presented in this section also illustrate how the fuzzy nature of

time series presenting features intermediate between di�erent conditionally heteroskedastic

models is well-captured by a fuzzy algorithm based on dQAF .

4.4 Applications

In this section, two study cases considering air quality data and daily returns of stocks are

presented to illustrate the usefulness of the fuzzy C-medoids clustering algorithm based

on quantile autocovariances. In both applications, results from di�erent fuzzy clustering

models are discussed and compared to obtain a valuable insight into the behavior of our

proposal.

4.4.1 Application to air quality data

The �rst study case is related to the non-supervised classi�cation of geographical zones

in terms of their temporal records of air pollutants. Speci�cally, we have considered time

series of daily averages of concentrations of nitrogen dioxide (NO2) and ozone (O3), from

1st November 2006 to 31th December 2009. All data are sourced from the o�cial website

of the Air Quality Monitoring Network of Madrid Community 1.

For monitoring of emission levels, the Community of Madrid, which is an autonomous

1http://gestiona.madrid.org/azul_internet/run/j/AvisosAccion.icm
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community of Spain, has a Network Control Air Quality consisting of a set of 21 �xed

automatic stations and two mobile reference laboratories (a mobile unit and a bus). These

23 stations provide data on the air pollutant concentration along time and are distributed

on 7 homogeneous areas that can be grouped in urban areas (Madrid, Urban North, Urban

South and Henares Corridor) and rural areas (Northern Sierra, Alberche basin and Tajuña

basin. We have used information extracted from 19 of the 23 stations (four stations were

discarded because the database was not complete), namely Alcalá de Henares, Alcobendas,

Torrejón de Ardoz, Arganda del Rey, Rivas Vaciamadrid, Leganés, Fuenlabrada, Móstoles,

Aranjuez, Valdemoro, Majadahonda, Colmenar Viejo, Collado Villalba, Guadalix de la

Sierra, El Atazar, S. Martín de Valdeiglesias, Villa del Prado, Villarejo de Salvanés and

Orusco de Tajuña. Figure 4.1 shows the geographical distribution of the stations forming

the network.

Figure 4.1: Location of the stations forming the Air Quality Monitoring Network of Madrid
Community.

Several studies have revealed serious health e�ects associated with the continuous exposure

to high concentrations of nitrogen dioxide and ozone, and for this reason we have focused

on them. While some works have considered the problem of checking by signi�cant di�er-

ences between the mean levels of these pollutants on di�erent areas of the community (see

e.g. Estévez-Pérez and Vilar, 2013), our concern is to analyze the capability of the fuzzy

clustering approach to identify locations with similar daily changes in levels of NO2 and

O3. Nevertheless, it is important to remark that our motivation is only to illustrate the use-
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fulness of the proposed fuzzy algorithm, without seeking to give any type of environmental

implications.

The 19 time series available are formed by T = 1, 154 records and are non-stationary in

mean, thus we proceeded to transform them taking one regular di�erence. Figures 4.2 and

4.3 show plots of the transformed series for the levels of O3 and NO2, respectively. It is

observed that the variance is not constant over time. There are periods of time in which the

series strongly �uctuate, while in others �uctuation is less marked. On the other hand, it is

reasonable to think that a fuzzy behavior might be present, with time series sharing features

of di�erent and well-de�ned patterns of daily changes of concentrations of NO2 and O3.

According to our simulations results, the proposed fuzzy C-medoids clustering algorithm,

QAF-FCMdC, should lead to a proper fuzzy partition of the stations. Just as in simulations,

distance dQAF was computed by considering one lag (L = 1, with l1 = 1) and a grid of

quantile levels formed by all the combinations (0.05j, 0.05j ′), with j, j ′ ∈ {1, . . . , 19}. For
the purpose of comparison, the AR-FCMdC and GARCH-FCMdC fuzzy algorithms were

also carried out. Given the underlying heteroskedasticity (particularly evident in the NO2

case), the latter is expected to produce better results than the former.

A fuzzy extension of the classical silhouette width criterion was used to determine the

optimal number of clusters. This fuzzy version takes into consideration the membership

degrees matrix and consists in selecting the number of clusters maximizing the so-called

Fuzzy Silhouette Width (Campello and Hruschka, 2006), de�ned by

FSW =

∑n
i=1 (uir − uiv)α si∑n
i=1 (uir − uiv)α

where si is the standard silhouette width for the i-th element, uir and uiv are the �rst

and the second largest elements of the i-th row of the fuzzy partition matrix and α ≥ 0

is a weighting coe�cient. This way, FSW provides a weighted average of the individual

silhouette widths, thus permitting to underweight series belonging to overlapping clusters.

The value α = 1 is commonly considered, and it was also used in our application.

Figure 4.4 shows the values of the standard (crisp) and fuzzy silhouette indexes for a range

of partition sizes using the QAF-FCMdC algorithm. In all cases, the existence of two major

groups is concluded. Focusing on the fuzzy approach, the highest FSW indexes were 0.854

for O3 and 0.773 for NO2, corresponding to partitions of two clusters in both cases. Note

that these high values suggest a strong clustering structure. On the contrary, considering

more than two clusters substantially reduces the values of the FSW indexes, particularly in

the case of NO2. On the other hand, a two-cluster partition is intuitively consistent with a
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Figure 4.2: Daily series of O3 levels transformed by taking one regular di�erence.

natural grouping of the stations according to their location in urban or rural areas. Based

on these arguments we decide to set the number of clusters at C = 2.
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Figure 4.3: Daily series of NO2 levels transformed by taking one regular di�erence.

The 2-cluster solutions for the series of daily changes in levels of O3 using a fuzziness

parameter m = 2 are shown in Table 4.5. For each single series, the shaded cells enhance

the highest membership degrees obtained with each procedure, i.e. the cluster assignments
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Figure 4.4: Crisp and fuzzy silhouette width values for a di�erent number partitions using
QAF�FCMdC.

from a crisp perspective. Stations with both membership degrees within (0.3, 0.7) are fuzzy

allocated between the two clusters and their memberships are shown in bold font.

In essence, the model QAF-FCMdC produces the expected classi�cation by grouping the

series of daily changes in O3 according to the kind of location where they were monitored,

i.e. stations placed in urban (cluster C1) and rural (cluster C2) areas. The group C2

brings together all the stations located in rural areas with memberships always above 0.798,

but also including the stations of Aranjuez, Majadahonda and Colmenar Viejo. Actually,

Aranjuez presents a vague location which might be explained because, despite being in

an urban area, Aranjuez is located far from the rest of stations, just in the boundary

of the Community. Also, in terms of ozone records, Majadahonda is set as a suburban

location (see website of the Air Quality Monitoring Network of Madrid Community), which

might account for its allocation in C2. All the stations in cluster C1 belong to urban areas

presenting very high membership degrees for this cluster.

The results obtained with the models AR-FCMdC and GARCH-FCMdC cannot be mean-

ingfully interpreted, at least in terms of rural and urban locations. While the model

GARCH-FCMdC draws out a solution where just one cluster gathers almost all the se-

ries with memberships very close to one, the model AR-FCMdC identi�es the two areas
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Table 4.5: Membership degrees in clustering of the daily change series in levels of O3 (C = 2
and m = 2.2).

AR-FCMdC GARCH-FCMdC QAF-FCMdC

Station Area C1 C2 C1 C2 C1 C2

Alcalá de Henares Urban 0.740 0.260 0.992 0.008 0.961 0.039
Alcobendas Urban 0.787 0.213 1.000 0.000 0.891 0.109
Torrejón de Ardoz Urban 0.819 0.181 0.973 0.027 0.809 0.191
Arganda del Rey Urban 0.724 0.276 1.000 0.000 0.832 0.168
Rivas Vaciamadrid Urban 0.708 0.292 0.971 0.029 0.893 0.107
Leganés Urban 0.526 0.474 0.993 0.007 0.954 0.046
Fuenlabrada Urban 1.000 0.000 0.985 0.015 1.000 0.000
Móstoles Urban 0.511 0.489 0.998 0.002 0.920 0.080
Aranjuez Urban 0.634 0.366 0.932 0.068 0.356 0.644

Valdemoro Urban 0.791 0.209 1.000 0.000 0.934 0.066
Majadahonda Urban 0.556 0.444 1.000 0.000 0.225 0.775
Colmenar Viejo Urban 0.529 0.471 0.995 0.005 0.000 1.000
Collado Villalba Urban 0.532 0.468 0.995 0.005 0.781 0.219
Guadalix de la Sierra Rural 0.000 1.000 0.000 1.000 0.191 0.809
El Atazar Rural 0.383 0.617 0.549 0.451 0.132 0.868
San Martín de Valdeiglesias Rural 0.299 0.701 0.988 0.012 0.074 0.926
Villa del Pardo Rural 0.312 0.688 0.932 0.068 0.202 0.798
Villarejo de Salvanés Rural 0.449 0.551 0.991 0.009 0.117 0.883
Orusco de Tajuña Rural 0.469 0.531 0.950 0.050 0.112 0.888

but in a very fuzzy manner in most of the series. A simple way to visualize and compare

the 2-cluster solutions obtained with the three models is provided by Figure 4.5, where the

membership degrees for cluster C1 are depicted and the �nal assignment indicated.

The 2-cluster solutions for the series of daily changes in levels of NO2 are shown in Table 4.6

and Figure 4.6. Note that GARCH-FCMdC and QAF-FCMdC lead to a very similar

partition. With both models the distribution of the stations in rural and urban areas is

still more evident than in the case of the ozone records. Among the rural locations, only

Villarejo de Salvanés presents a pattern congruent with the urban locations, exhibiting

the highest membership degree for C1 with both algorithms. Again Majadahonda station

is unexpectedly placed into C2 and the only discrepancy is the classi�cation of Colmenar

Viejo. In contrast, AR-FCMdC again increases the fuzziness of the resulting partition,

which is fairly no congruent with the grouping in urban and rural areas. It is worth noting

that C = 2 is also the value maximizing the FSW index when AR-FCMdC is used, but

in this case FSW = 0.66, substantially lower then the values 0.83 and 0.77 obtained with

GARCH-FCMdC and QAF-FCMdC, respectively.

The main conclusions from this study case can be summarized as follows. Our fuzzy

clustering approach, QAF-FCMdC, led to partitions with a meaningful interpretation for

the two considered pollutants by grouping almost all stations according to their urban
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Figure 4.5: Membership degrees for cluster C1 in clustering of the daily changes in levels of
O3

Table 4.6: Membership degrees in clustering of the daily change series in levels of NO2

(C = 2 and m = 2.2).

AR-FCMdC GARCH-FCMdC QAF-FCMdC

Station Area C1 C2 C1 C2 C1 C2

Alcalá de Henares Urban 0.591 0.409 0.982 0.018 0.799 0.201
Alcobendas Urban 0.512 0.488 0.850 0.150 0.866 0.134
Torrejón de Ardoz Urban 0.480 0.520 0.965 0.035 1.000 0.000
Arganda del Rey Urban 0.598 0.402 0.841 0.159 0.808 0.192
Rivas Vaciamadrid Urban 0.197 0.803 0.828 0.172 0.791 0.209
Leganés Urban 0.840 0.160 1.000 0.000 0.679 0.321

Fuenlabrada Urban 0.872 0.128 1.000 0.000 0.812 0.188
Móstoles Urban 1.000 0.000 0.815 0.185 0.794 0.206
Aranjuez Urban 0.000 1.000 0.894 0.106 0.797 0.203
Valdemoro Urban 0.726 0.274 0.975 0.025 0.828 0.172
Colmenar Viejo Urban 0.778 0.222 0.249 0.751 0.760 0.240
Majadahonda Urban 0.828 0.172 0.063 0.937 0.286 0.714
Collado Villalba Urban 0.840 0.160 0.999 0.001 0.848 0.152
Guadalix de la Sierra Rural 0.737 0.263 0.000 1.000 0.000 1.000
El Atazar Rural 0.303 0.697 0.082 0.918 0.275 0.725
San Martín de Valdeiglesias Rural 0.729 0.271 0.162 0.838 0.141 0.859
Villa del Pardo Rural 0.710 0.290 0.120 0.880 0.218 0.782
Villarejo de Salvanés Rural 0.287 0.713 0.957 0.043 0.823 0.177
Orusco de Tajuña Rural 0.270 0.730 0.171 0.829 0.262 0.738

or rural location. The approach based on GARCH approximations, GARCH-FCMdC,

performed in a similar way for the NO2 series, but produced an unexpected and anomalous

107



4 Fuzzy clustering of time series based on quantile autocovariances
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Figure 4.6: Membership degrees for cluster C1 in clustering of the daily changes in levels of
O3

partition for the ozone records, thus showing less accuracy than QAF-FCMdC. Since the

observed series exhibit heteroskedasticity, the AR-FCMdC approach relies on misspeci�ed

models, which might account for the obtained partitions, with lower quality indexes and

hardly interpretable for the two air pollutants. Lastly, it is worth enhancing that all the

procedures have determined some series showing fuzzy nature, which supports the usefulness

of the fuzzy approach.

4.4.2 Application to daily stocks returns in IBEX-35 index

The second application considers daily returns of stocks included in the IBEX-35, which

groups the thirty-�ve companies with the highest liquidity and trading volume in the Span-

ish stock market. Speci�cally, we manage a database formed by the daily returns of twenty-

four stocks located in the TOP-30 ranking according to the �nance section of the Yahoo

website2. The period of observation of the series spans from 1st January 2008 to 19th

December 2016, thus resulting realizations of length T = 2337. The daily adjusted closing

prices for all the stocks were sourced from the mentioned website and used to obtain the

daily returns by considering the �rst di�erences of their natural logarithms. The time series

are depicted in Figure 4.7.

2https://finance.yahoo.com/
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Figure 4.7: Daily returns of 24 stocks included in the IBEX-35. Sample period: 1st January
2008 to 19th December 2016

Heteroskedasticity is again observed although less pronounced for several stocks. The

largest fuzzy silhouette widths are obtained with a partition in three clusters (C = 3)
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4 Fuzzy clustering of time series based on quantile autocovariances

but with di�erent strength for each model. While QAF-FCMdC drawn out a value FSW

= 0.636, the models AR-FCMdC and GARCH-FCMdC led to lower FSW indexes of 0.424

and 0.293, respectively. Therefore, all the models suggest the existence of three clusters

but QAF-FCMdC indicates in a more conclusive way that a well-de�ned cluster structure

lies behind data. It is worthy noting that the best FSW is reached using m = 1.5 for AR-

FCMdC, while m = 2 is the fuzziness level producing the highest FSW for the GARCH-

and QAF-based models. As in this application we lack of an intuitive idea on the underlying

partition, we decided to corroborate our result by using an alternative index. Speci�cally,

we calculated the Xie-Beni index (Xie and Beni, 1991) which is given by the ratio between

the total variance and the minimum separation between clusters so that the optimal C is

reached when this ratio is minimized. The minimum values of the Xie-Beni index corre-

sponded to C = 3, with values 0.4804, 0.5537 and 0.6890 for QAF-FCMdC, AR-FCMdC

and GARCH-FCMdC, respectively, again concluding that a 3-cluster solution seems the

most adequate and that QAF-FCMdC produces the best-de�ned partition. Based on these

arguments, cluster analysis using the three fuzzy models and setting C = 3 was carried out.

The resulting membership degrees are shown in Table 4.7. As in previous application, the

shaded cells enhance the highest membership degrees with each procedure and the stocks

allocated in a fuzzy way between two or three clusters are indicated with memberships in

bold font.

The 3-cluster solution generated by the QAF-FCMdC model identi�es a large cluster, C1,

gathering together most of the stocks, including the ones of the sectors of Energy and

Materials, Industry and Construction (except for Arcelormittal-MTE), and also the three

banks with the highest capitalization level in the Financial services sector, namely BBVA,

Santander-SAN and Caixabank-CABK. The cluster C3 groups the company Arcelormittal-

MTE together with the smaller banks Banco Popular-POP, Banco Sabadell-SAB and

Bankinter-BKT, although SAB and BKT could be allocated in C1 by exhibiting similar

memberships for both clusters. The cluster C2 groups together two important companies of

the consumer goods industry (Viscofan-VIS and Inditex-ITX), the only insurance company

(Mapfre-MAP), and a technological company related to the travel sector (Amadeus-AMS).

In sum, the fuzzy partition provided by the QAF-FCMdC model seems to be congruent

with features like company size and business area. Nevertheless, our concern is not to

obtain conclusions in �nancial terms such as searching proper model speci�cations or accu-

rate predictions for the daily return series. These targets go beyond the scope of this work.

Our motivation is to illustrate the capability of the proposed fuzzy clustering approach

to identify similar dependence structures. In this sense, a relevant point by treating with

daily returns is to analyze their dispersion, i.e. the underlying volatility patterns. To bring
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Table 4.7: Membership degrees in clustering of the daily returns of 24 stocks included in
the IBEX-35 (C = 3, m = 1.5 for AR�FCMdC and m = 2 for GARCH�FCMdC and
QAF�FCMdC).

AR�FCMdC GARCH�FCMdC QAF�FCMdC

C1 C2 C3 C1 C2 C3 C1 C2 C3

Sector: Energy
Enagás ENG 0.142 0.002 0.856 0.482 0.447 0.071 0.558 0.275 0.167
Endesa ELE 0.996 0.000 0.004 0.038 0.546 0.416 0.684 0.072 0.244
Gas Natural GAS 1.000 0.000 0.000 0.031 0.943 0.026 0.946 0.013 0.041
Iberdrola IBE 0.193 0.023 0.784 0.997 0.002 0.001 0.579 0.052 0.369

Red Eléctrica REE 0.869 0.029 0.102 0.532 0.278 0.190 0.814 0.054 0.132
Sector: Materials, Industry and Construction
Gamesa GAM 0.616 0.020 0.364 0.001 0.003 0.996 0.703 0.079 0.218
Acciona ANA 0.930 0.001 0.069 0.000 0.001 0.999 1.000 0.000 0.000
ACS ACS 1.000 0.000 0.000 1.000 0.000 0.000 0.816 0.020 0.164
Ferrovial FER 0.269 0.003 0.728 0.031 0.324 0.645 0.754 0.095 0.151
FCC FCC 1.000 0.000 0.000 0.821 0.145 0.034 0.821 0.025 0.154
Técnicas Reunidas TRE 0.340 0.230 0.430 0.014 0.105 0.881 0.710 0.147 0.143
Arcelormittal MTS 0.000 1.000 0.000 0.001 0.003 0.996 0.084 0.020 0.896
Sector: Consumer goods
Viscofan VIS 0.204 0.049 0.747 0.027 0.095 0.878 0.087 0.849 0.064
Inditex ITX 0.239 0.052 0.709 0.083 0.210 0.707 0.000 1.000 0.000
Grifols GRF 0.429 0.022 0.549 0.008 0.054 0.938 0.539 0.070 0.391

Sector: Financial services
BBVA BBVA 0.876 0.009 0.115 0.063 0.895 0.042 0.860 0.017 0.123
Santander SAN 0.863 0.002 0.135 0.000 1.000 0.000 0.801 0.076 0.123
Caixabank CABK 0.052 0.002 0.946 0.000 0.000 1.000 0.860 0.037 0.103
Banco Sabadell SAB 0.963 0.007 0.030 0.007 0.030 0.963 0.316 0.168 0.516

Banco Popular POP 0.999 0.000 0.001 0.001 0.997 0.002 0.000 0.000 1.000
Bankinter BKT 0.829 0.004 0.167 0.024 0.867 0.109 0.501 0.040 0.459

Sector: Insurance
Mapfre MAP 0.096 0.014 0.890 0.002 0.013 0.985 0.118 0.821 0.061
Sector: Technology and Telecommunications
Telefónica TEF 0.325 0.054 0.621 0.970 0.023 0.007 0.955 0.006 0.039
Amadeus AMS 0.000 0.000 1.000 0.038 0.597 0.365 0.185 0.708 0.107

insight into this issue, nonparametric approximations of the variance between returns were

obtained. The estimated volatility curves grouped according the three clusters identi�ed

with the QAF-FCMdC model are depicted in Figure 4.8.

Note that all the curves in Figure 4.8 (a) present a very similar �uctuation pattern, with

some bumps of di�erent size in similar periods of time. The curves in Figure 4.8 (b)

corresponding to the cluster C2 are characterized by a �at pro�le throughout the second half

of the sample period. In fact, only Mapfre-MAP showed a few periods with moderate rise in

the level of volatility. The cluster C3 brings together stocks exhibiting a marked pickup in

volatility in the last year, particularly Arcelormittal-MTE and Banco Popular-POP. This

e�ect is less evident for Banco Sabadell-SAB, which could account for its vague allocation
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Figure 4.8: Nonparametric estimators of the volatility for the daily returns of the 24 ana-
lyzed stocks grouped according to the cluster solution provided by the QAF�FCMdC model:
C1 (a), C2 (b) and C3 (c)

in this cluster (with a membership of 0.516). It is worthy noting that Arcelormittal-MTE

presented a sharp rising of volatility during the �rst year and a half of the sample period,

fairly above the rest of the analyzed stocks. This signi�cant behavior might determine the
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atypical character of this time series. Overall, Figure 4.8 allows us to describe representative

volatility patterns for each of the clusters determined by the QAF-FCMdC model.

The AR-FCMdC model led to a reasonable cluster solution although a bit less intuitive than

the one obtained with QAF-FCMdC. For instance, it is unexpected that the companies

Enagás-ENG, Iberdrola-IBE and Ferrovial-FER are separated from the rest of companies

belonging to the same market sectors. Also, according to the volatility pro�les showed in

Figures 4.8 (a) and (b) for the banks, it seems inappropriate to locate all of them together

at the same cluster, particularly the Banco Popular-POP. These arguments support the

better clustering quality indexes obtained by the QAF-FCMdC model. Lastly, the GARCH-

FCMdC model produced a cluster partition hardly interpretable and substantially di�erent

from those obtained with the two other procedures. As in the case of the ozone records

in the �rst application, the GARCH approximations have not been accurate enough to

properly discriminate between the generating models.

4.5 Robust fuzzy clustering based on quantile autocovariances

Following the literature on fuzzy clustering, several techniques have been introduced to

increase robustness of algorithms for clustering of object data (see for example Dave, 1991;

Wu and Yang, 2002; D'Urso et al., 2013b, 2015b, 2017).

To tackle the problem of dealing with outliers, we propose three di�erent types of robusti-

�cation of the QAF-FCMdC model, namely:

� QAF-based Exponential Fuzzy C-Medoids Clustering model (QAF-FCMdC-Exp)

� QAF-based Fuzzy C-Medoids Clustering with Noise Cluster model (QAF-FCMdC-

NC)

� QAF-based Trimmed Fuzzy C-Medoids Clustering model (QAF-TrFCMdC)

Each model face the presence of outliers in a di�erent way. The QAF-FCMdC-Exp neu-

tralizes the e�ect of the outliers by using a robust distance measure, the QAF-FCMdC-NC

achieves its robustness by assigning potential outliers into an arti�cial cluster (the so-called

noise cluster), and the QAF-TrFCMdC model is aimed at identifying a certain fraction of

the furthest time series and trimmed them away from the classi�cation process.

Just as in Section 4.2, let S =
{
XXX(1), . . . ,XXX(n)

}
be a set of n observed time series subjected

to clustering. Denote by ΓΓΓ(i) the vector of quantile autocovariances estimated from the i-th
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observed series, for 1 ≤ i ≤ n. The distance between XXX(i) and XXX(j) is characterized in

terms of the distance between ΓΓΓ(i) and ΓΓΓ(j), for i, j ∈ {1, . . . , n}.

4.5.1 QAF-based Exponential Fuzzy C-Medoids Clustering model

Wu and Yang (2002) observed that the solution of the objective function in fuzzy clustering

based on the Euclidean metric can be written as a weighted sum of the observed data with

weights all equal to 1 regardless of the level of variability in the data set. This way, the

result could be strongly in�uenced by the presence of outliers. To overcome this limitation,

they propose to use a more robust metric, the so-called �exponential distance�. This metric

is aimed at giving di�erent weights to each data object depending on whether it is or not

considered as outlier. In essence, a small weight is assigned to outliers, while a large weight

is given to data objects laying close to the bulk of the data set. This way a more robust

metric is obtained. Note that this idea also applies in a time series context when the

considered distance is de�ned by the Euclidean distance between estimated feature vectors.

In particular, the exponential distance based on the estimated quantile autocovariances is

de�ned by

di,i′ =

[
1− exp

{
−β
∥∥∥ΓΓΓ(i) −ΓΓΓ(i′)

∥∥∥2
}] 1

2

, (4.9)

where β is a positive constant.

To obtain a suitable value of the parameter β, Wu and Yang (2002) suggest to take the

inverse of the variability in the data set. This way, a large value of β is obtained in presence

of low dispersion, which means a lower weight for potential outliers (i.e. distant objects)

than in the case of high dispersion.

Considering the exponential distance de�ned in (4.9), the QAF-based Fuzzy C-Medoids

Clustering with Exponential Distance (QAF-FCMdC-Exp) is based on the new objective

function de�ned by
minΓ̃,Ω

n∑
i=1

C∑
c=1

umic

[
1− exp

{
−β
∥∥∥ΓΓΓ(i) − Γ̃̃Γ̃Γ(c)

∥∥∥2
}]

subject to:
C∑
c=1

uic = 1 and uic ≥ 0,

(4.10)

where m > 1 is a weighting exponent that controls the fuzziness of the obtained partition

and uic indicates the membership degree of the i-th unit in the c-th cluster.

In this case, following the results in Wu and Yang (2002), the iterative solutions for the
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membership degrees are given by:

uic =


C∑
c′=1

 1− exp

{
−β
∥∥∥ΓΓΓ(i) − Γ̃̃Γ̃Γ(c)

∥∥∥2
}

1− exp

{
−β
∥∥∥ΓΓΓ(i) − Γ̃̃Γ̃Γ(c′)

∥∥∥2
}


1
m−1


−1

, for i = 1, . . . , n and c = 1, . . . , C.

(4.11)

As for the selection of the β parameter, the idea of adopting the inverse of the variability

is taken into account so that β is calculated by

β =

[
1

n

n∑
i=1

∥∥∥ΓΓΓ(i) − Γ̃̃Γ̃Γ
(c)
2

∥∥∥2
]−1

, (4.12)

where Γ̃̃Γ̃Γ(c) corresponds to the index c satisfying c = argmin
1≤i′≤n

n∑
i′′=1

∥∥∥ΓΓΓ(i′′) −ΓΓΓ(i′)
∥∥∥2
.

Based on the membership degrees obtained from (4.11), the C series minimizing (4.10) are

selected as new medoids. This two-step procedure is iterated until there is no change in

the medoids or a maximum number of iterations is achieved.

Just as in the standard QAF-FCMdC algorithm, the initial set of medoids is selected using a

hard PAM algorithm based on the QAF dissimilarity. This criterion is applied to all robust

fuzzy algorithms considered in this chapter. The QAF-based Exponential Fuzzy C-Medoids

Clustering model (QAF-FCMdC-Exp) is implemented as outlined in Algorithm 2.

Algorithm 2 The QAF-based Exponential Fuzzy C-Medoids Clustering model (QAF-
FCMdC-Exp)
1: Fix C, m and max.iter
2: Compute β using 4.12
3: Set iter = 0
4: Pick the initial medoids Γ̃ =

{
Γ̃

(1)
, . . . , Γ̃

(C)
}

5: repeat

6: Set Γ̃OLD = Γ̃ {Store the current medoids}
7: Compute uic, i = 1, . . . , n, c = 1, . . . , C, using (4.11)
8: For each c ∈ {1, . . . , C}, determine the index jc ∈ {1, . . . , n} satisfying:

jc = argmin
1≤j≤n

n∑
i=1

umic

[
1− exp

{
−β
∥∥∥ΓΓΓ(i) −ΓΓΓ(j)

∥∥∥2
}]

9: return Γ̃
(c)

= Γ(jc), for c = 1, . . . , C {Update the medoids}
10: iter ← iter + 1
11: until Γ̃OLD = Γ̃ or iter = max.iter
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4 Fuzzy clustering of time series based on quantile autocovariances

In short, the QAF-FCMdC-Exp model does not discriminate the time series outliers. Its

aim is to smooth the e�ect of these anomalous series by adjusting their in�uence with

proper weights. The result is that the memberships of the anomalous are similarly dis-

tributed across the clusters but the true clustering structure is not seriously a�ected by

their presence.

4.5.2 QAF-based Fuzzy C-Medoids Clustering with Noise Cluster model

The proposed noise fuzzy clustering algorithm is a version of the one proposed by Dave

(1991) and Dave and Sen (1997) to overcome sensitivity of the classical Fuzzy C- Medoids

algorithms in the presence of noisy data, based on an idea introduced by Ohashi (1984).

The key idea is to neutralize the negative e�ect of the outliers by classifying them in an

arti�cial cluster (the noise cluster). The noise cluster is characterized by a virtual prototype

that has a constant and su�ciently large distance (�noise distance�) from all the remaining

series. This way, the anomalous series are separated and located into the noise cluster and

the true cluster structure is not altered in the classi�cation process. A single time series

belongs to a real cluster if its distance from a medoid is lower than the noise distance, let

us say δ, otherwise, the time series belongs to the noise cluster.

The QAF-based Fuzzy C-Medoids Clustering with Noise Cluster (QAF-FCMdC-NC) can

be formalized as follows:
minΓ̃,Ω

n∑
i=1

C−1∑
c=1

umic

∥∥∥ΓΓΓ(i) − Γ̃̃Γ̃Γ(c)
∥∥∥2

+

n∑
i=1

δ2

(
1−

C−1∑
c=1

uic

)m

subject to:
C∑
c=1

uic = 1 and uic ≥ 0.

(4.13)

where uic are the membership degrees, m > 1 is the fuzziness parameter and δ is the noise

distance, to be set in advance. Obviously, in the prior formulation, the C-th cluster is the

noise cluster and the �rst C − 1 clusters identify the real underlying clusters.

The iterative solutions for the membership degrees are given by:

uic =

 C∑
c′=1


∥∥∥Γ(i) − Γ̃

(c)
∥∥∥2

∥∥∥Γ(i) − Γ̃
(c′)
∥∥∥2


1

m−1

+


∥∥∥Γ(i) − Γ̃

(c)
∥∥∥2

δ2


1

m−1


−1

, (4.14)

for i = 1, . . . , n and c = 1, . . . , C.
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Indeed, an important point is to select a suitable value for the noise distance δ. If δ is

too small, a large portion of the data set will receive a high degree of membership to the

noise cluster, identifying as atypical series that actually are not. Otherwise, if the value

of δ is too large, then none of the time series is going to be placed into the noise cluster.

Therefore, a suitable threshold is required and in fact the procedure is very sensitive to this

choice. Unfortunately, the proper selection of this parameter is still an open problem in

the literature. Following the recommendation by D'Urso et al. (2013b), an expression on δ

can be obtained by doing

δ2 = λ

[
1

n (C − 1)

n∑
i=1

C−1∑
c=1

∥∥∥Γ(i) − Γ̃
(c)
∥∥∥2
]

(4.15)

where λ is a scale multiplier to be selected depending on the nature of data.

For the selection of the value λ, Cimino et al. (2005) suggest to proceed as follows. First,

the fuzzy clustering is run with decreasing values of λ on a pre�xed grid. The percentage

of series located into the noise cluster for each value of λ is recorded. By the de�nition of

the noise distance in (4.15), these percentages increase when λ decreases. Then, the value

selected for λ is the one where an abrupt change of slope (elbow) is observed.

Algorithm 3 QAF-based Fuzzy C-Medoids Clustering with Noise Cluster model (QAF-
FCMdC-NC)
1: Fix C − 1, m and max.iter
2: Set iter = 0
3: Pick the initial medoids Γ̃ =

{
Γ̃

(1)
, . . . , Γ̃

(C−1)
}

4: repeat

5: Set Γ̃OLD = Γ̃ {Store the current medoids}
6: Compute δ using 4.15.
7: Compute uic, i = 1, . . . , n, c = 1, . . . , C, using (4.14)
8: For each c ∈ {1, . . . , C − 1}, determine the index jc ∈ {1, . . . n} satisfying:

jc = argmin
1≤j≤n

n∑
i=1

umic

∥∥∥ΓΓΓ(i) − Γ̃̃Γ̃Γ(j)
∥∥∥2

9: return Γ̃
(c)

= Γ(jc), for c = 1, . . . , C − 1 {Update the medoids}
10: iter ← iter + 1
11: until Γ̃OLD = Γ̃ or iter = max.iter

As usual, the algorithm works in an iterative approach. Based on the membership degrees

obtained from (4.14), the C series minimizing (4.13) are selected as new medoids. This two-

step procedure is iterated until there is no change in the medoids or a maximum number

of iterations is achieved.

The QAF-based Fuzzy C-Medoids Clustering with Noise Cluster model (QAF-FCMdC-NC)
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4 Fuzzy clustering of time series based on quantile autocovariances

is implemented as outlined in Algorithm 3.

4.5.3 QAF-based Trimmed Fuzzy C-Medoids Clustering model

The last robust version of the QAF-based Fuzzy C-Medoids Clustering model is introduced

in this section, namely the QAF-based Trimmed Fuzzy C-Medoids Clustering model (QAF-

TrFCMdC). In this case the model achieves its robustness by trimming away a proportion

of time series that are more distant from the medoids representing the cluster partition.

Given a trimming size α, which ranges between 0 and 1, the QAF-TrFCMdC can be for-

malized as the following minimization problem:
minY,Ω

H(α)∑
i=1

C∑
c=1

umic

∥∥∥Γ(i) − Γ̃
(c)
∥∥∥2

subject to:
C∑
c=1

uic = 1 and uic ≥ 0.

(4.16)

where uic is the membership degree of the i-th time series to the c-th cluster, m > 1 is

the fuzziness parameter and Y ranges on all the subsets of the set of the p sequences of

estimated quantile autocovariances of size H(α) = [p(1− α)]. Notice that if α = 0, then

none of the series is trimmed away from the process and the standard non-robust QAF-

FCMdC version of the procedure is obtained. All non-trimmed time series are classi�ed

according to the QAF-FCMdC model.

Just as in the QAF-FCMdC model, the local optimal solution for the estimation of the

membership degrees is:

uic =

 C∑
c′=1


∥∥∥Γ(i) − Γ̃

(c)
∥∥∥2

∥∥∥Γ(i) − Γ̃
(c′)
∥∥∥2


1

m−1


−1

(4.17)

where i ranges in the subset of the non-trimmed series and c = 1, . . . , C.

To determine the trimming ratio α, i.e. the fraction of time series to be trimmed, the

following approach is considered. By replacing the expression of the uic (4.2) into (4.1), we

obtain:

p∑
i=1

[
C∑
c=1

(∥∥∥ΓΓΓ(i) − Γ̃̃Γ̃Γ(c)
∥∥∥2
)1/(1−m)

]1−m

=

p∑
i=1

hi (4.18)
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where

hi =

[
C∑
c=1

(∥∥∥ΓΓΓ(i) − Γ̃̃Γ̃Γ(c)
∥∥∥2

2

)1/(1−m)
]1−m

. (4.19)

The value hi provides the distance from each series to all the medoids. Therefore, based

on these values hi, it is feasible to identify the subset Y by selecting the H(α) time series

closest to the medoids. The value of H(α) < p is chosen depending on how many time

series we would like to eliminate in the clustering process.

An unsuitable selection of the trimming ratio will result in an overestimation of the number

of outliers. In practice, the choice of α is carried out by minimizing a quality clustering

index over a grid of possible values. The Xie-Beni index (Xie and Beni, 1991) or the Kwon

index (Kwon, 1998) are frequently used.

Based on the membership degrees obtained from (4.17), the C series minimizing (4.16) are

selected as new medoids. A new two-step procedure is iterated until there is no change in

the medoids or a maximum number of iterations is achieved.

The QAF-based Trimmed Fuzzy C-Medoids Clustering model (QAF-TrFCMdC) is imple-

mented as outlined in Algorithm 4.

Algorithm 4 QAF�based Trimmed Fuzzy C-Medoids Clustering model (QAF�TrFCMdC)

1: Fix C, m, α and max.iter
2: Set iter = 0
3: Pick the initial medoids Γ̃ =

{
Γ̃

(1)
, . . . , Γ̃

(C)
}

4: repeat

5: Identify the subset Y made of the H(α) = [p(1− α)] series closest to the medoids
6: Set Γ̃OLD = Γ̃ {Store the current medoids}
7: Compute uic, i = 1, . . . , n, c = 1, . . . , C, using (4.17)
8: For each c ∈ {1, . . . , C}, determine the index jc ∈ {1, . . . , n} satisfying:

jc = argmin
1≤j≤p

H(α)∑
i=1

umic

∥∥∥Γ(i) − Γ(j)
∥∥∥2

9: return Γ̃
(c)

= Γ(jc), for c = 1, . . . , C {Update the medoids}
10: iter ← iter + 1
11: until Γ̃OLD = Γ̃ or iter = max.iter
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4 Fuzzy clustering of time series based on quantile autocovariances

4.6 Assessing the behavior of the robust versions of the QAF�

FCMdC model: A simulation study

This section reports some results from a broad simulation study conducted to evaluate the

clustering performance and accuracy of the proposed methods compared with standard pro-

cedures and other robust models based on di�erent metrics. To gain insight into robustness

to the generating models, simulation scenarios considering di�erent time series setups were

recreated, namely scenarios involving linear, non-linear and conditionally heteroskedastic

models. At each of these setups, we start with a base scenario formed by two well-separated

clusters C1 and C2 including four time series each, and then the base scenario is successively

contaminated with the presence of one and two outlier time series (O1 and O2). The speci�c

scenarios and the generation schemes for each scenario are described below.

Clustering of linear models

L.1 Four time series simulated from each of the AR(1) model Xt = 0.5Xt−1 + εt (cluster

C1) and the MA(1) model Xt = εt − 0.5εt−1 (cluster C2).

L.2 The base scenario L.1 plus one outlier time series O1 simulated from a Gaussian white

noise process.

L.3 The scenario L.2 and an additional outlier time series O2 simulated from the ARMA(1,1)

model Xt = −0.9Xt−1 + εt + 0.3εt−1.

Clustering of non�linear models

NL.1 Four time series simulated from an exponential autoregressive model of the form

Xt =
(
0.3− 10 exp(−X2

t−1)
)
Xt−1 + εt (cluster C1),

and four time series simulated from the bilinear model given by

Xt = 0.6Xt−1 − 0.8Xt−2 + εt + 0.5εt−1 + 0.8εt−1Xt−1 (cluster C2).

NL.2 The base scenario NL.1 plus one outlier time series O1, which consisted of one real-

ization from the non�linear autoregressive model given by

Xt = 0.3|Xt−1|(3 + |Xt−1|)−1 + εt.
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NL.3 The scenario NL.2 plus an additional outlier time series O2 generated from the non�

linear moving average model given by

Xt = −0.1εt−1 + 0.3ε2
t−1 + εt.

Clustering of conditional heteroskedastic models

CH.1 A base scenario formed by two clusters with four time series each generated from

ARCH processes Xt = σtεt, where σ2
t = 0.1 +φX2

t−1 with φ = 0.05 for cluster C1 and

φ = 0.95 for cluster C2.

CH.2 The base scenario CH.1 plus one outlier time series O1 simulated from an exponential

GARCH model where the conditional variance is modeled by

ln(σ2
t ) = 0.1 + 0.3εt−1 + 0.7 [|εt−1| − E(|εt−1|)] .

CH.3 The scenario CH.2 plus a second outlier time series O2 simulated from a GJR�

GARCH model of the form

σ2
t = 0.1 + [0.1 + 0.6 I (Xt−1 < 0)]X2

t−1 + 0.1σ2
t−1.

In all cases, the error process εt consisted of iid variables following a zero-mean Gaussian

distribution with unit variance. To bring insight into the shapes of the true quantile au-

tocovariance functions for the examined models, plots of large sample approximations to

these functions were obtained. Speci�cally, one hundred series of size 1000 were generated

from each model and the corresponding sample quantile autocovariances averaged over the

100 replicates. For each τ ∈ {0.1, 0.5, 0.9}, plots of the points {γ̂ (τ, 0.05 i) , i = 1, . . . , 19}
joined by lines are shown in Figure 4.9.

Plots in Figure 4.9 illustrate the capability of the quantile autocovariances to discriminate

between the underlying processes. For the linear and non-linear scenarios (Figures 4.9(a)

and (b), respectively), the theoretical patterns characterizing clusters and outliers exhibit

very di�erent curves of quantile autocovariances. As far as the heteroskedastic scenario

(Figure 4.9(c)), discrimination between clusters and outliers is also evident if a joint assess-

ment of the plots over the three quantiles is carried out.

Another graphical way to visualize both the spatial structure of the generating models and

the separability between groups is to perform a multidimensional scaling (MDS) based on

the pairwise QAF-dissimilarity matrix. For each scenario, 50 and 20 time series were gen-

erated from each of the models de�ning the clusters and the outlier processes, respectively.
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Figure 4.9: Large sample approximation of the quantile autocovariances for the models in
the linear (a), non�linear (b) and heteroskedastic (c) scenarios.

The reason to generate 40 outliers was simply to examine the variability of these realiza-

tions. Then, a two-dimensional scaling based on these realizations was carried out and the

corresponding coordinate matrices are displayed in Figure 4.10. Note that two di�erent

lengths of series were considered, namely T = 150 and T = 250 for the linear and non�

linear models, and T = 1500 and T = 2500 for the case of conditionally heteroskedastic
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series. As already mentioned, larger realizations are necessary with heteroskedastic models

in order to estimate the quantile autocovariances with higher accuracy. Indeed, this lim-

itation also a�ects other metrics considered in this setup. For instance, estimates for the

ARCH/GARCH coe�cients are required to measure discrepancy between �tted models,

and poor clustering results are obtained if small sample sizes are used.

The spatial con�gurations of the MDS coordinates in Figure 4.10 show that the series form-

ing the clusters C1 (red) and C2 (black) are grouped into two compact and well-separated

clusters, while the outlier time series O1 (green) and O2 (blue) tend to be placed at an

intermediate location between the clusters, except for the linear scenario where the second

outlier, O2, is situated closer to cluster C2. Note that the non-linear models selected to gen-

erate outlier realizations produce overlapping clusters, while the linear and heteroskedastic

models lead to separated groups, although also reasonably equidistant from C1 and C2 in

the heteroskedastic scenarios. In short, Figure 4.10 reveals that the QAF metric should

provide a useful approach to discriminate between the considered clusters and to detect the

outlier time series. As expected, by increasing the length of the time series the gap between

groups is more pronounced and, therefore, it will be easier to discriminate between them.

To assess the e�ectiveness of the proposed approaches in presence of outliers, each simu-

lated dataset was subjected to clustering using the QAF-based fuzzy C-medoids cluster-

ing model (QAF-FCMdC) and the robust versions QAF-FCMdC-Exp, QAF-FCMdC-NC

and QAF-TrFCMdC. The performance of the QAF metric was also examined by compar-

ison with fuzzy C-medoids algorithms using other distances between �tted models. For

the scenarios including ARMA models, we consider the AR distance introduced by Pic-

colo (Piccolo, 1990), which computes the Euclidean distance between estimated coe�cients

of truncated AR(∞) representations. This way, the fuzzy C-medoids clustering model

based on the AR metric, AR-FCMdC (D'Urso et al., 2013c), and the corresponding robust

versions AR-FCMdC-Exp (D'Urso et al., 2015b), AR-FCMdC-NC (D'Urso et al., 2013b)

and AR-TrFCMdC (D'Urso et al., 2017) were carried out in Scenarios L.1, L.2 and L.3.

Analogously, a metric based on the autoregressive representations of GARCH(p,q) processes

was employed with the heteroskedastic models. More precisely, a GARCH(p,q) process sat-

is�es Xt = σtεt, where the innovations εt are iid variables and the squared conditional

variance σ2
t follows an ARMA(p,q) model with parameters (δ, α1, . . . , αp, β1, . . . , βq). It can

be shown that

X2
t = δ +

p?∑
i=1

(αi + βi)X
2
t−i +

q∑
j=1

βjηt−j + ηt, (4.20)

with p? = max(p, q), αi = 0 for i > p, βi = 0 for i > q, and ηt = X2
t −σ2

t a zero-mean error

uncorrelated with the past. Equation (4.20) establishes an ARMA(p?,q) representation for
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Figure 4.10: Two-dimensional scaling con�gurations based on the QAF distance from the
simulated linear (a), non�linear (b) and heteroskedastic (c) models.
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X2
t , which can be approximated by an AR(∞) structure with autoregressive coe�cients πGu

given by

πGu = (αu + βu) +

min(q,u)∑
j=1

βjπ
G
u−j

where πG0 = −1, αu = 0 for u > p, and βu = 0 for u > q. At this point, the GARCH

distance is de�ned by the Euclidean distance between estimators of these new autoregressive

coe�cients. Based on the GARCH distance, the counterpart fuzzy algorithms GARCH-

FCMdC (D'Urso et al., 2013a), GARCH-FCMdC-Exp, GARCH-FCMdC-NC and GARCH-

TrFCMdC were carried out in the Scenarios CH.1, CH.2 and CH.3. In sum, we examined the

performance of competitors using tailor-made distances for the lineal and heteroskedastic

scenarios. Unlike the QAF-based models, it is expected that these model-based approaches

get worse in case of model misspeci�cation. However, their use in proper scenarios provide

us valuable insight into the robustness of the QAF distance against the generating processes.

According to our clustering aim, the performance and accuracy of each algorithm is eval-

uated in terms of the percentage of times in which the series generated from the same

process are grouped together in the same cluster, with membership degrees close to one for

that cluster. Robustness in presence of outliers is examined by analysing the e�ect of the

anomalous series on the membership degrees in the �nal partition, and also by reporting the

percentage of times that the outliers are identi�ed when the noise cluster and the trimmed

models are used.

The number of clusters was set at C = 2. For each of the nine scenarios, 10 sets of 100 sim-

ulations were carried out and subjected to fuzzy clustering with the described algorithms.

For each of these 100 trials, the percentage of times that all the series were correctly clas-

si�ed was computed, and then the average percentage of correct classi�cation over the 10

sets was taken as measure of clustering accuracy of the algorithm.

Due to deal with fuzzy models, it was necessary to specify cut-o� values to decide when

a speci�c realization is assigned to a particular cluster. In the baseline scenarios, with no

anomalous series, the i-th time series is assigned to the c-th cluster if its fuzzy membership

degree is uic > 0.6. In the scenarios with data contaminated with outliers, the anomalous

series were identi�ed following di�erent criteria according to the employed model. By using

the noise cluster models, an outlier is considered to be correctly classi�ed when it is assigned

to the noise cluster, i.e. if uicNC > 0.6, with cNC denoting the index of the noise cluster. By

performing the standard fuzzy algorithms and the robust versions based on the exponential

metric, we assume that the algorithm correctly handles the outliers when their membership

degrees are reasonably similar for the two clusters, speci�cally both of them belonging to
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4 Fuzzy clustering of time series based on quantile autocovariances

the (0.3, 0.7) interval. Lastly, in the case of the trimmed fuzzy, we checked whether the

true outliers are trimmed units in the process. It is worthy remarking that these criteria

and the selected cut-o� values are compatible with the recommendations suggested in the

literature ((see e.g. D'Urso et al., 2013b, 2015b).

In our experiments, three quantiles of levels 0.1, 0.5 and 0.9 and only one lag (L = 1, with

l1 = 1) were considered to compute the fuzzy algorithms based on the QAF dissimilarity.

Certainly, increasing the number of quantiles does not mean an important cost in terms of

computing time due to the computational e�ciency of the QAF metric. Nevertheless, it

was observed that three quantiles were enough to provide satisfactory results. To compute

the AR and the GARCH distances, the order k of the truncated AR(∞) approximations

was determined by the AIC.

In all scenarios, we perform the fuzzy clustering models for several values of the fuzziness

parameter m, which has a great in�uence in the clustering results. While small values of

m, close to one, result in partitions with a low level of fuzziness that is with membership

degrees close to 1 and 0, large values of m increase the amount of overlapping and the

membership degrees are more homogeneously spread across the clusters. Using m = 1.5

or m = 2 are two popular choices in the literature but, to our knowledge, a theoretically

justi�able optimality criterion to select m has not been provided yet. In our experience,

high values of m, let us say m ≥ 2, result in a poor clustering behavior when dealing with

the noise cluster based algorithms (this point is discussed later). Based on the previous

considerations, we decided to use the values m = 1.3, 1.5 and 2.

As already mentioned, suitable choices of the parameters λ and β are also essential to reach

satisfactory results. In fact, it was observed that the optimal selection of these parameters

clearly depends on the value considered for m. Therefore, we proceeded to execute our

simulations over a range of equally spaced values of λ and β, and the parameters retained

were the ones maximizing the percentage of correct classi�cation for each m. All the results

reported hereafter correspond to this optimal selection of inputs for the algorithms. This

way, we intend to perform fair comparisons, free of the e�ect of an inappropriate selection

of the parameters.

The average percentages of correct classi�cation obtained with the di�erent models in the

linear scenarios are shown in Table 4.8.

As expected, the standard algorithms show a very good behavior in Scenario L.1 without

outliers. The two clusters are well-separated and both AR and QAF metrics are able to

correctly classify all the series. Also the robust versions FCMdC-Exp and FCMdC-NC work

�ne in this setup. Adding outlier times series fairly has a disruptive e�ect on the results,
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Table 4.8: Average percentages of correct classi�cation for the simulated linear scenarios

Scenario L.1: no outliers Scenario L.2: 1 outlier Scenario L.3: 2 outliers

Model m = 1.3 m = 1.5 m = 2 m = 1.3 m = 1.5 m = 2 m = 1.3 m = 1.5 m = 2

T = 150 AR�based

AR-FCMdC 100.0 100.0 100.0 20.7 37.4 77.4 0.0 0.0 0.0

AR-FCMdC-Exp 100.0 100.0 99.7 76.2 81.4 88.7 58.2 61.2 68.0

AR-FCMdC-NC 100.0 100.0 99.5 46.6 35.0 7.4 32.5 23.9 4.9

AR-TrFCMdC � � � 68.5 66.0 54.5 57.1 55.4 52.0

QAF-based

QAF-FCMdC 100.0 100.0 100.0 14.4 28.3 58.3 0.0 0.0 0.0

QAF-FCMdC-Exp 100.0 100.0 100.0 86.5 85.7 90.3 77.3 79.0 84.0

QAF-FCMdC-NC 100.0 100.0 99.9 67.7 56.7 12.7 55.6 45.7 9.8

QAF-TrFCMdC � � � 88.7 89.0 86.6 84.4 83.9 80.9

T = 250 AR�based

AR-FCMdC 100.0 100.0 100.0 21.8 42.7 81.4 0.0 0.0 0.0

AR-FCMdC-Exp 100.0 100.0 100.0 99.7 99.7 99.9 83.5 86.4 89.3

AR-FCMdC-NC 100.0 100.0 100.0 98.3 97.0 84.8 61.9 51.7 18.2

AR-TrFCMdC � � � 99.3 99.3 99.8 84.7 85.0 81.7

QAF-based

QAF-FCMdC 100.0 100.0 100.0 20.9 38.8 71.1 0.0 0.0 0.0

QAF-FCMdC-Exp 100.0 100.0 100.0 96.9 97.2 97.9 93.2 93.4 94.9

QAF-FCMdC-NC 100.0 100.0 100.0 94.7 92.5 65.1 82.5 77.4 42.0

QAF-TrFCMdC � � � 99.2 99.5 99.6 96.4 96.6 96.9

which is clearly more pronounced with two outliers. In particular, AR-FCMdC and QAF-

FCMdC present unsatisfactory success percentages for the three values of m, specially

in Scenario L.3 were they failed always at correctly identify both outliers. Actually the

non-anomalous series are always well-classi�ed and the failures are caused by the outliers,

which are seldom identi�ed. For this reason the best results are reached for the highest

value of m, since high values for m imply softer boundaries between clusters, and hence

the memberships assigned to the outliers are closer to 0.5. To illustrate these assertions,

we have randomly selected one set of 100 trials from the Scenario L.3 and calculated the

means and standard deviations of the membership degrees form = 2 and T = 250 (the most

favorable scenario). The results are displayed in Table 4.9. It is observed that the eight

non-atypical series are always well-grouped. O1 present average memberships (highlighted

in magenta) very close to the cut-o� values (0.3 and 0.7) and standard deviations large

enough to account for a non-negligible number of failures, while O2 is always assigned to

cluster C2. Smaller values of m led to average memberships higher (lower) than 0.7 (0.3),

thus generating worse results.

Regardless of the considered distance, the robust versions based on the exponential metric

and the trimmed approach substantially outperform the standard models. With one outlier
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4 Fuzzy clustering of time series based on quantile autocovariances

Table 4.9: Mean and standard deviation (in brackets) of membership degrees computed
from one randomly selected set of 100 trials in Scenario L.3, with T = 250 and m = 2.

QAF-FCMdC QAF-FCMdC-Exp QAF-FCMdC-NC

C1 C2 C1 C2 C1 C2 NC

X1 0.982 0.018 0.882 0.118 0.813 0.012 0.175
(.015) (.015) (.089) (.089) (.147) (.009) (.138)

X2 0.981 0.019 0.877 0.123 0.796 0.013 0.190
(.021) (.021) (.148) (.148) (.154) (.012) (.142)

X3 0.982 0.018 0.866 0.134 0.819 0.012 0.169
(.018) (.018) (.147) (.147) (.142) (.010) (.133)

X4 0.981 0.019 0.866 0.134 0.784 0.014 0.202
(.018) (.018) (.142) (.142) (.158) (.012) (.147)

X5 0.024 0.976 0.127 0.873 0.014 0.802 0.185
(.025) (.025) (.159) (.159) (.012) (.153) (.142)

X6 0.024 0.976 0.125 0.875 0.013 0.812 0.175
(.022) (.022) (.130) (.130) (.010) (.133) (.123)

X7 0.020 0.980 0.127 0.873 0.011 0.837 0.152
(.022) (.022) (.133) (.133) (.009) (.131) (.122)

X8 0.023 0.977 0.125 0.875 0.013 0.805 0.182
(.021) (.021) (.137) (.137) (.010) (.141) (.131)

X9 0.446 0.554 0.456 0.544 0.139 0.231 0.630
(.166) (.166) (.062) (.062) (.052) (.087) (.051)

X10 0.095 0.905 0.454 0.546 0.024 0.238 0.738
(.031) (.031) (.050) (.050) (.002) (.114) (.112)

(L.2) and realizations of length T = 250, both models produced excellent success rates,

between 97% and 100%. The results were somewhat worse with two outliers (Scenario L.3)

but also satisfactory, particularly using the QAF distance (scores always above 95% and 92%

with QAF-FCMdC-Exp and QAF-TrFCMdC, respectively). The standard fuzzy versions

of the AR and QAF metrics failed when trying to classify the second outlier O2 since, as

showed in Figure 4.9 (a), it is always closer to C2. The averages and standard deviations of

the membership degrees highlighted in blue in Table 4.9 corroborate the high capability of

QAF-FCMdC-Exp to identify the outlier time series. It is also remarkable that the robust

QAF-based models performed somewhat better than the AR�based ones despite handling

ARMA models. For instance, Figure 4.11 shows the evolution of the percentages of correct

classi�cation for AR-FCMdC-Exp and QAF-FCMdC-Exp as function of β in Scenario L.3

with T = 250. Besides getting insight into the optimal values for β, Figure 4.11 allows us

to conclude that QAF-FCMdC-Exp is preferable to AR-FCMdC-Exp for the three values

of m if a suitable choice of β is considered.

As far as the trimmed approach is concerned, Table 4.10 shows that the QAF distance was

more e�cient than the AR one in removing the true outlier time series in Scenarios L.2 and

L.3.
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Figure 4.11: Average percentage of correct classi�cation as a function of β by using AR�
FCMdC-Exp (left panel) and QAF-FCMdC-Exp (right panel) models in Scenario L.3 with
T = 250.

Table 4.10: Average percentage of the number of correctly trimmed outliers by using AR�
TrFCMdC and QAF-TrFCMdC in the linear scenarios L.2 and L.3.

Scenario L.2 Scenario L.3

Model 1 outlier 1 outlier 2 outliers

T = 150 m = 1.3 AR�TrFCMdC 68.5 18.8 62.1
QAF-TrFCMdC 88.7 8.6 76.5

m = 1.5 AR�TrFCMdC 66.0 20.0 59.3
QAF-TrFCMdC 89.0 7.4 77.7

m = 2.0 AR�TrFCMdC 54.5 23.7 50.3
QAF-TrFCMdC 86.6 7.8 74.0

T = 250 m = 1.3 AR�TrFCMdC 99.3 5.3 89.3
QAF-TrFCMdC 99.2 1.8 92.4

m = 1.5 AR�TrFCMdC 99.3 5.3 88.2
QAF-TrFCMdC 99.5 1.7 92.5

m = 2.0 AR�TrFCMdC 99.8 11.9 80.9
QAF-TrFCMdC 99.6 2.1 95.1

The fuzzy models based on the noise cluster, AR�FCMdC-NC and QAF-FCMdC-NC, re-

ported good results but worse than the ones obtained with the other robust algorithms.

In particular, the percentage of success substantially decayed with m = 2 and in presence

of two outliers. The reason is again that a more balanced distribution of the membership

degrees occurs as m increases, thus making more di�cult to assign the outliers to the noise

cluster. For illustrative purpose only, let us brie�y come back to Table 4.9. As required,

the highest average memberships of the outliers with QAF-FCMdC-NC (highlighted in or-

ange) correspond to the noise cluster. Nevertheless they are not signi�cantly greater than
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4 Fuzzy clustering of time series based on quantile autocovariances

the cut-o� value, 0.6, and therefore an important number of trials draw out erroneous

classi�cation. Likewise Figure 4.11, we have depicted the evolution of the percentages of

correct classi�cation by using AR�FCMdC-NC and QAF-FCMdC-NC as function of λ in

Figure 4.12. The poor rates of correct classi�cation with m = 2 are evident for all λ, thus

concluding that the only way to improve the results is using a less stringent cut-o� value.

Comparison of the two panels in Figure 4.12 also highlights the superiority of the QAF

distance to develop the noise cluster fuzzy model.

0.0 0.1 0.2 0.3 0.4 0.5

0
20

40
60

80
10

0

λ

m=1.3
m=1.5
m=2

0.0 0.1 0.2 0.3 0.4 0.5

0
20

40
60

80
10

0

λ

m=1.3
m=1.5
m=2

Figure 4.12: Average percentage of correct classi�cation as a function of λ by using AR�
FCMdC-NC (left panel) and QAF-FCMdC-NC (right panel) models in Scenario L.3 with
T = 250.

As far as the scenarios NL.1, NL.2 and NL.3, including non�linear models, the most no-

ticeable fact was the excellent performance showed by the QAF-based models. Although

the models based on the AR distance were considered in our experiments, model misspec-

i�cation heavily a�ected the results and they have been omitted. Table 4.11 reports the

simulation results for the three non�linear scenarios using the QAF distance and Table 4.12

exhibits means and standard deviations of memberships for an arbitrary set of 100 trials

in Scenario NL.3. The percentages of correct classi�cation are higher than in the linear

scenarios in these new setups for all models and values of m, particularly by working with

the shortest series (T = 150). The average percentage of times in which QAF-TrFCMdC

trimmed the true outlier in Scenario NL.2 was always above 97.8% for T = 150 and 99.6%

for T = 250, while in Scenario NL.3 the two true outliers were detected above 97% and

99.2% for T = 150 and T = 250, respectively. It is also signi�cant the improvement of the

results for the robust model based on the noise cluster. The average membership degrees

reported in Table 4.12 for the outliers time series and graphs in Figure 4.13 help us to

understand this improvement.

Simulation results from the heteroskedastic scenarios CH.1, CH.2 and CH.3 based on the
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Table 4.11: Average percentages of correct classi�cation for the simulated non�linear sce-
narios

Scenario NL.1: no outliers Scenario NL.2: 1 outlier Scenario NL.3: 2 outliers

Model m = 1.3 m = 1.5 m = 2 m = 1.3 m = 1.5 m = 2 m = 1.3 m = 1.5 m = 2

T = 150 QAF-based

QAF-FCMdC 100 100 100 27.2 41.8 73.5 7.8 22.3 60.1

QAF-FCMdC-Exp 100 100 100 95.9 96.2 97.9 94.8 95.4 97.0

QAF-FCMdC-NC 100 100 100 87.5 79.9 26.6 81.5 73.2 21.6

QAF-TrFCMdC � � � 98.0 97.8 97.9 97.1 97.4 97.0

T = 250 QAF-based

QAF-FCMdC 100 100 100 25.0 42.7 76.9 14.4 33.6 71.0

QAF-FCMdC-Exp 100 100 100 99.6 99.8 100 99.6 99.6 99.7

QAF-FCMdC-NC 100 100 100 96.9 95.0 67.1 96.5 93.5 68.1

QAF-TrFCMdC � � � 99.6 99.6 99.8 99.2 99.2 99.5

Table 4.12: Mean and standard deviation (in brackets) of membership degrees computed
from one randomly selected set of 100 trials in Scenario NL.3, with T = 250 and m = 2.

QAF-FCMdC QAF-FCMdC-Exp QAF-FCMdC-NC

C1 C2 C1 C2 C1 C2 NC

X1 0.977 0.023 0.899 0.101 0.832 0.014 0.153
(.017) (.017) (.084) (.084) (.139) (.012) (.127)

X2 0.975 0.025 0.894 0.106 0.819 0.016 0.165
(.019) (.019) (.078) (.078) (.120) (.011) (.109)

X3 0.977 0.023 0.884 0.116 0.815 0.016 0.169
(.020) (.020) (.085) (.085) (.136) (.012) (.124)

X4 0.978 0.022 0.877 0.123 0.814 0.016 0.170
(.022) (.022) (.081) (.081) (.134) (.012) (.122)

X5 0.013 0.987 0.066 0.934 0.009 0.891 0.100
(.012) (.012) (.056) (.056) (.007) (.091) (.084)

X6 0.012 0.988 0.064 0.936 0.009 0.897 0.094
(.013) (.013) (.061) (.061) (.008) (.094) (.086)

X7 0.010 0.990 0.064 0.936 0.009 0.896 0.095
(.011) (.011) (.052) (.052) (.008) (.087) (.079)

X8 0.014 0.986 0.066 0.934 0.009 0.893 0.098
(.014) (.014) (.059) (.059) (.008) (.101) (.093)

O1 0.583 0.417 0.523 0.477 0.210 0.153 0.637
(.132) (.132) (.040) (.040) (.070) (.042) (.042)

O2 0.525 0.475 0.504 0.496 0.159 0.147 0.695
(.099) (.099) (.017) (.017) (.040) (.027) (.031)

GARCH and QAF distances are shown in Tables 4.13�4.15 and Figures 4.14�4.15. As

already mentioned, conditional heteroskedasticity induces a more complex scenario because

of the simulated realizations from GARCH processes are characterized by high dispersion

for small sample sizes (Aielli and Caporin, 2013). Table 4.13 corroborates this feature since

success rates comparable to the ones obtained in the linear and non�linear scenarios are
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Figure 4.13: Average percentage of correct classi�cation in Scenario NL.3 with T = 250 for
QAF-FCMdC-Exp (left panel) and QAF-FCMdC-NC (right panel) models as function of
β and λ, respectively.

Table 4.13: Average percentages of correct classi�cation for the simulated conditional hete-
roskedastic scenarios

Scenario CH.1: no outliers Scenario CH.2: 1 outlier Scenario CH.3: 2 outliers

Model m = 1.3 m = 1.5 m = 2 m = 1.3 m = 1.5 m = 2 m = 1.3 m = 1.5 m = 2

T = 1500 GARCH-based

GARCH-FCMdC 63.0 63.0 62.8 11.8 22.8 43.1 2.4 5.8 21.7

GARCH-FCMdC-Exp 63.0 63.0 62.6 53.8 53.7 53.0 45.8 45.1 41.5

GARCH-FCMdC-NC 63.0 62.9 61.9 50.7 53.6 50.0 0.2 45.2 41.0

GARCH-TrFCMdC � � � 58.3 58.0 57.7 50.5 50.5 50.5

QAF-based

QAF-FCMdC 99.5 98.9 96.9 34.7 56.9 86.4 10.2 29.2 75.8

QAF-FCMdC-Exp 99.5 98.9 96.9 84.4 88.0 89.9 75.7 79.1 83.2

QAF-FCMdC-NC 99.5 98.6 85.7 53.9 29.3 0.5 36.8 17.5 0.1

QAF-TrFCMdC � � � 87.5 85.5 79.0 76.4 73.7 66.4

T = 2500 GARCH-based

GARCH-FCMdC 69.8 69.8 69.5 20.3 33.8 58.1 3.0 10.8 34.1

GARCH-FCMdC-Exp 69.8 69.8 69.4 63.1 63.2 63.8 59.6 59.9 59.9

GARCH-FCMdC-NC 69.8 69.8 69.4 62.6 63.3 62.0 58.7 58.4 57.0

GARCH-TrFCMdC � � � 66.7 66.7 66.7 63.1 63.1 63.1

QAF-based

QAF-FCMdC 99.9 100.0 100.0 30.5 57.1 93.8 7.9 29.0 81.6

QAF-FCMdC-Exp 100.0 100.0 100.0 96.0 97.4 98.0 90.9 92.9 93.9

QAF-FCMdC-NC 99.9 100.0 98.4 83.2 66.7 5.8 67.0 48.4 2.6

QAF-TrFCMdC � � � 98.8 98.2 97.1 95.4 95.0 91.9

only attained with T = 2500. It is worthy mentioning that these sample sizes are frequently

considered in the literature by working with heteroskedastic processes. Notice also that the

membership degrees for the non�anomalous series in Table 4.14 are moderately further

from 0 and 1 than in previous analyses, thus emphasizing the major di�culty of clustering
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under heteroskedasticity. In fact, non�anomalous series were sometimes missclassi�ed using

the GARCH distance. This assertion is easily understood by comparing the outputs in

Tables 4.13 and 4.15. It is observed in Table 4.15 that GARCH-TrFCMdC and QAF-

TrFCMdC present similar percentages of success by trimming the true outliers, but in

contrast QAF-TrFCMdC exhibits higher average percentages of correct classi�cation in

Table 4.13.

Again the main conclusion is that the QAF-based models fairly outperform the GARCH-

based ones. While the latter are a�ected by the inaccurate estimation of the GARCH

parameters, the former take advantage of the capability of the QAF distance to detect

changes in conditional shapes and to deal with heavy-tailed marginal distributions. As in

above scenarios, the robust models, particularly QAF-FCMdC�Exp and QAF-TrFCMdC,

led to the best results in presence of outliers regardless of the fuzziness parameter. In this

case, the model based on the noise cluster showed worse results, specially in Scenario CH.3

with two outiler time series (see Table 4.14 and Figure 4.15).

Table 4.14: Mean and standard deviation (in brackets) of membership degrees computed
from one randomly selected set of 100 trials in Scenario CH.3, with T = 2500 and m = 2.

QAF-FCMdC QAF-FCMdC-Exp QAF-FCMdC-NC

C1 C2 C1 C2 C1 C2 NC

X1 0.888 0.112 0.813 0.187 0.781 0.088 0.130
(.020) (.020) (.020) (.020) (.020) (.016 ) (.008)

X2 0.886 0.114 0.808 0.192 0.780 0.087 0.133
(.023) (.023) (.015) (.015) (.015) (.013) (.006)

X3 0.884 0.116 0.808 0.192 0.773 0.087 0.139
(.026) (.026) (.014) (.014) (.022) (.019) (.008)

X4 0.892 0.108 0.808 0.192 0.777 0.092 0.131
(.021) (.021) (.016) (.016) (.028) (.023) (.011)

X5 0.125 0.875 0.218 0.782 0.097 0.750 0.153
(.022) (.022) (.011) (.011) (.015) (.022) (.011)

X6 0.126 0.874 0.223 0.777 0.093 0.746 0.162
(.022) (.022) (.016) (.016) (.016) (.022) (.012)

X7 0.127 0.873 0.221 0.779 0.098 0.735 0.167
(.018) (.018) (.010) (.010) (.020) (.022) (.008)

X8 0.122 0.878 0.211 0.789 0.087 0.763 0.149
(.024) (.024) (.017) (.017) (.015) (.022) (.009)

O1 0.573 0.427 0.516 0.484 0.302 0.222 0.476
(.011) (.011) (.002) (.002) (.009) (.005) (.006)

O2 0.565 0.435 0.517 0.483 0.313 0.233 0.454
(.005) (.005) (.003) (.003) (.004) (.003) (.004)
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Table 4.15: Average percentage of the number of correctly trimmed outliers by using
GARCH-TrFCMdC and QAF-TrFCMdC in the heterokedastic scenarios CH.2 and CH.3.

Scenario CH.2 Scenario CH.3

Model 1 outlier 1 outlier 2 outliers

T = 1500 m = 1.3 GARCH-TrFCMdC 86.6 9.6 70.4
QAF-TrFCMdC 87.6 9.6 76.4

m = 1.5 GARCH-TrFCMdC 85.9 9.8 70.0
QAF-TrFCMdC 86.0 10.2 73.7

m = 2.0 GARCH-TrFCMdC 85.4 9.2 70.3
QAF-TrFCMdC 81.9 12.3 67.6

T = 2500 m = 1.3 GARCH-TrFCMdC 93.8 5.7 81.8
QAF-TrFCMdC 98.8 1.5 95.4

m = 1.5 GARCH-TrFCMdC 93.6 5.6 81.8
QAF-TrFCMdC 98.2 1.7 95.0

m = 2.0 GARCH-TrFCMdC 93.1 5.3 82.2
QAF-TrFCMdC 97.2 2.5 92.0
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Figure 4.14: Average percentage of correct classi�cation as a function of β by using GARCH-
FCMdC-Exp (left panel) and QAF-FCMdC-Exp (right panel) models in Scenario CH.3 with
T = 2500.

4.7 A case study: Clustering series of daily returns of Euro

exchange rates

This section is devoted to show the e�ectiveness in practical situations of the robust fuzzy

models based on quantile autocovariances. An speci�c application involving realizations of

�nancial time series is performed. Our analysis is not aimed at deriving economic impli-

cations, but at illustrating the usefulness of the proposed clustering approaches to identify

homogeneous groups with similar underlying temporal patterns and isolated series exhibit-

134



A case study 4.7

0.0 0.1 0.2 0.3 0.4 0.5

0
20

40
60

80
10

0

λ

m=1.3
m=1.5
m=2

0.0 0.5 1.0 1.5 2.0

0
20

40
60

80
10

0

λ

m=1.3
m=1.5
m=2

Figure 4.15: Average percentage of correct classi�cation as a function of λ by using GARCH-
FCMdC-NC (left panel) and QAF-FCMdC-NC (right panel) models in Scenario CH.3 with
T = 2500.

ing atypical dynamic behaviors.

The database used in this section is the same as that used in Section 3.5 of Chapter 3,

which consists of a set of series of the daily closing values of Euro exchange rates against

twenty-eight international currencies, collected from 1st January 2010 to 28th February

2014 (T = 1520).

Just as in simulations, the metric dQAF was constructed using three quantiles of levels

0.1, 0.5 and 0.9 and one lag (L = 1, with l1 = 1). Also, in line with the range of values

considered for the fuzziness parameter m in simulations, we select the values m = 1.3 and

m = 1.7. Both values produced very similar results, in particular drawing the same number

of outlier time series for all the considered fuzzy models. For it, only the results for m = 1.7

are here included.

A two-dimensional scaling (MDS) based on the pairwise QAF-dissimilarity matrix was

carried out to gain insight both the spatial structure of the Euro exchange rates and the

level of separability between groups. The corresponding coordinate matrices are displayed

in Figure 4.16.

Figure 4.16 shows the existence of a reasonably compact cluster formed by eighteen series

including the Euro exchange rates against the major international currencies and those

linked to the US dollar, such as the Canadian dollar (CAD) and the Great Britain pound

(GBP), among others. The remaining ten objects are more spread out. At least the

Uruguayan peso (UYU) and the Thailand baht (THB) appear to be isolated, well-separated

of the remaining currencies, and they could be identi�ed as anomalous data. South African

rand (ZAR), Argentine peso (ARS), Brazilian real (BLR), Serbian dinar (RSD), and Chilean
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Figure 4.16: Two-dimensional scaling con�gurations based on the QAF-distance for the
daily returns of Euro exchange against against 28 currencies.

peso (CLP) are placed close to each other, and they could constitute another cluster.

The three remaining currencies are somewhat separated from the latter group and they

could be joined to this group or form a third cluster. For comparison purpose, a two-

dimensional scaling based on the AR metric was also performed. The resulting plot exhibits

a con�guration with much greater dispersion and without identifying well-separated groups,

which is quite unrealistic in the analysed problem. These worse results are indeed expected

because of the AR metric relies on autoregressive �ts fairly inappropriate to model the

heteroskedastic series in study.

Two di�erent criteria to determine the optimal number of clusters C were considered,

namely those values of C minimizing the Xie-Beni (Xie and Beni, 1991) and Kwon (Kwon,

1998) indexes. To simplify the de�nition of both indexes, let us denote by Hic the squared

Euclidean distance between the sequence of estimated quantile autocovariances for the i-th

series and the average sequence for the c-th cluster, that is

Hic =
L∑
k=1

r∑
j=1

r∑
j′=1

(
γ̂

(i)
lk

(τj , τj′)− γ̂
(c)
lk

(τj , τj′)
)2
. (4.21)

The Xie-Beni index for a partition into C clusters is de�ned as the ratio between the total

variance and the minimum separation between clusters, i.e.

136



A case study 4.7

XB(C) =

I∑
i=1

C∑
c=1

umicHic

I min
c 6=c′

Hcc′
. (4.22)

Note that minimizing the numerator of XB(·) in (4.22) is the goal of the QAF-FCMdC

algorithm. On the other hand, the denominator measures how separated are the clusters,

thus the Xie-Beni index decreases with the separation between clusters.

The Kwon index provides a correction of the Xie-Beni index by penalizing the decreasing

tendency when the number of clusters becomes very large and close to the number of time

series. Speci�cally, the Kwon index is de�ned as follows.

K(C) =

I∑
i=1

C∑
c=1

umicHic +
1

C

C∑
c=1

C∑
c′=1

Hcc′

I min
c 6=c′

Hcc′
. (4.23)

The values obtained for both indexes using the QAF-FCMdC model are depicted in Fig-

ure 4.17. In both cases the lowest value is attained for C = 2 clusters, with a substantial

increase when three or more clusters are considered. Similar results were obtained by using

the robust versions of the model, and therefore both criteria lead to conclude the existence

of two major groups.

2 3 4 5 6 7

0
2

4
6

8
10

Number of clusters

X
ie

−
B

en
i i

nd
ex

2 3 4 5 6 7

0
20

00
60

00
10

00
0

Number of clusters

K
w

on
 in

de
x

Figure 4.17: Xie�Beni and Kwon index values for di�erent sizes of partition using QA-
�FCMdC.
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The value for the parameter β required by the QAF-FCMdC-Exp model was determined

using (4.12) in Section 4.5, resulting β = 1095.649. To set δ in the QAF-FCMdC-NC model,

we follow the approach suggested by Cimino et al. (2005), which consists of successively

executing the fuzzy QAF-FCMdC-NC algorithm for decreasing values of δ, recording the

percentage of series assigned to the noise cluster, and selecting the value of δ producing an

abrupt change of slope (elbow) in this percentage. The idea is gradually reducing δ until

a proper threshold is found out because of excessively small values of δ lead to assign non-

anomalous objects into the cluster noise. According to this criterion, δ = 0.4 was selected.

As far as the QAF-TrFCMdC model, the trimming ratio minimizing the Xie-Beni and the

Kwon indexes over a grid of possible values for α was considered as the optimal choice,

resulting α = 0.1621, i.e. �ve time series were trimmed.

Table 4.16 shows the membership degrees obtained by using the standard and the robust

fuzzy methods. For each single series, the shaded cells enhance the highest membership

degrees obtained with each procedure, i.e. the cluster assignments from a crisp perspective.

The memberships showed in bold font for a particular robust procedure indicate time series

identi�ed as outlier. The currencies' names in bold font refer to series identi�ed as outliers

by the three robust methods. When only one or two robust procedures achieved that

conclusion, the currency is written in italic font.

Overall, the obtained partition with the standard fuzzy model QA-FCMdC is consistent

with the plot displayed in Figure 4.16. The medoid time series are the Emiratri dirham

(AED), for the most compact cluster (C2) grouping eighteen currencies, and the Brazilian

real (BR) for the cluster C1 exhibiting higher spread. It is noticeable that most of the

currencies are assigned to one cluster with high membership degrees (uic ≥ 0.7), the only

exception being the Thailand baht (THB), which was located in C1 with membership 0.639.

Nevertheless, Figure 4.16 suggests that THB is too far from the time series forming C2 and

hence the Thailand baht should be considered as an outlier. In short, QAF-FCMdC seems

to work reasonably �ne, but it does not allow us to identify currencies showing an atypical

behavior.

The partition obtained with QAF-FCMdC-Exp determines the existence of four outlier

time series by splitting their membership degrees uniformly across the clusters, namely the

Uruguayan peso (UYU), the Thailand baht (THB), the South Korean won (KRW) and

the Russian ruble (RUB). These four currencies are also allocated together into the noise

cluster with memberships uinC > 0.6 when the QAF-FCMdC-NC model is considered. The

South African rand (ZAR) and the Hong Kong dollar (HKD) are also added to the noise

cluster on the basis of much weaker memberships, particularly the former with memberships

for C1 and the noise cluster hardly discernible, 0.458 and 0.463, respectively. Note that
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Table 4.16: Membership degrees for the fuzzy clustering models based on quantile autoco-
variances by considering a two-cluster partition.

QAF-FCMdC QAF-FCMdC-Exp QAF-FCMdC-NC QAF-TrFCMdC

C1 C2 C1 C2 C1 C2 NC C1 C2 Tr

USD 0.001 0.999 0.100 0.900 0.034 0.801 0.165 0.012 0.988 N
GBP 0.030 0.970 0.087 0.913 0.016 0.807 0.177 0.036 0.964 N
CAD 0.030 0.970 0.084 0.916 0.013 0.813 0.174 0.045 0.955 N
AUD 0.040 0.960 0.077 0.923 0.013 0.828 0.159 0.044 0.956 N
CHF 0.042 0.958 0.145 0.855 0.037 0.697 0.266 0.025 0.975 N
CZK 0.040 0.960 0.111 0.889 0.018 0.755 0.228 0.044 0.956 N
BRL 1.000 0.000 1.000 0.000 1.000 0.000 0.000 0.938 0.062 N
CNY 0.019 0.981 0.171 0.829 0.070 0.684 0.246 0.028 0.972 N
CLP 0.946 0.054 0.802 0.198 0.573 0.024 0.403 0.953 0.047 N
AED 0.000 1.000 0.085 0.915 0.028 0.829 0.143 0.012 0.988 N
SGD 0.044 0.956 0.159 0.841 0.022 0.652 0.326 0.067 0.933 N
ZAR 0.799 0.201 0.720 0.280 0.458 0.079 0.463 0.691 0.309 N
RUB 0.809 0.191 0.636 0.364 0.281 0.044 0.674 � � Y

NOK 0.021 0.979 0.000 1.000 0.000 1.000 0.000 0.013 0.987 N
SEK 0.045 0.955 0.017 0.983 0.003 0.963 0.034 0.030 0.970 N
HUF 0.066 0.934 0.059 0.941 0.017 0.877 0.106 0.012 0.988 N
TRY 0.012 0.988 0.085 0.915 0.031 0.832 0.137 0.004 0.996 N
ARS 0.911 0.089 0.858 0.142 0.705 0.038 0.257 0.693 0.307 N
SAR 0.004 0.996 0.140 0.860 0.053 0.730 0.218 0.019 0.981 N
KRW 0.744 0.256 0.591 0.409 0.214 0.051 0.735 � � Y

JPY 0.015 0.985 0.113 0.887 0.035 0.770 0.194 0.018 0.982 N
HKD 0.904 0.096 0.723 0.277 0.426 0.031 0.543 � � Y

INR 0.020 0.980 0.103 0.897 0.033 0.790 0.177 0.027 0.973 N
ILS 0.022 0.978 0.076 0.924 0.029 0.853 0.119 0.000 1.000 N
RSD 0.964 0.036 0.894 0.106 0.768 0.020 0.212 1.000 0.000 N
UYU 0.812 0.188 0.581 0.419 0.193 0.039 0.767 � � Y

THB 0.639 0.361 0.582 0.418 0.239 0.105 0.655 � � Y

MXN 0.045 0.955 0.058 0.942 0.017 0.877 0.106 0.022 0.978 N

consideration of these isolated objects modi�es the C2 medoid, now resulting the Norwegian

krone (NOK) which seems to be a more representative prototype than AED in Figure 4.16.

The fuzzy QAF-TrFCMdC model draw out very similar results. Considering a trimmed

ratio of α = 0.1621, �ve Euro exchange currencies are trimmed away, namely the same four

outliers identi�ed by the other two robust methods plus HKD. Actually, a small reduction

of the trimmed ratio allows to cancel this additional outlier so that in essence the three

robust methods allows us to obtain similar conclusions.

4.8 Concluding remarks

In this chapter we have shown that the sample quantile autocovariances are an useful tool

to perform soft partitional clustering of times series when the target is to group series

generated from the same stochastic process.
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Soft partitional clustering has been considered by introducing a fuzzy C-medoids clustering

model for time series based on the sample quantile autocovariances (QAF-FCMdC). Fuzzy

paradigm enriches the cluster solution by permitting overlapping clusters, i.e. identifying

time series with dynamics close to more than one prototype. To evaluate the QAF-FCMdC

algorithm, we have carried out numerical experiments including clusters with di�erent levels

of separability and time series equidistant from several clusters. Our assessment criterion

took into account the capability of the examined algorithms to detect the fuzzy nature of

the equidistant series. Regardless of the considered models and compared with other fuzzy

algorithms based on distances between estimates of the underlying parametric structures,

the proposed fuzzy algorithm produced good results. Overall, QAF-FCMdC reported bet-

ter results in the most complex scenarios, where the clusters are closer each other. The most

noticeable di�erences in favour of QAF-FCMdC were observed by clustering GARCH(1,1)

processes, particularly for large sample sizes. In this framework, the GARCH-based algo-

rithms were a�ected by the inaccurate estimation of the GARCH structure. By contrast,

QAF-FCMdC is free of determining the underlying parametric structure and takes ad-

vantage of the capability of the quantile autocovariances to detect changes in conditional

shapes, thus permitting to discriminate between volatility structures and identify series

showing fuzzy behavior. Furthermore, QAF-FCMdC can be applied to series with di�erent

lengths, and it is simple to implement and computationally lighter than the analyzed com-

petitors. According to these properties, the proposed fuzzy algorithm is a promising tool

to be applied in many situations where it is unrealistic to assume homoscedasticity, such

as we have illustrated by means of a speci�c case-study.

The fuzzy approach based on the QAF metric introduced in the �rst part of this chapter

has been published in Lafuente-Rego and Vilar (2016b), and a more comprehensive and

detailed study encompassing both soft and hard partitional approaches is available in the

paper by Vilar et al. (2017).

Other additional issue dealt with in this chapter was to obtain robust versions of the fuzzy

QAF-FCMdC algorithm to neutralize the e�ect of anomalous fuzzy series. Three di�erent

generalizations of the robustness techniques considered by D'Urso and Giovanni (2014),

namely the metric approach by smoothing the distance (QAF-FCMdC-Exp), the noise

approach by introducing an arti�cial noise cluster (QAF-FCMdC-NC) and the trimmed

approach by trimming away a small fraction of series (QAF-TrFCMdC), were introduced.

For the evaluation of these techniques a broad simulation study was considered. Just

as happened with the QAF-FCMdC, the fuzzy robust proposals produced good results

regardless of the considered models and compared with other fuzzy algorithms based on

distances between estimates of the underlying parametric structures. The proposed robust
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models work �ne and produce very satisfactory results in presence of outliers when an

optimal selection of the input parameters is made. The real clustering structure is not

altered since the fuzzy models are able to neutralize the e�ect of the anomalous series.

When the robust versions are compared, a slight improvement is observed by using QAF-

FCMdC-Exp and QAF-TrFCMdC, but it is relevant to emphasize that the noise approach

can report similar results by correctly handling the combination of the fuzziness parameter

and the noise distance. Overall, all the robust procedures are particularly sensitive to the

choice of the input parameters. An speci�c application involving realizations of �nancial

time series allowed to illustrate the usefulness of the proposed clustering approaches to

identify series exhibiting atypical dynamic behaviors.
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Chapter 5

Soft clustering of time series: New

approaches based on mixture models

and D-probabilistic techniques
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5.1 Introduction

Besides fuzzy clustering approaches, other clustering algorithms belonging to the domain

of soft computing have been proposed and successfully applied in the past decades. In

this chapter we confront the fuzzy QAF-FCMdC algorithm against two soft classi�cation

alternatives, namely the probabilistic D-clustering and an approach based on �nite mixture

models using the Expectation-Maximization (EM) algorithm.

A possible via by performing model-based clustering is to consider that the underlying

distribution has the form of a suitable �nite mixture of parametric distributions, where

each mixture component describes the probabilistic nature of a speci�c group in the dataset

(Fraley and Raftery, 2002; Melnykov and Maitra, 2010; Chen and Maitra, 2011). In the time
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series setting, this approach is not simple due to the high dimensionality of the data objects.

Wong and Li (2000) consider a �rst-order autoregressive Gaussian mixture model to time

series data, and later Chen and Maitra (2011) extend this model to include information

from explanatory variables and consider more general p-th order autoregressive time series.

Both procedures work in the time domain and take advantage of the reasonably simple form

(p+ 1 free parameters) of the covariance matrix specifying the dispersion of an AR(p) with

common marginal variance. Is spite of it, the traditional maximum likelihood approach

of estimating the parameters using the expectation-maximization (EM) algorithm is here

computationally demanding due to the high dimensionality of the problem. In fact, a novel

conditional maximization algorithm is proposed to speed up the process and obtain a more

e�cient implementation.

These works motivate the need of developing alternative methods to perform clustering of

time series based on mixture models. In this line, we propose to look at the frequency

domain and consider the asymptotic representation of the log-periodogram by means of a

nonparametric regression model with log-exponentially distributed errors. Assuming that

the time series within the same cluster are characterized by a speci�c spectral density, a non-

parametric �nite mixture of univariate regression models with known probability distribu-

tion is available. Estimation of the mixture model involves nonparametric approximations

of the log-periodograms for each cluster and estimators of the probabilities of belonging to

the clusters. To obtain these estimators, a local-likelihood estimation procedure (Tibshi-

rani and Hastie, 1987) is carried out by implementing an EM algorithm (Dempster et al.,

1977). As it is well known, the EM algorithm alternates between two di�erent stages. At

the (s+ 1)-th iteration, the expectation (E) step calculates the expected value of the unob-

served variables indicating the probabilities of each times series to belong to every cluster

(latent variables), using the conditional distribution at the current parameter values ob-

tained at the end of the s-th iteration. In the maximization (M) step, the centers of the

clusters and the prior probabilities are computed by maximizing the expected log-likelihood

built on the E-step. The algorithm iterates until convergence is achieved. As it will be de-

tailed later, the usual E-step needs to be here modi�ed to obtain a proper solution. Unlike

fuzzy and probabilistic D-clustering approaches, clustering based on mixture models does

not require to �x a metric to measure dissimilarity between time series and reports a soft

partition without specifying a fuzziness parameter such as fuzzy procedures do.

The probabilistic D-clustering (Ben-Israel and Iyigun, 2008) is based on the idea that the

probability of cluster membership at any point is inversely proportional to the distance from

the center of the cluster in question. Given an arbitrary data object x, the basic principle

of this algorithm is to assume that dk(x)pk(x) = cte (depending on x), for all cluster C,
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where dk(x) and pk(x) denote the distance from x to the center of C and the probability

that x is a member of C, respectively. This way, the closer to the center of a cluster, the

higher probability of belonging to that cluster. Unlike the model-based approaches, select-

ing a proper metric is here very important to obtain a satisfactory partition. Results in

Chapters 3 and 4 support the idea of using the distance based on quantile autocovariances

in probabilistic D-clustering of time series. This intuition is fully con�rmed in the numer-

ical experiments carried out in this chapter. Likewise the mixture models approach, the

probabilistic D-clustering algorithm prevents specifying a fuzziness parameter. Fuzziness is

automatically determined in terms of distances to the di�erent cluster centers. Indeed, this

is a very nice property given the noticeable in�uence of the fuzziness parameter observed

in prior chapters.

The present chapter is structured as follows. Section 5.2 addresses cluster analysis of

time series in the frequency domain based on nonparametric mixture models using the

expectation maximization algorithm. The estimation procedure is described in detail and

the modi�cation required in the E-step is discussed and motivated. Section 5.3 proposes

to perform times series clustering using the probabilistic D-clustering algorithm by plug-

in the distance based on the estimated quantile autocovariances introduced in Chapter 3.

The performance of both soft clustering approaches is analysed and compared to the fuzzy

QAF-FCMdC model throughout a simulation study in Section 5.4, and the chapter ends

with a summary of the main conclusions in Section 5.5.

5.2 A nonparametric mixture model for time series clustering

Let S be a set of n realizations of univariate stationary time series with zero mean denoted

by X(i)
t =

{
X

(i)
1 , . . . , X

(i)
Ti

}
, for i = 1, . . . , n. Let us assume for simplicity Ti = T , for

all i. Consider the corresponding spectral representations via the log-periodograms I(i)
k ,

i = 1, . . . , n, evaluated at the Fourier frequencies λk, k = 1, . . . ,M , with M = [(T − 1)/2].

According to Section 1.4.3 in the introductory chapter, for each time series the sequence

of centered log-periodograms Y i
k = log(Iik) − C0, with C0 = −0.57721 being the Euler's

constant, approximately admits the nonparametric regression model given by

Y i
k = mi(λk) + εik,

where mi(·) = log(f i(·)) denotes the logarithm of the spectral density for the i-th se-

ries, and the errors εik are asymptotically i.i.d. with probability density function ϕ(λ) =

exp (λ− exp(λ)).
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Assuming the existence of C homogeneous groups for the n series, i.e. the existence of C

di�erent spectral densities, f = {f1(·), . . . , fC(·)}, then the set S of observed time series

satis�es

Y i
k = mc(λk) + εik, for i = 1, . . . , n, k = 1, . . . ,M and c = 1, . . . , C. (5.1)

Let π = (π1, . . . , πC)t be the vector of prior probabilities for each time series into each

cluster, i.e. πc = P
(
X

(i)
t ∈ group c

)
, for all i = 1, . . . , n, and c = 1, . . . , C.

Denote by Θ = {π1, . . . , πC−1,m
1(·), . . . ,mC(·)} the set of unknown parameters and func-

tions determining the probabilistic structure of the observed n time series. From (5.1), it is

concluded that the probability density function of the errors, let us say g(·), can be written

as

g
(
εik/Θ

)
=

C∑
c=1

πc ϕ
(
Y i
k −mc(λk)

)
, for i = 1, . . . , n, and k = 1, . . . ,M. (5.2)

Equation (5.2) establishes that the density of the errors from the nonparametric regression

models (5.1) has the form of a �nite mixture of distributions whose c-th coe�cient represents

the probability that the corresponding time series belongs to the c-th cluster. According to

(5.2), the likelihood of the set of unknown parameters and log-spectra, Θ, given the data

in hand, Y ≡ {
(
λk, Y

i
k

)
, k = 1, . . . ,M, i = 1, . . . , n}, is given by

L(Θ/Y ) =

n∏
i=1

M∏
k=1

C∑
c=1

πc ϕ
(
Y i
k −mc(λk)

)
,

and the corresponding log-likelihood by

L(Θ/Y ) = logL(Θ/Y ) =
n∑
i=1

M∑
k=1

log

(
C∑
c=1

πcϕ
(
Y i
k −mc(λk)

))
.

Nevertheless, the elements mc ∈ Θ are actually functions, which suggests to address the

problem as a local optimization problem assuming that the log-spectra are smooth. Thus,

nonparametric kernel approximations formc(·) can be obtained by maximizing the local log-

likelihood function instead of the log-likelihood function. Regarding the Jensen inequality
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for concave functions, the local log-likelihood function takes the form

`(Θ/Y )(λ) =

n∑
i=1

M∑
k=1

log

(
C∑
c=1

πc ϕ
(
Y i
k −mc(λ)

))
Kh(λk − λ)

≥
n∑
i=1

M∑
k=1

C∑
c=1

log
(
πcϕ

(
Y i
k −mc(λ)

))
Kh(λk − λ),

where Kh(·) = 1
hK

( ·
h

)
is a kernel function K(·) rescaled with a bandwidth h. Maxi-

mization of the local-likelihood function `(Θ/Y )(·) is carried out by using an Expectation-

Maximization (EM) algorithm. It is worth to notice that kernel regression is here performed

instead of local linear regression (as e.g. in Chapter 1) in order to yield closed-form solutions

in the M-step of the EM algorithm.

In the EM framework, the mixture model problem is formulated as an incomplete data

problem. The observed data are considered to be incomplete since each data has associated

an unobserved value, or latent variable, specifying the mixture component to which this

data belongs. To formulate the problem in terms of complete data, labels (zi1, . . . , ziC),

c = 1, . . . , C, are assigned to the i-th series, for all i = 1, . . . , n, where zic = 1 if the time

series belongs to cluster c and 0 otherwise. Hereafter, Z will denote the (n × C)-matrix

which i-th row is the vector Z(i) = (zi1, . . . , ziC)t, with zic = 1
{X(i)

t ∈ group c}
. Thus, the

�complete data� are
{
X

(i)
t ,Z

(i)
}
, and the local log-likelihood with complete data takes the

form

`(Θ/Y, Z)(λ) =

n∑
i=1

C∑
c=1

zic

M∑
k=1

log{πc ϕ
(
Y i
k −mc(λ)

)
}Kh(λk − λ).

The expected value of the labels {zic} conditional on the most recent estimators of Θ (es-

timates for π and mc obtained in the above M-step) are calculated and iteratively updated

in the expectation step (E-step).

The (s + 1)-th iteration of the EM procedure is detailed below. At the end of the s-th

iteration, estimates Θs = {π(s)
1 , . . . , π

(s)
C−1,m

1(s)(·), . . . ,mC(s)
(·)} are available. Then the E-

and M-steps proceed as follows.

E-step According to estimates from the iteration s, we have

z
(s+1)
ic = E (zic/Θs, Y ) = P

(
X

(i)
t ∈ group c /Θs, Y

)
,

for each c = 1, . . . , C and i = 1, . . . , n. The standard approach to estimate this expectation
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is to use the Bayes' rule,

z
(s+1)
ic =

π(s)
c

M∏
k=1

ϕ
(
Y i
k −mc(s) (λk)

)
C∑
c′=1

π
(s)
c′

M∏
k=1

ϕ
(
Y i
k −mc′(s) (λk)

)

=

π(s)
c

M∏
k=1

exp
(
Y i
k −mc(s) (λk)− exp

(
Y i
k −mc(s) (λk)

))
C∑
c′=1

π
(s)
c′

M∏
k=1

exp
(
Y i
k −mc′(s) (λk)− exp

(
Y i
k −mc′(s) (λk)

)) (5.3)

for i = 1, . . . , n and c = 1, . . . , C.

Even though expression (5.3) provides a closed solution for the estimation of zic, some

problems arose when tests on simulated data were carried out. These problems are intrin-

sically related to the heavy tails of the product of exponential distributions, which results

in values arbitrarily close to zero of the numerator of z(s+1)
ic in (5.3) for all c di�erent from

the true cluster. This way, whether one time series is equidistant from all the clusters,

then there is always one cluster (the nearest cluster) receiving a membership value equals

to 1. Apart from an unstable membership assignment, this behavior is not desirable at all

in soft clustering, where one would expect membership degrees uniformly distributed over

the clusters.

Let us see as a simple simulated experiment allows to illustrate graphically the mentioned

problem, and simultaneously suggests a way of overcoming this hurdle. Consider a scenario

with two clusters C1 and C2 formed by �ve series plus an equidistant time series. The series

of C1 and C2 are generated from ARMA(1,1) structures with autoregressive parameters

φ1 = θ1 = 0.5 and φ2 = θ2 = −0.5, respectively, while the equidistant series is a realization

of Gaussian white noise. All the series have length T = 5000. Denote by Y eq the centered

log-periodograms for the equidistant series and by Y C1 and Y C2 the averages of the centered

log-periodograms for the series in C1 and C2, respectively. Based on the true log-spectra

m1(·) and m2(·) for the models de�ning C1 and C2, the errors ε1,1
k = Y C1

k − m1(λk),

εeq,1k = Y eq
k − m1(λk), ε

2,2
k = Y C2

k − m2(λk), and εeq,2k = Y eq
k − m2(λk) are calculated.

Plots of density estimates for these error sequences are shown in Figure 5.1. Speci�cally,

estimates for ε1,1
k and εeq,1k are given in Figure 5.1(a), and estimates for ε2,2

k and εeq,2k in

Figure 5.1(b).

As expected, the estimated densities for ε1,1
k and ε2,2

k (black lines) correctly approximate

the Gumble probability density ϕ(λ), but the estimated densities for εeq,1k and εeq,2k (red
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Figure 5.1: Density estimates of the errors for a series equidistant from two clusters (red
lines) against density estimates of the errors for the two centroids (black lines) and the
reference Gumbel density (green dashed lines).

lines) are fairly di�erent from ϕ(λ), presenting heavier tails. These tails produce the above

mentioned e�ect of obtaining numerators of z(s+1)
eq,1 and z

(s+1)
eq,2 very close to zero so that

either z(s+1)
eq,1 or z(s+1)

eq,2 will take the value 1 when the ratio is calculated.

Figure 5.1 also suggests that computing the distance between a kernel density estimator

based on the errors Y i
k −mc(λk) and the density ϕ(λ) provides a useful criterion to check

how plausible is that the i-th series belongs to the cluster c. Notice that the red and green

densities show similar distances in Figures 5.1(a) and (b), thus reproducing the equidistance

from the two clusters.

Based on these comments, a new approach to estimate P(Θs, Y |X(i)
t ∈ group c) is proposed

below. For each series X(i)
t , i = 1, . . . , n, compute kernel density estimates ϕ̃ ic based on the

errors Y i
k −mc(λk), for c = 1, . . . , C. Then, we de�ne

P(Θs, Y |X(i)
t ∈ group c) = Pic =

1/KLD(ϕ, ϕ̃ ic)
C∑
c′=1

1/KLD(ϕ, ϕ̃ ic′)

, (5.4)

where KLD(·) denotes the Kullback-Leibler divergence between two probability distribu-

tions (Kullback and Leibler, 1951). Actually, KLD is not a metric. It is always nonnegative
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and equals zero if and only if the two distributions are identical, but it is not symmetric

and also it does not satisfy the triangle inequality. Nevertheless, this fact is not impor-

tant here because the main concern is to measure the information lost when the estimated

densities ϕ̃ ic are used to approximate the reference density ϕ. In other words, the roles

played by ϕ̃ ic and ϕ are di�erent. Anyway, any other distance between distributions could

be used. Lastly note that the Kullback-Leibler divergence takes values between 0 and ∞
so that we adopt the criterion of setting Pic = 1 if KLD(ϕ, ϕ̃ ic) = 0 and Pic = 0 when

KLD(ϕ, ϕ̃ ic) =∞.

Once the Pic are calculated, the posterior probabilities are de�ned by

z
(s+1)
ic =

πcPic
C∑
c′=1

πc′Pic′

. (5.5)

M-step The M-step provides updated parameter estimates Θ(s+1) by maximizing the

expected complete local log-likelihood function with the values for the latent variables

z
(s+1)
ic obtained in the E-step. A regularly spaced grid of frequencies is selected for λ,

λ ∈ {γ1, γ2, . . . , γr}, and then the objective function has the form

`(Θ/Y, Z)(λ) =
n∑
i=1

C∑
c=1

z
(s+1)
ic

M∑
k=1

log{πc ϕ
(
Y i
k −mc(λ)

)
}Kh(λk − λ)

=

n∑
i=1

C∑
c=1

z
(s+1)
ic

{
log πc +

M∑
k=1

log
{
ϕ(Y i

k −mc(λ))
}
Kh(λk − λ)

}

=
n∑
i=1

C∑
c=1

z
(s+1)
ic log πc︸ ︷︷ ︸
(A)

+

n∑
i=1

C∑
c=1

z
(s+1)
ic

M∑
k=1

exp
{
Y i
k −mc (λ)− exp

{
Y i
k −mc (λ)

}}
Kh(λk − λ)︸ ︷︷ ︸

(B)

,

for λ = γj , j = 1, . . . , r. In our numerical experiments, the Fourier frequencies λj have

been chosen to constitute the frequency grid {γ1, γ2, . . . , γr}, so that r = M .

Optimization is carried out by maximizing the terms A and B separately. Concerning the

term A, optimization is made by using the Lagrange multiplier procedure. The constrained

150



A nonparametric mixture model for time series clustering 5.2

optimization problem is given by

maxπ

n∑
i=1

C∑
c=1

z
(s+1)
ic log πc, subject to

C∑
c=1

πc = 1, πc ≥ 0 for c = 1, . . . C,

so that the Lagrangian function takes the form

R (π, β) =
n∑
i=1

C∑
c=1

zic log πc + β

(
C∑
c=1

πc − 1

)
,

where β denotes the unknown Lagrange multiplier. To obtain the critical points of R (π, β),

the system of simultaneous equations below involving the partial derivatives respect to πc

and β equal to zero must be solved.

∂R

∂πc
=

1

πc

n∑
i=1

z
(s+1)
ic + β = 0,

∂R

∂β
=

C∑
c=1

πc − 1 = 0.

Solutions are given by π(s+1)
c = − 1

β

n∑
i=1

z
(s+1)
ic and β̂ = − 1∑C

c=

∑n
i=1 z

(s+1)
ic

, and therefore

π(s+1)
c =

n∑
i=1

z
(s+1)
ic

C∑
c=1

n∑
i=1

z
(s+1)
ic

. (5.6)

On the other hand, maximization of the term B is directly calculated by setting to zero

the �rst derivative with respect to mc(λ) and �nding , resulting the estimators

m(s+1)
c (λ) = log


n∑
i=

z
(s+1)
ic

M∑
k=1

exp
(
Y i
k

)
Kh (λk − λ)

n∑
i=1

z
(s+1)
ic

M∑
k=1

Kh (λk − λ)


= log

(
n∑
i=1

w
(s+1)
ic f̂ i,(s+1)(λ)

)
,

(5.7)

for c = 1, . . . , C and λ in the selected grid, where w
(s+1)
ic = z

(s+1)
ic /

∑n
i=1 z

(s+1)
ic and

f̂ i,(s+1)(λ) is the Nadaraya-Watson estimate of the spectrum with smoothing parameter
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h and kernel K. Direct plug-in methodology was used to estimate the smoothing parame-

ter h, as described by Ruppert et al. (1995).

It is worth to emphasize that the maximization of the complete local log-likelihood in the

M-step leads to closed-form expressions to update centroids and prior probabilities, which

results in lower computational complexity.

These two steps of the EM algorithm are iteratively applied until a stopping criterion is

satis�ed. Several options to determine this criterion may be selected. In this case, the

stopping rule has been that the log-likelihood of data does not increase signi�cantly, that

is
logL(Θs+1, Y )− logL(Θs, Y )

|logL(Θs, Y )|
< ε

for some pre�xed and su�ciently small value ε > 0, or alternatively having reached a

maximum number of iterations. Once the EM algorithm has converged, the values zic,

for c = 1, . . . , C, provide the sequence of membership degrees for the i-th time series,

i = 1, . . . , n. Indeed, the EM procedure requires initial values for the prior probabilities πc

and the centroids mc(·), c = 1, . . . , C. Our proposal is to run a hard PAM algorithm based

on a suitable dissimilarity for time series, and then determining the initial structure for Θ

using the resulting partition. Thus, π0
c is given by the ratio of time series located in the

c-th group, and m0
c(·) is determined by averaging the spectral smoothers for those series

within the group c. Since the comparison between series is made in the frequency domain,

it is reasonable to perform the PAM algorithm using a dissimilarity measure de�ned in this

framework, e.g. the dW (LS) dissimilarity.

In summary, the mixture models EM algorithm is implemented as outlined in Algorithm 5.

Algorithm 5 Mixture models EM algorithm
1: Fix C, ε > 0 and max.iter
2: Set iter = 0
3: Based on a partition generated with the PAM algorithm, determine an initial set of

centers m1, . . . ,mc and prior probabilities π1, . . . , πc, i.e. Θ
4: repeat

5: Set ΘOLD = Θ.
6: Compute zic, i = 1, . . . , n, c = 1, . . . , C, using (5.5) {E-step}
7: Update the values of Θ using (5.6) and (5.7) {M-step}
8: iter ← iter + 1

9: until
logL(Θ, Y )− logL(ΘOLD, Y )

|logL(ΘOLD, Y )|
< ε or iter = max.iter
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Probabilistic D-clustering 5.3

5.3 Probabilistic D-clustering

Consider a set S of n realizations of univariate time series
{
X

(1)
t , . . .X

(n)
t

}
and a partition

of S into C clusters C1, . . . ,CC , each one of the clusters being represented by a center

c1, . . . , cC . In probabilistic D-clustering, the clustering criterion is metric, which means

that each series is assigned to the cluster represented by the nearest center. After the

assignment is completed, the centers are recalculated and the series are reassigned according

to the new centers. The algorithm keeps iterating until convergence is achieved.

Denote by d(X
(i)
t , ck) the distance of the series X

(i)
t to the center ck and by pk

(
X

(i)
t

)
the

probability that the series X(i)
t is a member of Ck. There are several ways to model the

relationship between distances and probabilities in the literature. A simple criterion was

proposed by Ben-Israel and Iyigun (2008), which consists in assuming that

pk

(
X

(i)
t

)
d
(
X

(i)
t , ck

)
= constant, (5.8)

for each series X(i)
t ∈ S and each center ck, k = 1, . . . , C, where the constant in (5.8)

depends on X(i)
t . Under this criterion, the probability that a series X(i)

t belongs to a

cluster Ck increases as the distance of the series to the center of the cluster decreases.

From assumption (5.8), Ben-Israel and Iyigun (2008) easily proved that the probabilities

pk

(
X

(i)
t

)
can be written as

pk

(
X

(i)
t

)
=

∏
j 6=k

d
(
X

(i)
t , cj

)
C∑

k′=1

∏
j 6=k′

d
(
X

(i)
t , cj

) , k = 1, . . . , C.

At the end of the iterative process, the sequence of probabilities pk
(
X

(i)
t

)
, k = 1, . . . , C,

identi�es a sequence of membership degrees for the i-th series X(i)
t , thus providing with a

soft clustering partition.

The probabilistic D-clustering approach has been introduced in a general way for arbitrary

data objects and using the squared Euclidean distance between data and centers. To our

knowledge, it has not been considered in time series clustering. However, the working

principle is versatile to the choice of the metric d, and therefore it can be easily adapted

to deal with time series by selecting a suitable metric between series. In order to take

advantage of the nice properties of the metric based on the estimated sequences of quantile

autocovariances, dQAF , we have implemented the probabilistic D-clustering algorithm based
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5 Soft clustering of time series

on dQAF to perform soft cluster analysis of time series, i.e. the membership probabilities

are given by

pk

(
X

(i)
t

)
=

∏
j 6=k

dQAF

(
X

(i)
t , cj

)
C∑

k′=1

∏
j 6=k′

dQAF

(
X

(i)
t , cj

) , k = 1, . . . , C. (5.9)

Note that dQAF is simply the squared Euclidean distance between feature vectors of the

data objects so that the optimality properties established by Ben-Israel and Iyigun (2008)

hold in this new framework.

Ben-Israel and Iyigun (2008) obtained the iterative update of the centers by considering

the minimization problem:

f (c1, . . . , cC) =
n∑
i=1

C∑
k=1

dQAF

(
X

(i)
t , ck

)
pk

(
X

(i)
t

)2
, (5.10)

proving that the minimizers are given by

ck =
n∑
i=1

vk

(
X

(i)
t

)
n∑
j=1

vk

(
X

(j)
t

) Γ(i), (5.11)

where Γ(i) are the estimated sequences of quantile autocovariances for the series X(i)
t and

vk(X
(i)
t ) =

pk(X
(i)
t )2

dQAF (X
(i)
t , ck),

(5.12)

for k = 1, . . . , C.

The QAF-based probabilistic D-clustering is implemented as outlined in Algorithm 6.

This algorithm has been implemented in R using the function PDclust in the package

FPDclustering.

5.4 Simulation study

A simulation study was conducted to evaluate the performance of the proposed soft cluster-

ing alternatives. We intended to recreate fuzzy scenarios with di�erent time series models,

including realizations of linear and non-linear processes. Just like in Section 4.3, a base
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Algorithm 6 QAF-based probabilistic D-clustering
1: Fix C, ε > 0 and max.iter
2: Set iter = 0
3: Pick an initial set of centers c1, . . . , cC
4: repeat

5: Set c̃k = ck, k = 1, . . . , C.
6: Compute pk(X

(i)
t ), i = 1, . . . , n, k = 1, . . . , C, using (5.9)

7: Update th centers ck, k = 1, . . . , C using (5.11) and (5.12)
8: iter ← iter + 1

9: until

C∑
k=1

‖ci − c̃i‖ < ε or iter = max.iter

scenario consisting of two clusters C1 and C2 with �ve series each was considered, and com-

plexity was then increased by adding one additional realization located at equal distance

from both clusters. Uncertainty was also added to the classi�cation procedure by intro-

ducing variability over the parameters de�ning the underlying model for each cluster. The

speci�c scenarios and the generation schemes for each scenario are properly speci�ed in

Table 5.1.

Table 5.1: Simulation scenarios for numerical comparison of the three di�erent soft clus-
tering procedures.

Generating process Scenario Elements and structure

Scenario 5.1: Soft clustering of ARMA(1,1) processes

Xt = φXt−1 + θεt−1 + εt 5.1.A C1: 5 series with φ, θ ∼ U(0.4, 0.6)
C2: 5 series with φ, θ ∼ U(−0.6.− 0.4)

5.1.B Scenario 5.1.A plus one equidistant series
with φ = θ = 0

Scenario 5.2: Soft clustering of non-linear moving average processes NLMA

Xt = θ1εt−1 + θ2ε
2
t−1 + εt 5.2.A C1: 5 series with θ1, θ2 ∼ U(0.4, 0.6)

C2: 5 series with θ1, θ2 ∼ U(−0.6.− 0.4)

5.2.B Scenario 5.2.A plus one equidistant series
with θ1 = θ2 = 0

In all cases, innovations εt follow a Gaussian distribution with zero mean and unit variance.

Scenarios labeled with the letter A are formed by well-separated groups, while scenarios

labeled with B are contaminated with a realization of Gaussian white noise, which is equidis-

tant from both clusters. The �ve series generated from one speci�c cluster should group all

together with membership degrees more markedly close to one in scenarios A. In scenarios

B, the realization located at an intermediate place between C1 and C2, is expected to belong

simultaneously to the two clusters thus showing membership degrees close to 0.5.
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To bring insight into the capability of the mixture models algorithm to discriminate between

the underlying processes, Figure 5.2 shows density kernel estimates based on the errors

Y i
k −mc(λk) for a series of each cluster and for the equidistant one, mc(λk) denoting the

log-periodogram for the centroid of the c-th group, c = 1, 2. For the linear scenario, Figure

5.2(a), it is observed that the more far away the generating processes the more distant

the density estimates from the theoretical density (φ). Thus, the equidistant realization

always exhibits a density estimate (green curve) located into an intermediate situation

regardless of the considered centroid. Similar conclusions are drawn for the non-linear

scenario, Figure 5.2(b), only that in this case the classi�cation is harder since the curves

are closer to each other.

The probabilistic D-clustering and the mixture models algorithms were compared with

the fuzzy QAF-FCMdC algorithm proposed in Chapter 4. Three quantiles of levels 0.1,

0.5 and 0.9 and only one lag (L = 1, with l1 = 1) were considered to compute the fuzzy

and the probabilistic D-clustering algorithms based on the QAF dissimilarity. The fuzziness

parameter m for the implementation of QAF-FCMdC was set to m = 2.5. The experiments

were carried out with di�erent lengths for the time series, namely T = 1000 for Scenarios 5.1,

and T = 1500 for Scenarios 5.2. The size of the series is increased for the non-linear scenario

since it was seen in Figure 5.2 that is a much more complicated scenario.

The number of clusters was set at C = 2, and hence the equidistant series are forced to

belong simultaneously to both clusters. At all scenarios, ten sets of 100 simulations were

carried out. The means and standard deviations of the membership degrees averaged over

the 10 sets were taken as measure of clustering accuracy of the algorithms.

The averages and standard deviations of the membership degrees obtained with the di�erent

models in the linear scenarios are shown in Tables 5.2 and 5.3. It is observed that in the

baseline scenario with no equidistant series (Table 5.2), the ten series are always well-

grouped, with probabilities greater than 0.94 to be assigned to the correct cluster for each

algorithm. Similar results were obtained with the three algorithms although slightly better

with QAF-FCMdC. The low standard deviations in all cases support the right performance

of the algorithms. Attending to the scenario with the equidistant series (Table 5.3), the

ten non-atypical series were again well-grouped with similar low standard deviations. The

equidistant series is correctly detected with the three soft clustering algorithms by taking

memberships close to 0.5, although in this case, the standard deviation were higher than

the ones for the regular series.

Similar results were obtained in Scenarios 5.2.A (Table 5.4) and 5.2.B (Table 5.5) consid-

ering NLMA processes. Again QAF-FCMdC performed sligthly better, but the alternative
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Figure 5.2: Density estimates of the errors for the centroids of clusters C1 and C2 (black
and red lines respectively), the equidistant series (green lines) and the reference Gumbel
density (blue dashed lines) for Scenarios 5.1.B (a) and 5.2.B (b).

proposals led to excellent scores as well. In this case, all the standard deviations are higher

than in Scenarios 5.1, especially for the mixture models algorithm. This result is somehow

expected given the error densities depicted in Figure 5.2 (b), which are fairly closer each

other than in the linear case.

It is also important to make some consideration about the computational times for the
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5 Soft clustering of time series

Table 5.2: Average percentage of correct classi�cation in Scenario 5.1.A

QAF-FCMdC QAF-PDclust MM-EM

C1 C2 C1 C2 C1 C2

Cluster 1
X1 0.987 (.010) 0.013 (.010) 0.968 (.017) 0.032 (.017) 0.951 (.062) 0.049 (.062)
X2 0.987 (.010) 0.013 (.010) 0.967 (.018) 0.033 (.018) 0.951 (.051) 0.049 (.051)
X3 0.987 (.010) 0.013 (.010) 0.967 (.018) 0.033 (.018) 0.949 (.061) 0.051 (.061)
X4 0.987 (.010) 0.013 (.010) 0.967 (.018) 0.033 (.018) 0.950 (.060) 0.050 (.060)
X5 0.987 (.010) 0.013 (.010) 0.967 (.018) 0.033 (.018) 0.952 (.057) 0.048 (.057)

Cluster 2
X6 0.014 (.011) 0.986 (.011) 0.033 (.019) 0.967 (.019) 0.051 (.052) 0.949 (.052)
x7 0.014 (.011) 0.986 (.011) 0.033 (.019) 0.967 (.019) 0.051 (.060) 0.949 (.060)
x8 0.013 (.010) 0.987 (.010) 0.033 (.017) 0.967 (.017) 0.051 (.065) 0.949 (.065)
x9 0.014 (.011) 0.986 (.011) 0.033 (.019) 0.967 (.019) 0.048 (.058) 0.952 (.058)
x10 0.013 (.010) 0.987 (.010) 0.033 (.017) 0.967 (.017) 0.046 (.044) 0.954 (.044)

Table 5.3: Average percentage of correct classi�cation in Scenario 5.1.B

QAF-FCMdC QAF-PDclust MM-EM

C1 C2 C1 C2 C1 C2

Cluster 1
X1 0.985 (.011) 0.015 (.011) 0.967 (.018) 0.033 (.018) 0.952 (.067) 0.048 (.067)
X2 0.985 (.011) 0.015 (.011) 0.966 (.019) 0.034 (.019) 0.952 (.067) 0.048 (.067)
X3 0.986 (.011) 0.014 (.011) 0.968 (.018) 0.032 (.018) 0.954 (.062) 0.046 (.062)
X4 0.986 (.011) 0.014 (.011) 0.967 (.018) 0.033 (.018) 0.952 (.071) 0.048 (.071)
X5 0.986 (.011) 0.014 (.011) 0.967 (.018) 0.033 (.018) 0.954 (.065) 0.046 (.065)

Cluster 2
X6 0.015 (.011) 0.985 (.011) 0.033 (.019) 0.967 (.019) 0.047 (.064) 0.953 (.064)
X7 0.015 (.011) 0.985 (.011) 0.034 (.018) 0.966 (.018) 0.046 (.066) 0.954 (.066)
X8 0.014 (.011) 0.986 (.011) 0.033 (.018) 0.967 (.018) 0.047 (.058) 0.953 (.058)
X9 0.014 (.011) 0.986 (.011) 0.032 (.018) 0.968 (.018) 0.044 (.057) 0.956 (.057)
X10 0.014 (.010) 0.986 (.010) 0.032 (.017) 0.968 (.017) 0.044 (.062) 0.956 (.062)

Equidistant
O1 0.499 (.039) 0.501 (.039) 0.499 (.028) 0.501 (.028) 0.499 (.103) 0.501 (.103)

examined procedures. Even though the EM algorithm produces closed-form expressions for

the estimates, the algorithm based on mixture models is expected to be computationally

more complex due to it involves the estimation of the spectral density. To obtain accurate

information about this point, the computing times at one arbitrary iteration of the simu-

lation have been measured for the three algorithms. The algorithms were executed on a

PC with the system speci�cations given by: Intel Core I7 - 3630QM processor, 2.4 Ghz

CPU, 16 GB of RAM, Windows 10. Considering the linear scenario, the algorithm based

on mixture models took 4.12 seconds in completing an iteration, while the QAF-FCMdC

model took nearly 0.045 seconds and the QAF-PDclust 0.026 seconds.
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Concluding remarks 5.5

Table 5.4: Average percentage of correct classi�cation in Scenario 5.2.A

QAF-FCMdC QAF-PDclust MM-EM

C1 C2 C1 C2 C1 C2

Cluster 1
X1 0.962 (.028) 0.038 (.028) 0.930 (.032) 0.070 (.032) 0.911 (.097) 0.089 (.097)
X2 0.961 (.027) 0.039 (.027) 0.928 (.032) 0.072 (.032) 0.914 (.096) 0.086 (.096)
X3 0.962 (.027) 0.038 (.027) 0.930 (.031) 0.070 (.031) 0.915 (.088) 0.085 (.088)
X4 0.962 (.027) 0.038 (.027) 0.930 (.031) 0.070 (.031) 0.908 (.120) 0.092 (.120)
X5 0.961 (.027) 0.039 (.027) 0.930 (.032) 0.070 (.032) 0.915 (.083) 0.085 (.083)

Cluster 2
X6 0.038 (.027) 0.962 (.027) 0.069 (.033) 0.931 (.033) 0.093 (.109) 0.907 (.109)
X7 0.036 (.027) 0.964 (.027) 0.067 (.032) 0.933 (.032) 0.087 (.083) 0.913 (.083)
X8 0.037 (.028) 0.963 (.028) 0.069 (.034) 0.931 (.034) 0.090 (.098) 0.910 (.098)
X9 0.037 (.026) 0.963 (.026) 0.069 (.031) 0.931 (.031) 0.091 (.090) 0.909 (.090)
X10 0.036 (.027) 0.964 (.027) 0.069 (.031) 0.931 (.031) 0.091 (.109) 0.909 (.109)

Table 5.5: Average percentage of correct classi�cation in Scenario 5.2.B

QAF-FCMdC QAF-PDclust MM-EM

C1 C2 C1 C2 C1 C2

Cluster 1
X1 0.962 (.027) 0.038 (.027) 0.929 (.032) 0.071 (.032) 0.899 (.108) 0.101 (.108)
X2 0.962 (.028) 0.038 (.028) 0.930 (.032) 0.070 (.032) 0.897 (.110) 0.103 (.110)
X3 0.960 (.028) 0.040 (.028) 0.928 (.033) 0.072 (.033) 0.897 (.119) 0.103 (.119)
X4 0.961 (.025) 0.039 (.025) 0.929 (.030) 0.071 (.030) 0.905 (.089) 0.095 (.089)
X5 0.961 (.026) 0.039 (.026) 0.928 (.031) 0.072 (.031) 0.897 (.104) 0.103 (.104)

Cluster 2
X6 0.037 (.026) 0.963 (.026) 0.069 (.031) 0.931 (.031) 0.097 (.106) 0.903 (.106)
X7 0.038 (.028) 0.962 (.028) 0.071 (.033) 0.929 (.033) 0.100 (.116) 0.900 (.116)
X8 0.039 (.027) 0.961 (.027) 0.071 (.033) 0.929 (.033) 0.095 (.095) 0.905 (.095)
X9 0.038 (.028) 0.962 (.028) 0.070 (.033) 0.930 (.033) 0.099 (.107) 0.901 (.107)
X10 0.040 (.027) 0.960 (.027) 0.071 (.033) 0.929 (.033) 0.094 (.092) 0.906 (.092)

Equidistant
O1 0.515 (.060) 0.485 (.060) 0.511 (.045) 0.489 (.045) 0.502 (.074) 0.498 (.074)

5.5 Concluding remarks

Two di�erent approaches to perform soft partitional clustering of times series have been

introduced in this chapter and compared to the fuzzy model proposed in Chapter 4. Both

of them consider paradigms broadly studied in soft cluster analysis of static data objects,

namely cluster based on �nite mixture models, where the mixture of underlying distribu-

tions is trained by the expectation-maximization (EM) algorithm, and the probabilistic-D

clustering where the memberships are assumed to be inversely proportional to the distances

from the cluster centroids. Nevertheless, these approaches have received much less atten-
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5 Soft clustering of time series

tion in time series clustering in spite of exhibiting interesting properties, thus motivating

the present study.

Our proposal of clustering algorithm considering the mixture models paradigm works in the

frequency domain and relies on the idea that the log-periodogram ordinates admit a non-

parametric regression model whose errors follow approximately a Gumbel distribution. This

algorithm presents nice properties. Unlike other proposals in the literature, it is not limited

to deal with AR(p) processes and takes advantage of the �exibility of the nonparametric

regression to model complex shapes of spectral densities (including for example stationary

non-linear models). Although the iterative determination of the membership degrees in the

E-step requires a strategy di�erent from the usual approach with normal mixtures to obtain

a good clustering performance, it is noteworthy that the proposed EM algorithm produces

closed-form solutions, which means feasible computational times. Beyond these properties,

the proposed algorithm presents the properties inherent to the use of mixture models in

clustering, including indeed that a soft partition is obtained without requiring to select a

fuzziness parameter and a particular dissimilarity measure between time series.

As far as the probabilistic-D clustering, the key issue is to determine a proper metric

between time series and our proposal consisted in using the Euclidean distance between

sequences of estimated quantile autocovariances dQAF , which has been introduced and

studied in detail in Chapters 3 and 4. This selection is supported by the excellent results

and robustness property showed by dQAF in our experiments.

The performance of the new soft clustering algorithms was then examined via simulation

and compared to the fuzzy QAF-FCMdC algorithm. Di�erent scenarios including linear

and non-linear models were considered and the assessment criterion took into account the

capability of the algorithms to detect the fuzzy nature of series located between di�erent

clusters. Regardless of the considered models, all the algorithms drew out excellent results

being always capable to detect the equidistant series, and it was observed that the fuzzy

algorithm performed slightly better when compared to the other two procedures. It is

noticeable that the probabilistic-D clustering, without needing to determine the level of

fuzziness, led to results very close to the fuzzy algorithm, which again shows the high

discriminatory power of the dQAF dissimilarity. On the other hand, the algorithm based

on mixed models is still more �exible by omitting the selection of a metric. In short, there

is no an absolute winner algorithm because each of them exhibits di�erent and valuable

properties. In our opinion, the proposed algorithms could be used in a complementary way

in order to help the users to check for the validity of the cluster partition.
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Future work

This thesis has presented new approaches to perform hard and soft cluster analysis of

time series in both frequency and time domains. The behavior of the proposed procedures

has been carefully examined throughout extensive simulation studies involving a range of

generated processes with di�erent complexity levels. Compared to alternative clustering

algorithms available in the literature, the new approaches have reported satisfactory re-

sults and have been shown to be useful in di�erent applications. A summary of the main

contributions of this research is given in Section 1.3 of Chapter 1. Nevertheless, there are

indeed many interesting issues to be considered in further research. Some of these open

lines are shortly pointed out below.

The metric based on estimated quantile autocovariances has shown a valuable robustness

against the the underlying models, but consistency of the sample quantile autocovariances

has been established assuming strictly stationary processes, which can be a constraint in

practice. Although stationarity is a quite common requirement in time series clustering,

introducing suitable approaches to encompass non-stationary models has great interest in

applications, particularly when the series in study are not easy to be transformed or such

transformation does not make sense.

On the other hand, notice that quantile autocovariances are well-de�ned for time series

taking ordinal values. Therefore, it is worth analyzing the behavior of the proposed pro-

cedures in clustering of temporal sequences of ordinal data or mixed-type (metric-ordinal)

data, which typically arises in social strati�cation and generally in social science (Hennig

and Liao, 2013). Furthermore, the potential exhibited by dQAF in clustering allows us to

guess its usefulness to perform supervised classi�cation of time series, and this point could

be properly explored given the importance of this topic in applicatins.

Also related to the quantile autocovariance notion, although we have tackled the clustering

task in the time domain, an alternative approach to be addressed in future works is to

consider the frequency domain by using a distance between proper estimators of the quantile
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5 Soft clustering of time series

spectral densities (Lee and Rao, 2012) de�ned by

G (x, y, ω) =
1

2π

∑
l

cov {I (X0 ≤ x) , I (Xl ≤ y)} exp (ilω).

The quantile spectral density G (x, y, ω) speci�es the frequency decomposition of the quan-

tile autocovariances so that it can be seen as the cross spectral density of the bivariate time

series (I (Xt ≤ x) , I (Xt ≤ y)). Likewise the quantile autocovariances, G (x, y, ω) provides

all the information about the serial dependence structure but now from the spectral point

of view. Di�erent approaches to estimate the quantile spectral density considering L1 and

L2 procedures and their asymptotic properties have been provided in several works (Lee

and Rao, 2012; Hagemann, 2013; Li, 2014; Dette et al., 2014). In particular, Lee and Rao

(2012) propose to check the equality of serial dependence of two stationary time series by

using the test statistic given by

PT =
1

T

T∑
k=1

∫ ∣∣∣Ĝ1,T (x, y, ωk)− Ĝ2,T (x, y, ωk)
∣∣∣2 dF (x)dF (y)

where ωk denote the k-th Fourier frequency, Ĝ1,T and Ĝ2,T are the quantile spectral density

estimators and F is any distribution function. This way, PT statistic might be considered

as an innovative spectral dissimilarity measure between two time series.

Another interesting issue to take into consideration consists in extending the fuzzy C-

medoids model based on the QAF metric by taking di�erent weights for each pair of quantile

levels and lags. The purpose is to give a greater weight to those combinations contributing

with much more discriminatory information. In this framework, the minimization problem

takes the form
min

n∑
i=1

C∑
c=1

umic

L∑
l=1

 r∑
j=1

r∑
j′=1

[
wjj′

(
γ̂

(i)
l (τj , τ

′
j)− γ̂

(c)
l (τj , τ

′
j)
)]2


subject to:

C∑
c=1

uic = 1, uic ≥ 0 and
r∑
j=1

r∑
j′=1

wjj′ = 1,

(5.13)

where γ̂l(τ, τ ′), with (τ, τ ′) ∈ [0, 1]2, are the sequences of estimated quantile autocovariances

of lag l.
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Appendix A

Resumen en castellano

En esta tesis, se introducen nuevos enfoques para realizar clustering de series temporales. La

intención principal ha sido contribuir al avance del conocimiento sobre este importante tema

proporcionando nuevas herramientas (por ejemplo, una métrica innovadora), pero también

discutiendo y comparando diferentes estrategias metodológicas (paradigmas suaves (soft)

y duros (hard), nuevos principios de agrupamiento, enfoques robustos y nuevos algoritmos

diseñados para tratar con series de tiempo).

Esta sección tiene como objetivo enumerar las principales motivaciones detrás de esta tesis

y también destacar las principales contribuciones.

Capítulo 1: Introducción

El clustering de series de tiempo tiene como objetivo dividir un conjunto de realizaciones

parciales de series temporales en diferentes categorías o clusters. La partición se realiza

de tal manera que series en el mismo cluster son más similares entre sí que las que están

en diferentes clusters. Es un problema central en muchos campos y es hoy en día un área

de investigación activa en una amplia gama de campos tales como �nanzas y economía,

medicina, ingeniería, física, reconocimiento de patrones, entre muchos otros. Estos argu-

mentos explican el creciente interés en este tema que ha dado lugar a un gran número de

contribuciones.

Una cuestión crucial en el análisis cluster de series de tiempo es determinar una medida

adecuada para evaluar la disimilitud entre dos series de tiempo. A diferencia del cluster

convencional con datos estáticos, las series temporales son intrínsecamente dinámicas, con

estructuras de autocorrelación subyacentes y, por lo tanto, la búsqueda de similitudes debe

ser gobernada por el comportamiento de la serie durante sus períodos de observación.
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Aunque la selección de una métrica adecuada desempeña un papel clave, hay di�cultades

adicionales que deben abordarse en el clustering de series de tiempo. Por ejemplo, muchas

aplicaciones de clustering en la vida real implican un gran número de series muy largas,

es decir, uno se enfrenta a un problema de alta dimensionalidad. Por lo tanto, algoritmos

que trabajen directamente sobre las serie podrían llegar a ser ine�cientes, o simplemente

inviables. Para superar el problema de la alta dimensionalidad, nos centraremos a lo largo

de toda la tesis en un enfoque basado en características, donde los datos en bruto son

reemplazados por un vector de menor dimensión formado por las características extraídas

que representan la estructura dinámica de cada serie, obteniendo un ahorro signi�cativo

en el tiempo de cálculo. De esta manera, la disimilitud entre series temporales se mide en

términos de la discrepancia entre esas representaciones.

Además, cuando se trabaja con algoritmos partitivos, el concepto de centroide es particu-

larmente complejo. Como es bien sabido, los centroides son objetos representativos de los

clusters y a veces el objetivo del proceso de clasi�cación es identi�car estos prototipos en

lugar de realizar una clasi�cación exacta. En el ámbito de las series de tiempo, un cen-

troide determina un patrón temporal especí�co y es a menudo importante tener una visión

de estos patrones para realizar predicciones o establecer diferencias entre comportamien-

tos temporales. Sin embargo, se debe tener cuidado al de�nir correctamente el centroide

cuando se trata con series temporales.

Otros puntos a considerar en el análisis cluster de series temporales están en efecto rela-

cionados con la naturaleza de la serie en estudio, el propósito �nal de la clasi�cación y la

complejidad computacional de los procedimientos empleados. Ciertamente, una distancia

adecuada para tratar series generadas a partir de modelos lineales puede ser inapropiada

para hacer frente a modelos no lineales, y un algoritmo de clúster diseñado para discrim-

inar entre procesos estacionarios difícilmente será útil para agrupar series que muestren

tendencias similares.

En resumen, el alto nivel de complejidad y particularidades asociadas a la clasi�cación de

series de tiempo junto con su enorme interés en una amplia gama de aplicaciones, explican

el gran foco de atracción que este tema ha tenido en las últimas décadas en investigación,

principalmente en los campos de Estadística, Minería de Datos e Inteligencia Arti�cial.

Por tanto, se han logrado avances signi�cativos, pero sin duda el clustering de series de

tiempo sigue siendo un área de investigación activa en la actualidad, con serios problemas

y desafíos a abordar.
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Capítulo 2: Clustering basado en frecuencias y amplitudes de picos es-

pectrales

La principal motivación detrás de este capítulo viene de considerar un escenario de par-

ticular interés en el análisis de los fenómenos oscilatorios. En campos como la medicina,

la biología y la economía (entre otros), a menudo se requiere agrupar registros oscilatorios

temporales de tal manera que cada cluster reúna series con períodos de oscilación domi-

nantes similares y también potencia similar en ese período dominante. De hecho, el marco

natural para enfrentar este problema es el dominio de la frecuencia. Sin embargo, la may-

oría de las métricas introducidas en el dominio de la frecuencia han sido diseñadas para

comparar espectros totales estimados. Este no es el enfoque natural aquí. De hecho, dos se-

ries temporales podrían eventualmente exhibir los principales picos espectrales en la misma

frecuencia y con amplitudes similares, pero con diferentes densidades espectrales. Motiva-

dos por este interés, nos centramos en el desarrollo de un algoritmo cluster con el objetivo

de dividir las series temporales observadas en función de la ubicación de sus picos espec-

trales signi�cativos. Más especí�camente, en este capítulo se presenta un procedimiento

cluster en dos etapas basado en la comparación de frecuencias y magnitudes asociadas a

los picos espectrales más altos. En la primera etapa, la métrica entre cada par de series se

evalúa en términos del p-valor asociado a un contraste bootstrap de igualdad de frecuencias

donde se alcanzan los máximos espectrales (Timmer et al., 1999). Basado en la matriz de

p-valores obtenida y siguiendo la técnica cluster propuesta por Maharaj (2000), se obtiene

una primera partición del conjunto de series. La técnica propuesta por Maharaj procede

de manera similar a una algoritmo jerárquico aglomerativo a partir de la matriz p-valores,

pero solo agrupará aquellas series cuyos p-valores asociados sean mayores que un nivel de

signi�cación pre�jado de antemano. En esta primera etapa, cada cluster agrupa las series

que presentan el pico espectral más alto en frecuencias similares, pero estos picos pueden

presentar magnitudes diferentes. Este hecho justi�ca una segunda etapa del algoritmo clus-

ter dirigida a comprobar si las áreas bajo las densidades espectrales dentro de cada cluster

di�eren en un entorno local de la frecuencia pico. Esta tarea se lleva a cabo por separado

para cada uno de los clusters generados en la primera etapa del proceso. Para cada grupo, se

construye una nueva matriz de p-valores procedente de contrastar la igualdad de estas áreas

locales y ésta se utiliza para aplicar de nuevo el procedimiento de agrupamiento jerárquico

propuesto por Maharaj (2000), obteniendo así la partición de�nitiva. Este procedimiento

podría aplicarse iterativamente para los siguientes picos espectrales signi�cativos.

Las simulaciones realizadas muestran el buen comportamiento del procedimiento propuesto,

pero es importante remarcar las limitaciones inherentes al método, particularmente su alta
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complejidad computacional y la necesidad de introducir parámetros de entrada relevantes.

La recomendación es considerar este enfoque sólo cuando el propósito sea dividir un con-

junto de series de tiempo en grupos caracterizados por la ubicación de sus frecuencias pico

espectrales. En un contexto más general donde el interés sea clasi�car las series según los

procesos subyacentes, otras métricas resultan más e�cientes.

Capítulo 3: Clustering de series temporales basado en autocovarianzas

cuantiles

La selección de una métrica adecuada entre series de tiempo según el propósito de agru-

pamiento es básica. Aunque se han propuesto muchas métricas para la clasi�cación de

series con procesos generadores similares, la mayoría de ellos están restringidos a trabajar

con modelos lineales. Como consecuencia de ello, la e�cacia de la clasi�cación disminuye

sustancialmente cuando estas métricas se utilizan para trabajar con estructuras de depen-

dencia más complejas (por ejemplo, modelos no lineales o heterocedásticos). De hecho, este

mal comportamiento se espera utilizando métricas basadas en modelos debido a la falta

de especi�cación del modelo, pero muchas métricas basadas en características extraídas

de las series también se comportan mal porque dichas características no son capaces de

caracterizar adecuadamente las diferencias entre los procesos involucrados en el proceso de

clasi�cación. Por lo tanto, la introducción de una métrica que exhiba una alta capacidad

para hacer frente a un amplio tipo de procesos constituye un desafío en el análisis clus-

ter de series de tiempo. La clasi�cación de modelos no lineales y, sobre todo, de modelos

heterocedásticos es un tema de especial interés debido a la enorme importancia de estos

modelos en muchos problemas ambientales y �nancieros. Con este propósito en mente,

proponemos una métrica basada en características que compara secuencias de autocovari-

anzas cuantiles estimadas. Las autocovarianzas cuantiles proporcionan una visión mucho

más rica de la dependencia de las series que otras características extraídas. Éstas abarcan

muchas propiedades interesantes, incluyendo robustez frente a la inexistencia de momentos,

trabajar de manera correcta con distribuciones marginales con colas pesadas, detección de

características no lineales y cambios en formas condicionales, entre otros. En particular,

los capítulos 3 y 4 desarrollan un extenso análisis de los procedimientos de clustering de

series temporales basado en la comparación de las autocovarianzas cuantiles.

El concepto de autocovariancia cuantil se introduce en primer lugar en el Capítulo 3. Sus

propiedades y capacidad para el clustering de series de tiempo se presentan y se discuten a

través de ejemplos simples e ilustrativos. Se establece el comportamiento asintótico de las

autocovarianzas cuantiles y se de�ne formalmente una métrica entre dos series temporales
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basada en la comparación de sus autocovarianzas cuantiles estimadas (QAF).

Proporcionamos resultados de simulación comparando esta nueva métrica con otras alter-

nativas frecuentemente usadas en el análisis cluster de series de tiempo usando dos enfoques

diferentes: un método jerárquico en el que cada observación comienza en su propio cluster y

los pares de clusters se combinan a medida que se sube en la jerarquía, y un procedimiento

de partición en torno a medoides (PAM) (Kaufman and Rousseeuw, 1990), que devuelve un

subconjunto de series representativas de los clusters identi�cados (medoides). Los resultados

obtenidos muestran el buen comportamiento de la métrica QAF en comparación con otras

disimilitudes comúnmente utilizadas. En particular, muy buenos índices de clasi�cación se

obtienen en la clasi�cación de procesos heterocedásticos, que se utilizan con frecuencia en

indicadores económicos o �nancieros (Bauwens and Rombouts, 2007; Otranto, 2008; D'Urso

et al., 2013a; Aielli and Caporin, 2014). Además, puesto que los modelos heterocedásti-

cos gausianos no pueden capturar frecuentemente la asimetría y la leptokurtosis expuestas

por algunas series temporales �nancieras, p.e. series de log-retornos de índices bursátiles

(Lazar and Alexander, 2006; Kipkoech, 2014), se realizan simulaciones adicionales basadas

en modelos heterocedásticos con errores no normales que logran resultados aún mejores.

Una cuestión importante en análisis cluster es obtener una estimación inicial del número

de clusters subyacentes a la base de datos. Se propone abordar este problema mediante la

adaptación de un algoritmo de remuestreo basado en predicción (llamado Clest) introducido

por Dudoit and Fridlyand (2002). Clest tiene como objetivo seleccionar el número de

clusters k que proporciona la evidencia más fuerte contra la hipótesis nula H0 : k = 1.

Para cada valor de k, Clest evalúa la cantidad de reproducibilidad, denotada por Rk, de la

solución k-cluster combinando ideas de aprendizaje supervisado y no supervisado y luego

examina si el valor de Rk es signi�cativamente mayor que el esperado bajo la hipótesis nula.

En el procedimiento original, el valor esperado para Rk bajo la hipótesis nula se aproxima

mediante el remuestreo de una distribución uniforme multivariante. Sin embargo, esta

suposición no es razonable cuando se consideran datos dependientes. Para solucionar este

inconveniente, la suposición de uniformidad en H0 se considera marginalmente para cada

autocovarianza cuantil. El comportamiento de esta versión modi�cada del algoritmo de

Clest y otros métodos existentes en la literatura se examina y compara mediante una nueva

simulación, ibteniéndose que el algoritmo Clest produce buenas estimaciones del número

de clusters y mostró el rendimiento más robusto.

Otra contribución importante se re�ere a la selección óptima de los parámetros de entrada,

es decir, establecer cuántas y qué combinaciones de retardos y niveles de cuantiles deben

utilizarse para de�nir la métrica QAF con el �n de optimizar el proceso de clustering. Una

modi�cación del algoritmo de selección de variables propuesto por Andrews and McNicholas
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(2014) para clustering y clasi�cación nos permite abordar este problema. Sin embargo, vale

la pena remarcar que el uso de un pequeño número de cuantiles con niveles de probabilidad

regularmente espaciados es su�ciente para alcanzar resultados satisfactorios.

Siguiendo la estructura general de cada capítulo, el Capítulo 3 también incluye la aplicación

del método propuesto a un estudio especí�co que involucra series temporales �nancieras.

Capítulo 4: Clustering fuzzy de series temporales basado en autocovari-

anzas cuantiles. Enfoques robustos.

Este capítulo tiene como objetivo evaluar el comportamiento de la distancia basada en

las autocovarianzas cuantiles estimadas (QAF) en clustering partitivo de series de tiempo

considerando un enfoque fuzzy. De nuevo, suponemos que el objetivo es agrupar las series

de acuerdo a sus estructuras de dependencia subyacentes, es decir, la similitud entre series

se mide en términos de similitud entre los procesos generadores. El uso de una métrica

robusta al proceso generador de la serie es necesario para lograr una solución cluster ade-

cuada, y la distancia basada en QAF introducida en el capítulo anterior reportó resultados

muy satisfactorios en clustering hard. Por lo tanto, la motivación es clara: se espera que

un algoritmo de clustering fuzzy que considera esta métrica muestre un comportamiento

adecuado. Además, en la segunda parte del presente capítulo se aborda también el prob-

lema de tratar datos fuzzy anómalos. Las series temporales anómalas pueden tener un

efecto disruptivo sobre el proceso de clustering y, por tanto, el uso de modelos robustos de

clustering fuzzy es de gran interés en la práctica.

La primera contribución en este capítulo consiste en introducir un nuevo procedimiento

fuzzy para agrupar series temporales. Adoptamos un enfoque fuzzy C-medoides donde se

considera que la métrica QAF para calcular las distancias entre series y medoides. De esta

manera, el enfoque propuesto hereda las ventajas de los métodos fuzzy (�exibilidad para

describir estructuras cluster complejas con clusters superpuestos), la técnica de partición e

torno a medoides y la métrica basada en QAF (alta capacidad para discriminar entre una

amplia gama de estructuras de dependencia). Una vez introducido el algoritmo fuzzy, su

comportamiento se evalúa mediante un estudio de simulación. Los experimentos se cen-

traron principalmente en la clasi�cación de modelos heterocedásticos, un escenario complejo

pero frecuentemente realista al analizar indicadores �nancieros, industriales o ambientales,

entre otros. Se examina la capacidad del modelo propuesto para clasi�car modelos GARCH,

y su comportamiento se evalúa enfrentándolo a dos algoritmos de clustering fuzzy que con-

sideran disimilaridades basadas en modelos GARCH (D'Urso et al., 2013a) y, por lo tanto,

especí�camente diseñados para trabajar en el escenario simulado. El algoritmo clustering
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fuzzy se aplica a dos bases de datos reales considerando datos de calidad del aire y retornos

diarios de índices bursátiles para ilustrar su utilidad en la práctica.

La segunda contribución trata el problema de la detección y neutralización de valores atípi-

cos. En general, la presencia de datos anómalos puede impedir identi�car correctamente la

estructura cluster subyacente, por lo que la introducción de métodos fuzzy robustos es un

tema importante. En el marco de series de tiempo, una serie temporal se considera como

un valor atípico cuando exhibe un comportamiento dinámico atípico, que di�ere sustan-

cialmente del resto de prototipos identi�cados. Para abordar este problema, se proponen

tres diferentes extensiones de técnicas fuzzy robustas considerando la métrica basada en las

autocovarianzas cuantiles. Especí�camente, (i) clustering fuzzy C-medoides exponencial

basado en la métrica QAF, (ii) clustering fuzzy C-medoides basado en la métrica QAF

con cluster ruido y (iii) clustering fuzzy C-medoides truncado basado en la métrica QAF.

El primer modelo utiliza una métrica robusta para neutralizar y suavizar el efecto de los

valores atípicos, el segundo está enfocado en detectar los valores atípicos clasi�cándolos en

un cluster ruido y con el tercer método el modelo logra su robustez truncando una cierta

fracción de las series de tiempo más lejanas. Todos estos modelos son extensiones robustas

del modelo de clustering fuzzy C-medoides basado en la métrica QAF, introducido en la

primera parte del capítulo. Existen trabajos recientes que han seguido enfoques robustos

análogos pero usando la distancia AR (D'Urso et al., 2013b, 2015b, 2017) y métricas que

consideran modelos heteroscedásticos subyacentes (D'Urso et al., 2016). Para obtener infor-

mación sobre la capacidad de los modelos robustos propuestos, todos estos procedimientos

se compararon mediante un extenso estudio de simulación que incluía modelos ARMA y

GARCH en presencia de valores atípicos. Obviamente, los procedimientos alternativos se

aprovechan de estar especí�camente construidos para discriminar entre estos procesos, y

por lo tanto podemos obtener una medida realista de la capacidad de los procedimien-

tos basados en la métrica QAF. La utilidad y la e�cacia de los modelos fuzzy robustos

propuestos se resalta también considerando una aplicación en el campo de las �nanzas.

Capítulo 5: Clustering soft de series temporales: Nuevos enfoques basados

en modelos mixtos y técnicas D-probabilísticas

Además del enfoque fuzzy, existen en la literatura otras técnicas alternativas para lle-

var a cabo clustering soft. Dos técnicas bien conocidas son el D-clusterig probabilístico

(Ben-Israel and Iyigun, 2008) y el clustering basado en modelos mixtos (ver por ejemplo

Bouveyron and Brunet-Saumard, 2014). Hasta donde sabemos, el primero no ha sido em-

pleado para llevar a cabo análisis cluster de series temporales, y el segundo se ha aplicado
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de una manera muy limitada. En concreto, sólo somos conscientes del trabajo de Chen

and Maitra (2011) donde se propone un enfoque basado en modelos para la agrupación

de datos de regresión en series temporales suponiendo que cada componente de la mixtura

sigue un modelo de regresión autorregresivo gaussiano de orden p. Por lo tanto, la explo-

ración de nuevos enfoques considerando D-clustering probabilístico y modelos mixtos para

realizar clasi�cación de series de tiempo es de interés por varias razones. El clustering D-

probabilístico es simple, requiere un pequeño número de iteraciones baratas y es insensible

a valores extremos.

En el Capítulo 5 se proponen dos nuevos procedimientos basados en modelos mixtos y D-

clustering probabilístico. El primero propone examinar el dominio de frecuencia y consid-

erar la representación asintótica del log-periodograma por medio de un modelo de regresión

no paramétrico con errores log-exponencialmente distribuidos. Suponiendo que las series

temporales dentro de un mismo cluster se caracterizan por una densidad espectral especí-

�ca, se puede de�nir una mistura �nita no paramétrica de modelos de regresión univariante

con una distribución de probabilidad conocida. La estimación del modelo mixto implica

aproximaciones no paramétricas de los log-periodogramas para cada cluster y estimaciones

de las probabilidades de pertenencia a los clusters. Para obtener estos estimadores, se ll-

eva a cabo un procedimiento de estimación de verosimilitud local (Tibshirani and Hastie,

1987) mediante la implementación de un algoritmo EM (Dempster et al., 1977). Como es

bien conocido, el algoritmo EM alterna entre dos etapas diferentes. En la (s+ 1)-ésima it-

eración, la etapa de expectación (E) calcula el valor esperado de las variables no observadas

indicando las probabilidades de cada serie temporal de pertenecer a cada cluster (variables

latentes), utilizando la distribución condicional de los valores actuales de los parámetros

obtenidos al �nal de la iteración s-ésima. En la etapa de maximización (M), los centros

de los clusters y las probabilidades a priori se calculan maximizando la log-verosimilitud

esperada construida en la etapa E. El algoritmo itera hasta lograr la convergencia. En este

caso, el paso E habitual requiere un criterio innovador para calcular las probabilidades a

posteriori con el �n de alcanzar soluciones interpretables en el contexto del clustering soft.

A diferencia de los enfoques fuzzy y de D-clustering probabilístico, el clustering basado

en modelos mixtos no requiere �jar una métrica para medir la disimilitud entre series de

tiempo y devuelve una partición soft sin especi�car un parámetro de fuzziness como los

procedimientos fuzzy.

El D-clustering probabilístico (Ben-Israel and Iyigun, 2008) se basa en la idea de que la

probabilidad de pertenencia a un cluster en cualquier punto es inversamente proporcional a

la distancia desde el centro del cluster en cuestión. Dado un objeto arbitrario x, el princi-

pio básico de este algoritmo es asumir que dk(x)pk(x) = cte (dependiendo de x), para todo
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cluster C, donde dk(x) y pk(x) indican la distancia de x al centro de C y la probabilidad de

que x sea un miembro de C, respectivamente. De esta manera, cuanto más cerca del centro

de un cluster, mayor es la probabilidad de pertenecer a ese cluster. A diferencia de los en-

foques basados en modelos, seleccionar una métrica adecuada aquí es muy importante para

obtener una partición satisfactoria. Los resultados en los Capítulos 3 y 4 apoyan la idea

de usar la distancia basada en las autocovarianzas cuantiles en el algoritmo D-clustering

probabilístico de series temporales. Esta intuición está plenamente con�rmada en los ex-

perimentos numéricos realizados en este capítulo. Del mismo modo el enfoque de modelos

mixtos, el algoritmo D-clustering probabilístico no necesita especi�car un parámetro de

fuzziness. Lo difusa que será la clasi�cación se determina automáticamente en términos de

distancias a los diferentes centros de los clusters. De hecho, esta es una propiedad muy

interesante, dada la notable in�uencia del parámetro de fuzziness observada en capítulos

anteriores.
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