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Abstract

Small area estimation deals with the estimation of parameters in small sub-

sets (small areas) of a global population. In the small areas, sample sizes are

usually too small since designs are developed for the original population. Con-

ventional modelling to high levels of disaggregation has too much error. Area-

level Poisson mixed models are useful tools for estimating discrete response vari-

ables in small areas, since they can capture part of the variability not collected

by the �xed e�ects. The basic Poisson mixed model is extended by incorpo-

rating �rst SAR(1) spatially correlated e�ects and second time e�ects. For the

temporal extension, two models are considered depending on the assumed time

correlation structure. The �rst model assumes that time e�ects are distributed

independently, while the second model considers that they are distributed ac-

cording to an AR(1) process. A spatio-temporal model including both spatial

and time extensions is also studied. Each model is �tted by the method of mo-

ments and two predictors of functions of �xed and random e�ects are obtained:

the empirical best predictor (EBP) and a plug-in predictor. Several simulation

experiments are carried out for empirically analysing the behaviour of the esti-

mators. As accuracy measure of the proposed EBPs, bootstrap mean squared

error estimators are given. Finally, the developed methodology and software

are applied in two �elds of practical interest: poverty mapping and forest �res.
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Resumo

A estimación en áreas pequenas ocúpase da estimación de parámetros en

subconxuntos pequenos (áreas pequenas) dunha poboación global. Nas áreas

pequenas, os tamaños mostrais habitualmente son demasiado pequenos, pois os

deseños lévanse a cabo para a poboación orixinal. O modelado convencional

a altos niveis de desagregación posúe demasiado erro. Os modelos mixtos de

Poisson de área constitúen unha ferramenta útil para estimar variábeis resposta

discretas en áreas pequenas, xa que poden capturar parte da variabilidade non

recollida polos efectos �xos. O modelo de Poisson mixto básico exténdese incor-

porando primeiro efectos espaciais SAR(1) e segundo efectos temporais. Para a

extensión temporal, considéranse dous modelos dependendo da estructura tem-

poral asumida. O primeiro modelo supón que os efectos temporais distribúense

de forma independente, mentras que o segundo considera que se distribúen

de acordo a un proceso AR(1). Tamén se estuda un modelo espazo-temporal

incluíndo ambas extensións espacial e temporal. Cada modelo axústase polo

método dos momentos e obtéñense dous predictores: o predictor óptimo em-

pírico (EBP) e un predictor plug-in. Lévanse a cabo varios experimentos de

simulacións para analizar empiricamente o comportamento dos estimadores.

Como medida de precisión dos EBPs propostos, dánse estimadores bootstrap do

erro cadrático medio. Finalmente, a teoría e o software desenvolvidos aplícanse

en dous campos de interese práctico: mapas de pobreza e incendios forestais.
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Resumen

La estimación en áreas pequeñas se ocupa de la estimación de parámetros en

subconjuntos pequeños (áreas pequeñas) de una población global. En las áreas

pequeñas, los tamaños muestrales habitualmente son demasiado pequeños, pues

los diseños se llevan a cabo para la población original. El modelado conven-

cional a altos niveles de desagregación posee un elevado error. Los modelos

mixtos de Poisson de área constituyen una herramienta útil para estimar vari-

ables respuesta discretas en áreas pequeñas, ya que pueden capturar parte de la

variabilidad no recogida por los efectos �jos. El modelo de Poisson mixto básico

se extiende incorporando primero efectos espaciales SAR(1) y segundo efectos

temporales. Para la extensión temporal, se consideran dos modelos dependiendo

de la estructura temporal asumida. El primero supone que los efectos tempo-

rales se distribuyen de forma independiente, mientras que el segundo considera

que se distribuyen de acuerdo a un proceso AR(1). También se estudia un mo-

delo espacio-temporal incluyendo ambas extensiones espacial y temporal. Cada

modelo se ajusta por el método de los momentos y se obtienen dos predictores:

el predictor óptimo empírico (EBP) y un predictor plug-in. Se llevan a cabo va-

rios experimentos de simulación para analizar empíricamente el comportamiento

de los estimadores. Como medida de precisión de los EBPs propuestos, se dan

estimadores bootstrap del error cuadrático medio. Finalmente, la teoría y el

software desarrollados se aplican en dos campos de interés práctico: mapas de

pobreza e incendios forestales.
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1.1 Linear mixed models

The linear regression model (LM) can be expressed as

y = Xβ + ε, (1.1.1)

where y is the response variable, X is the design matrix of known covariates, β is the

vector of unknown regression coe�cients and ε is the vector of errors. Under this model,

the regression coe�cients β are �xed. However, in practice there are many cases where

the observations are correlated, and then it makes sense to assume that some of these

coe�cients are random. For example, in animal breading and medical experiments, data

are usually collected from the same individuals over time. Then, it is necessary to take

into account the existence of a correlation structure among the observations from a same

individual.

Linear mixed models (LMMs) treat this type of correlation among observations. This
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methodology brings statistics to the next level. That is to say, unlike the classic statistics

where it is assumed that the observations belong to the same general population and are

independent and identically distributed (iid), mixed model data have a more complex mul-

tilevel structure (Demidenko, 2004). LMMs may assume that observations between levels

are independent, but observations within each level are dependent since they share infor-

mation of the subpopulation. They deal with two sources of information: between levels

and within levels. Overviews on this topic are provided by McCulloch et al. (2008); Jiang

(2007) and Demidenko (2004), among others.

A contemporary application of mixed models is the analysis of longitudinal data (Diggle

et al., 2002), where each time series represents a level, but they can be also used to treat data

with multiple sources of variation, repeated measures, biological variety and heterogeneity,

and image reconstruction problems.

Let us consider a practical example regarding economic studies (Demidenko, 2004), to show

how a LMM is useful for modelling the correlation structure of the observations. It deals

with the relationship between the response variable sales (y) and the auxiliary variable

price (x) of several products. Figure 1.1.1 (left) presents a scatter plot of the observations

{(xk, yk), k = 1, . . . , n}, where n represents the sample size. It revels that the relation

between x and y is close to the linearity and is inverse, that is to say the slope is negative.

Classical linear regression models assume that the pairs of iid observations (xk, yk) can be

modelled as

yk = u+ βxk + εk, k = 1, . . . , n,

where {εk} are iid random variables with zero mean and constant variance σ2
ε . However,

one can assume that data are clustered in factory products or clusters. In Figure 1.1.1

(right), data representing the same product are connected. This �gure suggests an opposite

behaviour to that observed in Figure 1.1.1 (left). That is, an increase in price leads to an

increase in sales.

LMMs assume that each product d, d = 1, . . . , D, has associated an unobservable speci�c

random e�ect, i.e.

ydj = ud + βxdj + εdj , d = 1, . . . , D, j = 1, . . . , nd, (1.1.2)

where ydj and xdj denote the response and the auxiliary variable of the jth observation

of the dth product, ud is the product-speci�c intercept, nd is the sample size of the dth

product and εdj are the error terms. As in the previous case, we assume that they are iid
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Linear mixed models 1.1

Figure 1.1.1: Relationship between the response variable sales (y) and the covariate price (x)
in several products. The results under classical statistics (left) shows that the relationship
between observations (iid) is negative, while under the mixed e�ects approach (right), where
it is assumed that each product represents a cluster, the relationship is positive, i.e. an
increase in price leads to an increase in sales. Source of information: Demidenko (2004).

with zero mean and variance σ2
ε . The random e�ects ud, d = 1, . . . , D, are assumed to be

iid with mean zero and variance σ2
u, and independent of the error terms {εdj}. Therefore,

the correlation between two observations of the same individual (product) is

ρ =
var(ud)

var(ud + εdj)
=

σ2
u

σ2
u + σ2

ε

,

while observations from di�erent individuals are uncorrelated. The sample size nd of each

product d, d = 1, . . . , D, ful�lls
∑D

d=1 nd = n.

The LMM (1.1.2) can be expressed in matrix notation as

y = Xβ +Zu+ ε, (1.1.3)

where y is the response vector of observations,X is the design matrix of covariates (known),

β is the vector of unknown regression coe�cients, Z is the incidence matrix (known), u

is the vector of random e�ects and ε is the error vector of random perturbations. The

di�erence between the LMM (1.1.3) and the LM (1.1.1) is Zu. The basic assumptions

for the LMM (1.1.3) are that both random e�ects and errors have mean zero and �nite

variances. If Σu and Σε denote the covariances of u and ε respectively, then the covariance

3
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matrix of the response vector is

V = var [y] = ZΣuZ
t + Σε.

The covariance matrix of the random e�ects, Σu, depends on some parameters called

variance components.

Historically, the maximum likelihood (ML) and the restricted maximum likelihood (REML)

estimators have become the most common strategies for estimating the model parameters

under the LMMs.

The ML method was �rst used by Hartley and Rao (1967). The main reason for the delay

in adapting the ML method to mixed models is because the estimation of the variance

components was not easy to handle computationally in the old days (Jiang, 2007).

Under a Gaussian mixed model, the distribution of the response variable y is N(Xβ,V ),

and then its probability density function (p.d.f.) is

f(y) =
1

(2π)n/2 |V |1/2
exp

{
−1

2
(y −Xβ)′ V −1 (y −Xβ)

}
,

where n is the dimension of y. The log-likelihood of y under the LMM is

`(β,V ) = −1

2

{
n log(2π) + log |V |+ (y −Xβ)′ V −1 (y −Xβ)

}
. (1.1.4)

Then, the ML estimate of (β,V ) is the one that maximizes the log-likelihood (1.1.4). Given

V , `(β,V ) is maximized over β by

β̃ =
(
X ′V −1X

)−1
X ′V −1y. (1.1.5)

For y having a general distribution, the estimator (1.1.5) can be shown as the best linear

unbiased estimator (BLUE) of β (Rupert et al., 2008). On the other hand, if y is mul-

tivariate normal, then (1.1.5) is also the uniformly minimum variance unbiased estimator

(UMVUE).

By substituting (1.1.5) in (1.1.4), we obtain the pro�le log-likelihood for the covariance V

(see p. 101 in Rupert et al. (2008) for more details), i.e.
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`P (V ) = −1

2

{
log |V |+

(
y −Xβ̃

)′
V −1

(
y −Xβ̃

)
+ n log(2π)

}
= −1

2

{
log |V |+ y′V −1

[
I −X

(
X ′V −1X

)−1
X ′V −1

]
y
}
− n

2
log(2π).

(1.1.6)

The ML estimates of the variance components involved in V are obtained by maximizing

the pro�le log-likelihood (1.1.6) over those parameters. As there is no closed expression, it is

required the use of iterative methods. Among others, it is common to use Newton-Raphson

(NR) or Fisher scoring (FS) algorithms.

The REML criterion (Searle et al., 1992) involves maximizing the restricted log-likelihood

`R(V ) = `P (V )− 1

2
log
∣∣X ′V −1X

∣∣ .
The main advantage of REML criterion over the ML estimator is that the �rst one takes

into account the degrees of freedom of β in the model. For small sample sizes, REML is

preferable to ML, since ML is biased for the estimation of variance components, but for

large sample sizes, the di�erence between the two approaches is negligible.

The vector of random e�ects u can be predicted through its best linear unbiased predictor

(BLUP). The BLUP of the random e�ects is

ũ = ΣuZ
′V −1

(
y −Xβ̃

)
. (1.1.7)

In practice, as the BLUE of β and the BLUP of u depend on the theoretical covariances

Σu and Σε, β̃ and ũ are replaced by β̂ and û, where

β̂ =
(
X ′V̂

−1
X
)−1

X ′V̂
−1
y,

û = Σ̂uZ
′V̂
−1
(
y −Xβ̂

)
.

They are obtained replacing in (1.1.5) and (1.1.7), the theoretical covariances V and Σu

by their estimates, for example using ML or REML estimation procedures. We refer to

the estimator β̂ and the predictor û as empirical BLUE (EBLUE) and empirical BLUP

(EBLUP) of β and u respectively.
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1.2 Generalized linear mixed models

The generalized linear models (GLMs) extend the classical LMs (1.1.1) of normal response

variables. The generalization is done in two senses:

� The distribution of the response y is allowed to be di�erent from normal. Speci�cally,

it is assumed that the distribution belongs to the exponential family.

� A function not necessarily linear of the mean of the response variable y is modelled

linearly, i.e.

g (E [y]) = Xβ,

where g is the link function and Xβ is the linear predictor.

The GLMs include as particular cases, among others, the LMMs, analysis of variance,

logistic regression and Poisson regression. GLMs can be derived from the exponential

family distribution with probability density function

fθ,φ(y) = f(y;θ, φ) = exp

{
yθ − b(θ)

a(φ)
− c(y,θ)

}
,

where a(.), b(.) and c(.) are speci�c functions of each distribution, φ ∈ R, a(φ) > 0 and

θ ∈ Rp. The parameter θ is called the linear predictor and φ the scale parameter. The

logistic and Poisson mixed models can be obtained with speci�c forms of the exponential

p.d.f. fθ,φ(y) and the link function g.

The generalized linear mixed model (GLMM) is an extension of the GLM that incorporates

random e�ects. In recent years, GLMMs have achieved great popularity for modelling

binary/count clustered and longitudinal data. Assuming that the response variables, ydj ,

conditional to the random e�ects ud, are independent and belong to the exponential family

distribution with the unit scale, where ud ∼ Nk(0,Σu), the log-likelihood under GLMM

(Demidenko, 2004) takes the form

`(β,Σu) = −Dk
2

log(2π)− D

2
log |Σu|

+

D∑
d=1

log

∫
Rk

exp

{
`d(β,u)− 1

2
u′Σ−1

u u

}
du,

(1.2.1)

where

`d(β,u) =

nd∑
j=1

[(
β′xdj + u′zdj

)
ydj − b

(
β′xdj + u′zdj

)]
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Small area estimation 1.3

is the dth conditional log-likelihood. The ML estimator of the vector of parameters of a

GLMM maximizes the log-likelihood (1.2.1). The ML estimator is consistent when the

number of levels or clusters, D, goes to in�nity, while the number of observations per

cluster, nd, remains uniformly bounded. An important advantage of the ML approach is

that generates estimates of all model parameters (�xed e�ects and variance parameters)

and predictions of the random e�ects. To maximize the log-likelihood function (1.2.1),

Newton-Raphson, Fisher scoring or EM algorithms can be used. The updating equation of

the �rst two algorithms can be expressed in the generic form

β̂s+1 = β̂s + λsH
−1
s

(
∂`

∂β

∣∣∣∣
β=βs

)
,

where 0 < λs ≤ 1 is a step length. The matrix H is the negative Hessian under NR

and the expected negative Hessian under FS algorithm. It is an integral that requires

numerical calculation. Integral approximation techniques as Laplace (LA), penalized quasi-

likelihood (PQL), adaptive Gauss-Hermite, Monte Carlo methods and numerical integration

(trapezoid, Simpson rules, etc.) can be used in combination with iterative algorithms to

obtain an ML estimator (Pinheiro and Bates, 1996; Breslow and Clayton, 1993; Demidenko,

2004).

In some cases, ML-based estimators may lead to inconsistent and biased estimators. Jiang

(1998) proposes the method of simulated moments (MSM) as an alternative approach to

estimate the parameters in GLMMs. This method is computationally attractive and gives

consistent estimators of the model parameters. This is why, Chapters 2-5 apply the MSM

method to estimate the parameters of the considered Poisson mixed models.

1.3 Small area estimation

Small area estimation (SAE) is a branch of statistics involving the estimation of parameters

in small subsets (called small areas or domains) of an original population. A small area

usually refers to a small geographic area (such as a county, a municipality or a census

division), a demographic group (e.g. a speci�c age × sex × race group), a demographic

group within a geographic region, etc. Frequently, sample sizes within small areas are too

small since sampling designs are developed for the original population. In this context, the

estimators of population parameters have the desired precision at population level but not

at the domain level.
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The direct estimators of domain parameters use only the data information of the considered

domain. Horvitz and Thompson (1952) introduced a simple design-unbiased direct estima-

tor of a domain mean as a sum of the sample values of the target variable multiplied by the

sampling weights. By using weight calibration and non response correction methods, many

new weighted direct estimators can be found in the literature. The direct estimators do not

use cross-sectional or temporal data. However, they are basically unbiased with respect to

the sampling design distribution but with a big variance in small area estimation problems.

Their estimated variances and coe�cients of variation are usually greater than the ones of

other more sophisticated estimators. The �nding of these improved estimators is one of the

main target of SAE researchers.

The �rst reviews on small area estimation focus on demographic methods for estimating

the population in post-census periods. Purcell and Kish (1979) propose statistical methods

for estimating small-domain characteristics. In the �eld of biomedicine, the use of maps

to study disease patterns in small areas has been used for a long time (Marshall, 1991).

More recently, we can �nd a great number of works that describe and detail exhaustively

the existing theory of small area estimation. Among them, the review papers of Rao (1986,

1999, 2008), Ghosh and Rao (1994), Pfe�ermann (2002), Lahiri and Meza (2002), Jiang

and Lahiri (2006), Pfe�ermann (2013), and the monographs of Muckhopadhyay (1998),

Rao (2003) and Rao and Molina (2015).

Small area estimation techniques can be divided into three types of methodologies: design-

based, model-assisted and model-based methods. The three branches introduce and study

estimators that are competitors of the direct estimators. The design-based approach to

small area estimation looks for indirect estimators (basic synthetic, post-strati�ed, sample

size dependent and son on) with good properties with respect to the sampling design distri-

bution. They employ auxiliary information from external data sources (from outside of the

target domain), but they do not rely explicitly on models. For example, if the population

sizes of domain crossed by sex-age groups are available from external data registers, then

this information can be used for evaluating estimators that could provide better estimates

than the direct ones. The design-based indirect estimators are optimized with respect to

the sampling distribution. Design-based methods often use implicit models, although the

bias and the variance of estimators are calculated with respect to the sampling design dis-

tribution (Lehtonen and Veijanen, 2009; Pratesi, 2016). Some indirect estimators using

implicit models are discussed in Rao (2003).

In the case of having auxiliary data related to the target variable, it is possible to obtain
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better accuracy for domain estimates by using explicit models, when compared to an esti-

mation procedure not using auxiliary data. The model-assisted methodology considers the

properties under the design-based distribution, but employs explicit models to motivate

the choice of estimators. Important examples of model-assisted estimators are the gener-

alized regression (GREG) estimator and the calibration estimator introduced by Deville

and Sarndal (1992) or the LGREG estimator introduced by Lehtonen and Veijanen (1998).

The GREG estimator uses a linear model as an assisting tool, estimates the domain mean

of a continuous variable and is constructed to be design-unbiased (or approximately so)

irrespectively of the �t of the model to data. The LGREG is a domain proportion estima-

tor assisted by a logistic regression model. Di�erent types of auxiliary data can be used

in model assisted estimation. The GREG and the LGREG estimators employ auxiliary

variables from survey �les and their aggregated from administrative registers. They are

estimators with a good balance between properties related with the design-based and the

model-based distributions.

The model-based approach assumes that the data is generated by a true model and therefore

the inferences should be based on it. The use of explicit models in SAE gives an idea of

how di�erent sources of information are combined (Fuller, 1975; Fay and Herriot, 1979; Holt

et al., 1979; Datta, 2009). This approach can introduce estimators that may employ cross-

sectional and temporal auxiliary information and that can take into account for temporal

and spatial correlation. The estimator has optimal properties with respect to the true model

distribution. An important issue of this approach is the selection and the diagnostics of the

selected model. A model with a good �t to data guarantees good model-based estimators

with lower mean squared errors than the design based estimators.

Based on the level of aggregation of the response variable, the small area models can be

classi�ed into two groups: (i) area level-models and (ii) unit-level models. The basic SAE

unit-level model is the nested error regression (NER) model. Battese et al. (1988) applied

this model to the prediction of United States county crop areas using survey and satellite

data. Since then, the empirical best linear unbiased predictors (EBLUP) of domains means

based on the NER model are being widely applied. Concerning poverty estimation, Molina

and Rao (2010) derived empirical best predictors (EBP) of non linear parameters based on

the NER model, with applications to the estimation of poverty incidences and gaps. Hobza

and Morales (2016) studied EBPs of poverty incidences based on unit-level logit mixed

models. Tzavidis et al. (2008) and Marchetti et al. (2012) gave M-quantile estimators for

poverty mapping. The SAE literature on unit-level model-based methods covers many

other estimators employing non parametric, robust or Bayesian regression procedures.
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The basic area-level model is the Fay-Herriot model. Fay and Herriot (1979) used an area

level linear mixed model to estimate the per-capita income in small places of U.S. Several

generalization of the Fay-Herriot model have been applied to poverty estimation. For ex-

ample, Esteban et al. (2012a,b), Marhuenda et al. (2013) and Morales et al. (2015) gave

EBLUPs of Spanish poverty proportions based on temporal and spatio-temporal linear

mixed models. Concerning GLMMs, Boubeta et al. (2016b, 2017b) and López-Vizcaíno

et al. (2013, 2015) introduced EBPs of counts and proportions based on Poisson and

multinomial-logit area-level mixed models with applications to Spanish data and Chandra

et al. (2017) gave small area predictors of counts under a non-stationary spatial GLMM

model.

The methodological developments achieved in this manuscript are obtained under the group

(i) of area-level models. In practice there is a large number of applications in area-level

models. One of the main reasons is due to the secrecy of con�dentiality. Statistical o�ces

usually can not display data at the individual level but they can disseminate it aggregated

by regions. Area-level models are used in socioeconomic, environment, biology and health

sciences, among others. In addition, they have evolved over time adapting to the needs

of the data (including temporal e�ects or spatial correlation), giving rise to increasingly

�exible models but, on the other hand, more di�cult to estimate.

As we say above, the Fay-Herriot (FH) model is the basic model of the area-level approach

to small area estimation. This model is de�ned in two stages

� Level 1 (sampling model): yd|µd
ind∼ N(µd, σ

2
d), d = 1, . . . , D;

� Level 2 (linking model): µd
ind∼ N(xdβ, σ

2
u), d = 1, . . . , D,

where D denotes the total number of areas or domains, d denotes a particular domain and

the variances σ2
d are assumed to be known. Usually, in the FH model the response variable,

yd, is an estimator of the sample mean of individuals belonging to the domain d. The

previous model can be expressed as an area-level linear mixed regression model, i.e.

yd = µd + εd = xdβ + ud + εd, d = 1, . . . , D,

where ud's and εd's are independent with ud
i.i.d.∼ N(0, σ2

u) and εd
ind∼ N(0, σ2

d), and xd =

(xd1, . . . , xdp) is the row vector containing the values of the aggregated auxiliary variables

at domain d. The FH model can be written in the LMM matrix form

y = Xβ +Zu+ ε,

10



Small area estimation 1.3

where y = col
1≤d≤D

(yd), X = col
1≤d≤D

(xd), Z = ID, u = col
1≤d≤D

(ud) and ε = col
1≤d≤D

(εd). Here,

Ia denotes the a× a identity matrix and col
1≤d≤D

denotes the column operator.

A popular estimator of µd, d = 1, . . . , D, under the FH model is the best linear unbiased

predictor. The BLUP of µ = (µ1, . . . , µD)′ is the one that minimizes the mean squared

error (MSE) in the set of unbiased predictors and it is given by

µ̃ = Xβ̃ + ΣuV
−1
(
y −Xβ̃

)
, (1.3.1)

where β̃ =
(
XtV −1X

)−1
XtV −1y, Σu = var(u) and V = var(y). The EBLUP of µ is

obtained by substituting in (1.3.1) the unknown covariance matrices Σu and V by Σ̂u and

V̂ respectively, i.e.

µ̂ = Xβ̂ + Σ̂uV̂
−1
(
y −Xβ̂

)
,

where β̂ =
(
XtV̂

−1
X
)−1

XtV̂
−1
y. Another estimator commonly used in practice is the

plug-in estimator. It is given by

µ̂P = Xβ̂ + û,

where û denotes a predictor of the vector of random e�ects u = (u1, . . . , uD)′. Further, µ̂P

is the EBLUP of µ if û is the EBLUP of u.

A simpli�ed version of the plug-in estimators are the synthetic estimators, which use the

knowledge of the population structure to improve the e�ciency of estimators based only

on the sample design. They assume a linear model for the data and then, the values that

have not been sampled, are estimated from the implicit model using only the information

of the available covariates, i.e.

ŷsyn = Xβ̂.

Note that these estimators do not use the random e�ects, that is, they assume no variations

between areas. Under implicit models, frequentist and Bayesian approaches can be used

for inference (Datta and Ghosh, 1991; Ghosh et al., 1998).

The FH model can be extended to the GLMM context by assuming that the distribution

of the response variable yd belongs to the exponential family and that its expectation,

transformed by the link function g, is modelled linearly, i.e.

g(E [yd]) = xdβ + ud, d = 1, . . . , D.

In particular, this manuscript deals with the calculation of the EBP of E[yd] under area-level

11
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Poisson mixed models, with the natural logarithmic link function. Therefore, the target

variable counts events of interest by domains. The EBP is the natural extension of the

EBLUP from LMMs to GLMMs.

1.4 Description of the databases

This section introduces the three databases that are used throughout the document. Two

of them are of socio-economic nature while the other one is of environmental type. These

data sets are employed to illustrate the methodology developed in this manuscript.

1.4.1 Socio-economic databases

Almost every fourth person was at risk of poverty or social exclusion in the European Union

(EU) during 2014 (Eurostat, 2016). For reducing this amount, the EU set national targets

between all its members. Most European countries use the Living Conditions Survey (LCS)

to estimate poverty indicators. The Spanish Living Conditions Survey (SLCS) provides

information regarding the household income received during the year prior to that of the

interview. For every individual, the equivalent personal income is obtained by dividing

the annual household net income by the equivalent total of household members, which is

obtained as a weighted sum assigning weights 1 to the �rst adult, 0.5 to remaining adults and

0.3 to children under 14 years of age. This survey has a planned sample size large enough

for obtaining reliable direct estimates for autonomous communities, but not for provinces

or counties. Small area estimation deals with this kind of problems by introducing indirect

estimators.

The poverty line is de�ned as a percentage (currently Eurostat �xed it to 60%) of the

median of the equivalent personal incomes in the whole country. A person is de�ned as

poor if his/her equivalent personal income is lower than the poverty line. At the unit level,

the target variable is dichotomic and takes the values ydj = 1 if individual j of domain d is

under the poverty line and ydj = 0 otherwise.

The poverty rate is the proportion of people under the poverty line. This is a relative

measure depending on the incomes of all the household members. Therefore, employment

policies, education and welfare can have a signi�cant impact on levels of poverty rate. Policy

makers are interested in �nding out which factors are more in�uential for poverty in order

to act on them.
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Both employed socio-economic datasets record information from the SLCS. The �rst one

collects the information at national level by provinces in 2008, while the second one is

focused on the counties of the autonomous community of Galicia (located in the North-

West of Spain) during 2010 − 2013. The datasets at the individual level are provided by

the Instituto Nacional de Estadística (INE) and the Instituto Galego de Estatística (IGE)

respectively, and the area-level aggregation is of own elaboration.

Figure 1.4.1 shows the evolution of the poverty rates for men (left) and women (right) by

age ranges in Spain from 2004 to 2012. Since the beginning of the crisis in 2008, the poverty

proportion has increased signi�cantly, except for people over 65, which is the age range that

behaves better with respect to poverty.
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Figure 1.4.1: Poverty rate for men (left) and women (right) by age ranges in Spain from
2004 to 2012. Source of information: INE.

On the other hand, Figure 1.4.2 compares poverty rates in Galicia and Spain by sex. The

results for men are represented by solid lines, while for women are in dashed lines. Until

2008, the poverty rate is approximately constant in both Galicia and Spain. In the following

years, the proportion of people at risk of poverty increases signi�cantly. Regarding the

comparison with Spain, the poverty rate is close to 20% in Spain and to 15% in Galicia. In

addition, the poverty rate is higher for women.

Both databases contain aggregated information regarding the household income at area

level. The small areas (domains) in both databases are the Spanish provinces (50 provinces)

and the Galician counties (53 counties), or the provinces and the counties crossed by sex,

respectively. The �rst dataset also considers the autonomous cities of Ceuta and Melilla.
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Figure 1.4.2: Poverty rate in Galicia and Spain from 2004 to 2012 (� for men and - - - for
women). Sources of information: INE and IGE.

The domain sample sizes and totals are nd and yd =
∑

j∈sd ydj respectively, i.e. yd counts

the number of people (by sex) under the poverty line in the domain sample sd, d = 1, . . . , D

(D = 50 provinces or D = 53 counties depending on the dataset). The available auxiliary

variables in both databases are the area proportions of people (by sex) in the categories of

the following classi�cation variables.

� Age: ≤ 15 (age0), 16− 24 (age1), 25− 49 (age2), 50− 64 (age3) and ≥ 65 (age4).

� Education: less than primary (edu0), primary (edu1), secondary (edu2), university

(edu3).

� Citizenship: Spanish (cit0), not Spanish (cit1).

� Labour situation: ≤ 15 (lab0), employed (lab1), unemployed (lab2), inactive (lab3).

As the proportions of people in the categories of classi�cation variables sum up to one,

we take the reference categories out of the data �le of auxiliary variables. The reference

categories are age0, edu0, cit0 and lab0. Regarding the level of education, we note that

people that have passed the national programme of professional training courses typically

have good job opportunities at the industry and services labour sector. As these people are

in group edu2, we merge secondary and university education levels into a single category

edu23. This proposal, suggested by a Spanish O�ce of Statistics (INE), is only carried out

in the �rst database.
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1.4.2 Forest �res database

The forest area of Galicia is 2, 060, 453 hectares (ha). It represents 69% of the region,

which makes it one of the Spanish communities with more woodland. Several authors

have studied the characteristics of forest owners and the productive capacity of the region

(Marey-Pérez et al., 2006; Marey-Pérez and Rodríguez-Vicente, 2008; Rodríguez-Vicente

and Marey-Pérez, 2009a, 2010; Marey-Pérez et al., 2012). They concluded that there are

many owners with small and very productive plots and a signi�cant presence of collective

forest land and no presence of public forest ownership. The �rst problem of the forestry

sector is forest �res: there were 249, 387 wild�res registered since 1968, the year in which

forest �re statistics started, until December 2012. These �res swept an area of 1, 794, 578

ha, equivalent to 61% of the geographical area of the region.

The original forest �res database is provided by the Ministerio de Agricultura y Pesca,

Alimentación y Medio Ambiente of the Spain Government (MAPAMA, 2017), and the area-

level aggregation is of own elaboration. It contains a total of 85, 134 �re events registered in

the database for the period 1999− 2008, regardless of their size. In addition to the spatial

location and the date of occurrence of the ignition points, we use two marks: burned area

and cause.

The alphanumerical information about the wild�res registered in the study area corre-

sponded to the ignition point coordinates, which were translated to the actual land area

with the aid of GIS. Subsequent data quality control con�rmed the information about the

attributes of the burned area (forest species composition, parish and land use) with existing

data from the area in the year of �re. Therefore, Ignition Point UTM (Universal Transverse

Mercator) coordinates were available for each �re and other measures of interest attached

to these coordinates. These measures are related to burned material, vegetation type, �re

behaviour, �re extinction, �re damage and possible �re causes.

Figure 1.4.3 plots the annual totals of forest �res occurrences in Spain, Galicia and rest of

Spain during the period 1980− 2008. These data are taken from the web of Ministerio de

Agricultura y Pesca, Alimentación y Medio Ambiente of the Spain Government (MAPAMA,

2017), and show that there have been as many �res in Galicia as in the rest of Spain during

this period.

The employed database aggregate the information given in the original database by forest

area and month. Forest areas constitute an administrative structure of the �re-�ghting

system since 1999. Currently, Galicia is divided into 63 forest areas. For each area, our data
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Figure 1.4.3: Fires in Spain, Galicia and rest of Spain during 1980-2008.

set contains the numerical values of the target variable number of �res and some auxiliary

variables from 2006 to 2008. We consider two sources of auxiliary information depending on

their structure. First, we consider information as population size (pop), number of cadastral

parcels (par), number cadastral holders (cadHold), livestock units (lu), percentage of land

with scrub or bush vegetation (scrub), percentage of wet lands (wet) and percentage of wood

lands (wood) per forest areas. These auxiliary variables only depends on the areas in the

considered period, i.e. they are constant over time. Second, we take average measurements

of meteorological stations per month and forest areas. Speci�cally, we have accumulated

rain (acumRain), average temperature (averTemp) and days without rain (dwr).

1.5 Overview of the manuscript: structure and contributions

This manuscript deals with small area estimation techniques by using area-level generalized

linear mixed models. Speci�cally, we consider count response variables and, in consequence,

our family of models is restricted to area-level Poisson mixed models. Several extensions of

the basic area-level Poisson mixed model are considered incorporating spatial correlation,

temporal components and spatio-temporal correlation. Di�erent targets are addressed. The

�rst target is developing algorithms for estimating the model parameters. We focus on the

method of moments (MM), which is based on the method of simulated moments proposed in

Jiang (1998). This method is a competitive alternative, since it is computationally attrac-

tive and gives consistent estimators of model parameters. The second target is obtaining

the EBP of functions of �xed and random e�ects under the Poisson mixed models. We fur-

ther compare the proposed predictor against other existing predictors in the literature such

16



Overview of the manuscript: structure and contributions 1.5

as plug-in or direct estimators. We also provide error measures for the proposed predictors.

Throughout the manuscript, two applications to real data are simultaneously carried out to

illustrate the methodology. The �rst one has a socio-economic scope and the second one has

an environmental character. Regarding the socio-economic applications, for the simplest

area-level Poisson mixed model we use the Spanish socio-economic database. However, we

use the Galician socio-economic database for the more complex Poisson models.

This work is organized as follows. Chapter 2 introduces the basic area-level Poisson mixed

model and the employed �tting algorithms. Speci�cally, we consider the method of mo-

ments, Laplace and PQL. For estimating the target domain parameters, we propose the

EBP and a plug-in predictor. As error measure, we introduce three MSE estimators: two

analytical approximations and a bootstrap-based approach. Analytical approximations of

the MSE are only proposed in this chapter due to their computational complexity. The re-

sults of this chapter are collected in the statistical journal Test (Boubeta et al., 2016b) and

in the Journal of Environmental Management (Boubeta et al., 2015). The basic model is

extended to SAR(1) spatial correlation in Chapter 3 and to temporal correlation in Chapter

4, giving rise to the work in Computational Statistics and Data Analysis (Boubeta et al.,

2017b). For the temporal model, we consider independent and AR(1)-correlated time ef-

fects. Chapter 5 introduces a general model incorporating a spatio-temporal correlation

structure. For each generalization of the basic area-level Poisson mixed model, we obtain

the MM estimator for the vector of model parameters and the EBP and a plug-in predic-

tor of the domain parameters of interest (counts and proportions). The behaviour of the

proposed estimators and predictors are empirically investigated through simulation studies.

As error measure for these EBPs, we propose algorithms based on parametric bootstrap

procedures. Finally, Chapter 6 collects the main conclusions of this manuscript.
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Chapter 2

The area-level Poisson mixed model
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2.1 Introduction

Poisson regression and binomial-logit models are GLMs that are used for counts, i.e. for

target variables counting some event of interest (like number of people under poverty line

by provinces or number of �res by forest areas). In these models the assumption of linearity

is relaxed in the sense that a function, called link function, of the mean of the observations

is linear in some set of covariates. The normality assumption is also relaxed by assuming

that the distribution belongs to the exponential family.

Sometimes the GLM cannot explain the variability of the target variable through the se-

lected auxiliary variables. It may happen that observations from di�erent domains are
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2 The area-level Poisson mixed model

independent, but observations within the same domain are dependent because they share

common properties. The GLMMs are extensions of GLMs that capture the variability be-

tween domains by introducing random e�ects. The random e�ects are usually assumed to

be normally distributed.

Despite the usefulness of GLMM, inferences based on these models have some computational

di�culties because the likelihood may involve high-dimensional integrals which cannot be

evaluated analytically. Several methods have been proposed to overcome this problem, most

of them relying on the Taylor linearization and/or on the Laplace's method for integral

approximations (see the review of Jiang and Lahiri (2006)). EM-type algorithms assisted

by Monte Carlo methods are also applied. The PQL algorithm (Breslow and Clayton, 1993;

Lin, 2007; MacNab and Lin, 2009) is used in combination with a Gaussian approximation of

the marginal density that provides approximate maximum likelihood estimators of variance

components. Unfortunately, in some cases the PQL method may lead to inconsistent and

biased estimators (Jiang, 1998).

This chapter studies an area-level Poisson mixed model. Three procedures are used for

�tting the proposed GLMM: the method of moments, the PQL and ML-Laplace algorithms.

Especial attention is paid to the �rst procedure, which is based on the method of simulated

moments introduced by Jiang (1998). This method is computationally attractive and gives

consistent estimators of model parameters. The latter two are used only in this chapter for

comparative purposes. These algorithms are programmed by using functions implemented

in the statistical software R. However, the application of these functions is restricted to

some basic mixed models and do not cover all the �tting procedures.

Empirical best predictors, based on area-level Poisson mixed models, are derived for esti-

mating count indicators. The statistical methodology is taken and adapted from Jiang and

Lahiri (2001) and Jiang (2003), where EBPs of functions of �xed e�ects and small area

speci�c random e�ects were developed in the context of logistic mixed models and GLMM

respectively. In addition to the EBPs, plug-in estimators are considered and empirically

studied in simulation experiments.

We consider the MSE as an accuracy measure of the EBP. The estimation of the MSE is not

an easy task. Prasad and Rao (1990) studied the accuracy of a second-order approximation

to the MSE of the EBLUP for three special cases of linear mixed models: Fay-Herriot model,

nested error regression model and random regression coe�cient model. Jiang and Lahiri

(2001) and Jiang (2003) studied the approximation of the MSE of the EBP in the context of

binary and GLMM data. Their approach is based on Taylor series expansions. They further
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gave a second-order bias corrected estimator of the MSE. We adapt the MSE calculations

given by Jiang and Lahiri (2001) and Jiang (2003) to the case of area-level Poisson mixed

models. The obtained MSE approximation gives an accuracy measure for the EBP. We also

give two analytical estimators of the MSE approximation, without and with bias-correction

term. As the analytical estimators of MSE are computationally expensive in practice, we

consider the parametric bootstrap estimator introduced by González-Manteiga et al. (2007)

and González-Manteiga et al. (2008a) in the context of logistic and normal mixed models

and later extended by González-Manteiga et al. (2008b) to a multivariate area-level model.

We carry out a simulation experiment for empirically investigating the behaviour of the

MSE estimators.

For estimating small area counting indicators, area-level versions of GLMM with logit link

function, and with combination of PQL and REML for estimation of unknown parameters

have been considered by Saei and Chambers (2003), Johnson et al. (2010), López-Vizcaíno

et al. (2013) and López-Vizcaíno et al. (2015). They use plug-in model predictors and give

an analytical approximation to the true MSE.

Poisson-log mixed models and binomial-logit mixed models are competitor models for count

data at the area level. For a given real data set, it is interesting to compare domain

predictors (EBP or plug-in) based on these models. Note also that the Fay-Herriot model

might also be a competitor. This is because of the asymptotic relationships between the

Poisson, the binomial and the normal distribution. In our application to real data we are

mainly interested in studying the behaviour of the estimators introduced in this chapter

(EBP or plug-in based on the Poisson model). Nevertheless, we also include the well known

EBLUP based on the Fay-Herriot model.

The chapter is organized as follows. Section 2.2 introduces the area-level Poisson mixed

model and the employed �tting algorithms (MM, PQL and ML-Laplace) are described in

Section 2.3. Section 2.5 presents the EBP and the plug-in estimators of functions of �xed

and small area speci�c random e�ects. Section 2.6 gives an approximation to the MSE of

the EBP and three estimators. The �rst two MSE estimators are plug-in derivations of

the MSE approximation without and with bias correction term. The third MSE estimator

is based on a parametric bootstrap. Section 2.8 presents a complete simulation study,

evaluating the performance of the model-based estimators under model-based and design-

based simulations. In both cases, the simulations mimic the �rst real data study case.

Section 2.9 applies the developed methodology to data from the SLCS in 2008 and from

forest �res in Galicia during 2007. Finally, Section 2.10 contains the main conclusions of
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2 The area-level Poisson mixed model

this chapter.

2.2 The model

This section introduces an area-level Poisson mixed model and some �tting algorithms. Let

D be the number of small areas or domains, with d = 1, . . . , D. Let {vd : d = 1, . . . , D}
be a set of i.i.d. N(0, 1) random e�ects. In matrix notation, we have v = (v1, . . . , vD)′ ∼
ND(0, ID), where ID is the D ×D unit matrix. We have that

fv(v) = (2π)−D/2 exp

{
−1

2
v′v

}
.

We assume that the distribution of the target variable yd, conditionally on the random

e�ect vd, is

yd|vd ∼ Poiss(µd), d = 1, . . . , D,

where µd > 0. The Poisson distribution is closely related to the binomial distribution

since it can be derived as a limiting case when the number of trials goes to in�nity and

the probability of the event of interest is su�ciently small. Therefore, we have that µd =

νdpd, where νd is the (known) size variable and pd is the binomial probability. As νd is

known, pd is the target parameter since it univocally determines the Poisson parameter µd.

Consequently, we focus on obtaining an estimator of pd.

For the natural parameter, we assume

Model 1: ηd = logµd = log νd + xdβ + φvd, d = 1, . . . , D,

where β = col
1≤k≤p

(βk) is a column vector of �xed regression coe�cients and xd = col′
1≤k≤p

(xdk)

is the row vector containing the p auxiliary variables. Further, we assume that the yd's are

independent conditionally on v. It holds that

P(yd|v) = P(yd|vd) =
1

yd!
exp{−νdpd}νydd p

yd
d ,

where pd = exp {xdβ + φvd}. The probability function of the response variable y is given

by

P(y) =

∫
RD

P(y|v)fv(v) dv =

∫
RD

D∏
d=1

P(yd|vd)fv(v) dv =

∫
RD

ψ(y,v) dv,
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where

ψ(y,v) = c
D∏
d=1

exp{−νdpd}νydd exp {yd(xdβ + φvd)}
yd!

= c

(
D∏
d=1

yd!

)−1

exp

{
p∑

k=1

(
D∑
d=1

ydxdk

)
βk + φ

D∑
d=1

ydvd +
D∑
d=1

{
− νdpd + yd log νd

}}

and c = (2π)−
D
2 exp

{
−v′v

2

}
.

The previous model, Model 1, can be seen as a generalization of the classical Poisson model

without random e�ects, i.e.

Model 0: ηd = logµd = log νd + xdβ, d = 1, . . . , D.

Model 0 corresponds to a particular case of Model 1. Both match when the variance

parameter φ in Model 1 is equal to zero.

2.3 Fitting algorithms

To �t the area-level Poisson mixed model, we consider three alternatives: the method of

moments (MM), the penalized quasi-likelihood (PQL) and the ML-Laplace (LA) approxi-

mation to the likelihood.

The LA algorithm works in two steps iteratively. Step 1 approximates the model log-

likelihood and Step 2 maximizes the approximated log-likelihood. The output of the algo-

rithm gives approximate ML estimators of the model parameters and predictions (modes) of

the random e�ects. This is an e�cient algorithm when the model likelihood is a univariate

integral. In that case, the Laplace approximation to the likelihood is e�cient and therefore

the resulting LA estimators of model parameters are close enough to the ML estimators

maximizing the exact log-likelihood. This is the case of the Poisson mixed model of this

chapter. However, the likelihoods of the spatial and/or temporal Poisson mixed models are

multiple (high dimensional) integrals. In those cases, the Laplace integral approximation

does not work well and the LA estimates of model parameters might be far from the exact

ML estimates. This is the main reasons why the LA algorithm is not employed in Chapters

3-5.

The ML-PQL algorithm works in two steps iteratively. Step 1 maximizes in β and v the
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joint likelihood of the (y,v) and Step 2 calculates the ML estimators of the variance com-

ponent parameters in the LMM de�ned on the estimated natural parameters. If y follows

a LMM then the ML-PQL algorithm gives ML estimators, but this is not true if y fol-

lows a non normal GLMM. This method avoids the need of approximating integrals and

it is a good alternative to the LA algorithm when the likelihood is a multiple integral.

Unfortunately, the ML-PQL estimators have unsatisfactory properties when the variance

parameters are high. The corresponding estimators are inconsistent under standard asymp-

totic assumptions (Jiang, 1998).

The MM estimators, suggested by Jiang (1998), are obtained by solving a nonlinear system

of equations. Under the Poisson mixed models considered in this manuscript, the non

linear equations are explicitly calculated and there is no need of numerical approximations.

Therefore, the MM algorithm for Poisson mixed models only requires running a standard

Newton-Raphson algorithm. This fact makes the MM computationally attractive. Further,

Section 2.4 gives regularity conditions for the consistency of MM estimator.

The MM algorithm is used in the application to poverty data of Section 2.9.1. The LA algo-

rithm is the default option of the lme4 or nlme R packages, and it is used in the application

to �re data in Section 2.9.2. Section 2.8 presents simulation experiments for investigating

the behaviour of the MM, PQL and LA algorithms and for testing the programmed R codes.

2.3.1 The MM algorithm

This section derives the MM algorithm for �tting Model 1. A natural set of equations for

applying this method is

0 = fk(θ) = Mk(θ)− M̂k =
D∑
d=1

Eθ[yd]xdk −
D∑
d=1

ydxdk, k = 1, . . . , p, (2.3.1)

0 = fp+1(θ) = Mp+1(θ)− M̂p+1 =

D∑
d=1

Eθ[y2
d]−

D∑
d=1

y2
d, (2.3.2)

where θ = (β′, φ)′ is the vector of model parameters. The MM estimator θ̂ of θ is the

solution of the system of nonlinear equations (2.3.1)-(2.3.2). The updating formula of the

Newton-Raphson algorithm for solving this system is

θ(m+1) = θ(m) −H−1(θ(m))f(θ(m)), (2.3.3)
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where θ1 = β1, . . . , θp = βp, θp+1 = φ and

θ = col
1≤k≤p+1

(θk), f(θ) = col
1≤k≤p+1

(fk(θ)), H(θ) =

(
∂fk(θ)

∂θr

)
k,r=1,...,p+1

.

The MM Newton-Raphson algorithm is speci�ed if we calculate the expectations appearing

in f(θ) and its partial derivatives. The expectation of yd is

Eθ[yd] = Ev
[
Eθ[yd|v]

]
= Ev[νdpd] = Ev [νd exp {xdβ + φvd}]

=

∫ ∞
−∞

νd exp {xdβ + φvd} (2π)−1/2 exp
{
− 1

2
v2
d

}
dvd

= νd exp
{
xdβ +

1

2
φ2
}∫ ∞
−∞

(2π)−1/2 exp
{
− 1

2

(
vd − φ)2

}
dvd

= νd exp
{
xdβ +

1

2
φ2
}
.

Therefore, the �rst p MM equations are

fk(θ) =
D∑
d=1

νd exp
{
xdβ +

1

2
φ2
}
xdk −

D∑
d=1

ydxdk, k = 1, . . . , p.

The derivatives of Eθ[yd] are

∂Eθ[yd]

∂βk
= νd exp

{
xdβ +

1

2
φ2
}
xdk,

∂Eθ[yd]

∂φ
= νd exp

{
xdβ +

1

2
φ2
}
φ.

The expectation of y2
d is Eθ[y2

d] = Ev
[
Eθ[y2

d|v]
]
, where

Eθ[y2
d|v] = varθ[yd|v] + E2

θ[yd|v] = νdpd + ν2
dp

2
d,

and therefore

Eθ[y2
d] = Ev

[
Eθ[y2

d|v]
]

=

∫ ∞
−∞

νdpdfv(vd) dvd +

∫ ∞
−∞

ν2
dp

2
dfv(vd) dvd.

Since

−1

2
(vd − 2φ)2 = −1

2
(v2
d − 4φvd + 4φ2) = −1

2
v2
d + 2φvd − 2φ2,
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we have∫ ∞
−∞

p2
dfv(vd) dvd =

∫ ∞
−∞

exp
{

2xdβ + 2φvd
}

(2π)−1/2 exp
{
− 1

2
v2
d

}
dvd

= exp
{

2xdβ + 2φ2
}∫ ∞
−∞

(2π)−1/2 exp
{
− 1

2
(vd − 2φ)2

}
dvd

= exp
{

2xdβ + 2φ2
}

and consequently

Eθ[y2
d] = νd exp

{
xdβ +

1

2
φ2
}

+ ν2
d exp

{
2xdβ + 2φ2

}
.

Then, the last MM equation is

fp+1(θ) =

D∑
d=1

{
νd exp

{
xdβ +

1

2
φ2
}

+ ν2
d exp

{
2xdβ + 2φ2

}}
−

D∑
d=1

y2
d.

The derivatives of Eθ[y2
d] are

∂Eθ[y2
d]

∂βk
= νd exp

{
xdβ +

1

2
φ2
}
xdk + 2ν2

d exp
{

2xdβ + 2φ2
}
xdk,

∂Eθ[y2
d]

∂φ
= νd exp

{
xdβ +

1

2
φ2
}
φ+ 4ν2

d exp
{

2xdβ + 2φ2
}
φ.

The elements of the Jacobian matrix in the Newton-Raphson (2.3.3) algorithm are

Hkr =
∂fk(θ)

∂θr
=

D∑
d=1

∂Eθ[yd]

∂θr
xdk, k = 1, . . . , p, r = 1, . . . , p+ 1,

Hp+1r =
∂fp+1(θ)

∂θr
=

D∑
d=1

∂Eθ[y2
d]

∂θr
, r = 1, . . . , p+ 1.

The steps of the MM algorithm are given in Algorithm 1.

A good seed for the MM Newton-Raphson algorithm is β(0) = β̃, where β̃ is the maximum

likelihood estimator under the model without random e�ects (Model 0). Concerning the

variance parameters, we use

φ(0) =

(
1

D

D∑
d=1

(η̃d − η̂
(0)
d )2

)1/2

,

where η̃d = xdβ̃, η̂
(0)
d = log p̂

(0)
d and p̂(0)

d = yd+1
νd+1 .
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Algorithm 1 MM algorithm

1: Input: Set the initial values m = 0 and θ(0) = (β(0), φ(0))
2: Repeat

i) Update θ(m) by using the equation

θ(m+1) = θ(m) −H−1(θ(m))f(θ(m)),

ii) Update the iteration index m← m+ 1.

3: Until convergence.
4: Output: θ(m+1).

The asymptotic variance of the MM estimators can be approximated by a Taylor expansion

of M(θ̂) = col
1≤k≤p+1

(Mk(θ̂)) around θ (Jiang, 1998). This is to say,

M̂ = M(θ̂) ≈M(θ) +H(θ)(θ̂ − θ), θ̂ − θ ≈H−1(θ)(M̂ −M(θ)),

where M̂ = col
1≤k≤p+1

(M̂k). Under regularity conditions (Jiang, 1998), it holds

var(θ̂) = E[(θ̂ − θ)(θ̂ − θ)′] ≈H−1(θ)var(M̂)H−1(θ).

An estimator of var(θ̂) is

v̂ar(θ̂) = H−1(θ̂)v̂ar(M̂)H−1(θ̂),

where v̂ar(M̂) is an estimator of the covariance matrix of M̂ .

The following parametric bootstrap procedure gives estimators of var(M̂) and var(θ̂).

1. Fit the model to the sample and calculate θ̂ = (β̂, φ̂).

2. Generate v∗(b)d ∼ N(0, 1), d = 1, . . . , D. Calculate p∗(b)d = exp{xdβ̂ + φ̂v
∗(b)
d } and

generate y∗(b)d ∼ Poiss(νdp
∗(b)
d ), d = 1, . . . , D, b = 1, . . . , B.

3. From the bootstrap resamples, calculate M̂
∗(b)

, b = 1, . . . , B, and

M =
1

B

B∑
b=1

M̂
∗(b)

, v̂ar∗(M̂) =
1

B

B∑
b=1

(M̂
∗(b) −M)(M̂

∗(b) −M)′.

4. Calculate v̂ar∗A(θ̂) = H−1(θ̂)v̂ar∗(M̂)H−1(θ̂).

We obtain an alternative estimator of var(θ̂) if we replace Steps 3 and 4 by
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3′. Fit the model to the bootstrap resamples and calculate θ̂
∗(b)

, b = 1, . . . , B, θ =
1
B

∑B
b=1 θ̂

∗(b)
.

4′. Calculate v̂ar∗B(θ̂) = 1
B

∑B
b=1(θ̂

∗(b) − θ)(θ̂
∗(b) − θ)′.

For the implementation in R, we use the second option, i.e. we consider Steps 3′ and 4′.

2.3.2 The PQL algorithm

The ML-PQL estimator of β and predictor of v (see Breslow and Clayton (1993)) maximizes

the joint log-likelihood

` = logψ(y,v) = −D
2

log 2π − 1

2

D∑
d=1

v2
d −

D∑
d=1

log yd!

+

D∑
d=1

{
yd log νd − νd exp{xdβ + φvd}

}
+

p∑
k=1

( D∑
d=1

ydxdk
)
βk + φ

D∑
d=1

ydvd.

The �rst derivatives of ` with respect to β and v are

Ur =
∂`

∂βr
= −

D∑
d=1

νd exp{xdβ + φvd}xdr +

D∑
d=1

ydxdr, r = 1, . . . , p,

Up+d =
∂`

∂vd
= −vd − νd exp{xdβ + φvd}φ+ ydφ, d = 1, . . . , D.

The second derivatives of ` with respect to β and v are

Hr1r2 =
∂2`

∂βr1∂βr2
= −

D∑
d=1

νd exp{xdβ + φvd}xdr1xdr2 , r1, r2 = 1, . . . , p,

Hrp+d =
∂2`

∂βr∂vd
= −νd exp{xdβ + φvd}xdrφ, r = 1, . . . , p, d = 1, . . . , D,

Hp+dp+d =
∂2`

∂v2
d

= −1− νd exp{xdβ + φvd}φ2, d = 1, . . . , D,

Hp+d1p+d2 =
∂2`

∂vd1∂vd2
= 0, d1, d2 = 1, . . . , D, d1 6= d2.

In matrix form, we have ξ = (β′,v′)′, U = U(ξ) = col
1≤r≤p+D

(Ur) and H = H(ξ) =

(Hrs)r,s=1,...,p+D. The Newton-Raphson algorithm maximizes `(β,v), with �xed φ. The

updating equation is

ξ(k+1) = ξ(k) −H−1(ξ(k))U(ξ(k)). (2.3.4)
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At the kth iteration of the algorithm, the penalized maximum likelihood estimation of φ

maximizes the joint likelihood of η(k)
1 , . . . , η

(k)
D , where

η
(k)
d = log νd + xdβ

(k) + φ(k)v
(k)
d

and

η
(k)
d ∼ N(log νd + xdβ

(k), var = φ2), d = 1, . . . , D.

The joint log-likelihood of η(k)
1 , . . . , η

(k)
D is

`(k) = −D
2

log 2π −D log φ− 1

2

1

φ2

D∑
d=1

(η
(k)
d − log νd − xdβ(k))2.

By taking the �rst derivative of `(k) with respect to φ and equating to zero, we get

0 = U (k) =
∂`(k)

∂φ
= −D

φ
+

1

φ3

D∑
d=1

(η
(k)
d − log νd − xdβ(k))2,

φ2 =
1

D

D∑
d=1

(η
(k)
d − log νd − xdβ(k))2 = φ(k)2 1

D

D∑
d=1

v
(k)2
d .

The ML-PQL updating equation for φ is

φ(k+1)2 = φ(k)2 1

D

D∑
d=1

v
(k)2
d . (2.3.5)

The PQL algorithm calculates the predictors of v and the estimators of β and φ. The steps

are:

Algorithm 2 PQL algorithm

1: Set the values β(0), v(0), φ(0) and m = 1.
2: Run the algorithm given in equation (2.3.4). Use φ(m−1) as known value and β(m−1),
v(m−1) as algorithm seeds. Let β(m) and v(m) be the output of the algorithm given in
equation (2.3.4).

3: Update φ by using the updating equation (2.3.5), i.e.

φ(m)2 = φ(m−1)2 1

D

D∑
d=1

v
(m)2
d .

4: Update the iteration index m← m+ 1.
5: Repeat the Steps 2-4 until the convergence of β(m), v(m)

d and φ(m).
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2 The area-level Poisson mixed model

By taking the second derivative of `(k) with respect to φ,

H(k) =
∂2`(k)

∂φ2
= Dφ−2 − 3φ−4

D∑
d=1

(η
(k)
d − log νd − xdβ(k))2

= φ−4
(
Dφ2 − 3

D∑
d=1

(η
(k)
d − log νd − xdβ(k))2

)
,

we get an alternative updating equation for the variance parameter φ based on the Newton-

Raphson algorithm. We have that

(
H(k)

)−1
U (k) =

φ−3
(
−Dφ2 +

∑D
d=1(η

(k)
d − log νd − xdβ(k))2

)
φ−4

(
Dφ2 − 3

∑D
d=1(η

(k)
d − log νd − xdβ(k))2

)
= φ
−Dφ2 +

∑D
d=1(η

(k)
d − log νd − xdβ(k))2

Dφ2 − 3
∑D

d=1(η
(k)
d − log νd − xdβ(k))2

,

and therefore, the Newton-Raphson updating equation is

φ(k+1) = φ(k) −
(
H(k)

)−1
U (k) = φ(k) − φ(k)−Dφ(k)2 +

∑D
d=1 φ

(k)2v
(k)2
d

Dφ(k)2 − 3
∑D

d=1 φ
(k)2v

(k)2
d

= φ(k) − φ(k)−D +
∑D

d=1 v
(k)2
d

D − 3
∑D

d=1 v
(k)2
d

= φ(k)
(

1−
−D +

∑D
d=1 v

(k)2
d

D − 3
∑D

d=1 v
(k)2
d

)
= φ(k) 2D − 4

∑D
d=1 v

(k)2
d

D − 3
∑D

d=1 v
(k)2
d

= 2φ(k)D − 2
∑D

d=1 v
(k)2
d

D − 3
∑D

d=1 v
(k)2
d

.

Finally, the PQL updating equation (2.3.5) can be substituted by

φ(m) = 2φ(m−1)D − 2
∑D

d=1 v
(m)2
d

D − 3
∑D

d=1 v
(m)2
d

.

For the implementation of the PQL algorithm in R, we opted for the updating equation

(2.3.5) since it o�ered a more robust behaviour.

2.3.3 The ML-Laplace algorithm

The ML-Laplace algorithm maximizes the Laplace approximation to the joint marginal

log-likelihood of the target vector y = (y1, . . . , yD). For this sake, let h : R 7→ R be a

continuously twice di�erentiable function with a global maximum at x0. This is to say,
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let us assume that ḣ(x0) = 0 and ḧ(x0) < 0, where ḣ and ḧ denote the �rst and second

derivatives of h respectively. A Taylor series expansion of h(x) around x0 yields to

h(x) = h(x0) + ḣ(x0)(x− x0) +
1

2
ḧ(x0)(x− x0)2 + o

(
|x− x0|2

)
≈ h(x0) +

1

2
ḧ(x0)(x− x0)2.

The univariate Laplace approximation is∫ ∞
−∞

eh(x) dx ≈
∫ ∞
−∞

eh(x0) exp
{
− 1

2

(
− ḧ(x0)

)
(x− x0)2

}
dx

= (2π)1/2
(
− ḧ(x0)

)−1/2
eh(x0)

∫ ∞
−∞

exp
{
− 1

2

(
x−x0

(−ḧ(x0))−1/2

)2}
(2π)1/2

(
− ḧ(x0)

)−1/2
dx

= (2π)1/2
(
− ḧ(x0)

)−1/2
eh(x0).

Let us now approximate the loglikelihood of the considered Poisson mixed model. We recall

that v1, . . . , vD are i.i.d N(0, 1) and that

yd|vd ∼
ind

Poiss(νdpd), pd = exp {xdβ + φvd} , d = 1, . . . , D.

It holds that y1, . . . , yD are unconditionally independent with marginal probability distri-

bution function

P(yd) =

∫ ∞
−∞

P(yd|vd)f(vd) dvd =

∫ ∞
−∞

1

yd!
exp{−νdpd}νydd p

yd
d (2π)−1/2 exp{−1

2
v2
d} dvd

=
νydd

(2π)1/2yd!

∫ ∞
−∞

exp
{
− νd exp{xdβ + φvd}+ yd(xdβ + φvd)−

1

2
v2
d

}
dvd

=
νydd

(2π)1/2yd!
exp{ydxdβ}

∫ ∞
−∞

exp
{
h(vd)

}
dvd,

where

h(vd) = −νd exp{xdβ + φvd}+ φydvd −
1

2
v2
d, (2.3.6)

ḣ(vd) = −νdφ exp{xdβ + φvd}+ φyd − vd,

ḧ(vd) = −(1 + νdφ
2 exp{xdβ + φvd}).

Let v0d be the value of vd such that ḣ(v0d) = 0 and ḧ(v0d) < 0. By applying (2.3.6) in

vd = v0d, we get
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2 The area-level Poisson mixed model

P(yd) ≈
νydd
yd!

exp{ydxdβ}(1 + νdφ
2 exp{xdβ + φv0d})−1/2

· exp
{
− νd exp{xdβ + φv0d}+ φydv0d −

1

2
v2

0d}.

The loglikelihood can be approximated by

` =
D∑
d=1

logP(yd) ≈
D∑
d=1

{
yd log νd − log yd! + ydxdβ −

1

2
log(1 + νdφ

2 exp{xdβ + φv0d})

− νd exp{xdβ + φv0d}+ φydv0d −
1

2
v2

0d

}
:= `L(β, φ, v01, . . . , v0D) = `L,

where := denotes equality by de�nition. For ease of presentation, let us de�ne p0d =

exp {xdβ + φv0d} and ξ0d = 1 + νdφ
2p0d. It holds that

∂p0d

∂βr
= xdrp0d,

∂p0d

∂φ
= v0dp0d,

∂ξ0d

∂βr
= νdφ

2xdrp0d,
∂ξ0d

∂φ
= (2 + φv0d)νdφp0d.

The approximated loglikelihood is

`L =

D∑
d=1

{
yd log νd − log yd! + ydxdβ −

1

2
log ξ0d − νdp0d + φydv0d −

1

2
v2

0d

}
.

The �rst derivatives of `L with respect to βr and φ are

∂`L
∂βr

=
D∑
d=1

{
ydxdr −

νdxdr
2

φ2p0d

ξ0d
− νdxdrp0d

}
,

∂`L
∂φ

=

D∑
d=1

{
ydv0d −

νd
2

2φp0d + φ2v0dp0d

ξ0d
− νdv0dp0d

}
.

The second partial derivatives of `L are

∂2`L
∂βs∂βr

= −
D∑
d=1

{
νdxdrφ

2

2

p0dxds(1 + νdφ
2p0d)− p0dνdφ

2xdsp0d

ξ2
0d

+ νdxdrxdsp0d

}

= −
D∑
d=1

{
νdxdrxdsφ

2

2

p0d

ξ2
0d

+ νdxdrxdsp0d

}
= −

D∑
d=1

νdxdrxdsp0d

( φ2

2ξ2
0d

+ 1
)
,
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∂2`L
∂φ∂βr

= −
D∑
d=1

{
νdxdrφp0d

2

(2 + φv0d)[1 + νdφ
2p0d − νdφ2p0d]

ξ2
0d

+ νdxdrv0dp0d

}

= −
D∑
d=1

{
νdxdrφp0d

2

(2 + φv0d)

ξ2
0d

+ νdxdrv0dp0d

}

= −
D∑
d=1

νdxdrv0dp0d

(φ(2 + φv0d)

2v0dξ
2
0d

+ 1
)
,

∂2`L
∂φ2

= −
D∑
d=1

{
νdp0d

2

[−2 + (2 + φv0d)
2](1 + νdφ

2p0d)− (2 + φv0d)
2νdφ

2p0d

ξ2
0d

+ νdv
2
0dp0d

}

= −
D∑
d=1

{
νdp0d

2

−2(1 + νdφ
2p0d) + (2 + φv0d)

2(1 + νdφ
2p0d − νdφ2p0d)

ξ2
0d

+ νdv
2
0dp0d

}

= −
D∑
d=1

{
νdp0d

2

(2 + φv0d)
2 − 2ξ0d

ξ2
0d

+ νdv
2
0dp0d

}

= −
D∑
d=1

νdv
2
0dp0d

((2 + φv0d)
2 − 2ξ0d

2v2
0dξ

2
0d

+ 1
)
.

The components of the score vector and the Hessian matrix are

U0r =
∂`L
∂βr

, U0p+1 =
∂`L
∂φ

,

H0rs = H0sr
∂2`L
∂βs∂βr

, Hrp+1 = Hp+1r =
∂2`L
∂φ∂βr

, H0p+1p+1 =
∂2`L
∂φ2

.

U0 = U0(θ) = col
1≤r≤p+1

(U0rs), H0 = H0(θ) = (H0rs)r,s=1,...,p+1.

The Newton-Raphson algorithm maximizes `L(θ), with vd = v0d �xed, d = 1, . . . , D. The

updating equation is

θ(k+1) = θ(k) −H−1
0 (θ(k))U0(θ(k)). (2.3.7)

For d = 1, . . . , D, the Newton-Raphson algorithm also maximizes h(vd) = h(vd,θ), de�ned

in (2.3.6), with θ = (β′, φ) = θ0 �xed. The updating equation is

v
(k+1)
d = v

(k)
d −

ḣ(v
(k)
d ,θ0)

ḧ(v
(k)
d ,θ0)

. (2.3.8)

The ML-Laplace algorithm combines the updating equations (2.3.7) and (2.3.8).

33



2 The area-level Poisson mixed model

Algorithm 3 ML-Laplace algorithm

1: Set the initial values k = 0, θ(0), θ(−1) = θ(0) + 1, v(0)
d = 0, v(−1)

d = 1, d = 1, . . . , D.

2: Repeat

i) Apply the iterative algorithm with updating equation (2.3.8), seeds v(k)
d , d =

1, . . . , D, convergence tolerance ε2 and θ = θ(k) �xed. Output: v
(k+1)
d , d =

1, . . . , D.

ii) Apply the iterative algorithm with updating equation (2.3.7), seed θ(k), conver-

gence tolerance ε1 and v0d = v
(k+1)
d �xed, d = 1, . . . , D. Output: θ(k+1).

iii) k ← k + 1.

3: Until ‖θ(k) − θ(k−1)‖2 < ε1, |v(k)
d − v

(k−1)
d | < ε2, d = 1, . . . , D.

4: Output: θ̂ = θ(k), v̂d = v
(k)
d , d = 1, . . . , D.

The asymptotic variance of the ML-Laplace estimators can be obtained from the diagonal

of the matrix H−1
0 (θ̂).

2.4 Asymptotic properties of the MM estimators

Section 2.3.1 de�nes the MM estimator θ = (β1, . . . , βp, φ) as the solution to the equation

M(θ) = M̂ , (2.4.1)

where M(θ) = (M1(θ), . . . ,Mp+1(θ)), M̂ = (M̂1, . . . , M̂p+1) and

Mk(θ) =
D∑
d=1

νd exp
{
xdβ +

1

2
φ2
}
xdk, k = 1, . . . , p,

Mp+1(θ) =

D∑
d=1

νd exp
{
xdβ +

1

2
φ2
}

+
D∑
d=1

ν2
d exp

{
2xdβ + 2φ2

}
,

M̂k =
D∑
d=1

ydxdk, k = 1, . . . , p, M̂p+1 =
D∑
d=1

y2
d.

More generally, we may de�ne the MM estimator θ̂ as the vector θ that minimize the

Euclidean distance of the two sides of (2.4.1). This section particularizes to the area-level

Poisson mixed model the asymptotic properties of the MM estimators given by Jiang (2003).
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Suppose that

xd ∈ X ⊂ Rp, d = 1, . . . , D, where X is compact. (2.4.2)

Furthermore, supposes that there exist B > 0 and ε > 0 such that, for large D,

min

{
inf

˜θ /∈ΘB

‖M(θ̃)−M(θ)‖, inf
˜θ∈ΘB ,

˜θ 6=θ

{‖M(θ̃)−M(θ)‖
‖θ̃ − θ‖

}
≥ ε, (2.4.3)

where θ is the true parameter vector and ΘB =
{
θ̃ ∈ Rp×R+ : |θ̃k| ≤ B, k = 1, . . . , p+1

}
.

Under the assumptions (2.4.2)-(2.4.3), Jiang (2003) established that

‖θ̂ − θ‖ = Op(D
−1/2). (2.4.4)

Let θ̂d− be the MM estimator based on yd− =
(
yd′
)
d′ 6=d, which is the solution of the equation

Md−(θ) = M̂d−, where Md−(θ) and M̂d− are de�ned similarly, i.e. with
∑D

d′=1,d′ 6=d

instead of
∑D

d′=1. Let M(Θ)
(
Md−(Θ)

)
be the image of the parameter space Θ under

M(.)
(
Md−(.)

)
. For u ∈ Rp × R+, Z ⊂ Rp × R+, let us de�ne

dist(u,Z) = infz∈Z‖z − u‖.

Suppose that

lim inf λmin
(
H ′(θ)H(θ)

)
> 0, (2.4.5)

where H = Ṁ is the matrix of �rst derivatives and λmin(.) is the smallest eigenvalue

function. For large D, suppose that

min
{
dist

(
M(θ),M(Θ)c

)
, dist

(
Md−(θ),Md−(Θ)c

)}
≥ ε, d = 1, . . . , D. (2.4.6)

Under (2.4.2)-(2.4.6), Jiang (2003) proved that

‖θ̂ − θ̂d−‖ = op(D
−1/2), d = 1, . . . , D. (2.4.7)

Also, under (2.4.2)-(2.4.6), Jiang (2003) established that

E
[
θ̂ − θ

]
= O(D−1/2). (2.4.8)
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2.5 The predictors

This section gives the EBP and a plug-in predictor of pd under Model 1. The EBP is

obtained from its best predictor (BP). The BP of pd minimizes the MSE in the set of

unbiased predictors. Despite its good properties, in practice this estimator is not useful

since is given in terms of the theoretical parameters (unknown in practice). Therefore, it

is considered its empirical version, the EBP, which is obtained from the BP replacing the

unknown theoretical parameters by their estimates. Under regularity conditions, the EBPs

have asymptotically the properties of the BPs. Both, the EBP and the plug-in predictor,

are compared in the simulation study.

2.5.1 The empirical best predictor

This section derives the BP and the EBP of pd under the area-level Poisson mixed model.

Under Model 1, the conditional distribution of y = (y1, . . . , yD)′, given v, is

P(y|v) =

D∏
d=1

P(yd|vd),

where

P(yd|vd) =
νydd
yd!

e−νdpdpydd =
νydd
yd!

exp {yd(xdβ + φvd)− νd exp{xdβ + φvd}} .

The BP of pd is the unbiased predictor minimizing the MSE. It is given by the conditional

expectation p̂d = p̂d(θ) = Eθ[pd|y]. In this case, we have that Eθ[pd|y] = Eθ[pd|yd] and
using Bayes's theorem, we get

Eθ[pd|yd] =

∫
R exp{xdβ + φvd}P(yd|vd)f(vd) dvd∫

R P(yd|vd)f(vd) dvd
=
Nd(yd,θ)

Dd(yd,θ)
:= ψd(yd,θ), (2.5.1)

where

Nd(yd,θ) =

∫
R

exp {(yd + 1)(xdβ + φvd)− νd exp {xdβ + φvd}} f(vd) dvd,

Dd(yd,θ) =

∫
R

exp {yd(xdβ + φvd)− νd exp{xdβ + φvd}} f(vd) dvd.

Remark 2.1. The numeratorNd(yd,θ) can be expressed in terms ofDd(yd,θ) asNd(yd,θ) =

Dd(yd + 1,θ).
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The EBP of pd is obtained by replacing the vector of unknown parameters θ by a consistent

estimator θ̂. Therefore, we can write the EBP as p̂d = p̂d(θ̂) = ψd(yd, θ̂). We approximate it

by estimating the integrals with an accelerated Monte Carlo method based on the properties

of the antithetic variables for reducing the variability. This algorithm is described below.

Algorithm 4 Accelerated Monte Carlo algorithm

1: Estimate θ̂ = (β̂, φ̂) as in Section 2.3.

2: For ` = 1, . . . , L, generate v(`)
d i.i.d. N(0, 1) and calculate their antithetic variates

v
(L+`)
d = −v(`)

d .

3: Calculate the approximation of EBP as p̂d(θ̂) = N̂d/D̂d, where the theoretical integrals

are approximated by Monte Carlo, i.e.

N̂d =
1

2L

2L∑
`=1

exp
{

(yd + 1)(xdβ̂ + φ̂v
(`)
d )− νd exp{xdβ̂ + φ̂v

(`)
d }
}
,

D̂d =
1

2L

2L∑
`=1

exp
{
yd(xdβ̂ + φ̂v

(`)
d )− νd exp{xdβ̂ + φ̂v

(`)
d }
}
. (2.5.2)

Since the size variable νd is known in practice, then the EBP of µd = νdpd is µ̂d(θ̂) =

νdp̂d(θ̂).

2.5.2 Plug-in predictors

The plug-in predictor of pd is obtained replacing the unknown parameters by their estimates,

i.e. p̂Pd (θ̂) = exp{xdβ̂ + φ̂v̂d}. As the MM Newton-Raphson algorithm does not give a

prediction of vd, we use its EBP. The BP of vd is

v̂d(θ) = Eθ[vd|yd] =

∫
R vdP(yd|vd)f(vd) dvd∫
R P(yd|vd)f(vd) dvd

=
Nv,d(yd,θ)

Dd(yd,θ)
,

where

Nv,d(yd,θ) =

∫
R
vd exp {yd(xdβ + φvd)− νd exp {xdβ + φvd}} f(vd) dvd.

The EBP of vd is v̂d = v̂d(θ̂) and it can be approximated using an accelerated Monte Carlo

algorithm similar to Algorithm 4. The steps are the same, replacing Step 3 by
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2 The area-level Poisson mixed model

3. Calculate v̂d(θ̂) = N̂v,d/D̂d, where D̂d is de�ned in (2.5.2) and

N̂v,d =
1

2L

2L∑
`=1

v
(`)
d exp

{
yd(xdβ̂ + φ̂v

(`)
d )− νd exp{xdβ̂ + φ̂v

(`)
d }
}
.

Section 2.8 studies the behaviour of p̂d(θ̂) and p̂Pd (θ̂) by calculating empirical biases and

MSEs. On the other hand, we can consider the synthetic estimator. It is similar to p̂Pd (θ̂)

but only uses �xed e�ects, i.e. p̂synd (θ̂) = exp{xdβ̂}. The synthetic estimator can be seen

as a plug-in estimator under Model 0.

2.6 The MSE of the empirical best predictor

Theorem 2.1 gives an approximation to the MSE of the EBP p̂d, d = 1, . . . , D.

Theorem 2.1 Assume that the condition (2.4.2) of being uniformly bounded holds for the

auxiliary variables. Let θ̂ be an estimator of θ ful�lling the hypotheses (2.4.4), (2.4.7) and

(2.4.8). Then the MSE of p̂d can be approximated by

MSE(p̂d) = gd(θ) +
1

D
cd(θ) + o(1/D), (2.6.1)

where

cd(θ) =
∞∑
j=0

(
∂

∂θ
ψd(j,θ)

)′
V (θ)

(
∂

∂θ
ψd(j,θ)

)
Pd(j,θ), V (θ) = DE

[
(θ̂ − θ)(θ̂ − θ)′

]
,

and ψd(j,θ) is de�ned from (2.5.1) by substituting yd by j.

Proof. The MSE of the EBP of pd = pd(θ, vd) = exp {xdβ + φvd} can be decomposed in

the following form.

MSE(p̂d) = E
[
(p̂d(θ̂)− pd(θ, vd))2

]
= E

[(
{p̂d(θ̂)− p̂d(θ)}+ {p̂d(θ)− pd(θ, vd)}

)2]
= E

[(
p̂d(θ̂)− p̂d(θ)

)2]
+ E

[(
p̂d(θ)− pd(θ, vd)

)2]
,

because

E
[(
p̂d(θ̂)− p̂d(θ)

)(
p̂d(θ)− pd(θ, vd)

)]
= E

[(
p̂d(θ̂)− p̂d(θ)

)
E
[
p̂d(θ)− pd(θ, vd)|yd

]]
= 0.
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The second term of MSE(p̂d) is the MSE of the BP, namely

gd(θ) = E
[(
p̂d(θ)− pd(θ, vd)

)2]
= E

[
p̂2
d(θ)

]
+ E

[
p2
d(θ, vd)

]
− 2E

[
p̂d(θ)E

[
pd(θ, vd)|yd

]]
= E

[
p2
d(θ, vd)

]
− E

[
p̂2
d(θ)

]
.

The �rst term of gd(θ) is

E
[
p2
d(θ, vd)

]
=

∫
R

exp{2xdβ + 2φvd} f(vd) dvd = exp{2xdβ + 2φ2}.

The second term of gd(θ) is

E
[
p̂2
d(θ)

]
= E[ψ2

d(yd,θ)] =

∞∑
j=0

ψ2
d(j,θ)Pd(j,θ),

where

Pd(j,θ) = P(yd = j) =

∫
R
P(yd = j|vd)f(vd) dvd

=
νjd
j!

∫
R

exp{j(xdβ + φvd)− νd exp{xdβ + φvd}} f(vd)dvd =
νjd
j!
Dd(j,θ).

Consequently,

gd(θ) = exp{2xdβ + 2φ2} −
∞∑
j=0

ψ2
d(j,θ)

νjd
j!
Dd(j,θ).

Concerning the �rst term of MSE(p̂d), we expand p̂d(θ̂) in Taylor series around θ and we

have

p̂d(θ̂)− p̂d(θ) = ψd(yd, θ̂)− ψd(yd,θ) =

(
∂

∂θ
ψd(yd,θ)

)′
(θ̂ − θ)

+
1

2
(θ̂ − θ)′

(
∂2

∂θ2 ψd(yd,θ)

)
(θ̂ − θ) + o(‖θ̂ − θ‖2).

As the xd's are bounded ful�lling (2.4.2) and the regularity conditions (2.4.4) and (2.4.8)

on θ̂ holds, we have that

E
[(
p̂d(θ̂)− p̂d(θ)

)2]
=

1

D
E

[((
∂

∂θ
ψd(yd,θ)

)′√
D(θ̂ − θ)

)2
]

+ o(1/D).

Now we consider θ̂d−, an estimator based on yd− = (yd′)d′ 6=d, and write p̂d− = ψd(yd, θ̂d−).

Then, by the independence of yd and yd−, we have
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2 The area-level Poisson mixed model

ad(θ) = E

[((
∂

∂θ
ψd(yd,θ)

)′√
D(θ̂d− − θ)

)2
]

=
∞∑
j=0

E

[((
∂

∂θ
ψd(yd,θ)

)′√
D(θ̂d− − θ)

)2
∣∣∣∣∣ yd = j

]
Pd(j,θ)

=
∞∑
j=0

(
∂

∂θ
ψd(j,θ)

)′
V d−(θ)

(
∂

∂θ
ψd(j,θ)

)
Pd(j,θ),

where

V d−(θ) = DE
[
(θ̂d− − θ)(θ̂d− − θ)′

∣∣yd = j
]

= DE
[
(θ̂d− − θ)(θ̂d− − θ)′

]
.

Therefore,

MSE(p̂d−) = gd(θ) +
1

D
ad(θ) + o(1/D).

Under the assumptions (2.4.2), (2.4.4), (2.4.8) and (2.4.7), we may replace θ̂d− by θ̂, an

estimator of θ based on all data, and we obtain the stated result. �

The following section derives plug-in and bias-corrected plug-in estimators of the approxi-

mation (2.6.1) for the MSE of the EBP. A bootstrap estimator is also given.

2.7 Estimation of the MSE of the empirical best predictor

Two alternatives for estimating the MSE of the EBP of pd are presented. Section 2.7.1 pro-

vides two analytical estimators (without and with bias-correction term), assuming that the

model parameters are estimated by using the MM algorithm. As the analytical estimation

of the MSE is computationally expensive (specially the estimator with bias correction),

Section 2.7.3 gives a bootstrap procedure.

2.7.1 Analytic estimation of the MSE

A plug-in estimator of (2.6.1) is obtained replacing θ by a consistent estimator θ̂, namely

mseP (p̂d) = gd(θ̂) +
1

D
cd(θ̂).
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Estimation of the MSE of the empirical best predictor 2.7

By a Taylor expansion of cd(θ̂) around θ and the consistency of θ̂, we have that E[cd(θ̂)−
cd(θ)] = o(1). However E[gd(θ̂)− gd(θ)] is not of order o(D−1) and therefore

E
[
MSE(p̂d)−

{
gd(θ̂) +D−1cd(θ̂)

}]
6= o(D−1).

Let θ̂ be a truncated MM estimator. This means

β̂k =


−LD if β̃k < −LD,
β̃k if − LD < β̃k < LD,

LD if β̃k > LD,

σ̂2 =

{
σ̃2 if σ̃2 ≤ LD,
LD if σ̃2 > LD,

where θ̃ is an MM estimator. Under the assumed regularity conditions (23)-(25) of Jiang

(2003), E[θ̂ − θ] = O(D−1) holds for the truncated MM estimator and also for the MM

estimator. Using a Taylor expansion, we have

gd(θ̂) = gd(θ) +

(
∂

∂θ
gd(θ)

)′
(θ̂ − θ) +

1

2
(θ̂ − θ)′

(
∂2

∂θ2 gd(θ)

)
(θ̂ − θ) + o(‖θ̂ − θ‖2),

and hence

E[gd(θ̂)] = gd(θ) +
1

D
bd(θ) + o(D−1),

where

bd(θ) =
( ∂
∂θ
gd(θ)

)′
DE[θ̂ − θ] +

1

2
E
[
D(θ̂ − θ)′

( ∂2

∂θ2 gd(θ)
)

(θ̂ − θ)

]
. (2.7.1)

In this case, we have

E
[
MSE(p̂d)−

{
gd(θ̂) +D−1cd(θ̂)−D−1bd(θ)

}]
= o(D−1).

Proposition 2.1 gives an approximation to the bias term bd when θ̂ is the truncated MM

estimator.

Proposition 2.1 Let θ̂ be the truncated MM estimator. Under regularity conditions

(2.4.2)-(2.4.6), it holds that

bd(θ) = Bd(θ) + o(1),

where

Bd(θ) =
1

2

{
E[rD,d]−

( ∂
∂θ

gd(θ)
)′( ∂

∂θ
M(θ)

)−1
E[qD]

}
,
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rD,d = ∆′DRd(θ)∆D,Rd(θ) =

(( ∂
∂θ
M(θ)

)−1
)′ ( ∂2

∂θ2 gd(θ)
)( ∂

∂θ
M(θ)

)−1
,

qD = col
1≤k≤p+1

(qDk), M(θ) = col
1≤k≤p+1

(Mk(θ)), M̂ = col
1≤k≤p+1

(M̂k),

qDk = ∆′DQ(θ)∆D, Q(θ) =

(( ∂
∂θ
M(θ)

)−1
)′ ( ∂2

∂θ2 Mk(θ)
)( ∂

∂θ
M(θ)

)−1
,

∆D =
√
D(M̂ −M(θ)),

∂

∂θ
M(θ) =

( ∂

∂θk2
Mk1(θ)

)
k1,k2=1,...,p+1

.

Proof. A �rst order multivariate Taylor expansion of M(θ̂) around θ yields to

M(θ̂) = M(θ) +

(
∂

∂θ
M(θ)

)
(θ̂ − θ) + o

(
‖θ̂ − θ‖

)
.

Therefore

θ̂ − θ =

(
∂

∂θ
M(θ)

)−1 (
M(θ̂)−M(θ)

)
+ o
(
‖θ̂ − θ‖

)
. (2.7.2)

Let us consider a second-order Taylor expansion of the kth component of M(θ̂), denoted

by Mk(θ̂), around θ, i.e.

Mk(θ̂) = Mk(θ) +

(
∂

∂θ
Mk(θ)

)′
(θ̂ − θ) +

1

2
(θ̂ − θ)′

(
∂2

∂θ2 Mk(θ)

)
(θ̂ − θ)

+ o
(
‖θ̂ − θ‖2

)
By substituting (2.7.2) in the quadratic term, we have

Mk(θ̂) = Mk(θ) +

(
∂

∂θ
Mk(θ)

)′
(θ̂ − θ) +

1

2

(
M(θ̂)−M(θ)

)′(( ∂

∂θ
M(θ)

)−1
)′

·
(
∂2

∂θ2 Mk(θ)

)(
∂

∂θ
M(θ)

)−1 (
M(θ̂)−M(θ)

)
+ o
(
‖θ̂ − θ‖2

)
.

The corresponding multivariate Taylor expansion of M(θ̂) around θ is

M(θ̂) = M(θ) +

(
∂

∂θ
M(θ)

)
(θ̂ − θ)

+
1

2
col

1≤k≤p+1

((
M(θ̂)−M(θ)

)′(( ∂

∂θ
M(θ)

)−1
)′ (

∂2

∂θ2 Mk(θ)

)

·
(
∂

∂θ
M(θ)

)−1 (
M(θ̂)−M(θ)

))
+ o
(
‖θ̂ − θ‖2

)
.
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The above Taylor expansion can be rewritten as

M(θ̂) = M(θ) +

(
∂

∂θ
M(θ)

)
(θ̂ − θ) +

1

2D
qD + o

(
‖θ̂ − θ‖2

)
.

Therefore

θ̂ − θ =

(
∂

∂θ
M(θ)

)−1 [(
M(θ̂)−M(θ)

)
− 1

2D
qD

]
+ o
(
‖θ̂ − θ‖2

)
. (2.7.3)

By substituting (2.7.3) in the expression of bd(θ), given in (2.7.1), we obtain

bd(θ) =

(
∂

∂θ
gd(θ)

)′
D

(
∂

∂θ
M(θ)

)−1 {
E[M(θ̂)−M(θ)]− 1

2D
E[qD]

}
+

1

2
E

[
√
D

[(
M(θ̂)−M(θ)

)′ − 1

2D
q′D

]((
∂

∂θ
M(θ)

)−1
)′(

∂2

∂θ2 gd(θ)

)

·
(
∂

∂θ
M(θ)

)−1√
D

[(
M(θ̂)−M(θ)

)
− 1

2D
qD

]]
+Do

(
‖θ̂ − θ‖2

)
.

On the one hand, we substituteM(θ̂) by M̂ , so that E[M(θ̂)−M(θ)] = E[M̂−M(θ)] = 0

by taking expectations in the natural equations of the MM algorithm. On the other hand,

all the quadratic forms in the second summand containing qD are o(1). Therefore

bd(θ) = −1

2

(
∂

∂θ
gd(θ)

)′( ∂

∂θ
M(θ)

)−1

E[qD]

+
1

2
E

[
√
D
(
M(θ̂)−M(θ)

)′(( ∂

∂θ
M(θ)

)−1
)′(

∂2

∂θ2 gd(θ)

)

·
(
∂

∂θ
M(θ)

)−1√
D
(
M(θ̂)−M(θ)

)]
+ o(1)

=
1

2

{
E[rD,d]−

(
∂

∂θ
gd(θ)

)′( ∂

∂θ
M(θ)

)−1

E[qD]

}
+ o(1) = Bd(θ) + o(1).

�

The following parametric bootstrap algorithm estimates the bias correction term Bd(θ).

1. Fit the model to the sample and calculate θ̂, Rd(θ̂) and Q(θ̂).

2. Generate v∗(b)d ∼ N(0, 1), d = 1, . . . , D. Calculate p∗(b)d = exp{xdβ̂ + φ̂v
∗(b)
d } and

generate y∗(b)d ∼ Poiss(νdp
∗(b)
d ), d = 1, . . . , D, b = 1, . . . , B.
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3. For each bootstrap resample b, calculate ∆
∗(b)
D =

√
D(M̂

∗(b)−M(θ̂)), where M̂
∗(b)

=

col
1≤k≤p+1

(M̂
∗(b)
k ), M̂∗(b)k =

∑D
d=1 y

∗(b)
d xdk, k = 1, . . . , p, M̂∗(b)p+1 =

∑D
d=1 y

∗(b)2
d , and

calculate

r
∗(b)
D,d = ∆

∗(b)′
D Rd(θ̂)∆

∗(b)
D , q

∗(b)
Dk = ∆

∗(b)′
D Q(θ̂)∆

∗(b)
D , qD = col

1≤k≤p+1
(q
∗(b)
Dk ).

4. Calculate ÊB[rD,d] = 1
B

∑B
b=1 r

∗(b)
D,d , ÊB[qD] = 1

B

∑B
b=1 q

∗(b)
Dk .

5. Calculate B̂d(θ̂) = 1
2

{
ÊB[rD,d]−

(
∂
∂θ

ĝd(θ̂)
)′ (

∂
∂θ
M(θ̂)

)−1
ÊB[qD]

}
.

Theorem 2.2 Let θ̂ be the truncated MM estimator. Under regularity conditions (2.4.2)-

(2.4.6), an order o(D−1) theoretical estimator of MSE(p̂d), with bias correction, is

M̂SE(p̂d) = mseP (p̂d)−
1

D
Bd(θ),

and the practical estimators, with and without bias correction, are

mse(p̂d) = mseP (p̂d)−
1

D
B̂d(θ̂), mseP (p̂d) = ĝd(θ̂) +

1

D
ĉd(θ̂), (2.7.4)

where ĝd(θ̂) and ĉd(θ̂) are the Monte Carlo approximations of gd(θ̂) and cd(θ̂) respectively.

2.7.2 Auxiliary results

Let us now calculate the partial derivatives appearing in B̂d(θ̂). Concerning the derivatives

ofM(θ) = col
1≤k≤p+1

(Mk(θ)), the �rst order partial derivatives can be found in Section 2.3.1.

The second order partial derivatives of Mk (k = 1, . . . , p), are

∂2Mk

∂βs∂βr
=

D∑
d=1

νdxdkxdrxds exp{xdβ +
1

2
φ2},

∂2Mk

∂φ∂βr
=

D∑
d=1

νdxdkxdrφ exp{xdβ +
1

2
φ2},

∂2Mk

∂φ2
=

D∑
d=1

νdxdkφ
2 exp{xdβ +

1

2
φ2},
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and second order partial derivatives of Mp+1 are

∂2Mp+1

∂βs∂βr
=

D∑
d=1

νdxdrxds exp{xdβ +
1

2
φ2}+ 4

D∑
d=1

ν2
dxdrxds exp{2xdβ + 2φ2},

∂2Mp+1

∂φ∂βr
=

D∑
d=1

νdxdrφ exp{xdβ +
1

2
φ2}+ 8

D∑
d=1

ν2
dxdrφ exp{2xdβ + 2φ2},

∂2Mp+1

∂φ2
=

D∑
d=1

νdφ
2 exp{xdβ +

1

2
φ2}+ 16

D∑
d=1

ν2
dφ

2 exp{2xdβ + 2φ2},

where r, s = 1, . . . , p.

We recall that the MSE of the BP p̂d(θ) is

MSE(p̂d(θ)) = gd(θ) = exp{2xdβ + 2φ2} −
∞∑
j=0

ψ2
d(j,θ)Pd(j,θ).

The �rst order partial derivatives of gd(θ) are

∂gd(θ)

∂βr
= 2xdr exp{2xdβ + 2φ2} − 2

∞∑
j=0

ψd(j,θ)
∂ψd(j,θ)

∂βr
Pd(j,θ)−

∞∑
j=0

ψ2
d(j,θ)

∂Pd(j,θ)

∂βr
,

∂gd(θ)

∂φ
= 4φ exp{2xdβ + 2φ2} − 2

∞∑
j=0

ψd(j,θ)
∂ψd(j,θ)

∂φ
Pd(j,θ)−

∞∑
j=0

ψ2
d(j,θ)

∂Pd(j,θ)

∂φ
,

and the second order partial derivatives of gd(θ) are

∂2gd(θ)

∂βs∂βr
= 4xdrxds exp{2xdβ + 2φ2} − 2

∞∑
j=0

∂ψd(j,θ)

∂βs

∂ψd(j,θ)

∂βr
Pd(j,θ)

− 2
∞∑
j=0

ψd(j,θ)
∂2ψd(j,θ)

∂βs∂βr
Pd(j,θ)− 2

∞∑
j=0

ψd(j,θ)
∂ψd(j,θ)

∂βr

∂Pd(j,θ)

∂βs

− 2
∞∑
j=0

ψd(j,θ)
∂ψd(j,θ)

∂βs

∂Pd(j,θ)

∂βr
−
∞∑
j=0

ψ2
d(j,θ)

∂2Pd(j,θ)

∂βs∂βr
,

∂2gd(θ)

∂φ∂βr
= 8xdrφ exp{2xdβ + 2φ2} − 2

∞∑
j=0

∂ψd(j,θ)

∂φ

∂ψd(j,θ)

∂βr
Pd(j,θ)

− 2

∞∑
j=0

ψd(j,θ)
∂2ψd(j,θ)

∂φ∂βr
Pd(j,θ)− 2

∞∑
j=0

ψd(j,θ)
∂ψd(j,θ)

∂βr

∂Pd(j,θ)

∂φ

− 2

∞∑
j=0

ψd(j,θ)
∂ψd(j,θ)

∂φ

∂Pd(j,θ)

∂βr
−
∞∑
j=0

ψ2
d(j,θ)

∂2Pd(j,θ)

∂φ∂βr
,
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∂2gd(θ)

∂φ2
= 16φ2 exp{2xdβ + 2φ2} − 2

∞∑
j=0

(
∂ψd(j,θ)

∂φ

)2

Pd(j,θ)

− 2

∞∑
j=0

ψd(j,θ)
∂2ψd(j,θ)

∂φ2
Pd(j,θ)− 4

∞∑
j=0

ψd(j,θ)
∂ψd(j,θ)

∂φ

∂Pd(j,θ)

∂φ

−
∞∑
j=0

ψ2
d(j,θ)

∂2Pd(j,θ)

∂φ2
.

The derivatives of ĝd(θ̂) are obtained by substituting ψd, pd, β, φ and θ by ψ̂d, p̂d, β̂, φ̂

and θ̂ respectively in the corresponding derivatives of gd(θ).

Let us now calculate the unknown components appearing in the partial derivatives of gd(θ).

For ease of presentation, we use a more simple notation Nd(j) = Nd(j,θ) and Dd(j) =

Dd(j,θ). The �rst order partial derivatives of ψd(j,θ) = Nd(j,θ)

Dd(j,θ)
= Nd(j)

Dd(j) are

∂ψd(j,θ)

∂θr
=

∂Nd(j)
∂θr

Dd(j)
−
Nd(j)

∂Dd(j)
∂θr

D2
d(j)

, r = 1, . . . , p+ 1, (2.7.5)

and the second order partial derivatives of ψd(j,θ) are

∂ψd(j,θ)

∂θs∂θr
=

∂2Nd(j)
∂θs∂θr

Dd(j)
−

∂Nd(j)
∂θr

∂Dd(j)
∂θs

+ ∂Nd(j)
∂θs

∂Dd(j)
∂θr

+Nd(j)
∂2Dd(j)
∂θs∂θr

D2
d(j)

+
2Nd(j)

∂Dd(j)
∂θs

∂Dd(j)
∂θr

D3
d(j)

. (2.7.6)

Finally, the estimated bias correction term B̂d(θ̂) will be determined if we calculate the

partial derivatives appearing in (2.7.5) and (2.7.6). We recall that

Dd(j,θ) =

∫
R
Rd(θ, j, vd)f(vd) dvd, Nd(j,θ) =

∫
R
Rd(θ, j+1, vd)f(vd) dvd = Dd(j+1,θ),

where

Rd(θ, j, vd) = exp {j(xdβ + φvd)− νdpd(θ, vd)} , pd(θ, vd) = exp{xdβ + φvd}.

The �rst order partial derivatives of Dd(j,θ) are

∂Dd(j,θ)

∂βr
=

∫
R
Rd(θ, j, vd)[j − νdpd(θ, vd)]xdrf(vd) dvd, r = 1, . . . , p,

∂Dd(j,θ)

∂φ
=

∫
R
Rd(θ, j, vd)[j − νdpd(θ, vd)]vdf(vd) dvd,
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and the second order partial derivatives of Dd(j,θ) are

∂2Dd(j,θ)

∂βs∂βr
=

∫
R
Rd(θ, j, vd)

{
[j − νdpd(θ, vd)]2 − νdpd(θ, vd)

}
xdrxdsf(vd) dvd,

∂2Dd(j,θ)

∂φ∂βr
=

∫
R
Rd(θ, j, vd)

{
[j − νdpd(θ, vd)]2 − νdpd(θ, vd)

}
xdrvdf(vd) dvd,

∂2Dd(j,θ)

∂φ2
=

∫
R
Rd(θ, j, vd)

{
[j − νdpd(θ, vd)]2 − νdpd(θ, vd)

}
v2
df(vd) dvd.

where r, s = 1, . . . , p. The �rst and second order partial derivatives of Nd(j,θ) are obtained

by changing j by (j+1) in the corresponding derivatives of Dd(j,θ). It is immediate to see

that the partial derivatives of Nd(j,θ) and Dd(j,θ) can be approximated by an accelerated

Monte Carlo algorithm analogous to that seen in Section 2.5.

As the partial derivatives of gd(θ) are computationally demanding, we propose alternative

e�cient formulas (2.7.7) � (2.7.9) taken from Lahiri et al. (2007). For that, let h : Rn 7→ R
be a twice continuously di�erentiable real-valued function. Let us de�ne the column vectors

θ = col
1≤r≤n

(θr) ∈ Rn, er = (0, . . . , 0, 1(r, 0, . . . , 0)′ = col
1≤i≤n

(δir), ers = er + es, where δij = 0

if i 6= j and δij = 1 if i = j. For ε > 0, a �rst order Taylor expansion of h(θ + εer) and

h(θ − εer) around θ yields to

h(θ + εer) = h(θ) +
∂h(θ)

∂θr
ε+ o(ε), h(θ − εer) = h(θ)− ∂h(θ)

∂θr
ε+ o(ε).

By subtraction, we get

h(θ + εer)− h(θ − εer) = 2ε
∂h(θ)

∂θr
+ o(ε).

Therefore
∂h(θ)

∂θr
=

1

2ε

{
h(θ + εer)− h(θ − εer)

}
+ o(ε). (2.7.7)

For ε > 0, a second order Taylor expansion of h(θ + εer) around θ yields to

h(θ + εer) = h(θ) +
∂h(θ)

∂θr
ε+

1

2

∂2h(θ)

∂θ2
r

ε2 + o(ε2).

By applying (2.7.7), we get

h(θ + εer) = h(θ) +
1

2

{
h(θ + εer)− h(θ − εer)

}
+

1

2

∂2h(θ)

∂θ2
r

ε2 + o(ε2).
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Therefore
∂2h(θ)

∂θ2
r

=
1

ε2

{
h(θ + εer) + h(θ − εer)− 2h(θ)

}
+ o(ε2). (2.7.8)

For ε > 0, a second order Taylor expansion of h(θ + εers) and h(θ − εers) around θ yields
to

h(θ + εers) = h(θ) +
∂h(θ)

∂θr
ε+

∂h(θ)

∂θs
ε+

1

2

∂2h(θ)

∂θ2
r

ε2 +
1

2

∂2h(θ)

∂θ2
s

ε2 +
∂2h(θ)

∂θr∂θr
ε2 + o(ε2),

h(θ − εers) = h(θ)− ∂h(θ)

∂θr
ε− ∂h(θ)

∂θs
ε+

1

2

∂2h(θ)

∂θ2
r

ε2 +
1

2

∂2h(θ)

∂θ2
s

ε2 +
∂2h(θ)

∂θr∂θr
ε2 + o(ε2).

By summation, we get

h(θ + εers) + h(θ − εers) = 2h(θ) +
∂2h(θ)

∂θ2
r

ε2 +
∂2h(θ)

∂θ2
s

ε2 + 2
∂2h(θ)

∂θr∂θr
ε2 + o(ε2).

For r 6= s, we obtain

∂2h(θ)

∂θr∂θr
=

1

2ε2

[{
h(θ + εers) + h(θ − εers)− 2h(θ)

}
−ε2

{
∂2h(θ)

∂θ2
r

+
∂2h(θ)

∂θ2
s

}]
+ o(ε2). (2.7.9)

2.7.3 Bootstrap estimation of the MSE

The calculation of mse(p̂d) is computationally expensive. An alternative MSE estimator

can be introduced by applying the following parametric bootstrap approach.

1. Fit the model to the sample and calculate the estimator θ̂ = (β̂, φ̂).

2. Repeat B times (b = 1, . . . , B)

i) Generate v∗(b)d ∼ N(0, 1), d = 1, . . . , D. Calculate p∗(b)d = exp{xdβ̂+ φ̂v
∗(b)
d } and

y
∗(b)
d ∼ Poiss(νdp

∗(b)
d ).

ii) For each bootstrap resample, calculate the estimator θ̂
∗(b)

and the EBP p̂
∗(b)
d =

p̂∗d(θ̂
∗(b)

).

3. Calculate

mse∗(p̂d) =
1

B

B∑
b=1

(
p̂
∗(b)
d − p∗(b)d

)2
. (2.7.10)
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Simulation experiments 2.8

2.8 Simulation experiments

Several simulation experiments are carried out for analysing the �tting algorithms, the EBP

of pd and the MSE estimators. Two approaches are considered: simulations based on the

model distribution and simulations based on a sampling design distribution.

2.8.1 Model-based simulation

This subsection presents three simulation experiments related to the application to the real

data from SLCS in 2008 (see more details in Section 2.9.1). First, we analyse the behaviour

of the MM, PQL and LA �tting algorithms. The simulation is also employed for checking

that the developed R codes work e�ciently. The function glmer of the R package lme4

gives the ML-Laplace approximation algorithm. Second, we compare the performances

of the EBP and the plug-in estimators. Third, we empirically study the proposed MSE

estimators. In the three simulation experiments, we use the same explanatory variables as

those used in the case study: unemployed (lab2 ), foreign people (cit1 ), people with age in

50− 64 (age3 ) and secondary or university education completed (edu23 ) proportions.

Random e�ects vd are generated from normal and Gumbel distributions with mean zero

and variance one. We use the Gumbel distribution to study how the lack of normality in

the random e�ects a�ects the model parameter and EBP estimates. The response variable

is yd ∼ Poiss(νdpd), where pd = exp{β0 + lab2dβ1 + cit1dβ2 + age3dβ3 + edu23dβ4 + φvd},
d = 1, . . . , D. The model parameters, β0, . . . , β4, φ, and the sizes νd = nd are taken from

the application to real data presented in Section 2.9.1. The numbers of domains are D =

52, 104, 150. The x-variables are taken from provinces crossed by female if D = 52 and

from the provinces crossed by sex if D = 104. In the case D = 150, as the data �le of

x-values have 104 records, we input 46 new records by doing a simple random sampling

without replacement in the data �le. We run the simulation experiments with K = 1000

Monte Carlo iterations.

For the six model parameters, θ ∈ {β0, . . . , β4, φ}, Table 2.8.1 (for normal random e�ects)

and Table 2.8.2 (for Gumbel random e�ects) present the bias and the root-MSE (RMSE)

in brackets for MM, PQL and LA estimators, i.e.

BIAS =
1

K

K∑
k=1

(θ̂(k) − θ), RMSE =

(
1

K

K∑
k=1

(θ̂(k) − θ)2

)1/2

.

49



2 The area-level Poisson mixed model

These tables suggest that RMSE is slightly higher for Gumbel random e�ects. In general,

BIAS is lower for the MM and LA estimators. On the other hand, the RMSEs for PQL

and LA estimators are similar, but they are higher for MM estimators. As expected, when

the number of domains increases then the bias and the RMSE decreases. The empirical

results agree with the consistency property of the MM estimators. Tables 2.8.1 and 2.8.2

suggest that the variance is the component that contributes most to the MSE since bias is

much smaller than the RMSE.

Table 2.8.1: BIAS and RMSE (in brackets) for MM, PQL and LA estimators taking normal
random e�ects.

D θ̂ MM PQL LA

52 β̂0 0.0284 (0.6204) 0.0318 (0.5742) 0.0113 (0.5736)

β̂1 0.0001 (2.4308) 0.0009 (2.2285) 0.0610 (2.2211)

β̂2 -0.0212 (0.7144) -0.0265 (0.6687) -0.0296 (0.6681)

β̂3 -0.0817 (3.3998) -0.0247 (3.0507) 0.0047 (3.0431)

β̂4 -0.0227 (0.8213) -0.0316 (0.7638) -0.0233 (0.7659)

φ̂ -0.0362 (0.1175) -0.0817 (0.0872) -0.0167 (0.0328)

104 β̂0 -0.0033 (0.4252) 0.0159 (0.3877) 0.0018 (0.3861)

β̂1 -0.0534 (1.5785) -0.1036 (1.4599) -0.0552 (1.4522)

β̂2 0.0184 (0.4723) 0.0189 (0.4281) 0.0160 (0.4237)

β̂3 0.0771 (2.1812) 0.0634 (1.9584) 0.0590 (1.9479)

β̂4 -0.0124 (0.4708) -0.0225 (0.4331) -0.0157 (0.4311)

φ̂ -0.0313 (0.1006) -0.0787 (0.0820) -0.0091 (0.0230)

150 β̂0 0.0094 (0.3542) 0.0235 (0.3280) 0.0078 (0.3275)

β̂1 -0.0242 (1.2636) -0.0717 (1.1803) -0.0232 (1.1773)

β̂2 -0.0036 (0.3979) -0.0087 (0.3643) -0.0079 (0.3635)

β̂3 -0.0163 (1.8200) -0.0203 (1.6452) -0.0201 (1.6445)

β̂4 -0.0083 (0.4018) -0.0115 (0.3676) -0.0043 (0.3678)

φ̂ -0.0257 (0.0897) -0.0747 (0.0770) -0.0057 (0.0177)

The second simulation studies the behaviour of the EBP and two plug-in estimators of pd.

The �rst one (PLUG1) uses PQL (see Saei and Chambers (2003) for more details) while the

second one (PLUG2), as well as the EBP, uses the method of moments as �tting algorithm.

For approximating the EBP of pd, we generate L = 2500 independent random variables

with N(0, 1) distribution and we apply Step 2 of the EBP algorithm given in Section 2.5.
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Table 2.8.2: BIAS and RMSE (in brackets) for MM, PQL and LA estimators taking Gumbel
random e�ects.

D θ̂ MM PQL LA

52 β̂0 -0.0468 (0.6884) -0.0129 (0.5809) -0.0293 (0.5741)

β̂1 0.1136 (2.6604) 0.0385 (2.2745) 0.0888 (2.2505)

β̂2 0.0048 (0.7285) 0.0078 (0.6600) 0.0052 (0.6583)

β̂3 0.1046 (3.7879) 0.0701 (3.1537) 0.0749 (3.1160)

β̂4 0.0376 (0.8753) 0.0109 (0.7621) 0.0200 (0.7566)

φ̂ -0.0255 (0.1288) -0.0725 (0.0829) -0.0090 (0.0371)

104 β̂0 -0.0036 (0.4601) 0.0207 (0.4109) 0.0053 (0.4077)

β̂1 0.0003 (1.6610) -0.0805 (1.4962) -0.0278 (1.4791)

β̂2 -0.0076 (0.4916) -0.0092 (0.4298) -0.0147 (0.4260)

β̂3 -0.0189 (2.3000) -0.0429 (2.0067) -0.0461 (1.9935)

β̂4 0.0091 (0.5306) -0.0007 (0.4703) 0.0076 (0.4660)

φ̂ -0.0246 (0.1141) -0.0719 (0.0777) -0.0031 (0.0262)

150 β̂0 0.0029 (0.3726) 0.0185 (0.3263) 0.0014 (0.3240)

β̂1 -0.0354 (1.3296) -0.0743 (1.1802) -0.0167 (1.1677)

β̂2 -0.0045 (0.4351) -0.0045 (0.3821) -0.0038 (0.3778)

β̂3 -0.0168 (1.9787) -0.0023 (1.7116) -0.0037 (1.7009)

β̂4 -0.0002 (0.4470) -0.0104 (0.3963) -0.0017 (0.3943)

φ̂ -0.0143 (0.1008) -0.0667 (0.0711) 0.0013 (0.0214)

Table 2.8.3 for normal and Table 2.8.4 for Gumbel random e�ects compare these estimators

through the bias, Bd, and the root mean squared error REd (in brackets), i.e.

Bd =
1

K

K∑
k=1

(p̂
(k)
d − p

(k)
d ), REd =

(
1

K

K∑
k=1

(p̂
(k)
d − p

(k)
d )2

)1/2

, d = 1, . . . , D.

In both cases, results are presented for the quintiles of the set {1, . . . , D}, where the domains

are sorted by sample sizes. The last row of each subtable, D = 52, 104, 150, contains the

average absolute biases and the average RMSEs (in brackets), i.e.

B =
1

D

D∑
d=1

|Bd|, RE =
1

D

D∑
d=1

REd.
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These tables suggest that plug-in estimator PLUG1 has the best performance in the simu-

lation experiment and that PLUG2 and EBP behave similarly. We also observe that REd's

of the EBP are close to PLUG2. If we move from normal to Gumbel distribution we get

a moderate increase of RMSE for the three consider estimators of pd. Again Bd is much

smaller than REd, so the variance is, by far, the most important part of the MSE.

Table 2.8.3: Bd and REd in brackets (both ×103) for the estimators of pd using normal
random e�ects.

D d pd PLUG1 PLUG2 EBP

52 12 0.1358 -0.6625 (22.9513) -2.0825 (23.9080) -1.2805 (23.8648)

22 0.2199 -0.7860 (31.7712) -4.8846 (35.9817) -4.0407 (35.9576)

32 0.1473 -0.0736 (20.2905) -0.8316 (22.3833) -0.2971 (22.3528)

42 0.1390 -1.1504 (17.0833) -1.8658 (20.5645) -1.5098 (20.5429)

B (RE) 0.9537 (30.2549) 2.8992 (35.0194) 2.3260 (35.0673)

104 22 0.2043 -0.5402 (32.7631) -2.2054 (33.5076) -1.0222 (33.4617)

43 0.2902 -2.5915 (36.4277) -4.1313 (40.2427) -3.0267 (40.1638)

63 0.3341 -1.2321 (34.6773) -0.2562 (40.9947) 0.5668 (40.9594)

84 0.1346 -0.2059 (16.1346) -1.0437 (17.4878) -0.6061 (17.4812)

B (RE) 0.8679 (27.6212) 2.2133 (30.5543) 1.4937 (30.6393)

150 31 0.2980 -0.2759 (42.7971) -0.6607 (46.3047) 0.7313 (46.3008)

61 0.2883 -0.9757 (36.6614) -1.1722 (40.0554) -0.0712 (40.0093)

91 0.1183 -1.3843 (16.0990) -2.2849 (17.2439) -1.7292 (17.2047)

121 0.1364 -1.1466 (15.5221) -2.2030 (17.7481) -1.7813 (17.7208)

B (RE) 1.1842 (27.6926) 2.3748 (30.5481) 1.7497 (30.6419)

The third simulation investigates the behaviour of the MSE estimators of the EBP. This sim-

ulation requires, as input, very accurate empirical approximations of the variance-covariance

matrix of the MM estimator θ̂ and of the true MSE

Ed =
1

K

K∑
k=1

(p̂
(k)
d − p

(k)
d )2, d = 1, . . . , D,

of p̂d. We do these calculations in advance by running a Monte Carlo experiment with 104

iterations.

Three estimators of the MSE are compared. They are the two plug-in estimators given in
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Table 2.8.4: Bd and REd in brackets (both ×103) for the estimators of pd using Gumbel
random e�ects.

D d pd PLUG1 PLUG2 EBP

52 12 0.1370 -1.0361 (24.6185) -2.3661 (27.0481) -1.5873 (27.0729)

22 0.2217 -3.1392 (33.2708) -6.2361 (40.4207) -5.4267 (40.3495)

32 0.1488 -0.8530 (21.0478) -1.8381 (24.9230) -1.2984 (24.8738)

42 0.1382 0.6079 (16.2585) -0.8915 (21.6641) -0.5114 (21.6722)

B (RE) 1.1290 (31.2405) 3.0348 (37.6639) 2.4642 (37.7298)

104 22 0.2046 -0.2642 (32.0103) -2.8320 (34.2867) -1.5970 (34.2506)

43 0.2912 -2.2316 (40.3293) -4.3607 (47.3573) -3.2026 (47.3121)

63 0.3331 -1.3900 (35.4902) -1.6936 (42.9036) -0.8724 (42.8879)

84 0.1358 -0.3168 (16.7957) -1.3039 (21.3683) -0.8217 (21.3281)

B (RE) 0.9791 (28.9698) 2.4634 (28.9698) 1.7554 (33.4948)

150 31 0.2990 -0.6858 (44.9199) -1.3983 (49.8233) 0.1416 (49.9213)

61 0.2888 -2.0584 (36.8686) -2.8549 (41.5932) -1.6780 (41.5041)

91 0.1172 -0.9483 (16.9548) -1.8923 (18.4209) -1.2805 (18.3762)

121 0.1347 -0.1022 (16.6420) -1.4287 (20.5855) -0.9755 (20.5620)

B (RE) 1.0275 (28.6226) 2.4008 (32.3556) 1.6388 (32.4816)

(2.7.4), mseP and mse without and with bias correction respectively, and the parametric

bootstrap estimator, mse∗, introduced in (2.7.10). The calculation of mseP and mse is

computationally intensive and requires Monte Carlo approximations. We generate L = 2500

independent random variables with distribution N(0, 1) for approximating ĝd(θ̂) and ĉd(θ̂).

Furthermore, we approximate the in�nite sums appearing in the de�nitions of these two

terms by the corresponding �nite sums with the �rst 300 summands. In this way, we

guarantee an approximation of the in�nite sum with an error lower than the precision of

the computer.

Figure 2.8.1 plots the logarithm of the MSE estimators for each domain d = 1, . . . , D and

for D = 52 (left), D = 104 (center) and D = 150 (right). They are sorted by sample size.

The logarithm scale is used to improve the visualization of the estimators. The results for

small values of d are quite similar. However, the bootstrap estimator shows a more stable

behaviour when d increases. We note that the estimator with bias correction, mse, is a

good alternative despite not being able to capture the bias of the plug-in estimator in the

last domains. For the bootstrap approach, we consider B = 500 resamples.
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Figure 2.8.1: MSE estimators, in logarithmic scale, for D = 52 (left), D = 104 (center) and
D = 150 (right).

Figure 2.8.2 shows the boxplots of the biases Bd, d = 1, . . . , D, of the three MSE estimators

for D = 52 (left), D = 104 (center) and D = 150 (right). The MSE estimators are the two

plug-in estimators msed and msePd (with and without bias correction, respectively) and the

parametric bootstrap estimator mse∗d. We observe that all MSE estimators under-estimate

the true MSE, specially the bootstrap estimator. On the other hand, bootstrap estimates

are more stable because they contain very few outliers.
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Figure 2.8.2: Bias of MSE estimators for D = 52 (left), D = 104 (center) and D = 150
(right).

Table 2.8.5 presents the bias and the root mean squared error (both ×103) of the three

considered estimators of MSE for quintiles of {1, . . . , D}. Analytic estimators (without and

with bias correction term) perform well in both bias and root mean squared error. The
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bootstrap MSE estimator has a similar root mean squared error to the analytic ones, it is

computationally faster and it is easy to implement. However, it has a higher bias. The

obtained results suggest that bias is the most important part of the MSE in the bootstrap

approach, specially for small values of D.

Table 2.8.5: Bias and root mean squared error in brackets (both ×103) of the MSE estima-
tors.

D d Ed mseP mse mse∗

52 12 0.0006 -0.1052 (0.3291) -0.1117 (0.4516) -0.2904 (0.4056)

22 0.0012 -0.1297 (0.3018) -0.3782 (0.7953) -0.6890 (0.7947)

32 0.0005 -0.1559 (0.2238) -0.1624 (0.3591) -0.3059 (0.3459)

42 0.0004 -0.1130 (0.1820) -0.0991 (0.3100) -0.2399 (0.2589)

104 22 0.0010 -0.1641 (0.4482) -0.1325 (0.5495) -0.3971 (0.5582)

43 0.0016 -0.4271 (0.6183) -0.3831 (0.7954) -0.7590 (0.8740)

63 0.0015 -0.4892 (0.6793) -0.4398 (0.9407) -0.8273 (0.8946)

84 0.0003 -0.0857 (0.1269) -0.0716 (0.1699) -0.1533 (0.1707)

150 31 0.0019 -0.4192 (0.8080) -0.3879 (0.9702) -0.7737 (1.0145)

61 0.0014 -0.3835 (0.6396) -0.3201 (0.7839) -0.6646 (0.8082)

91 0.0003 -0.0527 (0.1280) -0.0455 (0.1540) -0.1109 (0.1541)

121 0.0003 -0.1029 (0.1458) -0.0934 (0.1756) -0.1505 (0.1719)

The estimation of the MSE of small area predictors under di�erent models is a relevant

issue. In particular, the development of methods for obtaining bias-corrected MSE estima-

tors is an open topic. In the SAE literature, the �rst bootstrap procedure for correcting the

bias of MSE estimators is due to Hall and Maiti (2006). These authors proposed a paramet-

ric double-bootstrap procedure based on the conventional additively and multiplicatively

bias-corrected estimators, such that the �rst step bootstrap estimator has a bias of order

O(1/D) and the double-bootstrap estimator has a bias of order o(1/D) under some regular-

ity conditions. Despite having bias of lower order, these corrections may leave appreciable

bias for small samples. Pfe�ermann and Correa (2012) developed a general method of bias

correction, which models the MSEs of the target small area estimators as a function of

the corresponding bootstrap MSE estimators, the small area estimators and the bootstrap

estimators of the parameters of the model �tted to the sample data. The method is �ex-

ible and can be applied to complicated problems without new theoretical derivations, but

the application under our particular Poisson mixed model involves an extensive simulation
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study which is not the subject of the work at hand. Other procedures in the SAE literature

are the jackknife method (Jiang et al., 2002) or the resampling methods for estimating the

MSE of M-quantile estimators (Chambers et al., 2011), among others.

2.8.2 Design-based simulation

Model-based simulations depend on the model used for data generation. However, in prac-

tice, we do not know what is the model that generates the population. The target of this

simulation experiment is to analyse if the proposed estimator under a Poisson mixed model

performs well even if the population under study is not Poisson distributed. For this sake,

we generate a population based on the real data by using the sampling weights wdj . The

arti�cial population is built by repeating b10−3wdjc times each sampling unit j of domain

d.

We implement a simpli�ed version of the SLCS sampling design in 2008. Within each

autonomous community, the units are selected with a simple random sampling design.

As sample size for each autonomous community, we take nc = bNc10−1c + 1, where Nc

denotes the population size of each autonomous community. For each drawn sample k

(k = 1, . . . ,K = 1000), we evaluate the direct estimator (Dir), the EBLUP based on the

Fay-Herriot model (FH), the two considered plug-in estimators (PLUG1 and PLUG2) and

the EBP. For the direct estimators of pd and its design-based variance we take

p̂dird =
1

N̂d

∑
j∈sd

wdj ydj , v̂arπ(p̂dird ) =
1

N̂2
d

∑
j∈sd

wdj(wdj − 1)
(
ydj − p̂dird

)2
, (2.8.1)

where wdj = Nc/nc and N̂d =
∑

j∈sd wdj = nd
Nc
nc
. The variance estimator is taken from

Särndal et al. (1992), pp. 43, 185 and 391, with the simpli�cations wdj = 1/πdj , πdj,dj = πdj

and πdi,dj = πdiπdj , i 6= j in the second order inclusion probabilities. The EBLUP of pd is

taken from Fay and Herriot (1979) or Prasad and Rao (1990).

Table 2.8.6 gives the results of the bias Bd and the root mean squared error REd (in

brackets) for the direct estimator (Dir), the EBLUP based on the Fay-Herriot model (FH),

the two considered plug-in estimators (PLUG1 and PLUG2) and the EBP. The results are

presented for the quintiles of the real population, where D = 104. As expected, the direct

estimator has lower bias but its RMSE is higher than the model-based-estimators.

The FH has lower bias and greater RMSE than the PLUG1 predictor in most cases. The

three Poisson mixed model predictors (EBP, PLUG1 and PLUG2) have a similar behaviour,
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in both bias and root mean squared error. If we compare these results with those obtained

in Table 2.8.3 under model-based simulation, they increase slightly. This fact is some-

how expected but gives more realistic information about the behaviour of the considered

predictors in practice.

Table 2.8.6: Bd and REd in brackets (both ×102) for the estimators of pd.

D d pd Dir FH PLUG1 PLUG2 EBP

104 22 0.3632 -0.3635 -5.8868 -6.2216 -8.1702 -8.1666

(9.9666) (7.3783) (6.6154) (8.4582) (8.4548)

43 0.1657 -0.1274 -0.5098 1.9462 0.6762 0.6786

(6.3085) (4.0864) (2.3150) (1.3859) (1.3862)

63 0.1010 -0.1625 0.0465 2.3047 1.8443 1.8461

(3.8086) (3.0336) (2.4213) (1.9763) (1.9778)

84 0.2182 0.0718 1.0257 1.8058 -0.0772 -0.0742

(4.2012) (3.3773) (2.3373) (1.4629) (1.4637)

B 0.1877 2.6396 4.9789 5.0036 5.0036

(RE) (6.9890) (5.3960) (5.2454) (5.2875) (5.2874)

All these simulation experiments have been carried out using the statistical software R

3.1.1. We use nleqslv package to solve the system of nonlinear equations (2.3.1)-(2.3.2) by

Newton-Raphson and evd package to generate random e�ects according to a Gumbel distri-

bution. Regarding the computational burden, the MM estimator is faster than PQL since

its computing times were 0.02, 0.03 and 0.04 seconds for D = 52, 104 and 150 respectively

while for the PQL were 0.02, 0.04 and 0.08. On the other hand, the PQL algorithm already

provides the prediction of the random e�ects v̂d (d = 1, . . . , D). Thus, the plug-in estimator

of pd obtained using PQL (PLUG1) is less demanding computationally. Its runtimes for

D = 52, 104, 150 were 0.07, 0.10 and 0.17 seconds respectively. As the pd estimators based

on the MM �tting algorithm (PLUG2 and EBP) require the use of EBPs, their runtimes

are higher (0.15, 0.20 and 0.36 seconds for PLUG2 and 0.15, 0.22 and 0.41 for the EBP).

Finally, regarding the MSE estimators, the calculation ofmseP andmse is computationally

intensive. Specially the mse estimator where the bias correction term, calculated by using

a bootstrap approach, increases considerably the runtimes (from 151.14 seconds to 2231.80

for D = 52 and B = 500 resamples). In addition, the bootstrap estimator mse∗ is easy

to implement, it has a similar behaviour to the previous ones and requires a much lower

runtime (15.84 seconds for D=52 and B = 500 resamples).
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2.9 Applications to real data

2.9.1 Poverty data

Policy makers are interested in �nding out which factors are more in�uential for poverty

in order to act on them and achieve a decrease of their consequences, especially in poor

regions where a greater commitment to the competent authorities is necessary.

This section estimates the poverty rate, pd, in Spain by provinces during 2008. The data is

taken from the SLCS in 2008. As domains, we consider provinces crossed by sex. In Spain

there are 50 provinces. In addition, we consider as provinces the autonomous cities of Ceuta

and Melilla. Then, the number of domains isD = 52×2 = 104. The SLCS planned domains

are the 17 Spanish autonomous communities. Therefore, SLCS direct estimators are not

precise enough for estimating poverty rates at a lower aggregation level than autonomous

communities (e.g. provinces or counties). Small area estimation deals with this problem

by introducing model-based or model assisted estimators. The response variable yd counts

the number of people under the poverty line in the domain d. We assume that yd can

be described by an area-level Poisson mixed model and some explanatory variables (see

Chapter 1 for a detailed explanation of the considered auxiliary information).

Regarding the level of education, we note that people that have passed the national pro-

gramme of professional training courses typically have good job opportunities at the indus-

try and services labour sector. As these people are in group edu2, we merge secondary and

university education levels into a single category edu23. This proposal was suggested by

the Spanish O�ce of Statistics.

An area-level Poisson mixed model (Model 1) is �tted to the data. The MM Newton-

Raphson algorithm is employed for estimating the model parameters and their asymptotic

variances. A subset of signi�cant auxiliary variables is selected, i.e. with p-value lower than

0.05. Table 2.9.1 presents the estimates of the regression parameters and their standard

errors, z-values and p-values.

The signs of the regression parameters in Table 2.9.1 show that unemployment (lab2) con-

tributes to increase the poverty since its sign is positive, while the remaining covariates are

protective in the sense that an increase in them causes a reduction in the number of people

below poverty line, assuming that the other auxiliary variables are �xed. The sign of cit1

appears because the foreign people tend to establish in provinces with higher economical

activity, given that they can �nd better living conditions and job opportunities. Esteban
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Table 2.9.1: MM estimates of regression parameters under Model 1.

Variable Est. s.e. z-value P (> |z|)

Intercept 1.5669 0.5030 3.7653 < 0.001
lab2 6.8923 1.8939 2.9949 0.0027
cit1 -2.9844 0.5860 -4.9693 < 0.001
age3 -7.5259 2.6311 -3.8857 < 0.001
edu23 -3.5998 0.5913 -5.3807 < 0.001

et al. (2012b) found the same result when �tting Fay-Herriot temporal models to data from

the SLCS of 2006.

Each domain (province-sex) d, d = 1, . . . , 104, has a random intercept with distribution

N(0, φ2). The estimate of φ is φ̂ = 0.183 and its 95% percentile bootstrap con�dence

interval is (0.144, 0.271). To test the null hypothesis H0 : φ2 = 0, we use a bootstrap

procedure. The steps are:

Algorithm 5 A bootstrap test for H0 : φ2 = 0

1: Fit the Model 1 (see Section 2.2) to data and calculate β̂ and φ̂.

2: Fit the Model 0 (see Section 2.2) to data and calculate β̂
0
.

3: For b = 1, . . . , B, do

i) Generate a bootstrap resample under H0 : φ2 = 0, i.e.

p
∗(b)
d = exp{xdβ̂

0}, y∗(b)d ∼ Poiss(νdp
∗(b)
d ), d = 1, . . . , D.

ii) Fit the Model 1 to the bootstrap data (y
∗(b)
d ,xd), d = 1, . . . , D, and calculate β̂

∗(b)

and φ̂∗(b).

4: Calculate the p-value

p =
#
{
φ̂∗(b)2 > φ̂2

}
B

.

The obtained bootstrap p-value is 0.007. Then, we conclude that the variance parameter

is signi�cantly di�erent from 0, taking α = 0.05

For the sake of comparison, we also �t a Poisson regression model with the same auxiliary

variables of Table 2.9.1 but without any random e�ect (Model 0). Figure 2.9.1 plots the

Pearson residuals of the Poisson regression models without (left) and with (right) domain

random e�ects. In both cases the behaviour is symmetrical around 0 and a clear improve-
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ment is observed when we use the more complex model including random e�ects, as they

capture the variability between domains.
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Figure 2.9.1: Pearson residuals for the �xed e�ects model (left) and mixed e�ects model
(right).

The objective of this analysis is to study the EBP. We are also interested in comparing the

EBP of pd with the direct estimator and the EBLUP based on a Fay-Herriot model (Fay

and Herriot, 1979) �tted by the REML method to the set of auxiliary variables described

in Table 2.9.1. The MSE of the EBP is estimated by parametric bootstrap and the MSE

of the EBLUP by the g1-g3 formula (see eq(4) in Datta and Lahiri (2000)). Finally, direct

estimators of pd and of its design-based variance are calculated following (2.8.1), where

N̂d =
∑

j∈sd wdj and the wdj 's are the o�cial calibrated SLCS sampling weights which take

into account for non response.

Figure 2.9.2 (left) plots the EBP, direct and EBLUP estimates of pd, d = 1, . . . , D. We note

that all estimates follow the same patterns. Figure 2.9.2 (right) plots the relative squared-

root MSE (RRMSE) estimates of the EBPs (EBP) and of the EBLUPs (FH). It also plots

the relative squared-root design-based variance (RRvar) estimates of the direct estimators

(dir). The domains are sorted by sample size. Figure 2.9.2 shows that the RRMSEs of

the EBPs are in most domains smaller than the RRvars of the direct estimators and than

the RRMSEs of the EBLUPs. The performances of the RRMSE of the EBLUP and of the

RRvar of the direct estimator are similar. We observe a greater accuracy when the sample

size increases. We are cautious in claiming that the EBP has better performance than the

Fay-Herriot EBLUP as the estimated MSEs are derived under the assumption that the

model is correct and they are not comparable. Nevertheless, we conclude that the Poisson

mixed-model EBP is a good alternative for estimating pd.
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Figure 2.9.2: Direct, EBP and EBLUP estimates of pd (left) and relative root-MSE (right)
for the three estimators.

Table 2.9.2 presents the estimates of pd using the direct, EBLUP and EBP estimators, and

their corresponding errors: the MSE of the EBLUP and EBP (Eeblupd and Eebpd ) and the

design-based variance (Edird ) of the direct estimator (note that direct estimator is unbiased).

We only show the results for women. Further, we order the results by sample size and we

show the results for the minimum, maximum and sixtiles of νd. For small sample sizes the

EBP estimates have a minor error and when they increase, all estimates of pd and their

corresponding errors show a similar behaviour. The displayed results are in accordance

with those shown in Figure 2.9.2.

Table 2.9.2: Direct (pdird ), Fay-Herriot EBLUP (peblupd ) and EBP (pebpd ) estimates of pd for
women and MSE estimates.

Sex νd pdird peblupd pebpd Edird Eeblupd Eebpd

Women 18 0.5303 0.2262 0.2483 0.0341 0.0021 0.0017

124 0.1355 0.1345 0.1249 0.0011 0.0007 0.0004

162 0.3484 0.3131 0.3314 0.0021 0.0010 0.0014

247 0.3976 0.3641 0.4078 0.0014 0.0009 0.0012

424 0.2996 0.3002 0.3269 0.0007 0.0005 0.0008

501 0.1759 0.1724 0.2248 0.0003 0.0003 0.0002

1491 0.1122 0.1135 0.1317 0.0001 0.0001 0.0004

Figure 2.9.3 (left) maps the EBP estimates of pd for women. We observe that highest

levels of poverty are found in the south and center-west of the country. On the other
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hand, the northeastern provinces o�er better living conditions. Figure 2.9.3 (right) maps

the bootstrap relative root-MSE estimates of the EBP of pd for women with B = 1000

resamples. In general, the estimation error is low. The number of provinces where the

estimated RRMSE is greater than 15% is seven. The maximum value of the estimated

RRMSE is 20.24%, which is achieved in a province with very low level of poverty. In

general, the model-based estimators smooth the behaviour of the direct estimators, but

they could be in troubles for estimating the lowest or the highest poverty rates.

Poverty rate − Women

<=0.1 (0)
>0.1 <= 0.2 (18)
>0.2 <= 0.3 (16)
>0.3 (16)

RRMSE − Women

<=0.08 (8)
>0.08 <= 0.1 (13)
>0.1 <= 0.15 (22)
>0.15 (7)

Figure 2.9.3: Poverty rate EBPs for women (left) and RRMSE (right) in 2008.

The Moran's test was applied to the residuals of the EBP of pd to study a possible spatial

autocorrelation. We use moran.test function in spdep package of R. The matrix of weights

was calculated by using the Euclidean distance between the centroid of the provinces. The

null hypothesis of no spatial autocorrelation is tested. The obtained p-value for women is

0.061. Taking as signi�cance level α = 0.05, the null hypothesis of no spatial autocorrelation

is not rejected.

2.9.2 Forest �res data

The region of Galicia is in the northwest of Spain. It has a population of 2, 795, 422 (5.9%

of the Spanish population) and a surface area of 29, 574 km2 (5.8% of Spain). Its forest area

is 2, 060, 453 ha. The ratio of the forest surface is notably higher than the national average

(69%). Regarding the property regime of the land, most Galician forest is private (97.2%),

and this percentage is much higher than the national average at 67.7% (Rodríguez-Vicente

and Marey-Pérez, 2009b). Following the study of Marey-Pérez and Gómez-Vázquez (2010),
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private forest ownership is subdivided into either particular ownership or communal own-

ership in collective woodlands (Montes Vecinales en Mano Común, MVMC), an ownership

typology almost exclusive to Galicia.

Wild�res in Galicia are a recurrent problem and show increasing levels of severity. There

were 249, 387 wild�res in Galicia since 1968, the year in which forest �re statistics started,

until December 2012 (MAPAMA, 2017). These �res burned an area of 1, 794, 578 ha,

equivalent to 61% of the geographical area of the region (Boubeta et al., 2016a). Wild�res

mainly a�ect rural municipalities in the south of the region with low population densities

and regressive demographic dynamics due to low birth rates and an aged population (Balsa-

Barreiro and Hermosilla, 2013; Fuentes-Santos et al., 2013). These municipalities have also

been una�ected by recent foreign immigration patterns, which, combined with last century's

rural �ight has led to strong declines in population. Additionally, economic structures are

based on primary sectors (González et al., 2007). We use the described methodology for

modelling the number of �res by forest areas (D = 63) in Galicia during the summer 2007.

That summer may be taken as representing the wild�re problems of recent years. The

objective is to estimate the number of �res by forest areas using the plug-in estimator and

to provide their bootstrap MSEs. This tool allows to construct �re risk maps with their

error measures. We also extend the statistical methodology to the prediction of �re counts

and the estimation of the corresponding uncertainties under new related scenarios.

Figure 2.9.4 shows the number of �res by forest areas of Galicia during the summer of

2007. Galicia is divided into 63 forest areas, which are the basic territorial structure of the

�ght against wild�res. At the same time, these areas are grouped into 19 districts. In that

summer there were a high amount of �res, 15 areas had more than 19 �res, 15 areas had

between 14 and 19 �res, 16 areas had between 8 and 13 �res and 17 areas had less than 7

�res. Most �res were concentrated in the coastal and south-east regions of Galicia.

We select the model covariates by taking into account an exploratory analysis, the Akaike

information criterion (AIC) under Model 0, correlation studies and some expert judgments

(see Chapter 1 for further details about the considered auxiliary information). Table 2.9.3

shows the parameter estimates of the selected best Poisson mixed model, in terms of sim-

plicity and performance. They are estimated by using the ML-Laplace algorithm included

in the lme4 package of R. All regression parameters, except woods, have positive slopes and

therefore an increase in these covariates causes an increase in the number of �res. Thus,

the number of �res is greater in those forest areas with higher values of the variables dwr,

pop, par, wet and lu.
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0 50 km

Fires−Summer 2007

<=7 (17)
>7 <= 13 (16)
>13 <= 19 (15)
>19 (15)

Figure 2.9.4: Fires in Galicia during summer 2007.

The coe�cient of woods has a negative sign and hence this covariate protects against the

increase of the response variable. Most forested areas experience fewer �res due to the

greater economic interest in forestry. It is in scrublands, according to Bajocco and Ricotta

(2008); Díaz-Delgado et al. (2004); González et al. (2006); González and Pukkala (2007);

Koutsias et al. (2009); Montané et al. (2009); Moreira et al. (2009); Mouillot et al. (2005);

Nunes et al. (2005) and Sebastian-Lopez et al. (2008), where greater intensity and number

of �res is. The positive coe�cient of wet is related to the location and the surface of

reservoirs, built in the mid to late 20th century to produce electricity. They are mainly

found in the headwaters in the mountains of the interior of the region, where an extensive

livestock causes a signi�cant number of �res for obtaining pasture, both in early spring and

late summer.

Each forest area d (d = 1, . . . , 63) has a random intercept with estimated normal distri-

bution N(0, φ̂2), where φ̂ = 0.329. The 95% percentile bootstrap con�dence interval is

(0.162, 0.383). We approximate the sampling distribution of φ̂ by the resampling distri-

bution of φ̂∗ using the B = 1000 bootstrap resamples obtained by applying the algorithm

described in Section 2.7.3. This is, P(φ̂ ≤ a) ≈ P∗(φ̂∗ ≤ a). Therefore, if t∗(α) is the

α-quantile of φ̂∗, then CI∗ = (t∗(α/2), t
∗
(1−α/2)). Shao and Tu (1995) give mathematical

details about the construction of the employed bootstrap con�dence interval. We use the

Algorithm 5 to test the null hypothesis H0 : φ2 = 0. The obtained p-value is 0. Then,

we conclude that φ is di�erent from 0 for any level of signi�cance α and, in consequence,

we propose a Poisson GLMM with the random e�ects vd's instead of the corresponding

Poisson GLM without the random e�ects.
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Table 2.9.3: ML-Laplace estimates of regression parameters under Model 1.

Variable Est. s.e. z-value P (> |z|)

Intercept 2.510 0.057 43.941 < 0.001

dwr 0.322 0.071 4.503 < 0.001

pop 0.449 0.064 7.004 < 0.001

par 0.250 0.059 4.247 < 0.001

scrub 0.274 0.078 3.521 < 0.001

wet 0.244 0.057 4.305 < 0.001

woods -0.148 0.063 -2.363 0.018

lu 0.324 0.066 4.896 < 0.001

For the set of auxiliary variables appearing in Table 2.9.3, Figure 2.9.5 plots the Pearson

residuals for the synthetic µ̂synd (θ̂) and plug-in µ̂Pd (θ̂) estimators under Model 0 (left) and

Model 1 (right). We observe that the residuals of the Poisson mixed model (right) are

closer to zero than the ones of the Poisson model with only �xed e�ects (left), so that we

again prefer the model with random e�ects. The obtained p-values for Shapiro-Wilk test

are 0.054 (GLM) and 0.860 (GLMM), and thus the normality assumption is not rejected

in both cases.
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Figure 2.9.5: Pearson residuals under Model 0 (left) and Model 1 (right).

Figure 2.9.6 plots the observed number of �res versus the predicted number of �res under

the models without (left) and with (right) random e�ects. We observe that Poisson mixed

model has a greater prediction strength. This is why we con�rm our selection of the

introduced Poisson GLMM.
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Figure 2.9.6: Observed versus predicted number of �res under Model 0 and Model 1.

Figure 2.9.7 plots the histogram (left) and the normal qqplot (right) of the predicted random

e�ects, v̂d, d = 1, . . . , D. Based on the two plots and on the p-value of the Shapiro-Wilk

test (0.266), we can assume that the normality hypothesis on the model random e�ects is

not severely violated.
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Figure 2.9.7: Histogram (left) and normal qqplot (right) of predicted random e�ects.

It is interesting to note that the auxiliary variable par has a regression parameter with

positive sign. This fact is related to the small size of the rural parcels in Galicia. Formerly

these parcels were cultivated and were the livelihood of families living from agriculture and

livestock. Currently many of these parcels are no longer worked, as young people preferred

to migrate to cities in search of better opportunities. Many parcels are then abandoned

and overgrown allow fast expansion of summer �res. Therefore, the authorities would be

interested in promoting the creation of cooperatives or land consolidation to get more out
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of the land and to reduce the number of �res. Below we illustrate the reduction that would

occur in the number of �res if we reduce by 5% the number of parcels and we let the

remaining variables as they were (scenario 0.95× par).

Figure 2.9.8 (left) shows the predicted number of �res per forest areas of Galicia under the

scenario 0.95 × par. Reducing by 5% the number of cadastral parcels, the model predicts

15 areas with yd > 19, 14 areas with 13 < yd ≤ 19, 23 areas with 7 < yd ≤ 13 and

11 areas with yd ≤ 7, where yd is the number of �res in the forest area d. Therefore, if

the number of cadastral parcels were reduced by 5% then an important reduction of the

number of �res might occur. The Poisson mixed model predicts a reduction from 1001 to

970 �res in summers with similar environmental conditions than the one of 2007. This is

because today one of the main problems of the Galician forest sector is the large number

of plots (5 plots by ha) (Marey-Pérez et al., 2006; Rodríguez-Vicente and Marey-Pérez,

2009b) and the large number of forest owners (average of 4 ha for owner) (Marey-Pérez

and Rodríguez-Vicente, 2009; Rodríguez-Vicente and Marey-Pérez, 2009a), that is at the

origin of a percentage of �res by unpro�tability (Rodríguez-Vicente and Marey-Pérez, 2010;

Barreal et al., 2011), con�ict of ownership and parcel boundaries (Gómez-Vázquez et al.,

2009; Bruña García and Marey-Pérez, 2014). Reducing the number of plots contributes

to increasing the pro�tability (Rodríguez et al., 2013) and decreasing much of those �res

specially in the most con�ictive areas.

0 50 km

Predicted fires − 0.95 × par

<=7 (11)
>7 <= 13 (23)
>13 <= 19 (14)
>19 (15)

0 50 km

RRMSE − 0.95 × par

<=0.2 (18)
>0.2 <= 0.25 (17)
>0.25 <= 0.3 (14)
>0.3 (14)

Figure 2.9.8: Predicted number of �res and relative root-MSEs under the scenario 0.95×par.

Figure 2.9.8 (right) plots the estimated relative root-MSEs (RRMSE), which are obtained as

the ratio of the square root of the MSE estimatorsmse∗(µ̂Pd ) and the model-based predictors

µ̂Pd . In this framework, we take the MSE estimator based on a parametric bootstrap (2.7.10)
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with B = 1000. The average RRMSE across all the forest areas is 24.66% and its behaviour

is more satisfactory in the western region.
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Figure 2.9.9: Con�dence intervals for the variation of the number of �res if we reduce by
5% the number of parcels (left) and its signi�cance (right), with 99% con�dence.

Figure 2.9.9 presents the basic bootstrap con�dence intervals for the estimates of the di�er-

ence between the number of �res in the scenarios 0.95×par (µ̃d) and observed (µd, summer

2007), with a 99% con�dence. We denote by µ̃d the plug-in estimator of µd, µ̂Pd , under the

new scenario to simplify the notation. Now the construction of the bootstrap con�dence

intervals is a little di�erent. It follows the classic idea of Davison and Hinkley (2007) but

we consider the random e�ect in the bootstrap world to estimate µd. So, the (1 − α)%

con�dence limits are L̂ = (̂̃µd − µ̂d) − t(1−α/2) and Û = (̂̃µd − µ̂d) − t(α/2), being ̂̃µd the

predictor in the new scenario. We approximate the t(α) quantiles by bootstrap following

the steps of the previous algorithm in Section 2.7.3:

1. Fit the model to the sample and calculate the estimator θ̂ = (β̂, φ̂).

2. Repeat B times (b = 1, . . . , B)

i) Do v∗(b)d ∼ N(0, 1), µ∗(b)d = exp{xdβ̂+ φ̂v
∗(b)
d }, y∗(b)d ∼ Poiss(µ∗(b)d ), d = 1, . . . , D.

ii) From {xd, y
∗(b)
d }, calculate θ̂∗(b), v̂∗(b)d , µ̂∗(b)d = µ̂∗d(xd, θ̂

∗(b)
, v̂
∗(b)
d ), d = 1, . . . , D.

iii) For the new scenario {x̃d, y
∗(b)
d }, calculate µ̃∗(b)d = exp{x̃dβ̂+ φ̂v

∗(b)
d } and ̂̃µ∗(b)d =

µ̂∗d(x̃d, θ̂
∗(b)

, v̂
∗(b)
d ), d = 1, . . . , D. Note that, the model is �tted from the boot-

strap initial sample and then we study the e�ect of changing the values of the

auxiliary variable xd for x̃d, as in the real world.
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3. Calculate the quantiles t∗(α/2) and t
∗
(1−α/2) as the (α/2)-quantile and (1−α/2)-quantile

of
{

(̂̃µ∗(b)d − µ̂∗(b)d )− (µ̃
∗(b)
d − µ∗(b)d )

}B
b=1

, respectively.

4. Finally, the bootstrap con�dence interval is(
(̂̃µd − µ̂d)− t∗(1−α/2), (̂̃µd − µ̂d)− t∗(α/2)

)
.

We have a signi�cant reduction in the number of �res in the forest regions where the

con�dence interval does not cut the dashed line at the origin. For example, in area 61

(located on the south-west coast), a signi�cant decrease in the number of �res is obtained.

In this case we can achieve a reduction of up to 3 �res with a con�dence level of 99%.

It also corresponds to one of the biggest cities in the community, so a reduction in the

number of �res there would be positive for its socio-economic impact and risk of casualties.

Figure 2.9.9 (right) shows that the above di�erence is not signi�cant in 28 forest areas and

signi�cant in 35. The greatest changes are observed in the interior and southeast zones of

Galicia.

Another important auxiliary variable for the occurrence of forest �res is scrub area. If we

reduce this covariate in the same percentage as in the previous case (5%), the Poisson mixed

model predict a reduction of 17 �res. Although this alternative involves a smaller reduction

in the number of �res than in the previous case, its economic impact is also lower.

Remark 2.2. This application gives rise to a work published in Journal of Environmental

Management (Boubeta et al., 2015). In this case, we infer about the individual hypothe-

ses by using individual con�dence intervals. Alternatively, we could construct con�dence

regions or use multiple testing procedures to investigate the di�erences between the two

scenarios in all the areas simultaneously. Following this idea, we could use Bonferroni

procedures where the level of signi�cance is divided by the number of performed tests.

However, there are more �exible and powerful methods. Benjamini and Hochberg (1995)

and Benjamini and Yekutieli (2001) give di�erent approaches to how the errors in multiple

testing should be treated; for example, by controlling the expected proportion of erroneous

rejections among all rejections.

However, what would be the most interesting procedure in this particular case? We could

consider two approaches: a global focus with interest in the general population, which leads

to the prevention of �res in the Galicia Community. In this case we have to study the e�ect

of �re jointly in all forest areas. We can use the function p.adjust from the R package

stats, and adapt the bootstrap algorithm to the test of di�erence of means. Or a second
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focus, in which each local government (municipality, town hall, ...) makes its decisions

independently, according to their needs and the characteristics of the area. Following the

idea of SAE, the interest is each particular area, therefore we study the mean di�erence in

each area independently according to as shown in this application.

2.10 Concluding remarks

Poisson regression models are quite simple but �exible enough for modelling count variables.

This chapter analyses the number of people under the poverty line in Spanish provinces

and the number of forest �res by areas using an area-level Poisson mixed model. In this

framework, it has carried out a comparative study between the MM, the LA and the PQL

�tting algorithms. PQL and LA perform better for the �xed e�ect coe�cients but MM and

LA capture the variance component more precisely.

The chapter considers that the EBP (using MM) is a good alternative for describing the

target variable due to the good performance shown in the design-based simulation exper-

iment, where a comparison against two plug-in estimators (using MM and PQL) is given.

Despite the inconsistency of PQL, the plug-in estimator of pd using this �tting algorithm

is very attractive, specially when the variance parameter is small. Further, it has a lower

runtime. For example, taking D = 52 its runtime was 0.07 seconds in our computer while

for the plug-in using MM and EBP (taking L = 2500) was 0.15.

For the EBP, the chapter calculates the MSE and introduces three estimators. The �rst two

ones are plug-in estimators without and with bias correction of the second order. The third

estimator is based on a parametric bootstrap. It analyses the behaviour of the proposed

estimators in a simulation study. The bias correction term is computationally intensive and

the results of the plug-in estimators without and with bias correction are quite similar. As

a good alternative, it suggests the bootstrap procedure, easy to implement and with similar

results.

Two applications to real data are presented for applying the developed methodology. The

�rst one deals with a socioeconomic topic (poverty in Spain by provinces and sex) and

the second one treats with an environmental problem (number of forest �res in Galicia by

areas). The application to poverty data from the SLCS in 2008, published in the journal Test

(Boubeta et al., 2016b), proposes the EBPs for estimating poverty rates since their results

are more satisfactory than the ones obtained by the direct estimators. It concludes that the

south and center-west provinces of Spain have highest levels of poverty. As performance
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measure it takes the RRMSE estimated by parametric bootstrap. The RRMSE estimates

are lower than 20.25% in all provinces.

Finally, Poisson mixed models are also employed in Boubeta et al. (2015) to predict forest

�res in Galicia by areas. Two contributions are presented. The �rst one is the method-

ology for predicting �re counts and for estimating the corresponding e�ciency measures

approximated by bootstrap. The second one is the construction of bootstrap con�dence

intervals for the variation of number of �res between observed data and data coming from

new scenarios. This tool allows us to study whether the small changes in some auxiliary

variables may produce signi�cant reduction of �res in some domains of interest. The intro-

duced statistical methodology gives a useful decision-making tool for policy makers. It can

be also extended to target variables with distributions from the exponential family and,

therefore, it can be used under Binomial and Poisson distributions, among others. The use

of these Poisson mixed models is the �rst stage towards the integration of a higher number

of variables and data about a longer wild�re period. These improvements can increase

the predictive capacity which explains the presence of arson wild�res in a con�ictive area,

answering thus the demands of policy makers and technicians.
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Chapter 3

The area-level Poisson mixed model

with SAR(1) domain e�ects
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3.1 Introduction

When auxiliary variables related to the target count variable are available at the area

level, the area-level Poisson Model 1 links all the domains to enhance the estimation at a

particular area, that is, it borrows strength from other areas. Model 1 has random e�ects

taking into account the between-domain variability that is not explained by the auxiliary

variables. This model assumes that the domain random e�ects are independent. However,

in socioeconomic, environmental and epidemiological applications, estimates for areas that

are spatially close may be more alike than estimates for areas that are further apart. In fact,
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3 The area-level Poisson mixed model with SAR(1) domain e�ects

Cressie (1993) shows that not employing spatial models may lead to ine�cient inferences

when the auxiliary variables does not explain the spatial correlation of the study variable.

In small area estimation, modelling the spatial correlation among data from di�erent areas

allows to borrow even more strength from the areas. This recommendation was applied

to the basic Fay-Herriot model by Singh et al. (2005). Later, several authors have pro-

posed new spatial area-level linear models. Petrucci and Salvati (2006); Pratesi and Salvati

(2008); Molina et al. (2009); Marhuenda et al. (2013) and Chandra et al. (2015) consider

extensions of the Fay-Herriot model by assuming that area e�ects follow a simultaneously

autoregressive process of order 1 or SAR(1).

In the Bayesian framework, Moura and Migon (2002) and You and Zhou (2011) consider

spatial stationary mixed models and Sugasawa et al. (2015) study an empirical Bayesian

estimation method with spatially non-stationary hyperparameters for area-level discrete

and continuous data having a natural exponential family distribution.

Concerning nonparametric and robust methods, Opsomer et al. (2008) give a small area

estimation procedure using penalized spline regression with applications to spatially corre-

lated data. Ugarte et al. (2006) and Ugarte et al. (2010) study the geographical distribution

of mortality risk, that is an important area of research in disease mapping, using small areas

techniques and penalized splines. Chandra et al. (2012) introduce a geographical weighted

empirical best linear unbiased predictor for a small area average and give an estimator of

its conditional mean squared error. Baldermann et al. (2016) describe robust small area

estimation methods under spatial non-stationarity linear mixed models. Chandra et al.

(2017) develop a geographically weighted regression extension of the logistic-normal and

the Poisson-normal generalized linear mixed models allowing for spatial nonstationarity.

The above cited papers introduce small area estimation procedures that borrows strength

from spatial correlation. However, none of them deals with empirical best predictors under

spatial GLMMs. This is why Chapter 3 studies an area-level Poisson mixed model with

SAR(1) correlated random e�ects. A �tting algorithm based on the method of moments is

proposed in Section 3.3. Empirical best predictors of domain proportions and counts are

given in Section 3.4 and a parametric bootstrap method for estimating its mean squared

error is introduced in Section 3.5. The introduced methodology is empirically investigated in

Section 3.6 by means of simulation experiments. Section 3.7 gives two relevant applications

to real data. The �rst one has socio-economic interest and the second one is in the �eld of

environmental sciences. Finally, Section 3.8 collects the main conclusions of this chapter.
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3.2 The model

This section extends the area-level Poisson mixed model (Model 1), proposed in Chapter

2 (Boubeta et al., 2016b), to the context of spatial correlation. Speci�cally, we assume

a SAR(1) process. Let us consider a population partitioned into D domains and let us

denote each particular domain by d, d = 1, . . . , D. Let v = (v1, . . . , vD)′ be a vector of

spatially correlated random e�ects following a SAR(1) process with unknown autoregression

parameter ρ and known proximity matrixW . This means that the vector of random e�ects

v ful�lls the linear combination

v = ρWv + u, (3.2.1)

where u ∼ ND(0, ID), 0 is the D×1 zero vector and ID denotes the D×D identity matrix.

Assuming that (ID − ρW ) is non-singular, the equation (3.2.1) can be expressed as

v = (ID − ρW )−1u. (3.2.2)

For the proximity matrixW , we assume that it is row stochastic. Then, the autoregression

parameter ρ is a correlation and is called spatial autocorrelation parameter. Some of the

most used proximity matrices are based on: (i) common borders, (ii) distances and (iii)

k-nearest neighbours. In all cases, the proximity matrix W is obtained from an original

proximity matrixW 0 with diagonal elements equal to zero and remaining entries depending

on the employed option. In option (i), the non diagonal elements of W 0 are equal to 1

when the two domains corresponding to the row and the column indices are regarded as

neighbours and zero otherwise. In Option (ii), the nondiagonal elements of the proximity

matrix W 0 are de�ned by applying a monotonously decreasing function to the domain

distances; for example, by using the inverse function. Finally, the non diagonal elements of

W 0 in option (iii) are 1 if they correspond to the k-nearest neighbours of a given domain

and zero otherwise. For each option, the row standardization is carried out by dividing each

entry of W 0 by the sum of the elements in its row. Consequently, W is row stochastic.

Equation (3.2.2) implies that v ∼ ND(0,Γ(ρ)), where

Γ(ρ) =
(
γd1d2(ρ)

)
d1,d2=1,...,D

= C−1(ρ) (3.2.3)

and C(ρ) = (ID − ρW )′(ID − ρW ). Therefore, the density function of the random e�ects

is

fv(v) = (2π)−D/2|Γ(ρ)|−1/2 exp

{
−1

2
v′Γ−1(ρ)v

}
.
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Further, we have vd ∼ N
(
0, γdd(ρ)

)
and vd2 |vd1 ∼ N

(
µd2|d1 , σ

2
d2|d1

)
, where

µd2|d1 =
γd1d2(ρ)

γd1d1(ρ)
vd1 ,

σ2
d2|d1 = γd2d2(ρ)−

γ2
d1d2

(ρ)

γd1d1(ρ)
.

The �rst partial derivatives of C and Γ with respect to ρ are

Ċ(ρ) =
∂C

∂ρ
= −W −W ′ + 2ρW ′W ,

Γ̇(ρ) =
∂Γ

∂ρ
= −C−1∂C

∂ρ
C−1 =

(
γ̇d1d2(ρ)

)
d1,d2=1,...,D

.

The vector of response variables y = (y1, . . . , yD)′ follows an area-level Poisson mixed model

with a SAR(1) vector of domain random e�ects v if the conditioned distribution of yd, given

vd, is

yd|vd ∼ Poiss(µd), d = 1, . . . , D,

where µd denotes the mean of the Poisson distribution. As in the previous chapter, we

consider that the Poisson parameter µd can be expressed as νdpd, where νd and pd are size

and probability parameters respectively. We assume that the natural parameter, logµd,

can be expressed in terms of a set of p covariates xd = (xd1, . . . , xdp) by a regression model,

i.e.

Model S1: logµd = log νd + log pd = log νd + xdβ + φvd, d = 1, . . . , D,

where β = (β1, . . . , βp)
′ and φ are the regression and variance parameters. We denote the

vector of all model parameters by θ = (β, φ, ρ).

Further, we assume that the yd's are independent conditionally on v. It holds that

P(yd|v) = P(yd|vd) =
1

yd!
exp{−νdpd}νydd p

yd
d ,

where pd = exp {xdβ + φvd}. The probability function of the response variable y is

P(y) =

∫
RD

P(y|v)fv(v) dv =

∫
RD

D∏
d=1

P(yd|vd)fv(v) dv =

∫
RD

ψ(y,v) dv,
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where

ψ(y,v) = fv(v)
D∏
d=1

exp{−νdpd}νydd exp {yd(xdβ + φvd)}
yd!

= fv(v)

(
D∏
d=1

yd!

)−1

exp

{
D∑
d=1

{
− νd exp{xdβ + φvd}+ yd log νd

}}

· exp

{
p∑

k=1

(
D∑
d=1

ydxdk

)
βk + φ

D∑
d=1

ydvd

}
.

3.3 The MM algorithm

The method of moments is derived, under Model S1, to estimate the vector of parameters

θ. A natural set of equations for applying the MM algorithm is

0 = fk(θ) = Mk(θ)− M̂k =
1

D

D∑
d=1

Eθ[yd]xdk −
1

D

D∑
d=1

ydxdk, k = 1, . . . , p,

0 = fp+1(θ) = Mp+1(θ)− M̂p+1 =
1

D

D∑
d=1

Eθ[y2
d]−

1

D

D∑
d=1

y2
d, (3.3.1)

0 = fp+2(θ) = Mp+2(θ)− M̂p+2 =
1

D(D − 1)

∑
d1 6=d2

Eθ[yd1yd2 ]− 1

D(D − 1)

∑
d1 6=d2

yd1yd2 ,

where d1, d2 = 1, . . . , D. The MM estimator of θ is the solution of the system of nonlinear

equations (3.3.1). The updating formula of the Newton-Raphson algorithm follows the

equation (2.3.3), where now θ1 = β1, . . . , θp = βp, θp+1 = φ, θp+2 = ρ and

θ = col
1≤k≤p+2

(θk), f(θ) = col
1≤k≤p+2

(fk(θ)), H(θ) =

(
∂fk(θ)

∂θr

)
k,r=1,...,p+2

. (3.3.2)

Let us now calculate the expectations appearing in f(θ) and H(θ). First, we recall that

the moment generation function of Y ∼ N(µ, σ2) is

Ψ(t;µ, σ2) = E
[
etY
]

= exp
{
µt+

1

2
σ2t2

}
.
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For ease of exposition, we write γd1d2 = γd1d2(ρ). The expectation of yd is

Eθ[yd] = Ev
[
Eθ[yd|v]

]
= Ev[νdpd] =

∫ ∞
−∞

νd exp {xdβ + φvd} fv(vd)dvd

= νd exp
{
xdβ

}
Ψ
(
φ; 0, γdd

)
= νd exp

{
xdβ +

1

2
φ2γdd

}
.

Therefore, the �rst k MM equations are

fk(θ) =
1

D

D∑
d=1

νd exp
{
xdβ +

1

2
φ2γdd

}
xdk −

1

D

D∑
d=1

ydxdk, k = 1, . . . , p.

The derivatives of Eθ[yd] are

∂Eθ[yd]

∂βk
= νd exp

{
xdβ +

1

2
φ2γdd

}
xdk,

∂Eθ[yd]

∂φ
= νd exp

{
xdβ +

1

2
φ2γdd

}
φγdd,

∂Eθ[yd]

∂ρ
=

1

2
νd exp

{
xdβ +

1

2
φ2γdd

}
φ2γ̇dd.

The expectation of y2
d is Eθ[y2

d] = Ev
[
Eθ[y2

d|v]
]
, where

Eθ[y2
d|v] = varθ[yd|v] + E2

θ[yd|v] = νdpd + ν2
dp

2
d.

Therefore

Eθ[y2
d] = Ev

[
Eθ[y2

d|v]
]

=

∫ ∞
−∞

νdpdfv(vd) dvd +

∫ ∞
−∞

ν2
dp

2
dfv(vd) dvd.

We have ∫ ∞
−∞

p2
dfv(vd) dvd =

∫ ∞
−∞

exp
{

2xdβ + 2φvd
}
fv(vd) dvd

= exp
{

2xdβ
}

Ψ(2φ; 0, γdd) = exp
{

2xdβ + 2φ2γdd
}
,

and as a consequence

Eθ[y2
d] = νd exp

{
xdβ +

1

2
φ2γdd

}
+ ν2

d exp
{

2xdβ + 2φ2γdd
}
.
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Then, the (p+ 1)-th MM equation is

fp+1(θ) =
1

D

D∑
d=1

{
νd exp

{
xdβ +

1

2
φ2γdd

}
+ ν2

d exp
{

2xdβ + 2φ2γdd
}}
− 1

D

D∑
d=1

y2
d.

The derivatives of Eθ[y2
d] are

∂Eθ[y2
d]

∂βk
= νd exp

{
xdβ +

1

2
φ2γdd

}
xdk + 2ν2

d exp
{

2xdβ + 2φ2γdd
}
xdk,

∂Eθ[y2
d]

∂φ
= νd exp

{
xdβ +

1

2
φ2γdd

}
φγdd + 4ν2

d exp
{

2xdβ + 2φ2γdd
}
φγdd,

∂Eθ[y2
d]

∂ρ
=

1

2
νd exp

{
xdβ +

1

2
φ2γdd

}
φ2γ̇dd + 2ν2

d exp
{

2xdβ + 2φ2γdd
}
φ2γ̇dd.

The expectation of yd1yd2 is

Eθ[yd1yd2 ] = Ev
[
Eθ[yd1yd2 |v]

]
= Ev

[
Eθ[yd1 |vd1 ]Eθ[yd2 |vd2 ]

]
= νd1νd2Ev

[
pd1pd2

]
,

where

Ev
[
pd1pd2

]
=

∫ ∞
−∞

[∫ ∞
−∞

exp
{
xd2β + φvd2

}
fv(vd2 |vd1) dvd2

]
exp

{
xd1β + φvd1

}
fv(vd1)dvd1

=

∫ ∞
−∞

exp{xd2β}Ψ(φ;µd2|d1 , σ
2
d2|d1) exp

{
xd1β + φvd1

}
fv(vd1)dvd1

= exp
{

(xd1 + xd2)β +
1

2

(
γd2d2 −

γ2
d1d2

γd1d1

)
φ2
}
ψ
((

1 +
γd1d2
γd1d1

)
φ; 0, γd1d1

)
= exp

{
(xd1 + xd2)β +

1

2

(
γd2d2 −

γ2
d1d2

γd1d1

)
φ2 +

1

2

(
1 +

γd1d2
γd1d1

)2
φ2γd1d1

}
.

Therefore, the (p+ 2)-th MM equation is

fp+2(θ) =
1

D(D − 1)

D∑
d1 6=d2

νd1νd2ϕd1,d2(θ)− 1

D(D − 1)

D∑
d1 6=d2

yd1yd2 ,

where

ϕd1,d2(θ) = exp
{

(xd1 + xd2)β +
1

2

(
γd2d2 −

γ2
d1d2

γd1d1

)
φ2 +

1

2

(γd1d1 + γd1d2)2

γd1d1
φ2
}

= exp
{

(xd1 + xd2)β +
1

2
φ2(γd1d1 + γd2d2 + 2γd1d2)

}
.
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The derivatives of Eθ[yd1yd2 ] are

∂Eθ[yd1yd2 ]

∂βk
= νd1νd2ϕd1,d2(θ)(xd1k + xd2k),

∂Eθ[yd1yd2 ]

∂φ
= νd1νd2ϕd1,d2(θ)φ(γd1d1 + γd2d2 + 2γd1d2),

∂Eθ[yd1yd2 ]

∂ρ
=

1

2
νd1νd2ϕd1,d2(θ)φ2(γ̇d1d1 + γ̇d2d2 + 2γ̇d1d2).

The elements of the Jacobian matrix are

Hkr =
∂fk(θ)

∂θr
=

1

D

D∑
d=1

∂Eθ[yd]

∂θr
xdk, k = 1, . . . , p, r = 1, . . . , p+ 2,

Hp+1r =
∂fp+1(θ)

∂θr
=

1

D

D∑
d=1

∂Eθ[y2
d]

∂θr
, r = 1, . . . , p+ 2,

Hp+2r =
∂fp+2(θ)

∂θr
=

1

D(D − 1)

D∑
d1 6=d2

∂Eθ[yd1yd2 ]

∂θr
, r = 1, . . . , p+ 2.

Under Model S1, the MM algorithm keeps the steps of Algorithm 1 (see Section 2.3),

replacing θ, H and f for those given in (3.3.2).

As algorithm seeds for β and φ, we take the MM estimator under the model with no spatial

correlation (ρ = 0). Concerning the parameter ρ, we propose to use the Moran's I measure

of spatial autocorrelation, i.e.

I =
D∑D

d1=1

∑D
d2=1wd1d2

∑D
d1=1

∑D
d2=1wd1d2(ṽd1 − ṽ)(ṽd2 − ṽ)∑D

d=1(ṽd − v̄)2
, (3.3.3)

where ṽd, d = 1, . . . , D, are the predicted random e�ects under Model 1 (ρ = 0), ṽ =
1
D

∑D
d=1 ṽd and wd1d2 , d1, d2 = 1, . . . , D, are the elements of the proximity matrix W .

The asymptotic variance of the MM estimator under the area-level Poisson mixed model

with SAR(1) domain e�ects can be approximated by a similar bootstrap algorithm to that

described in Section 2.3.1.

3.4 The predictors

This section gives the EBP and a plug-in predictor of pd under the area-level Poisson

mixed model with SAR(1) spatially correlated random e�ects. As the EBP involves high-

80



The predictors 3.4

dimensional integrals, we propose a computationally less demanding approximation.

3.4.1 The empirical best predictor

In this section we obtain EBPs for the area-level Poisson mixed model with SAR(1) domain

e�ects. Speci�cally, we focus on the calculation of the EBP of pd, given its relationship

with µd and assuming that the size parameter νd is known. Therefore, for the rest, we will

refer to pd as target parameter. Let δij be the Kronecker's delta; i.e. δij = 1 if i = j and

δij = 0 otherwise.

The EBP of pd is obtained from the BP by replacing the vector of all model parameters

θ by an estimator θ̂. The BP of pd is the unbiased estimator that minimizes the mean

squared error and is given by

p̂d(θ) = Eθ[pd|y] =

∫
RD exp{xdβ + φvd}

∏D
i=1 P(yi|vi)fv(v) dv∫

RD
∏D
i=1 P(yi|vi)fv(v) dv

=
Nd(y,θ)

Dd(y,θ)
, (3.4.1)

where

Nd(y,θ) =

∫
RD

exp

{
D∑
i=1

[
(yi + δid)(xiβ + φvi)− νi exp

{
xiβ + φvi

}]}
fv(v) dv,

Dd(y,θ) =

∫
RD

exp

{
D∑
i=1

[
yi(xiβ + φvi)− νi exp

{
xiβ + φvi

}]}
fv(v) dv.

Remark 3.1. The componentNd(y,θ) can be expressed in terms ofDd(y,θ) asNd(y,θ) =

Dd(y + ed,θ), where ed = (δ1d, . . . , δDd)
′.

The EBP of pd is p̂d(θ̂) and it can be approximated by using an antithetic Monte Carlo

algorithm. The steps are:

1. Generate v(`) i.i.d. ND(0,Γ(ρ̂)) and calculate their antithetics v(L+`) = −v(`), ` =

1, . . . , L.

2. Calculate p̂d(θ̂) = N̂d/D̂d, where

N̂d =
1

2L

2L∑
`=1

exp

{
D∑
i=1

[
(yi + δid)(xiβ̂ + φ̂v

(`)
i )− νi exp

{
xiβ̂ + φ̂v

(`)
i

}]}
,

D̂d =
1

2L

2L∑
`=1

exp

{
D∑
i=1

[
yi(xiβ̂ + φ̂v

(`)
i )− νi exp

{
xiβ̂ + φ̂v

(`)
i

}]}
.

81



3 The area-level Poisson mixed model with SAR(1) domain e�ects

As the above BP involves high-dimensional integrals, we propose a less computationally

demanding approach. For that, let us divide the response variable y and the vector of

random e�ects v into two parts (yd,yd−) and (vd,vd−), where yd− = col
1≤i≤D, i6=d

(yi) and

vd− = col
1≤i≤D, i6=d

(vi). The conditional distribution of y, given v, is

P(y|v) =

D∏
i=1

P(yi|vi) = P(yd|vd)
D∏

i=1,i 6=d
P(yi|vi) = P(yd|vd)P(yd−|vd−). (3.4.2)

Using (3.4.2), the component Dd(y,θ) of (3.4.1) can be rewritten as

Dd(y,θ) =

∫
R

[ ∫
RD−1

P(yd−|vd−)f(vd−|vd) dvd−
]
P(yd|vd)f(vd) dvd,

and since P(yd−|vd−)f(vd−|vd) = P(yd−|vd−, vd)f(vd−|vd), the inner integral is∫
RD−1

P(yd−|vd−, vd)f(vd−|vd) dvd− = P(yd−|vd).

Therefore

Dd(y,θ) =

∫
R
P(yd−|vd)P(yd|vd)f(vd) dvd.

Taking into account the Remark 3.1 and reasoning analogously with the componentNd(y,θ)

of (3.4.1), we have that

Nd(y,θ) =

∫
R

exp{xdβ + φvd}P(yd−|vd)P(yd|vd)f(vd) dvd.

Under the assumption that P(yd−|vd) ≈ P(yd−), d = 1, . . . , D, the BP of pd, p̂d(θ), can be

approximated by

p̂ad(θ) = Na
d (y,θ)/Da

d(y,θ), (3.4.3)

where

Na
d (y,θ) =

∫
R

exp
{

(yd + 1)(xdβ + φvd)− νd exp
{
xdβ + φvd

}}
f(vd) dvd,

Da
d(y,θ) =

∫
R

exp
{
yd(xdβ + φvd)− νd exp

{
xdβ + φvd

}}
f(vd) dvd.

The approximated BP, p̂ad(θ), involves integrals with a complex analytical solution. We

propose to approximate them by using an antithetic Monte Carlo algorithm. In practice,

as one does not know the true vector of model parameters θ, the corresponding EBP, p̂ad(θ̂),

is required. It can be approximated as follows.
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1. Generate v(`) i.i.d. ND(0,Γ(ρ̂)) and calculate v(L+`) = −v(`), ` = 1, . . . , L.

2. Approximate the EBP of pd as p̂ad(θ̂) = N̂a
d /D̂

a
d (d = 1, . . . , D), where

N̂a
d =

1

2L

2L∑
`=1

exp
{

(yd + 1)(xdβ̂ + φ̂v
(`)
d )− νd exp

{
xdβ̂ + φ̂v

(`)
d

}}
,

D̂a
d =

1

2L

2L∑
`=1

exp
{
yd(xdβ̂ + φ̂v

(`)
d )− νd exp

{
xdβ̂ + φ̂v

(`)
d

}}
.

This approximation is similar to the Algorithm 4. The di�erence lies in the process for

generating the random e�ects. In Algorithm 4, random e�ects are N(0, 1), while in the

above approximation they are SAR(1)-correlated. As an immediate consequence, by ap-

plying equation (3.4.1) we have that the EBP of the Poisson parameter µd = νdpd is

µ̂d(θ̂) = νdp̂d(θ̂). From the equation (3.4.3), its approximated version is µ̂ad(θ̂) = νdp̂
a
d(θ̂).

3.4.2 A plug-in predictor

Another estimator of pd, commonly used in this context, is the plug-in estimator. It is

obtained by replacing, in the theoretical expression of pd, the unknown parameters by their

estimates, i.e.

p̂Pd = exp
{
xdβ̂ + φ̂v̂d

}
.

It is important to note that the MM algorithm only provides estimates for the �xed e�ects

β, the variance φ and the autocorrelation parameter ρ and that for obtaining p̂Pd it is

necessary to predict the vector of random e�ects v = (v1, . . . , vD). Therefore, we propose

to use its EBP. As above, this predictor is obtained from the corresponding BP. The BP of

vd is

v̂d(θ) = Eθ[vd|y] =

∫
RD vd

∏D
i=1 P(yi|vi)fv(v) dv∫

RD
∏D
i=1 P(yi|vi)fv(v) dv

=
Nv,d(y,θ)

Dd(y,θ)
,

where

Nv,d(y,θ) =

∫
RD

vd exp

{
D∑
i=1

yi(xiβ + φvi)− νi exp {xiβ + φvi}

}
fv(v) dv.

If the assumption P(yd−|vd) ≈ P(yd−), holds for d = 1, . . . , D, similar mathematical devel-

opments as those presented in Section 3.4.1 yield to an approximation to v̂d(θ) equivalent
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to that obtained for the target parameter pd, i.e. v̂ad(θ) = Na
v,d(θ)/Da

d(θ), where

Na
v,d(y,θ) =

∫
R
vd exp {yd(xdβ + φvd)− νd exp {xdβ + φvd}} f(vd) dvd.

The EBP of vd is v̂d = v̂d(θ̂) and can be approximated by v̂ad = v̂ad(θ̂). As above, we propose

approximating the analytical integrals by using an antithetic Monte Carlo algorithm. The

steps for v̂ad are:

1. Estimate θ̂ = (β̂, φ̂, ρ̂).

2. For ` = 1, . . . , L, generate v(`) i.i.d. ND(0,Γ(ρ̂)) and calculate their antithetics

v(L+`) = −v(`).

3. Calculate v̂ad(θ̂) = N̂a
v,d/D̂

a
d (d = 1, . . . , D), where

N̂a
v,d =

1

2L

2L∑
`=1

v
(`)
d exp

{
yd(xdβ̂ + φ̂v

(`)
d )− νd exp

{
xdβ̂ + φ̂v

(`)
d

}}
,

D̂a
d =

1

2L

2L∑
`=1

exp
{
yd(xdβ̂ + φ̂v

(`)
d )− νd exp

{
xdβ̂ + φ̂v

(`)
d

}}
.

The di�erence between this approximation and the one described in Section 2.5.2 (for

approximating the EBP of vd), comes from the process of generating the random e�ects.

Before, the random e�ects followed a N(0, 1) distribution while now they are SAR(1)-

correlated.

3.5 MSE estimation

The MSE is a measure of the accuracy of the proposed EBP of pd under Model S1. As the

analytical approach is computationally demanding, this section introduces an estimation

procedure of the MSE of p̂d by using a parametric bootstrap procedure based on the one

given in González-Manteiga et al. (2007). The steps are:

1. Fit the model to the sample and calculate the estimator θ̂ = (β̂, φ̂, ρ̂).

2. For each domain d, d = 1, . . . , D, repeat B times (b = 1, . . . , B):

i) Generate the bootstrap random e�ects v∗(b) = (v
∗(b)
1 , . . . , v

∗(b)
D )′ ∼ ND(0,Γ(ρ̂)),

where Γ(ρ̂) is the plug-in version of the covariance matrix (3.2.3).
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ii) Calculate the theoretical bootstrap parameter p∗(b)d = exp{xdβ̂ + φ̂v
∗(b)
d }.

iii) Generate the response variables y∗(b)d ∼ Poiss(νdp
∗(b)
d ).

iv) For each bootstrap resample, calculate the estimator θ̂
∗(b)

and the EBP p̂
∗(b)
d =

p̂
∗(b)
d (θ̂

∗(b)
).

3. Output:

mse∗(p̂d) =
1

B

B∑
b=1

(
p̂
∗(b)
d − p∗(b)d

)2
.

3.6 Simulation experiments

This section presents two simulation experiments for studying the behaviour of the MM

�tting algorithm (simulation 1) and for investigating the performance of the proposed EBPs

and plug-in predictors (simulation 2) under Model S1 with di�erent values of ρ. The

simulations are based on the application to real data of poverty in Galicia during 2013

(see Section 1.4.1 for more details). We use the same explanatory variables as those used

in the real case, i.e. proportions of unemployed (lab2 ) and of people with university level

completed (edu3 ) by counties. First simulation experiment analyses the behaviour of the

MM �tting algorithm. As the MM estimate of the autocorrelation parameter ρ produces

a high bias, an alternative approach using the value of the Moran's test is proposed. The

second simulation experiment studies the performance of the proposed estimators (BP, EBP

and plug-in) based on Model S1. In addition, we also consider the corresponding estimators

under Model 1 to analyse the loss of e�ciency when the spatial autocorrelation is not taken

into account.

We generate independent response variables yd|vd ∼ Poiss(νdpd), where νd and pd =

exp {β0 + lab2β1 + edu3β2 + φvd} are the sample size and target parameter, d = 1, . . . , D.

The model parameters β0, β1, β2, φ and ρ are taken from the real data case. The domain

random e�ects, vd, d = 1, . . . , D, are generated according to a SAR(1) process with auto-

correlation parameter ρ and proximity matrix W (see Section 3.2). The number of total

domains is D = 49. It corresponds to the counties in Galicia. Actually, in Galicia there are

53 counties but in four of them no data are available. Both simulation experiments keep

the number of domains D �xed and analyse the behaviour of the proposed estimators for

di�erent values of ρ. The reason to keep D �xed is due to the rigidity of the simulation

study, since it is based on the real case and specially by the construction of the proximity

matrix W . As the estimation of the autocorrelation parameter in the application to real
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3 The area-level Poisson mixed model with SAR(1) domain e�ects

data was ρ̂ = 0.324, we take ρ = 0.1, 0.3, 0.5. The considered Monte Carlo iterations are

K = 1000 for the �rst simulation experiment and K = 500 for the second one.

Tables 3.6.1 and 3.6.2 present the bias and RMSE of the MM estimator for the �ve model

parameters θ ∈ θ = {β0, β1, β2, φ, ρ}. We consider two options to estimate the vector of

model parameters θ. In the �rst option (Option 1), θ̂ is given as a solution of the system of

nonlinear equations (3.3.1), while in the second option (Option 2), ρ is estimated by using

the Moran's I measure (3.3.3) over the Pearson residuals of Model 0 and the remaining

model parameters are given as a solution of the system formed by the �rst p + 1 MM

equations in (3.3.3).

Table 3.6.1: Bias of the MM �tting algorithm.

Option ρ β̂0 β̂1 β̂2 φ̂ ρ̂

1 0.1 -0.0167 0.1087 -0.0088 -0.0179 -0.2557
0.3 -0.0037 0.0251 -0.0150 -0.0234 -0.4065
0.5 -0.0122 0.0987 0.0024 -0.0153 -0.5698

2 0.1 0.0038 0.0098 -0.0401 -0.0036 -0.1088
0.3 0.0029 0.0247 -0.0545 -0.0009 -0.2724
0.5 0.0048 0.0282 -0.0546 0.0071 -0.4243

Table 3.6.2: RMSE of the MM �tting algorithm.

Option ρ β̂0 β̂1 β̂2 φ̂ ρ̂

1 0.1 0.1585 1.1984 0.5409 0.0919 0.3276
0.3 0.1623 1.3005 0.5497 0.0951 0.4536
0.5 0.1690 1.3542 0.5388 0.0938 0.6040

2 0.1 0.1507 1.2224 0.5152 0.1020 0.1462
0.3 0.1540 1.2229 0.5254 0.1002 0.2912
0.5 0.1705 1.3888 0.5527 0.1038 0.4384

Table 3.6.1 suggests that the bias is lower for the �xed e�ects and the variance parameter φ,

while for the autocorrelation parameter ρ is relatively high. In addition, ρ is underestimated

in all cases. This behaviour usually occurs in this type of models (Cressie, 1993; Crujeiras

et al., 2010; Fernández-Casal and Francisco-Fernández, 2014). It can be also boosted by

the quite small number of total domains D. Regarding the comparison between Option

1 and Option 2, in general a clear reduction in bias is achieved when one uses Option 2.

In addition, no pattern is observed in the behaviour of the bias for the di�erent values of

ρ. On the other hand, Table 3.6.2 reveals that the RMSE results are higher for the �xed

86



Simulation experiments 3.6

e�ects β1 and β2. No signi�cant di�erences are observed in the comparison between the

two options, but there is a general increase in the RMSE as the value of ρ increases. For

the vector of �xed e�ects β̂ and the variance parameter φ̂, the variance is, by far, the most

important term of MSE since bias is much smaller than the RMSE. On the other hand,

for ρ̂ the opposite situation occurs, i.e. the bias is the main part of the MSE. Then, a bias

correction by bootstrap may be useful.

The target of the second simulation experiment is to investigate the behaviour of the plug-

in predictor, the BP and EBP of pd for di�erent values of ρ. We compare these predictors

based on Model S1 with the corresponding ones under Model 1 given in Chapter 2. We

are interested in investigating the loss of e�ciency when the spatial correlation is not taken

into account. For the spatial autocorrelation parameter, we take ρ = 0.1, 0.3, 0.5. We run

Option 2 in the MM �tting algorithm.

Tables 3.6.3 and 3.6.4 present the average across domains of the biases and the RMSEs

(both ×102) of the BP, EBP and two plug-in predictors for both area-level Poisson mixed

models: Model 1 and Model S1. The two plug-in predictors are obtained by calculating the

vector of random e�ects v by its BP (PBP ) and EBP (PEBP ). For the model with SAR(1)

domain e�ects, Model S1, the two alternatives introduced in Section 3.5 are considered, i.e.

the BP (3.4.1) and its approximation (BPa) given in (3.4.3). The corresponding empirical

versions (EBP and EBPa) are also taken into account. For the plug-in predictors under

Model S1, the random e�ects are calculated by using only the approximation v̂ad seen in

Section 3.4.2. We run this simulation experiment with a sample size of L = 5000 to

approximate the BP's and EBP's.

Table 3.6.3: Average across domains of the biases (×102) of the BP, EBP and plug-in of

pd based on the area-level Poisson mixed models with independent (Model 1) and on the

SAR(1)-correlated (Model S1) random e�ects.

Model 1 Model S1

ρ BP PBP EBP PEBP BP BPa PaBP EBP EBPa PaEBP

0.1 0.073 0.098 0.192 0.219 0.081 0.074 0.097 0.237 0.234 0.228

0.3 0.078 0.115 0.239 0.271 0.079 0.080 0.114 0.238 0.247 0.250

0.5 0.081 0.115 0.255 0.279 0.082 0.082 0.109 0.295 0.303 0.292

Table 3.6.3 suggests a strong increase in bias when we consider empirical predictors. Re-
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garding the comparison between Model 1 and Model S1, there are no substantial di�erences

between the two models, although in general the average bias is smaller under Model 1.

However, if the average across domains is ignored, the behaviour of the domain biases,

Bd's, shows that predictors are not centered in many domains (see Figure 3.6.1 for more

details). The approximated BP (BPa) and EBP (EBPa) based on Model S1 behave similar

to the original predictors (without approximation) for low correlations. On the other hand,

they are slightly less competitive as ρ increases, but its computational time is much lower.

The plug-in predictors based on Model 1 have greater bias than the corresponding BP and

EBP. When the variance components are known, the di�erence between the predictors BP,

BPa and PaBP based on Model S1 have the theoretical expected good behaviour with low

biases. However, when we substitute the variance components by the their MM estimators,

the corresponding predictors EBP, EBPa and PaEBP based on Model S1 have much larger

biases.

Table 3.6.4 presents the average across domains of the RMSEs (×102) of the BP, EBP and

plug-in for both area-level Poisson mixed models: Model 1 and Model S1. It reveals an

increase in the RMSE as the parameter ρ increases and also when one uses empirical versions

instead of theoretical models. Regarding the comparisons between predictors, the plug-in

predictor has, in general, a slight lower RMSE. On the other hand, approximated versions

of the BP (BPa) and EBP (EBPa) clearly reduce the RMSE. Then, in terms of RMSE,

it is preferable to use the approximate predictors under Model S1. For any estimator, the

variance is the most important term of the MSE since bias is much smaller than the RMSE.

Table 3.6.4: Average across domains of the RMSEs (×102) of the BP, EBP and plug-in of

pd based on the area-level Poisson mixed models with independent (Model 1) and on the

SAR(1)-correlated (Model S1) random e�ects.

Model 1 Model S1

ρ BP PBP EBP PEBP BP BPa PaBP EBP EBPa PaEBP

0.1 1.806 1.794 2.238 2.232 2.140 1.805 1.793 2.370 2.281 2.276

0.3 1.876 1.845 2.297 2.271 2.153 1.873 1.842 2.415 2.336 2.310

0.5 2.020 2.001 2.468 2.455 2.336 1.997 1.977 2.650 2.510 2.497

Figure 3.6.1 shows the boxplots of the domain biases, Bd's, (�rst column) and the domain

root mean squares errors, REd's, (second column) for the predictors and the values of ρ

appearing in Tables 3.6.3 and 3.6.4. In each graph, the �rst four boxplots refer to the
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predictors based on Model 1 and the remaining six to the predictors based on Model S1.

The BP's and EBP's (p̂d(θ) and p̂d(θ̂)) are represented in blue, their approximations based

on the Model S1 (p̂ad(θ) and p̂ad(θ̂)) are plotted in green and the plug-in predictors (p̂Pd (θ)

and p̂Pd (θ̂)) are colored in orange. They show an increase of the variability in both Bd's and

REd's when one uses the empirical predictors. The bias of the predictors based on Model

1 has less variability, but these predictors are clearly biased (except the BP). This fact was

not shown in Table 3.6.3. The predictors based on Model S1 are unbiased except the PaBP
plug-in predictor. The behaviour of the REd's for the predictors based on Model 1 is similar

to the one based on Model S1, although for ρ = 0.3, the REd's of the plug-in estimator are

slightly lower. For predictors based on Model S1, the REd's of the approximated BP p̂ad(θ)

and EBP p̂ad(θ̂) are similar to those of PBP (p̂Pd (θ)) and PEBP (p̂Pd (θ̂)) respectively, while

the REd's of the BP p̂d(θ) and EBP p̂d(θ̂) are generally higher.
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Figure 3.6.1: Boxplots of Bd's (�rst column) and REd's (second column) for the predictors
of pd and values of ρ shown in Tables 3.6.3 and 3.6.4.
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3 The area-level Poisson mixed model with SAR(1) domain e�ects

From Tables 3.6.3 and 3.6.4 and Figure 3.6.1, we conclude that the approximated estimator

p̂ad under Model S1 shows a competitive performance when there is an underlying spatial

correlation structure in the data, since it is unbiased and its REd's behave similarly to

those of p̂Pd .

The system of MM nonlinear equations (3.3.1) under Model S1 is solved by using the nleqslv

package of R. We have also used the mvtnorm package to generate samples following a

SAR(1) process and the package spdep to construct the proximity matrix W and to test

the null hypothesis of no spatial autocorrelation. For ρ = 0.3, the average runtime of the

MM �tting algorithm under Option 2 was 0.51 seconds. The computational burden of the

EBP approximation, p̂ad, under Model S1 is similar to that of the EBP under Model 1. The

average runtimes were 0.41 and 0.39 seconds respectively. On the other hand, the EBP p̂d

under Model S1 has a high computational burden compared to its competitors. Its average

runtime was 48.73 seconds.

3.7 Applications to real data

3.7.1 Poverty data

This section applies the developed methodology to the estimation of poverty proportions,

pd, in Galicia. The data are taken from the 2013 SLCS (see Section 1.4.1 for more details).

The Galician counties are the study domains. In Galicia there are 53 counties, but in four of

them there are no available data. Therefore, the number of considered domains is D = 49.

The performance of Model S1 depends on the choice of the proximity matrix W . Three

di�erent choices are tested: common border, based on distances and based on k-nearest

neighbours. In the �rst option (common border), two domains are neighbours if they have

a common delimitation. The last two options consider the Euclidean distance between the

centroids of the counties. The second option sets up a proximity measure by taking the

inverse of the distance between domains. The last option applies k-nearest neighbours with

k = 2 and 3. After analysing the di�erent possibilities, the �rst option is selected because

it is the one giving the best results.

Figure 3.7.1 shows the proximity map that determines the proximity matrix W 0, i.e. it

provides for each domain, which are its neighbours. See Section 3.2 for more details on the

construction of the proximity matrix W 0 and W .

The poverty proportion is only estimated for women since for men there is no evidence
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Proximity map
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Figure 3.7.1: Proximity map for each domain d (d = 1, . . . , D).

of a spatial correlation structure. The obtained p-value of the Moran's I test for men,

applied on the residuals of the �xed e�ects model (Model 0), is 0.271 and therefore the

null hypothesis of no spatial autocorrelation is accepted. As a consequence, yd counts the

number of women under the poverty line in the domain d. The p-value of Moran's I test

for women is lower than 0.001 and then, it is recommended to use Model S1 to �t the data.

Accordingly, we assume that the response variable yd, d = 1, . . . , D, can be explained by an

area-level Poisson mixed model with SAR(1) domain e�ects and some auxiliary variables.

Table 3.7.1 presents the signi�cant estimates (p-value < 0.05) of the �xed e�ect coe�cients

under Model S1 and their standard errors, z-values and p-values, using MM. The autocor-

relation parameter is estimated by applying Moran's I measure (3.3.3) over the Pearson

residuals of Model 0 and the remaining model parameters are given as a solution of the

system formed by the �rst p + 1 MM equations in (3.3.3). Thus, Option 2 in the MM

algorithm is employed.

Table 3.7.1: MM estimates of regression parameters under Model S1 using Option 2.

Variable Est. s.e. z-value P (> |z|)

Intercept -1.8803 0.1515 -12.4086 < 0.001
lab2 2.9848 1.2097 2.4689 0.0136
edu3 -1.3809 0.5033 -2.7445 0.0061

Taking into account the signs of the estimates, the auxiliary variable lab2 (proportion of

unemployed women), is directly related to the response variable while edu3 (proportion

of women with university level of education), helps to decrease the women poverty rate.

Each domain d, d = 1, . . . , D, has a random intercept with distribution N(0, φ2), where
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3 The area-level Poisson mixed model with SAR(1) domain e�ects

φ̂ = 0.130. The 95% percentile bootstrap con�dence interval for the variance parameter

is (0.001, 0.331). The estimated autocorrelation parameter is ρ̂ = 0.324. To test the null

hypothesis H0 : φ2 = 0, Algorithm 5 (see Secion 2.9) is adapted to Model S1. The obtained

p-value is 0.018. Then, taking α = 0.05, the null hypothesis is rejected. To test H0 : ρ = 0,

the following bootstrap procedure is proposed.

Algorithm 6 A bootstrap test for H0 : ρ = 0

1: Fit the Model S1 to data and calculate β̂, φ̂ and ρ̂.

2: Fit the Model 1 to data and calculate β̂
0
and φ̂0.

3: For b = 1, . . . , B, do

i) Generate a bootstrap resample under H0 : ρ = 0, i.e.

v
∗(b)
d ∼ N(0, 1), p

∗(b)
d = exp{xdβ̂

0
+ φ̂0v

∗(b)
d }, y∗(b)d ∼ Poiss(νdp

∗(b)
d ), d = 1, . . . , D.

ii) Fit the Model S1 to the bootstrap data (y
∗(b)
d ,xd), d = 1, . . . , D, and calculate

β̂
∗(b)

, φ̂∗(b) and ρ̂∗(b).

4: Calculate the p-value

p =
#
{∣∣ρ̂∗(b)∣∣ > |ρ̂|}

B
.

The obtained bootstrap p-value is 0.001. Taking α = 0.05, the bootstrap test concludes

that the autocorrelation parameter ρ is signi�cantly di�erent from 0, and therefore it rec-

ommends using the Model S1 to �t the data.

For comparing the performance of Model S1, a �xed-e�ects Poisson model (Model 0) is also

�tted to data with the same auxiliary variables as those appearing in Table 3.7.1. Figure

3.7.2 plots the Pearson residuals of the synthetic estimator based on Model 0 (left), and of

the EBP approximation based on Model S1 (right). Model 1 is not considered since the

Moran I test suggests spatial correlation. In both cases, the distribution of the Pearson

residuals is symmetrical around 0. In addition, the plots suggest a clear improvement when

one uses an area-level Poisson mixed model that incorporates SAR(1) domain e�ects, since

it is able to better capture the underlying spatial correlation structure. Therefore, the

conclusion is again that Model S1 is more appropriated to �t the women poverty data in

Galicia by counties in 2013.

Figure 3.7.3 (left) compares the behaviour of the EBPs based on Model S1 and the direct

estimates, which are usually used in practice. Both estimators of the pd's are sorted by
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Figure 3.7.2: Pearson residuals of the synthetic estimator based on Model 0 (left) and of
the EBP approximation based on Model S1 (right).

the sample sizes νd's. Direct estimator shows large amplitude oscillations, while the EBP

presents a smoother behaviour. As the sample size increases, both estimates tend to overlap.

Figure 3.7.3 (right) plots the relative root-MSEs of the EBPs based on Model S1 and the

relative root-variances of the direct estimators. The direct estimates have high variability,

specially for small sample sizes. As above, when νd increases, both accuracy measures

follow the same pattern. The relative root-MSEs of the EBPs are estimated by using the

bootstrap procedure of Section 3.5 with B = 500 replicates. The averages of the relative

root-variances of the direct estimator and of the relative root-MSEs of the EBP are 0.2595

and 0.1323, respectively. According to these results, we conclude that the EBP performs

better.
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Figure 3.7.3: Direct estimates and EBPs of pd (left) and relative root-MSEs (right) for
women in 2013.
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Figure 3.7.4 (left) maps the EBP approximation of pd for women based on Model S1 in

2013. The regions where there is no data, are in white. Model S1 predicts one county

with poverty proportion pd ≤ 0.12, 12 counties with 0.12 < pd ≤ 0.15, 24 counties with

0.15 < pd ≤ 0.18 and 12 counties with pd > 0.18. Highest levels of poverty are found in

the south and west of the community. On the other hand, the counties with the lowest

estimated poverty rate are located in the north-east of the region. Figure 3.7.4 (right) maps

the RRMSE estimates of the EBP of pd by counties in 2013. We take B = 500 resamples.

There are 8 counties with RRMSE ≤ 10%, 8 counties with 10% < RRMSE ≤ 13%, 19

counties with 13% < RRMSE ≤ 16% and 14 counties with RRMSE > 16%. The highest

values are found in the north-east of the region. Their minimum and maximum are 8.82%

and 18.49%, respectively. As the highest RRMSE is lower than 20%, these estimates could

be accepted for publication by statistical o�ces.

0 50 km

Poverty rate 2013
Women

= NA (4)
<=0.12 (1)
>0.12 <= 0.15 (12)
>0.15 <= 0.18 (24)
>0.18 (12)

0 50 km

RRMSE 2013
Women

= NA (4)
<=0.1 (8)
>0.1 <= 0.13 (8)
>0.13 <= 0.16 (19)
>0.16 (14)

Figure 3.7.4: Poverty rate EBPs for women based on Model S1 (left) and RRMSEs (right)

in Galicia during 2013.

3.7.2 Forest �res data

The modelling of the number of �res allows an improvement of the resources by the forest

managers. Specially in Galicia, a region in the north-west of Spain, where wild�res produce

devastating e�ects every year. The objective is to know the behaviour of the response

variable number of forest �res yd, d = 1, . . . , D, by areas during the summer of 2008. The

number of total forest areas in Galicia is D = 63 (see Section 1.4.2 for more details).

The Moran's I test is applied to the residuals of the model without random e�ects, Model

0. The obtained p-value is lower than 0.001. Therefore, the null hypothesis of no spatial
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autocorrelation is rejected and the Poisson model with spatial correlation is selected. For

the proximity matrix W , the one proposed in Section 3.2 is used. Figure 3.7.5 shows

the proximity map that determines the matrix W 0 involved in the calculation of the �nal

proximity matrix W . That is, it provides the neighbours for each domain d.

Proximity map
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Figure 3.7.5: Proximity map for each forest area d (d = 1, . . . , D).

Speci�cally, this section assumes that the response variable at domain d, yd, can be ex-

plained by some auxiliary variables through an area-level Poisson mixed model with SAR(1)

domain e�ects. The considered covariates are: population density (pop), cadastral holders

(cadHold), percentage of forest area (perForest), and average measurements of meteorolog-

ical stations in summer 2008 per areas, such as accumulated rain (acumRain), temperature

(averTemp) and days without rain (dwr).

Table 3.7.2 compares the signi�cant estimates (p-value < 0.05) of the �xed e�ects based

on Model 0 (left) and on Model S1 (right). The maximum likelihood (ML) method is used

to estimate the regression parameters in Model 0 and the MM algorithm in Model S1.

The auxiliary variables are selected by using the Akaike information criterion (AIC) under

Model 0 and the same covariates are taken for Model S1. In this way, both models are

compared under the same auxiliary information. The two models suggest that cadHold is

directly related to the number of �res while acumRain is protective, i.e. an increase in this

covariate helps to reduce the number of �res if cadHold is kept �xed.
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3 The area-level Poisson mixed model with SAR(1) domain e�ects

Table 3.7.2: ML estimates of regression parameters under Model 0 (left) and MM estimates

under Model S1 using Option 2 (right).

Model 0 Model S1

Variable Est. s.e. z-value P (> |z|) Est. s.e. z-value P (> |z|)

Intercept 2.455 0.038 64.415 < 0.001 2.391 0.068 34.942 < 0.001

acumRain -0.317 0.037 -8.631 < 0.001 -0.317 0.077 -4.092 < 0.001

cadHold 0.379 0.027 14.168 < 0.001 0.378 0.058 6.552 < 0.001

The estimated variance and autocorrelation parameters are φ̂ = 0.351 and ρ̂ = 0.119,

respectively. The 95% percentile bootstrap con�dence interval for the variance parameter,

taking B = 500 bootstrap resamples, is (0.174, 0.460). The obtained bootstrap p-values

for testing H0 : φ2 = 0 and H0 : ρ = 0 are 0 in both cases. Then, according to Moran's

I test and to the previous bootstrap con�dence tests, this section selects an area-level

Poisson mixed model with SAR(1) domain e�ects, Model S1, instead of a Poisson model

with only �xed e�ects, Model 0. Figure 3.7.6 plots the Pearson residuals of the synthetic

estimator under Model 0 (left) and of the plug-in estimator under Model S1 (right). A clear

improvement is achieved when one uses a more complex model including SAR(1)-correlated

spatial e�ects, since its Pearson residuals are closer to 0. Then, Model S1 is again preferred

to �t the number of forest �res in Galicia during summer 2008.
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Figure 3.7.6: Pearson residuals of the synthetic estimator based on Model 0 (left) and of
the plug-in predictor based on Model S1 (right).
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Figure 3.7.7 (left) maps the plug-in estimates based on Model S1 by areas during the summer

of 2008. The model predicts 3 areas with µd ≤ 5 forest �res, 30 with 5 < µd ≤ 10, 15 with

10 < µd ≤ 15 and 15 with µd > 15. The regions with more predicted �res (µd > 15), are

located in coastal areas of the north and west of the community, and especially in southern

interior areas. The average of forest �res predicted by Model S1 is 12.72. The RRMSEs of

the plug-in predictor are mapped in Figure 3.7.7 (right). They are calculated as

RRMSEs =

√
MSEs

ŷ
, (3.7.1)

where the root-MSEs are calculated by using the bootstrap procedure of Section 3.5 with

B = 500 replicates and ŷ are the plug-in estimates of the response variable. The plug-in

predictor has an error of RRMSE < 20% in 17 areas, 20% < RRMSE ≤ 25% in 12

areas, 25% < RRMSE ≤ 30% in 14 areas and RRMSE > 30% in 20 areas. The highest

RRMSEs occur in areas with few estimated �res. Note that if ŷ is small, the RRMSE

increases since ŷ is in the denominator of (3.7.1). The mean of the RRMSEs is 25.98%.

The lowest errors are obtained in those areas with the highest number of �res, i.e. in coastal

areas in the north and southern interior areas.

0 50 km

Estimates−Summer 2008

<=5 (3)
>5 <= 10 (30)
>10 <= 15 (15)
>15 (15)

0 50 km

RRMSE

<=0.2 (17)
>0.2 <= 0.25 (12)
>0.25 <= 0.3 (14)
>0.3 (20)

Figure 3.7.7: Estimated �res (left) and RRMSEs (right) in summer 2008 based on Model

S1.

3.8 Concluding remarks

This chapter introduces an area-level Poisson mixed model with SAR(1) domain e�ects.

It generalises the area-level Poisson mixed model proposed in Chapter 2 to the context of
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3 The area-level Poisson mixed model with SAR(1) domain e�ects

spatial correlation. The MM algorithm is employed for estimating the model parameters.

The empirical best predictor and a plug-in predictor of the target parameter pd are proposed.

As accuracy measure of the EBP, the MSE is considered and it is estimated by a parametric

bootstrap approach.

The behaviour of the MM �tting algorithm is empirically investigated in Simulation 1. This

simulation, based on the real case with poverty data, provides the bias and the MSE for

di�erent scenarios of ρ (ρ = 0.1, 0.3, 0.5). In addition, a second simulation experiment has

been carried out to study a plug-in predictor, the EBP and its corresponding approximation.

Speci�cally, the simulation experiment investigates the behaviour of the BP, EBP and

two plug-in predictors of pd based on the area-level Poisson mixed model of Chapter 2

and the area-level Poisson mixed model with SAR(1) domain e�ects. The target is to

analyse the loss of e�ciency when the spatial correlation is not taken into account. For

the autocorrelation parameter, we take the same scenarios as those shown in Simulation

1. This simulation experiment also studies the behaviour of the EBP approximation given

in Section 3.4.1. It shows that the EBP approximation is competitive, since it is unbiased

and it has a lower MSE than the original EBP. It has a similar behaviour to the plug-in

predictor, which shows a clear bias. On the other hand, the MSE of the plug-in and EBP

based on Model 1 is similar to the plug-in and the EBP approximation based on Model S1,

but the �rst ones show a sharp bias. Another advantage of the EBP approximation is that

it reduces the computational burden signi�cantly.

We use the EBP approximation for estimating women poverty proportions in Galician

counties. The data are taken from the 2013 SLCS. As the residuals of the model with only

�xed e�ects, Model 0, present spatial correlation, we recommend using Model S1 to �t the

data. In addition, the proposed estimator is compared against the direct estimator. The

EBP estimates of the women poverty rate are smoother. As the RRMSEs of the direct

estimator are too high when the sample size νd is small, it is preferable to use the EBP

approximation. The estimates based on Model S1 suggests that the highest levels of women

poverty are found in the south and west of the region. The average percentage of women

poverty is 16.89% and its average error is 13.23%.

The developed methodology is also applied to predicting the number of forest �res in

Galicia by areas during the summer of 2008. The performance of the plug-in predictor

is compared against the synthetic estimator based on Model 0. A clear improvement is

achieved when one uses a more complicated model. Although di�erent options are explored

for the proximity matrix W , �nally we consider a proximity matrix based on neighboring
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areas. According to the plug-in predictor based on Model S1, the highest number of forest

�res are located in the south and in coastal areas of the north and west of the region. In

addition, we provide a bootstrap approach as accuracy measure of the plug-in predictor.

The average error is 25.98%, while for the areas with highest �res it is lower than 20%.
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Chapter 4

The area-level Poisson mixed model

with time e�ects
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4.1 Introduction

We are entering an era in which a large amount of information is stored, particularly

over time, to study the behaviour of variables of interest. With this idea the statistical

institutes have historical information. On the other hand, estimation techniques in small

areas are important when the level of disaggregation is very high and the direct estimators

do not work as well as it is needed. This chapter combines these two needs and provides

statistical methodology for obtaining estimates of population quantities at a su�ciently

disaggregated level by time periods. We stand out some works in the literature as Rao and

Yu (1994), which introduce an extension of a well-known model, due to Fay and Herriot

(1979), for cross-sectional data. Estimators provided by Pfe�ermann and Burck (1990);
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4 The area-level Poisson mixed model with time e�ects

Ghosh et al. (1996); Datta et al. (2002); Saei and Chambers (2003); You et al. (2001);

Esteban et al. (2012a,b) and Marhuenda et al. (2013), among others, take advantage of the

two levels in linear mixed models for producing small areas estimates with good properties.

In a more general context, Ugarte et al. (2009) combine a non-parametric time trend with a

speci�c random e�ect for each area. López-Vizcaíno et al. (2015) introduce the multinomial

logit mixed model with correlate time to estimate labour force indicators by counties.

This chapter extends the idea of Boubeta et al. (2016b), that uses Poisson models for

estimating counts, including the temporal e�ect. Four temporal area-level mixed models

are considered. The �rst two use independent time e�ects and the second two assume

an autoregressive process of order one. The resulting models are �tted by the method of

moments introduced by Jiang (1998) for GLMM.

This chapter derives empirical best predictors, based on temporal area-level Poisson mixed

models, for estimating counts and proportions. The statistical methodology is taken and

adapted from Jiang and Lahiri (2001) and Jiang (2003). In addition to the EBP, a plug-in

predictor is given and empirically studied in simulation experiments. For estimating the

EBP mean squared error, we consider the parametric bootstrap MSE estimator introduced

by González-Manteiga et al. (2007) and González-Manteiga et al. (2008a) in the context of

logistic and normal mixed models and later extended by González-Manteiga et al. (2008b)

to a multivariate area-level model. We present two applications of the developed method-

ology to data from the 2010− 2013 Spanish living conditions survey and from 2007− 2008

forest �res in Galicia. The target of the applications is to study the evolution of poverty

proportions at county level by sex and the number of forest �res by areas respectively over

time.

The chapter is organized as follows. Section 4.2 introduces four area-level Poisson mixed

models and the employed model-based �tting algorithm. Section 4.3 presents the EBP and

the plug-in predictors of functions of �xed and small area speci�c random e�ects. Section

4.4 gives an MSE estimator of the EBP based on a bootstrap approach. Section 4.5 presents

two simulation experiments. The �rst simulation studies the behaviour of the MM �tting

algorithm. The second simulation compares the performances of the EBP and the plug-

in predictors. Section 4.6 applies the developed methodology to data from the 2010-2013

SLCS and from 2007-2008 forest �res of Galicia. Section 4.7 gives some conclusions.
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4.2 The models and the MM algorithms

This section introduces four area-level Poisson mixed models with time e�ects and their �t-

ting algorithms. They generalize the area-level Poisson mixed model introduced in Chapter

2 to the temporal context. The �rst two models (Models T1 and T12) have independent

time random e�ects. The random e�ects of the second models (Models T2 and T22) follow

an AR(1) autoregressive process within each domain. Along this chapter, D and T denote

the total numbers of domains and time instants respectively. The corresponding indices are

d and t, where d = 1, . . . , D and t = 1, . . . , T .

4.2.1 Models with independent time e�ects

This section introduces two temporal models with independent time e�ects. Both models

assume that the temporal correlation of the target variable is fully described by the auxiliary

variables. Model T1 considers two independent sets of random e�ects such that {v1,d : d =

1, . . . , D} and {v2,dt : d = 1, . . . , D, t = 1, . . . , T} are i.i.d. N(0, 1). They denote the area

and the interaction area-time e�ects that are not explained by the �xed part of the model.

In matrix notation, we have

v1 = col
1≤d≤D

(v1,d) ∼ ND(0, ID),

v2d = col
1≤t≤T

(v2,dt) ∼ N(0, IT ), v2 = col
1≤d≤D

(v2d) ∼ N(0, IDT )

and v = (v′1,v
′
2)′ ∼ N(0, ID(T+1)). We have

fv(v1,v2) = (2π)−D(T+1)/2 exp

{
−1

2
v′1v1 −

1

2
v′2v2

}
.

The distribution of the target variable ydt, conditionally on the random e�ects v1,d and

v2,dt, is

ydt|v1,d, v2,dt ∼ Poisson(µdt), d = 1, . . . , D, t = 1, . . . , T. (4.2.1)

Given the relationship between Poisson and binomial distributions, as in previous chapters,

we take µdt = νdtpdt, where νdt and pdt are size and probability parameters respectively.

In practice, νdt is known and equal to the sample size of domain d at time instant t. For

the natural parameter, we assume that it can be expressed in terms of a set of auxiliary
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variables through a regression model, i.e.

Model T1: logµdt = log νdt + xdtβ + φ1v1,d + φ2v2,dt, d = 1, . . . , D, t = 1, . . . , T, (4.2.2)

where β = col
1≤k≤p

(βk) is the column vector of regression coe�cients, xdt = col′
1≤k≤p

(xdtk) is

the row vector of auxiliary variables and φ1 and φ2 are the variance component parameters.

If we de�ne u1,d = φ1v1,d and u2,dt = φ2v2,dt, then φ1 and φ2 are the variances of u1,d and

u2,dt respectively. These variances can be interpreted as the variability between domain

and between time periods within each domain respectively.

Further, Model T1 assumes that the ydt's are independent conditionally on v1 and v2. It

holds that

P(ydt|v) = P(ydt|vdt) =
1

ydt!
exp{−νdtpdt}νydtdt p

ydt
dt ,

where pdt = exp{xdtβ+φ1v1,d+φ2v2,dt}. The probability function of the response variable

y conditionally on the random e�ects v is

P(y|v) =
D∏
d=1

T∏
t=1

P(ydt|v),

and

P(y) =

∫
RD(T+1)

P(y|v)fv(v1,v2) dv1dv2 =

∫
RD(T+1)

ψ(y,v) dv,

where

ψ(y,v) = (2π)−
D(T+1)

2 exp

{
−v′1v1 − v′2v2

2

} D∏
d=1

T∏
t=1

exp{−νdtpdt}νydtdt p
ydt
dt

ydt!

= c(y) exp

{
−v′1v1 − v′2v2

2

}
exp

{
D∑
d=1

T∑
t=1

{
− νdt exp{xdtβ + φ1v1,d + φ2v2,dt}

}}

· exp

{
p∑

k=1

( D∑
d=1

T∑
t=1

ydtxdtk
)
βk + φ1

D∑
d=1

yd.v1,d + φ2

D∑
d=1

T∑
t=1

ydtv2,dt

}
,

c(y) = (2π)−
D(T+1)

2
∏D
d=1

∏T
t=1

(
νydtdt /ydt!

)
and yd. =

∑T
t=1 ydt.

For �tting the area-level Poisson mixed model with independent time e�ects, this section

uses the MM algorithm based on the method of simulated moments suggested by Jiang

(1998). A natural set of equations for applying this method is
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0 = fk(θ) = Mk(θ)− M̂k =
1

DT

D∑
d=1

T∑
t=1

Eθ[ydt]xdtk −
1

DT

D∑
d=1

T∑
t=1

ydtxdtk, k = 1, . . . , p,

0 = fp+1(θ) = Mp+1(θ)− M̂p+1 =
1

DT 2

D∑
d=1

Eθ[y2
d.]−

1

DT 2

D∑
d=1

y2
d.,

0 = fp+2(θ) = Mp+2(θ)− M̂p+2 =
1

DT

D∑
d=1

T∑
t=1

Eθ[y2
dt]−

1

DT

D∑
d=1

T∑
t=1

y2
dt,

(4.2.3)

where θ = (β′, φ1, φ2) is the vector of all model parameters. The MM estimator of θ is

obtained by solving the system (4.2.3) of nonlinear equations. The updating formula of the

Newton-Raphson algorithm is

θ(`+1) = θ(`) −H−1(θ(`))f(θ(`)), (4.2.4)

where

θ = col
1≤k≤p+2

(θk), f(θ) = col
1≤k≤p+2

(fk(θ)) and H(θ) =

(
∂fk(θ)

∂θr

)
k,r=1,...,p+2

. (4.2.5)

The expectations and partial derivatives appearing in (4.2.4) are calculated below under

Model T1. For the �rst p MM equations, the expectation of ydt is

Eθ[ydt] = Ev
[
Eθ[ydt|v]

]
= Ev[νdtpdt] =

∫ ∞
−∞

∫ ∞
−∞

νdtpdtf(v1,d)f(v2,dt) dv1,ddv2,dt

=

∫ ∞
−∞

νdt exp
{
xdtβ +

1

2
φ2

2 + φ1v1,d

}
fv(v1,d) dv1,d = νdt exp

{
xdtβ +

1

2
(φ2

1 + φ2
2)
}
.

Therefore

fk(θ) =
1

DT

D∑
d=1

T∑
t=1

νdt exp
{
xdtβ +

1

2
(φ2

1 + φ2
2)
}
xdtk −

1

DT

D∑
d=1

T∑
t=1

ydtxdtk, k = 1, . . . , p.

The partial derivatives of ydt are

∂Eθ[ydt]

∂βk
= νdt exp

{
xdtβ +

1

2
(φ2

1 + φ2
2)
}
xdtk,

∂Eθ[ydt]

∂φi
= νdt exp

{
xdtβ +

1

2
(φ2

1 + φ2
2)
}
φi, i = 1, 2.

The expectation of y2
dt is Eθ[y2

dt] = Ev
[
Eθ[y2

dt|v]
]
, where
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Eθ[y2
dt|v] = varθ[ydt|v] + E2

θ[ydt|v] = νdtpdt + ν2
dtp

2
dt. (4.2.6)

Therefore

Eθ[y2
dt] = Ev

[
Eθ[y2

dt|v]
]

=

∫ ∞
−∞

∫ ∞
−∞

νdtpdtfv(vd) dvd

+

∫ ∞
−∞

∫ ∞
−∞

ν2
dtp

2
dtf(v1,d)f(v2,dt) dv1,ddv2,dt = A+B,

where

B =

∫ ∞
−∞

∫ ∞
−∞

ν2
dtp

2
dtf(v2,dt)f(v1,d) dv2,dtdv1,d

= ν2
dt

∫ ∞
−∞

exp
{

2(xdtβ + φ2
2) + 2φ1v1,d

}
(2π)−1/2 exp

{
− 1

2
v2

1,d

}
dv1,d

= ν2
dt exp

{
2(xdtβ + φ2

1 + φ2
2)
}
.

As a consequence

Eθ[y2
dt] = νdt exp

{
xdtβ +

1

2
(φ2

1 + φ2
2)
}

+ ν2
dt exp

{
2(xdtβ + φ2

1 + φ2
2)
}
,

and hence the (p+ 2)th MM equation is

fp+2(θ) =
1

DT

D∑
d=1

T∑
t=1

{
νdt exp

{
xdtβ +

1

2
(φ2

1 + φ2
2)
}

+ ν2
dt exp

{
2(xdtβ + φ2

1 + φ2
2)
}
− y2

dt

}
.

The partial derivatives of y2
dt are

∂Eθ[y2
dt]

∂βk
= νdt exp

{
xdtβ +

1

2
(φ2

1 + φ2
2)
}
xdtk + 2ν2

dt exp
{

2(xdtβ + φ2
1 + φ2

2)
}
xdtk,

∂Eθ[y2
dt]

∂φi
= νdt exp

{
xdtβ +

1

2
(φ2

1 + φ2
2)
}
φi + 4ν2

dt exp
{

2(xdtβ + φ2
1 + φ2

2)
}
φi, i = 1, 2.

The expectation of y2
d. is Eθ[y2

d.] = Ev
[
Eθ[y2

d.|v]
]
, where

y2
d. =

T∑
t=1

y2
dt +

∑
t1 6=t2

ydt1ydt2 ,

Eθ[y2
dt|v] = varθ[ydt|v] + E2

θ[ydt|v] = νdtpdt + ν2
dtp

2
dt. (4.2.7)
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Therefore,

Eθ[y2
d.|v] =

T∑
t=1

Eθ[y2
dt|v] +

∑
t1 6=t2

Eθ[ydt1 |v]Eθ[ydt2 |v], (4.2.8)

Eθ[y2
d.] =

T∑
t=1

νdtEv[pdt] +
T∑
t=1

ν2
dtEv[p2

dt] +
∑
t1 6=t2

νdt1νdt2Ev[pdt1pdt2 ]. (4.2.9)

The expectation of Ev[pdt1pdt2 ] is

Ev[pdt1pdt2 ] =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

pdt1pdt2f(v1,d)f(v2,dt1)f(v2,dt2) dv1,ddv2,dt1dv2,dt2

=

∫ ∞
−∞

∫ ∞
−∞

exp{(xdt1 + xdt2)β +
1

2
φ2

2 + φ2v2,dt1

+ 2φ1v1,d} f(v1,d)f(v2,dt1) dv1,ddv2,dt1

=

∫ ∞
−∞

exp{(xdt1 + xdt2)β +
1

2
φ2

2 +
1

2
φ2

2 + 2φ1v1,d}f(v1,d) dv1,d

= exp{(xdt1 + xdt2)β + φ2
2 + 2φ2

1},

and then

Eθ[y2
d.] =

T∑
t=1

νdt exp
{
xdtβ +

1

2
(φ2

1 + φ2
2)
}

+
T∑
t=1

ν2
dt exp

{
2xdtβ + 2(φ2

1 + φ2
2)
}

+
∑
t1 6=t2

νdt1νdt2 exp{(xdt1 + xdt2)β + 2φ2
1 + φ2

2} ±
T∑
t=1

ν2
dt exp

{
2xdtβ + 2φ2

1 + φ2
2

}
=

T∑
t=1

νdt exp
{
xdtβ +

1

2
(φ2

1 + φ2
2)
}

+
T∑
t=1

ν2
dt exp

{
2xdtβ + 2(φ2

1 + φ2
2)
}

−
T∑
t=1

ν2
dt exp

{
2xdtβ + 2φ2

1 + φ2
2

}
+

(
T∑
t=1

νdt exp
{
xdtβ + φ2

1 +
1

2
φ2

2

})2

.

Therefore, the (p+ 1)th MM equation is

fp+1(θ) =
1

DT 2

D∑
d=1

{
T∑
t=1

νdt exp
{
xdtβ +

1

2
(φ2

1 + φ2
2)
}

+
(
eφ

2
2 − 1

) T∑
t=1

ν2
dt exp

{
2xdtβ + 2φ2

1 + φ2
2

}
+

(
T∑
t=1

νdt exp
{
xdtβ + φ2

1 +
1

2
φ2

2

})2
− 1

DT 2

D∑
d=1

y2
d..
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4 The area-level Poisson mixed model with time e�ects

The derivatives of Eθ[y2
d.] are

∂Eθ[y2
d.]

∂βk
=

T∑
t=1

νdtCdtxdtk + 2

T∑
t=1

ν2
dtDdtxdtk − 2

T∑
t=1

ν2
dtEdtxdtk

+ 2

(
T∑
t=1

νdtFdt

)
T∑
t=1

νdtFdtxdtk,

∂Eθ[y2
d.]

∂φ1
=

T∑
t=1

νdtCdtφ1 + 4

T∑
t=1

ν2
dtDdtφ1 − 4

T∑
t=1

ν2
dtEdtφ1

+ 4

(
T∑
t=1

νdtFdt

)
T∑
t=1

νdtFdtφ1,

∂Eθ[y2
d.]

∂φ2
=

T∑
t=1

νdtCdtφ2 + 4

T∑
t=1

ν2
dtDdtφ2 − 2

T∑
t=1

ν2
dtEdtφ2

+ 2

(
T∑
t=1

νdtFdt

)
T∑
t=1

νdtFdtφ2,

where

Cdt = exp
{
xdtβ +

1

2
(φ2

1 + φ2
2)
}
, Ddt = exp

{
2xdtβ + 2(φ2

1 + φ2
2)
}
,

Edt = exp
{

2xdtβ + 2φ2
1 + φ2

2

}
, Fdt = exp

{
xdtβ + φ2

1 +
1

2
φ2

2

}
.

The elements of the Jacobian matrix H are

Hkr =
∂fk(θ)

∂θr
=

1

DT

D∑
d=1

T∑
t=1

∂Eθ[ydt]

∂θr
xdtk, k = 1, . . . , p, r = 1, . . . , p+ 2,

Hp+1r =
∂fp+1(θ)

∂θr
=

1

DT 2

D∑
d=1

∂Eθ[y2
d.]

∂θr
, r = 1, . . . , p+ 2,

Hp+2r =
∂fp+2(θ)

∂θr
=

1

DT

D∑
d=1

T∑
t=1

∂Eθ[y2
dt]

∂θr
, r = 1, . . . , p+ 2.

The MM algorithm under Model T1 follows the steps of Algorithm 1, replacing θ, H and

f for those given in (4.2.5).

The e�ciency of iterative algorithms increases if the starting value is close to the true

solution. As starting value, we propose β(0) = β̃, where β̃ is the maximum likelihood

estimator under the model without random e�ects, Model T0, de�ned by

Model T0: logµdt = log νdt + xdtβ, d = 1, . . . , D, t = 1, . . . , T. (4.2.10)
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Regarding the variance components, we use

φ
(0)
1 =

(
1

D

D∑
d=1

(η̃d. − η̂
(0)
d. )2

)1/2

, φ
(0)
2 =

(
1

DT

D∑
d=1

T∑
t=1

(η̃dt − η̂
(0)
dt )2

)1/2

,

where η̃dt = log νdt + xdtβ̃, η̂
(0)
dt = log p̂

(0)
dt , p̂

(0)
dt = ydt+1

νdt+1 , η̃d. = 1
T

∑T
t=1 η̃dt, η̂

(0)
d. = log p̂

(0)
d.

and p̂(0)
d. = 1

T

∑T
t=1

ydt+1
νdt+1 .

The simpli�ed version of Model T1, Model T12, assumes (4.2.1) and incorporates only the

area-time random e�ect v2,dt, i.e.

Model T12: logµdt = log νdt + xdtβ + φ2v2,dt, d = 1, . . . , D, t = 1, . . . , T. (4.2.11)

If the domains of Model T12 are the domains of Model T1 crossed by time, then Model

T12 is equivalent to the Model 1 studied in Boubeta et al. (2016b).

The asymptotic variance of the MM estimators can be approximated by a similar bootstrap

algorithm to that described in Section 2.3.1.

4.2.2 Models with AR(1)-correlated time e�ects

This section introduces two temporal models with correlated time e�ects. Model T2 con-

siders two independent sets of random e�ects such that {v1,d : d = 1, . . . , D} are i.i.d.

N(0, 1) and {v2,dt : d = 1, . . . , D, t = 1, . . . , T} are correlated within each domain d

and independent between domains. More concretely, it assumes that v1 = col
1≤d≤D

(v1,d) ∼

ND(0, ID), v2,d = col
1≤t≤T

(v2,dt) ∼ N(0,Ωd(ρ)) and v2 = col
1≤d≤D

(v2,d) ∼ N(0,Ω(ρ)). The

covariance matrix Ω(ρ) of v2 is a block diagonal matrix, where each block Ωd (d = 1, . . . , D)

is

Ωd = Ωd(ρ) =
Ad(ρ)

1− ρ2
, Ad(ρ) =



1 ρ . . . ρT−2 ρT−1

ρ 1
. . . ρT−2

...
. . . . . . . . .

...

ρT−2 . . . 1 ρ

ρT−1 ρT−2 . . . ρ 1


.

For any domain d, the vector v2,d has the same multivariate distribution as a section of

size T of an AR(1) time series. Therefore, the components of v2,d are AR(1)-correlated.
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4 The area-level Poisson mixed model with time e�ects

We have

fv(v1,v2) = (2π)−D(T+1)/2|Ωd(ρ)|−D/2 exp

{
−1

2
v′1v1 −

1

2

D∑
d=1

v′2dΩ
−1
d (ρ)v2d

}
.

The distribution of the target variable ydt conditional on the random e�ects and the natural

parameter keep the expressions (4.2.1) and (4.2.2) of Model T1. Model T2 also assumes

the hypothesis of independence of the response variables ydt's conditionally on the random

e�ects v1 and v2. The MM method is employed to �t Model T2. The system of MM

nonlinear equations has the three equations (4.2.3) and the new equation associated to the

temporal correlation, i.e.

0 = fp+3(θ) = Mp+3(θ)− M̂p+3

=
1

D(T − 1)

D∑
d=1

T∑
t=2

Eθ[ydtydt−1]− 1

D(T − 1)

D∑
d=1

T∑
t=2

ydtydt−1, (4.2.12)

where θ = (β′, φ1, φ2, ρ). A Newton-Raphson algorithm can be applied to solve the system

of nonlinear equations (4.2.3) and (4.2.12). The updating equation appears in (4.2.4), but

the vector f and matrix H are di�erent.

Concerning the �rst p MM equations, the expectation of ydt is Eθ[ydt] = Ev
[
Eθ[ydt|v]

]
=

νdtEv[pdt]. Taking into account the moment generation function of Y ∼ N
(
µ, σ2

)
,

Ψ(t;µ, σ2) = E
[
etY
]

= exp
{
µt+

1

2
σ2t2

}
,

it holds that

Ev[pdt] =

∫ ∞
−∞

∫ ∞
−∞

exp {xdtβ + φ1v1,d + φ2v2,dt} f(v1,d)f(v2,dt) dv1,ddv2,dt

=

∫ ∞
−∞

exp {xdtβ + φ1v1,d} Ψ
(
φ2; 0, (1− ρ2)−1

)
f(v1,d) dv1,d

=

∫ ∞
−∞

exp
{
xdtβ +

1

2
φ2

2(1− ρ2)−1 + φ1v1,d

}
fv(v1,d) dv1,d

= exp
{
xdtβ +

1

2
φ2

2(1− ρ2)−1
}

Ψ(φ1; 0, 1)

= exp
{
xdtβ +

1

2
φ2

1 +
1

2
φ2

2(1− ρ2)−1
}
.

Then, the �rst k = 1, . . . , p MM equations are

fk(θ) =
1

DT

D∑
d=1

T∑
t=1

νdt exp
{
xdtβ +

1

2
φ2

1 +
1

2
φ2

2(1− ρ2)−1
}
xdtk −

1

DT

D∑
d=1

T∑
t=1

ydtxdtk.
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The derivatives of Eθ[ydt] are

∂Eθ[ydt]

∂βk
= νdt exp

{
xdtβ +

1

2
φ2

1 +
1

2
φ2

2(1− ρ2)−1
}
xdtk,

∂Eθ[ydt]

∂φ1
= νdt exp

{
xdtβ +

1

2
φ2

1 +
1

2
φ2

2(1− ρ2)−1
}
φ1,

∂Eθ[ydt]

∂φ2
= νdt exp

{
xdtβ +

1

2
φ2

1 +
1

2
φ2

2(1− ρ2)−1
}
φ2(1− ρ2)−1,

∂Eθ[ydt]

∂ρ
= νdt exp

{
xdtβ +

1

2
φ2

1 +
1

2
φ2

2(1− ρ2)−1
}
φ2

2ρ(1− ρ2)−2.

The expectation of y2
dt is Eθ[y2

dt] = Ev
[
Eθ[y2

dt|v]
]
, where Eθ[y2

dt|v] is given by (4.2.6).

Therefore

Eθ[y2
dt] = Ev

[
Eθ[y2

dt|v]
]

= νdtEv[pdt] + ν2
dtEv[p2

dt],

where

Ev[p2
dt] =

∫ ∞
−∞

∫ ∞
−∞

p2
dtf(v2,dt)f(v1,d) dv2,dtdv1,d

=

∫ ∞
−∞

exp
{

2xdtβ + 2φ1v1,d

}
Ψ
(
2φ2; 0, (1− ρ2)−1

)
f(v1,d) dv1,d

=

∫ ∞
−∞

exp
{

2xdtβ + 2φ2
2(1− ρ2)−1

}
exp

{
2φ1v1,d

}
f(v1,d) dv1,d

= exp
{

2xdtβ + 2φ2
2(1− ρ2)−1

}
Ψ
(
2φ1; 0, 1

)
= exp

{
2
(
xdtβ + φ2

1 + φ2
2(1− ρ2)−1

)}
.

The expectation of y2
dt is

Eθ[y2
dt] = νdt exp

{
xdtβ +

1

2

(
φ2

1 + φ2
2(1− ρ2)−1

)}
+ ν2

dt exp
{

2
(
xdtβ + φ2

1 + φ2
2(1− ρ2)−1

)}
.

Then, the (p+ 2)th MM equation is

fp+2(θ) =
1

DT

D∑
d=1

T∑
t=1

{
νdt exp

{
xdtβ +

1

2
(φ2

1 +
φ2

2

1− ρ2
)
}

+ ν2
dt exp

{
2
(
xdtβ + φ2

1 +
φ2

2

1− ρ2

)}}
− 1

DT

D∑
d=1

T∑
t=1

y2
dt.

111
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The derivatives of Eθ[y2
dt] are

∂Eθ[y2
dt]

∂βk
= νdtxdtk exp

{
xdtβ +

1

2
(φ2

1 +
φ2

2

1− ρ2
)
}

+ 2ν2
dtxdtk exp

{
2(xdtβ + φ2

1 +
φ2

2

1− ρ2
)
}
,

∂Eθ[y2
dt]

∂φ1
= νdtφ1 exp

{
xdtβ +

1

2
(φ2

1 +
φ2

2

1− ρ2
)
}

+ 4ν2
dtφ1 exp

{
2(xdtβ + φ2

1 +
φ2

2

1− ρ2
)
}
,

∂Eθ[y2
dt]

∂φ2
=

νdtφ2

1− ρ2
exp

{
xdtβ +

1

2
(φ2

1 +
φ2

2

1− ρ2
)
}

+
4ν2
dtφ2

1− ρ2
exp

{
2(xdtβ + φ2

1 +
φ2

2

1− ρ2
)
}
,

∂Eθ[y2
dt]

∂ρ
=

νdtφ
2
2ρ

(1− ρ2)2
exp

{
xdtβ +

1

2
(φ2

1 +
φ2

2

1− ρ2
)
}

+
4ν2
dtφ

2
2ρ

(1− ρ2)2
exp

{
2(xdtβ + φ2

1 +
φ2

2

1− ρ2
)
}
.

The expectation of y2
d. is Eθ[y2

d.] = Ev
[
Eθ[y2

d.|v]
]
, where y2

d. is given in (4.2.7) and equations

(4.2.8)�(4.2.9) are ful�lled. The expectation edt1t2 = Ev[pdt1pdt2 ] is

edt1t2 =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

exp{(xdt1 + xdt2)β + 2φ1v1,d + φ2v2,dt1 + φ2v2,dt2}

· f(v1,d)f(v2,dt1)f(v2,dt2 |v2,dt1) dv1,ddv2,dt1dv2,dt2

=

∫ ∞
−∞

∫ ∞
−∞

exp{(xdt1 + xdt2)β + 2φ1v1,d + φ2v2,dt1}

·Ψ
(
φ2; ρ|t1−t2|v2,dt1 ,

1− ρ2|t1−t2|

1− ρ2

)
f(v1,d)f(v2,dt1) dv1,ddv2,dt1

=

∫ ∞
−∞

∫ ∞
−∞

exp
{

(xdt1 + xdt2)β + 2φ1v1,d + φ2v2,dt1 + φ2ρ
|t1−t2|v2,dt1

+
1

2
φ2

2

1− ρ2|t1−t2|

1− ρ2

}
f(v1,d)f(v2,dt1) dv1,ddv2,dt1

=

∫ ∞
−∞

exp
{

(xdt1 + xdt2)β +
1

2
φ2

2

1− ρ2|t1−t2|

1− ρ2
+ 2φ1v1,d

}
·Ψ
(
φ2(1 + ρ|t1−t2|); 0, (1− ρ2)−1

)
f(v1,d) dv1,d

=

∫ ∞
−∞

exp
{

(xdt1 + xdt2)β +
φ2

2

2

1− ρ2|t1−t2|

1− ρ2
+ 2φ1v1,d

+
φ2

2

2

(1 + ρ|t1−t2|)2

1− ρ2

}
f(v1,d) dv1,d.
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Therefore,

edt1t2 = exp
{

(xdt1 + xdt2)β +
φ2

2

2

1− ρ2|t1−t2|

1− ρ2
+
φ2

2

2

(1 + ρ|t1−t2|)2

1− ρ2

}
Ψ
(
2φ1; 0, 1

)
= exp

{
(xdt1 + xdt2)β +

φ2
2

2(1− ρ2)

[
1− ρ2|t1−t2| + ρ2|t1−t2| + 2ρ|t1−t2| + 1

]
+ 2φ2

1

}
= exp

{
(xdt1 + xdt2)β +

φ2
2(1 + ρ|t1−t2|)

1− ρ2
+ 2φ2

1

}
= exp

{
(xdt1 + xdt2)β + φ2

2adt1t2(ρ) + 2φ2
1

}
,

where

adt1t2(ρ) =
1 + ρ|t1−t2|

1− ρ2
,

a′dt1t2(ρ) =
∂adt1t2
∂ρ

=
|t1 − t2|ρ|t1−t2|−1(1− ρ2) + 2ρ(1 + ρ|t1−t2|)

(1− ρ2)2
.

The expectation Eθ[y2
d.] is

Eθ[y2
d.] =

T∑
t=1

νdtEv[pdt] +
T∑
t=1

ν2
dtEv[p2

dt] +
∑
t1 6=t2

νdt1νdt2Ev[pdt1pdt2 ]

=

T∑
t=1

νdtPdt +

T∑
t=1

ν2
dtQdt +

∑
t1 6=t2

νdt1νdt2Rdt1t2 ,

where

Pdt = exp
{
xdtβ +

1

2
(φ2

1 +
φ2

2

1− ρ2
)
}
,

Qdt = exp
{

2(xdtβ + φ2
1 +

φ2
2

1− ρ2
)
}
,

Rdt1t2 = exp
{

(xdt1 + xdt2)β + φ2
2adt1t2(ρ) + 2φ2

1

}
.

Hence, the (p+ 1)th MM equation is

fp+1(θ) =
1

DT 2

D∑
d=1

{
T∑
t=1

νdt exp
{
xdtβ +

1

2
(φ2

1 +
φ2

2

1− ρ2
)
}

+

T∑
t=1

ν2
dt exp

{
2(xdtβ + φ2

1 +
φ2

2

1− ρ2
)
}

+
∑
t1 6=t2

νdt1νdt2 exp
{

(xdt1 + xdt2)β + φ2
2adt1t2(ρ) + 2φ2

1

}− 1

DT 2

D∑
d=1

y2
d..
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The derivatives of Eθ[y2
d.] are

∂Eθ[y2
d.]

∂βk
=

T∑
t=1

νdtPdtxdtk + 2
T∑
t=1

ν2
dtQdtxdtk +

∑
t1 6=t2

νdt1νdt2Rdt1t2(xdt1k + xdt2k),

∂Eθ[y2
d.]

∂φ1
= φ1

T∑
t=1

νdtPdt + 4φ1

T∑
t=1

ν2
dtQdt + 4φ1

∑
t1 6=t2

νdt1νdt2Rdt1t2 ,

∂Eθ[y2
d.]

∂φ2
=

φ2

1− ρ2

T∑
t=1

νdtPdt +
4φ2

1− ρ2

T∑
t=1

ν2
dtQdt + 2φ2adt1t2(ρ)

∑
t1 6=t2

νdt1νdt2Rdt1t2 ,

∂Eθ[y2
d.]

∂ρ
=

φ2
2ρ

(1− ρ2)2

T∑
t=1

νdtPdt +
4φ2

2ρ

(1− ρ2)2

T∑
t=1

ν2
dtQdt + φ2

2a
′
dt1t2(ρ)

∑
t1 6=t2

νdt1νdt2Rdt1t2 .

The expectation of ydtydt−1 is Eθ[ydtydt−1] = Ev
[
Eθ[ydtydt−1|v]

]
. It holds

Eθ[ydtydt−1|v] = E[ydt|v]E[ydt−1|v] = νdtνdt−1pdtpdt−1,

and therefore

Eθ[ydtydt−1] = νdtνdt−1Ev[pdtpdt−1]

= νdtνdt−1 exp{(xdt + xdt−1)β + φ2
2adt(t−1)(ρ) + 2φ2

1}

= νdtνdt−1 exp{(xdt + xdt−1)β +
φ2

2

1− ρ
+ 2φ2

1}.

Then, the (p+ 3)th MM equation is

fp+3(θ) =
1

D(T − 1)

D∑
d=1

T∑
t=2

νdtνdt−1 exp{(xdt + xdt−1)β +
φ2

2

1− ρ
+ 2φ2

1}

− 1

D(T − 1)

D∑
d=1

T∑
t=2

ydtydt−1.

The derivatives of Eθ[ydtydt−1] are

∂Eθ[ydtydt−1]

∂βk
= νdtνdt−1 exp

{
(xdt + xdt−1)β +

φ2
2

1− ρ
+ 2φ2

1

}
(xdtk + xdt−1k),

∂Eθ[ydtydt−1]

∂φ1
= 4νdtνdt−1 exp

{
(xdt + xdt−1)β +

φ2
2

1− ρ
+ 2φ2

1

}
φ1,

∂Eθ[ydtydt−1]

∂φ2
= 2νdtνdt−1 exp

{
(xdt + xdt−1)β +

φ2
2

1− ρ
+ 2φ2

1

} φ2

1− ρ
,

∂Eθ[ydtydt−1]

∂ρ
= νdtνdt−1 exp

{
(xdt + xdt−1)β +

φ2
2

1− ρ
+ 2φ2

1

} φ2
2

(1− ρ)2
.
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Finally, the elements of the Jacobian matrix are

Hkr =
∂fk(θ)

∂θr
=

1

DT

D∑
d=1

T∑
t=1

∂Eθ[ydt]

∂θr
xdtk, k = 1, . . . , p, r = 1, . . . , p+ 3,

Hp+1r =
∂fp+1(θ)

∂θr
=

1

DT 2

D∑
d=1

∂Eθ[y2
d.]

∂θr
, r = 1, . . . , p+ 3,

Hp+2r =
∂fp+2(θ)

∂θr
=

1

DT

D∑
d=1

T∑
t=1

∂Eθ[y2
dt]

∂θr
, r = 1, . . . , p+ 3,

Hp+3r =
∂fp+3(θ)

∂θr
=

1

D(T − 1)

D∑
d=1

T∑
t=2

∂Eθ[ydtydt−1]

∂θr
, r = 1, . . . , p+ 3.

Algorithm seeds for initiating the Newton-Raphson algorithm are β(0), φ(0)
1 and φ(0)

2 , as for

Model T1. Concerning the temporal correlation, one can take ρ(0) = φ
(0)
12 /φ

(0)2
2 , where

φ
(0)
12 =

1

D(T − 1)

D∑
d=1

T∑
t=2

(η̃dt − η̂
(0)
dt )(η̃dt−1 − η̂

(0)
dt−1).

The simpli�ed version of Model T2, Model T22, assumes (4.2.1) and incorporates only the

area-time random e�ect v2,dt, i.e. the natural parameter ful�lls the equation (4.2.11). The

natural set of equations for applying the MM in Model T22 is the same as for Model T2

taking φ1 = 0 and deleting the equation fp+1.

4.3 The predictors

This section gives the EBP and a plug-in predictor of pdt under Model T1, Model T2

and their simpli�ed versions (Model T12 and Model T22). The best predictor, p̂dt(θ),

of pdt minimizes the mean squared error in the set of unbiased predictors. The EBP is

obtained from the BP by substituting parameters and random e�ects by the corresponding

MM estimators and EBPs. Under regularity conditions, the EBPs have asymptotically the

properties of the BPs. Nevertheless, D and T are not large enough in small area estimation

problems. This is why some simulation experiments are needed for empirically studying

the behaviour of the EBPs.

We de�ne yd = col
1≤t≤T

(ydt) and y = col
1≤d≤D

(yd). Under models Model T1 and Model T2,
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4 The area-level Poisson mixed model with time e�ects

the conditional distribution of y, given v1 and v2, is

P(y|v1,v2) =

D∏
d=1

P(yd|v1,d,v2,d), P(yd|v1,d,v2,d) =

T∏
t=1

P(ydt|v1,d, v2,dt), (4.3.1)

where

P(ydt|v1,d, v2,dt) =
1

ydt!
exp{−νdtpdt}νydtdt p

ydt
dt

= cdt exp {ydt(xdtβ + φ1v1,d + φ2v2,dt)− νdt exp{xdtβ + φ1v1,d + φ2v2,dt}} .

and the p.d.f. of the random e�ects v = (v1,v2) is

f(v1,v2) = f(v1)f(v2),

where

f(v1) =
D∏
d=1

f(v1,d), f(v2) =
D∏
d=1

f(v2,d).

Under Model T12 and Model T22, the conditional distribution of y, given v2, is

P(y|v2) =

D∏
d=1

P(yd|v2,d), P(yd|v2,d) =

T∏
t=1

P(ydt|v2,dt), (4.3.2)

where

P(ydt|v2,dt) =
1

ydt!
exp{−νdtpdt}νydtdt p

ydt
dt

= cdt exp {ydt(xdtβ + φ2v2,dt)− νdt exp{xdtβ + φ2v2,dt}} .

4.3.1 The EBP under Model T1

Under Model T1, the p.d.f. of v2,d is

f(v2,d) =

T∏
t=1

f(v2,dt),

and the p.d.f. of the random e�ects v1,d and v2,dt are
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f(v1,d) = (2π)−1/2 exp
{
− 1

2
v2

1,d

}
,

f(v2,dt) = (2π)−1/2 exp
{
− 1

2
v2

2,dt

}
.

The BP is the conditional mean p̂dt(θ) = Eθ[pdt|y]. We have that Eθ[pdt|y] = Eθ[pdt|yd]
and

Eθ[pdt|yd] =

∫
RT+1 pdtP(yd|v1,d,v2,d)f(v1,d)f(v2,d) dv1,ddv2,d∫
RT+1 P(yd|v1,d,v2,d)f(v1,d)f(v2,d) dv1,ddv2,d

=
Ndt

Dd
.

Using (4.3.1) and the hypothesis of temporal independence, we have

Ndt =

∫
RT+1

T∏
τ=1

exp {(ydτ + δtτ )(xdτβ + φ1v1,d + φ2v2,dτ )

− νdτ exp{xdτβ + φ1v1,d + φ2v2,dτ}} f(v1,d)f(v2,d) dv1,ddv2,d

=

∫
R

T∏
τ=1

[ ∫
R

exp{(ydτ + δtτ )(xdτβ + φ1v1,d + φ2v2,dτ )

− νdτ exp{xdτβ + φ1v1,d + φ2v2,dτ}}f(v2,dτ ) dv2,dτ

]
f(v1,d) dv1,d,

Dd =

∫
RT+1

T∏
τ=1

exp {ydτ (xdτβ + φ1v1,d + φ2v2,dτ )

− νdτ exp{xdτβ + φ1v1,d + φ2v2,dτ}} f(v1,d)f(v2,d) dv1,ddv2,d

=

∫
R

T∏
τ=1

[ ∫
R

exp{ydτ (xdτβ + φ1v1,d + φ2v2,dτ )

− νdτ exp{xdτβ + φ1v1,d + φ2v2,dτ}}f(v2,dτ ) dv2,dτ

]
f(v1,d) dv1,d,

where δtτ denotes the Kronecker delta, i.e. δtτ = 1 if t = τ and δtτ = 0 otherwise.

Remark 4.1. The component Ndt(yd,θ) can be expressed in terms of Dd(yd,θ) as

Ndt(yd,θ) = Dd(yd + et,θ), where et = (δt1, . . . , δtT )′.

The EBP of pdt is obtained replacing θ by a consistent estimator θ̂, i.e. the EBP of pdt

is p̂dt(θ̂). Since the EBP calculation involve high-dimensional integrals, it can be approxi-

mated by running an antithetic Monte Carlo algorithm. The algorithm steps are

1. Estimate θ̂ = (β̂
′
, φ̂1, φ̂2) by a consistent estimator (for example, using MM).

2. For s1 = 1, . . . , S1, s2 = 1, . . . , S2, τ = 1, . . . , T , generate v(s1)
1,d , v(s2)

2,dτ i.i.d. N(0, 1)
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4 The area-level Poisson mixed model with time e�ects

and calculate their antithetical v(S1+s1)
1,d = −v(s1)

1,d and v(S2+s2)
2,dτ = −v(s2)

2,dτ .

3. Approximate the EBP of pdt by p̂dt(θ̂) = N̂dt/D̂d, where

N̂dt =

2S1∑
s1=1

T∏
τ=1

2S2∑
s2=1

exp
{

(ydτ + δtτ )(xdτ β̂ + φ̂1v
(s1)
1,d + φ̂2v

(s2)
2,dτ )

− νdτ exp{xdτ β̂ + φ̂1v
(s1)
1,d + φ̂2v

(s2)
2,dτ}

}
,

D̂d =

2S1∑
s1=1

T∏
τ=1

2S2∑
s2=1

exp
{
ydτ (xdτ β̂ + φ̂1v

(s1)
1,d + φ̂2v

(s2)
2,dτ )

− νdτ exp{xdτ β̂ + φ̂1v
(s1)
1,d + φ̂2v

(s2)
2,dτ}

}
.

As the MM algorithm does not give predictions of v1,d and v2,dt, we use their EBPs. The

BP of v1,d, d = 1, . . . , D, is

v̂1,d(θ) = Eθ[v1,d|yd] =

∫
RT+1 v1,dP(yd|v1,d,v2,d)f(v1,d)f(v2,d) dv1,ddv2,d∫

RT+1 P(yd|v1,d,v2,d)f(v1,d)f(v2,d) dv1,ddv2,d
=
N1,d

Dd
,

where

N1,d =

∫
R

T∏
τ=1

[ ∫
R

exp {ydτ (xdτβ + φ1v1,d + φ2v2,dτ )

− νdτ exp{xdτβ + φ1v1,d + φ2v2,dτ}} f(v2,dτ ) dv2,dτ

]
v1,df(v1,d) dv1,d,

and the BP of v2,dt, d = 1, . . . , D, t = 1, . . . , T , is

v̂2,dt(θ) = Eθ[v2,dt|ydt] =

∫
R2 v2,dtP(ydt|v1,d, v2,dt)f(v1,d)f(v2,dt) dv1,ddv2,dt∫

R2 P(ydt|v1,d, v2,dt)f(v1,d)f(v2,dt) dv1,ddv2,dt
=
N2,dt

Ddt
,

where

N2,dt =

∫
R2

exp {ydt(xdtβ + φ1v1,d + φ2v2,dt)

− νdt exp{xdtβ + φ1v1,d + φ2v2,dt}} v2,dtf(v2,dt)f(v1,d) dv2,dtdv1,d,

Ddt =

∫
R2

exp {ydt(xdtβ + φ1v1,d + φ2v2,dt)

− νdt exp{xdtβ + φ1v1,d + φ2v2,dt}} f(v2,dt)f(v1,d) dv2,dtdv1,d.

The EBPs of v1,d and v2,dt are v̂1,d(θ̂) and v̂2,dt(θ̂) respectively and they can be approxi-

mated by an analogous Monte Carlo algorithm to the one used for the EBP of pdt.
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The EBPs of pdt and v2,dt under Model T12 are equivalent to the respective EBPs of the

model studied in Chapter 2 (Boubeta et al., 2016b), considering as domains the interaction

domain-time.

4.3.2 The EBP under Model T2

Under Model T2, the p.d.f. of the random e�ects v1,d and v2,d are

f(v1,d) = (2π)−1/2 exp
{
− 1

2
v2

1,d

}
,

f(v2,d) = (2π)−T/2|Ωd(ρ)|−1/2 exp

{
−1

2
v′2dΩ

−1
d (ρ)v2d

}
.

The BP of pdt is p̂dt(θ) = Eθ[pdt|y] = Eθ[pdt|yd], where

Eθ[pdt|yd] =

∫
RT+1 pdtP(yd|v1,d,v2,d)f(v1,d)f(v2,d) dv1,ddv2,d∫
RT+1 P(yd|v1,d,v2,d)f(v1,d)f(v2,d) dv1,ddv2,d

=
Ndt

Dd
,

Ndt =

∫
RT+1

T∏
τ=1

exp {(ydτ + δtτ )(xdτβ + φ1v1,d + φ2v2,dτ )

− νdτ exp{xdτβ + φ1v1,d + φ2v2,dτ}} f(v1,d)f(v2,d) dv1,ddv2,d,

Dd =

∫
RT+1

T∏
τ=1

exp {ydτ (xdτβ + φ1v1,d + φ2v2,dτ )

− νdτ exp{xdτβ + φ1v1,d + φ2v2,dτ}} f(v1,d)f(v2,d) dv1,ddv2,d,

and δtτ is the Kronecker delta. For the Monte Carlo approximation of the EBP, we gener-

ate random variables v2,dt, t = 1, . . . , T , with an AR(1)-correlation structure within each

domain d. The EBP of pdt can be approximated as follows.

1. Estimate θ̂ = (β̂
′
, φ̂1, φ̂2, ρ̂).

2. For s1 = 1, . . . , S1, generate v
(s1)
1,d i.i.d. N(0, 1) and calculate v(S1+s1)

1,d = −v(s1)
1,d . For

s2 = 1, . . . , S2, generate (v
(s2)
2,d1, . . . , v

(s2)
2,dT ) ∼ NT

(
0,Ωd(ρ̂)

)
and calculate the corre-

sponding antithetics (v
(S2+s2)
2,d1 , . . . , v

(S2+s2)
2,dT ) = −(v

(s2)
2,d1, . . . , v

(s2)
2,dT ).

3. Approximate the EBP of pdt as p̂dt(θ̂) = N̂dt/D̂d, where

N̂dt =

2S1∑
s1=1

2S2∑
s2=1

T∏
τ=1

exp
{

(ydτ + δtτ )(xdτ β̂ + φ̂1v
(s1)
1,d + φ̂2v

(s2)
2,dτ )

− νdτ exp{xdτ β̂ + φ̂1v
(s1)
1,d + φ̂2v

(s2)
2,dτ}

}
,
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4 The area-level Poisson mixed model with time e�ects

D̂d =

2S1∑
s1=1

2S2∑
s2=1

T∏
τ=1

exp
{
ydτ (xdτ β̂ + φ̂1v

(s1)
1,d + φ̂2v

(s2)
2,dτ )

− νdτ exp{xdτ β̂ + φ̂1v
(s1)
1,d + φ̂2v

(s2)
2,dτ}

}
.

The BPs of the random e�ects v1,d and v2,dt, d = 1, . . . , D, t = 1, . . . , T , are

v̂1,d(θ) = Eθ[v1,d|yd] =

∫
RT+1 v1,dP(yd|v1,d,v2,d)f(v1,d)f(v2,d) dv1,ddv2,d∫

RT+1 P(yd|v1,d,v2,d)f(v1,d)f(v2,d) dv1,ddv2,d
=
N1,d

Dd
,

v̂2,dt(θ) = Eθ[v2,dt|yd] =

∫
RT+1 v2,dtP(yd|v1,d,v2,d)f(v1,d)f(v2,d) dv1,ddv2,d∫

RT+1 P (yd|v1,d,v2,d)f(v1,d)f(v2,d) dv1,ddv2,d
=
N2,dt

Dd
,

where

N1,d =

∫
RT+1

T∏
τ=1

exp {ydτ (xdτβ + φ1v1,d + φ2v2,dτ )

− νdτ exp{xdτβ + φ1v1,d + φ2v2,dτ}} v1,df(v1,d)f(v2,d) dv1,ddv2,d,

N2,dt =

∫
RT+1

T∏
τ=1

I2,dt(τ) exp {ydτ (xdτβ + φ1v1,d + φ2v2,dτ )

− νdτ exp{xdτβ + φ1v1,d + φ2v2,dτ}} f(v1,d)f(v2,d) dv1,ddv2,d,

I2,dt(τ) = v2,dt if t = τ and I2,dt(τ) = 1 otherwise. The EBPs of v1,d and v2,dt are obtained

replacing θ by an estimator θ̂. They are denoted by v̂1,d(θ̂) and v̂2,dt(θ̂) respectively.

Similarly as above, they can be approximated by a Monte Carlo algorithm.

Under Model T22, the best predictor of pdt is p̂dt(θ) = Eθ[pdt|y], where pdt = exp{xdtβ +

φ2v2,dt}. In this case, it holds that Eθ[pdt|y] = Eθ[pdt|yd] and

Eθ[pdt|yd] =

∫
RT exp{xdtβ + φ2v2,dt}P(yd|v2,d)f(v2,d) dv2,d∫

RT P(yd|v2,d)f(v2,d) dv2,d
=
Ndt

Dd
,

where using (4.3.2),

Ndt =

∫
RT

T∏
τ=1

exp {(ydτ + δtτ )(xdτβ + φ2v2,dτ ) − νdτ exp{xdτβ + φ2v2,dτ}} f(v2,d) dv2,d,

Dd =

∫
RT

T∏
τ=1

exp {ydτ (xdτβ + φ2v2,dτ )− νdτ exp{xdτβ + φ2v2,dτ}} f(v2,d) dv2,d,

and δtτ is the Kronecker delta, i.e. δtτ = 1 if t = τ and δtτ = 0 otherwise.
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The EBP of pdt is p̂dt(θ̂) and it can be approximated as follows.

1. Estimate θ̂ = (β̂
′
, φ̂2, ρ̂).

2. For s2 = 1, . . . , S2, generate (v
(s2)
2,d1, . . . , v

(s2)
2,dT ) ∼ NT

(
0,Ωd(ρ̂)

)
and calculate the cor-

responding antithetics (v
(S2+s2)
2,d1 , . . . , v

(S2+s2)
2,dT ) = −(v

(S2+s2)
2,d1 , . . . , v

(S2+s2)
2,dT ).

3. Approximate the EBP of pdt as p̂dt(θ̂) = N̂dt/D̂d, where

N̂dt =

2S2∑
s2=1

T∏
τ=1

exp
{

(ydτ + δtτ )(xdτ β̂ + φ̂2v
(s2)
2,dτ )− νdτ exp{xdτ β̂ + φ̂2v

(s2)
2,dτ}

}
,

D̂d =

2S2∑
s2=1

T∏
τ=1

exp
{
ydτ (xdτ β̂ + φ̂2v

(s2)
2,dτ )− νdτ exp{xdτ β̂ + φ̂2v

(s2)
2,dτ}

}
.

Finally, the BP of the random e�ects v2,dt (d = 1, . . . , D, t = 1, . . . , T ) is

v̂2,dt(θ) = Eθ[v2,dt|yd] =

∫
RT v2,dtP(yd|v2,d)f(v2,d) dv2,d∫

RT P(yd|v2,d)f(v2,d) dv2,d
=
N2,dt

Dd
,

where

N2,dt =

∫
RT

T∏
τ=1

I2,dt(τ) exp {ydτ (xdτβ + φ2v2,dτ )− νdτ exp{xdτβ + φ2v2,dτ}} f(v2,d) dv2,d.

The EBP of v2,dt under Model T22 is v̂2,dt = v̂2,dt(θ̂) and it can be approximated by an

algorithm similar to the previous one.

4.3.3 The plug-in predictors

Under Model T1 and Model T2, the plug-in predictor of pdt is

p̂Pdt = exp{xdtβ̂ + φ̂1v̂1,d + φ̂2v̂2,dt},

where β̂, φ̂1 and φ̂2 are consistent estimators of β, φ1 and φ2 respectively (for example,

the MM estimators) and v̂1,d and v̂2,dt are the EBPs of v1,d and v2,dt respectively under the

assumed model. Similarly, the plug-in predictor of pdt takes the form

p̂Pdt = exp{xdtβ̂ + φ̂2v̂2,dt}
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under Model T12 and Model T22, where β̂, φ̂2 and v̂2,dt are the corresponding estimators

and predictors.

The plug-in predictors are not unbiased. As they are de�ned by using the same formula as

the parameter to be estimated and they plug consistent estimators and EBPs in the place

of parameters and random e�ects, they are consistent under regularity conditions. The

problem is that D and overall T are not large enough in small area estimation problems.

This is why Section 4.5 reports some empirical investigations about their behaviour.

4.4 MSE estimation

The mean squared error (MSE) of the EBP of pdt is considered as accuracy measure under

models Model T1 and Model T2. Due to the computational complexity of the corresponding

analytical versions, we propose to estimate the MSE of p̂dt by using the following parametric

bootstrap algorithm based on the bootstrap procedure given in González-Manteiga et al.

(2007). The steps are:

1. Fit the model to the sample and calculate the estimator θ̂. Note that θ̂ = (β̂
′
, φ̂1, φ̂2)

in Model T1 and θ̂ = (β̂
′
, φ̂1, φ̂2, ρ̂) in Model T2.

2. For each domain d, d = 1, . . . , D, and time instant t, t = 1, . . . , T , repeat B times,

b = 1, . . . , B:

i) Generate the boostrap random e�ects v∗(b)1,d and v∗(b)2,dt . The domain random e�ects

v
∗(b)
1,d are i.i.d. N(0, 1) in both models. The domain-time random e�ects v∗(b)2,dt are

i.i.d. N(0, 1) in Model T1 and AR(1)-correlated within each domain d in Model

T2.

ii) Calculate the theoretical bootstrap EBP estimator p∗(b)dt = exp{xdtβ̂+ φ̂1v
∗(b)
1,d +

φ̂2v
∗(b)
2,dt}.

iii) Generate the responses variables y∗(b)dt ∼ Poiss(νdtp
∗(b)
dt ).

iv) Calculate θ̂
∗(b)

and the corresponding EBP estimator p̂∗(b)dt = p̂
∗(b)
dt (θ̂

∗(b)
, v̂
∗(b)
1,d , v̂

∗(b)
2,dt )

under Model T1 or Model T2.

3. Output:

mse∗(p̂dt) =
1

B

B∑
b=1

(
p̂
∗(b)
dt − p

∗(b)
dt

)2
. (4.4.1)
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A similar bootstrap procedure estimates the MSE of p̂dt under the models Model T12 and

Model T22.

4.5 Simulation experiments

This section presents two simulation experiments for studying the behaviour of the MM

�tting algorithm and the two introduced predictors under models T1 and T2. The ex-

periments generate independent response variables ydt|v1,d, v2,dt ∼ Poisson(νdtpdt), where

pdt = exp{β0 +xdtβ1 +φ1v1,d+φ2v2,dt}, xdt = (d+t/T )/D, d = 1, . . . , D, t = 1, . . . , T . The

domain random e�ects v1,d, d = 1, . . . , D, are i.i.d. N(0, 1) and the domain-time random

e�ects v2,dt, d = 1, . . . , D, t = 1, . . . , T , are generated under the assumptions stated in

Sections 4.2.1 or 4.2.2.

The model parameters are νdt = 100, d = 1, . . . , D, t = 1, . . . , T , β0 = −3, β1 = 0.8 and

φ1 = φ2 = 0.5. The time correlation parameter is ρ = 0.4 for the model with AR(1)-

correlated time e�ects. The Monte Carlo simulation experiments are carried out with

K = 1000 iterations under the scenarios D = 50, 100, 150 and T = 5, 9, 12. The target is

studying the in�uence of the number of areas and time periods in the inference procedures.

4.5.1 Simulation 1

The �rst simulation studies the behaviour of the MM �tting algorithm introduced in Section

4.2. Tables 4.5.1 and 4.5.2 present the bias (BIAS) and the root mean squared error

(RMSE) of the model parameter estimators under Model T1 and Model T2 respectively.

The performance measures are

BIAS(θ) =
1

K

K∑
k=1

(θ̂(k) − θ), RMSE(θ) =

(
1

K

K∑
k=1

(θ̂(k) − θ)2

)1/2

,

where θ ∈ {β0, β1, φ1, φ2, ρ}. The RMSE of all parameter estimators and the bias of the

variance components estimators tend to decrease as the number of domains or time instants

increases. However, the bias of the regression parameters estimators is quite stable and does

not seem to decrease with D or T . Under Model T2, we recommend T ≥ 5 for estimating

ρ.
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4 The area-level Poisson mixed model with time e�ects

Table 4.5.1: BIAS and RMSE for Model T1.

T = 5 T = 9 T = 12

D BIAS RMSE BIAS RMSE BIAS RMSE

50 β̂0 0.0063 0.1752 0.0099 0.1610 0.0214 0.1699

β̂1 -0.0009 0.2861 -0.0082 0.2661 -0.0221 0.2737

φ̂1 -0.0408 0.0862 -0.0367 0.0768 -0.0360 0.0757

φ̂2 -0.0091 0.0515 -0.0084 0.0396 -0.0072 0.0333

100 β̂0 0.0114 0.1258 0.0110 0.1177 0.0192 0.1155

β̂1 -0.0128 0.2035 -0.0197 0.2019 -0.0235 0.2003

φ̂1 -0.0231 0.0605 -0.0226 0.0540 -0.0282 0.0556

φ̂2 -0.0088 0.0393 -0.0078 0.0288 -0.0077 0.0252

150 β̂0 0.0132 0.1087 0.0215 0.1062 0.0098 0.0839

β̂1 -0.0107 0.1888 -0.0257 0.1735 -0.0105 0.1490

φ̂1 -0.0196 0.0494 -0.0208 0.0456 -0.0230 0.0495

φ̂2 -0.0078 0.0314 -0.0104 0.0226 -0.0054 0.0190

Table 4.5.2: BIAS and RMSE for Model T2.

T = 5 T = 9 T = 12

D BIAS RMSE BIAS RMSE BIAS RMSE

50 β̂0 0.0355 0.1997 0.0342 0.1812 0.0336 0.1621

β̂1 -0.0619 0.3179 -0.0286 0.2977 0.0571 0.2433

φ̂1 -0.1088 0.2023 -0.0626 0.1149 -0.1471 0.1747

φ̂2 -0.0256 0.0619 -0.0136 0.0426 -0.0148 0.0295

ρ̂ -0.0708 0.3067 -0.0296 0.1667 0.0452 0.0891

100 β̂0 0.0322 0.1465 0.0244 0.1343 -0.0021 0.1270

β̂1 -0.0393 0.2508 -0.0282 0.2164 0.0056 0.2071

φ̂1 -0.0871 0.1649 -0.0401 0.0749 -0.0359 0.0684

φ̂2 -0.0149 0.0435 -0.0117 0.0317 -0.0112 0.0277

ρ̂ -0.0307 0.2221 -0.0122 0.1200 -0.0234 0.0918

150 β̂0 0.0191 0.1169 0.0185 0.1025 0.0274 0.1043

β̂1 -0.0231 0.1938 -0.0226 0.1743 -0.0360 0.1718

φ̂1 -0.0680 0.1443 -0.0342 0.0631 -0.0322 0.0554

φ̂2 -0.0157 0.0371 -0.0107 0.0273 -0.0102 0.0241

ρ̂ -0.0173 0.2006 -0.0106 0.1073 0.0019 0.0673
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In both cases, the variance is the most important part of the MSE.

4.5.2 Simulation 2

The second simulation analyses the performance of the EBP and plug-in predictors. For

each d and t, the EBPs are approximated by generating S1 = S2 = 500 random variables

v
(s1)
1,d and v(s2)

2,dt in Step 2 of the algorithms given in Sections 4.3.1 and 4.3.2 respectively. For

the two predictors (EBP and plug-in) and models (Model T1 and Model T2), Tables 4.5.3

and 4.5.4 present the average across domains and time periods of biases and RMSEs, i.e.

B =
1

DT

D∑
d=1

T∑
t=1

Bdt, RE =
1

DT

D∑
d=1

T∑
t=1

REdt,

where

Bdt =
1

K

K∑
k=1

(p̂
(k)
dt − p

(k)
dt ), REdt =

(
1

K

K∑
k=1

(p̂
(k)
dt − p

(k)
dt )2

)1/2

, d = 1, . . . , D, t = 1, . . . , T.

Table 4.5.3 presents the simulation results obtained for D = 50, 100, 150 and T = 5, since

T = 5 is close to the number of time instants (T = 4) of the �rst application to real data

presented in Section 4.6.1. Table 4.5.4 takes D = 100 and T = 5, 9, 12. The tables are

divided in two parts. The �rst part, containing the �rst two rows, gives the numerical

results of simulations under Model T1. The second part, containing the second two rows,

gives the numerical results of simulations under Model T2.

Table 4.5.3: Bias (B) and RMSE (RE) of EBPs and plug-in predictors for T = 5 (both
×103).

D = 50 D = 100 D = 150

Model Predictor B RE B RE B RE

T1 EBP 0.0909 27.4315 0.0731 27.3042 0.0922 27.3539
Plug-in 0.1866 38.8997 0.3698 39.8498 0.4268 40.3961

T2 EBP -0.8154 30.1909 -0.4611 29.1808 -0.2707 28.8227
Plug-in -3.6317 33.8777 -3.2122 33.5982 -2.8751 33.6778

Under the two models, the EBP performs clearly better than the plug-in predictor, as both

B and RE are lower. In addition, the estimators are quite stables and they are not too

a�ected by D or T . In the case of Model T2 with time dependency, the di�erences in bias
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4 The area-level Poisson mixed model with time e�ects

between both estimators are even bigger. The main conclusions of Simulation 2 are that

the EBPs are preferable to the plug-in predictors and also that variance is the main part

of the MSE since bias is much smaller than RMSE.

Table 4.5.4: Bias (B) and RMSE (RE) of EBPs and plug-in predictors for D = 100 (both
×103).

T = 5 T = 9 T = 12

Model Predictor B RE B RE B RE

T1 EBP 0.0731 27.3042 -0.0621 27.0282 -0.0612 27.0727
Plug-in 0.3698 39.8498 1.2672 41.7297 1.3923 40.1531

T2 EBP -0.4611 29.1808 -0.1696 31.8237 -0.5151 31.4158
Plug-in -3.2122 33.5982 -1.5382 40.6226 -2.3145 37.8867

The simulation programmes solve the systems of MM nonlinear equations (4.2.4) for Model

T1 and (4.2.4) and (4.2.12) for Model T2 by using nleqslv package of R. In addition, they

also use the mvtnorm package to generate samples of a multivariate normal distribution.

The computational burden of the MM algorithm is much higher for the correlated model.

Taking D = 100, the runtimes of the MM �tting algorithm for T = 5, 9, 12 under Model

T1 are 0.06, 0.07, 0.08 seconds respectively and 2.75, 4.59, 6.73 under Model T2. Regarding

the pdt estimators, the computational di�erence between the EBP and the plug-in has been

increased compared to the previous chapters. The reason is that now the plug-in predictor

requires the calculation of two EBPs (v̂1 and v̂2). The runtimes of the plug-in predictor

for D = 100 and T = 5, 9, 12 under Model T1 are 215, 375, 472 seconds respectively, and

1433, 2292, 3160 seconds under Model T2. Under the same speci�cations, the runtimes of

the EBPs are 168, 332, 415 seconds for Model T1 and 1058, 1890, 2704 seconds for Model

T2. These computational times reinforce the EBP as a good alternative.

4.6 Application to real data

4.6.1 Poverty data

This section presents an application to the estimation of poverty proportions, pdt, in small

areas and time instants. The data are taken annually from the 2010-2013 SLCS of Galicia,

which is a Spanish autonomous community with 53 counties. Therefore, the number of

time periods in the application is T = 4. The target domains are the counties crossed by
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sex and, in consequence, the number of total domains is D = 106.

At domain d and time period t, the response variable ydt is the number of sampled people

under the poverty line. We assume that ydt can be explained by some auxiliary variables

through an area-level Poisson mixed model with time e�ects.

Table 4.6.1 presents the estimates of the �xed e�ect coe�cients by using the MM algorithm,

for Model T2 (with AR(1)-correlated time e�ects) on the left and for Model T22 (the

submodel with only the area-time random e�ect v2,dt) on the right. We select a signi�cant

set of auxiliary variables with p-values lower than 0.05. For the sake of comparisons, we

take the same covariates in both models. By analyzing the signs of the model coe�cients,

we conclude that lab2 (proportion of unemployed people) and age4 (proportion of people

over 64 years) contribute to increase the poverty, while edu23 (proportion of people with

high level of education) is protective.

Table 4.6.1: MM estimates of regression parameters under Model T2 (left) and Model T22

(right).

Model T2 Model T22

Variable Est. s.e. z-value P (> |z|) Est. s.e. z-value P (> |z|)

Intercept -1.615 0.015 -107.684 < 0.001 -1.586 0.138 -11.523 < 0.001

lab2 4.933 0.033 151.368 < 0.001 4.696 0.361 13.015 < 0.001

edu23 -1.328 0.014 -91.725 < 0.001 -1.663 0.145 -11.502 < 0.001

age4 0.731 0.015 48.543 < 0.001 1.485 0.178 8.339 < 0.001

The variance component estimates of Model T2 are φ̂1 = 0.0255 and φ̂2 = 0.0396. Their

95% percentile bootstrap con�dence interval are [0, 0.3443) and (0.0347, 0.2196), respec-

tively. The estimated correlation parameter is ρ̂ = −0.9770 and its 95% percentile bootstrap

con�dence interval is (−0.9970,−0.1443). For studying the signi�cance of the variance pa-

rameter φ1, the hypothesis H0 : φ1 = 0 is tested by adapting Algorithm 5 (see Section 2.9)

to Model T2. As the obtained p-value is 0.758, the random e�ects related to the domains

are not signi�cant. Therefore, the simpli�ed version of Model T2, Model T22, with only

v2,dt random e�ects is considered. The estimate of the variance component of Model T22 is

φ̂2 = 0.1007 and its 95% percentile bootstrap con�dence interval is (0.0240, 0.1987). The

estimated correlation parameter is ρ̂ = −0.5199 and its 95% percentile bootstrap con�dence

interval is (−0.9225, 0.7131). To test the signi�cance of the correlation parameter ρ under
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4 The area-level Poisson mixed model with time e�ects

Model T22, the following bootstrap procedure is proposed.

Algorithm 7 A bootstrap test for H0 : ρ = 0

1: Fit the Model T22 to data and calculate β̂, φ̂2 and ρ̂.

2: Fit the Model T12 to data and calculate β̂
0
and φ̂0

2.

3: For b = 1, . . . , B, do

i) Generate a bootstrap resample under H0 : ρ = 0, i.e.

v
∗(b)
dt ∼ N(0, 1), p

∗(b)
dt = exp{xdtβ̂

0
+ φ̂0

2v
∗(b)
dt },

y
∗(b)
dt ∼ Poiss(νdtp

∗(b)
dt ), d = 1, . . . , D, t = 1, . . . , T.

ii) Fit the Model T22 to the bootstrap data (y
∗(b)
dt ,xdt), d = 1, . . . , D, t = 1, . . . , T ,

and calculate β̂
∗(b)

, φ̂2
∗(b)

and ρ̂∗(b).

4: Calculate the p-value

p =
#
{∣∣ρ̂∗(b)∣∣ > |ρ̂|}

B
.

The bootstrap p-value is 0.414. This suggests that instead of using a complex model

(Model T2 or Model T22), in this study it is more appropriated to consider a model with

independent time e�ects (Model T1 or Model T12).

Table 4.6.2 shows the estimates of the �xed e�ect coe�cients for Model T1 on the left

and for Model T12 on the right. They can be interpreted analogously to those given in

Table 4.6.1. On the other hand, the estimates of the variance components of Model T1

are φ̂1 = 0 and φ̂2 = 0.1117, and the 95% percentile bootstrap con�dence interval for φ2 is

(0.0583, 0.1590). As φ̂1 = 0, simpli�ed Model T12 is considered. Model T12 is de�ned by

(4.2.1) and (4.2.11), and incorporates only the area-time random e�ect v2,dt. The estimated

variance parameter of Model T12 is φ̂2 = 0.180 and its 95% percentile bootstrap con�dence

interval is (0.044, 0.575). The bootstrap p-value for testing the hypothesis H0 : φ2 = 0

(by using Algorithm 5 in Section 2.9) is 0.006. The conclusion is that the domain-time

vector of random e�ects is signi�cant at the level 1 − α = 0.95. Therefore, Model T12 is

�nally selected. Starting from Model T2 or from Model T1, the employed model selection

procedure leads also to Model T12.
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Table 4.6.2: MM estimates of regression parameters under Model T1 (left) and Model T12

(right).

Model T1 Model T12

Variable Est. s.e. z-value P (> |z|) Est. s.e. z-value P (> |z|)

Intercept -1.614 0.172 -9.372 < 0.001 -1.617 0.186 -8.682 < 0.001

lab2 4.933 0.375 13.153 < 0.001 4.933 0.465 10.618 < 0.001

edu23 -1.328 0.176 -7.538 < 0.001 -1.328 0.185 -7.192 < 0.001

age4 0.731 0.183 3.988 < 0.001 0.731 0.216 3.388 < 0.001

For the sake of comparisons, we �t a �xed-e�ects Poisson regression model (Model T0, cf.

(4.2.10)) to the set of auxiliary data appearing in Table 4.6.1 and 4.6.2. Figure 4.6.1 plots

the Pearson residuals of Model T0 without random e�ects (left) and of Model T12 with

independent random e�ects (right). A clear improvement is achieved when using the model

with random time e�ects since its residuals are loser to 0.

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●
●
●
●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●
●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

0 100 200 300 400

−
4

−
2

0
2

4
6

domain−time

P
e

a
rs

o
n

 r
e

si
d

u
a

ls

p̂d

syn(θ̂) of Model T0

●

●

●

●

●

●

●●

●●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●
●
●

●
●

●

●

●

●●

●

●●
●
●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●●●

●

●●
●●

●
●
●

●

●

●

●
●
●
●

●

●

●●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●●●
●
●●
●

●
●

●

●

●●●
●

●

●

●●

●

●
●
●

●
●

●

●

●
●●

●●

●

●

●●
●
●
●

●

●
●

●
●

●●
●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●●

●
●●

●●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●●

●
●

●

●●

●
●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●
●
●

●

●
●

●

●●
●
●
●
●
●

●

●●●●
●
●

●
●

●

●

●

●
●●●
●

0 100 200 300 400

−
4

−
2

0
2

4
6

domain−time

P
e

a
rs

o
n

 r
e

si
d

u
a

ls

p̂d(θ̂) of Model T12

Figure 4.6.1: Pearson residuals of Model T0 (left) and Model T12 (right).

Figure 4.6.2 (left) plots the EBPs under Model T12 and the direct estimates (dir) of the

pdt's sorted by the sample sizes νdt's. Figure 4.6.2 (right) plots the relative root-MSEs of

the EBPs and the relative root-variances of the direct estimators. For small sample sizes,

νdt, the direct estimates have high variability while for large values of νdt they follow the

same pattern as the EBPs. The relative root-MSEs of the EBPs are estimated by using a
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parametric bootstrap based on the method given by González-Manteiga et al. (2007). The

relative root-variances of the direct estimators are too high for small sample sizes and their

accuracies improve when the sample size increases. The average across domains of relative

root-variances of the direct estimators is 0.253 and the corresponding average of relative

root-MSEs of the EBPs is 0.149. Their maximum values are 1.005 and 0.232, respectively.

From these results, we conclude that the EBP performs better than the direct estimator.
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Figure 4.6.2: Direct estimates and EBPs of pdt (left) and their relative root-MSEs (right).

Figure 4.6.3 maps the EBPs of pdt, by county and sex for the period 2010 − 2013, under

Model T12. Highest levels of poverty tend to be concentrated in the south and west of the

region. We also observe a clear di�erence between genders, being the poverty proportion

higher for women, 32 counties for men vs. 37 for women with p̂dt > 0.15 in 2013. Never-

theless, between 2010 and 2013, the poverty rate has increased in average by 1.7% for men

and by 1% for women.

Figure 4.6.4 maps the bootstrap relative root-MSE (RRMSE) estimates of the EBP of

pdt, by county and sex for the period 2010 − 2013, under Model T12. We take B = 500

resamples. The average across domains of the estimated RRMSEs in 2013 is 0.147 for

men and 0.148 for women. The maximum values are 0.209 and 0.210, for men and women

respectively.
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Figure 4.6.3: EBPs of poverty rates for men (left) and women (right) in 2010− 2013.
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Figure 4.6.4: Bootstrap RRMSE estimates of the EBPs for men (left) and women (right)

in 2010− 2013.

132



Application to real data 4.6

4.6.2 Forest �res data

The modelling of the target variable number of forest �res is extremely valuable because

it allows making preventive policies. This study concerns Galicia, a region in the north-

west of Spain, because it has a high number of �res with devastating e�ects that occur

systematically every summer (see Chapter 1 for more details). The interest is to know

what happens by forest areas. Galicia is divided into D = 63 forest areas. For each

domain, d, d = 1, . . . , D, the evolution of the response variable is observed between the

months of April to October from 2007 to 2008. The reason of this choice is because these

months have the largest number of forest �res. Therefore, the number of time periods is

T = 14.

The response variable at domain d and time t, ydt, is explained by some auxiliary variables

through an area-level Poisson model with time e�ects. Depending on their structure, two

sources of auxiliary information are considered. The �rst source contains auxiliary vari-

ables that are constant over time. They are population size (pop) and cadastral holders

(cadHold) per forest areas that only depends on the domains. The second source considers

average measurements of meteorological stations per month and forest areas. It speci�-

cally examines accumulated rain (acumRain), average temperature (averTemp) and days

without rain (dwr). See more details about the data set in Section 1.4.2.

Table 4.6.3 presents the signi�cant MM estimates (p-value < 0.05) of the �xed e�ect coe�-

cients for the two models with correlated time e�ects (Model T2 and Model T22). They are

selected by using the AIC under the residuals of Model T0. In order to make a comparison

under the same auxiliary information, the application selects the same set of covariates for

both models. It takes the level α = 5% for selecting the variables in the �nal model. Re-

gression estimates suggest that averTemp and cadHold are directly related to the response

variable given that an increase in those variables causes an increase in the response variable

if acumRain remains �xed. By contrast, the relationship between acumRain and ydt is in-

verse since an increase in this variable causes a decrease in the target variable. The variance

parameter estimates of Model T2 are φ̂1 = 0.005 and φ̂2 = 0.626. Their 95% percentile

bootstrap con�dence intervals are [0, 0.374) and (0.503, 0.829), respectively. See Shao and

Tu (1995) for the mathematical details on the construction of this bootstrap con�dence in-

tervals. The estimated correlation parameter is ρ̂ = 0.643 and its 95% percentile bootstrap

con�dence interval is (0.400, 0.760). The variance parameter φ1 in Model T2 is not signif-

icant since the bootstrap p-value of the hypothesis test H0 : φ1 = 0 is 0.918. Therefore,

the application considers the simpli�ed version of Model T2 with only domain-time e�ects,
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Model T22.

Table 4.6.3: MM estimates of regression parameters under Model T2 (left) and Model T22

(right).

Model T2 Model T22

Variable Est. s.e. z-value P (> |z|) Est. s.e. z-value P (> |z|)

Intercept 0.7650 0.1092 7.0038 < 0.001 0.7739 0.0753 10.2717 < 0.001

acumRain -0.5207 0.0673 -7.7406 < 0.001 -0.5207 0.0627 -8.3073 < 0.001

averTemp 0.1505 0.0633 2.3769 0.0175 0.1505 0.0761 1.9781 0.0479

cadHold 0.2930 0.0670 4.3727 < 0.001 0.2930 0.0680 4.3065 < 0.001

Table 4.6.3 (right) presents the �xed e�ect estimates for this model. They can be interpreted

analogously to Model T2. The estimate of the variance parameter is φ̂2 = 0.5981 and its

95% bootstrap con�dence interval is (0.4484, 0.7056). The estimated correlation parameter

is 0.6387 and its 95% bootstrap con�dence interval is (0.4241, 0.7960). Both parameters,

φ2 and ρ, are signi�cant since the bootstrap p-values of the respective hypothesis tests

H0 : φ2 = 0 and H0 : ρ = 0 are 0. Therefore, taken into account such results, the

conclusion is that Model T22 is appropriated for modelling the Galician forest �res since

all its components are signi�cant.

As the proposed plug-in estimator is easy to interpret and its performance is similar to that

of the EBP when T is high, this application to real data illustrates its behaviour. Figure

4.6.5 plots the Pearson residuals of the model with only �xed e�ects, Model T0, on the left

and of the plug-in estimator, µ̂Pdt, under Model T22 on the right. The Pearson residuals of

the model with random time e�ects show a clear improvement since its residuals are closer

to 0.

Figure 4.6.6 maps the obtained plug-in estimates by areas using the simpli�ed area-level

Poisson mixed model with AR(1)-correlated time e�ects, Model T22. As time instants,

the application takes the months between August and October for being the month more

dangerous for �res. Figure 4.6.6 suggests that forest �res tend to be concentrated in coastal

areas and in the south of the region. In addition, there is a sharp decrease in the number

of �res estimated in 2008.
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Figure 4.6.5: Pearson residuals of Model T0 with only �xed e�ects (left) and Model T22

(right).
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Figure 4.6.6: Estimated �res from August to October in 2007-2008.

Figure 4.6.7 plots the evolution of the MSEs, de�ned in (4.4.1) and adapted to the plug-in
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4 The area-level Poisson mixed model with time e�ects

estimator, over time for Model T0 and Model T22. The MSE is represented for the three

areas with highest number of �res: Viana 1 (total �res 311), Terra de Tribes (total �res

329) and Viana 2 (total �res 347). We take B = 500 bootstrap resamples. The mean of the

MSEs for the three areas is 8.035 in Model T0 and 2.413 in Model T22. A clear increase in

accuracy is achieved when one uses the Model T22 since its MSE is much lower.
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Figure 4.6.7: Bootstrap MSE estimates for the three areas with highest number of �res.

4.7 Concluding remarks

This chapter introduces four area-level Poisson mixed models with time random e�ects.

Model T1 and Model T12 use independent time e�ects and Model T2 and Model T22

assume that they are AR(1)-correlated. The MM is employed for estimating the model

parameters. Model-based empirical best and plug-in predictors of domain-time counts or

proportions are proposed and their MSEs are estimated by a parametric bootstrap.

More complex correlation structures might also be considered for dealing with survey sam-

ples in small area estimation problems. However, most o�cial surveys have long time

periods between repetitions and sometimes their methodologies change after some few peri-

ods. In particular, the SLCS is an annual survey. This is why the number of time periods T

is usually small in survey sampling problems (in our case, T = 4) and therefore there is no

place for complex correlation structures. Based on the papers of Esteban et al. (2012a,b),

Marhuenda et al. (2013, 2014) and Morales et al. (2015), deriving poverty proportion esti-

mators for the SLCS based on area-level temporal linear mixed models, we select the AR(1)

correlation structure, instead of MA(1), as an alternative to the hypothesis of independence

of the time random e�ects.
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Concluding remarks 4.7

The MM algorithm for �tting GLMMs is easy to implement. It was proposed by Jiang

(1998) and later applied and studied by Jiang and Lahiri (2001) and Jiang (2003). These

authors showed that the MM estimators of GLMM parameters are competitive with respect

to the estimators maximizing the Laplace approximation of the log-likelihood. Simulation

1 empirically investigates the behaviour of the MM estimators and shows that their biases

and mean squared errors decreases as D or T increases. Based on the simulation results and

the theoretical properties and simulations given by the above cited authors, the conclusion

is that the MM algorithm is a good alternative for �tting the introduced area-level temporal

Poisson mixed models.

Under the considered models, the simulation experiments suggest that the EBP is a good

alternative since its bias and mean squared error are generally lower than the corresponding

ones of the plug-in predictor. The simulation experiment shows that Model T2 needs a

su�ciently large number of time instants (T ≥ 5) to capture the correlation structure.

Given that the MM only provides estimates for the �xed e�ects and variance parameters,

the calculation of the plug-in predictor requires EBP predictors of the random e�ects. This

fact increases the computational burden of the plug-in predictor regarding the EBP.

In the application to 2010-2013 SLCS data, the EBP approach is used for estimating poverty

proportions of Galician counties by sex (see Boubeta et al. (2017b) for more details). The

application compares the behaviour of the EBP under the area-level Poisson mixed models

with independent time e�ects and the synthetic estimator under Model T0. The model

with independent time e�ects has a better performance. The application �nally selects

the simpler Model T12 with only independent time-domain random e�ects. From the

data analysis, the conclusion is that the poverty proportions increased in Galicia during

the period 2010 − 2013. Highest levels of poverty are found in the west and south of

the autonomous community. Additionally, the poverty proportion is in general higher

for women. The average across domains of the bootstrap RRMSEs of the given poverty

estimates is around 14% in both sexes during 2013.

Regarding the application to forest �res in Galicia, the developed methodology is applied for

estimating the number of forest �res by area and month during 2007−2008 (Boubeta et al.,

2017a). The performance of the plug-in estimators in the area-level Poisson mixed models

with time e�ects is studied and compared against the corresponding estimator obtained

from the �xed e�ects model. A clear improvement is achieved when one uses a mixed

model. A temporal correlation structure is uncovered by the auxiliary data and therefore

Model T2 or Model T22 are more appropriate in this context. As the domain e�ects are
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4 The area-level Poisson mixed model with time e�ects

not signi�cant, it is recommended to use the simpli�ed version, i.e. the Model T22. From

the data analysis, the conclusion is that the forest �res tend to be concentrated in coastal

areas and in the south of the region. As accuracy measure of the proposed estimator, a

bootstrap MSE based on a parametric bootstrap is considered. A clear improvement is

observed when using the proposed model against the traditional Poisson model. So this

methodology can be an important tool to make a preventive policy in the context of forest

�res.
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Chapter 5

The area-level Poisson mixed model

with SAR(1) and time e�ects
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5.1 Introduction

Area-level Poisson mixed models are good tools for modelling count data at area level.

However, the basic area-level Poisson mixed model (Boubeta et al., 2016b) has several lim-

itations. It does not take into account temporal components or complex spatial structures.

This manuscript introduces several extensions of the basic area-level Poisson mixed model

for better �tting the needs of real data, given rise to increasingly complex models. Chapter

3 generalizes the basic Poisson mixed model by incorporating a SAR(1) spatial structure.
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5 The area-level Poisson mixed model with SAR(1) and time e�ects

Chapter 4 gives several extensions to the temporal framework. This chapter incorporates

both extensions in a single model and introduces an area-level spatio-temporal Poisson

mixed model. The new model can explain both sources of variability and correlation struc-

tures.

A spatio-temporal extension of the Fay-Herriot model was proposed by Singh et al. (2005)

using the Kalman �ltering approach. Under this model, they obtain a second order approx-

imation to the MSE of the EBLUP. Later, Pereira and Coelho (2012) and Marhuenda et al.

(2013) derive empirical best linear unbiased predictors under the above model. Speci�cally,

they consider a SAR(1) spatial correlation structure and an AR(1) process for the temporal

component. They also propose bootstrap procedures for estimating the mean squared error

and they analyse the behaviour of the proposed model against other simpler models through

several simulation experiments. Esteban et al. (2016) present a new spatio-temporal model

by assuming MA(1)-correlated random e�ects.

In the Bayesian framework, Choi et al. (2011) examine several spatio-temporal mixed mod-

els in small area health data applications and develop new accuracy measures to assess the

recovery of true relative risks. They apply the spatio temporal models to study chronic

obstructive pulmonary disease at county level in Georgia.

All the cited authors apply spatio-temporal LMMs to the small area estimation setup.

However, this manuscript deals with GLMMs instead of with LMM. Chapter 5 introduces

and study the applicability of EBPs, based on a spatio-temporal area-level Poisson mixed

model, to the estimation of domain counts and proportions.

Chapter 5 is organized as follows. Section 5.2 introduces the area-level Poisson mixed model

with SAR(1) and independent time e�ects. The MM �tting algorithm is obtained in Section

5.3. Three bootstrap algorithms are presented in Section 5.4 to test the signi�cance of the

variance and autocorrelation parameters. Section 5.5 gives the empirical best predictor

of the Poisson parameter and of the domain and domain-time random e�ects. Section

5.6 proposes a parametric bootstrap procedure as accuracy measure of the EBP. Section

5.7 investigates the behaviour of the proposed �tting algorithm and empirically compares

the performance of the plug-in and EBP by means of simulation experiments. Section 5.8

illustrates the developed methodology in a environmental �eld. Finally, Section 5.9 collects

the main conclusions of Chapter 5.
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The model 5.2

5.2 The model

This section extends the area-level Poisson mixed model (Model 1), introduced in Chapter 2

(Boubeta et al., 2016b), to the spatio-temporal context. In particular, the section introduces

a model with SAR(1)-correlated domain random e�ects and with independent domain-time

random e�ects (Model ST1). It can also be seen as the generalization of Model S1 (see

Chapter 3) and Model T1 (see Chapter 4) in a single model. The total number of domains

and time instants are denoted by D and T respectively, and the corresponding indices

by d, d = 1, . . . , D, and t, t = 1, . . . , T . Model ST1 considers two independent sets of

random e�ects v1 and v2, such that v1 = {v1,d : d = 1, . . . , D} are the domain e�ects and

v2 = {v2,dt : d = 1, . . . , D, t = 1, . . . , T} are the domain-time e�ects.

The model assumes that the vector of domain random e�ects v1 is spatially correlated,

following a SAR(1) process with unknown autoregression parameter ρ and known proximity

matrix W , i.e.

v1 = ρWv1 + u1, (5.2.1)

where u1 ∼ ND(0, ID), 0 is the D × 1 zero vector and ID denotes the D × D identity

matrix. It also assumes that the matrix (ID − ρW ) is non-singular. Then, v1 can be

expressed as

v1 = (ID − ρW )−1u1. (5.2.2)

The proximity matrix W is obtained as it was explained in Section 3.2. Then, the au-

toregression parameter ρ is a correlation, ρ ∈ (−1, 1), and is called spatial autocorrelation

parameter. Equation (5.2.2) implies that v1 = col
1≤d≤D

(v1,d) ∼ ND(0,Γ(ρ)), where Γ(ρ) is

given in (3.2.3). Therefore, the density function of the domain random e�ects v1 is

fv(v1) = (2π)−D/2|Γ(ρ)|−1/2 exp

{
−1

2
v′1Γ

−1(ρ)v1

}
.

Further, it holds that v1,d ∼ N
(
0, γdd(ρ)

)
and v1,d2 |v1,d1 ∼ N

(
µd2|d1 , σ

2
d2|d1

)
, where

µd2|d1 =
γd1d2(ρ)

γd1d1(ρ)
vd1 , σ2

d2|d1 = γd2d2(ρ)−
γ2
d1d2

(ρ)

γd1d1(ρ)
.

The interaction domain-time random e�ects, v2, are assumed to be independent over time,

i.e.

v2d = col
1≤t≤T

(v2,dt) ∼ N(0, IT ), v2 = col
1≤d≤D

(v2d) ∼ N(0, IDT ).

Then, the join density function of the random e�ects v1 and v2 is
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5 The area-level Poisson mixed model with SAR(1) and time e�ects

fv(v1,v2) = (2π)−D(T+1)/2|Γ(ρ)|−1/2 exp

{
−1

2
v′1Γ

−1(ρ)v1 −
1

2
v′2v2

}
.

The distribution of the target variable ydt, conditionally on the random e�ects v1,d and

v2,dt, is

ydt|v1,d, v2,dt ∼ Poisson(µdt), d = 1, . . . , D, t = 1, . . . , T,

where µdt denotes the mean of the Poisson distribution. Given the relationship between

Poisson and binomial distributions, the Poisson parameter is expressed as νdtpdt, where νdt

and pdt are size and probability parameters respectively. The natural parameter, log(µdt),

is expressed in terms of a set of p auxiliary variables xdt by a regression model, i.e.

Model ST1: logµdt = log νdt + log pdt

= log νdt + xdtβ + φ1v1,d + φ2v2,dt, d = 1, . . . , D, t = 1, . . . , T,

where µdt = E[ydt|v1,d, v2,dt], xdt = col′
1≤k≤p

(xdtk) is the row vector of auxiliary variables,

β = col
1≤k≤p

(βk) is the vector of regression coe�cients and φ1 and φ2 are the variance

parameters. De�ning u1,d = φ1v1,d and u2,dt = φ2v2,dt, then φ1 and φ2 are the variances of

u1,d and u2,dt respectively. These variances can be interpreted as the variability between

domains and between time periods within each domain respectively.

Further, Model ST1 assumes that the ydt's are independent conditionally on the random

e�ects v1 and v2. It holds that

P(ydt|v) = P(ydt|vdt) =
1

ydt!
exp{−νdtpdt}νydtdt p

ydt
dt ,

where pdt = exp{xdtβ+ φ1v1,d + φ2v2,dt} represents the target parameter. The probability

function of the response variable y = {ydt, d = 1, . . . , D, t = 1, . . . , T} conditionally on the

random e�ects v = (v1,v2) is

P(y|v) =

D∏
d=1

T∏
t=1

P(ydt|v).

As a consequence, the probability function of the response variable y is

P(y) =

∫
RD(T+1)

P(y|v)fv(v1,v2) dv1dv2 =

∫
RD(T+1)

ψ(y,v) dv,
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The MM algorithm 5.3

where

ψ(y,v) = fv(v1,v2)
D∏
d=1

T∏
t=1

exp{−νdtpdt}νydtdt p
ydt
dt

ydt!

= c(y)|Γ(ρ)|−1/2 exp

{
−1

2
v′1Γ

−1(ρ)v1 −
1

2
v′2v2

}
· exp

{
−

D∑
d=1

T∑
t=1

νdt exp{xdtβ + φ1v1,d + φ2v2,dt}

}

· exp

{
p∑

k=1

( D∑
d=1

T∑
t=1

ydtxdtk
)
βk + φ1

D∑
d=1

yd.v1,d + φ2

D∑
d=1

T∑
t=1

ydtv2,dt

}
,

c(y) = (2π)−
D(T+1)

2
∏D
d=1

∏T
t=1

(
νydtdt /ydt!

)
and yd. =

∑T
t=1 ydt.

5.3 The MM algorithm

This section derives the MM algorithm, based on the method of simulated moments pro-

posed by Jiang (1998), to �t the area-level Poisson mixed model with SAR(1) domain and

independent time e�ects. A set of natural equations for applying the MM algorithm is

0 = fk(θ) =
1

DT

D∑
d=1

T∑
t=1

Eθ[ydt]xdtk −
1

DT

D∑
d=1

T∑
t=1

ydtxdtk, k = 1, . . . , p,

0 = fp+1(θ) =
1

D

D∑
d=1

Eθ[y2
d.]−

1

D

D∑
d=1

y2
d.,

0 = fp+2(θ) =
1

DT

D∑
d=1

T∑
t=1

Eθ[y2
dt]−

1

DT

D∑
d=1

T∑
t=1

y2
dt,

0 = fp+3(θ) =
1

D(D − 1)

D∑
d1 6=d2

Eθ[yd1.yd2.]−
1

D(D − 1)

D∑
d1 6=d2

yd1.yd2.,

(5.3.1)

where the vector of model parameters is θ = (β, φ1, φ2, ρ). The MM estimator of θ is

obtained by solving the system (5.3.1) of nonlinear equations. The updating formula of the

Newton-Raphson algorithm is (2.3.3), where

θ = col
1≤k≤p+3

(θk), f(θ) = col
1≤k≤p+3

(fk(θ)), H(θ) =

(
∂fk(θ)

∂θ`

)
k,`=1,...,p+3

. (5.3.2)

In what follows, the expectations appearing in f(θ) and its partial derivatives under Model

ST1 are calculated. For ease of exposition, the elements of Γ and its derivatives are denoted
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5 The area-level Poisson mixed model with SAR(1) and time e�ects

by γd1d2 = γd1d2(ρ) and γ̇d1d2 = γ̇d1d2(ρ), respectively. The calculations start with the �rst

p MM equations. The expectation of ydt is

Eθ[ydt] = Ev
[
Eθ[ydt|v]

]
= Ev[νdtpdt] = Ev [νdt exp {xdtβ + φ1v1,d + φ2v2,dt}]

=

∫ ∞
−∞

∫ ∞
−∞

νdt exp {xdtβ + φ1v1,d + φ2v2,dt} f(v1,d)f(v2,dt) dv1,ddv2,dt

=

∫ ∞
−∞

νdt exp
{
xdtβ +

1

2
φ2

2 + φ1v1,d

}
fv(v1,d) dv1,d

= νdt exp
{
xdtβ +

1

2

(
φ2

1γdd + φ2
2

)}
.

Therefore, the �rst p MM equations are

fk(θ) =
1

DT

D∑
d=1

T∑
t=1

νdt exp
{
xdtβ +

1

2

(
φ2

1γdd + φ2
2

)}
xdtk

− 1

DT

D∑
d=1

T∑
t=1

ydtxdtk, k = 1, . . . , p.

The derivatives of Eθ[ydt] are

∂Eθ[ydt]

∂βk
= νdt exp

{
xdtβ +

1

2
(φ2

1γdd + φ2
2)
}
xdtk,

∂Eθ[ydt]

∂φ1
= νdt exp

{
xdtβ +

1

2
(φ2

1γdd + φ2
2)
}
φ1γdd,

∂Eθ[ydt]

∂φ2
= νdt exp

{
xdtβ +

1

2
(φ2

1γdd + φ2
2)
}
φ2,

∂Eθ[ydt]

∂ρ
=

1

2
νdt exp

{
xdtβ +

1

2
(φ2

1γdd + φ2
2)
}
φ2

1γ̇dd.

The expectation of y2
dt is Eθ[y2

dt] = Ev
[
Eθ[y2

dt|v]
]
, where

Eθ[y2
dt|v] = varθ[ydt|v] + E2

θ[ydt|v] = νdtpdt + ν2
dtp

2
dt.

Therefore

Eθ[y2
dt] = Ev

[
Eθ[y2

dt|v]
]

=

∫ ∞
−∞

∫ ∞
−∞

νdtpdtf(v1,d)f(v2,dt) dv1,ddv2,dt

+

∫ ∞
−∞

∫ ∞
−∞

ν2
dtp

2
dtf(v1,d)f(v2,dt) dv1,ddv2,dt = S1 + S2,
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where

S2 =

∫ ∞
−∞

∫ ∞
−∞

ν2
dtp

2
dtf(v2,dt)f(v1,d) dv2,dtdv1,d

= ν2
dt

∫ ∞
−∞

[∫ ∞
−∞

exp
{

2xdtβ + 2φ1v1,d + 2φ2v2,dt

}
f(v2,dt) dv2,dt

]
f(v1,d) dv1,d

= ν2
dt

∫ ∞
−∞

exp
{

2(xdtβ + φ2
2) + 2φ1v1,d

}
f(v1,d) dv1,d

= ν2
dt exp

{
2(xdtβ + φ2

1γdd + φ2
2)
}
.

Then, the expectation Eθ[y2
dt] is

Eθ[y2
dt] = νdt exp

{
xdtβ +

1

2
(φ2

1γdd + φ2
2)
}

+ ν2
dt exp

{
2(xdtβ + φ2

1γdd + φ2
2)
}
,

and as a consequence, the (p+ 2)-th MM equation is

fp+2(θ) =
1

DT

D∑
d=1

T∑
t=1

{
νdt exp

{
xdtβ +

1

2
(φ2

1γdd + φ2
2)

}
+ ν2

dt exp
{

2(xdtβ + φ2
1γdd + φ2

2)
}}

− 1

DT

D∑
d=1

T∑
t=1

y2
dt.

The derivatives of Eθ[y2
dt] are

∂Eθ[y2
dt]

∂βk
= νdt exp

{
xdtβ +

1

2
(φ2

1γdd + φ2
2)
}
xdtk + 2ν2

dt exp
{

2(xdtβ + φ2
1γdd + φ2

2)
}
xdtk,

∂Eθ[y2
d]

∂φ1
= νdt exp

{
xdtβ +

1

2
(φ2

1γdd + φ2
2)
}
φ1γdd + 4ν2

dt exp
{

2(xdtβ + φ2
1γdd + φ2

2)
}
φ1γdd,

∂Eθ[y2
d]

∂φ2
= νdt exp

{
xdtβ +

1

2
(φ2

1γdd + φ2
2)
}
φ2 + 4ν2

dt exp
{

2(xdtβ + φ2
1γdd + φ2

2)
}
φ2,

∂Eθ[y2
d]

∂ρ
=

1

2
νdt exp

{
xdtβ +

1

2
(φ2

1γdd + φ2
2)
}
φ2

1γ̇dd + 2ν2
dt exp

{
2(xdtβ + φ2

1γdd + φ2
2)
}
φ2

1γ̇dd.

The expectation of y2
d. is Eθ[y2

d.] = Ev
[
Eθ[y2

d.|v]
]
, where

y2
d. =

T∑
t=1

y2
dt +

∑
t1 6=t2

ydt1ydt2 , Eθ[y2
dt|v] = varθ[ydt|v] + E2

θ[ydt|v] = νdtpdt + ν2
dtp

2
dt.
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The expectation of y2
d., conditionally on the random e�ects v, is

Eθ[y2
d.|v] =

T∑
t=1

Eθ[y2
dt|v] +

∑
t1 6=t2

Eθ[ydt1 |v]Eθ[ydt2 |v]

=
T∑
t=1

{
νdtpdt + ν2

dtp
2
dt

}
+
∑
t1 6=t2

νdt1pdt1νdt2pdt2 .

Therefore

Eθ[y2
d.] =

T∑
t=1

νdtEv[pdt] +
T∑
t=1

ν2
dtEv[p2

dt] +
∑
t1 6=t2

νdt1νdt2Ev[pdt1pdt2 ],

where the expectation of pdt1pdt2 is

Ev[pdt1pdt2 ] =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

exp{(xdt1 + xdt2)β + 2φ1v1,d + φ2v2,dt1 + φ2v2,dt2}

· f(v2,dt1)f(v2,dt2)f(v1,d) dv2,dt1dv2,dt2dv1,d

=

∫ ∞
−∞

∫ ∞
−∞

exp{(xdt1 + xdt2)β +
1

2
φ2

2 + φ2v2,dt1 + 2φ1v1,d}

· f(v2,dt1)f(v1,d) dv2,dt1dv1,d

=

∫ ∞
−∞

exp{(xdt1 + xdt2)β +
1

2
φ2

2 +
1

2
φ2

2 + 2φ1v1,d}f(v1,d) dv1,d

= exp{(xdt1 + xdt2)β + φ2
2 + 2φ2

1γdd}.

Then, the expectation of y2
d. is

Eθ[y2
d.] =

T∑
t=1

νdt exp
{
xdtβ +

1

2
(φ2

1γdd + φ2
2)
}

+
T∑
t=1

ν2
dt exp

{
2xdtβ + 2(φ2

1γdd + φ2
2)
}

+
∑
t1 6=t2

νdt1νdt2 exp{(xdt1 + xdt2)β + 2φ2
1γdd + φ2

2}

±
T∑
t=1

ν2
dt exp

{
2xdtβ + 2φ2

1γdd + φ2
2

}
=

T∑
t=1

νdt exp
{
xdtβ +

1

2
(φ2

1γdd + φ2
2)
}

+

T∑
t=1

ν2
dt exp

{
2xdtβ + 2(φ2

1γdd + φ2
2)
}

−
T∑
t=1

ν2
dt exp

{
2xdtβ + 2φ2

1γdd + φ2
2

}
+

(
T∑
t=1

νdt exp
{
xdtβ + φ2

1γdd +
1

2
φ2

2

})2

,
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and as a consequence, the (p+ 1)-th MM equation is

fp+1(θ) =
1

D

D∑
d=1


T∑
t=1

νdt exp
{
xdtβ +

1

2
(φ2

1γdd + φ2
2)
}

+
(
eφ

2
2 − 1

) T∑
t=1

ν2
dt exp

{
2xdtβ + 2φ2

1γdd + φ2
2)
}

+

(
T∑
t=1

νdt exp
{
xdtβ + φ2

1γdd +
1

2
φ2

2

})2
− 1

D

D∑
d=1

y2
d..

The derivatives of Eθ[y2
d.] are

∂Eθ[y2
d.]

∂βk
=

T∑
t=1

νdtPdtxdtk + 2
T∑
t=1

ν2
dtQdtxdtk − 2

T∑
t=1

ν2
dtRdtxdtk

+ 2

(
T∑
t=1

νdtSdt

)
T∑
t=1

νdtSdtxdtk,

∂Eθ[y2
d.]

∂φ1
=

T∑
t=1

νdtPdtφ1γdd + 4
T∑
t=1

ν2
dtQdtφ1γdd − 4

T∑
t=1

ν2
dtRdtφ1γdd

+ 4

(
T∑
t=1

νdtSdt

)
T∑
t=1

νdtSdtφ1γdd,

∂Eθ[y2
d.]

∂φ2
=

T∑
t=1

νdtPdtφ2 + 4
T∑
t=1

ν2
dtQdtφ2 − 2

T∑
t=1

ν2
dtRdtφ2

+ 2

(
T∑
t=1

νdtSdt

)
T∑
t=1

νdtSdtφ2,

∂Eθ[y2
d.]

∂ρ
=

T∑
t=1

1

2
νdtPdtφ

2
1γ̇dd + 2

T∑
t=1

ν2
dtQdtφ

2
1γ̇dd − 2

T∑
t=1

ν2
dtRdtφ

2
1γ̇dd

+ 2

(
T∑
t=1

νdtSdt

)
T∑
t=1

νdtSdtφ
2
1γ̇dd,

where

Pdt = exp
{
xdtβ +

1

2
(φ2

1γdd + φ2
2)
}
,

Qdt = exp
{

2xdtβ + 2(φ2
1γdd + φ2

2)
}
,

Rdt = exp
{

2xdtβ + 2φ2
1γdd + φ2

2

}
,

Sdt = exp
{
xdtβ + φ2

1γdd +
1

2
φ2

2

}
.
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The expectation of yd1.yd2. is

Eθ[yd1.yd2.] = Ev
[
Eθ[yd1.yd2.|v]

]
= Ev

[
Eθ[yd1.|v1,d1 ,v2,d1 ]Eθ[yd2.|v1,d2 ,v2,d2 ]

]
=

T∑
t1=1

T∑
t2=1

Ev
[
Eθ[yd1t1 |v1,d1 , v2,d1t1 ]Eθ[yd2t2 |v1,d2 , v2,d2t2 ]

]

=
T∑

t1=1

T∑
t2=1

νd1t1νd2t2Ev
[
pd1t1pd2t2

]
.

By de�ning ϕt1t2d1d2
(θ) = Ev

[
pd1t1pd2t2

]
, it holds that

ϕt1t2d1d2
(θ) =

∫
R4

exp
{

(xd1t1 + xd2t2)β + φ1(v1,d1 + v1,d2) + φ2(v2,d1t1 + v2,d2t2)
}

· f(v2,d2t2)dv2,d2t2 f(v2,d1t1)dv2,d1t1f(v1,d2 |v1,d1)dv1,d2 f(v1,d1) dv1,d1

=

∫
R3

exp
{

(xd1t1 + xd2t2)β + φ1(v1,d1 + v1,d2) + φ2v2,d1t1 +
1

2
φ2

2

}
· f(v2,d1t1)dv2,d1t1 f(v1,d2 |v1,d1)dv1,d2 f(v1,d1) dv1,d1

=

∫
R2

exp
{

(xd1t1 + xd2t2)β + φ1(v1,d1 + v1,d2) +
1

2
φ2

2 +
1

2
φ2

2

}
· f(v1,d2 |v1,d1)dv1,d2 f(v1,d1) dv1,d1

=

∫
R

exp
{

(xd1t1 + xd2t2)β + φ1v1,d1 +
γd1d2
γd1d1

v1,d1φ1

+
1

2

(
γd2d2 −

γ2
d1d2

γd1d1

)
φ2

1 + φ2
2

}
f(v1,d1) dv1,d1

= exp
{

(xd1t1 + xd2t2)β +
1

2

(
1 +

γd1d2
γd1d1

)2
γd1d1φ

2
1 +

1

2

(
γd2d2 −

γ2
d1d2

γd1d1

)
φ2

1 + φ2
2

}
= exp

{
(xd1t1 + xd2t2)β +

1

2
φ2

1(γd1d1 + 2γd1d2 + γd2d2) + φ2
2

}
.

Therefore, the (p+ 3)-th MM equation is

fp+3(θ) =
1

D(D − 1)

D∑
d1 6=d2

T∑
t1=1

T∑
t2=1

νd1t1νd2t2 exp
{

(xd1t1 + xd2t2)β

+
1

2
φ2

1(γd1d1 + 2γd1d2 + γd2d2) + φ2
2

}
− 1

D(D − 1)

D∑
d1 6=d2

T∑
t1=1

T∑
t2=1

νd1t1yd1.yd2.
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The derivatives of ϕt1t2d1d2
(θ) are

∂ϕt1t2d1d2
(θ)

∂βk
= ϕt1t2d1d2

(θ)(xd1t1k + xd2t2k),

∂ϕt1t2d1d2
(θ)

∂φ1
= ϕt1t2d1d2

(θ)φ1(γd1d1 + γd2d2 + 2γd1d2),

∂ϕt1t2d1d2
(θ)

∂φ2
= 2ϕt1t2d1d2

(θ)φ2,

∂ϕt1t2d1d2
(θ)

∂ρ
=

1

2
ϕd1,d2(θ)φ2

1(γ̇d1d1 + γ̇d2d2 + 2γ̇d1d2).

The elements of the Jacobian matrix are

Hkr =
∂fk(θ)

∂θr
=

1

DT

D∑
d=1

T∑
t=1

∂Eθ[ydt]

∂θr
xdtk, k = 1, . . . , p, r = 1, . . . , p+ 3,

Hp+1r =
∂fp+1(θ)

∂θr
=

1

D

D∑
d=1

∂Eθ[y2
d.]

∂θr
, r = 1, . . . , p+ 3,

Hp+2r =
∂fp+2(θ)

∂θr
=

1

DT

D∑
d=1

T∑
t=1

∂Eθ[y2
dt]

∂θr
, r = 1, . . . , p+ 3,

Hp+3r =
∂fp+3(θ)

∂θr
=

1

D(D − 1)

D∑
d1 6=d2

T∑
t1=1

T∑
t2=1

νd1t1νd2t2
∂ϕt1t2d1d2

(θ)

∂θr
, r = 1, . . . , p+ 3.

The MM algorithm under Model ST1 keeps the steps of Algorithm 1 (see Section 2.3.1),

replacing θ, H and f for those given in (5.3.2).

As algorithm seeds for β, φ1 and φ2, the algorithm may take the MM estimator under the

model with no spatial correlation (ρ = 0), i.e. under Model T1. For ρ, it may the Moran's

I measure of spatial autocorrelation

I =
D∑D

d1=1

∑D
d2=1wd1d2

∑D
d1=1

∑D
d2=1wd1d2(ṽ1,d1 − ṽ1)(ṽ1,d2 − ṽ1)∑D

d=1(ṽ1,d − ṽ)2
,

where ṽ1,d, d = 1, . . . , D, are the predicted random e�ects under Model T1, ṽ = 1
D

∑D
d=1 ṽ1,d

and the wd1d2 's are the elements of the proximity matrix W (see Section 3.2 for more

details).

The asymptotic variance of the MM estimator under Model ST1 can be approximated by

a similar bootstrap algorithm to that described in Section 2.3.1.
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5 The area-level Poisson mixed model with SAR(1) and time e�ects

5.4 Hypothesis tests for the model parameters

This section presents three bootstrap algorithms for testing the signi�cance of the variance

parameters, φ1 and φ2, and of the autocorrelation parameter ρ. Algorithm 8 gives a boot-

strap procedure to test the hypothesis H0 : φ1 = 0. In this case, we study Model T12 (see

Section 4.2.1) against Model ST1.

Algorithm 8 A bootstrap test for H0 : φ1 = 0

1: Fit the Model ST1 to data and calculate β̂, φ̂1, φ̂2 and ρ̂.

2: Fit the Model T12 to data and calculate β̂
0
and φ̂0

2.

3: For b = 1, . . . , B, do

i) Generate a bootstrap resample under H0 : φ1 = 0, i.e.

v
∗(b)
2,dt ∼ N(0, 1), p

∗(b)
dt = exp{xdtβ̂

0
+ φ̂0

2v
∗(b)
2,dt},

y
∗(b)
dt ∼ Poiss(νdtp

∗(b)
dt ), d = 1, . . . , D, t = 1, . . . , T.

ii) Fit the Model ST1 to the bootstrap data (y
∗(b)
dt ,xdt), d = 1, . . . , D, t = 1, . . . , T ,

and calculate β̂
∗(b)

, φ̂∗(b)1 , φ̂∗(b)2 and ρ̂∗(b).

4: Calculate the p-value

p =
#
{
φ̂
∗(b)
1 > φ̂1

}
B

.

If the null hypothesis H0 : φ1 = 0 is rejected, the signi�cance of the autocorrelation

parameter can be tested. Algorithm 9 presents a bootstrap procedure for testingH0 : ρ = 0.

Algorithm 9 A bootstrap test for H0 : ρ = 0

1: Fit the Model ST1 to data and calculate β̂, φ̂1, φ̂2 and ρ̂.

2: Fit the Model T1 to data and calculate β̂
0
, φ̂0

1 and φ̂0
2.

3: For b = 1, . . . , B, do

i) Generate a bootstrap resample under H0 : ρ = 0, i.e.

v
∗(b)
1,d ∼ N(0, 1), v

∗(b)
2,dt ∼ N(0, 1), p

∗(b)
dt = exp{xdtβ̂

0
+ φ̂0

1v
∗(b)
1,d + φ̂0

2v
∗(b)
2,dt},

y
∗(b)
dt ∼ Poiss(νdtp

∗(b)
dt ), d = 1, . . . , D, t = 1, . . . , T.

ii) Fit the Model ST1 to the bootstrap data (y
∗(b)
dt ,xdt), d = 1, . . . , D, t = 1, . . . , T ,

and calculate β̂
∗(b)

, φ̂∗(b)1 , φ̂∗(b)2 and ρ̂∗(b).

4: Calculate the p-value

p =
#
{∣∣ρ̂∗(b)∣∣ > |ρ̂|}

B
.
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Finally, Algorithm 10 gives a bootstrap procedure for testing the null hypothesis H0 : φ2 =

0. If it is accepted, the working model would be the Model ST11 de�ned below.

Algorithm 10 A bootstrap test for H0 : φ2 = 0

1: Fit the Model ST1 to data and calculate β̂, φ̂1, φ̂2 and ρ̂.

2: Fit the model

Model ST11: logµdt = log νdt + xdtβ + φ1v1,d, d = 1, . . . , D, t = 1, . . . , T,

to data and calculate β̂
0
, φ̂0

1 and ρ̂0.

3: For b = 1, . . . , B, do

i) Generate a bootstrap resample under H0 : φ2 = 0, i.e.

v
∗(b)
1 ∼ ND(0,Γ(ρ̂0)), p

∗(b)
dt = exp{xdtβ̂

0
+ φ̂0

1v
∗(b)
1,d },

y
∗(b)
dt ∼ Poiss(νdtp

∗(b)
dt ), d = 1, . . . , D, t = 1, . . . , T.

ii) Fit the Model ST1 to the bootstrap data (y
∗(b)
dt ,xdt), d = 1, . . . , D, t = 1, . . . , T ,

and calculate β̂
∗(b)

, φ̂∗(b)1 , φ̂∗(b)2 and ρ̂∗(b).

4: Calculate the p-value

p =
#
{
φ̂
∗(b)
2 > φ̂2

}
B

.

5.5 The predictors

This section derive the EBP and proposes a plug-in predictor of pdt under Model ST1. The

EBP of pdt is obtained from the corresponding BP replacing the vector of model parameters

θ by an estimator θ̂. As the MM estimators are consistent, they are employed for calculating

the EBPs. To avoid over�ow numerical problems in the calculation of the exact EBP, this

section proposes two alternative approximations.

Let yd be the response vector within the domain d, i.e. yd = col
1≤t≤T

(ydt). The conditional

distribution of the response variable y, given the random e�ects v1 and v2, is

P(y|v1,v2) =

D∏
d=1

P(yd|v1,d,v2,d), P(yd|v1,d,v2,d) =

T∏
t=1

P(ydt|v1,d, v2,dt),
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where

P(ydt|v1,d, v2,dt) =
1

ydt!
exp{−νdtpdt}νydtdt p

ydt
dt

= cdt exp {ydt(xdtβ + φ1v1,d + φ2v2,dt)− νdt exp{xdtβ + φ1v1,d + φ2v2,dt}} .

5.5.1 The empirical best predictor

This section derives the EBP of the probability and mean parameters, pdt and µdt, d =

1, . . . , D, t = 1, . . . , T . They are obtained from the corresponding BPs, replacing the

theoretical vector of model parameters θ (unknown in practice), by an estimator θ̂.

The BP of pdt is the unbiased predictor minimizing the MSE. It is obtained as the condi-

tional expectation p̂dt(θ) = Eθ[pdt|y]. It holds that

Eθ[pdt|y] =

∫
RD(T+1) pdtP (y|v1,v2) f(v1)f(v2)∫
RD(T+1) P (y|v1,v2) f(v1)f(v2)

=
Ndt

B
, (5.5.1)

where Ndt = Ndt(y,θ) and B = B(y,θ) are given by

Ndt =

∫
RD(T+1)

exp{xdtβ + φ1v1,d + φ2v2,dt}

(
D∏
`=1

T∏
τ=1

P(y`τ |v1,`, v2,`τ )

)
f(v1)f(v2) dv1dv2

=

∫
RD(T+1)

D∏
`=1

T∏
τ=1

exp
{

(y`τ + δd`δtτ )(x`τβ + φ1v1,` + φ2v2,dτ )

− ν`τ exp{x`τβ + φ1v1,` + φ2v2,`τ}
}
f(v1)f(v2) dv1dv2,

B =

∫
RD(T+1)

(
D∏
`=1

T∏
τ=1

P(y`τ |v1,`, v2,`τ )

)
f(v1)f(v2) dv1dv2

=

∫
RD(T+1)

D∏
`=1

T∏
τ=1

exp
{
y`τ (x`τβ + φ1v1,` + φ2v2,dτ )

− ν`τ exp{x`τβ + φ1v1,` + φ2v2,`τ}
}
f(v1)f(v2) dv1dv2, (5.5.2)

and δd` and δtτ denote the Kronecker delta, i.e. δij = 1 if i = j and δij = 0 otherwise. In

this chapter, as the denominator of the BP does not depend on d and t, the notation is

changed and it is not the same as in the previous chapters (now it is denoted by B). This

is done to avoid confusion with the total number of domains D.

Remark 5.1. The componentNdt(y,θ) can be expressed in terms of B(y,θ) asNdt(y,θ) =

B(y + edt,θ), where edt = {δd`δtτ} , d = 1, . . . , D, t = 1, . . . , T .
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The EBP of pdt is p̂dt = p̂dt(θ̂). The EBP calculation involves complex integrals in a high-

dimensional space. The integrals are approximated by using an antithetic Monte Carlo

algorithm. The steps are:

1. Generate v(s1)
1 ∼ ND

(
0,Γ(ρ̂)

)
, v(s2)

2,`τ i.i.d. N(0, 1) and calculate v(S1+s1)
1 = −v(s1)

1 ,

v
(S2+s2)
2,`τ = −v(s2)

2,`τ , s1 = 1, . . . , S1, s2 = 1, . . . , S2, ` = 1, . . . , D, τ = 1, . . . , T .

2. Approximate the EBP of pdt as p̂dt(θ̂) = N̂dt/B̂, where

N̂dt =

2S1∑
s1=1

2S2∑
s2=1

D∏
`=1

T∏
τ=1

exp
{

(y`τ + δd`δtτ )(x`τ β̂ + φ̂1v
(s1)
1,` + φ̂2v

(s2)
2,`τ )

− ν`τ exp{x`τ β̂ + φ̂1v
(s1)
1,` + φ̂2v

(s2)
2,`τ }

}
,

B̂ =

2S1∑
s1=1

2S2∑
s2=1

D∏
`=1

T∏
τ=1

exp
{
y`τ (x`τ β̂ + φ̂1v

(s1)
1,` + φ̂2v

(s2)
2,`τ )

− ν`τ exp{x`τ β̂ + φ̂1v
(s1)
1,` + φ̂2v

(s2)
2,`τ }

}
. (5.5.3)

One might �nd over�ow numerical problems when running the above algorithm. In what

follows, an alternative way running Step 2, especially oriented to its programming, is pre-

sented. For all s1, s2, `, τ , let

ηs1s2`τ = δd`δtτ (x`τ β̂ + φ̂1v
(s1)
1,` + φ̂2v

(s2)
2,`τ ),

ξs1s2`τ = y`τ (x`τ β̂ + φ̂1v
(s1)
1,` + φ̂2v

(s2)
2,`τ )− ν`τ exp{x`τ β̂ + φ̂1v

(s1)
1,` + φ̂2v

(s2)
2,`τ },

ξ̄ =
1

4S1S2DT

2S1∑
s1=1

2S2∑
s2=1

D∑
`=1

T∑
τ=1

ξs1s2`τ ,

σ2
ξ =

1

4S1S2DT − 1

2S1∑
s1=1

2S2∑
s2=1

D∑
`=1

T∑
τ=1

(ξs1s2`τ − ξ̄)2.

Note that

ex = ex−µ+µ = eµex−µ = eµ
(

exp
{x− µ

σ

})σ
.

Therefore, N̂dt and B̂ are substituted in Step 2 by

N̂dt = eDT ξ̄
2S1∑
s1=1

2S2∑
s2=1

D∏
`=1

T∏
τ=1

(
exp

{ξs1s2`τ + ηs1s2`τ − ξ̄
σξ

})σξ
,

B̂ = eDT ξ̄
2S1∑
s1=1

2S2∑
s2=1

D∏
`=1

T∏
τ=1

(
exp

{ξs1s2`τ − ξ̄
σξ

})σξ
, (5.5.4)
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and eDT ξ̄ is cancelled when substituting into p̂dt(θ̂) = N̂dt/B̂.

As the relationship between the mean and probability parameters is µdt = νdtpdt, and νdt

is known (size parameter), the EBP of µdt is obtained as an immediate consequence of the

EBP of pdt. That is to say, the EBP of µdt is µ̂dt(θ̂) = νdtp̂dt(θ̂).

The two previous alternatives are computationally demanding. For that, this section pro-

poses an approximation to the BP of pdt (5.5.1) under the area-level spatio-temporal Poisson

mixed model. Divide y and v = (v′1,v
′
2)′ into two parts (y′d,y

′
d−)′ and (v′d,v

′
d−)′, where

yd = col
1≤t≤T

(ydt) yd− = col
1≤i≤D, i6=d

(yi), vd = (v1,d,v
′
2,d)
′ and vd− = col

1≤i≤D, i6=d
(vi). The

conditional distribution of y, given v, is

P(y|v) =
D∏
i=1

P(yi|vi) = P(yd|vd)
D∏

i=1,i 6=d
P(yi|vi) = P(yd|vd)P(yd−|vd−). (5.5.5)

The p.d.f. of vd is

f(vd) = f(v1,d)f(v2,d),

where v1,d ∼ N(0, γdd(ρ)) and v2,d ∼ N(0, IT ). The component B of the BP of pdt (5.5.1)

can be rewritten by using the decomposition of the conditional probability given in (5.5.5),

i.e.

B =

∫
RT+1

[ ∫
R(D−1)(T+1)

P(yd−|vd−)f(vd−|vd) dvd−
]
P(yd|vd)f(vd) dvd.

As P(yd−|vd−)f(vd−|vd) = P(yd−|vd−,vd)f(vd−|vd), the inner integral is∫
R(D−1)(T+1)

P(yd−|vd−,vd)f(vd−|vd) dvd− = P(yd−|vd),

and as a consequence, it holds that

B(y,θ) =

∫
RT+1

P(yd−|vd)P(yd|vd)f(vd) dvd.

By applying similar developments as for the component Ndt(y,θ) of (5.5.1), and by taking

into account Remark 5.1, it holds that

Ndt(y,θ) =

∫
RT+1

exp{xdtβ + φ1v1,d + φ2v2,dt}P(yd−|vd)P(yd|vd)f(vd) dvd,

Under the assumption

P(yd−|vd) ≈ P(yd−), (5.5.6)
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the BP of pdt, p̂dt(θ), can be approximated by

p̂adt(θ) = Na
dt(yd,θ)/Ba

d(yd,θ),

where

Na
dt =

∫
RT+1

exp{xdtβ + φ1v1,d + φ2v2,dt}
T∏
τ=1

P(ydτ |v1,d, v2,dτ )f(v1,d)f(v2,d) dv1,d dv2,d

=

∫
R

T∏
τ=1

[ ∫
R

exp
{

(ydτ + δtτ )(xdτβ + φ1v1,d + φ2v2,dτ )

− exp{xdτβ + φ1v1,d + φ2v2,dτ}
}
f(v2,dτ )dv2,dτ

]
f(v1,d)dv1,d,

Ba
d =

∫
R

T∏
τ=1

[ ∫
R

exp
{
ydτ (xdτβ + φ1v1,d + φ2v2,dτ )

− exp{xdτβ + φ1v1,d + φ2v2,dτ}
}
f(v2,dτ )dv2,dτ

]
f(v1,d)dv1,d. (5.5.7)

Then, the EBP of pdt, p̂dt(θ̂), can be approximated as follows.

1. Estimate θ̂ = (β̂
′
, φ̂1, φ̂2, ρ̂).

2. For s1 = 1, . . . , S1, s2 = 1, . . . , S2, ` = 1, . . . , D, τ = 1, . . . , T , generate v(s1)
1 ∼

ND

(
0,Γ(ρ̂)

)
, v(s2)

2,`τ i.i.d. N(0, 1) and calculate v(S1+s1)
1 = −v(s1)

1 , v(S2+s2)
2,`τ = −v(s2)

2,`τ .

3. Calculate p̂adt(θ̂) = N̂a
dt/B̂

a
d , d = 1, . . . , D, t = 1, . . . , T , where

N̂a
dt =

2S1∑
s1=1

T∏
τ=1

2S2∑
s2=1

exp
{

(ydτ + δtτ )(xdτ β̂ + φ̂1v
(s1)
1,d + φ̂2v

(s2)
2,dτ )

− νdτ exp{xdτ β̂ + φ̂1v
(s1)
1,d + φ̂2v

(s2)
2,dτ}

}
,

B̂a
d =

2S1∑
s1=1

T∏
τ=1

2S2∑
s2=1

exp
{
ydτ (xdτ β̂ + φ̂1v

(s1)
1,d + φ̂2v

(s2)
2,dτ )

− νdτ exp{xdτ β̂ + φ̂1v
(s1)
1,d + φ̂2v

(s2)
2,dτ}

}
.

The EBP approximation, p̂adt(θ̂), maintains the expression of the EBP of pdt under the

area-level Poisson mixed model with independent time e�ects given in Section 4.3.1, but

unlike then, now the domain random e�ects, v1,d, are generated according to a SAR(1)

process.
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5.5.2 The plug-in predictor

This section gives a plug-in predictor of the target parameter pdt, where the random e�ects

v1 and v2 are predicted by their EBPs. The plug-in predictor of pdt is obtained by replacing,

in the theoretical expression of pdt, the model parameters by their estimates and the random

e�ects by their predictions, i.e.

p̂Pdt = exp{xdtβ̂ + φ̂1v̂1,d + φ̂2v̂2,dt}. (5.5.8)

As above, the EBPs of v1 and v2 are obtained from the respective BPs. The BP of v1,d is

v̂1,d(θ) = Eθ[v1,d|y] =
N1,d(y,θ)

B(y,θ)
=
N1,d

B
,

where B was de�ned in (5.5.2) and

N1,d =

∫
RD(T+1)

v1,d

(
D∏
`=1

T∏
τ=1

P(y`τ |v1,`,v2,`)

)
f(v1)f(v2) dv1dv2

=

∫
RD(T+1)

D∏
`=1

T∏
τ=1

exp
{
y`τ (x`τβ + φ1v1,` + φ2v2,`τ )

− ν`τ exp{x`τβ + φ1v1,` + φ2v2,`τ}
}
v1,df(v1)f(v2) dv1dv2.

The EBP of v1,d is v̂1,d = v̂1,d(θ̂) and it can be approximated as follows.

1. Generate v(s1)
1 ∼ ND

(
0,Γ(ρ̂)

)
, v(s2)

2,`τ i.i.d. N(0, 1) and calculate v(S1+s1)
1 = −v(s1)

1 ,

v
(S2+s2)
2,`τ = −v(s2)

2,`τ , s1 = 1, . . . , S1, s2 = 1, . . . , S2, ` = 1, . . . , D, τ = 1, . . . , T .

2. Calculate v̂1,d(θ̂) = N̂1,d/B̂, where B̂ was de�ned in (5.5.3) and

N̂1,d =

2S1∑
s1=1

2S2∑
s2=1

D∏
`=1

{
1 + δ`d(v

(s1)
1,` − 1)

} T∏
τ=1

exp
{
y`τ (x`τ β̂ + φ̂1v

(s1)
1,` + φ̂2v

(s2)
2,`τ )

− ν`τ exp{x`τ β̂ + φ̂1v
(s1)
1,` + φ̂2v

(s2)
2,`τ }

}
.

An alternative way of calculating N̂1,d in Step 2 is

N̂1,d = eDT ξ̄
2S1∑
s1=1

2S2∑
s2=1

D∏
`=1

{
1 + δ`d(v

(s1)
1,` − 1)

} T∏
τ=1

(
exp

{ξs1s2`τ − ξ̄
σξ

})σξ
,
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and eDT ξ̄ is cancelled when substituting N̂1,d and B̂ (given in eq. (5.5.4)) into v̂1,d(θ̂) =

N̂1,d/B̂.

The BP of the domain-time random e�ects v2,dt is

v̂2,dt(θ) = Eθ[v2,dt|y] =
N2,dt(y,θ)

B(y,θ)
=
N2,dt

B
,

where B was de�ned in (5.5.2) and

N2,dt =

∫
RD(T+1)

v2,dt

( D∏
`=1

T∏
τ=1

P(y`τ |v1,`,v2,`)
)
f(v1)f(v2) dv1dv2

=

∫
RD(T+1)

D∏
`=1

T∏
τ=1

exp
{
y`τ (x`τβ + φ1v1,` + φ2v2,dτ )

− ν`τ exp{x`τβ + φ1v1,` + φ2v2,`τ}
}
v2,dtf(v1)f(v2) dv1dv2.

The EBP of v2,dt is v̂2,dt = v̂2,dt(θ̂) and it can be approximated as follows.

1. Generate v(s1)
1 ∼ ND

(
0,Γ(ρ̂)

)
, v(s2)

2,`τ i.i.d. N(0, 1) and calculate v(S1+s1)
1 = −v(s1)

1 ,

v
(S2+s2)
2,`τ = −v(s2)

2,`τ , s1 = 1, . . . , S1, s2 = 1, . . . , S2, ` = 1, . . . , D, τ = 1, . . . , T .

2. Calculate v̂2,dt(θ̂) = N̂2,dt/B̂, where B̂ was de�ned in (5.5.3) and

N̂2,dt =

2S1∑
s1=1

2S2∑
s2=1

D∏
`=1

T∏
τ=1

[
1 + δd`δtτ (v

(s2)
2,`τ − 1)

]
exp

{
y`τ (x`τ β̂ + φ̂1v

(s1)
1,` + φ̂2v

(s2)
2,`τ )

− ν`τ exp{x`τ β̂ + φ̂1v
(s1)
1,` + φ̂2v

(s2)
2,`τ }

}
.

An alternative way of calculating N̂2,dt in Step 2 is

N̂2,dt = eDT ξ̄
2S1∑
s1=1

2S2∑
s2=1

D∏
`=1

T∏
τ=1

[
1 + δd`δtτ (v

(s2)
2,`τ − 1)

](
exp

{ξs1s2`τ − ξ̄
σξ

})σξ
,

and eDT ξ̄ is cancelled when substituting N̂2,dt and B̂ (given in eq. (5.5.4)) into v̂2,dt(θ̂) =

N̂2,dt/B̂.

Again, the EBPs of v1,d and v2,dt are computationally demanding and therefore this section

proposes two approximations, v̂a1,d and v̂
a
2,dt, for the EBPs v̂1,d and v̂2,dt respectively. Under

the assumption (5.5.6), the BP of the domain random e�ects, v̂1,d(θ), can be approximated
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5 The area-level Poisson mixed model with SAR(1) and time e�ects

by

v̂a1,d(θ) =
Na

1,d(yd,θ)

Ba
d(yd,θ)

,

where Ba
d(yd,θ) is given in (5.5.7) and

Na
1,d(yd,θ) =

∫
R

T∏
τ=1

[ ∫
R

exp{ydτ (xdτβ + φ1v1,d + φ2v2,dτ )

− νdτ exp{xdτβ + φ1v1,d + φ2v2,dτ}}f(v2,dτ ) dv2,dτ

]
v1,df(v1,d) dv1,d.

Again, the di�erence between the approximated BP, v̂a1,d(θ), and the corresponding one

under Model T1 (see Section 4.3.1) is that now, the distribution of the domain random

e�ects is SAR(1).

The BP of v2,dt, v̂2,dt(θ), can be approximated by

v̂a2,dt(θ) =
Na

2,dt(yd,θ)

Ba
d(yd,θ)

,

where

Na
2,dt(yd,θ) =

∫
R

T∏
τ=1

[ ∫
R

(1 + δtτ (v2,dτ − 1)) exp{ydτ (xdτβ + φ1v1,d + φ2v2,dτ )

− νdτ exp{xdτβ + φ1v1,d + φ2v2,dτ}}f(v2,dτ ) dv2,dτ

]
f(v1,d) dv1,d.

In this case, the underlying spatial correlation structure slightly complicates the expression

of the approximated BP, v̂a2,dt(θ), with respect to that obtained under Model T1.

5.6 MSE estimation

As accuracy measure of the EBP of pdt under Model ST1, this section considers the MSE.

It proposes estimating the MSE of the EBP of pdt by using a parametric bootstrap algo-

rithm based on the bootstrap procedure given in González-Manteiga et al. (2007), since the

analytical estimation is not feasible computationally. The steps are:

1. Fit the model to the sample and calculate the estimator θ̂ = (β̂, φ̂1, φ̂2, ρ̂) under

Model ST1.

2. For each domain d, d = 1, . . . , D, and time instant t, t = 1, . . . , T , repeat B times,
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b = 1, . . . , B.

i) Generate the bootstrap random e�ects v∗(b)1 ∼ ND

(
0,Γ(ρ̂)

)
and {v∗(b)2,dt} i.i.d.

N(0, 1).

ii) Calculate the theoretical bootstrap EBP estimator p∗(b)dt = exp{xdtβ̂+ φ̂1v
∗(b)
1,d +

φ̂2v
∗(b)
2,dt}.

iii) Generate the response variables y∗(b)dt ∼ Poiss(νdtp
∗(b)
dt ).

iv) For each bootstrap resample b, calculate the estimator θ̂
∗(b)

and the EBP p̂∗(b)dt =

p̂
∗(b)
dt (θ̂

∗(b)
).

3. Output:

mse∗(p̂dt) =
1

B

B∑
b=1

(
p̂
∗(b)
dt − p

∗(b)
dt

)2
.

5.7 Simulation experiments

This section presents two model-based simulation experiments. The �rst one studies the

the behaviour of the MM �tting algorithm while the second one compares the performance

of the two introduced predictors, i.e. the EBP and the plug-in. The response variables are

generated independently as ydt|v1,d, v2,dt ∼ Poisson(νdtpdt), where

pdt = exp{β0 + xdtβ1 + φ1v1,d + φ2v2,dt}, xdt =
d+ t/T

D
, d = 1, . . . , D, t = 1, . . . , T.

The domain random e�ects, v1,d (d = 1, . . . , D), are generated according to a SAR(1)

process, i.e.

v1 = col
1≤d≤D

(v1,d) = (ID − ρW )−1u1,

where ID denotes the D × D identity matrix, ρ is the autocorrelation parameter, W =

(ωij)i,j=1,...,D is a proximity matrix and u1 ∼ N(0, ID). For the D ×D proximity matrix

W , a 7-diagonal matrix is considered. Let k be the number of diagonals of W , then the

number of upper and lower diagonals is m = bk/2c, where bk/2c denotes integer part of
k/2. The diagonals are denoted by 1 (main) and j (upper and lower), j = 2, . . . ,m + 1.

The diagonals are constructed in the following way.

� Diagonal 1 (main): if |i− j| = 0, then ωij = 0.

� Diagonal 2 (upper and lower): if |i− j| = 1, then ωij = 1
2 −

(
1
23

+ 1
24

)
.
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� Diagonals 3−(m+1) (upper and lower): if |i−j| ∈ {2, . . . ,m}, then ωij = 1/2|i−j|+1.

Then, the elements of diagonals 1, 2, 3 and 4 (upper and lower) are 0, 5/16, 2/16 and

1/16 respectively. This rule does not apply to the �rst and the last m rows (m = 3). For

those rows, the numerators of the diagonal elements are kept �xed (0, 5, 2 and 1) and the

denominators are recalculated so that the sum of the row is 1. Using this criterion, the

9× 9 7-diagonal matrix W is

W =



0 5/8 2/8 1/8 0 0 0 0 0

5/13 0 5/13 2/13 1/13 0 0 0 0

2/15 5/15 0 5/15 2/15 1/15 0 0 0

1/16 2/16 5/16 0 5/16 2/16 1/16 0 0

0 1/16 2/16 5/16 0 5/16 2/16 1/16 0

0 0 1/16 2/16 5/16 0 5/16 2/16 1/16

0 0 0 1/15 2/15 5/15 0 5/15 2/15

0 0 0 0 1/13 2/13 5/13 0 5/13

0 0 0 0 0 1/8 2/8 5/8 0



.

That 9× 9 7-diagonal matrixW can be generalized to a D×D matrix by repeating D− 6

times the weights of the central rows (i.e., 0, 5/16, 2/16 and 1/16).

In both simulation experiments, we take β0 = −3, β1 = 0.8, φ1 = 0.5, φ2 = 0.5 and

νdt = 100, d = 1, . . . , D, t = 1, . . . , T . The simulation considers the scenarios D = 100

and T = 4, 8 for studying the in�uence of the time periods. For each scenario, it takes

ρ = 0.1, 0.3, 0.5. This section runs the Monte Carlo simulation experiments with K = 1000

iterations.

5.7.1 Simulation 1

The target of Simulation 1 is to check the behaviour of the MM �tting algorithm introduced

in Section 5.3. Table 5.7.1 presents the bias and Table 5.7.2 the root mean squared error

(RMSE) for the model parameters θ ∈ θ = {β0, β1, φ1, φ2, ρ}. As in Chapter 3, this section

considers two options for estimating the vector of all model parameters θ. In the �rst
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option (Opt. 1), the vector θ̂ is obtained as a solution of the system of p + 3 nonlinear

equations (5.3.1). In the second option (Opt. 2), ρ̂ is given by calculating the Moran's I

measure (3.3.3) over the predicted domain random e�ects under Model T1.

Table 5.7.1: Bias of the MM �tting algorithm under Model ST1.

T = 4 T = 8

ρ Opt. 1 Opt. 2 Opt. 1 Opt. 2

0.1 β̂0 0.0115 0.0115 0.0171 0.0171

β̂1 -0.0145 -0.0145 -0.0233 -0.0234

φ̂1 -0.0219 -0.0230 -0.0240 -0.0250

φ̂2 -0.0098 -0.0098 -0.0066 -0.0066

ρ̂ -0.1689 -0.0848 -0.1593 -0.0820

0.3 β̂0 0.0196 0.0197 0.0150 0.0151

β̂1 -0.0225 -0.0226 -0.0168 -0.0169

φ̂1 -0.0144 -0.0186 -0.0129 -0.0181

φ̂2 -0.0099 -0.0099 -0.0087 -0.0087

ρ̂ -0.3236 -0.1986 -0.3441 -0.1865

0.5 β̂0 0.0285 0.0285 0.0394 0.0394

β̂1 -0.0387 -0.0387 -0.0666 -0.0664

φ̂1 0.0101 0.0059 0.0062 0.0033

φ̂2 -0.0123 -0.0123 -0.0111 -0.0111

ρ̂ -0.7090 -0.2856 -0.8400 -0.2601

Both options behave similarly for the �xed e�ects and the variance parameters. For these

parameters, the variance is the most important term of the MSE since bias is much smaller

than RMSE. On the other hand, Opt. 2 produces more competitive estimates for the

autocorrelation parameter ρ, since it drastically reduces both bias and RMSE. For ρ, bias

is the main part of the MSE since it takes similar absolute values to the RMSE. Then, a

bias correction by bootstrap might be useful.
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Table 5.7.2: Root mean squared error of the MM �tting algorithm under Model ST1.

T = 4 T = 8

ρ Opt. 1 Opt. 2 Opt. 1 Opt. 2

0.1 β̂0 0.1388 0.1387 0.1291 0.1291

β̂1 0.2337 0.2337 0.2162 0.2161

φ̂1 0.0658 0.0659 0.0561 0.0563

φ̂2 0.0449 0.0449 0.0289 0.0289

ρ̂ 0.1904 0.1129 0.1796 0.1090

0.3 β̂0 0.1682 0.1682 0.1554 0.1554

β̂1 0.2824 0.2823 0.2609 0.2609

φ̂1 0.0649 0.0647 0.0569 0.0545

φ̂2 0.0463 0.0463 0.0309 0.0309

ρ̂ 0.3537 0.2144 0.3872 0.2039

0.5 β̂0 0.2189 0.2189 0.2100 0.2100

β̂1 0.3736 0.3736 0.3509 0.3509

φ̂1 0.0742 0.0650 0.0696 0.0530

φ̂2 0.0451 0.0451 0.0307 0.0307

ρ̂ 0.7766 0.2998 0.9038 0.2755

5.7.2 Simulation 2

The second simulation experiment investigates the behaviour of the considered pdt predic-

tors for di�erent time instants, T , and autocorrelation parameters, ρ. Speci�cally, it calcu-

lates BP-plug-in, BP, plug-in and EBP. Given the computational burden presented by the

BPs (and EBPs) of the target parameter and of the two random e�ects under Model ST1,

the simulation considers their approximated versions (see Section 5.5). The �rst predictor,

BP-plug-in, is obtained from (5.5.8) by using the theoretical vector of model parameters

θ. The BPs and EBPs are approximated by generating S1 = 500 random variables v(s1)
1

and S2 = 700 random variables v(s2)
2,`τ . For the empirical predictors (plug-in and EBP), the

model parameters are estimated by using the second option in MM, since it has presented
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better results in the previous simulation experiment.

Table 5.7.3 presents the average across domains and time instants of the biases and the

RMSEs (both ×102) for BP-plug-in, BP, plug-in and EBP. BP and EBP are more com-

petitive than the respective plug-in. Specially in bias, where a signi�cant improvement is

achieved. The obtained results also suggest that T does not a�ect too much the results

and that variance is the most important term of the MSE since bias is much smaller than

RMSE.

Table 5.7.3: Bias (B) and root mean squared error (RMSE) of the BP-plug-in, BP, plug-in

and EBP of pdt under Model ST1 (both ×102).

T = 4 T = 8

ρ Predictors B RMSE B RMSE

0.1 BP-plug-in 0.3350 2.8325 0.3318 2.7739

BP 0.0701 2.7581 0.0689 2.7165

plug-in 0.3251 2.8248 0.3261 2.7710

EBP 0.0699 2.7645 0.0687 2.7203

0.3 BP-plug-in 0.3423 2.8445 0.3217 2.7840

BP 0.0711 2.7655 0.0674 2.7306

plug-in 0.3406 2.8354 0.3194 2.7851

EBP 0.0717 2.7723 0.0677 2.7342

0.5 BP-plug-in 0.3363 2.8939 0.3311 2.8125

BP 0.0692 2.8129 0.0829 2.7562

plug-in 0.3290 2.8830 0.3282 2.8169

EBP 0.0699 2.8200 0.0824 2.7595

The system of MM nonlinear equations (5.3.1) is solved by using the R nleqslv package. The

mvtnorm package is also used to generate samples of a SAR(1) process. The computational

burden of the �rst option in MM is much higher. Taking T = 4, the average runtime of

the �rst option is 60.4 seconds, while for the second option is 0.1 seconds. On the other

hand, regarding the computational burden of the pdt predictors, the EBP is faster than the

plug-in. The reason is because the proposed plug-in predictor requires the calculation of

two EBPs (v̂1 and v̂2). The average runtimes are 210.7 seconds for the EBP and 320.5

seconds for the plug-in.
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5 The area-level Poisson mixed model with SAR(1) and time e�ects

5.8 Application to real data

This section presents only an application to real data of wild�res in Galicia during 2007−
2008, since in the application to poverty data, the domain variance parameter is not sig-

ni�cant. The objective of this study is to analyse the target variable number of wild�res

by forest areas and months. The domains are the forest areas. For each domain, the data

set collects the number of wild�res by month. The section takes the months between April

to October for being the months with the greatest number of �res. The total number of

domains and time instants are D = 63 and T = 14, respectively.

The response variable at domain d, d = 1, . . . , D, and time t, t = 1, . . . , T , ydt, is explained

by some auxiliary variables through an area-level spatio-temporal Poisson mixed model with

SAR(1)-correlated domain and independent domain-time e�ects. Table 5.8.1 presents the

MM estimates of the �xed e�ects under Model ST1. They are obtained by using the second

option (see Section 5.7). The same set of auxiliary variables as those used in Section 4.6.2

are selected. This table suggests that acumRain is protective, since it causes a decrease

in the response variable if it increases and the other variables remain �xed. On the other

hand, averTemp and cadHold are directly related to the response variable since their signs

are positive. The three covariates are signi�cant taking α = 5%.

Table 5.8.1: MM estimates of regression parameters under Model ST1.

Variable Est. s.e. z-value P (> |z|)

Intercept 0.7736 0.0870 8.8910 < 0.001

acumRain -0.5207 0.0682 -7.6318 < 0.001

averTemp 0.1507 0.0661 2.2820 0.0225

cadHold 0.2931 0.0605 4.8466 < 0.001

The MM estimates of the variance parameters are φ̂1 = 0.331 and φ̂2 = 0.696. Their 95%

percentile bootstrap con�dence intervals are (0.130, 0.467) and (0.503, 0.829) respectively.

The estimate of the autocorrelation parameter is ρ̂ = 0.327. The Algorithms 8 and 10 are

used to test the signi�cance of the variance parameters φ1 and φ2. The obtained bootstrap

p-values are 0.01 and 0.00 respectively. The conclusion is that both variance parameters

are signi�cantly di�erent from 0. In addition, as the hypothesis test H0 : φ1 = 0 is rejected,

the Algorithm 9 is applied to test H0 : ρ = 0. The obtained bootstrap p-value is 0.00.

On the other hand, the Moran's test yielded p-values lower than 0.05 in 7 of 14 months.
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Application to real data 5.8

Then, based on the bootstrap p-values and on the Moran's test, it is recommended to use

a spatio-temporal Poisson mixed model to analyse wild�res in Galicia by forest areas and

months during 2007− 2008.

Figure 5.8.1 plots the Pearson residuals of the synthetic estimator, µ̂syndt , under Model T0

(left) and of the EBP µ̂dt under Model ST1 (right). A clear improvement is achieved when

one uses a more complex model, since the Pearson residuals are closer to 0. In this case, the

EBP of µdt under Model ST1 is more competitive than the plug-in predictor under Model

T22 (see Section 4.6.2), since the empirical MSEs are 0.454 and 1.247 respectively.
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Figure 5.8.1: Pearson residuals of the synthetic estimator under Model T0 (left) and of the
EBP of µdt under Model ST1 (right).

Figure 5.8.2 maps the EBP estimates by forest areas under the area-level Poisson mixed

model with SAR(1) domain e�ects and independent domain-time e�ects. The same months

as those showed in Section 4.6.2 are taken, i.e. the months between August and October.

The �gure suggests that the highest number of wild�res are concentrated in western coastal

areas and in the south of the region. On the other hand, regarding the temporal behaviour,

the highest number of �res is found in the months of 2007 (specially in September and

October), while in 2008 there was an impressive decrease.

Figure 5.8.3 plots the bootstrap MSE seen in Section 5.6 for the three areas with highest

number of �res, i.e. the same forest areas as those shown in Section 4.6.2 (Viana 1, Terra

de Tribes and Viana 2). The number of bootstrap replicates is B = 500. The mean of

the MSEs for the three areas is 3.978 in Model T0 and 1.219 in Model ST1. Then, a

clear improvement is achieved when one uses the area-level spatio-temporal Poisson mixed

model.
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Figure 5.8.2: Estimated �res from August to October in 2007-2008.
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Figure 5.8.3: Bootstrap MSE estimates for the three areas with highest number of �res.

5.9 Concluding remarks

This chapter presents the area-level spatio-temporal Poisson mixed model with SAR(1)-

correlated domain and independent domain-time random e�ects. It incorporates the area-
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Concluding remarks 5.9

level Poisson mixed model with SAR(1) domain e�ects (see Chapter 3) and the area-level

Poisson mixed model with independent time e�ects (see Chapter 4) in a single model.

The MM algorithm is obtained to �t the model parameters. It is based on the method of

simulated moments proposed by Jiang (1998). The �rst simulation experiment is carried

out for empirically investigating the behaviour of the MM estimator. Speci�cally, two

options are considered. In the �rst option, all model parameters are obtained as a solution

of the system of p+ 3 nonlinear equations (5.3.1), while in the second option ρ̂ is obtained

by the Moran's I measure and the remaining parameters as a solution of the system formed

by the �rst p+ 2 equations in (5.3.1). Second option is computationally faster and reduces

the bias and the RMSE of the autocorrelation parameter.

Two predictors of the target parameter pdt are proposed and empirically investigated

through a simulation experiment. They are the EBP and a plug-in predictor. The simula-

tion experiment concludes that EBP performance better in both bias and RMSE. In addi-

tion, the EBP is computationally faster since the plug-in requires calculating two EBPs (v̂1

and v̂2). Given the computational burden of the EBPs under Model ST1, approximated

versions are proposed.

The developed methodology is applied to the data set of wild�res in Galicia by forest areas

and month during 2007 − 2008. Based on the good results obtained in the simulation

experiment, the EBP is employed. This estimator is also compared against the synthetic

estimator obtained under the model with only �xed e�ects. A clear improvement is achieved

when one uses a more complex model incorporating random e�ects. In addition, this chapter

recommends using an area-level SAR(1) Poisson mixed model with independent time e�ects

to analyse wild�res in Galicia since the Moran's test yielded p-values lower than 0.05 in 7

of 14 months. For these data, the behaviour of the EBP under Model ST1 is also compared

against the plug-in under Model T22 shown in the application to forest �res in Chapter

4. The EBP under Model ST1 is more competitive for these data, since the obtained

empirical MSE (0.454) is lower than the one obtained by the plug-in predictor under Model

T22 (1.247). The conclusion is that forest �res tend to be concentrated in coastal areas and

in the south of the region. An important increase in wild�res is observed in September and

October 2007. The introduced bootstrap MSE estimator is considered as accuracy measure

of the proposed EBP. It is achieved a clear improvement when using the proposed model

and estimator against the classical Poisson regression model.
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Chapter 6

Conclusions

Generalized linear mixed models are a useful tools for modelling response variables whose

distributions belong to the exponential family. They extend the classical GLMs by incorpo-

rating random e�ects that capture the variability between groups or clusters not explained

by the �xed e�ects. GLMMs include as particular cases logistic, probit and Poisson mixed

models. The �rst two models assume that the response variable is dichotomic, i.e. it takes

only the values 0 and 1, while the last model assumes that the response is a count variable.

Given their �exibility and ability to combine di�erent sources of information, GLMMs con-

stitute a good tool for treating small area estimation problems. Speci�cally, this manuscript

deals with a particular family of Poisson mixed models in which the response variable is

available at the area level. These models are known as area-level Poisson mixed models and

they can be seen as the natural extension of the Fay-Herriot model to the context of count-

ing variables. In addition, they are really useful for analysing target variables measured at

high levels of disaggregation, since they reduce the error with respect to their conventional

competitors.

Several extensions of the basic area-level Poisson mixed model are considered, given rise to

increasingly �exible and complex models but, on the other hand, more di�cult to estimate.

For each area-level Poisson mixed model, the mean parameter µd associated with each

area d, d = 1, . . . , D, can be expressed as νdpd because of the relationship between the

Poisson and the binomial distributions, where νd and pd are size and probability parameters

respectively. This fact provides greater generality to the model, since it allows to obtain

both the estimation of the response (count) variable and its proportion. Given that the

size parameter νd is assumed to be known, this manuscript focusses on the estimation of

pd, which is called target parameter. As an immediate consequence, the estimate µ̂d is
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6 Conclusions

obtained as νdp̂d, where p̂d denotes an estimator of the target parameter.

The considered models are �tted by the MM approach. The MM estimators are based on the

method of simulated moments estimator proposed by Jiang (1998) under GLMMs. Unlike

ML-based methods that may lead to biased estimators, the MM method gives an alternative

consistent estimator. On the other hand, the EBP and a plug-in predictor are employed

for estimating the target parameter. The �rst one is obtained from the corresponding BP

by replacing the vector of unknown theoretical model parameters by an estimator. As

the BP minimizes the MSE in the set of unbiased predictors, its corresponding empirical

version, the EBP, constitutes a competitive alternative for estimating the target parameter

pd. Under regularity conditions, the EBPs have asymptotically the same properties as the

BPs. The second one, the plug-in predictor, is obtained by replacing in the theoretical

expression of pd, the unknown parameters by their estimates. As the MM algorithm does

not provide predictions of the random e�ects, they are predicted by their EBPs. To measure

the accuracy of the proposed EBPs, this manuscript provides MSE bootstrap algorithms

based on the parametric bootstrap procedure given in González-Manteiga et al. (2007). The

developed methodology and software are applied in two �elds of practical interest: poverty

and forest �res.

For the most basic area-level Poisson mixed model (see Chapter 2), the PQL �tting algo-

rithm is also considered. This is a well-known method that maximizes the joint likelihood

of the target data and the random e�ects. Both �tting algorithms (MM and PQL) are

empirically investigated through some simulation experiments. Despite the inconsistency,

in the developed simulation experiment, PQL performs better for the �xed e�ects although

MM captures the variance parameter more precisely. As PQL algorithm provides estimates

of model parameters and predictions of random e�ects, we consider under this model an-

other plug-in estimator of pd, where the parameters are estimated by the corresponding

PQL estimates (Saei and Chambers, 2003). In addition to the MSE bootstrap, under this

model two analytical estimators are also calculated. Both are plug-in estimators without

and with bias correction of the second order. The three MSE estimators are analysed in

a simulation study. The bias correction term is computationally intensive and the two

analytical estimators are quite similar. On the other hand, bootstrap procedure is easy to

implement and gives similar results. For applying the developed methodology, two appli-

cations to real data are considered. The �rst one studies the poverty in Spain by provinces

and sex (Boubeta et al., 2016b), and the second one analyses the number of �res in Galicia

by forest areas (Boubeta et al., 2015). In both cases, the proposed estimators increase the

predictive capacity against their classic competitors.
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6.0

The above model in extended in two ways. First, a SAR(1) correlation structure between

domains is allowed and second a temporal component is incorporated to the model. In the

�rst case (see Chapter 3), unlike Model 1 in which the random e�ects are assumed to be

independent, under Model S1 the small area estimates that are spatially close may be alike

than estimates for areas that are further apart. The performance of Model S1 depends on

the choice of the proximity matrix W , which is assumed to be known. Di�erent options

are tested: common border, based on distances and based on k-nearest neighbours. In this

manuscript, the �rst option is the one that gives better results. This proximity matrix

considers that two areas are neighbours if they share a common delimitation. As the EBP

calculation involves complex integrals in high dimension, we propose an approximation.

A simulation experiment is carried out for investigating the loss of e�ciency when the

spatial correlation is not taken into account. The simulation study reveals that estimators

under Model 1 are clearly biased and they have little variability, while estimators under

Model S1 are unbiased but its variability is greater. The conclusion is that the EBP

approximation is competitive since it is unbiased and the MSE is similar to that of Model 1.

Two applications to Galician data are considered. The �rst one uses the EBP approximation

for estimating women poverty proportions by counties in 2013 and the second one uses plug-

in approximation for estimating the number of forest �res by areas during 2008. In both

applications, a clear improvement is achieved when one uses more complex models. In the

second case, a temporal component is incorporated (see Chapter 4). Speci�cally, the chapter

provides four area-level Poisson mixed models with time e�ects and their �tting algorithms.

The �rst two, Model T1 and Model T12, use independent time e�ects and the remaining two,

Model T2 and Model T22, assume AR(1)-correlated time e�ects. Simulation experiments

show that for capturing the correlation structure under Model T2 it is desirable a su�ciently

large number of time instants (it is recommended T ≥ 5). The simulations also reveal that

the EBP is a good alternative to estimate the target parameter pdt, since its bias and MSE

are generally lower than the corresponding ones of the plug-in predictor. Two applications

to real data focussed on Galicia are used to illustrate the developed methodology. The �rst

one estimates the poverty proportions by counties and gender during 2010− 2013 by using

the EBP under a model with independent time e�ects (Boubeta et al., 2017b) and the

second one estimates the number of forest �res by area and month during 2007− 2008 by

using a plug-in predictor under a model with AR(1) temporal correlation (Boubeta et al.,

2017a). This methodology can be used as an important tool to make preventive policy in

the context of forest �res.

Finally, Model ST1 (see Chapter 5) incorporates in a single model the two previous ex-
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6 Conclusions

tensions, i.e. it incorporates both spatial correlation and temporal component. It is the

most �exible model but also the most complex. Under this model, the chapter gives the

MM �tting algorithm, the EBP and a plug-in predictor of the target parameter, and the

EBPs of the two vectors of random e�ects. Two simulation experiments are carried out

to analyse the behaviour of the proposed estimators. They conclude that EBP performs

better than the plug-in predictor, since both bias and RMSE are lower in general. The

application to real data of wild�res in Galicia shows a clear improvement over the classical

Poisson regression model and also over the area-level Poisson mixed with AR(1)-correlated

time e�ects seen in Chapter 4.

For every considered model, all the programme codes have been implemented in R, both

the MM �tting algorithm and the two proposed estimators (EBP and plug-in). The com-

putational burden for both estimators under the area-level Poisson mixed models with

independent and SAR(1) domain e�ects is similar. Although the calculation of the es-

timators is more expensive for Model S1, the proposed approximate version equates the

computational times against Model 1. On the other hand, under the temporal models

(Model T1 and Model T2), the calculation of the EBP is much faster than the plug-in

estimator. The reason is because the plug-in predictor requires the calculation of two EBPs

for the random e�ects.
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Appendix A

Resumen en Castellano

Capítulo 1: Introducción

Los modelos lineales mixtos (LMMs) constituyen una generalización de los modelos de

regresión lineal contemplando efectos aleatorios. A diferencia de los modelos clásicos en

donde se asume que las observaciones son i.i.d. y pertenecen a la misma población, en

los modelos mixtos se tiene una estructura multinivel de mayor complejidad. Los LMMs

asumen que las observaciones están agrupadas en diferentes niveles, de tal manera que

observaciones que pertenecen a diferentes niveles se consideran independientes, mientras que

observaciones que pertenecen al mismo nivel se consideran dependientes ya que comparten

información de la subpoblación. Un estudio contemporáneo de aplicación de los modelos

mixtos es el análisis de datos longitudinales, donde cada serie de tiempo representa un nivel,

pero también pueden ser usados para tratar datos con diferentes fuentes de variabilidad,

medidas repetidas o problemas de reconstrucción de imágenes.

Los modelos mixtos generalizados (GLMMs) extienden a los LMMs de variable respuesta

normal en dos sentidos:

� La distribución de la variable respuesta se asume que pertenece a la familia exponen-

cial.

� Una función, no necesariamente lineal (función link), de la media de la variable res-

puesta se modela linealmente.

El estimador de máxima verosimilitud (ML) de los parámetros bajo los GLMMs es consis-

tente cuando el número de niveles o clusters, D, tiende a in�nito, mientras el número de
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observaciones por cluster permanece uniformemente acotado. Una importante ventaja del

enfoque ML es que genera estimaciones de todos los parámetros del modelo (efectos �jos

y parámetros de la varianza) y predicciones de los efectos aleatorios. La maximización de

la log-verosimilitud requiere el uso de algoritmos iterativos tales como Newton-Raphson,

Fisher scoring o algoritmos del tipo EM. Dada la complejidad de las integrales involucradas

en la función de log-verosimilitud, habitualmente los modelos iterativos se combinan con

técnicas de aproximación de integrales tales como Laplace (LA), quasi-verosimilitud res-

tringida (PQL), Gauss-Hermite, métodos Monte Carlo o métodos de integración numérica

(reglas del trapecio, Simpson, etc.).

En algunos casos, los estimadores basados en ML pueden conducir a estimadores inconsis-

tentes y sesgados. Por ello, Jiang (1998) propone el método de simulación de momentos

(MSM) como enfoque alternativo para estimar los parámetros en un GLMM. Este estimador

es computacionalmente atractivo y proporciona estimadores consistentes de los parámetros

del modelo.

Dada su �exibilidad y habilidad para combinar diferentes fuentes de información, los mode-

los mixtos constituyen una herramienta idónea para la estimación en áreas pequeñas (SAE),

siendo esta una rama de la estadística que involucra la estimación de parámetros en subcon-

juntos pequeños (llamados áreas pequeñas o dominios) de una población original. Habitual-

mente, el término área pequeña se re�ere a áreas geográ�cas con un nivel de desagregación

inferior al que se considera en el diseño original (tales como comarcas, municipios o divi-

siones censales), grupos demográ�cos (edad × sexo × raza), grupos demográ�cos en una

región geográ�ca, etc. Usualmente los tamaños muestrales en áreas pequeñas son demasi-

ado pequeños, ya que los diseños muestrales se desarrollan para la población original y no

para los dominios. En este contexto, los estimadores de los parámetros de la población

poseen la precisión deseada a nivel poblacional pero no a nivel dominio.

Los estimadores directos proporcionan estimadores insesgados respecto a la distribución

del diseño muestral pero su varianza es elevada en áreas pequeñas. Por ello, uno de los

principales cometidos de los investigadores en áreas pequeñas es el de encontrar estimadores

más so�sticados de menor variabilidad. Las técnicas de estimación en áreas pequeñas

pueden ser de tres tipos: basadas en el diseño, asistidas por modelos o basadas en el modelo.

En cuanto al nivel de agregación de la variable respuesta, los modelos de áreas pequeñas

pueden ser clasi�cados en dos grupos: (i) modelos de área y (ii) modelos de individuo. La

metodología desarrollada en esta tesis se centra en el primer grupo de modelos.

En la práctica hay un gran número de aplicaciones en modelos de área. Una de las prin-
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cipales razones se debe al secreto de con�dencialidad, ya que las o�cinas de estadística

habitualmente no pueden proporcionar información a nivel de individuo pero sí agregada

por regiones. Estos modelos han ido evolucionado con el transcurso de los años, adaptán-

dose a las necesidades de los datos, dando lugar a modelos cada vez más �exibles, pero por

otro lado, más complejos de estimar. El modelo de área básico es el modelo de Fay-Herriot

(FH). Este modelo viene de�nido en dos etapas. En la primera se asume que la variable

respuesta, yd, asociada al dominio d, d = 1, . . . , D, se puede expresar a través de su media

más un término de error,

yd = µd + εd, d = 1, . . . , D,

mientras que en la segunda se asume que la media viene dada como suma del término de

regresión y un efecto aleatorio ud, es decir

µd = xdβ + ud, d = 1, . . . , D,

donde D denota el número total de dominios o áreas, xd el vector de p variables auxiliares

y β el vector de coe�cientes �jos. Los efectos aleatorios ud's y los términos de error εd's se

asumen independientes con ud
i.i.d.∼ N(0, σ2

u) y εd
ind∼ N(0, σ2

d). Un estimador popular de µd

bajo el modelo FH es el predictor lineal insesgado óptimo (EBLUP). Este predictor se de�ne

como aquel que minimiza el error cuadrático medio (MSE) en el conjunto de predictores

insesgados de µd. Otros predictores comúnmente utilizados en la práctica son el predictor

plug-in, de�nido por

µ̂P = Xβ̂ + û,

donde û denota un predictor del vector de efectos aleatorios u. Una versión simpli�cada

del predictor plug-in es el estimador sintético. Este se diferencia del anterior en que no

incorpora una predicción de los efectos aleatorios. Es decir,

µ̂syn = Xβ̂.

El modelo FH se puede extender al contexto de los GLMMs asumiendo que la distribución

de la variable respuesta, yd, pertenece a la familia exponencial y que su esperanza, trans-

formada previamente por la función link, g, puede ser modelada linealmente. El trabajo

desarrollado a lo largo del manuscrito se centra en el cálculo del predictor óptimo empírico

(EBP) bajo los modelos mixtos de Poisson de área. Este estimador constituye la extensión

natural del EBLUP al contexto GLMM. Bajo el modelo de Poisson, la función enlace es la

función logaritmo, y la variable objetivo es un conteo de eventos de interés por dominios.
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A lo largo del manuscrito se llevan paralelamente dos aplicaciones a datos reales. La primera

de carácter socio-económico y la segunda de naturaleza medioambiental.

En la primera aplicación se usan dos conjuntos de datos que recogen información de la

Encuesta de Condiciones de Vida. Esta encuesta proporciona información de los ingresos

del hogar en el año previo. Su diseño permite que el tamaño muestral sea lo su�cientemente

grande para que el estimador directo alcance un cierto grado de precisión a nivel comunidad

autónoma, pero no a nivel provincia o comarca. La estimación en áreas pequeñas trata este

tipo de problemas introduciendo estimadores indirectos. El primer conjunto de datos viene

dado a nivel nacional por provincias durante el año 2008, mientras que el segundo se centra

en las comarcas de la comunidad autónoma de Galicia durante el periodo 2010 − 2013.

Las bases de datos a nivel individuo han sido proporcionadas por el Instituto Nacional de

Estadística y el Instituto Galego de Estatística respectivamente, y la agregación a nivel de

área es de elaboración propia. Las áreas pequeñas (dominios) en ambas bases de datos son

las 50 provincias españolas en el primer caso, y las 53 comarcas gallegas en el segundo caso,

o el cruce de las provincias y comarcas por sexo. La variable respuesta en ambos casos

es el número de personas bajo el umbral de pobreza por dominio. La información auxiliar

disponible hace referencia a la proporción de individuos (por sexo) en cada categoría de las

siguientes variables.

� Edad: ≤ 15 (age0), 16− 24 (age1), 25− 49 (age2), 50− 64 (age3) y ≥ 65 (age4).

� Educación: inferior a primaria (edu0), primaria (edu1), secundaria (edu2) y univer-

sitaria (edu3).

� Nacionalidad: española (cit0) y no española (cit1).

� Situación laboral: ≤ 15 (lab0), empleados (lab1), desempleados (lab2) e inactivos

(lab3).

La base de datos utilizada en la aplicación medioambiental a datos reales de incendios

forestales en Galicia ha sido proporcionada por el Ministerio de Agricultura y Pesca, Ali-

mentación y Medio Ambiente del Gobierno de España. La agregación a nivel dominio es

de elaboración propia. En este caso los dominios son las áreas forestales. Actualmente, la

comunidad autónoma de Galicia se divide en 63 áreas forestales. Para cada dominio y mes,

la base de datos contiene información de la variable objetivo número de incendios y cierta

información auxiliar durante el periodo 2006− 2008. Se consideran dos fuentes de informa-

ción auxiliar dependiendo de su naturaleza. En el primero grupo se incluyen todas aquellas
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variables que dependen únicamente del dominio (y no del instante temporal), es decir, son

constantes a lo largo del tiempo. En particular, se dispone de las variables tamaño pobla-

cional, número de parcelas catastrales, número de titulares catastrales, número de unidades

ganaderas, porcentaje de super�cie de matorral, porcentaje de super�cie húmeda y por-

centaje de super�cie arbolada por área forestal. En el segundo grupo se incluyen variables

promedio obtenidas de estaciones meteorológicas por área forestal y mes. Concretamente,

se han considerado precipitación acumulada, temperatura media y días sin lluvia.

El presente trabajo se centra en el desarrollo de técnicas de estimación en áreas pequeñas

usando GLMMs de área. Concretamente, se consideran variables respuesta de conteo y, en

consecuencia, la familia de modelos se restringe a los modelos de Poisson mixtos de área.

Además, se extiende el modelo de Poisson mixto de área básico incorporando correlación

espacial, componentes temporales y correlación espacio-temporal.

Capítulo 2: Modelo de Poisson mixto de área

Los modelos de regresión de Poisson y binomial son modelos lineales generalizados (GLMs)

que se usan para modelar variables respuesta de conteo (como por ejemplo número de

personas bajo el umbral de pobreza). En ocasiones los GLMs no pueden explicar la varia-

bilidad de la variable objetivo a través de las variables auxiliares seleccionadas. Esto puede

suceder cuando las observaciones pertenecientes a diferentes dominios son independientes

pero existe cierta estructura de dependencia dentro de los dominios. Los GLMMs son una

extensión de los GLMs, que capturan la variabilidad entre dominios introduciendo efectos

aleatorios. Habitualmente se asume que los efectos aleatorios se distribuyen según una

distribución normal.

A pesar de la gran utilidad de los GLMMs, la inferencia basada en estos modelos presenta

importantes di�cultades, ya que la función de verosimilitud involucra integrales en alta di-

mensión que no pueden ser evaluadas analíticamente. Varios métodos se han propuesto para

abordar este problema, la mayoría de ellos relacionados con el método de Taylor, el método

de Laplace para aproximación de integrales o el algoritmo PQL. Desafortunadamente, en

algunos casos el método PQL puede conducir a estimadores inconsistentes e insesgados.

En este capítulo se estudia el modelo de Poisson mixto de área básico y se consideran tres

procedimientos de ajuste: el método de los momentos (MM) y los algoritmos PQL y LA.

El MM obtenido está basado en el método de simulación de momentos propuesto por Jiang

(1998). Este método es computacionalmente atractivo y proporciona estimadores insesga-
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dos. Los dos últimos se usan únicamente en este capítulo a efectos comparativos. Para

su programación, se han utilizando funciones implementadas en el software estadístico R.

Sin embargo, la aplicación de estas funciones se restringe únicamente a algunos modelos

mixtos más básicos y no cubre todos los procedimientos de ajuste. Para analizar el compor-

tamiento de los diferentes algoritmos de ajuste considerados, se ha desarrollado un estudio

de simulación basado en la aplicación a datos reales de pobreza en España. El análisis

concluye que los métodos PQL y LA ajustan mejor los efectos �jos, mientras que el MM

propuesto captura el parámetro de la varianza con mayor precisión.

Dada la estrecha relación entre las distribuciones binomial y Poisson, se asume que el

parámetro µd de la Poisson se puede descomponer como producto de la variable exposición

o tamaño, νd, y una función de probabilidad pd. Como νd se supone conocida, el parámetro

pd determina unívocamente el parámetro de la Poisson µd. Por lo tanto, a lo largo de la

memoria nos centramos en obtener un estimador de pd, al que denominamos parámetro

objetivo.

Para estimar el parámetro objetivo, hemos obtenido el EBP bajo el modelo de Poisson mixto

de área. La metodología estadística fue tomada y adaptada de Jiang and Lahiri (2001) y

Jiang (2003), donde se desarrollan EBPs en el contexto de los modelos mixtos logísticos y

GLMMs respectivamente. Además de los EBPs se consideran, y analizan empíricamente a

través de diversos estudios de simulación, dos estimadores plug-in (usando MM y PQL). A

pesar de la inconsistencia del algoritmo PQL, el estimador plug-in de pd obtenido usando

este método de ajuste es competitivo, especialmente cuando el parámetro de la varianza es

pequeño. Además, su carga computacional es menor.

Como medida de precisión del EBP propuesto, se considera el MSE. La estimación del

MSE bajo los modelos mixtos no es una tarea fácil. En este trabajo hemos adaptado

los cálculos del MSE dados por Jiang and Lahiri (2001) y Jiang (2003) al contexto de

los modelos de Poisson mixtos de área. Concretamente, proporcionamos dos estimadores

analíticos del MSE, con y sin término de corrección de sesgo. Dado que en la práctica

los estimadores analíticos del MSE son computacionalmente exigentes, proporcionamos

también un estimador bootstrap basado en el procedimiento bootstrap introducido por

González-Manteiga et al. (2007) bajo el modelo logístico mixto. Se ha realizado un estudio

de simulación para investigar empíricamente el comportamiento de los estimadores del

MSE propuestos. El término de corrección de sesgo es computacionalmente intensivo y los

resultados obtenidos por los estimadores sesgo corregidos son similares a los obtenidos sin

corrección.
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Finalmente, se aplica la metodología desarrollada a los datos de la Encuesta de Condiciones

de Vida del año 2008 y de incendios forestales en Galicia en verano del 2007. En la primera

aplicación se propone el EBP para estimar la proporción de pobreza en España, pues sus

resultados son más satisfactorios que los obtenidos con el estimador directo. Se concluye

que las mayores tasas de pobreza se encuentran en las provincias del sur y del oeste del

país. Las estimaciones de la raíz del error cuadrático medio relativo (RRMSE) obtenidas

son menores del 20.25% en todas las provincias. En cuanto a la aplicación a datos reales

de incendios, se utiliza el estimador plug-in con LA, obteniendo una impactante mejora

respecto al estimador sintético bajo el modelo de efectos �jos.

Capítulo 3: Modelo de Poisson mixto con efectos SAR(1)

Cuando las variables auxiliares relacionadas con la variable objetivo están disponibles a

nivel de área, el modelo de Poisson mixto de área básico enlaza todos los dominios para

mejorar la estimación en un área particular, es decir, toma prestada la fuerza de otras

áreas. El modelo básico posee efectos aleatorios que tienen en cuenta la variabilidad en-

tre dominios no explicada por las variables auxiliares. Este modelo asume que los efectos

aleatorios del dominio son independientes. Sin embargo, en las aplicaciones socioeconómi-

cas, ambientales y epidemiológicas, las estimaciones de las áreas más cercanas pueden ser

más parecidas que las de las áreas más alejadas. De hecho, Cressie (1993) muestra que no

emplear modelos espaciales puede conducir a inferencias ine�cientes cuando las variables

auxiliares no explican la correlación espacial de la variable de estudio.

En SAE, la modelización de la correlación espacial entre diferentes áreas permite tomar

prestada la fuerza de las áreas más próximas. Sin embargo, no existen trabajos que se

ocupen de cálculo del EBP bajo GLMMs espaciales. Es por ello que en este capítulo

se estudia el modelo de Poisson mixto de área con efectos aleatorios correlados según un

proceso SAR(1). Bajo este modelo, se obtiene el estimador MM. Su comportamiento se

investiga empíricamente a través de un estudio de simulación basado en la aplicación a

datos reales de pobreza en Galicia durante 2013.

Para estimar el parámetro objetivo se propone el EBP. Además, dada su complejidad,

se propone también una aproximación. Ambos estimadores se analizan empíricamente a

través de un estudio de simulación y se comparan frente al plug-in. Concretamente, en

el estudio se analiza el BP, EBP y dos estimadores plug-in (bajo el contexto teórico y

real). Estos estimadores se comparan, a su vez, frente a los obtenidos bajo el modelo de

Poisson mixto de área básico. El objetivo, además de investigar el comportamiento de los
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estimadores, es analizar la pérdida de e�ciencia cuando no se tiene en cuenta la correlación

espacial. Los resultados obtenidos muestran que la aproximación del EBP es competitiva,

ya que proporciona estimaciones insesgadas y su MSE es menor que el del original. Los

estimadores basados en el modelo de Poisson mixto de área básico muestran un claro sesgo.

Se ha usado la aproximación del EBP para estimar la tasa de pobreza de mujeres en

Galicia por comarcas. El estimador propuesto se compara frente a otras alternativas como

el estimador sintético o el estimador directo. Los resultados obtenidos sugieren que la

aproximación del EBP se comporta mejor. Las estimaciones obtenidas rebelan que los

mayores niveles de pobreza en mujeres se concentran en comarcas del sur y del oeste de

la comunidad. El porcentaje medio de mujeres bajo el umbral pobreza en Galicia es del

16.89% y este se obtiene con un error medio del 13.23%. En cuanto a la aplicación a

datos reales de incendios forestales, se usa el estimador plug-in para modelar el número de

incendios forestales en Galicia por áreas forestales durante el verano de 2008. Los resultados

obtenidos muestran una clara mejora respecto a las técnicas tradicionales. Las áreas con

mayor número de incendios se concentran en el sur y en zonas costeras del norte y oeste de

la comunidad. La tasa de error media obtenida es del 25.98%.

Capítulo 4: Modelo de Poisson mixto de área con efectos temporales

En los últimos años se almacena una gran cantidad de información, en particular a lo largo

del tiempo, para estudiar el comportamiento de variables de interés. Por otro lado, las

técnicas de SAE son importantes cuando el nivel de desagregación es muy alto y los esti-

madores directos no se comportan tan bien como se necesita. Este capítulo combina estas

dos necesidades. Además, se proporciona una metodología estadística para estimar carac-

terísticas poblacionales a un nivel su�cientemente desagregado por cada instante temporal.

Algunos trabajos destacados en la literatura son Rao and Yu (1994), donde se introduce

una extensión del modelo FH para datos transversales. Los estimadores propuestos por

Pfe�ermann and Burck (1990); Ghosh et al. (1996); Datta et al. (2002); Saei and Chambers

(2003); You et al. (2001); Esteban et al. (2012a,b) y Marhuenda et al. (2013), entre otros,

aprovechan los dos niveles para proporcionar estimaciones en áreas pequeñas con buenas

propiedades.

Este capítulo extiende el modelo propuesto en Boubeta et al. (2016b), incluyendo efectos

temporales. Concretamente se consideran cuatro modelos. Los dos primeros incorporan

efectos temporales independientes y los otros dos asumen un proceso autorregresivo de or-

den uno. Los modelos resultantes se ajustan por MM. Diversos estudios de simulación se
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llevan a cabo para analizar el efecto del número de dominios e instantes temporales en el al-

goritmo de ajuste. Para cada uno de los modelos anteriores se obtienen los correspondientes

EBPs. Además de los EBPs, se proporcionan predictores plug-in y ambos se comparan en

un estudio de simulación. Los resultados obtenidos sugieren que el EBP es una buena alter-

nativa, ya que su sesgo y MSE son, en general, menores que los obtenidos con el predictor

plug-in. Además, su tiempo computacional es mucho menor que el del plug-in propuesto,

que requiere calcular dos EBPs para ambos efectos aleatorios.

Para estimar el MSE del EBP, proponemos un procedimiento bootstrap basado en un boot-

strap paramétrico. La metodología desarrollada se aplica a los datos de pobreza en Galicia

durante 2010−2013 y de incendios forestales en Galicia durante 2007−2008. El objetivo de

ambas aplicaciones es estudiar la evolución de la proporción de pobreza por comarca-sexo

y el número de incendios forestales por áreas a lo largo del tiempo respectivamente. En

ambos casos, el parámetro de la varianza asociado a los efectos aleatorios del dominio es no

signi�cativo, por lo que se consideran las versiones simpli�cadas del modelo temporal. En

la aplicación a datos de pobreza se considera el EBP y en la aplicación a datos de incendios

se considera el predictor plug-in. En el primer caso el parámetro de correlación tempo-

ral es no signi�cativo y por lo tanto el modelo resultante es un modelo simpli�cado con

independencia temporal, mientras que en el segundo se recomienda usar un modelo tempo-

ral simpli�cado con correlación AR(1) para modelar el número de incendios forestales en

Galicia. En ambos casos, se obtiene una importante mejora cuando uno usa modelos más

complejos incorporando efectos aleatorios.

Capítulo 5: Modelo de Poisson mixto de área con efectos espacio-

temporales

Los modelos de Poisson mixtos de área constituyen una buena herramienta para modelar

variables respuesta de conteo. Sin embargo, el modelo de Poisson mixto de área básico

(Boubeta et al., 2016b) tiene importantes limitaciones, ya que no tiene en cuenta compo-

nentes temporales o estructuras de correlación espacial complejas. Por ello, se consideran

diversas extensiones del modelo de Poisson mixto de área básico, dando lugar a modelos

cada vez mas complejos que permiten adaptarse mejor a las necesidades de los datos reales.

Especí�camente, en el Capítulo 3 se generaliza el modelo de Poisson mixto básico incorpo-

rando una estructura espacial SAR(1) y en el Capítulo 4 se proporcionan varias extensiones

al marco temporal. En este capítulo se incorporan ambas extensiones en un único modelo,

un modelo de Poisson mixto espacio-temporal, que incorpora tanto correlación espacial
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como componente temporal.

Extensiones espacio-temporales del modelo FH han sido propuestas, entre otros, por Singh

et al. (2005); Pereira and Coelho (2012) o Marhuenda et al. (2013). Estos autores con-

sideran una estructura de correlación espacial SAR(1) y un proceso AR(1) para la com-

ponente temporal. Esteban et al. (2016) presentan un nuevo modelo espacio-temporal

suponiendo efectos aleatorios correlados según un proceso MA(1). Los autores citados apli-

can LMMs espacio-temporales al contexto de estimación en áreas pequeñas. Sin embargo,

este manuscrito trata GLMMs en lugar de LMMs.

Para ajustar los parámetros del modelo, se propone el estimador MM y se diseña un es-

tudio de simulación para analizar empíricamente la in�uencia de los instantes temporales.

Además, se estudia la aplicabilidad de los EBPs a la estimación de recuentos y proporciones

por dominios. Dada la complejidad computacional de los estimadores obtenidos, se propo-

nen diferentes alternativas y aproximaciones. El estimador propuesto se compara frente a

un estimador plug-in. Los resultados obtenidos sugieren que el estimador propuesto tiene

un mejor rendimiento ya que arroja, en general, un menor sesgo y RMSE. Además, su

tiempo de computación es sustancialmente menor.

La metodología desarrollada en este último capítulo se aplica a los datos de incendios en

Galicia por áreas forestales durante el periodo 2007 − 2008. Se observa una clara mejora

cuando uno usa un modelo de mayor complejidad incorporando efectos aleatorios. Además,

estos resultados se comparan con los obtenidos bajo el modelo temporal del Capítulo 4.

En este caso, recomendamos usar un modelo espacio-temporal para analizar el número de

incendios forestales en Galicia durante el citado periodo, ya que proporciona un menor

MSE.

Para cada uno de los modelos considerados a lo largo de la memoria, se ha implementado

en R tanto el algoritmo de ajuste del método de los momentos como los estimadores del

parámetro objetivo propuestos, es decir el EBP y un predictor plug-in. El estimador MM

es computacionalmente atractivo y proporciona estimaciones consistentes. En cuanto a los

dos estimadores del parámetro objetivo considerados, el EBP tiene, en general, un mejor

rendimiento. La carga computacional de ambos estimadores bajo los modelos introducidos

en los Capítulos 2 y 3 es similar. Sin embargo, bajo los modelos introducidos en los

Capítulos 4 y 5, el EBP es sustancialmente más rápido puesto que el plug-in propuesto

requiere calcular dos EBPs (uno por cada efecto aleatorio).
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