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compañeiro do grupo co que máis traballei e que me proporcionou os problemas

de biolox́ıa de sistemas a optimizar nesta tese; ó profesor Jose Egea, tanto polas
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Investigacións Mariñas pertencente ao CSIC en Vigo, polo uso da súa infraestrutura
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Resumo

O obxectivo da biolox́ıa de sistemas computacional é xerar coñecemento sobre

complexos sistemas biolóxicos a través da combinación de datos experimentais con

modelos matemáticos e técnicas avanzadas de computación. O desenvolvemento de

modelos dinámicos (cinéticos), tamén coñecidos como enxeñeŕıa inversa, é un dos

temas chave nesta área. Nos últimos anos, moitas investigacións centráronse no es-

calado destes modelos, facendo da estimación dos parámetros destes modelos, tamén

coñecida como calibración de modelos, unha tarefa complexa. Esa complexidade re-

quire o uso de ferramentas e métodos eficientes para acadar bos resultados nun tem-

po cálculo razoable. En xeral, para resolver este tipo de problemas úsanse métodos

de optimización global, e en particular as metaheuŕısticas xurdiron como métodos

eficientes para resolver os problemas máis custosos. Con todo, para a maioŕıa das

aplicacións reais, as metaheuŕısticas áında requiren moito tempo de cálculo para

obter resultados aceptábeis.

Nesta tese preséntase o deseño, implementación e avaliación de novas metaheuŕısti-

cas paralelas, especializadas en resolver problemas de estimación de parámetros den-

tro do contexto da biolox́ıa de sistema. En concreto, propóñense novas metaheuŕısti-

cas baseadas nos algoritmos de avaliación diferencial e de procura dispersa. As no-

vas propostas teñen como obxectivo acadar un equilibrio entre as capacidades de

exploración e explotación dos algoritmos. Ademais, demostran como a cooperación

entre procuras concorrentes mellora o comportamento dos algoritmos, mellorando

a calidade das solucións e diminúındo o tempo de execución. Tamén estudáron-

se estratexias adaptativas para aumentar a robustez das propostas. Na avaliación

usáronse tanto arquitecturas HPC tradicionais como novas infraestruturas na nube.

Obtivéronse moi bos resultados con problemas de optimización de grande dimensión

e complexidade.
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Resumen

El objetivo de la bioloǵıa de sistemas computacional es generar conocimiento

sobre complejos sistemas biológicos mediante la combinación de datos experimen-

tales con modelos matemáticos y técnicas avanzadas de computación. El desarrollo

de modelos dinámicos (cinéticos), también conocido como ingenieŕıa inversa, es uno

de los temas clave en este campo. En los últimos años, ha surgido un gran interés

en el escalado de estos modelos cinéticos, haciendo de la estimación de parámetros,

también conocida como calibración de modelos, una tarea con una gran dificultad,

que requiere el uso de herramientas y métodos eficientes para alcanzar buenos re-

sultados en un tiempo razonable. En general, para resolver estos problemas se usan

métodos de optimización global. En concreto, las metaheuŕısticas surgen como al-

goritmos eficientes a ser utilizado en los problemas más complejos. Sin embargo, en

la mayoŕıa de las aplicaciones reales, las metaheuŕısticas todav́ıa requieren mucho

tiempo de cálculo para obtener resultados aceptables.

Esta tesis presenta el diseño, implementación y evaluación de nuevas metaheuŕıs-

ticas paralelas, especializadas sobretodo en resolver problemas de estimación de pará-

metros en bioloǵıa de sistemas. En concreto, se proponen nuevas metaheuŕısticas ba-

sadas en los algoritmos de evolución diferencial y de búsqueda dispersa. Las nuevas

propuestas tienen como objetivo lograr un equilibrio entre las capacidades de explo-

ración y explotación de los algoritmos. Además, demuestran como la cooperación

entre búsquedas concurrentes mejora el comportamiento del algoritmo, mejorando

la calidad de las soluciones y disminuyendo el tiempo de ejecución. También se han

estudiado estrategias adaptativas para aumentar la robustez de las propuestas. Pa-

ra la evaluación se han usado tanto arquitecturas HPC tradicionales como nuevas

infraestructuras en la nube. Se han obtenido muy buenos resultados en problemas

de gran dimensión y complejidad.
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Abstract

The aim of computational systems biology is to generate new knowledge and

understanding about complex biological systems by combining experimental data

with mathematical modeling and advanced computational techniques. The devel-

opment of dynamic models (also known as reverse engineering) is one of the current

key issues in this area. In recent years, research has been focused on scaling-up

these kinetic models. In this context, the problem of parameter estimation (model

calibration) remains a very challenging task. The complexity of the underlying

models requires the use of efficient solvers to achieve adequate results in reasonable

computation times. Global optimization methods are used to solve these types of

problems. In particular, metaheuristics have emerged as an efficient way of solving

these hard global optimization problems. However, in most realistic applications,

metaheuristics still require a large computation time to obtain acceptable results.

This Thesis presents the design, implementation and evaluation of novel parallel

metaheuristics with the focus on parameter estimation problems in computational

systems biology. In particular, we propose new cooperative metaheuristics based on

the well known Differential Evolution and Scatter Search algorithms. The design of

the novel approaches aim to achieve a proper balance between exploration (global

search) and exploitation (local search) abilities. We show how the cooperation be-

tween parallel searches improves the behavior of the individual optimizers, improving

the quality of the obtained solutions while decreasing the time-to-solution. We also

explore adaptive strategies in order to increase the robustness of the algorithms. We

present encouraging results for the proposed metaheuristics considering very chal-

lenging large-scale benchmark problems. Both traditional high performance com-

puting (HPC) parallel and distributed architectures and new cloud infrastructures

have been used to evaluate the proposals.
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Preface

Many key problems in computational systems biology and bioinformatics can

be formulated and solved using a global optimization framework. The complex-

ity of the underlying mathematical models requires the use of efficient solvers in

order to obtain satisfactory results in reasonable computation times. Metaheuris-

tics are popular stochastic methods which are able to locate the vicinity of the

global solution without having to explore all the search space, reducing the number

of evaluations and, thus, the computational time. However, these stochastic al-

gorithms still require excessive computational effort in many realistic applications,

such as those considered in this Thesis, where we try to solve non-linear program-

ming problems (NLP) and mixed-integer non linear problems (MINLP) subject to

nonlinear dynamic equality and inequality constraints, a very complex task due to

the multi-modal and non-convex nature of these optimization processes.

Current multiprocessor infrastructures such as computational clusters, super-

computers, clouds facilities or GPUs, and, furthermore, classical parallelization

strategies such as MPI or openMP, offer great opportunities to improve the per-

formance of classical metaheuristics. The parallelization of metaheuristics pursues

one or more of the following goals: increase the size of the problems that can be

solved, speed-up the computations, and/or attempt a more thorough exploration of

the solution space. However, achieving an efficient parallelization of metaheuristics

is usually a complex task, since the search for new solutions depends on previous

iterations of the algorithm, which not only complicates the parallelization itself but

also limits its scalability.

This Thesis proposes and evaluates different distributed metaheuristics, modified

through high performance computing (HPC) techniques, and applied to address NLP

xv
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or MINLP problems in current challenging optimization processes within the field

of computational systems biology.

Work methodology

This Thesis follows a classical approach in scientific and technological research:

analysis, design, implementation and evaluation. Thus, the Thesis starts with the

analysis of the importance of global optimization processes in computational systems

biology, in general, and parameter estimation problems, in particular; the state-of-

the-art of metaheuristics applied to these kinds of problems; and the feasibility and

impact analysis of using HPC solutions.

The first proposed parallel metaheuristic is based on an evolutionary method

called Differential Evolution (DE), which has received a lot of attention during the

last decade. In this Thesis, we present several enhancements to DE based on the

introduction of additional algorithmic steps and the exploitation of parallelism. In

particular, we propose an asynchronous parallel implementation of DE which has

been extended with improved heuristics to exploit the specific structure of parameter

estimation problems in computational systems biology. The proposed method is

evaluated with different types of benchmarks problems, obtaining excellent results

both in terms of quality of the solution and regarding speedup and scalability.

Then, a novel distributed metaheuristic is proposed, extending in several ways

another popular algorithm, enhanced Scatter Search (eSS). We propose a self-

adaptive asynchronous Cooperative enhanced Scatter Search (saCeSS) based on

the parallel execution of different eSS threads and the asynchronous cooperation

between them, the exchange of information being driven by quality of the solution

obtained in each process, rather than by an elapsed time. This method incorporates

several new key mechanisms: asynchronous cooperation between parallel processes;

coarse and fine-grained parallelism; and self-tuning strategies, where the different

settings of the metaheuristic change in execution time depending of the successes

and failures of each distributed process. Several challenging parameter estimation

problems from the domain of computational systems biology are used to assess the

efficiency of the proposal, obtaining encouraging results in the scalability, robustness
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and performance of the method.

Furthermore, a set of modifications are applied to the proposed saCeSS algorithm

to handle MINLP and mixed-integer dynamic optimization (MIDO) problems, two

extremely challenging classes of problems. The new proposal obtains a good scal-

ability and an important reduction in the distribution dispersion of the achieved

results for these problems.

Finally, besides the evaluation in local clusters, the proposed techniques have also

been assessed in a cloud infrastructure, the Azure Microsoft public cloud. Thus, the

results obtained can be particularly useful, not only for the computational systems

biology community, but also for those interested in the potential of cloud frameworks

and platforms for developing metaheuristic methods in global optimization problems

in general.

Structure of the Thesis

The Thesis is organized into five chapters:

Chapter 1 summarizes background information pertinent to the research dis-

cussed in the remainder of this Thesis. This chapter describes basic concepts

about global optimization methods in general, parameter estimation problems

in particular, metaheuristics, and HPC architectures and programming mod-

els.

Chapter 2 presents an improved DE algorithm designed to solve complex opti-

mization problems within the field of parameter estimation problems in com-

putational systems biology, since the improved local search is implemented

by means of several heuristics which exploit the structure of these kinds of

problems. The chapter describes the proposed method that also improves

the global search through an asynchronous solution based on a cooperative

island-model.

Chapter 3 describes the novel parallel metaheuristic named saCeSS, based

on an enhanced Scatter Search (eSS) method. Besides a coarse and fine-

grained parallelization, this new method incorporates self-tuning strategies
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during execution time, which results in a key mechanism to achieve a good

scalability in very difficult problems. The chapter also provides an exhaustive

evaluation of the performance obtained with the proposed saCeSS method,

and a comparison with other parallel implementations.

Chapter 4 focuses on applying saCeSS method to MINLP problems. The

chapter describes the required modifications to be performed in the method

with the aim to handle these specific kinds of optimization problems. It also

provides an evaluation of the scalability and the robustness of the algorithm

in very challenging case studies.

Chapter 5 explores and presents the performance evaluation of the previous

proposed methods in a cloud infrastructure, comparing it with the results ob-

tained in local clusters. Additionally, a preliminary comparison of the MPI

solutions proposed, that are HPC oriented, with other implementations us-

ing throughput oriented computing models, like Spark, is also shown in this

chapter.

Finally, the work is concluded by summarizing the main contributions of this

Thesis and the future research lines that can be derived from it.
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Chapter 1

Background

This chapter presents some background related to the research presented in this

Thesis. We start with a review of the state-of-the-art in high performance computing

(HPC) architectures and programming models. Then, we present a brief review of

optimization problems and methods in computational systems biology. Finally, a

section on parallel metaheuristis aims to introduce the target of this Thesis, as

well as the strategies followed in the design, implementation and evaluation of the

proposals.

This chapter intends to provide a brief yet important context for the kind of

problems that this Thesis aims to solve and the means to achieve this objective.

Take note that the related work covering alternative solutions to the ones proposed

in this Thesis is not included in this chapter, but rather presented in next chapters.

1.1. Introduction to high performance computing

Since the appearance of the first digital computers, computer engineers have

targeted increasing the speed of computer operations as one of their primary ob-

jectives. Obtaining higher operating speeds may be achieved in different ways [93]:

improving the technology used for the implementation of the computer components,

modifying the logical design of the subsystems, or improving algorithms for prob-

lem solving. A different approach to attain this goal is parallel processing [119],

1
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whose main principle is to split the computational cost of a problem into a set of

tasks that can be performed concurrently. High performance computing (HPC) can

be described as the use of parallel processing for solving complex computational

problems. The number of research fields demanding HPC solutions, such as cli-

mate science, high-energy physics, chemistry, bio-technology, etc., are continuously

increasing [86].

Employing HPC as a research tool demands at least a basic understanding of

the hardware concepts and software issues involved. The following subsections aim

to give the reader an introduction to current HPC architectures and programming

models. Also, the term cloud computing is introduced, focusing in the concept of

Infrastructure as a Service, as a way of provisioning HPC resources.

1.1.1. Trends in HPC architectures

In early computer architectures, processor operation was very simple and strictly

sequential. Soon, different approaches to parallel processing arose [93], by means of

exploiting Instruction-Level Parallelism (ILP), Data-Level Parallelism (DLP), and

Thread-Level Parallelism (TLP). In the ILP approach the various operations in-

volved in executing a single instruction can be separated into different stages, over-

lapping the execution of instructions when they are independent of one another.

Additionally, functional units can be also replicated, further enabling the execution

of instructions in parallel, such as in the superscalar and VLIW (Very Long Instruc-

tion Word) architectures. However, the improvement in the performance with this

kind of parallelism is limited. The DLP approach pursues parallelism by means of

vector architectures, and more recently graphic processor units (GPUs), that apply

a single instruction to a collection of data in parallel. The TLP approach, exploits

thread concurrency either at a core level (such as simultaneous multithreading -

SMT ), or at a multicore level on a chip.

In the early XXI century, the trend to improve the performance of micropro-

cessors focused in increasing the clock speed. At this time, microprocessors started

to be limited by the heat barrier : switching and leakage power of several hundred-

million transistor chips are so large that cooling becomes a primary effort. This

power-performance issue was solved by means of multicore processors, i.e., systems
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Figure 1.1: Microprocessors trend data over the past 40 years. Source: [110].

with several cores on a single socket. Figure 1.1 illustrates how gains in frequency

and single-thread performance have stagnated in recent years. Thus, multicore pro-

cessors have taken over, aiming to exploit the number of transistors in the chip,

that still grows exponentially following Moore’s law [142]. The multicore approach

allows performance scaling without pursuing new clock frequency increments, which

would exacerbate the heat barrier issue.

The bi-annual list of the world’s fastest, most powerful supercomputers, the

Top500 list [206], gives an interesting historical overview regarding HPC architec-

tures and performance evolution. In the 1980s, vector supercomputing dominated

HPC. The 1990s saw the rise of massively parallel processing (MPPs) and shared

memory multiprocessors (SMPs). In turn, clusters of commodity and purpose-built

processors dominated the previous decade. Today, these clusters are expanded with

computational accelerators in the form of coprocessors, such as the Intel Xeon Phi

or the GPUs. Figure 1.2 shows the evolution of the systems architecture in the

Top500 list (Figure 1.2(a)), including a demonstration of the accelerator incursion

(Figure 1.2(b)). Moreover, Figure 1.3 outlines the historical and projected per-

formance development of the systems in the Top500 list. Just a few years ago,

teraflops (1012 floating point operations/second) defined the state-of-the-art in ad-
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(a) Architecture evolution.

(b) Accelerator incursion.

Figure 1.2: Development over time according to the Top500 list [206].
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Figure 1.3: Supercomputing performance evolution according to the Top500
list [206].

vanced computing. Today, these values represent a desktop PC with a GPU or Xeon

Phi accelerator. Supercomputing is now defined by multiple petaflops (1015 flops).

If the projections hold we can expect an exaflop system at around 2020.

Most of the current parallel computational infrastructures are classified, following

the Flynn taxonomy [73], as MIMD (Multiple Instruction Multiple Data) machines.

There are a large variety of MIMD systems, that is to say, the way in which the

processors communicate with the memory subsystem, that significantly determines

the performance of a multiprocessor system, the usual way to classify multiprocessor

systems [93]:

Shared-memory computers. These are systems with multiple cores/processors,

sharing among them the same physical address space. Figure 1.4 shows an
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CACHE CACHE

Figure 1.4: Example of shared-memory architecture. Adapted from [86].

example for this type of machine. The user is not concerned with where the

data is stored, as there is only one memory accessed by all cores on an equal

basis.

Distributed-memory computers. This scheme has multiple cores, each of them

with its own associated memory. Figure 1.5 shows a simplified block diagram

of a distributed-memory parallel computer. The cores are connected by some

network and may exchange data among their respective memories when re-

quired. In contrast to shared memory machines, the user must be aware of the

location of the data and will have to move these data explicitly when needed.

Hierarchical (hybrid) computers. Multiprocessors can also be designed neither

of the shared-memory nor of the distributed-memory type but a mixture of

both. That is, shared-memory building blocks are connected via a fast network

(see Figure 1.6), configuring a global distributed-memory multiprocessor where

each node has shared-memory properties. The concept is actually more generic

and can also be used to describe any system with a mixture of different hard-

ware layers. Examples are clusters built from nodes that contains, besides the

multi-core processors, additional accelerator hardware, such as GPUs, FPGAs

(Field-programmable Gate Arrays), or general computational accelerators.
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Figure 1.5: Example of distributed-memory architecture. Adapted from [86].

CACHE CACHE CACHE CACHE

CACHECACHECACHECACHE

CACHE CACHE CACHE CACHE

CACHECACHECACHECACHE

Figure 1.6: Example of hierarchical (hybrid) scheme. Adapted from [86].
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1.1.2. Parallel programming models

Though the compiler and hardware work together to exploit instruction-level

parallelism implicitly without the programmer’s attention, the efficient programming

of modern hierarchical computers requires the restructuring of the application so

that it can exploit explicit parallelism at higher levels, such as threads, processes

or programs. Sometimes this could be an easy task, however, in many instances, it

requires a significant effort from programmers.

Parallel applications should be written following a programming model. The

simplest case of parallel execution consists of the multiprogramming model, where

several sequential programs are executed concurrently on different processors with-

out any interaction among them. However, the most interesting case is that of the

parallel programs, that consists of multiple tasks running on multiple processors

requiring cooperation between them. Basically, the following are the most popular

alternatives to develop a parallel program, nowadays:

Message-passing model: The message-passing model consists of a set of pro-

cesses that are able to communicate with each other by sending and receiving

messages. In the message-passing model of parallel computation, the processes

executing in parallel have separate address spaces. Communication occurs

when a portion of one process’s address space is copied, in a cooperative way,

into another process’s address space. This model provides the programmer

with explicit control over the location of memory in a parallel program, specif-

ically, the memory used by each process. This ability to manage memory

location can allow the programmer to achieve high performance. However,

the main drawback of message passing is that the programmer needs to pay

attention to details such as data placement on memory and the ordering of

communication. The Message-Passing Interface (MPI) [145, 161] is a library

that allows developers to write robust and efficient parallel and distributed

applications using the message-passing paradigm. MPI is, probably, the most

widely used programming framework in the HPC community.

Shared-memory model: Parallel programs running on shared memory systems

are split into several processes, called threads, that share data related to a

portion of their address space. The interaction between threads is performed
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implicitly by reading and writing shared variables. Typically, each process

can carry out the execution of a subset of iterations from a common loop, or,

more generally, each process can get its tasks from a shared queue. Currently,

openMP [203] is the de-facto standard for shared-memory parallel program-

ming.

Data Parallel Programming Model: This is a programming model inherited

from SIMD (Simple Instruction Multiple Data, following the Flynn taxon-

omy [73]) machines. Currently it may also be referred to as Partitioned Global

Address Space (PGAS) model. In this approach, address space is treated glob-

ally. Most of the parallel work focuses on performing operations on a data set.

A set of tasks work collectively on the same data structure, however, each

task works on a different partition of the same data structure. There are

currently several relatively popular parallel programming implementations (at

different levels of development) based on this model, such as Unified Parallel

C (UPC) [210], Global Arrays [79], X10 [234], and Chapel [43].

Automatic Parallelization: In this case, the compiler assumes all strategies

and decisions, generating the parallel version of the original sequential code

automatically. In general, the current automatic parallelisers provide good re-

sults when the codes to be parallelized are simple, with regular access patterns

to data. However, the automatic parallelization of complex and/or irregular

codes is an extremely hard task and there is not an efficient solution at the

moment. Several research groups are working in this field, giving rise to in-

teresting tools such as Paralax [211], Helix [39], KIR [12], TRACO [162], and

Sambamba [195].

Besides the programming model, an important feature related to the design

of parallel programs is the granularity. This is a way of measuring the degree

of parallelism exploited by the system. This property represents the number of

computations performed by processes without needing cooperation between them.

Thus, in a coarse granularity parallelization, the computational load of the program

is split into several tasks that usually requires a moderate number of communications

between them. On the contrary, fine granularity parallelization is characterized

by more intensive communication between processes, where usually relatively few

instructions are performed without needed communications.
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In this Thesis we have designed parallel algorithms to be executed in MIMD

distributed-memory multiprocessors composed of shared-memory nodes. For code

development C and Fortran languages have been used together with the MPI mes-

sage passing routines and openMP directives, so that the codes are portable to

most current machines and architectures. Depending on the algorithm at hand,

either coarse grain parallel solutions (using the MPI library) or hybrids solutions

where coarse grain strategies were combined with fine grain intensifications (using

MPI+OpenMP) have been proposed.

1.1.3. Cloud Computing

Cloud computing [14,38] is the evolution of a collection of technologies that have

been gathered together to redefine the approach for building an IT infrastructure.

Nothing is essentially new in any of the technologies employed in cloud computing,

since most of them have been already used. The cloud computing term describes a

computing paradigm, where a large pool of systems are connected in private or pub-

lic networks, to provide dynamically scalable infrastructure for application, data and

file storage. To this end, clouds are built using virtualized infrastructure technol-

ogy. Virtualization is the process of converting a physical IT resource into a virtual

one. Thus, cloud computing follows a very fundamental principal of reusability of

IT capabilities, relying on the sharing of various resources (e.g., networks, servers,

storage, applications, and services). With the advent of this technology, the cost

of computation, application hosting, content storage and delivery is reduced signif-

icantly.

A public cloud offers access to external users who are usually billed by con-

sumption using the pay-as-you-go model. Cloud Providers offer services that can

be grouped into three categories [100]: Software as a Service (SaaS), where a com-

plete application is offered to the customer as a service on demand; Platform as a

Service (PaaS), where a layer of software is encapsulated and offered as a service;

and Infrastructure as a Service (IaaS), which provides basic storage and computing

capabilities as standardized services over the network. Public IaaS cloud providers

typically make huge investments in data centers and then hire it out, allowing con-

sumers to avoid substantial capital investments and to obtain both cost-effective
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Figure 1.7: Growth of IaaS market. Source: [77]

and energy-efficient solutions [180]. IaaS accounts for less than ten percent of the

cloud market in 2016 [77]. However, it was the fastest growing cloud-based service

(see Figure 1.7), and it is expected to repeat the strong growth in 2017 as well.

Considering the demanding and dynamic nature of HPC applications, Cloud

Computing technologies represent a powerful approach to managing technical com-

puting resources [178]. The elastically scaling out to meet increased capacity de-

mands is the obvious benefit of the cloud. Besides, other features make cloud com-

puting an attractive option for meeting the needs of HPC applications. The cost

savings in the cloud can be significant. The cloud supports rapid provisioning for

particular workloads. The ability to rapidly provision new environments/clusters in

minutes is key to the success and practicality of many HPC applications, compared

to the time it can typically take to provision new hardware on-premise. Summa-

rizing, combining scale and elasticity creates a capability for HPC cloud users that

does not exist for centralized shared HPC resources. Each HPC user in the cloud

can have access to their own set of HPC resources, such as compute, networking,

and storage resources for their own specific applications with no need to share the

resources with other users. They have zero queue time and can create systems

architectures that their applications need.
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In spite of the previous commented benefits, some challenges still remain for

the adoption of cloud in HPC applications [178]. The most important are security

and performance. Security remains a significant barrier to adoption, however the

issue resides primarily in users’ trust and perception rather than limitations in ca-

pability and architecture of various cloud platforms. Regarding performance, in the

last decade, several researchers have studied the performance of HPC applications

in cloud environments [63, 66, 70, 102, 147]. Most of these studies use classic MPI

benchmarks to compare the performance of MPI on public cloud platforms. These

works conclude that the lack of high-bandwidth, low-latency networks, as well as the

virtualization overhead, has a large effect on the performance of HPC applications

on the cloud. It is in response to these issues that some cloud providers, such as

Amazon [11] or Microsoft Azure [139], have recently provided compute nodes which

utilize hardware found in HPC clusters and that assert to be optimized for running

HPC applications.

Programming frameworks in the cloud

New programming environments are being proposed to deal with large scale

computations on the cloud. These new distributed frameworks provide high-level

programming abstractions that simplify the development of distributed applications

including implicit support for deployment, data distribution, parallel processing and

run-time features like fault tolerance or load balancing.

From the new programming models that have been proposed to deal with large

scale computations on cloud systems, MapReduce [53] is the one that has attracted

more attention since its appearance in 2004. In short, MapReduce executes in par-

allel several instances of a pair of user-provided map and reduce functions over a

distributed network of worker processes driven by a single master. Executions in

MapReduce are made in batches, using a distributed filesystem (typically HDFS) to

take the input and store the output. MapReduce has been applied to a wide range

of applications, including distributed pattern-based searching, distributed sorting,

graph processing, document clustering or statistical machine translation among oth-

ers. However, when it comes to iterative algorithms MapReduce has shown serious

performance bottlenecks [64] mainly because there is no way of efficiently reusing

data or computation from previous iterations. New proposals, not based on MapRe-
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duce, like Spark [235] or Flink, which has its roots in Stratosphere [9], are designed

from the very beginning to provide efficient support for iterative algorithms.

Spark provides a language-integrated programming interface to resilient dis-

tributed datasets (RDDs), a distributed memory abstraction for supporting fault-

tolerant and efficient in-memory computations. According to [235] the performance

of iterative algorithms can be improved by an order of magnitude when compared

to MapReduce.

In Chapter 5 of this Thesis we explore the feasibility of deploying our experi-

ments on clouds, specifically on the Microsoft Azure public cloud. A performance

evaluation has been carried out, comparing the obtained results with those of the

local clusters. Besides, a preliminary comparison of one of the metaheuristics pro-

posed, that is HPC oriented, with other similar implementation using Spark, that

is throughput oriented, is also performed.

1.2. Optimization in computational systems

biology

Molecular biology has achieved great progress since the middle of the last cen-

tury, produced by the advent of new technologies and techniques. These advances

have allowed identifying and studying those components which are part of biolog-

ical systems, such as genes, nucleic acids, proteins, etc. However, this knowledge

is not enough to provide an understanding of the relationships between molecu-

lar components of the entire system, such as in the metabolic networks or cell

signaling networks. Hence, systems biology arises to be in charge of accomplish-

ing the study of biological systems as an entire system, studying those complex

interplays among molecular components via the developing of mathematical mod-

els, which are analysed with the aim of obtaining biological predictions and new

knowledge. The concept of systems biology has been widely used from year 2000

onwards [56, 114, 115, 233], being a very multidisciplinary field, where several tech-

niques and methods from systems engineering, statistics, computational science,

computational biology, and molecular biology, are combined to obtain results in

areas such as genomic, bioinformatics or analysis of systems’ dynamics.
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The emergence of systems biology contributes to develop a system-level abstrac-

tion to understand biological systems, using new advances in software and computa-

tion which have enabled the creation and analysis of very useful biological models. In

this Thesis, we focus on problems of computational systems biology, that is, a branch

of systems biology that analyses biological data via computational techniques to ob-

tain system-level approaches.

One of the main targets in systems biology is understanding the typical cell

functions, such as division, differentiation, growth and apoptosis, which are temporal

processes that can be handled as dynamic systems. Dynamical systems theory and

control theory, commonly used in many branches of engineering and mathematics,

can then be applied to these dynamical systems, so that they can be described

by means of mathematical models. In particular, optimization plays a key role

in many problems related to the modeling and design of biological systems [19].

Thus, we begin this section with an introduction to several basic concepts, related

to optimization problems in computational systems biology applications, that can

help readers unfamiliar with mathematical optimization. Then, we will describe the

most popular global optimization methods to solve these optimization problems,

focusing on metaheuristics.

1.2.1. Optimization problems

The optimization process consists in locating the best solution or optimum inside

of a topology or search space described by one or more mathematical functions.

Optimization problems [130,196] can be defined through the couple (S, f), being S

the set of all feasible solutions, and f : S → R the function cost or objective function,

obtaining a fitness value for each solution s ∈ S. The objective functions are subject

to constraints, these being requirements that must be met, usually expressed as

equalities and inequalities.

Each solution s ∈ S contains a set of decision variables, which can be continuous,

if they are represented by real numbers, or discrete, if they are represented by integer

numbers. In many cases, there is a mix of continuous and integer decision variables.

These variables can adopt different values within search space during the search

of the optimum, determining the fitness value returned by objective function. The
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objective function is optimized (searching for a minimum or maximum) locating

their global optimum: being s∗ ∈ S, solution s∗ is a global optimum if it has a

better objective function than all the solutions of the search space, that is, ∀s ∈
S, f(s∗) ≤ f(s) (in minimization case).

Optimization problems can be categorized in different models, such as combi-

natorial optimization models, constraint satisfaction models, non-analytic models,

or mathematical programming models. Those based on mathematical programming

are the most popular ones, and can be further classified in linear and nonlinear

models, depending if the objective function and the constraints were linear or not

with respect to the decision variables.

In mathematics, when a function is lineal, the surface defined is a convex polyhe-

dron, with a unique optimum solution (unimodality), i.e. with a unique maximum

or minimum. However, when a function presents nonlinearities, that might imply

nonconvexity, results in potential presence of multiple local solutions (multimodal-

ity) in the search space. Simple examples of unimodal and multimodal surfaces are

shown in Figure 1.8.

Mathematical programming problems can be classified (see Figure 1.9) according

to the properties described by their functions, such as the existence of nonlinearities,

the domain of the variables, or the presence of differential equations as constraints

and time dependent decision variables.

Linear programming

Mathematical optimization problems based on linear programming (LP) can be

stated as:

minimize cTx

subject to A x = b

x ≥ 0

where x is a n-dimensional vector of decision variables, cTx is the objective function

to minimize, cT is the transpose of coefficient matrix of the cost function, A and

b are, respectively, the coefficient matrix and vector of the constraints. Typically,
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a LP problem presents a very simple scheme. The feasible region of the problem

is convex, so that every local optimum represents a global optimum (unimodality),

and the cost function is easy to solve.

Nonlinear programming

In models based on nonlinear programming (NLP), the complexity increases

due to the nonlinearity of the objective function and constraints. A NLP problem

consists in:

minimize f(x)

subject to hi(x) = 0, i=1,2, ..., m

gj(x) = 0, j=1,2, ..., p

x ∈ S

where x is a n-dimensional vector of continuous decision variables, containing values

within the continuous subset S. Then, f is the cost function of the problem and the

functions hi and gj are constraints. The presence of nonlinearities in the objective

and constrains might imply nonconvexity, which can induce multimodality in the

topology.

NLP problems are much more difficult to solve than LP problems, specially for

large dimensions. The appropriate algorithms for solving LP problems, will obtain

little success when applied to NLP problems, even for a medium or a small problem

dimension. Due to non-linearity, non-convexity, multi-modality, and ill-conditioning

in the topology described by the objective functions, many NLP problems are NP-

hard (non-deterministic polynomial-time hard), and thus, very difficult to solve.

Mixed-integer nonlinear programming

When an optimization problem presents nonlinearity and the domain of the

variables can be discrete or continuous, we talk about mixed integer nonlinear pro-

gramming (MINLP) problems [35]. These problems can be described by:
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minimize f0(x, y)

subject to fj(x, y) ≤ 0, j= 1,2,...,p

x ∈ Zn+
y ∈ Rm

+

where f0(x, y) is the objective function, fj are a set of p constraints, x is a vector of

decision discrete variables with dimension n, and y is a vector of decision continuous

variables with dimensionm. Besides, MINLP can be convex when all the functions fj

are convex, or non-convex otherwise. Both convex and non-convex MINLP problems

are NP-hard. However, non-convex MINLPs are extremely hard to solve compared

to NLP and convex MINLP problems.

Dynamic optimization problems

In addition to the problems described above, a new type of optimization is de-

manded to handle dynamic behaviors appearing in important phenomenas in many

real-life applications. Dynamic optimization [21] problems (DO), also called opti-

mal control (OC) problems, arises to obtain the optimal solution in systems whose

dynamics are mapped by differential equations as constraints and time-dependent

decision variables.

DO problems consider the computation of time-dependent conditions (controls,

stimuli) and time-independent parameters so as to optimize (minimize or maxi-

mize) a performance index J(x,u) while satisfying a set of dynamic and algebraic

constraints. Mathematically, it may formulated as follow:

J(x,u) = Θ(x(tf )) +

∫ tf

t0

Φ(x(t),u(t), t)dt (1.1)

subject to:

dx/dt = Ψ(x(t),u(t), t) (1.2)

h(x(t),u(t)) = 0 (1.3)

g(x(t),u(t)) ≤ 0 (1.4)
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xL ≤ x(t) ≤ xU (1.5)

uL ≤ u(t) ≤ uU (1.6)

where J(x,u) is the cost function, dx/dt is a set of ordinary differential equality

constraints, x is the vector of state variables with initial conditions x(t0) = x0, u(t)

is the vector of real valued control variables, h and g a set of algebraic and inequality

constraints, and xL, xU , uL, uU correspond to the lower and upper bounds for the

control variables and state parameters.

Mixed-integer dynamic optimization

When part of the decision variables of a DO problem includes discrete val-

ues, these formulations belong to the class of mixed-integer dynamic optimization

(MIDO) problems, also called mixed-integer optimal control problem (MIOC). The

general MIDO problem considers the computation of time dependent conditions

(controls, stimuli), discrete decisions (binary or integer), and time-independent pa-

rameters, so as to minimize (or maximize) a performance index (cost functional)

while satisfying a set of dynamic and algebraic constraints. In mathematical form,

it is usually formulated as follows:

Find u(t), i(t), p and tf so as to minimize (or maximize):

J = Gtf (x,u, i,p, tf ) +

∫ tf

t0

F (x(t),u(t), i(t),p, t)dt (1.7)

subject to:

f(ẋ(t),x(t),u(t), i(t),p, t) = 0, x(t0) = x0 (1.8)

g(x(t),u(t), i(t),p, t) ≤ 0, l = 1,me +mi (1.9)

uL ≤ u(t) ≤ uU , (1.10)

iL ≤ i(t) ≤ iU , (1.11)

pL ≤ p ≤ pU , (1.12)

where x(t) ∈ X ⊆ Rnx is the vector of state variables, u(t) ∈ U ⊆ Rnu is the vector of

real valued control variables, i(t) ∈ I ∈ Zni is the vector of integer control variables,
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p ∈ P ⊆ Rnp is the vector of time-independent parameters, tf is the final time of the

process, me, mi represent the number of equality and inequality constraints, f is the

set of ordinary differential equations describing the dynamics of the system (plus the

corresponding initial conditions), g is the set of state constraints (path, pointwise

and final time constraints), and uL, iL, pL, uU , iU , pU correspond to the lower and

upper bounds for the control variables and the time-independent parameters.

Parameter estimation problems

A particular type of dynamic optimization problem which needs a detailed ex-

planation is parameter estimation in dynamic systems, i.e. calibration of models

composed of differential equations. Building a dynamic biological model is an iter-

ative process [20], usually represented as a cycle (see Figure 1.10). It starts with

the definition of the purpose of the model and the selection of a model framework.

Then, a mathematical structure is proposed with a set of non-measurable param-

eters. After that, these parameters are estimated in order to obtain quantitative

predictions. Finally, the model is (in)validated with new experiments, obtaining

feedback which can be subsequently used in a refinement process.

The parameter estimation step is key in this iterative model building process

and can be formulated as a mathematical optimization problem subject to the dy-

namic constraints which describe the time-dependent behavior of the system. Most

biological models are highly non-linear dynamical systems, resulting in challenging

multi-modal problems which are very difficult to solve, as described in [218].

In computational systems biology, parameter estimation seeks to obtain a deci-

sion vector p, that optimizes the cost function in order to obtain quantitative pre-

dictions which match a given set of experimental time-series data, satisfying other

possible constraints. Finding the optimal values of this decision vector p can be

represented as a NLP problem, where the objective is to minimize the cost function:

J =
nε∑
ε=1

nεo∑
o=1

nε,os∑
s=1

(ymε,o
s − yε,os (p))TW (ymε,o

s − yε,os (p)) (1.13)

where nε is the number of experiments, nεε is the number of the observables (state

variables measured experimentally), nε,os corresponds with the number of the samples
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Figure 1.10: Model building loop. Adapted from [20].

per observable per experiment, ymε,o
s are the measured data, yε,os (p) are the model

predictions, and W is a scaling matrix that balances the results of the observables.

This optimization is also subject to the following constraints:

ẋ = f(x,p, t) (1.14)

x(to) = xo (1.15)

y = g(x,p, t) (1.16)

heq(x, y,p) = 0 (1.17)

hin(x, y,p) ≤ 0 (1.18)

pL ≤ p ≤ pU (1.19)

where x is the vector of state variables, xo are the initial conditions, f is the non-

linear dynamic problem with the differential-algebraic constraints, g corresponds

with the observation function, heq and hin are equality and inequality constraints,
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and pL and pU are lower and upper bounds for the decision vector p. The equality

dynamic constraints, Eqn. 1.14-1.15, are solved as an inner initial value problem for

each decision vector. Note that Eqn. 1.17-1.18 constraints could be handled using

differential-algebraic solvers and suitable penalty functions, as described in [21]. Up-

per and lower bounds for the parameters (Eqn. 1.19) could be handled by a reflection

strategy [172] during the global phase.

All of the optimization problems described above may be applied to the field

of systems biology. Some examples of theses applications are given in Table 1.1. A

detailed discussion about optimization in computational systems biology and more

examples can be found in [19].

Most of the optimization problems handled in this Thesis are considered within

the parameter estimation procedure in dynamic models described by determinis-

tic nonlinear ordinary differential equation models. The optimization problem ob-

tained in the calibration of the model has also a NP-hard complexity, due to the

non-linearity, non-convexity, multi-modality, and ill-conditioning in the topology de-

scribed by its associate function. Thus, efficient methods are needed to solve this

problem in practice.

1.2.2. Optimization methods

As shown above, most of the problems in computational systems biology are

highly constrained and exhibit nonlinear dynamics. These properties often result in

non-convexity and multi-modality. Therefore, there is a great demand for suitable

optimization solvers for these problems.

Global optimization (GO) methods are robust alternatives to solve complex op-

timization problems, playing an increasingly important role in computational bi-

ology [84], bioinformatics [121] and systems biology [20]. They can be roughly

classified into the following classes:

Deterministic GO methods. These algorithms usually explore the entire search

space, the solution retrieved being the global optimum. However, the associ-

ated computational effort to ensure global optimality might be extremely large,

making them impractical.
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Table 1.1: Examples of applications of optimization problems in computational
systems biology. Adapted from [19].

Type Description Examples

LP Linear objective and constrains Metabolic flux balancing [163, 212];
genome scale models [173]; inference
of regulatory networks [224,225]

NLP The objective function, or some
of the constrains, are nonlinear

Parameter estimation and
metabolic engineering [136]; analy-
sis of energy metabolism [221]

MINLP Nonlinear problem with both dis-
crete and continuous decision
variables

Develop of metabolic reaction net-
works and their regulatory architec-
ture [89, 90]; inference of regulatory
interactions using time-course DNA
microarray expression data [204]

DO Optimization with differential
equations as constraints and
possible time-dependent decision
variables

Optimal experimental design [16];
discovery of biological network de-
sign strategies [2]; dynamic flux bal-
ance analysis [134]

MIDO Optimization with differential
equations as constraints and
both discrete and continuous,
and possible time-dependent, de-
cision variables

Computational design of genetic cir-
cuits [49]

Parameter
estimation
in ODEs

Model calibration minimizing
differences between predicted
and experimental values

Parameter estimation using global
and hybrid methods [18, 141, 181];
parameter estimation in stochastic
methods [179]
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Stochastic GO methods. These methods do not guarantee convergence to the

global optimum, but they usually provide near-global solutions in reasonable

computation times. The most important groups of algorithms within this cate-

gory are: adaptive stochastic methods, clustering methods and metaheuristics.

Hybrid GO methods. These methods arise from a combination of two or more

methodologies: a couple formed by a global method and a local search, the

union of global optimization solver with a deterministic method, or a set of

GO methods combined among them.

Among the different GO methods, we highlight metaheuristics, since the target

of this Thesis is the design and implementation of novel approaches in this class.

Metaheuristics

A metaheuristic [59,131,196] is an iterative generation process that guides a sub-

ordinate heuristic by combining different concepts for exploration (global search) and

exploitation (local search) of the search spaces. It uses learning strategies to struc-

ture information in order to find efficiently near-optimal solutions. Metaheuristics

allow handling NP-hard optimization problems by providing good enough solutions

in a reasonable computation time, because they do not need to explore the entire

address space. Moreover, modern metaheuristics often use hybrid approaches where

the global search includes also local searches to obtain a compromise between the

diversification provided by the global optimization method, and the intensification

obtained by the inclusion of a local method. However, there is no guarantee to find

global optimal solutions or even bounded solutions.

Metaheuristics can be described as a search through the solution domain of the

problem at hand. They are usually iterative procedures that move from a given

solution to another solution in its neighbourhood. Thus, at each iteration, a evalu-

ation moves towards solutions in the neighbourhood of the current solution, or in a

suitably selected subset. According to various criteria a number of good moves are

selected and implemented. However, the solutions implemented by metaheuristics

do not necessarily improve. Some metaheuristics, such as tabu search or simu-

lated annealing methods, usually implement one move at each iteration, while other
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Algorithm 1: Generic metaheuristic.

1 Initialization;
2 repeat
3 Neighbourhood selection;
4 repeat
5 Candidate selection;
6 Move evaluation/Neighbourhood exploration;
7 Move implementation;
8 Solution evaluation, update search parameters;

9 until Stopping criteria or initiate new global search;

10 until Stopping criteria;

methods, like genetic algorithms, may generate several new moves at each iteration.

Moves may marginally modify the solution (local search) or drastically inflect the

search trajectory (global search). A generic metaheuristic procedure is illustrated

in Algorithm 1.

Each metaheuristic has its own behaviour and characteristics. However, all of

them share a number of fundamental components and perform operations that fall

within a limited number of categories. Thus, metaheuristics can be classified at-

tending to different criteria, not exclusive between them (see Figure 1.11):

Population-based search versus single-solution based search. In population-

based algorithms, such as differential evolution (DE) or scatter search (SS),

there is a set of solutions stored in populations, which are handled and mod-

ified by the algorithm, while in single-solution based algorithms, such as in

simulated annealing (SA), a single solution evolves during the search.

Nature inspired versus non-nature inspired. Many algorithms have strategies

or schemes inspired in elements of nature, such as genetic algorithms (GAs),

ant colony optimization (ACO), particle swarm (PSO), or simulated annealing

(SA). Other methods are not nature inspired, like differential evolution (DE),

scatter search (SS), or tabu search (TS).

Iterative versus greedy. Greedy algorithms begins from an empty solution and,

at each step, a decision variable of the problem is assigned until a complete
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Figure 1.11: Classification of popular metaheuristics. Adapted from [4].

solution is reached. Iterative metaheuristics starts with one or more of solu-

tions, evolving them in each iteration using some search operators. Most of

the metaheuristics are iterative methods.

Memory usage versus memoryless methods. Some algorithms use a memory

to store information extracted during the search, such as memories in tabu

search (TS) methods.

In the past decades, metaheuristics have received increasing attention, and a large

amount of metaheuristics have arisen. Among the most well-known metaheuristics

we can find the following [31]:

Simulated Annealing (SA): inspired by the annealing technique used by the

metallurgist. The objective function of the problem, similar to the energy of a

material, is minimized, by introducing a fictitious temperature T , which is a

simple controllable parameter of the algorithm. SA is a single-solution based

algorithm that starts by generating an initial solution. At each iteration, a

new solution is randomly selected in the neighborhood. This new solution is

accepted depending on T and on the value of the objective function.
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Tabu search (TS): inspired by the human memory, and based on the premise

that problem solving must incorporate adaptive memory and responsive ex-

ploration. Various types of memories are used to remember specific properties

of the trajectory through the search space. A tabu list, that is, a short-term

memory, records the last encountered solutions and forbids these solutions from

being visited again. Additional intermediate-term memory can be introduced

to influence the move towards promising areas of the search space (intensifi-

cation), as well as long-term memory to encourage broader exploration of the

search space (diversification).

Greedy Randomized Adaptive Search Procedure (GRASP): a memory-less

multi-start metaheuristic for combinatorial optimization problems. Each iter-

ation of the GRASP algorithm consists of two steps: construction and local

search. The construction step builds a feasible solution using a randomized

greedy heuristic. In the second step, this solution is used as the initial solution

of a local search procedure.

Genetic algorithms (GAs): inspired on principles of natural selection and ge-

netics. GAs encode the decision variables in sets of solutions (chromosomes),

formed by different parts (genes) with some values (alleles). In GAs the popu-

lation evolves during the algorithm through selection, recombination, mutation

and replacement phases.

Evolution strategy (ES): that also imitates the principles of natural evolution.

It is based upon a population consisting of a single parent which produces, by

means of normally distributed mutation, a single descendant. The selection

operator then determines the fitter individual to become the parent of the next

generation.

Differential evolution (DE): one of the most popular algorithm for continu-

ous global optimization problems. It is an evolutionary algorithm which uses

vector differences for perturbing the vector population.

Particle Swarm Optimization (PSO): inspired by social behavior of bird flock-

ing or fish schooling. It starts initializing a population with random solutions,

and then searches for optima by updating generations. However, PSO has no



28 Chapter 1. Background

evolution operators, such as crossover and mutation in GAs. In PSO, the po-

tential solutions, called particles, fly through the problem space by following

the current optimum particles.

Ant Colony Optimization (ACO): inspired by the social behaviour of some

insects that present a sophisticated social structure. A set of agents (ants)

search for good solutions finding the best path on a weighted graph.

Scatter Search (SS): founded on the premise that systematic designs and meth-

ods for creating new solutions afford significant benefits beyond those derived

from recourse to randomization.

Most of these metaheuristics were initially developed for combinatorial prob-

lems, that is, for problems where the decision variables are integer. Since optimiza-

tion problems arising in computational systems biology are frequently continuous

or mixed-integer, specific adaptations must to be done to classical metaheuristics in

this context. In this Thesis, novel methods are proposed, based on the well known

Differential Evolution and Scatter Search metaheuristics.

1.3. Parallel metaheuristics

Although the use of metaheuristics allows notably reducing the computational

complexity of the search process, it still remains time consuming for many problems

in multiple domains of application. High performance computing (HPC) represents

an effective strategy to speed up the time-to-solution. Besides, as commented in Sec-

tion 1.1, thanks to recent developments in technology, the use of parallel computing

is becoming increasingly popular. As an example, current laptops and workstations

are equipped with multicore processors. Additionally, the cost/performance ratio

of HPC architectures is constantly decreasing, and, moreover, with the advent of

the cloud computing effortless access to large number of distributed resources has

become more feasible. Thus, the main target of this Thesis is the design and imple-

mentation of effective novel parallel metaheuristics to be executed in parallel and

distributed computer systems.
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Parallel computing traditionally follows from a decomposition of the total com-

putational load and the distribution of the resulting tasks to available processors.

The decomposition may concern the algorithm (functional parallelism) or the data

(data parallelism or domain decomposition). Metaheuristics as algorithms may have

limited data or functional parallelism. For example, the local search loop (lines 5-8)

of the generic metaheuristic shown in Algorithm 1 displays strong data dependen-

cies between successive iterations. However, the exploration of the solution space

(external loop in Algorithm 1), if it is based on random restarts, can be functionally

parallelized. Nevertheless, metaheuristics as problem solving methods offer other

opportunities for parallel computing. A metaheuristic algorithm started from dif-

ferent initial solutions will almost certainly explore different regions of the solution

space and return different solutions. The different regions of the solution space

explored can then become a source of parallelism for metaheuristic methods.

1.3.1. Classification of parallel metaheuristics

We adopt here the taxonomy used in [46] to describe the different parallel strate-

gies for metaheuristics. This classification employs three dimensions in the descrip-

tion of a parallel metaheuristic:

Search control cardinality : indicates how the global problem-solving process is

controlled. It specifies whether the global search is controlled by a single pro-

cess or by several processes that may collaborate or not. The two alternatives

are 1-control (1C) or p-control (pC).

Search control communications : indicates how information is exchanged among

processes and the quality of this information. It deals with the communication

protocols used for information exchange. To reflect adequately how informa-

tion is exchanged, four alternatives are identified for this dimension:

• Rigid (RS): when synchronous communication protocols are used and all

concerned processes have to stop and engage in information exchange at

moments (number of iterations, time intervals, etc.) externally deter-

mined.
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• Knowledge Synchronization (KS): when synchronous communication pro-

tocols are used but an increased level of communication permits building

and exchanging knowledge.

• Collegical (C): when asynchronous communication protocols are used,

that is, each process is in charge of its own search, as well as establishing

communications with other processes.

• Knowledge Collegical (KC): when asynchronous communication protocols

are used and the quality of the information allows for extracting new

information to guide the process.

Search differentiation: indicates the variety of solution methods involved in

the search for solutions. It specifies whether the search processes start from

the same or different solutions and if they make use of the same or different

search strategies. The four cases considered are:

• Same initial point/Population, Same search Strategy (SPSS)

• Same initial point/Population, Different search Strategies (SPDS)

• Multiple initial points/Populations, Same search Strategy (MPSS)

• Multiple initial points/Populations, Different search Strategies (MPDS)

According to this classification, the parallel metaheuristics proposed in this Thesis

can be classified as:

Search control cardinality : both 1C (case of saCeSS algorithm presented in

Chapter 3 and saCeSS2 presented in Chapter 4) or pC (case of asynPDE

algorithm presented in Chapter 2 or aCeSS, that was a preliminary version of

saCeSS, and is also commented in Chapter 3).

Search control communications : either C or KC, because all of them use

asynchronous communication protocols and in some of them the exchanged

information allows guiding the search process (case of saCeSS presented in

Chapter 3 and saCeSS2 presented in Chapter 4).

Search differentiation: MPDS, because in the approaches proposed all the

processes start from different solutions and perform different search strategies.
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Nevertheless, the implementation of all the algorithms proposed has been done

to also allow for an homogeneous configuration, that is, all of them can be also

executed as MPSS if desired.

A simpler classification of parallel metaheuristics, that can be also applied to the

novel metaheuristics proposed in this Thesis is presented in [45]:

Type 1. This source of parallelism is usually found within an iteration of the

heuristic method. The limited parallelism of a move evaluation is exploited,

or moves are evaluated in parallel. This strategy is rather straightforward and

aims solely to speed up computations, without any attempt at achieving a

better exploration or higher quality solutions.

Type 2. This approach obtains parallelism by partitioning the set of decision

variables. The partitioning reduces the size of the solution space, but it needs

to be repeated to allow the exploration of the complete solution space. Obvi-

ously, the set of visited solutions using this parallel implementation is different

from that of the sequential implementation of the same heuristic method.

Type 3. Parallelism is obtained from multiple concurrent explorations of the

solution space.

Parallel metaheuristics proposed in this Thesis attempt to combine parallelism

in the previous three groups: thanks to fine-grained parallelizations that perform

evaluations in parallel some of them are type 1; at the same time, when the popula-

tion is partitioned between different processes, they can be classified as type 2; and

finally, we attempt to explore the solution space concurrently, even using different

strategies, so they should be also considered of type 3.

1.3.2. Metaheuristics parallelization goals

In general, the parallelization of metaheuristics pursues one or more of the fol-

lowing goals:

Speed up the search. One of the main goals of the parallelization of any al-

gorithm is to reduce the execution time. In the case of metaheuristics, this
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means reducing the search time. This is specially important for some prob-

lems where there are hard requirements on the search time, such as dynamic

optimization problems and time critical control problems.

Improve the quality of the obtained solutions. Algorithm level solutions,

based on parallel cooperative processes, allow to improve the quality of the

search, because the exchange of information between cooperative metaheuris-

tics will alter their behavior in terms of searching in the landscape associated

with the problem.

Improve the robustness. A parallel metaheuristic may be more robust in terms

of solving, in an effective manner, different optimization problems and different

instances of a given problem. Robustness may also be measured in terms of

the sensitivity of the metaheuristic to its parameters.

Solve large-scale problems. Parallel metaheuristics allow solving large-scale

instances of complex optimization problems. One of the challenges of the

parallel solutions is to solve very large instances that cannot be solved with

individual searches or without parallel resources.

The solutions proposed in this Thesis aim to fulfill all these goals. The main

target will be to propose novel parallel metaheuristics that outperform the state-of-

the-art techniques for the problems considered. Thus, the evaluation of the proposals

is a key step in our work. However, it is difficult to make fair comparisons between

metaheuristics, because different conclusions can be inferred from the same results

depending on the metrics we use and how they are applied.

1.3.3. Performance evaluation

Most of the metaheuristics, whether parallel or serial ones, are evaluated empiri-

cally in an ad hoc manner, due to the difficulty in developing theoretical analysis [4].

An experimental analysis usually consists in applying the proposed algorithms to

a collection of problem instances and comparatively report the observed solution

quality and execution time.
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In deterministic optimization methods, the efficiency in terms of search time is

the main factor to evaluate the performance of the algorithms, since they guaran-

tee the global optimality of solutions. However, to evaluate metaheuristic methods,

other measures have to be considered. Because of the stochastic nature of meta-

heuristics, a number of independent experiments need to be conducted to gain suf-

ficient experimental data. Thus, the performance measures for these methods are

based on some kind of statistics.

This subsection describes the guidelines followed in this Thesis to evaluate, and

also to compare, the parallel metaheuristics proposed in a rigorous way.

Vertical versus horizontal views

There exist two different approaches for collecting data of different runs [87]:

Vertical view: a vertical approach assesses the performance for a predefined

effort. The effort may be predefined as a target execution time or as a fix

number of evaluations. Fixing a predefined effort can be pictured as drawing

a vertical line on the convergence graphs (see Figure 1.12).

Horizontal view: an horizontal approach assesses the performance by measur-

ing the time needed to reach a given target value. Fixing a target function

value can be seen as drawing an horizontal line in the convergence graphs (see

Figure 1.12).

For benchmarking algorithms the horizontal view is preferred to the vertical one,

since it gives quantitative and interpretable data: the horizontal view measures the

time needed to reach a given target function value and allows deriving conclusions

such as Algorithm A is X times faster than Algorithm B in solving this problem.

In the vertical view, there is no interpretable meaning to the fact that Algorithm A

reaches a fitness value that is X times smaller than the one reached by Algorithm B,

since there is no a priori evidence how much more difficult it is to reach a fitness

value that is X times smaller (as demonstrated in Figure 1.12).

The main goal of this Thesis is to improve the horizontal approach, however, the

vertical approach also benefits from the proposed solutions, which is interesting for
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Figure 1.12: Vertical and horizontal views illustrated in a convergence graph.
Adapted from [87].

many real world applications where the total number of evaluations is limited.

Speedup

There are different metrics to measure the performance of parallel algorithms.

Among them, the speedup is the most popular one. This metric calculates the ratio

between sequential and parallel execution times. Thus, the definition of execution

time must be faced. In a single core, a common performance metric is the CPU time

to solve the problem, that is, the time that the processor spends executing algorithm

instructions, excluding system overhead activities. However, in the parallel case,

execution time can not be considered either the sum of the CPU times on each core,

or the largest among them. Since the goal of parallelism is the reduction of the real

time, our choice for measuring the performance of the parallel code is the wall-clock

time to solve the problem, that is, the time between the starting and finishing of

the entire algorithm.

The speedup compares the sequential time against the parallel time to solve a

problem. If Tn is the execution time for a parallel algorithm using n cores, the

speedup is the ratio between the faster execution time on a single core, T1, and Tn:
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Sn =
T1

Tn

Unfortunately, for stochastic algorithms we cannot use this metric directly. The

speedup should be instead calculated using the mean execution times. Moreover,

another issue with this measure is that researchers do not agree on the meaning of T1

and Tm, and there exists different definitions of speedup depending on the meaning

of these values [4]:

Strong speedup: compares the parallel run time against the best-so-far sequen-

tial algorithm. This is the most accurate definition of speedup, but due to the

difficulty of finding the current most efficient algorithm, it is not a practical

one.

Weak speedup: compares the parallel algorithm developed by a researcher

against his/her own sequential version. This is the definition of speedup used

in this Thesis.

Additionally, two different sequential algorithms can be considered to calculate

the speedup. We can compare the execution time of the parallel algorithm against

the canonical sequential version of the algorithm (speedup versus panmixia) or we

can compare the execution time of the parallel algorithm against the same parallel

algorithm running on one core (orthodox speedup). In this Thesis, we always use

the former, that is, a speedup versus panmixia. However, it should be noted that

in this case we are comparing two clearly different algorithms, and thus, superlinear

speedups may arise when the parallel algorithm modifies the systemic properties of

the original method and outperforms the sequential algorithm.

Graphical data representation

Some visualization tools to analyze the data have to be used to complement the

numerical results presented in tables. Indeed, graphical representation of the data

allows a better understanding of the performance assessment of the obtained results.

Boxplots illustrate the distribution of the results through their five-number sum-

maries: the smallest value, lower quartile (Q1), median (Q2), upper quartile (Q3),
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and largest value. They are useful in detecting outliers and indicating the disper-

sion and the skewness of the output data without any assumptions on the statistical

distribution of the data. Violinplots, in turn, show the probability density of the

data at different values. While the boxplots only show summary statistics, the vi-

olinplots show the full data distribution. The difference is particularly useful when

the data distribution is multimodal (more than one peak). The violin plots clearly

shows the presence of peaks, their position and relative amplitude. Violinplots are

a good alternative to employ a serie of histograms. In this Thesis, a combination of

boxplots and violinplots (see Figure 1.13) are used in order to incorporate the goals

of both representations.

To clearly illustrate the goal of a proposed metaheuristic against other ap-

proaches convergence curves are frequently used. Convergence curves (see Fig-

ure 1.14) represent the logarithm of the objective function value against the ex-

ecution time. Though one can argue about the convenience of representing the

convergence curves for the best profits, or even artificial convergence curves ob-

tained by plotting the best solution found by any of the n parallel processes at every

time instant [219], in this Thesis we prefer to show the converge curves for those

experiments that fall in the median value of the results distribution, since those

are real convergence curves (that is, correspond to one of the experimental tests)

and we think they are more realistic than the ones that depicted the best profit.

The region between the lower and upper bounds of the m runs performed for each

experiment can also be shown to better illustrate the dispersion of the results (see

Figure 1.14(b)).

Statistical analysis

Most of the reported results in this Thesis try to prove that a novel proposed

metaheuristic outperforms previous attempts. In this case, the use of descriptive

statistics, such as the sample mean and the standard deviation, is not sufficient.

The comparison between two average values may be different from the comparison

between two distributions. Thus, statistical methods should be used wherever pos-

sible. The statistical test are performed to estimate the confidence of the results to

be scientifically valid.
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Figure 1.13: Example of hybrid violin/boxplot.
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Figure 1.14: Example of convergence curves.
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Figure 1.15: Statistical methods. Adapted from [4].
.

Several statistical methods and the conditions to apply them are shown in Fig-

ure 1.15. The selection of a given statistical test is driven according to the char-

acteristics of the data [4]. The first step is to decide between non-parametric and

parametric test. In theory, when the data set is non-normally distributed and the

number of experiments is below 30 we should use non-parametric methods. That is

the case in the experiments performed in this Thesis.

Among non-parametric methods, in this Thesis the Wilcoxon signed-rank test

has been used when comparing two metaheuristics, and the Kruskal-Wallis test has

been used when comparing more than two algorithms. The Wilcoxon signed-rank

test assumes that there is information in the magnitudes and signs of the differences

between paired observations. This test essentially calculates the difference between

each set of pairs and analyzes these differences. Then, the Wilcoxon rank-sum
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test can be used to test the null hypothesis that two populations have the same

continuous distribution. When more than two samples are compared, the Kruskal-

Wallis test is used, that is also based on ranked data.





Chapter 2

Enhanced parallel Differential

Evolution

Differential Evolution (DE) [194] is one of the most popular heuristics for global

optimization, and it has been successfully used in many different areas [42,48,172]. In

particular, DE remains as a widely used method for parametric identification of com-

plex models [47, 175, 241]. However, in most realistic applications, this population-

based method requires a very large number of evaluations (and therefore, large com-

putation time) to obtain an acceptable result. Thus, in order to improve the runtime

of the classic DE algorithm, we have explored two different strategies. First, includ-

ing a selected local search and other algorithmic improvements in order to enhance

the classic DE through intensification, drastically reducing the number of evalua-

tions required. Second, exploiting parallelism at different levels, so as to reduce the

computational time needed.

The organization of this chapter is as follows. Section 2.1 presents a brief

overview of the DE algorithm, while Section 2.2 covers the related work. Sec-

tion 2.3 describes the asynchronous strategy proposed to parallelize an island-based

DE algorithm. Section 2.4 describes the new heuristics for parameter estimation

problems that have been added to improve local search. The performance of the

proposed method is evaluated in Section 2.5, demonstrating its good efficiency and

scalability. Finally, Section 2.6 summarizes the main conclusions of this chapter.

41
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2.1. Differential Evolution algorithm

Differential Evolution (DE) is an iterative mutation algorithm where vector dif-

ferences are used to create new candidate solutions. Algorithm 2 shows a simple

pseudocode for the classic sequential DE.

Starting from an initial population matrix composed of NP D-dimensional solu-

tion vectors (individuals), DE attempts to achieve the optimal solution iteratively

through changes in its vectors. For each iteration, new individuals are generated in

the population matrix through mutation operations performed among individuals of

the matrix. These mutation operations depend on the mutation factor (F), which

is used in the creation of new solutions in different ways depending of the selected

mutation scheme. There are different mutation strategies (MSt) to generate new

individuals, this chapter uses some of them:

DE/best/1:

Indk ← bestPk + F · (bk − ck) (2.1)

DE/best/2:

Indk ← bestPk + F · (bk − ck) + F · (dk − ek) (2.2)

DE/rand/1:

Indk ← ak + F · (bk − ck) (2.3)

DE/rand/2:

Indk ← ak + F · (bk − ck) + F · (dk − ek) (2.4)

where −→a ,
−→
b ,−→c ,

−→
d ,−→e ∈ P are solution vectors randomly selected,

−−−−→
bestPk ∈ P is

the current best solution of the population, and
−−→
Ind = (Ind1, . . . , IndD) is the new

candidate solution created in the mutation process.

These mutation operations are applied in specific positions k of the old solution

vector of the matrix. These positions are determined through the crossover constant

(CR): if random generated value is less than CR, the mutation strategy is applied in

the position k of the current vector. Thus, candidate solutions have one part of the

old solutions that are intended to replace, and on the other hand, they have values

obtained from the mutation process.
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Algorithm 2: Differential Evolution algorithm - seqDE.

input : A population matrix P with size D x NP
output: A matrix P whose individuals were optimized

1 repeat
2 for each element in P do

3
−→a ,
−→
b ,−→c ← different random individuals from P matrix

4 for k ← 1 to D do
5 if random point is less than CR then

6
−−→
Ind(k)← −→a (k) + F (

−→
b (k) - −→c (k));

7 end

8 end

9 if Evaluation(
−−→
Ind) is better than Evaluation(

−→
P (x)) then

10
−→
P (x) =

−−→
Ind

11 end

12 end

13 until Stop conditions ;

Finally, only when the fitness value of the new candidate solution is better than

the current one, the new individual is included in the population matrix.

A population matrix with optimized individuals is obtained as output of the

algorithm. The best of these individuals are selected as solution close to optimal for

the objective function of the model.

2.2. Related work

Many researches have tried to improve DE by proposing modifications to the orig-

inal algorithm. Interesting reviews can be found in [150] and more recently in [48].

In several cases, the original DE algorithm was improved with additional algorithmic

components exploiting certain aspects of a given class of problems. In [231] a mod-

ified DE approach using generation-varying control parameters is proposed to im-

prove the search performance preventing a premature convergence to local minima.

A hybrid algorithm using DE as an evolutionary framework and a crossover-based
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local search was proposed in [152, 153]. A DE with Scale Factor Local Search was

introduced in [205] and extended in [151] for self-adaptive DE schemes. The use of

a tabu list in the DE has also been applied in recent works [120,191,193].

Several studies have considered parallel versions of the algorithm. A distributed

adaptive DE version was proposed in [236]. This algorithm was based on the island-

mode paradigm with a random communication topology for individuals exchange.

Another parallel approach was proposed in [197], based on the distribution of the

population data among different processors (slaves), which communicate through

data migrations, all of them managed by a central processor (master). The latter was

also responsible of checking the stopping criteria. The algorithm was implemented in

PVM (Parallel Virtual Machine) [78] with presumably synchronous communication,

resulting in low speed-up results.

A simple approach to asynchronous parallelization was proposed in [154], con-

sisting of a master-slave architecture with several independent processes, where the

communications were not established directly but through the filesystem. The mas-

ter process was in charge of selecting the best individuals. When the stopping con-

dition was satisfied, the slaves were stopped. Another asynchronous proposal based

on a master-slave approach is the parallel metaheuristic based on DE and simulated

annealing proposed in [155]. The master asynchronously assigns different tasks to

the slaves, thus, allowing for simultaneous evaluation of several trial solutions. The

proposal is implemented in MATLAB, using PVM for the communications between

master and slaves.

A parallel DE with asynchronous communications and an island-model scheme is

presented in [101]. Its termination criteria was controlled by a master node and was

implemented with POSIX (Portable Operating System Interface) threads. A hetero-

geneous local configuration was used, where each parallel processor had a different

mutation strategy. The results indicated an improvement in the reliability and the

performance of the algorithm with a configuration of five islands, compared to the

time spent by five sequential versions for the same optimization problems. Another

asynchronous distributed DE was presented in [13]. In this case, the algorithm also

exploits an island-model with asynchronous communication. The topology was an

unidirectional ring, where the individuals exchanged were selected randomly.
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Several other works studied improvements to island-model schemes. In [182],

a complete study about the impact on the performance of different communication

topologies of the islands was presented. These authors used a synchronous parallel

DE on a set of standard benchmarks with different topologies, concluding that ring

topology was the best option. In [226], subpopulations were grouped into two fami-

lies. The first family uses a ring topology and a best-random like migration strategy

to evolve its subpopulations. In the second one each subpopulation independently

evolves with a population size reduction strategy. The solutions generated by the

second family are moved into the first family.

Several studies suggest that randomization of the control parameters can be

a propitious mechanism for enhancing the DE performance [33]. Different random-

ization schemes have been proposed to develop self-adaptive DE frameworks and in-

vestigate the effect of changing control parameters in distributed DE [228–230,238].

Two mechanisms to avoid the loss of diversity when the size of the population is

small are described in [227]. The first one was based on shuffling: the individuals

from a specific subpopulation were randomly reorganized. The second one, an up-

date mechanism, changed and adapted scaling factors for each subpopulations. The

results indicated that these techniques obtained a very significant performance when

the dimensionality of the functions grew. An improved strategy which entails four

different scale factors updating schemes, associated to the binomial crossover in a

distributed DE structure, is presented in [229]. With the exception of one scheme in

which equally spaced scale factors are considered, in all the others the scale factors

are randomly initialized for each subpopulation. Although proper choice of a scale

factor scheme appears to be dependent on the distributed structure, each of these

simple schemes proposed has proven to significantly improve upon the single-scale

factor distributed DE algorithms.

Other parallelization strategies have appeared with the emergence of new hard-

ware and software technologies. This is the case of [240], where a DE improved

through local Pattern Search method was parallelized through CPU-GPU heteroge-

neous computing, using a cellular model scheme. Also, a parallel DE based on GPUs

is explored in [222], which employs self-adapting control parameters and generalized

opposition-based learning (GOBL) to improve the quality of candidate solutions.

In [15] a multiagent framework was proposed to create a distributed cooperative
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structure based on agents. This scheme was implemented in Java, defining a com-

munication API (Application Programming Interface) to send information to the

different agents of the environment.

In this chapter, our aim was (i) to improve the DE algorithm incorporating sev-

eral algorithmic steps which exploit the structure of parameter estimation problems,

and (ii) develop a parallel version following a cooperative asynchronous strategy. The

overall objective was to obtain a high performance implementation that achieves a

good trade-off between exploration (diversification or global search) and exploitation

(intensification or local search), which is at the core of modern metaheuristics [215].

2.3. Improving global search through an asyn-

chronous parallel cooperative scheme

To achieve an efficient parallelization of metaheuristics is usually a complex task,

since the search for new solutions depends on previous iterations of the algorithm,

which not only complicates the parallelization itself but also limits the achievable

speedup. Different strategies can be used to address this problem: attempting to

find parallelism in the sequential algorithms, preserving its behavior; finding parallel

variants of the sequential algorithms, slightly varying their behavior to obtain a

more easily parallelizable algorithm; or developing fully decoupled algorithms, where

each process executes its part without communication with other processes, at the

expense of reducing its effectiveness. The solution explored in this Thesis pursues

the development of an efficient parallel variant of the serial DE, focussed on both

the acceleration of the computation by performing separate evaluations in parallel,

and the convergence improvement through the stimulation of the diversification in

the search and the cooperation between the parallel threads.

The parallel algorithm proposed is based on the island model approach [5]. The

population matrix is divided into subpopulations (islands) where the algorithm is ex-

ecuted isolated. Phases such as selection, recombination and mutation are performed

only within each island, which implies absence of collaboration among processes.

Sparse individual exchanges are performed among islands to introduce diversity

into the subpopulations, preventing search from getting stuck in local optima. After
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m iterations, a migration phase links the different populations: selected individuals

from each island are communicated to another island. Both the migration operation

and the checking of the termination criteria imply an exchange of communications

among processes.

The simplest implementation of the parallel island DE is a synchronous algo-

rithm. The drawback of the synchronous algorithm is that processors are idle during

a significant amount of time, while they are waiting for each other during the migra-

tion steps. Replacing synchronous communications with asynchronous ones, each

process will send the information to a memory buffer associated with the remote

process, enabling the reception of the message later on (whenever that process is

ready to receive it), thus, avoiding idle periods. However, in such asynchronous ver-

sion, when a migration is planned, each process would need to wait for the reception

of its required new data. This could stall processes and cause idle periods.

The algorithm proposed in this Thesis avoids this by implementing a varia-

tion of the classic parallel island DE. The pseudocode for the proposed solution

(asynPDE) is shown in Algorithm 3. Each process receives an island population. For

each iteration of the main loop, mutation and crossover operations are performed

within each island, in the same way as in the serial implementation. Every m iter-

ations, a migration phase is performed to link the evaluations in different islands.

Whenever a process reaches the migration phase, it sends a set of individuals to the

selected remote process using an asynchronous communication (ISend() function

in Algorithm 3). Then, the process in the migration phase checks if the message

with the new individuals of a remote process has already arrived to its memory

buffer (IRecv() function in Algorithm 3). However, if the new solutions have not

yet arrived, the process proceeds with the next evaluation. After each evaluation

the process searches for the reception of data missed in previous migrations (Test()

function in Algorithm 3), however avoiding stalls if the messages have not arrived

yet. To deal with the migration data received asynchronously, a dynamic data list

is created. In each migration phase a new node is attached to the list, to be filled

with the expected data. Once the data of a node is used, the node is removed from

the list.

In addition to the migration step, the checking of the stopping criteria may also

involve communications between processes. Stopping criteria are needed to termi-



48 Chapter 2. Enhanced parallel Differential Evolution

Algorithm 3: Asynchronous island-based parallel Differential Evolution
(asynPDE).

input : A population matrix P with size D x NP
output: A matrix P whose individuals were optimized

1 Plocal ← scatter population P into N processors
2 iter = 0;
3 repeat
4 for each element in Plocal do
5 Crossover, mutation and evaluation operations
6 end

7 ! migration phase
8 if iter%m==0 then
9 migrationSet ← selected individuals from Plocal

10 ! asynchronous send of migrationSet to remote destination
11 ISend(migrationSet, remoteDestination);
12 ! asynchronous reception of migrationSet in the receptionSet
13 IRecv(receptionSet, remoteOrigin); ! non-blocking operation that allows for

execution progress if no message has arrived yet
14 end

15 while pending migration do
16 ! check for pending messages of previous migrations
17 Test(receptionSet, isComplete); ! non-blocking operation that allows for

execution progress
18 if isComplete then
19 ! Insert received individuals into Plocal subpopulation
20 Plocal (selected individuals) ← receptionSet

21 else
22 break;
23 end

24 end
25 iter++;

26 until Stopping condition;

27 Gather all subpopulation into matrix P

nate the execution of the algorithms. They can be as simple as using a maximum

number of evaluations, which do not imply exchange of communications. However,

other criteria, that allow to react adaptively to the state of the optimization progress,

need communications between processes. Asynchronous MPI communications are

also used in the proposed algorithm for those communications, so that processes
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may continue running independently. Each parallel process opens a buffer where

it expects to receive a termination message. This buffer is checked every iteration

of the algorithm. Thus, the control of the stopping criteria of the global search

is distributed among all the processes: when a stopping condition is fulfilled in a

process, this condition is communicated to the rest of processes, then all of them

can stop the algorithm almost at the same time.

Finally, note that the new parallel algorithm does not implement straightfor-

wardly the serial one. As demonstrated in Section 2.5, it always performs better in

terms of execution time and scalability even if, often, it requires higher number of

evaluations to achieve convergence.

2.4. Improving local search in DE algorithms

In some real applications, such as parameter estimation in dynamic models, the

performance of the classic sequential DE is not acceptable due to the large number

of objective function evaluations needed. As a result, typical runtimes for realistic

problems are in the range from hours to days. In order to improve the computational

effort required by the DE algorithm running in each of the processors in the parallel

version, three enhancements that exploit the special structure of these parameter

estimation problems have been included.

2.4.1. Logarithmic space

The classic DE algorithm begins by generating an initial set P of individuals.

Typically this generation is performed in a uniform space, where the range is divided

into n sub-ranges of equal size and values are randomly chosen from selected sub-

ranges. However, in other metaheuristics it has been found that, when variables

may have values in a huge range, this uniform distribution for selecting diverse

solutions will not generate many trial points with good value [62]. In contrast, a

logarithmic distribution will initialize the algorithm with high quality members in

the initial population, ensuring a faster convergence. Thus, the search is proposed to

be performed in a logarithmic space, which results in a more suitable exploration of
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the space of parameters when they are positive and potentially span through several

orders of magnitude.

2.4.2. Local solver

A local method is introduced to achieve a fast local convergence, therefore, re-

ducing the number of objective function evaluations required when an horizontal

view is assessed. The local search moves from solution to solution in the space of

candidate solutions by applying local changes, until a solution considered optimal

is found or a time bound is elapsed. NL2SOL [54], a method for solving non-linear

least-squares problems, has demonstrated to be particularly effective for parameter

estimation problems [62]. In the implementation of DE proposed in this chapter,

NL2SOL is called every L iterations of the DE algorithm.

2.4.3. Tabu list

One drawback of the previous local search is that it tends to become stuck in

suboptimal regions or on plateaus where many solutions are equally fit. As a means

to avoid this problem, the concept of tabu search is introduced in the algorithm.

Tabu search enhances the performance of local methods by avoiding revisits to the

same place during the search. This is achieved using memory structures that de-

scribe the visited solutions. If the vicinity of a potential solution has been previously

visited within a certain short-term period it is marked as tabu, so that the algorithm

does not consider that possibility repeatedly. This technique improves the diversity

among members of the population, and consequently contributes to the computa-

tional efficiency of the algorithm.

Algorithm 4 shows the pseudocode for the local search and tabu list included at

the end of each external iteration of the DE algorithm. The local solver condition is

met each L external iterations of the DE algorithm, and the evaluations performed

during the local search stage count in the total number of evaluations of the DE

algorithm.

Although all these three enhancements have significantly contributed to acceler-
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Algorithm 4: Local Search and Tabu List.

1 TabuList ← set of visited points in the local solver ;
2 ! local solver condition
3 if iter%L==0 then
4 Sort Plocal population;

5
−−−→
Point =

−−−−→
Plocal(0);

6 for i ← 0 to number of individuals of Plocal do
7 ! Calculate all distances among the point Plocal(i) and all points of the

Tabu List
8 distanceSet = distanceEuclidean(

−−−−→
Plocal(i) , TabuList);

9 if ∀ d ∈ distanceSet > min distance then

10
−−−→
Point =

−−−−→
Plocal(i);

11 break;

12 end

13 end

14 Insert
−−−→
Point in the TabuList;

15
−−−−−−−→
newPoint = Run Local Search(

−−−→
Point);

16 if
−−−−−−−→
newPoint is better than

−−−→
Point then

17 Replace the worst point in Plocal with
−−−−−−−→
newPoint;

18 end

19 end

ate the solution of our real systems biology applications, the use of a local solver (ef-

fectively creating a hybrid method) has proved to be particularly useful. It is worth

mentioning that hybrid methods have a long tradition in numerical methods in gen-

eral, and numerical optimization in particular (e.g. Powell’s dogleg method [171] is a

well known classic example). In evolutionary computation, memetic algorithms [148]

use a hybrid approach to combine global with local search methods. Hyper-heuristics

make use of an even higher level of generality, with the objective of choosing the

right heuristic for a given problem [36]. Here we have chosen a parsimonious hybrid

design, combining a classic DE scheme with an specialized local search.

Figure 2.1 graphically illustrates the asynchronous parallel implementation of

a DE extended with improved heuristics. Note that different processes are exe-

cuting a DE in different stages, and cooperation between them is performed in an

asynchronous fashion avoiding stalls if any of the processes is involved in a time

consuming phase, such as the execution of the local solver (see process ID 3 in the
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Figure 2.1: Asynchronous parallel DE with improved heuristics (asynPDE IH).
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figure), while other processes (processes ID 2 and ID 4 in the figure) are in the

migration phase. When a process is not able to attend to a migration reception, the

message will be stored in the process as a pending migration, avoiding the blocking

of the sender process (see process ID 1 in the figure, attending pending migrations).

2.5. Experimental results

This section assesses the impact of the described optimization techniques in

the DE algorithm. In order to evaluate the efficiency of the proposed cooperative

asynchronous algorithm, different experiments have been carried out. Its behaviour,

in terms of convergence and total execution time, was compared with alternative

versions of DE. To simplify the understanding of this section, we use the following

nomenclature:

seqDE: sequential classic version of DE (Algorithm 2).

asynPDE: proposed asynchronous parallel version of the seqDE (Algorithm 3).

synPDE: synchronous parallel version of the seqDE (used for comparative pur-

poses).

seqDE IH, asynPDE IH and synPDE IH: versions of the above algorithms with

improved heuristics enabled (local search, tabu list and logarithmic search).

The experiments performed are presented in two subsections. The first one an-

alyzes the performance of the asynchronous parallel cooperative strategy proposed

considering an algebraic black-box optimization test-bed. The second one evalu-

ates the overall improvement in a set of computational systems biology problems

by combining diversification achieved by the parallel cooperative strategy with the

intensification proposed for the local search.

Regarding methodology to carry out the computational experimental runs, both

vertical and horizontal views [87] are analyzed in this section. A vertical approach

assesses the performance of a fixed number of evaluations, i.e., a predefined effort;

while an horizontal view assesses the performance by measuring the time needed to
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reach a given target value. Our main goal is to improve the horizontal approach,

however, the vertical approach will also benefit from the proposed solution, which is

interesting for many real world applications where the total number of evaluations

is limited.

In order to enable the reproducibility of these experiments and the comparison

with other parallel approaches [216], sufficient information to allow the replication of

the different experiments, such as all the configuration parameters used in each test,

are provided in next subsections. Also, because of the stochastic properties inherent

in these algorithms, several independent runs have been made for each experiment.

The number of independent runs and statistical data corresponding to the obtained

results are reported as well.

2.5.1. Performance evaluation of the asynchronous parallel

strategy

The quality of the solution for the proposed parallelization has to be evaluated,

since the proposal implements not only a variant of the sequential DE, the island-

model, but also a modification of the classic synchronous implementation of this

model. Therefore, it is interesting to determine whether the proposed algorithm

challenges the classic implementations in terms of the number of evaluations needed

to achieve the required quality solution. In order to obtain a fair comparison be-

tween the proposal (asynPDE) and the serial classic DE (seqDE), the enhancements

proposed in Section 2.4, that is, the logarithmic search, the local solver, and the

tabu list, were disabled.

The BBOB-2009 data set [87] has been used as a benchmarking testbed due to

its popularity and accessibility. This data set is composed of 24 noiseless benchmark

functions to be minimized. Although tests have been carried out using the whole

BBOB-2009 data set, only five benchmark functions have been selected to illustrate

the experimental results in this chapter.

Table 2.1 shows the five selected benchmarks and some of the configuration pa-

rameters used in the following experiments. There are many configurable parameters

in the classic DE algorithm, such as the mutation scaling factor (F), the crossover
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Table 2.1: Subset of BBOB-2009 benchmark functions

Bench. Function D NP CR F MSt VTR

f8 Rosenbrock Function 12 150D .8 .9 DE/rand/2 149.15
f15 Rastrigin Function 5 150D .8 .9 DE/rand/2 1000
f17 Schaffers F7 Function 6 150D .8 .9 DE/rand/2 -16.94
f19 Composite Griewank- 4 3000D .9 .9 DE/rand/1 -102.55

Rosenbrock Function F8F2
f20 Schwefel Function 6 150D .8 .9 DE/rand/2 -546.5
f22 Gallagher’s Gaussian 10 150D .8 .9 DE/rand/2 -1000

21-hi Peaks Function

constant (CR) or the mutation strategy (MSt), whose selection may have a great

impact in the algorithm performance. Other configuration settings in the table are

also the dimension (D), the population size (NP) and the value-to-reach (VTR).

Since the objective of this chapter is not to evaluate the impact of these parameters,

only results for one configuration are reported here. Previous tests have been done

to select those parameters that lead to reasonable computation times. Neverthe-

less, the proposal can be applied to any other configuration parameters. Also, it

is worth noting that further performance improvements can be achieved by further

fine-tuning settings.

For the selection of the settings in these experiments, in general, the suggestions

in [194] have been followed. Regarding F and CR, the settings F ∈ [0.5, 1] and

CR ∈ [0.8, 1] are recommended. Thus, in these experiments F=0.9 and CR=0.8 have

been chosen. Concerning the mutation strategy, among those suggested in [194],

namely DE/best/1, DE/best/2, DE/rand/1 and DE/rand/2, the last one has been

chosen since some of these benchmarks are multimodal, where this strategy remained

most competitive and slightly faster to converge to the value to reach [48]. For the

population size, although in [194] a guideline is given where a setting of the DE

population size to about ten times the dimensionality of the problem is proposed,

this indication is not confirmed in recent studies, such as in [149] where it is shown

that a population size lower than the dimensionality of the problem can be optimal in

many cases. Since the parallel algorithm will scatter the population matrix between

the number of processors, and taking into account that when the population size

is small the probability of premature convergence and stagnation may be higher,

a NP = (5 × D) × 30 = 150 × D has been chosen for these experiments, where
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Table 2.2: Parallel implementation parameters in asynPDE.

Parameter Value Description

Island size (λ) NP/nproc Size of population matrix for each
parallel process.

Migration frequency (µ) 12.5% (every 8 Number of iterations to enter in
iterations). migration stage.

Topology (Tp) Ring or star. Communication topology between
processors.

Selection policy (SP) Random (RR) or It selects a set of elements to send in
best (RB). migration stage.

Replacement policy (RP) Random (RR) or It replaces a set of elements in
worst (RW). subpopulation matrix.

Local configuration (LC) Homogeneous or It explains how is the value of CR and
Heterogeneous. F for each processor.

the number of processors range between 5 and 60. The only exception was function

f19-Composite Griewank-Rosenbrock Function F8F2, which is a highly multimodal

function that, with the previous settings, frequently fall into an undesired stagnation

condition. Therefore, to prevent stagnation in this function, NP has been augmented

to 3000×D, CR has been set to 0.9, and MSt to DE/rand/1.

In parallel island DE algorithms, new parameters have also to be considered (see

Table 2.2), such as migration frequency (µ), island size (λ), communication topology

(Tp) between processors, or selection policy (SP) and replacement policy (RP) in the

migration step. In SP and RP policy, there are two possible values: random mode

(RR) when individuals are selected or replaced randomly, and better/worse mode

(BW) when the better individuals are selected to be sent and the worst individuals

are replaced.

In addition, the proposed parallel algorithms were tested using different com-

bination of CR and F values in different processes, which enhances diversity as

well [228,229]. Experiments combining these parameters have been thoroughly per-

formed. Local configuration (LC) parameter manages this property: it can be ho-

mogeneous (Homo), when all processes have the same attributes, and heterogeneous

(Hete) in the opposite case. In heterogeneous case, the values used for the results

reported were F={0.9, 0.7} and CR={0.9, 0.7, 0.2}. The combination policy is the

following: the algorithm assigns to each process one pair F-CR belonging to the
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Table 2.3: asynPDE vs seqDE in function f-22

Algorithm proc. %hit avg(bestx) #evals time±std(s) speedup

seqDE 1 4 -999.4315 3001950 10.199± 0.037 -

5 20 -999.5550 2937648 1.688± 0.086 6.04
10 44 -999.7322 2841867 0.979± 0.097 10.42

asynPDE 20 60 -999.8317 2744889 0.481± 0.055 21.21
40 78 -999.9434 2576759 0.246± 0.039 41.36
60 92 -999.9987 2537147 0.187± 0.023 54.34

sorted list of all possible combinations of the above sets of F and CR. When all the

pairs have been distributed, it restarts the previous sorted list and the algorithm

continues the distribution.

In the experiments performed with BBOB-2009 benchmarks, it is important to

note that the global population has been distributed among the cores. This assures

that the improvement in the diversity comes from the asynchronous sparse individual

exchanges in the parallel version, allowing to analyze the impact of this technique

on the algorithm computational efficiency. So, the island size for these experiments

is NP/PROC.

Experiments, consisting of 50 independent runs each, were carried out on Intel

Sandy Bridge nodes of CESGA SVG Linux cluster [40]. Table 2.3 shows, for the

f-22 Gallagher’s Gaussian 21-hi Peaks Function of the BBOB-2009 data set, the

percentage of executions that achieve the optimal value (% hit), the average value

of the achieved tolerances (avg bestx), the mean number of evaluations (#evals) and

the mean execution time. The values of the configuration settings in this case were:

the topology was a ring, the SP/RP policies consisted in RR, µ was equal to 12.5%,

and it had a Heterogeneous strategy for their LC. Regarding the stopping criteria,

it was a combination of two conditions: maximum number of evaluations equal

to 3000000 or achieve a VTR near to -1000 with an absolute tolerance TOL=1e-

3. Results for the serial DE (seqDE) and for the proposed parallel island-based

algorithm (asynPDE) with different number of cores are shown. First, it can be

observed that when the number of cores grows (P-5 to P-60 in Table 2.3), the

number of the executions that achieve the quality solution increases. It can also

be observed that the number of evaluations needed to achieve the optimal solution

decreases when the number of processors grows. In short, these results show the
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effectiveness of the parallel algorithm proposed in terms of quality of the solution,

where less evaluations are needed to come to the required tolerance when more

processors take part in the search. Table 2.3 also shows speedups for the proposed

algorithm asynPDE versus the seqDE with different number of processors. At first

glance, it can be observed that the speedups obtained are superlinear. That is due

to the diversity introduced by the migration phase in the parallel execution, that

actually improves the effectiveness of the DE algorithm.

Two different stopping criteria for the algorithms were considered in these exper-

iments: solution quality, for an horizontal view, and maximum effort, for a vertical

approach. Thus, two different speedup definitions were used to compare the sequen-

tial and the parallel algorithm: a speedup with solution quality stop, and a speedup

with predefined effort. The first one shows how fast the parallel algorithm reaches

DE solution versus the sequential algorithm. This is the case of the results shown in

Table 2.3. This speedup is due both to the distribution of computations among the

processors, and to the effectiveness of the parallel algorithm, which requires fewer

iterations as the number of processors grows.

However, in most of the cases, the sequential algorithm and the parallel one

running on few processors do not reach the quality solution before the maximum

allowed effort. In those cases, the best way to fairly compare sequential and parallel

executions is to stop all of them at a predefined effort, that is, for a predefined

number of evaluations. Since the number of iterations performed are, in this case,

the same, these speedup results help to analyze how much faster are the iterations

of the parallel algorithm versus the classic iterations.

Table 2.4 shows the speedup with quality solution for those configurations that

reach the required tolerance in a reasonable amount of time and eventually obtain

the best speedups. Replace and selection policies were RR, and the value-to-reach

(VTR) in each experiment, generated by the BBOB benchmark software, is shown

in Table 2.1 with an absolute tolerance TOL=1e-3. Table 2.4 shows the mean and

standard deviation of seqDE runtimes, the LC and Tp parameters that obtained the

best results for each parallel algorithm (asynPDE or synPDE), and speedup results

calculated versus the seqDE implementation. It is noticeable that, in most cases,

the heterogeneous strategies are superior to homogeneous ones, since they benefit

from search diversification.
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Table 2.4: Quality value test in BBOB benchmarks.

speedup
seqDE Number of processors

Func. time±std (s) Alg. LC Tp 5 10 20 40 60

f8 13.55±1.17 asynPDE Hete Ring 5.2 10.8 21.1 34.0 43.8
synPDE Hete Ring 5.0 9.5 16.9 15.4 13.2

f15 20.41±0.73 asynPDE Hete Ring 4.3 8.7 43.4 171.9 221.9
synPDE Homo Ring 9.8 22.3 69.0 123.1 136.4

f17 7.26±0,35 asynPDE Hete Star 6.7 12.6 26.1 70.7 120.8
synPDE Hete Star 7.6 15.9 29.2 56.4 68.3

f19 26.93±10.39 asynPDE Homo Ring 7.3 11.2 40.9 124.8 155.4
synPDE Hete Ring 9.0 18.6 45.3 95.4 128.0

f20 18.12±0,88 asynPDE Hete Ring 21.3 31.9 113.3 318.6 447.2
synPDE Hete Ring 21.8 50.1 131.7 235.2 252.0

Figure 2.2 shows the speedup from a vertical view, that is, for a predefined

effort. These experiments were configured with the following parallel implementa-

tion parameters: LC consisted in a heterogeneous strategy, Tp=ring, SP/RP=RR

and µ was equal to 12,5%. Results for both the proposed asynchronous algorithm

(asynPDE) and for a synchronous version of the classic DE (synPDE) are shown for

comparison purposes. It can be seen that, for a small number of processors, the

speedup achieved when using the stopping criterion of predefined effort is similar

in synchronous and asynchronous strategies, indicating that the evaluation time is

similar in both. For a small number of processors, the synchronous version obtains

higher speedups from the horizontal view, that is, using the solution quality as

stopping criterion (data shown in Table 2.4). This is because fewer evaluations are

needed to reach the solution in the synchronous version. The reason is that, when

the processes are synchronized in the migration phase, the new evaluations are per-

formed after exchanging solutions between processors. In the asynchronous version,

however, the new evaluations after the migration point can start before the complete

exchange of solutions, since no synchronization is forced between processes.

As the number of processors increases, it can be observed that the scalability

of asynchronous proposal improves versus the synchronous one. This is because

the synchronization slows down the processes, since it implies more processes’ stalls

while waiting for data. Thus, the asynchronous version, in spite of requiring further

evaluations, reaches the solution in a shorter time.
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(a) f8, f15 and f17 functions

(b) f19 and f20 functions

Figure 2.2: Predefined effort test in BBOB benchmarks. Stopping criteria: maxi-
mum number of evaluations=1000200.

In summary, these results show that the proposed asynchronous island-based al-

gorithm achieves good speedup, and it scales better than the synchronous algorithm

for a large number of processors.
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2.5.2. Results for parameter estimation problems in systems

biology

In order to evaluate the global algorithm proposed in this chapter (asynPDE IH),

that combines the diversification introduced by the parallelization evaluated previ-

ously and the intensification of the local search three challenging parameter estima-

tion problems from the domain of computational system biology were considered.

These problems are known to be particularly hard due to their ill-conditioning and

non-convexity [141,218]:

Circadian model: parameter estimation in a dynamic model of the circadian

clock in the plant Arabidopsis thaliana, as presented in [127]. The model

consists of 7 ordinary differential equations (ODEs) with 27 parameters (13 of

them were estimated) with data sets from 2 experiments.

NF-κB model: this problem is based on the model in [126] and consists of

15 ordinary differential equations with 29 parameters and data sets from 2

experiments.

3-step pathway model : problem considering a 3-step generic and highly non-

linear pathway with 8 differential equations and 36 parameters, and data sets

from 16 experiments, as presented in [141].

The aim of these experiments is to demonstrate the potential of the proposed

techniques for improving the convergence and execution time of very hard problems.

Since the goal of including the enhancements proposed in Section 2.4 in the DE al-

gorithm is to improve the effectiveness of each local evaluation, it is desirable to

enhance the exploration in the solution space by means of increasing the diversifica-

tion in the parallel threads. Therefore, for these experiments, the heterogenous LC

was used in all the cases.

The multicore cluster Pluton was used to carry out these experiments. It consists

of 16 nodes powered by two octa-core Intel Xeon E5-2660 CPUs with 64 GB of RAM.

The cluster nodes are connected through an InfiniBand FDR network. OpenMPI

library version 1.6.2 has been used to compile the parallel implementations, and the

experiments were carried out using from 1 to 30 processors. In these benchmarks,
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the execution of only one test of seqDE could take hours or even days to complete.

For each experiment 30 independent runs have been performed.

Figure 2.3 shows the best convergence curve for these three parameter estima-

tion problems. The settings for these experiments were the followings: NP=10×D,

MSt=DE/rand/2, LC was heterogeneous, the topology was a ring, SP=RB, RP=RW,

µ=33%, λ=NP/NPROC, the local solver condition was L=6 and the stopping cri-

teria was achieved to a VTR (value to reach)=1e-5 for (a) and (b), and VTR=1e-2

for (c). Results show that, on the one hand, the logarithmic search, the local search,

and the tabu list, on seqDE IH achieve by themselves a drastic reduction in the

execution time required for convergence, due to a reduction in the number of eval-

uations needed; on the other hand, the parallelization on asynPDE IH also improves

quality of mean solution since more evaluations are performed in the same amount

of time.

Figure 2.4 illustrates how the proposed asynPDE IH reduces the big variability

of execution time in the sequential version of the algorithm. It demonstrates that

when the number of processors increase in the asynchronous method, the outliers

of the execution time decrease. This is an important feature in the performance of

this solver, because it reduces the average execution time for each benchmark.

Figure 2.5 shows the speedup for a quality value test in these three parameter

estimation problems. These speedups were calculated comparing execution times

of synPDE IH and asynPDE IH with seqDE IH. Note that the seqDE execution time

cannot be used for comparison, because of its unreasonable amount of time to con-

verge (more than 48 hours for each 3-step and NF-κB experiment, when they do

not get stuck in local optima). These figures show that the proposed asynPDE IH

significantly reduces execution time required, and scales better than the synPDE IH

algorithm for a large number of processors.

The speedup results in these figures may appear to be modest, since they have

been calculated related to the seqDE IH execution time instead of to the seqDE

execution time. Table 2.5 shows results for both the execution time and the number

of evaluations performed in these experiments. Note that the number of evaluations

reported in this table includes those performed by the local solver. Although each

external iteration of the algorithm involves more evaluations when the local solver
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(a) Circadian problem

(b) 3-steps pathway problem

(c) NF-κB problem

Figure 2.3: Best convergence curves for parameter estimation problems.
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(a) Circadian problem

(b) 3-steps pathway problem

(c) NF-κB problem

Figure 2.4: Boxplot of the execution time for parameter estimation problems with
asynPDE IH.
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(a) Circadian problem

(b) 3-steps pathway problem

(c) NF-κB problem

Figure 2.5: Speedups calculated with respect to the execution time of seqDE IH.
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Table 2.5: Execution time table of the experiments in Figure 2.5.

prob. algorithm proc #evals #evals/proc #iter time±std(s)

ci
rc

a
d
ia

n

seqDE 1 11521835 11521835 88627.7 26856.12±3424.14
seqDE IH 1 3534.37 3534.37 11.20 6.46±3.81
asynPDE IH 10 10382.37 1038.23 7.10 2.50±0.27
asynPDE IH 20 17398.73 869.93 6.70 2.02±0.32
asynPDE IH 30 23935.47 797.85 6.58 1.96±0.43

3
-s

te
p

pa
th

w
a
y seqDE 1 - - - -

seqDE IH 1 30580.97 30580.97 32.60 202.40±138.53
asynPDE IH 10 43802.94 4380.29 11.03 32.01±8.77
asynPDE IH 20 73970.33 3698.57 9.28 27.79±4.74
asynPDE IH 30 95001.10 3166.70 8.20 24.67±5.06

N
F

-κ
B

seqDE 1 - - - -
seqDE IH 1 11253.90 11253.90 34.00 91.37±98.68
asynPDE IH 10 4370.10 437.01 8.30 6.55±16.90
asynPDE IH 20 4688.27 234.41 7.31 2.98±0.52
asynPDE IH 30 5839.67 194.66 6.76 2.88±0.56

is enabled, the overall result shows that the enhanced algorithm requires less total

number of evaluations to reach the optimum value.

In these problems, the improvement introduced by the local solver achieves con-

vergence with very few external iterations of the algorithm, that is, with very few

migration phases between islands. Therefore, adding more processes does not sig-

nificantly improve the execution time. In the NF-κB problem, the convergence

improvement achieved by the local solver is not that noticeable, thus, the paral-

lelization continues introducing diversity when the number of processes increases so

performance enhancement is achieved. In all the cases, when the number of exter-

nal iterations are drastically diminished, there is no room for further improvement

despite the increased number of processors.

It is important to note that the local solver introduces a great overhead on the

execution of each evaluation. Moreover, it is responsible for the lack of synchro-

nization between processes at the migration step, since it leads processes into a

more computationally unbalanced scenario, thus, giving advantage to the proposed

asynchronous solution. When more evaluations are required, the synchronization
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Table 2.6: Wilcoxon signed ranks test with a significance level α=0.05.

prob. algorithms R+ R− p-value

ci
rc

a
d
ia

n asynPDE IH 10-procs vs seqDE IH 465 0 1.73E-06
asynPDE IH 30-procs vs asynPDE IH 10-procs 424 41 8.19E-05
asynPDE IH 10-procs vs synPDE IH 10-procs 446 19 1.13E-05
asynPDE IH 30-procs vs synPDE IH 30-procs 464 1 1.92E-06

3
-s

te
p

pa
th

w
a
y

asynPDE IH 10-procs vs seqDE IH 465 0 1.73E-06
asynPDE IH 30-procs vs asynPDE IH 10-procs 399 66 6.16E-04
asynPDE IH 10-procs vs synPDE IH 10-procs 443 22 1.49E-05
asynPDE IH 30-procs vs synPDE IH 30-procs 465 0 1.73E-06

N
F

-κ
B

asynPDE IH 10-procs vs seqDE IH 465 0 1.73E-06
asynPDE IH 30-procs vs asynPDE IH 10-procs 370 95 4.70E-03
asynPDE IH 10-procs vs synPDE IH IH 10-procs 441 24 1.80E-05
asynPDE IH 30-procs vs synPDE IH 30-procs 465 0 1.73E-06

between processes will decrease, thus, better performance will be achieved by the

asynchronous proposal. This is the case of the NF-κB problem, that requires more

evaluations to converge than the other two benchmarks.

To prove the statistical significance of the results, the Wilcoxon Rank-sum test

has been applied for a confidence level of 0.95. Table 2.6 shows the results of the test,

using the runtimes obtained in the experiments. The parameters in the table R+ and

R− are the sum of the positive/negative ranks. As can be seen, the p-value is always

smaller than the significance, thus, asynPDE IH outperforms both the seqDE IH and

the synPDE IH. Note also that, when comparing the asynchronous proposal with the

synchronous one, the values of p-value are higher when using few processors and they

decrease when the number of processors grows. This demonstrates the scalability of

the proposal over the synchronous version.

Compared to the serial DE (seqDE), the proposed enhancements improve the

execution time in several orders of magnitude. For the circadian problem, the exe-

cution of the seqDE lasts more than 7 hours while the proposed seqDE IH requires

only a few seconds, which demonstrates the potential of the proposed heuristics in

the solution on these problems.
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2.6. Concluding remarks

In this chapter, we presented an improved Differential Evolution algorithm de-

signed to solve complex problems in computational systems biology. The key idea is

to achieve a proper balance of the exploration abilities of DE and the exploitation

abilities of efficient local search. The method improves global search through an

asynchronous parallel implementation based on a cooperative island-model. The

improved local search is implemented by means of several heuristics (efficient lo-

cal solver, tabu list, logarithmic search) which exploit the structure of parameter

estimation problems in systems biology, the main application area considered here.

It should be noted that, although the method presented here is based on a parsi-

monious hybrid (global-local) design, the three heuristic enhancements introduced in

the local search are fundamental to successfully exploit the special characteristics of

these systems biology problems, which are typically very ill-conditioned and highly

multimodal, as reviewed in [218]. The results obtained show that this improved

local search mechanism, combined with the parallel cooperation scheme, allow an

adequate balance between exploration and exploitation for the class of problems

considered.

The experimental results show that (i) convergence time can be reduced by

several orders of magnitude when the local search heuristics are included in the DE

algorithm, and (ii) the asynchronous parallel strategy proposed attains a further

reduction in the convergence time through collaboration of the parallel processes,

demonstrating also a competitive speedup against the synchronous approaches.

As an example of the practical significance of this proposal, one of the systems

biology benchmarks considered, the 3-steps pathway problem, typically requires

more than 3 days of computation time using the classic version of DE executed in

one of the cores of our test machine, but it can be solved in less than one minute

with the novel asynchronous parallel method presented.

Although the improved DE was designed and tested with focus on the field of

parameter estimation problems in computational systems biology, it can also be

directly applied to solve arbitrary global optimization problems.

The results of this chapter have been published in:
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D. R. Penas, J. R. Banga, P. González, and R. Doallo. A parallel differential

evolution algorithm for parameter estimation in dynamic models of biological

systems. Advances in Intelligent Systems and Computing, 294:173–181, 2014.

Proceedings of the 8th International Conference on Practical Applications of

Computational Biology & Bioinformatics (PACBB 2014). [164]

D. R. Penas, J. R. Banga, P. González, and R. Doallo. Enhanced parallel

differential evolution algorithm for problems in computational systems biology.

Applied Soft Computing, 33:86–99, 2015. [165]

The source code of the asynPDE proposed here (see Appendix A) is made pub-

licly available at:

https://bitbucket.org/DavidPenas/asynpde





Chapter 3

Self-adaptive Cooperative

enhanced Scatter Search

Scatter Search (SS) is a promising population-based metaheuristic for solving

combinatorial and nonlinear optimization problems. This evolutive method uses

strategies to combine solution vectors stored in a small population to obtain good

results without spending many resources. Different implementations have been

shown [22, 50, 61, 71, 74, 94, 104, 181] where SS can outperform other state of the

art stochastic global optimization methods. However, as already commented upon

for the DE algorithm, current realistic applications are very complex, and SS still

requires a very large computation time to obtain a good quality solutions.

This chapter aims to improve this method by proposing a new parallel coopera-

tive scheme that incorporates:

an improved cooperative scheme, including an information exchange mecha-

nism driven by the quality of the solutions.

an asynchronous communication protocol to handle inter-process information

exchange.

the combination of a coarse-grained distributed-memory parallelization para-

digm and an underlying fine-grained parallelization of the individual tasks with

a shared-memory model, in order to improve the scalability.

71
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self-adaptive procedures to dynamically tune the settings of the parallel searches

during the execution progress.

The performance and scalability of this novel method is illustrated considering a set

of very challenging parameter estimation problems in large-scale dynamic models of

biological systems. These problems consider kinetic models of the bacterium E. coli,

baker’s yeast S. cerevisiae, the vinegar fly D. melanogaster, chinese hamster ovary

cells and a generic signal transduction network. The results consistently show that

cooperative strategies of SS are robust and efficient methods, allowing for a very

significant reduction of computation times with respect to previous methods (from

days to minutes, in several cases) even when only a small number of processors

is used. Therefore, we believe that this new method can play a key role in the

development of large-scale dynamic models in systems biology.

The organization of this chapter is as follows. Section 3.1 describes a basic

implementation of Scatter Search, taken as reference for the rest of this chapter.

Then, Section 3.2 covers the related work, and Section 3.3 describes the self-adaptive

cooperative enhanced Scatter Search (saCeSS) proposed in this chapter. Section 3.4

shows the performance and scalability results of the proposed method when it is

applied to a set of challenging problems in computational systems biology. Finally,

Section 3.5 summarizes the main conclusions of this chapter.

3.1. Scatter Search algorithm

Scatter Search (SS) [81] is a population based metaheuristic that constructs new

solutions based on systematic combinations of the members of a reference set (called

RefSet in this context). The RefSet is the analogous concept to the population in

genetic or evolutionary algorithms but its size is considerably smaller than in those

methods. As a consequence the degree of randomness in SS is lower than in other

population based metaheuristics and the generation of new solutions is based on

the combination of the RefSet members. Another difference between SS and other

classic population based methods is the use of a so-called improvement method,

which usually consists of local searches from selected solutions to accelerate the

convergence to the optimum in certain problems, turning the algorithm into a more
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Figure 3.1: Schematic representation of a basic Scatter Search algorithm.

effective combination of global and local search. This improvement method can of

course be ignored in those problems where local searches are very time-consuming

and/or inefficient.

Figure 3.1 shows a schematic representation of a basic SS algorithm where the

steps of the popular five-step template [80] are highlighted. Classic SS implemen-

tations update the RefSet by replacing the worst elements with new ones which

outperform their quality. In continuous optimization, as is the case of the problems

considered in the present study, this can lead to premature stagnation and lack of

diversity among the RefSet members. The SS version used in this chapter as a

starting point is based on a recent implementation [60,61], named enhanced Scatter

Search (eSS), in which the population update is carried out in a different way in

order to avoid stagnation problems and increase the diversity of the search without

losing efficiency.
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Figure 3.2: Schematic representation of the enhanced Scatter Search algorithm.

Figure 3.2 schematically illustrates the eSS algorithm. Basic pseudocodes of the

eSS algorithm are shown in Algorithm 5 (main routine), Algorithm 6 (go-beyond

strategy) and Algorithm 7 (local search). The method begins by creating and eval-

uating an initial set of ndiverse random solutions within the search space (line 4,

Algorithm 5). Then, the RefSet is generated using the best solutions and random

solutions from the initial set (line 6). When all data is initialized and the first RefSet



3.1 Scatter Search algorithm 75

is created, the eSS repeats the main loop until the stopping criterion is fulfilled.

These main steps of the algorithm are briefly described in the following lines:

1. RefSet order and duplicity check: The members of the RefSet are sorted by

quality. After that, if two (or more) RefSet members are too close to one

another, one (or more) will automatically be replaced by random solutions

(lines 8-12). These comparisons are performed pair to pair for all members

of the Refset, considering normalized solutions: every solution vector is nor-

malized in the interval [0, 1] based on the upper and lower bounds. Thus,

two solutions are ”too close” to each other if the maximum difference of its

components is higher than a given threshold, with a default value of 1e-3. This

mechanism contributes to increase the diversity in the RefSet thus preventing

the search from stagnation.

2. Solution combination: This step consists in pair-wise combinations of the Ref-

Set members (lines 13-23). The new solutions resulting from the combinations

are generated in hyper-rectangles defined by the relative position and distance

of the RefSet members being combined. This is accomplished by doing linear

combinations in every dimension of the solutions, weighted by a random factor

and bounded by the relative distance of the combined solutions. More details

about this type of combination can be found in [60].

3. RefSet update: The solutions generated by combination can replace the RefSet

members if they outperform their quality (line 28). In order to preserve the

RefSet diversity and avoid premature stagnation, a (1+λ) evolution strategy

[27] is implemented in this step. This means that a new solution can only

replace that RefSet member that defined the hyper-rectangle where the new

solution was created. In other words, a solution can only replace its “parent”.

Moreover, among all the solutions generated in the same hyper-rectangle, only

the best of them will replace the “parent”. This mechanism avoids clusters of

similar solutions in early stages of the search which could produce premature

stagnation.

4. Enhanced mechanisms: eSS includes two additional procedures to make the

search more efficient. One is the so-called “go-beyond” strategy (labeled as
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intensification mechanism in the figure) and consists in exploiting promising

search directions. If a new solution outperforms its “parent”, a new hyper-

rectangle following the direction of both solutions and beyond the line linking

them is created. A new solution is created in this new hyper-rectangle, and the

process is repeated varying the hyper-rectangle size as long as there is improve-

ment (Algorithm 6). The second mechanism consists in a stagnation checking

(labeled as diversification mechanism in the figure). If a RefSet solution has

not been updated during a predefined number of iterations, we consider that

it is a local solution and replace it with a new random solution in the Ref-

Set. This is carried out by using a counter (nstuck) for each RefSet member

(lines 29-34, Algorithm 5).

5. Improvement method. This is basically a local search procedure that is im-

plemented in the following form (see Algorithm 7): when the local search is

activated, we distinguish between the first local search (which is carried out

from the best found solution after local.n1 function evaluations), and the rest.

Once the first local search has been performed, the next ones take place after

local.n2 function evaluations from the previous local search. In this case, the

initial point is chosen from the new solutions created by combination in the

previous step, balancing between their quality and diversity. The diversity is

computed measuring the distance between each solution and all the previous

local solutions found. The parameter balance gives more weight to the quality

or to the diversity when choosing a candidate as the initial point for the local

search. Once a new local solution is found, it is added to a list. There is

an exception when the best sol parameter is activated. In this case, the local

search will only be applied over the best found solution as long as it has been

updated in the incumbent iteration. Based on our previous experience, this

strategy is only useful in certain pathological problems, and should not be

activated by default.

For further details on the eSS implementation, the reader is referred to [60,61].
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Algorithm 5: Basic pseudocode of eSS.

1 Set parameters: dim refset, best sol, local.n1, local.n2, balance, ndiverse;
2 Initialize nstuck, neval;
3 local solutions = ∅;
4 Create set of random ndiverse solutions and evaluate them;
5 neval = neval + ndiverse;
6 Generate the initial RefSet with dim refset solutions with the best solutions and

random elements from ndiverse;
7 repeat
8 Sort RefSet by quality RefSet = {x 1 , x 2 , . . . , x dim refset} so that f(xi) ≤ f(xj)

where i, j ∈ [1, 2, . . . , dim refset ] and i < j;

9 if max
(
abs

(
xi−xj
xj

))
≤ ε with i < j then

10 Replace xj in the RefSet by a random solution and evaluate it;
11 neval = neval + 1;

12 end

13 y = ∅;
14 for i = 1 to dim refset do
15 for j = 1 to dim refset do
16 if i 6= j then
17 Combine xi with xj to generate a new solution, yi,j ;
18 y = y ∪ {yi,j};
19 Evaluate yi,j ;

20 end

21 end
22 neval = neval + dim refset− 1;

23 end

24 Call to go-beyond strategy

25 if local search is activated then
26 Apply local search routine (see Algorithm 7);
27 end

28 Replace labeled RefSet members by their corresponding yi,∗ and reset nstuck(i);
29 nstuck(j) = nstuck(j) + 1 where j is the index of a not labeled RefSet member;
30 for i = 1 to dim refset do
31 if nstuck(i) > nchange then
32 Replace xi ∈ RefSet by a random solution and set nstuck(i) = 0;
33 end

34 end

35 until stopping criterion is met ;
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Algorithm 6: Pseudocode of go-beyond strategy.

1 for i = 1 to dim refset do
2 yi,∗ = best solution in yi,j∀j ∈ [1, 2, . . . dim refset]; j 6= i;
3 if f(yi,∗) < f(xi) then
4 Label xi;
5 xtemp = xi;
6 improvement = 1;
7 Λ = 1;
8 while f(yi,∗) < f(xtemp) do
9 Create a new solution, xnew, in the hyper-rectangle defined by:[

yi,∗ − (xtemp−yi,∗)
Λ , yi,∗

]
;

10 xtemp = yi,∗;
11 yi,∗ = xnew;
12 neval = neval + 1;
13 y = y ∪ {yi,∗};
14 improvement = improvement+ 1;
15 if improvement = 2 then
16 Λ = Λ/2;
17 improvement = 0;

18 end

19 end
20 if f(yi,∗) < fbest then
21 xbest = yi,∗;
22 fbest = f(yi,∗);

23 end

24 end

25 end
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Algorithm 7: Pseudocode of the local search procedure.

1 if best sol is activated then
2 if xbest was updated since last iteration then
3 Apply local search over xbest;
4 end

5 else
6 if local solutions = ∅ then
7 if neval ≥ local.n1 then
8 Apply local search over xbest;
9 end

10 else
11 if neval ≥ local.n2 then

12 Sort y by quality, creating yq = {y1
q , y

2
q , . . . y

m
q } where f(yiq) ≤ f(yjq) if

i < j;
13 Compute the minimum distance between each element i ∈ [1, 2, . . . ,m]

in y and all the local optima found so far.
dmin(i) = min ||yi − local solutions||2;

14 Sort y by diversity, creating yd = {y1
d, y

2
d, . . . y

m
d } where

dmin(i) ≥ dmin(j) if i < j;

15 for each solution yk ∈ y do
16 score(yk) = (1− balance) · i+ balance · j
17 where i is the index of yk in yq and j is the index of yk in yd;

18 end

19 Apply local search over yl : score(yl) = min score(y)

20 end

21 end

22 end
23 Produce a local solution z∗;
24 if z∗ /∈ local solutions then
25 local solutions = local solutions ∪ {z∗};
26 end
27 if f(z∗) < fbest then
28 xbest = z∗;
29 fbest = f(z∗);

30 end
31 neval = 0
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3.2. Related work

Several researches have added advanced elements to the basic SS method in

order to improve its performance in selected problems. In [181] a hybrid stochastic-

deterministic SS method for model calibration in nonlinear dynamic models of bio-

logical systems was presented, obtaining a robust and efficient global optimization

approach. Furthermore, an extension of the previous work was proposed in [61],

called enhanced Scatter Search (eSS), that implements new strategies to intensify

the search and to prevent stuck in local optima regions. These enhanced versions

of SS have been successfully used in several works, such as in [74, 104], to propose

new strategies for parameter estimation; or [50], where multi-objective optimization

is used with the aim to study the activation mechanism in metabolic pathways;

and also in [22, 94], for reverse engineering problems. In [71] a comparative study

of model calibration methods was presented, that demonstrates encouraging results

for previous implementations of the SS method.

However, not much research has been done regarding the parallelization of this

metaheuristic. In [76] three parallel strategies were explored: a low-level synchronous

parallel SS model using parallel search instead of local search, a replicated combi-

nation SS model that distributes multiple subsets on the processors, and a natural

replication of parallel SS. All these methods were implemented using shared-memory

techniques, and, thus, present limitations on scalability. In [32] a parallel algorithm

based on SS and path re-linking methods was presented. In this proposal, the mas-

ter process creates the starting solutions set while calculations of path re-linking are

executed by the slave processes on local data. The slaves send the new solutions to

the master that creates a new set of starting solutions. Another parallel SS algo-

rithm is presented in [128], based on replacing the combination method by parallel

execution of two greedy methods on every processor.

In [219], a cooperative parallel strategy for the eSS method has been presented.

The proposed Cooperative enhanced Scatter Search (CeSS) follows a master-slave

approach, where each of the slave processors runs a sequential eSS algorithm, while

they exchange their reference set of solutions through a master processor at certain

fixed instants. The results presented in [219] show how cooperation of individual

parallel search slaves modifies the systemic properties of the individual algorithms,
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improving its performance and outperforming other competitive methods. However,

the parallel strategy followed presents serious issues. First, exchanging information

at fixed instants, in a blocking fashion, forces a synchronization that delays the

progress in many slaves. Processors are idle during a significant amount of time,

while they are waiting for each other during the migration steps. The penalty may

be significant because the improvements introduced by the eSS in diversification, like

the local solver or the use of a tabu list, lead processes into a more computationally

unbalanced scenario. This synchronization is one of the causes of its poor scalability

when the number of processors grows.

In a preliminary work [166], we have explored the parallelization of SS by means

of an asynchronous cooperative parallel strategy (aCeSS). The proposed aCeSS

method improves the CeSS algorithm in [219] by means of a cooperative scheme

driven by quality of solution, instead of elapsed time, and asynchronous communi-

cations between processes, instead of synchronous migration phases. However, the

communication protocol and the double-ring topology proposed still compromise

the efficiency of the solution. Although the communication phase in this algorithm

avoids an all-to-all communication step, that would result in a bottleneck, it presents

an important drawback: the delay in the communication reception in the furthest

processes. When a process obtains such a good solution to be spread to the rest, it

exchanges information with both its previous and its next neighbors. These neigh-

bors will also exchange this information with their neighbors, and so on. Thus, an

all-to-all communication is avoided, and the information is communicated to the

rest through the double-ring. However, since each process will only exchange in-

formation during the communication step, placed at the end of each iteration, the

delay encountered to transmit a new best solution from one process to their fur-

thest neighbors in the ring could be excessive. The convergence of the cooperative

algorithm is altered, since many communications would arrive delayed, thus being

useless for many processes that already have reached better solutions by themselves.

This chapter describes an upgraded proposal that includes a new communication

protocol to avoid these issues and improve the efficiency of the asynchronous co-

operative scheme. Also, despite the reduction in the convergence time obtained by

the aCeSS algorithm, the diverse eSS methods running in different processors often

cause situations where only some processes, the most promising ones, are able to

share solutions with the rest. This limits the scalability of the proposal, since those
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processes that never obtain solutions to be shared, can be considered idle processes.

Therefore, this chapter also elaborates on a self-adaptive procedure that allows for

reconfiguring the slowest processes with the successful parameters of the promising

ones.

3.3. Improving eSS through parallel cooperative

searching

As already commented in previous chapters, achieving an efficient paralleliza-

tion of a metaheuristic is usually a complex task since the search of new solutions

depends on previous iterations of the algorithm, which not only complicates the

parallelization itself but also limits the achievable speedup.

In the case of the eSS algorithm, the majority of time-consuming operations

(evaluations of the cost function) are located in inner loops (lines 13-23 in Algo-

rithm 5) which can be easily performed in parallel. However, since the main loop

of the algorithm (line 7 in Algorithm 5) presents dependencies between different it-

erations and, furthermore, the dimension of the combination loop is rather small, a

fine-grained parallelization would limit the scalability in distributed systems. Thus,

a more effective solution is a coarse-grained parallelization that implies finding a

parallel variant of the sequential algorithm. An island-model approach [5] can be

used, so that the reference set is divided into subsets (islands) where the eSS is exe-

cuted isolated and sparse individual exchanges are performed among islands to link

different subsets. This solution drastically reduces the communications between dis-

tributed processes. However, its scalability is again heavily restrained by the small

size of the reference set in the eSS method. Reducing the already small reference

set by dividing it between the different islands will have a negative impact on the

convergence of the eSS. Thus, building upon the ideas outlined in [219], here we

propose an island-based method where each island performs an eSS using a different

RefSet , while they cooperate modifying the systemic properties of the individual

searches.

As already pointed out in Chapter 2, current HPC systems include clusters of

multicore nodes that can benefit from the use of a hybrid programming model, in
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Figure 3.3: Schematic representation of the proposed hybrid MPI+OpenMP algo-
rithm.

which a message passing library, such as MPI (Message Passing Interface), is used

for the inter-node communications while a shared memory programming model,

such as OpenMP, is used intra-node. Even though programming using a hybrid

MPI+OpenMP model requires some effort from application developers, this model

provides several advantages such as reducing the communication needs and memory

consumption, as well as improving load balance and numerical convergence [106].

Thus, the combination of a coarse-grained parallelization using a distributed-

memory paradigm and an underlying fine-grained parallelization of the individual

tasks with a shared-memory model is an attractive solution for improving the scal-

ability of the proposal. A hybrid implementation combining MPI and OpenMP

is explored in this chapter. The proposed solution pursues the development of an

efficient cooperative eSS, focused on both the acceleration of the computation by per-

forming separate evaluations in parallel and the convergence improvement through

the stimulation of the diversification in the search and the cooperation between dif-

ferent islands. MPI is used for communication between different islands, that is, for

the cooperation itself, while OpenMP is used inside each island to accelerate the

computation of the evaluations. Figure 3.3 schematically illustrates this idea, where

each MPI process is an island that performs an isolated eSS. Cooperation between

islands is achieved through the master process by means of message passing. Each

MPI process (island) spawns multiple OpenMP threads to perform the evaluations

within its population in parallel.
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3.3.1. Fine-grained parallelization

The most time consuming task in the eSS algorithm is the evaluation of the

solutions (cost function values corresponding to new vectors in the parameter space).

This task appears in several steps of the algorithm, such as in the creation of the

initial random ndiverse solutions, in the combination loop to generate new solutions,

and in the go-beyond method (lines 4, 13-23 in Algorithm 5, and Algorithm 6,

respectively). Thus, we have decided to perform all these evaluations in parallel

using the OpenMP library.

Algorithm 8 shows a basic pseudocode for performing the solutions’ evaluation

in parallel. As can be observed, every time an evaluation of the solutions is needed,

a parallel loop is defined. In OpenMP, the execution of a parallel loop is based on

the fork-join programming model. In the parallel section, the running thread creates

a group of threads, so that the set of solutions to be evaluated are divided among

them and each evaluation is performed in parallel. At the end of the parallel loop,

the different threads are synchronized and finally joined again into only one thread.

Due to this synchronization, load imbalance in the parallel loop can cause significant

delays. This is the case of the evaluations in the eSS, since different evaluations can

have entirely different computational loads. Thus, a dynamic schedule clause must

be used so that the assignment can vary at run-time and the iterations are handed

out to threads as they complete their previously assigned evaluation. Finally, at the

end of the parallel region, a reduction operation allows for counting the number of

total evaluations performed.

3.3.2. Coarse-grained parallelization

The coarse-grained parallelization proposed is based on the cooperation between

parallel processes. For this cooperation to be efficient in large-scale difficult prob-

lems, each island must adopt a different strategy to increase the diversification in

the search. The idea is to run in parallel processes with different degrees of aggres-

siveness. Some processes will focus on diversification (global search) increasing the

probabilities of finding a feasible solution even in a rough or difficult space. Other

processes will concentrate on intensification (local search) and speed-up the com-
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Algorithm 8: Parallel solutions’ evaluation.

1 neval = 0;
2 $$ parallel do (dynamic schedule, private(eval,newsol,i)

reduction(+:neval));
3 for i=1 to numSolutions do
4 newsol = solutions(:,i);
5 eval = f eval(newsol);
6 neval ++;

7 end
8 $$ end parallel do;

putations in smoother spaces. Cooperation among them enables each process to

benefit from the knowledge gathered by the rest. However, an important issue to be

solved in parallel cooperative schemes is the coordination between islands so that

the processes’ stalls due to synchronizations are minimized in order to improve the

efficiency and, specifically, the scalability of the parallel approach.

The solution proposed in this chapter follows a popular centralized master-slave

approach. However, as opposed to most master-slave approaches, in the proposed

solution the master process does not play the role of a central globally accessible

memory. The data is completely distributed among the slaves (islands) that perform

a sequential eSS each. The master process is in charge of the cooperation between

the islands. The main features of the proposed scheme presented in this chapter are:

cooperation between islands : by means of the exchange of information driven

by the quality of the solutions obtained in each slave, rather than by elapsed

time, to achieve more effective cooperation between processes.

asynchronous communication protocol : to handle inter-process information

exchange, avoiding idle processes while waiting for information exchanged from

other processes.

self-adaptive procedure: to dynamically change the settings of those slaves

that do not cooperate, sending to them the settings of the most promising

processes.

In the following subsections we describe in detail the implementation of the new
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self-adaptive cooperative enhanced Scatter Search algorithm (saCeSS), focusing on

these three main features and providing evidence for each one of the design decisions

taken.

Cooperation between islands

Some fundamental issues have to be addressed when designing cooperative paral-

lel strategies [207], such as what information is exchanged, between which processes

it is exchanged, when and how information is exchanged and how the imported

information is used. The solution to these issues has to be carefully designed to

avoid well-documented adverse impacts on diversity that may lead to premature

convergence.

The cooperative search strategy proposed in this chapter accelerates the explo-

ration of the search space through different mechanisms: launching simultaneous

searches with different configurations from independent initial points and including

cooperation mechanisms to share information between processes. On the one hand,

a key aspect of the cooperation scheme is deciding when a solution is considered

promising and deserves to be spread to the rest of the islands. The accumulated

knowledge of the field indicates that information exchange between islands should

not be too frequent to avoid premature convergence to local optima [208,209]. Thus,

exchanging all current-best solutions is avoided to prevent the cooperation entries

from filling up the islands’ populations and leading to a rapid decrease of the diver-

sity. Instead, a threshold is used to determine when a new best solution significantly

outperforms the current-best solution and it deserves to be spread to the rest. The

threshold selection adds a new degree of freedom that needs to be fixed to the co-

operative scheme. The adaptive procedure described further in this section solves

this issue.

On the other hand, the strategy used to select those members of the RefSet to be

replaced with the incoming solutions, that is, with promising solutions from other

islands, should be carefully decided. One of the most popular selection/replacement

policies for incoming solutions in parallel metaheuristics is to replace the worst so-

lution in the current population with the incoming solution when the value of the

latter is better than that of the former. However, this policy is contrary to the
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RefSet update strategy used in the eSS method, going against the idea that parents

can only be replaced by their own children to avoid loss of diversity and to prevent

premature stagnation. Since an incoming solution is always a promising one, re-

placing the worst solution will promote this entry to higher positions in the sorted

RefSet. It is easy to realise that, after a few iterations receiving new best solutions,

considering the small RefSet in the eSS method, the initial population in each island

will be lost and the RefSet will be full of foreign individuals. Moreover, all the island

populations would tend to be uniform, thus, losing diversity and potentially leading

to rapidly converge to suboptimal solutions. Replacing the best solution instead

of the worst one solves this issue most of the times. However, several members of

the initial population could still be replaced by foreign solutions. Thus, the selec-

tion/replacement policy proposed in this chapter consists in labeling one member of

the RefSet as a cooperative member, so that a foreign solution can only enter the

population by replacing this cooperative solution. The first time a shared solution

is received, the worst solution in the RefSet will be replaced. This solution will be

labeled as a cooperative solution for the next iterations. A cooperative solution is

handled like any other solution in the RefSet, being combined and improved follow-

ing the eSS algorithm. It can also be updated by being replaced by its own offspring

solutions. Restricting the replacement of foreign solutions to the cooperative entry,

the algorithm will evolve over the initial population and still promising solutions

from other islands may benefit the search in the next iterations.

As described before, the eSS method already includes a stagnation checking

mechanism (lines 29-34 in Algorithm 5) to replace those solutions of the population

that cannot be improved in a certain number of iterations of the algorithm by

random generated solutions. The nstuck counter is used to watch out the stagnation

of individuals. Diversity is automatically introduced in the eSS when the members

in the RefSet appeared to be stuck. In the cooperative scheme this strategy may

punish the cooperative solution by replacing it too early. In order to avoid that, a

nstuck larger than that of other members of the RefSet is assigned to the cooperative

solution.
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Asynchronous communication protocol

An important aspect when designing the communication protocol is the inter-

connection topology of the different components of the parallel algorithm. A widely

used topology in master-slave models, the star topology, is used in our proposal. It

enables different components of the parallel algorithm to be tightly coupled, thus

quickly spreading the solutions to improve the convergence. The master process is in

the center of the star and all the rest of the processes (slaves) exchange information

through the master. The distance1 between any two slaves is always two, therefore

it avoids communication delays that would harm the cooperation between processes.

The communication protocol is designed to avoid processes’ stalls if messages

have not arrived during an external iteration, allowing for the progress of the execu-

tion in every individual process. Both the emission and reception of the messages are

performed using non-blocking operations, thus allowing for the overlap of communi-

cations and computations. This is crucial in the application of the saCeSS method

to solve large-scale difficult problems since the algorithm success heavily depends

on the diversification degree introduced in the different islands that would result

in an asynchronous running of the processes and a computationally unbalanced

scenario. Figure 3.4 illustrates this fact by comparing a synchronous cooperation

scheme (CeSS [219]) with the asynchronous cooperation proposed here. In a syn-

chronous scheme, all the processes need to be synchronized during the cooperation

stage, while in the proposal, each process communicates its promising results and

receives the cooperative solutions to/from the master in an asynchronous fashion,

avoiding idle periods.

Self-adaptive procedure

The adaptive procedure aims to dynamically change, during the search process,

several parameters that impact the success of the parallel cooperative scheme. In the

proposed solution, the master process controls the long-term behavior of the parallel

searches and their cooperation. An iterative life cycle model has been followed

for the design and implementation of the tuning procedure and several parameter

1The distance between two nodes in a topology is defined by the minimum number of nodes
that must be traversed to join them.



3.3 Improving eSS through parallel cooperative searching 89

Figure 3.4: Visualization of performance analysis against time comparing syn-
chronous versus asynchronous cooperation schemes.

estimation benchmarks have been used for the evaluation of the proposal in each

iteration, in order to refine the solution to tune widespread problems.

First, the master process is in charge of the threshold selection used to decide

which cooperative solutions that arrive at the master are qualified to be spread to

the island. If the threshold is too large, cooperation will occur only sporadically,

and its efficiency will be reduced. However, if the threshold is too small, the number

of communications will increase, which not only negatively affects the efficiency of

the parallel implementation, but is also often counterproductive since solutions are

generally similar, and the receiver processes have no chance of actually acting on the

incoming information. It has also been observed that excess cooperation may rapidly

decrease the diversity of the parts of the search space explored (many islands will

search in the same region) and bring an early convergence to a non-optimal solution.

For illustrative purposes Figure 3.5 shows the percentage of improvement of a new

best solution with respect to the previous best known solution, as a function of the

number of cooperation events, when using a very low fixed threshold. Considering

that at the beginning of the execution the improvements in the local solutions will

be notably larger than at the end, an adaptive procedure that allows starting with

a large threshold and decrease it with the search progress will improve the efficiency
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Figure 3.5: Improvement as a function of cooperation. Results obtained from bench-
mark B4, described in Section 3.4.

of the cooperation scheme. The suggested threshold to begin with is 10%, that is,

incoming solutions that improve the best known solution in the master process by

at least 10% are spread to the islands as cooperative solutions. Once the search pro-

gresses and most of the incoming solutions are below this threshold of improvement,

the master reduces the threshold to one half. This procedure is repeated, so that

the threshold is reduced, driven by the incoming solutions (i.e., the search progress

in the islands). Note that if a excessively high threshold is selected, it will rapidly

decrease to an adequate value for the problem at hand, when the master process

ascertains that there are insufficient incoming solutions below this threshold.

Second, the master process is used as a scoreboard intended to dynamically tune

the settings of the eSS in the different islands. As commented above, each island

in the proposed scheme performs a different eSS. An aggressive island performs

frequent local searches, trying to refine the solution very quickly and keeps a small

reference set of solutions. It will perform well in problems with parameter spaces

that have a smooth shape. On the other hand, conservative islands have a large

reference set and perform local searches only sporadically. They spend more time

combining parameter vectors and exploring the different regions of the parameter

space. Thus, they are more appropriate for problems with rugged parameter spaces.

Since the exact nature of the problem at hand is always unknown, it is recommended
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to choose, at the beginning of the scheme, a range of settings that yields conservative,

aggressive, and intermediate islands. However, a procedure that adaptively changes

the settings in the islands during the execution, favoring those settings that exhibit

the highest success, will further improve the efficiency of the evolutionary search.

There are several configurable settings that determine the strategy (conserva-

tive/aggressive) used by the sequential eSS algorithm, and whose selection may

have a great impact in the algorithm performance. Namely, these settings are:

Number of elements in the reference set (dimRefSet, defined in line 1 in Algo-

rithm 5).

Minimum number of iterations of the eSS algorithm between two local searches

(local.n2, line 11 in Algorithm 7).

Balance between intensification and diversification in the selection of initial

points for the local searches (balance, line 16 in Algorithm 7).

All these settings have qualitatively the same influence on the algorithm’s be-

havior: large setting values lead to conservative executions, while small values lead

to aggressive executions.

Designing a self-adaptive procedure that identifies those islands that are becom-

ing failures and those that are successful is not an easy task. To decide which are

the most promising islands, the master process serves as a scoreboard whereby the

islands are ranked according to their potential. In the rating of the islands, two

facts have to be considered: (1) the number of total communications received in the

master from each island, to identify promising islands among those that intensively

cooperates with new good solutions; and (2) for each island, the moment when its

last solution has been received, to prioritize those islands that have more recently

cooperated. A good balance between these two factors will produce a more accurate

scoreboard. To better illustrate this problem Figure 3.6 shows, as an example, Gantt

diagrams where the communications are colored in red. Process 1 is the master, and

processes 2-11 are slaves (islands). Red dots represent asynchronous communica-

tions between master and slaves. Light blue marks represent global search steps,

while green marks represent local search steps. These figures correspond to two
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different examples, intended to illustrate the design decisions, described in the text,

taken in the self-adaptive procedure to identify successful and failure islands. At

a time of t = 2000, process 5 has a large number of communications performed,

however, all these communications were performed a considerable time ago. On the

other hand, process 2 has just communicated a new solution, but presents a smaller

number of total communications performed. To accurately update the scoreboard,

the rate of each island is calculated in the master as the product of the number

of communications performed and the time elapsed from the beginning of the ex-

ecution until the last reception from that island. In the example above, process 6

achieves a higher rate because it presents a better balance between the number of

communications and the time elapsed since the last reception.

Identifying the worst islands is also cumbersome. Those processes at the bottom

of the scoreboard are there because they do not communicate sufficient solutions or

because a considerable amount of time has passed since their last communication.

However, they can be either non-cooperating (less promising) islands or more ag-

gressive ones. An aggressive thread often calls the local solver, performing longer

iterations, and thus being unable to communicate results as often as conservative

islands can do so. To better illustrate this problem, Figure 3.6(b) shows a new Gantt

diagram. At a time of t = 60, process 4 will be at the top of the scoreboard because

it often obtains promising solutions. This is a conservative island. Process 3 will be

at the bottom of the scoreboard because at that time it has not yet communicated

a significant result. The reason is that process 3 is an aggressive slave that is still

performing its first local search. To accurately identify the non-cooperating islands,

the master process would need additional information from islands that would im-

ply extra messages in each iteration of the eSS. The solution implemented is that

each island decides by itself whether it is evolving in a promising mode or not. If

an island detects that it is receiving cooperative solutions from the master but it

cannot improve its results, it will send the master a reconfiguration request. The

master, will then communicate to this island the settings of the island on the top of

the scoreboard.
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(a) Gantt diagram 1

(b) Gantt diagram 2

Figure 3.6: Gantt diagrams representing the tasks and cooperation between islands
against execution time.
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3.3.3. Comprehensive overview of the saCeSS method

The pseudocode for the master process in saCeSS method is shown in Algo-

rithm 9, while the basic pseudocode for each slave is shown in Algorithm 10. At the

beginning of the algorithm, a local variable present in the master and in each slave

is declared to keep track of the best solution shared in the cooperation step. The

master process sets the initial threshold, initiates the scoreboard to keep track of the

cooperation rate of each slave, and begins to listen to the requests and cooperations

arriving from the slaves. Each time the master receives from a slave a solution that

significantly improves the current best known solution (BestKnownSol), it incre-

ments the score of this slave on the board.

Each slave creates its own population matrix of ndiverse solutions. Then an

initial RefSet is generated for each process with dimRefSet solutions with the best

elements and random elements. Again, different dimRefSet are possible for different

processes. The rest of the operations are performed within each RefSet in each pro-

cess, in the same way as in the serial eSS implementation. Every external iteration

of the algorithm, a cooperation phase is performed to exchange information with

the rest of the processes in the parallel application. Whenever a process reaches

the cooperation phase, it checks if any message with a new best solution from the

master has arrived at its reception memory buffer. If a new solution has arrived, the

process checks whether this new solution improves the current best solution (Best-

KnownSol) or not. If the new solution improves the current one, the new solution

promotes to be the BestKnownSol. The loop to check the reception of new solutions

must be repeated until there are no more shared solutions to attend. This is because

the execution time of one external iteration may be very different from one process

to another, due to the diversification strategy explained before. Thus, while a pro-

cess has completed only one external iteration, their neighbors may have completed

more and several messages from the master may be waiting in the reception buffer.

Then, the BestKnownSol has to replace the cooperation entry in the process RefSet.

After the reception step, the slave process checks whether its best solution im-

proves in, at least, an ε the BestKnownSol. If this is the case, it updates Best-

KnownSol with its best solution and sends it to the master. Note that the ε used

in the slaves is not the same as the ε used in the master process. The slaves use a
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Algorithm 9: saCeSS algorithm. Pseudocode for the master process.

1 BestKnownSol = DBL MAX;
2 ! Initial threshold
3 ε=0.1;
4 nRefuse=0;
5 ! Scoreboard information
6 slaveComm(:)=0;
7 slaveScore(:)=0;
8 for i=1 to nslaves do
9 scoreBoard(i)=i;

10 end
11 repeat
12 ! Cooperation step
13 recvflag=true;
14 sendflag=false;
15 while recvflag do
16 Non Blocking Recv(RecvSol,slave,recvflag);
17 if ((BestKnownSol −RecvSol)/BestKnownSol) < ε then
18 BestKnownSol=RecvSol;
19 sendflag=true;
20 ! Score slave
21 slaveComm(slave)++;
22 slaveScore(slave)=slaveComm(slave)*elapsedTime();

23 else
24 nRefuse++;
25 end

26 end
27 if sendflag then
28 Non Blocking Send(BestKnownSol,slaves);
29 end
30 ! Adapt threshold considering refused solutions
31 if nRefuse > nslaves then
32 ε = ε/2 ;
33 nRefuse=0;

34 end
35 ! Adapt slaves’ settings using scoreboard
36 recvflag=true;
37 while recvflag do
38 Non Blocking Recv(Request,slave,recvflag);
39 Sort(scoreBoard);
40 Non Blocking Send(NewSettings[scoreBoard(0)],slave);

41 end

42 until stopping criterion;



96 Chapter 3. Self-adaptive Cooperative enhanced Scatter Search

Algorithm 10: saCeSS algorithm. Pseudocode for the slave processes

1 BestKnownSol = DBL MAX;
2 recvSolutions=0;
3 iter solver=0;
4 Neval=0;
5 Create Population(ndiverse);
6 Generate RefSet(RefSet, dimRefSet);
7 repeat

8 ! Serial eSS: (1) RefSet order and duplicity check, (2) Solution combination,
(3) RefSet update, (4) Extra mechanisms and (5) Improvement method (see
Algorithms 5, 6 and 7).

9 ! Cooperation step
10 sendflag=false;
11 recvflag=true;
12 replaceflag=false;
13 while recvflag do
14 Non Blocking Recv(RecvSol,master,recvflag);
15 if RecvSol < BestKnownSol then
16 BestKnownSol=RecvSol;
17 recvSolutions++;
18 replaceflag=true;

19 end

20 end
21 if replaceflag then
22 Replace Solution(BestKnownSol);
23 end
24 if ((BestKnownSol − bestSol)/bestSol) < ε then
25 BestKnownSol=bestSol;
26 sendflag=true;

27 end
28 if sendflag then
29 Non Blocking Send(BestKnownSol,master);
30 Neval=0;
31 recvSolutions=0;

32 end
33 ! Adaptive step
34 if recvSolutions > (10× sendSolutions) + 20 OR Neval > (Npar × 5000) then
35 Non Blocking Send(Request,master);
36 end
37 Non Blocking Recv(NewSettings,master,recvflag);

38 until stopping criterion;
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rather small ε so that many good solutions will be sent to the master. The master,

in turn, is in charge of selecting those incoming solutions that are qualified to be

spread, thus, its ε begins with quite a large value that decreases when the number

of refused solutions increases and no incoming solution overcomes the current ε.

Finally, before the end of the iteration, the adaptive phase is performed. Each

slave decides if it is progressing in the search by checking if:

Neval > Npar × 5000

where Neval is the number of evaluations performed by this process since its last

cooperation with the master and Npar is the number of parameters of the problem.

Note that, in general, the larger the number of parameters to be estimated, the

harder the problem is. Thus, the reconfiguration condition depends on the problem

at hand. Besides, if the number of received solutions is greater than the number

of solutions sent, that is, if other processes are cooperating much more than itself,

the reconfiguration condition is also met. Summarizing, if a process detects that it

is not improving while it is receiving solutions from the master, it sends a request

for reconfiguration to the master process. The master listens to these requests and

sends to those slaves the settings of the most promising ones, i.e., those that are on

the top of the scoreboard.

Finally, the saCeSS algorithm repeats the external loop until the stopping crite-

rion is met. The current version can consider three different stopping criteria (or any

combination among them): maximum number of evaluations, maximum execution

time and a value-to-reach (V TR). While the V TR is usually known in benchmark

problems (such as those used below), for a new problem, the V TR will be, in general,

unknown. Thus, in more realistic cases, the recommended practice in metaheuristics

is to perform some trial runs and then analyze the convergence curves in order to

find sensible values for the maximum number of evaluations and/or execution time.

For illustrative purposes, Figure 3.7 graphically shows an example of the execu-

tion of the saCeSS method. Note that different processes are executing a different

eSS. Since they run asynchronously, they might be in different stages at every time

moment. Thus, cooperation between these different searches should also be per-

formed in an asynchronous fashion, avoiding stalls if any of the islands is involved
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in a time consuming phase, such as the execution of the local solver (see process ID

6 in the figure), while other islands (processes ID 1, ID 3 and ID 5 in the figure) are

in the cooperation phase. When an island cannot attend to a cooperation reception,

the message will be stored in the process as a pending cooperation, avoiding the

blocking of the sender process (see processes ID 3 or ID 5 in the figure, attending

pending cooperations). The master process (ID 0 in the figure) is in charge of the

cooperation between parallel searches and their long-term behavior. It maintains

a scoreboard to guide the adaptive procedure that tunes the settings of the eSS in

the different islands. When an island detects that it is not progressing in its search

(see process ID 7 in the figure), it sends the master a reconfiguration request. The

master communicates, to those islands that request a reconfiguration, the settings

of the most promising searches according to its scoreboard (see process ID 4 in the

figure).

3.4. Experimental results

The proposed saCeSS method has been applied to a set of benchmarks from the

BioPreDyn-bench suite [220], with the goal of assessing its efficiency in challenging

parameter estimation problems in computational system biology:

Problem B1 : genome-wide kinetic model of S. cerevisiae. It contains 276

dynamic states, 44 observed states and 1759 parameters.

Problem B2 : dynamic model of the central carbon metabolism of E. coli. It

consists of 18 dynamic states, 9 observed states and 116 estimable parameters.

Problem B3 : dynamic model of enzymatic and transcriptional regulation of

the central carbon metabolism of E. coli. It contains 47 dynamic states (fully

observed) and 178 parameters to be estimated.

Problem B4 : kinetic metabolic model of Chinese Hamster Ovary (CHO) cells,

with 34 dynamic states, 13 observed states and 117 parameters.

Problem B5 : signal transduction logic model, with 26 dynamic states, 6 ob-

served states and 86 parameters.
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Problem B6 : dynamic model describing the gap gene regulatory network of the

vinegar fly, Drosophila melanogaster. It consists of three processes formalized

with 108-212 ODEs, and resulting in a model with 37 unknown parameters.

Different experiments have been conducted using the cooperative methods, and

its performance has been compared with other different parallel versions of the eSS,

namely: an embarrassingly-parallel non-cooperative enhanced Scatter Search (np-

eSS), a previous cooperative synchronous version (CeSS) described in [219], and our

previous asynchronous cooperative scheme (aCeSS) proposed in [166], that has been

already described in the Related Work of this chapter.

The np-eSS algorithm consists of np independent eSS runs (being np the number

of available processors) performed in parallel without cooperation between them and

reporting the best execution time of the np runs. Diversity is introduced in these

np eSS runs, alike in the cooperative methods, that is, each one executes a separate

eSS using different strategies.

It should be noted that the eSS [60] and CeSS [219] methods have been orig-

inally implemented in Matlab. Both algorithms have been now coded in F90 to

perform an honest comparison with the proposed saCeSS method. For the same

reason, the CeSS method has been re-written using the MPI library for the com-

munications between master and slaves, since its original reported implementation

used jPar [109].

The experiments reported here have been performed in the cluster Pluton, a

multicore cluster with 16 nodes powered by two octa-core Intel Xeon E5-2660 CPUs

with 64 GB of RAM. The cluster nodes were connected through an InfiniBand FDR

network. For problem B3 this cluster could not be used because its execution exceeds

the maximum allowed job length. Thus, the cluster of the Bioprocess Engineering

Group at IIM-CSIC that consists of 4 nodes powered by two quadcore Intel Xeon

E5420 CPUs with 16 GB of RAM and 8 nodes powered by two quadcore Intel Xeon

E5520 CPUs with 24 GB of RAM, connected through a Gigabit Ethernet network,

has been used for this problem.

The computational results shown in this chapter were analyzed from a horizontal

view [87], that is, assessing the performance by measuring the time needed to reach

a given target value. To evaluate the efficiency of the proposal, experiments with



3.4 Experimental results 101

a stopping criteria based on a value-to-reach (V TR) were performed. The V TR

used was the optimal fitness value reported in [220]. Also, since comparing different

metaheuristics is not an easy task, due to the substantial dispersion of computational

results due to the stochastic nature of these methods, each experiment reported in

this section was performed 20 times and a statistical study was carried out.

3.4.1. Performance evaluation of the coarse-grained

parallelization and the self-adaptive mechanism

The cooperation between processes in the coarse-grained parallelization can mod-

ify the systemic properties of the eSS algorithm and therefore its macroscopic be-

havior. The same happens with the self-adaptive mechanism proposed. Thus, the

first set of experiments shown in this section disables the fine-grained paralleliza-

tion, since it does not alter the convergence properties of the algorithm, to evaluate

solely the impact of the coarse-grained parallelization, as well as the self-adaptive

mechanism.

Table 3.1 displays, for each benchmark and each method, the number of external

iterations performed (line 7 in Algorithm 5), the average number of evaluations

needed to achieve the V TR, the mean and standard deviation execution time of

all the runs in the experiments, and the speedup achieved. The compared methods

are: np-eSS, CeSS, aCeSS, and the proposed saCeSS method. The speedup was

calculated versus the sequential eSS, except for problem B3, whose prohibitively

large execution times did not allow us to complete the set of sequential eSS tests, and

forced us to reduce the rest of experiments. Therefore, for problem B3 the speedup

was computed versus the 10-eSS execution time. To better evaluate the efficiency

of the self-adaptive procedure proposed, Table 3.1 displays results for two kinds of

experiments with the saCeSS method: ones where the self-adaptive procedure was

disabled, labeled as saCeSS(non-adaptive) in the table, that is, the settings of the

eSS in the different islands were not dynamically tuned during the execution; and

others where this procedure was enabled, labeled as saCeSS in the table, allowing

for the adaptive reconfiguration of the islands. These results were obtained using

10 processors and using the following stopping criteria: V TRB1 = 1.3753 × 104,

V TRB2 = 2.50 × 102, V TRB3 = 3.7 × 10−1, V TRB4 = 55, V TRB5 = 4.2 × 103,
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Table 3.1: Performance of the coarse-grained parallelization and the self-adaptive
scheme proposed.

method iter±std evals±std time±std(s) sp

eSS 67± 34 43484± 21852 15572± 11310 -
10 -eSS 80±30 199214±44836 5378± 1070 2.9
CeSS (τ = 700s) 109±49 188131±82834 6487± 3226 2.4

B1 CeSS (τ = 1400s) 122±41 175331±98255 5018± 1477 3.1
aCeSS 107± 53 147946± 81316 4034± 2109 3.8
saCeSS(non-adap) 92±35 143145±61828 3759± 976 4.1
saCeSS 62±21 92122±35058 2753± 955 5.7
eSS 599± 252 779062± 326592 10344± 5675 -
10 -eSS 450±167 1504503±541257 1914± 714 5.4
CeSS (τ = 400s) 452±278 1637125±1016688 2459± 2705 4.2

B2 CeSS (τ = 800s) 508±205 1802917±690613 1911± 1103 5.4
aCeSS 421± 278 1311108± 849641 1842± 1348 5.6
saCeSS(non-adap) 440±192 1528793±647677 1918± 833 5.4
saCeSS 846±982 1247699±1222378 1694± 1677 6.1
10 -eSS 10062±2528 66915128±15623835 511166± 135988 -
CeSS(τ = 50000s) 7288±5551 52592578±35513874 332721± 245829 1.5*

B3 saCeSS(non-adap) 4323±3251 32604331±23357322 251305± 209082 2.0*
saCeSS 4113±3130 27647470±21488783 229888± 238970 2.2*
eSS 7457± 5492 11710828± 8148891 39257± 27364 -
10 -eSS 99±121 2230089±2068300 750± 692 52.3
CeSS (τ = 100s) 140±386 1665954±2921838 817± 1909 48.0

B4 CeSS (τ = 200s) 119±87 1649723±1024833 518± 428 75.7
aCeSS 76± 227 1351071± 2424864 429± 781 91.5
saCeSS(non-adap) 39±30 1163458±927751 402± 303 97.6
saCeSS 35±24 1017956±728328 343± 240 114.4
eSS 12± 5 13762± 5499 1874± 753 -
10-eSS 16±4 69448±14570 901± 197 2.0
CeSS (τ = 200s) 11±4 108481±36190 1481± 634 1.2

B5 CeSS (τ = 400s) 14±3 94963±20172 996± 264 1.8
aCeSS 10± 3 47364± 10955 603± 154 3.1
saCeSS(non-adap) 10±2 49622±9530 637± 131 2.9
saCeSS 10±3 51076±12696 658± 174 2.8
eSS 5654±5208 2396490± 2188348 20436± 18705 -
10 -eSS 4659±3742 9783720±8755231 8217± 7536 2.4
CeSS (τ = 1000s) 5919±5079 10475485±8978383 8109± 7441 2.5

B6 CeSS (τ = 2000s) 6108±6850 10778260±12157617 7878± 9400 2.6
aCeSS 4501± 4485 7130396± 7123362 5838± 5859 3.5
saCeSS(non-adap) 2501±1517 4394243±2689489 3638± 2302 5.6
saCeSS 1500±1265 2594741±2214235 2177± 1933 9.3

* These speedup results are calculated versus np-eSS.
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V TRB6 = 1.0833× 105.

Note that in these experiments the computational load is not shared among pro-

cessors. Thus, the speedup depends on the impact that the cooperation among pro-

cesses produces on achieving a good result. The results of the saCeSS (non-adaptive)

show that the cooperation mechanisms and the asynchronous communication pro-

tocol proposed in the saCeSS method improve the results obtained by 10 -eSS and

CeSS, both in terms of number of evaluations and execution time. As regards the

CeSS method, the results can be explained both because the synchronization slows

down the processes, since it implies more processes’ stalls while waiting for data,

and because of the effectiveness of the information exchanged. The aCeSS method

outperforms the 10 -eSS and CeSS algorithms thanks to the cooperation and the

asynchronous protocol. However, the delay in the communication reception caused

by the ring topology is a limitation for the performance results, being clearly over-

come by saCeSS for the most complex problems. The results of the saCeSS show

that the self-adaptive approach improves the previous results even more. The main

goal of this approach is to reduce the impact that the initial choice of the config-

urable settings may have in the evolution of the method. For instance, one issue

of the CeSS algorithm is the selection of the migration time (τ), that is, the time

between information sharing. On the one hand, this time has to be long enough to

allow each of the threads to exploit the eSS capabilities. On the other hand, if the

time is too long, cooperation will occur only sporadically, reducing its efficiency. On

the contrary, in the saCeSS method proposed, the initial selection of the threshold

to spread a cooperative solution, as well as the selection of the other configurable

settings of the eSS method, will change adaptively during the execution progress.

When dealing with stochastic optimization solvers, it is important to evaluate

the dispersion of the computational results. Figure 3.8 illustrates how the pro-

posed saCeSS reduces the variability of execution time in the non-cooperative 10 -eSS

method. The green asterisks correspond to the mean and light blue boxes illustrate

the distribution of the results. Each box with a strong blue contour represents a

typical boxplot: the central red line is the median, the edges of the box are the 25th

and 75th percentiles, and outliers are plotted with red crosses. This is an impor-

tant feature of the saCeSS, because it reduces the average execution time for each

benchmark. For instance, even in the B2 problem, where the mean execution time
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Figure 3.8: Hybrid violin/box plots of the execution times using 10 processes.
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Table 3.2: p-values of the pairwise comparisons provided by the Dunn’s test.

B1 B2 B3 B4 B5 B6

saCeSS vs CeSS 0.0000 0.0630 0.0380 0.1924 0.0000 0.0000
saCeSS vs 10 -eSS 0.0000 0.0115 0.0000 0.0324 0.0001 0.0000
CeSS vs 10 -eSS 0.1850 0.2289 0.0006 0.1641 0.2128 0.3964

Table 3.3: Group classification of the optimization methods at 95% confidence level.

B1 B2* B3 B4 B5 B6
saCeSS A A A A A A
CeSS B A B B A B B B

10 -eSS B B C B B B
*For problem B2, the classification at 90% confidence interval is:

saCeSS(A), CeSS(B), 10 -eSS(B)

is similar in the non-cooperative and the cooperative executions, the dispersion of

the results is reduced in the cooperative case.

Finally, to prove the significance of the results, a non-parametric statistical anal-

ysis has been applied to the final runtimes of the experiments over each test problem.

Recent studies show that the most appropriate methods to compare the performance

of different metaheuristics are the nonparametric procedures [55]. In this chapter we

have applied the Kruskal-Wallis test [118] followed by Dunn’s test [58], that reports

the results among multiple pairwise comparisons after the Kruskall-Wallis test. The

objective is to explain if the observed differences among final runtimes for each prob-

lem are due to the optimization method used (i.e., np-eSS, CeSS and saCeSS) or to

pure randomness. Table 3.2 shows, for each problem, the p-values of Dunn’s test for

every pair comparison after the Kruskall-Wallis test application. Table 3.3 shows,

for each problem, the classification of methods in groups at 95% confidence level ac-

cording to the p-values shown above. As shown in Tables 3.2 and 3.3, the statistical

results reveal that saCeSS shows better performance than 10 -eSS and CeSS in the

problems considered. It is clear for problems B1, B3, B5 and B6. For problems B2

and especially B4, the differences are not as significant as in the other problems. For

B2, the reason is the outlier in one of the runs with saCeSS in problem B2, which
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damages the results since it is the worst value among all runs and methods for this

problem. For B4, the reason is the high dispersion of the results, together with the

fact that many experiments achieved the convergence in the first iterations of the

algorithm (note the swelling at the bottom of the violin/box plots in Figure 3.8),

before the cooperation turned into effective, or the self-adaptive procedure became

operational, thus, reducing the difference among the three algorithms.

A known issue both for CeSS and aCeSS methods is their poor scalability. To

assess the scalability of the coarse-grained parallelization proposed in saCeSS, ex-

periments were carried out using 1, 10, 20 and 40 processors. The convergence

curves are shown in Figure 3.9. This curves represent the logarithm of the objec-

tive function value against the execution time for those experiments that fall in the

median values of the results distribution. As can be observed, when the number of

processors grows, the saCeSS method keeps on improving the convergence results.

This is due to the proposed asynchronous communication protocol. However, as the

number of cooperative processes increases, the improvement in the algorithm perfor-

mance is restrained. This is readily justified, because the self-adaptive mechanism

will drive the different processes from different initial parameters to those settings

that obtain successful results, which, in the long term, means that having a larger

number of processes does not aim to a larger diversity and better results. Thus,

the hybrid MPI+OpenMP proposal discussed in the next section aims to improve

the performance results when the number of processors increases, by combining the

MPI stimulation on diversification in the search with the OpenMP intensification.

3.4.2. Performance evaluation of the hybrid MPI+OpenMP

proposal

The goal of the fine-grained parallelization considered in this section is to perform

the evaluation of the obtained solutions in parallel threads, thus, accelerating the

execution without altering the properties of the algorithm. As already commented

in previous sections, the scalability of the fine-grained parallelization is limited in

the eSS algorithm, due to the small dimRefSet. Also, the workload is uneven, since

different evaluations lead some threads to be busy for longer times. Thus, the

dynamic schedule used allows the threads with small workloads to go after other
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Figure 3.9: Scalability of saCeSS using 1, 10, 20 and 40 processors.

chunks of work, and hopefully, balance the work between threads. But it introduces

a large overhead at runtime, as work has to be taken off from a queue.

Table 3.4 shows the performance and scalability of the hybrid MPI+OpenMP

implementation proposed in this chapter. It shows the execution time and speedup

results for experiments using the following stopping criteria: V TRB1 = 1.3753×104,

V TRB2 = 2.50 × 102, V TRB4 = 55, V TRB5 = 4.2 × 103. Benchmarks B3 and B6

were excluded of these evaluations: B3 due to our lack of available resources to
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Table 3.4: Performance of the hybrid MPI+OpenMP version of saCeSS.

meth. config. iter±std evals±std time±std(s) sp
MPIxOpenMP

eSS 1 67± 34 43484± 21852 15572± 11310 -
saCeSS 10 (10 x 1) 62±21 92122±35058 2753± 955 5.6
saCeSS 10 (5 x 2) 76±40 88186±46200 2762± 1273 5.6
saCeSS 20 (20 x 1) 79±38 218871±107769 3125± 1349 4.9

B1 saCeSS 20 (10 x 2) 86±43 147268±75752 2299± 1199 6.7
saCeSS 20 (5 x 4) 54±19 68907±27132 1288± 380 12.0
saCeSS 40 (40 x 1) 51±19 274628±115644 2070± 650 7.5
saCeSS 40 (20 x 2) 64±27 205766±93753 1743± 759 8.9
saCeSS 40 (10 x 4) 58±30 111804±61212 1130± 535 13.7
saCeSS 40 (5 x 8) 57±29 82414±38357 1078± 494 14.4
eSS 1 599± 252 779062± 326592 10344± 5675 -
saCeSS 10 (10 x 1) 846±982 1247699±1222378 1694± 1677 6.1
saCeSS 10 (5 x 2) 630±275 916166±357665 1298± 700 7.9
saCeSS 20 (20 x 1) 649±287 1901601±747379 1345± 619 7.6

B2 saCeSS 20 (10 x 2) 904±646 1388211±854461 962± 616 10.7
saCeSS 20 (5 x 4) 609±244 925076±353594 734± 320 14.0
saCeSS 40 (40 x 1) 571±542 3286363±2593258 1326± 1764 7.8
saCeSS 40 (20 x 2) 766±863 2185567±2228163 951± 1468 10.8
saCeSS 40 (10 x 4) 756±243 1309744±446419 506± 180 20.4
saCeSS 40 (5 x 8) 522±290 801661±380553 353± 162 29.3
eSS 1 7457±5492 11710828±8148891 39257±27364 -
saCeSS 10 (10 x 1) 35±24 1017956±728328 343±240 114.4
saCeSS 10 (5 x 2) 177±269 1854102±2331070 916±1210 42.8
saCeSS 20 (20 x 1) 11±8 819845±548341 111±93 353.6

B4 saCeSS 20 (10 x 2) 30±23 898459±657350 215± 169 185.5
saCeSS 20 (5 x 4) 294±692 2090044±3980316 736± 1453 53.3
saCeSS 40 (40 x 1) 9±5 1254545±603925 78± 51 503.3
saCeSS 40 (20 x 2) 26±26 1523817±1267964 159± 160 246.8
saCeSS 40 (10 x 4) 37±50 878008±1178953 168± 238 233.6
saCeSS 40 (5 x 8) 159±692 1666511±3980316 490±446 80.1
eSS 1 12± 5 13762± 5499 1874± 753 -
saCeSS 10 (10 x 1) 10±3 51076±12696 658±174 2.8
saCeSS 10 (5 x 2) 11±3 36090±8761 520±136 3.6
saCeSS 20 (20 x 1) 10±2 99995±21070 654±151 2.8

B5 saCeSS 20 (10 x 2) 9±2 52419±12040 368±92 5.0
saCeSS 20 (5 x 4) 10±3 38427±10523 331± 97 5.6
saCeSS 40 (40 x 1) 8±2 161687±40392 514±138 3.6
saCeSS 40 (20 x 2) 9±2 100315±17758 350±68 5.3
saCeSS 40 (10 x 4) 11±2 64594±13173 280±61 6.7
saCeSS 40 (5 x 8) 11±3 45854±11607 248±67 7.5
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run such long executions, and B6 since its currently available implementation could

not be parallelized using the OpenMP library. In most of the cases, the hybrid

configurations obtain better performance than other configurations that only use

MPI processes. Note that the column labeled config. shows the total number of

cores used along with the number of MPI processes and openMP threads running

in each configuration. In general, results show that, for the same number of cores,

those hybrid configurations that achieve a good balance between intensification and

diversification perform more effectively. For instance, the configuration of 5 MPI

processes with 4 OpenMP threads each, achieves, in general, better speedup than

the configuration with 10 MPI processes with 2 OpenMP threads each, while both

use 20 cores. The exception is benchmark B4, whose performance is heavily affected

by the number of different processes cooperating. That is, benchmark B4 greatly

benefits from the diversity introduced with the scalability in the number of MPI

processes versus the intensification of the OpenMP search. Thus, for benchmark

B4, configurations using all the available cores to run MPI cooperative processes

perform better.

Figure 3.10 shows, the convergence curves for those experiments that fall in the

median values of the results distribution. The performance of 40 -eSS, that is 40

individual, non cooperative processes, is compared to the performance of saCeSS

method with different hybrid configurations using 40 processors in all of them. Fig-

ure 3.11 illustrates the same comparative but from the dispersion point of view

through combination of violinplots and boxplots. As has already been pointed out,

when the number of available processors increases, hybrid MPI+OpenMP configu-

rations will improve the performance versus a solely coarse-grained parallelization.

This is an important result because it allows to predict a good performance of this

method on currently popular HPC systems, built as clusters of multicore nodes,

where MPI processes would be located in different nodes, improving diversification,

while, within each node, the OpenMP threads would intensify the search.

Finally, Figure 3.12 compares the results obtained by the proposed saCeSS

method and the results reported in the BioPreDyn-bench suite [220]. Bars show wall-

clock times for each solver and benchmark problem, with the numbers over saCeSS

bars indicating the overall acceleration obtained. Computations with saCeSS were

carried out with 10 processors while computations with eSS were carried out with
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Figure 3.10: Comparative between non-cooperative eSS and saCeSS using 40 pro-
cessors.

1 processor. Note that, although these figures correspond to a partially different

language implementation of eSS (Matlab and C, as reported in [220]), the cost func-

tions and the associated dynamics were computed using the same C code in both

cases. It can be observed that the parallel cooperative scheme significantly reduces

the execution time of very complex problems as B1 (1 week vs 1 hour) or B3 (10

days vs less than 46 hours). These figures can be especially illustrative for those

interested in the potential of HPC in general, and the saCeSS method in particular,
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Figure 3.11: Violin/box plots of the execution times of 40 -eSS and saCeSS with
different MPI/OpenMP combinations using 40 processes.
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Figure 3.12: Performance acceleration of saCeSS versus eSS (as reported in [220]).

in the solution of parameter estimation problems.

3.4.3. Comparison with other parallel metaheuristics

In order to properly evaluate the novel parallel method presented here, we now

compare it with the parallel version of DE proposed in Chapter 2. Previous works

in the literature have already pointed out that, for sequential implementations, eSS

performs better than DE in those problems where local searches are instrumental in

refining the solution [219]. Thus, to ensure a more fair comparison here, we chose our

asynPDE algorithm that performs a global search through an asynchronous parallel

implementation based on a cooperative island-model, and that also improves the

local search phase by means of several heuristics also used in the eSS (i.e. an efficient

local solver, a tabu list and a logarithmic space search).

The convergence curves of the asynPDE and the saCeSS algorithms for 10 and

20 processors are shown in Figure 3.13 and Figure 3.14, respectively. These fig-

ures represent the convergence curves for those experiments that fall in the median

values of the results distribution. Although the best configuration for the saCeSS

method is a hybrid MPI+OpenMP one, since the asynPDE method only performs

a coarse-grained parallelization, for comparison purposes the convergence curves of

saCeSS using only MPI processes are shown. As can be seen, in all cases asynPDE

is significantly outperformed by saCeSS.
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Figure 3.13: Comparison of the convergence curves of asynPDE and saCeSS using
10 processes.

3.5. Concluding remarks

In this chapter we presented a novel parallel method for global optimization

in computational systems biology: a self-adaptive parallel Cooperative enhanced

Scatter Search (saCeSS) algorithm. A hybrid MPI+OpenMP implementation is

proposed combining a coarse-grained parallelization, focused on stimulating the di-

versification in the search and the cooperation between different processes, with a
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Figure 3.14: Comparison of the convergence curves of asynPDE and saCeSS using
20 processes.

fine-grained parallelization, aimed at accelerating the computation by performing

separate evaluations in parallel. This novel approach resulted in a much more effec-

tive way of cooperation between different processes running different configurations

of the SS algorithm.

The new proposed approach has four main features: (i) a coarse-grained paral-

lelization using a centralized master-slave approach, where the master is in charge
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of the control of the communications between slaves (islands) and serves as a score-

board to dynamically tune the settings of the islands based on its individual progress;

(ii) a cooperation between processes driven by the quality of the solution obtained

during the execution progress, instead of time elapsed; (iii) an asynchronous com-

munication protocol that minimizes processes’ halts, thus improving the efficiency

in a computational unbalanced scenario; and (iv) a fine-grained parallelization is

included in each process to perform separate cost-function evaluations in parallel

and, thus, accelerate the global search.

The proposed saCeSS method has been evaluated considering a suite of very

challenging benchmark problems from the domain of computational systems biology.

The computational results show that saCeSS attains a very significant reduction in

the convergence time through cooperation of the parallel islands. A nonparametric

statistical analysis shows that the saCeSS method significantly outperforms other

parallel eSS approaches, such as an embarrassingly-parallel non-cooperative eSS

algorithm, and a previous synchronous cooperative proposal.

The results of this chapter have been published in:

D. R. Penas, P. González, J. A. Egea, J. R. Banga, and R. Doallo. Par-

allel metaheuristics in computational biology: an asynchronous cooperative

enhanced scatter search method. Procedia Computer Science, 51:630 – 639,

2015. Proceedings of the International Conference On Computational Science

(ICCS 2015). [166]

D. R. Penas, P. González, J. A. Egea, R. Doallo, and J. R. Banga. Parameter

estimation in large-scale systems biology models: a parallel and self-adaptive

cooperative strategy. BMC Bioinformatics, 18(1):52, 2017. [167]

The source code of the saCeSS proposed here (see Appendix A) is available at:

https://bitbucket.org/DavidPenas/sacess-library





Chapter 4

Extending saCeSS for

mixed-integer non-linear dynamic

optimization

During the last decade there has been a growing interest in modelling the dy-

namics of biological systems. As a consequence, much research effort is now being

invested in exploiting these developed dynamic models using mathematical opti-

mization techniques. In Chapter 2 and Chapter 3, we have addressed the solution of

non linear programming problems (NLP), i.e. those with continuous decision vari-

ables in its entire domain. In this chapter, we will focus on mixed-integer dynamic

optimization (MIDO) problems, where part of the decision variables are discrete

(binary or integer) [41].

Although many dynamic optimization problems consider how to extract useful

operating policies and/or designs from a dynamic model, such formulations can

also be applied to the model building process itself, i.e. to the so-called reverse

engineering problem [56,75,88,103,113,116,138,188], which is known to be extremely

complex [218]. Since the saCeSS method described in Chapter 3 has demonstrated

its potential for solving very challenging NLP problems, in this chapter we present

a new release, called saCeSS2, derived from modifications and extensions intended

to address large mixed-integer nonlinear programming (MINLP) and mixed-integer

dynamic optimization (MIDO) problems. In order to illustrate its performance, we

117
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consider a set of very challenging reverse engineering problems in the domain of

computational systems biology.

The organization of this chapter is as follows. Section 4.1 describes the numerical

approach to solve the MIDO problems used in this chapter. Then, Section 4.2

covers the related work. The modifications developed in saCeSS method to work

with MIDO-MINLP problems are explained in Section 4.3. Section 4.4 describes

the considered applications of the proposed solution within computational systems

biology, and Section 4.5 shows the performance and scalability results of saCeSS2 in

three challenging case studies. Finally, Section 4.6 summarizes the main conclusions

of this chapter.

4.1. Mixed-integer dynamic optimization

The MIDO formulation described in Chapter 1 can be used to solve problems

from widely different areas, including aeronautics, chemical engineering, mechanical

engineering, transport, medicine, systems biology, synthetic biology and industrial

biotechnology [41, 72, 85, 94, 98, 99, 122, 140, 159, 160, 185, 186]. In the particular

context of reverse engineering complex biological networks [94], our aim is to use

the MIDO formulation to simultaneously identify the underlying network topology,

its regulatory structure, the time-dependent controls and the time-invariant model

parameters that are consistent with the available experimental (time-series) data.

The alternative to this would be to perform real-valued parameter estimation for

each possible model structure, which is not tractable in realistic models.

Methods for the numerical solution of dynamic optimization problems can be

broadly classified under three categories: dynamic programming, indirect approaches,

and direct approaches. Dynamic programming [23, 26] suffers from the so-called

curse of dimensionality1, so the latter two are the most promising strategies for re-

alistic problems. Indirect approaches were historically the first developed, and are

based on the transformation of the original optimal control problem into a multi-

point boundary value problem using Pontryagin’s necessary conditions [34,125]. Di-

1An exponential increase in volume associated to the search space when the number of dimension
is very high, causing sparsity in the distribution of the data [24].
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rect methods are based on discretization of the control (sequential strategy [214]),

or both the control and the states (simultaneous strategy [28]).

Here we describe the numerical approach used to solve MIDO problems, based

on the so-called control vector parameterization direct method. We have chosen

the control parameterization approach based on the suggestions given in [41]. This

strategy starts by discretizing the control variables (defined as u(t) and i(t) in the

MIDO formulation described in Chapter 1) into a number of elements and then

approximating the controls in each element by means of certain basis functions

(e.g. piecewise-constant), in such a way that the control variables are parameter-

ized using wu ∈ Rρ and wi ∈ Zρ, which become time-invariant decision variables.

With this approach, the original problem is transformed into an outer mixed-integer

non-linear programming problem (MINLP) with an inner dynamic system. As a

consequence, the evaluation of the objective function and constraints requires the

solution of the system dynamics by a suitable initial value problem (IVP) solver.

In summary, the overall strategy followed is composed of:

An outer mixed-integer nonlinear programming (MINLP) problem. Due to

its non-convexity, we need to use global optimization methods. Based on

previous experiences with different stochastic global methods and their hybrids

with local solvers [21, 60, 61, 67, 165, 167, 189], here we decided to extend the

saCeSS method proposed in previous chapter, combining it with an efficient

local MINLP solver [69], as described below.

An inner initial value problem (IVP), i.e. the nonlinear dynamics that need to

be integrated for each evaluation of the cost functional and constraints. We

solve the IVP using the state-of-the-art solvers for numerical integration of dif-

ferential equations included in the SUNDIALS package [97]. It should be noted

that local optimization methods to be used require the computation of gradi-

ents of the objective and/or constraints with respect to the decision variables.

If this is the case, an efficient procedure is to use first order parametric sensitiv-

ities to compute such information [213]. The sensitivity equations result from

a chain rule differentiation applied to the system defined in Eqns. 1.8 with re-

spect to the decision variables and may be solved in combination with the orig-

inal system. SUNDIALS [97] includes CVODES, an efficient sensitivity solver.
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4.2. Related work

Broadly speaking, MIDO problems can be solved using deterministic or stochas-

tic global optimization methods. In the case of deterministic methods, many ad-

vances have been made in recent years (see [30, 41, 85, 187] and references therein).

Although these deterministic methods can guarantee global optimality in some cases,

unfortunately they suffer from lack of scalability, i.e. the associated computational

effort increases very rapidly with problem size.

Alternatively, stochastic algorithms for global optimization cannot offer guaran-

tees of global optimality, but usually converge to the vicinity of the global optimum

in reasonable computation times, at least for small and medium scale problems.

However, for larger problems the computational cost of purely stochastic methods

can be very significant [136,141]. Several hybrid approaches [18,21,67,190,192] have

tried to benefit from the best of both approaches by combining global stochastic

methods with efficient (local) deterministic optimization methods. In this context,

metaheuristics (i.e. guided heuristics) have been particularly successful, ensuring

the proper solution of these problems by adopting a global stochastic optimization

approach, while keeping the computational effort under reasonable values thanks to

efficient local optimization solvers [60,181]. Nevertheless, MIDO problems involving

a large number of continuous decision variables still tend to have prohibitive solution

times, and some convergence difficulties may still be experienced in practice.

As already commented in previous chapters, parallel strategies for metaheuristics

have been a very active research area during the last decade. Parallel methods have

already shown promising results in NLP problems [108,169]. For the case of MINLP,

only a few researchers have considered the development of parallel methodologies.

In [83] a parallel implementation of nonlinear branch-and-bound is proposed. The

parallelization strategy employs a master-worker paradigm in which the master man-

ages a pool of MINLP tasks corresponding to subtrees of the branch-and-bound tree,

and each worker solves a MINLP task by nonlinear branch-and-bound. In [146] a

many-core implementation of an adaptive resolution approach to genetic algorithm

(arGA) is proposed, to solve both MINLP and non-convex NLP problems. In [157]

authors show, using random relaxation procedures, that sampling over a subset of

the integer variables and parallel processing have potential to simplify large scale
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MINLP problems and, hence, to solve them faster and more reliably than conven-

tional approaches on single processors.

Based on the above, there is still a lack of studies for the MIDO problems con-

sidered here. The aim of this chapter is to explore this direction further considering

an extension of the saCeSS algorithm proposed in Chapter 3 for NLP problems, so

that it can handle general MIDO and MINLP problems of realistic size.

4.3. Extending saCeSS for mixed integer

optimization

With the aim of solving the MIDO-MINLP problems presented in Section 4.1,

we propose an extension of saCeSS, called saCeSS2, where new functionalities are

added to handle this kind of problems. Namely,

including a local solver for MINLP problems

changing the self-adaptive mechanism in order to avoid premature stagnation.

adding new strategies to ensure diversity while keeping parallel cooperation.

Regarding the local search, we have incorporated the Mixed-Integer Sequen-

tial Quadratic Programming (MISQP) [68, 69] solver. MISQP is a trust region se-

quential quadratic programming solver adapted to MINLP problems. It assumes

that the model functions are smooth: an increment of a binary or an integer vari-

able can produce a small change of function values, though it does not require the

mixed-integer function to be convex or relaxable, i.e. the cost function is evaluated

only with discrete values in the integer or boolean parameters.

The preliminary tests applying the previous saCeSS algorithm to MIDO-MINLP

problems using the MISQP local solver, brought to light a problem of premature

convergence due to a quick lose of diversity in the islands. Although both eSS and

saCeSS algorithms include their own mechanisms to maintain the desired diversity

during the algorithm progress, we observed that in mixed-integer problems a promis-

ing incoming solution in an island worked as an attractor for the members of the
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RefSet, bringing them quickly to the vicinity of this new value. Thus, we introduced

two new strategies in the saCeSS2 method to allow for a dynamic breakout from

local optima, and to further preserve the diversity in the search for these problems,

avoiding premature stagnation:

First, we needed to avoid the premature convergence observed in MINLP prob-

lems. Cooperation between islands decreases too quickly as the algorithm con-

verges, since many of them stagnate. Thus, the criteria used in the original

saCeSS method to trigger the reconfiguration (tuning) of those islands that

are not progressing in the search should be accommodated for MINLP prob-

lems, relaxing the adaptive conditions to allow for an earlier escape from the

stagnated regions.

Second, we observed that in mixed-integer problems, when an island stagnates,

most of the time is due to the loss of diversity in the RefSet. Thus, we decided

to further inject diversity during the reconfiguration of stagnate islands: once

an island requests a reconfiguration, most of the members of the RefSet, except

for two solutions, are randomly initialized again.

The saCeSS2 scheme follows the same steps as the original saCeSS, explained in

Chapter 3. Figure 4.1 shows a schematic, simple representation of the algorithm. For

a more in depth view we refer to the pseudocodes in Chapter 3.3. A master process in

charge of the control of the cooperation and the scoreboard for the islands’ tuning. In

the cooperation stage the master manages the appearance of good solutions received

from slaves. Then, with the aim of controlling the cooperation between slaves,

only when the incoming candidate solution significantly improves a threshold, the

solution is updated and broadcasted to the slaves. The master process is able to

self-tune the cooperation threshold based on the number of incoming solutions that

are refused with the current criterion. In addition, when a new incoming solution

deserves to become a cooperative solution spread to the rest of the slaves, there

is an increment on the score of the slave that achieved that solution. The master

process also manages the slaves’ adaptation requests. Each slave decides by itself

whether it is evolving in a promising mode or not, and requests from the master the

reconfiguration settings.

The slaves perform the classic steps of the sequential eSS. Additionally new
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Figure 4.1: Schematic representation of saCeSS2 algorithm.
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steps are included to implement cooperation and self-tuning. First, a reception

memory buffer retains the messages arriving from the master that have not yet been

processed, thus, the communications are all done in a non-blocking asynchronous

way. The slave checks if any message with a new best solution from the master has

arrived at its reception memory buffer. If a new solution has arrived, the process

checks whether or not this new solution improves the local best solution. If the new

solution improves the local one, the new solution promotes to be the local best and

it replaces the cooperation entry in the process RefSet. Then, the slave also checks

the reception of new reconfiguration settings. Note that, as already explained, all

the communications between slaves and master are asynchronous, thus, the request

for a reconfiguration is also a non-blocking operation. This means that the slave

goes on with its execution until the message with the reconfiguration settings arrive.

After the reception step, the slave process checks whether its best solution im-

proves in, at least, an ε the best known solution. If this is the case, it updates the

best known solution and sends it to the master.

Then, the adaptive phase is performed. As previously discussed, this step, specif-

ically the criteria to trigger the reconfiguration in an island, had to be modified to

be attuned to MINLP problems. Each slave decides if it is progressing in the search

based on:

Number of evaluations performed since its last cooperation:

Neval > Npar × 500

Where Neval is the number of evaluations performed by this process since its

last cooperation with the master and Npar is the number of parameters of the

problem.

Balance between the received and sent solutions:

recvSolutions > (4× sendSolutions) + 10

Adaptation is requested when the number of received solutions is significantly

greater than the number of solutions sent (with a minimum value of 10, to

avoid requests at the beginning of the process), that is, if other slaves are
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cooperating much more than itself.

If an island detects that it is not improving while it is receiving solutions from

the master, it sends a request for reconfiguration to the master process. The master

listens to these requests and sends to those slaves the most promising settings, i.e.

those that are on the top of the scoreboard.

In MINLP problems we further observed a crucial issue: the loss of diversity

in the island during the execution progress seriously compromises the convergence.

Thus, in order to inject extra diversity into the reconfigured islands, most of the

members of their RefSet are randomly re-initialized.

Finally, the saCeSS2 algorithm repeats the external loop until the stopping crite-

rion is met. The current version can consider three different stopping criteria (or any

combination among them): maximum number of evaluations, maximum execution

time and a value-to-reach (V TR). While the V TR is usually known in benchmark

problems, for a new problem, the V TR will be, in general, unknown.

4.4. Applications in computational systems

biology

The aim of reverse engineering in biological systems is to infer, analyze and

understand the functional and regulatory mechanisms that govern their behavior,

using the interplay between mathematical modeling with experiments. Most of these

models need to explain dynamic behavior, so they are usually composed of different

types of differential equations. However, reverse engineering in systems biology

has to face many pitfalls and challenges, especially regarding the ill-conditioning

and multimodality of these inverse problems [218]. Below we consider several cases

related with cell signalling processes and show how these issues can be surmounted

with the methodology presented here.
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4.4.1. Reverse engineering of cell signalling

Reverse engineering of cell signaling phenomena is a particularly important area

in systems biology [7]. In complex organisms, signaling pathways play a critical role

in the behavior of individual cells and, ultimately, in the organism as a whole. Cells

adapt to the environmental conditions through the integration of signals released by

other cells via endocrine or paracrine secretion as well as other environmental stimuli.

Fundamental cellular decisions such as replicate, differentiate or die (apoptosis) are

largely controlled by these signals [6].

Many of the interactions involved in signaling are commonly grouped in path-

ways. Pathways are typically depicted as sequences of steps where the information is

relayed upon activation by an extracellular receptor promoting several downstream

post translational modifications, which will ultimately end by modifying gene ex-

pression or some other effector. These interactions are dynamic, i.e. the behavior of

such pathways is known to be highly dependent on the cell type and context [107],

which change with time [132]. Additionally, many of these pathways interact with

each other in ways that are often described as analog to a decision making pro-

cess [92]. Further, the dynamics of cell signaling are rather fast processes, specially

if compared with metabolism or even gene expression.

There are at least three good reasons to infer a dynamic model of a signaling

pathway. The first, and perhaps most obvious one, is to find novel interactions. The

second is model selection, defined as the process of using data to select (or exclude)

a number of model features which are consistent with the current knowledge about

a given system. This is particularly relevant when comparing different cell types or

a specific cell type in its healthy and diseased status, such as cancer. The third one

is the usage of such a model to predict how the system will behave in new conditions

that have not been previously tested.

In order to build a mechanistic dynamic model for a given cell type or tissue, we

need values for its parameters. These are rarely available, and a common strategy

is to find them by training the model to data. The most informative data for signal

transduction is obtained upon perturbation experiments, where typically a system

(assumed to be homeostatic initially) is stimulated with different chemicals to which

the cell may (or not react), and the variations in the cell biochemistry are recorded.
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The resulting time-series of data are then used to reverse engineer a dynamic model

of the signalling process.

Subsections 4.4.2 and 4.4.3 describe the so called logic-based ordinary differential

equations (ODE) framework, which has been found particularly useful in modeling

cell signalling, and its problem statement as a MIDO. Then, in Section 4.5 we present

three very challenging case studies of increasing complexity, which are then solved

with the parallel metaheuristic presented in this study.

4.4.2. Logic-based dynamic models

Logic models were first applied to biological systems by Kauffman [111] to model

gene regulatory networks. Since then, applications to multiple contexts have been

made [1,223] and diverse modifications from the original formalism have been devel-

oped [133]. In particular, various extensions have been developed to accommodate

continuous values [8,25,29,51,137,144,232]. Amongst these formalisms, logic-based

ordinary differential equations (ODEs) are well suited to handle time series in a

precise manner [94]. The main idea is to transform the logic model into a con-

tinuous homologue in the form of ODEs. Since it is based on a logic circuit, this

formalism does not require mechanistic kinetic information. However, since it is

composed of differential equations, we can use it to carry out dynamic simulations

and e.g. predict dynamic trajectories of variables of our interest. A number of dif-

ferent methods have been proposed to transform Boolean logic models into ODE

homologues [29,137,232].

Basically, logic models describe the flow of information in a biological system

using discrete binary states (logic decisions). In other words, each state xi ∈ {0, 1}
is represented by a binary variable can be updated according to a Boolean function

Bi(xi1, xi2, ..., xiN) ∈ {0, 1} of its N inputs (xij). A typical simple example is the

situation where a protein can be phosphorylated in two sites by different kinases,

and both interactions are needed to activate the protein. This can be modeled as

a logic AND gate. Alternatively, when two different kinases can phosphorylate the

same site, independently activating the downstream signaling, we can describe it

as a logic OR gate. In another situation, if a signal inhibits the propagation of

another one, we can describe it with a NOT gate. In summary, logic models can be
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Table 4.1: Relation between functions B(x1, x2) and B̄I(x̄1, x̄2). A truth table helps
to understand the relationship between the OR Boolean update function B(x1, x2)
and its continuous homologue B̄I(x̄1, x̄2). For every combination of the Boolean
variables x1 and x2, a term is added to B̄I(x̄1, x̄1) depending on B(x1, x2).

x1 x2 B(x1, x2) B̄I(x̄1, x̄2) = ...
0 0 0 0· (1− x̄1)· (1− x̄2)+
0 1 1 1· (1− x̄1)· x̄2+
1 0 1 1· x̄1· (1− x̄2)+
1 1 1 1· x̄1· x̄2

represented by an hypergraph with AND/OR/NOT gates.

In the logic-based ODE formalism, we transform each Boolean update function

into a continuous equivalent B̄i ∈ [0, 1], where the states x̄i ∈ [0, 1] can take contin-

uous values between 0 and 1. Their dynamic behaviour is then modelled as:

˙̄xi =
1

τi
· (B̄i(x̄i1, x̄i2, ..., x̄ij)− x̄i) (4.1)

where τi can be regarded as a sort of life-time of xi.

HillCubes [232] were developed for the above purpose. They are based on mul-

tivariate polynomial interpolation and incorporate Hill kinetics (which are known

to provide a good approximation of the dynamics of gene regulation, for example).

HillCubes are obtained via a transformation method from the Boolean update func-

tion. An example is shown in Table 4.1, illustrating how an OR gate would be

transformed by multi-linear interpolation [232] into a BoolCube (B̄I):

B̄I(x̄1, ..., x̄N) =

1∑
x1=0

...
1∑

xN=0

[
B(x1, ..., xN)·

N∏
i=1

(
xix̄i + [1− xi][1− x̄i]

)] (4.2)

Although BooleCubes are accurate homologues of Boolean functions, they fail to

represent the typical sigmoid shape switch-like behavior often present in molecular
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interactions [117]. The latter can be achieved by replacing the x̄i by a Hill function:

fH(x̄i) =
x̄i
n

x̄ni + kn
(4.3)

or the normalized Hill function:

fHn(x̄i) =
fH(x̄i)

fH(1)
(4.4)

Further details regarding logic-based ODE models can be found in [232].

4.4.3. Problem statement as a MIDO

In order to find the best logic-based dynamic model to represent the behavior of a

given biological network, we can use a formulation extending those in previous works

using a Boolean logic framework [183] or a constrained fuzzy-logic formalism [143].

The idea here is that starting from a directed graph containing only the interactions

and their signs (activation or inhibition) we can build an expanded hypergraph

containing all the possible logic gates.

The problem can be formulated as the following for case studies 1 and 2 (see

below):

minimize
n,k,τ,w

F (n, k, τ, w) =
nε∑
ε=1

nεo∑
o=1

nε,os∑
s=1

(ỹε,os − yε,os )2

subject to Esub = {ei|wi = 1}, i = 1, . . . , nhyperedges

Hsub = (V, Esub)
LBn ≤ n ≤ UBn

LBk ≤ k ≤ UBk

LBτ ≤ τ ≤ UBτ

˙̄x = f(Hsub, x̄, n, k, τ, t)

x̄(t0) = x̄0

y = g(Hsub, x̄, n, k, τ, t)

(4.5)
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where Hsub is the subgraph containing only the hyperedges (Esub) , defined by the

binary variables w. Additionally n, k and τ are the continuous parameters needed

for the logic-based ODE approach. These parameters are limited by upper and lower

bounds (e.g. LBk). The model dynamics ( ˙̄x) are given by the function f . This set of

differential equations varies according to the subgraph (and therefore also according

to the integer variables vector w). Predictions for the systems dynamics are obtained

by solving the initial value problem given by the ODEs. The objective function is the

mismatch (e.g. norm-2) between the simulated (y) and the experimental data (ỹ),

and we seek to minimize this metric for every experiment (ε), observed species (o)

and sampling point (s). The simulation data y is given by an observation function

g of the model dynamics at time t.

In case study 3 we also consider a model reduction problem where additional

decision variables are used to remove the influence of a regulator x̄i from the model.

As a starting point we consider a model derived with SELDOM [95], where a mutual

information strategy, combined with dynamic optimization, was used to find an

ensemble of dynamic models that can explain the data from four breast-cancer cell-

lines used in the DREAM-HPN challenge [96]. One of the critical steps in SELDOM

was to perform model reduction using a greedy heuristic. Here we consider instead

the application of mixed-integer global optimization with saCeSS2 to the problem of

model reduction. To find a reduced model we use the Akaike information criterion

(AIC), which for the purpose of model comparison is defined as:

AIC = 2K + 2n · ln
(F
n

)
, (4.6)

where K is the number of active parameters. The theoretical foundations for the

AIC can be found in [37].

4.5. Experimental results

The new saCeSS2 method described in Section 4.3 has been applied to a set of

case studies from the domain of systems biology, as described in Section 4.4, with

the goal of assessing its efficacy and efficiency in realistic MIDO-MINLP problems.
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The method has been compared with both the sequential eSS [61] and with an

embarrassingly parallel non-cooperative version of the eSS called np-eSS. The np-

eSS method consists of np independent eSS runs (being np the number of available

processors) performed in parallel without cooperation among them and reporting the

best execution time of the np runs. In order to perform a fair comparison, diversity

was introduced in these np eSS runs in the same sense as cooperative methods do,

i.e. each one performing a different eSS with different settings. The performance

of saCeSS2 was also evaluated considering a different number of cores in order to

study its scalability and the dispersion of results.

Although the reported implementation of eSS [61] was coded in Matlab, to per-

form here a fair comparison both the eSS and the saCeSS2 algorithms have been

implemented in F90. In the saCeSS2 algorithm the MPI library [161] has been

employed for the cooperation between islands.

For the experimental testbed different platforms have been used. First, most of

the experiments were conducted in the local cluster NEMO that consists of three

nodes powered with two deca-core Intel Xeon E5-2650 CPUs with 30GB of RAM

connected through a Gigabit Ethernet network. With the aim of assessing the scala-

bility of the proposal we also performed some experiments in a larger infrastructure,

the cluster from the European Bioinformatics Institute (EBI) [65], that consists

of 222 nodes powered with two octa-core Intel Xeon E5-2680 CPUs with 30GB of

RAM, connected through a Gigabit Ethernet network.

The saCeSS2 library has been compiled with the Intel implementations for C,

FORTRAN and MPI library, except in the EBI Cluster, where GNU compilers

and openMPI had to be used. We remark upon this fact due to the well-known

differences in the performance obtained using different compilers.

The computational results shown in this paper were analyzed both from a hor-

izontal view [87], that is, assessing the performance by measuring the time needed

to reach a given target value, and from a vertical view [87], that is, evaluating how

far a method has advanced in the search for a predefined effort. Thus, two differ-

ent stopping criteria were considered in these experiments: solution quality based

on a value-to-reach (V TR), for an horizontal view, and predefined effort using a

maximum execution time, for a vertical approach. The V TR used was the optimal
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fitness value reported in [94]. Also, since there is a substantial dispersion in the

computational results due to the stochastic nature of these methods, each experi-

ment reported in this section has been performed 20 times, with a statistical study

also being carried out.

4.5.1. Case Study 1: Synthetic signaling pathway (SSP)

The synthetic signaling pathway (SSP) [133] case study considers a dynamic

model composed of 26 ordinary differential equations and 86 continuous parame-

ters. It was initially used to illustrate the capabilities and limitations of different

formalisms related with logic-based models. Although this is a synthetic problem,

it was derived to be a plausible representation of a signaling transduction pathway.

The model was used to generate pseudo-experimental data for 10 combinations of

experimental perturbations of 2 ligands (TNFα and EGF) and two kinase inhibitors

(for PI3K and RAF1). From a total of 26 dynamic states, 6 were observed (NFKB,

P38, AP1, GSK3, RAF1 and ERK) and 5% of Gaussian noise was added to the

data.

Following the methodology described in [183], we obtained an expanded version

of this model containing every possible AND/OR logic gate given the initial graph

structure. This so-called expansion procedure generated a nested model comprising

34 additional variables, one for each hyperedge. Thus, the obtained optimization

problem contains 120 parameters, being 86 continuous and 34 binaries. We pro-

ceeded by implementing the model and experimental setup using AMIGO [17] and

exporting C code which could be used with the saCeSS2 method presented here.

Considering saCeSS2, it is important to note that the cooperation between pro-

cesses changes the systemic properties of the eSS algorithm and therefore its macro-

scopic behavior. The same thing occurs with the self-adaptive mechanism pro-

posed. Table 4.2 displays for each method (sequential, parallel non-cooperative,

and saCeSS2) the number of cores used (#np), the mean and standard deviation

value of the achieved tolerances (fbest), the mean and standard deviation number

of external iterations (iter) performed, the mean and standard deviation number

of evaluations (evals) required to achieve the V TR, the mean and standard devia-

tion execution time, and the speedup (sp) achieved versus the sequential method.
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Table 4.2: Case study 1: SSP. Performance analysis from a horizontal view. Stopping
criteria: VTR=10.

meth. #np fbest±std iter±std evals±std time±std(s) sp

eSS 1 9.81±0.36 261±636 345989±829560 54885±131153 -

10 9.57±0.63 35±16 356583±127682 4546±1592 12.07
np-eSS 20 9.81±0.24 29±6 626150±120338 4193±907 13.08

40 9.86±0.19 33±9 876800±228596 2901±765 18.91

10 9.77±0.27 25±9 246082±68925 3478±1114 15.77
saCeSS2 20 9.84±0.19 18±6 402613±120260 2779±870 19.74

40 9.91±0.17 19±8 470746±142702 1602±523 34.25

Table 4.3: Case study 1: SSP. Performance analysis from a vertical perspective.
Stopping criteria: VTR=9 and maximum time = 4000 seconds.

meth. #np fbest±std iter±std evals±std time(s) hits%

eSS 1 20.17±4.53 19±3 27289±4478 4000 0%

10 10.68±1.69 26±3 261664±24780 3966 10%
np-eSS 20 10.31±0.91 24±3 522194±47322 3862 15%

40 9.57±0.70 36±4 964168±99650 3681 30%

10 10.28±1.44 23±4 256872±28063 3822 15%
saCeSS2 20 9.61±0.72 22±4 471948±82282 3532 35%

40 8.95±0.24 32±19 621118±232204 2258 85%

As can be seen, there is a notable reduction in the execution time required by the

parallel methods against the sequential one, and there is also a significant reduction

between the saCeSS2 method and the non-cooperative np-eSS. Note that, in the

parallel methods (np-eSS and saCeSS2), the initial population, and, thus, the com-

putational load, is not spread among processors. The population size is the same in

the sequential method that in each of the islands in the parallel methods. That is,

the parallel methods allow for a diversification in the search. Therefore, the speedup

achieved versus the sequential method is due to the impact of this diversification,

and the speedup achieved by saCeSS2 over the np-eSS is due to the impact that

the cooperation among processes produces on achieving a good result, performing

less evaluations and, hence, providing a better performance. In short, these results

show the effectiveness of the cooperative parallel algorithm proposed compared to

a non-cooperative parallel version.

Table 4.3 shows results for experiments that include as stopping criterion a prede-
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Figure 4.2: Case study 1: SSP. Hybrid violin/boxplots of execution time for np-eSS
vs saCeSS2 using 10, 20 and 40 MPI processors. Stopping criteria: VTR=10.

fined effort of maximum execution time of 4000 seconds. This table displays the per-

centage of executions (% hit) that achieve a very high quality solution (VTR=9.0).

It can be observed that the sequential implementation never achieved the VTR in the

maximum allowed time, while, for the parallel implementations, when the number

of processes grows the number of the executions that achieved the quality solution

increased. Again, the cooperative proposed saCeSS2 implementation achieved bet-

ter results than the non-cooperative parallel version when using the same number

of processors.

When dealing with stochastic optimization solvers, it is important to evaluate

the dispersion of the computational results. Figure 4.2 illustrates with hybrid vi-

olin/boxplots how the parallel algorithms (np-eSS and saCeSS2) reduce the vari-

ability of execution time and obtain a lower number of outliers when the number

of cores increases. The proposed saCeSS2 method outperforms significantly the

non-cooperative np-eSS method (note the logarithmic scale in axis y). This is an

important feature of the saCeSS2, because it reduces the average execution time.

To better illustrate the goal of saCeSS2 method versus the non-cooperative par-

allel np-eSS implementation, Figure 4.3 shows the convergence curves, which repre-

sent the logarithm of the objective function value against the execution time. Fig-

ure 4.3(a), Figure 4.3(b) and Figure 4.3(c) illustrate, for both saCeSS2 and np-eSS
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(a) Convergence curves for 10 -eSS vs saCeSS2 using 10 cores.

(b) Convergence curves for 20 -eSS vs saCeSS2 using 20 cores.

(c) Convergence curves for 40 -eSS vs saCeSS2 using 40 cores.

Figure 4.3: Case study 1: SSP. Convergence curves.
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Figure 4.4: Case study 1: SSP. Convergence curves for saCeSS2 using 1, 10, 20
and 40 processors corresponding to the runs in the median values of the results
distribution.

methods, the region between the lower and upper bounds of the 20 runs performed

for each experiment, with a strong line representing the median value for each time

moment.

In order to evaluate the scalability of the proposed saCeSS2, Figure 4.4 shows the

convergence curves for those experiments that fall in the median values of the results

distribution using 10, 20 and 40 processors. It can be seen that the saCeSS2 still

improves the convergence results when the number of processors increases. This

improvement comes from the cooperation between islands and the diversification

obtained through the exploration in parallel of different search regions using different

algorithm settings.

4.5.2. Case Study 2: HePG2

As a second case study, we consider the reverse engineering of a logic-based ODE

model using liver cancer data (a subset of the data generated by [10]). The dataset

consists of phosphorylation measurements from a hepatocellular carcinoma cell line

(HepG2) at 0, 30 and 180 minutes after perturbation.

To preprocess the network, we used CellNOptR, the R version of CellNOpt [202].
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Table 4.4: Case study 2: HePG2. Performance analysis from a horizontal view.
Stopping criteria: VTR=33.

meth. #np fbest±std iter±std evals±std time±std(s)

eSS 1 - - - -

10 32.44±0.83 1493±2975 13581782±10598705 230483±365129
np-eSS 20 32.54±0.74 527±381 20267424±12791177 142996±93617

40 32.89±0.17 434±246 22157687±11660663 70221±35565

10 32.59±0.59 1056±1873 13637565±20933642 167880±242658
saCeSS2 20 32.38±0.91 396±496 13196677±15577101 89433±108108

40 32.45±1.03 560±431 11959105±9383238 44037±32346

Basically, the network was compressed to remove as many non-observable/non-

controllable species. Subsequently, it was expanded to generate all possible hy-

peredges (AND gates) formed by a pair of inputs. The obtained full network has a

total of 109 hyperedges and 135 continuous parameters. To transform this model

into a logic-based ODE model, we developed a parser that generates a C model file

and Matlab scripts compatible with the AMIGO toolbox [17].

Consequently, in this case the optimization problem to solve contains a total of

244 parameters, comprised of 135 continuous and 109 binaries. Although the time-

series data contains only three sampling time points, it is quite rich from the point

of view of information content: it includes 64 perturbations comprising 7 ligands

stimulating inflammation and proliferation pathways as well as 7 small-molecule

inhibitors blocking the activity of key kinases. To use logic-based ODE models,

all data should be in the [0, 1] range and thus we simply normalized the data by

rescaling it to this range. From the total of 25 states present in the model, 16

corresponded to observed species. The initial conditions for the other 9 species are

not known and were therefore estimated. In order not to increase the problem size

and multi-modality unnecessarily, the estimated initials conditions were assumed

the same for each of the 64-experiments.

Table 4.4, similarly to Table 4.2, displays the performance of the different meth-

ods based on the number of external iterations, function evaluations and total exe-

cution time, for a different number of processors. Note that results for the sequential

method are not reported due to the unreasonable amount of time to reach conver-

gence. Again, it can be seen that the saCeSS2 method outperforms, not only the
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Table 4.5: Case study 2: HePG2. Performance analysis from a vertical view. Stop-
ping criteria: VTR=30 and maximum time = 108000 seconds.

meth. #np fbest±std iter±std evals±std time(s) hits%

eSS 1 48.34±6.27 342±47 1010744±122417 108000 0%

10 34.91±3.78 482±112 8329751±1519410 103847 10%
np-eSS 20 32.99±1.99 418±65 16612721±2292759 103614 10%

40 31.12±1.35 604±180 30606532±8576193 93874 35%

10 34.75±3.88 403±146 7359986±1468640 103052 10%
saCeSS2 20 32.07±4.43 339±163 12057460±4431722 85436 45%

40 30.41±1.23 786±478 20231060±11664025 63153 65%

sequential eSS, but also a parallel eSS without cooperation between islands. The

cooperative strategy, along with the self-adaptive mechanism, leads to an important

improvement in the convergence rate and the execution time required.

Table 4.5 shows results using as stopping criterion a lower VTR and a predefined

effort of 30 hours. Since it is very difficult to reach a point of very high quality in

this problem, this table displays the percentage of hits that achieve a VTR=30. It

can be observed that the sequential eSS never achieved the VTR in the maximum

allowed time, while the parallel implementations achieve more hits as the number of

processors increases. The saCeSS2 method clearly outperforms the embarrassingly

parallel eSS.

Figure 4.5 shows violin/boxplots comparing the distribution of the execution

times in the saCeSS2 method versus the non-cooperative parallel version. Note

the logarithmic scale in y axis. The figure illustrates not only the improvement in

the mean execution time, but also the reduction in the variability of the execution

times due to the cooperation and self-adaptive mechanism included in the saCeSS2

method. It is worth remarking that the fewer number of cores used the more outliers

we obtain in the distribution.

Figure 4.6, demonstrate the scalability of the proposal when the number of pro-

cessors increases. Finally, Figure 4.7 shows the convergence curves for the previous

experiments. Figure 4.7(a), Figure 4.7(b) and Figure 4.7(c) show the region between

the lower and upper bounds of the 20 runs for each experiment.
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distribution.
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(a) Convergence curves for 10 -eSS vs saCeSS2 using 10 cores.

(b) Convergence curves for 20 -eSS vs saCeSS2 using 20 cores.

(c) Convergence curves for 40 -eSS vs saCeSS2 using 40 cores.

Figure 4.7: Case study 2: HePG2. Convergence curves.
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4.5.3. Case Study 3: Breast cancer network inference

challenge (HPN-DREAM)

An extremely difficult problem which has been recently made publicly available

in the context of the DREAM challenges (www.dreamchallenges.org) is considered in

this section. The DREAM challenges provide a forum to crowdsource fundamental

problems in systems biology and medicine, such as the inference of signaling networks

[96, 174, 184], in the form of collaborative competitions. This data-set comprised

time-series acquired under eight extracellular stimuli, under four different kinase

inhibitors and a control, in four breast cancer cell lines [96].

The HPN-DREAM breast cancer challenge is actually composed of two sub-

challenges: (i) an experimental sub-challenge where the participants were asked to

make predictions for 44 observed phosphoproteins (although the complete data-set

was larger); and (ii) an in silico sub-challenge, where the participants were encour-

aged to exploit all the prior knowledge they could use and the experimental protocol

along with the real names of the measured quantities, used reagents, inhibitors, etc.

Using different combinations of inhibitors and ligands (on and off), the organizers

of the challenge generated a data-set for several cell-lines. An additional data-set

generated with the help of a fourth inhibitor was kept unknown to the participants,

who were asked to deliver predictions for several possible inhibitors.

Overall, the problem contains a total of 828 decision variables (690 continuous

and 138 binaries). Thus, the HPN-DREAM is an extremely challenging problem also

from a computational view, with an enormous expected execution time and an un-

known final target value. In a preliminary step, we carried out different experiments

using np = 10, 20, and 40 cores in our NEMO local cluster to solve this problem.

We used as stopping criterion for all the experiments a predefined effort of 10 days

and we studied the convergence curves, shown in Figure 4.8(a). The blue region rep-

resents the bounds of the 40 sequential eSS runs, while the blue solid line represents

the median value for each time moment of these 40 runs. The other solid lines repre-

sent the convergence curve of a single saCeSS2 performed using 10, 20, and 40 cores.

The saCeSS2 method clearly outperforms the embarrassingly parallel eSS and shows

a good scalability when the number of processes increases. We then performed new

experiments using a larger number of cores in the EBI cluster. Figure 4.8(b) show
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(a) Convergence curves using 10, 20, 40 and 60 cores in the NEMO local cluster.
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(b) Convergence curves using 100, and 300 cores in the EBI cluster.

Figure 4.8: Case study 3: HPN-DREAM. Convergence curves of sequential eSS vs
saCeSS2.
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the convergence curves using 100 and 300 cores. Due to the large amount of resources

employed and the cluster policy, the length of the job (and, thus, the stopping cri-

terion used) had to be set to 4 days. Note that, due to the differences between both

infrastructures, it is quite difficult to perform a fair comparison with our local clus-

ter. Although the convergence rate seems to be slower in the EBI cluster, the results

obtained still demonstrate the good scalability of saCeSS2. The lower convergence

rate in the EBI cluster is due to the architectural and performance differences with

respect to our local cluster, and also to the use of GNU compilers instead of the

Intel compilers used in our local cluster. Nevertheless, the scalability of saCeSS2 is

maintained: the more resources we can use for the cooperative method, the larger

improvement we will obtain versus executing the sequential method with the same

computational resources.

4.6. Concluding remarks

This contribution extends the previously developed saCeSS method described

in Chapter 3, a parallel cooperative strategy for non-linear programming (NLP)

problems, so it can successfully solve realistic mixed-integer dynamic optimization

(MIDO) problems. To this end, the following features have been included in the

new saCeSS2 implementation: (1) an efficient mixed-integer local solver (MISQP),

(2) a novel self-adaption mechanism to avoid convergence stagnation, and (3) the

injection of extra diversity during the adaptation steps, restarting most of reference

set of the reconfigured processes.

The computational results for case studies show that the proposal significantly

reduces the execution time needed to obtain a reasonable quality solution. Moreover,

the dispersion in the obtained results is narrowed when the number of processors

grows. These results confirm that the method can be used to reverse engineer dy-

namic models of complex biological pathways, and indicates its suitability for other

applications based on large-scale mixed-integer optimization, such as metabolic en-

gineering [192], optimal drug scheduling [44,57] and synthetic biology [158].

The results of this chapter have been sent for publication in:

D. R. Penas, D. Henriques, P. González, R. Doallo, J. Saez-Rodriguez, and J.
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R. Banga. A parallel metaheuristic for large mixed-integer nonlinear dynamic

optimization problems, with applications in computational biology. PLOS

ONE, under review. [168]

The source code of the saCeSS2 proposed here (see Appendix A) is available at:

https://doi.org/10.5281/zenodo.290219



Chapter 5

Evaluation on a Public Cloud

Infrastructure

As stated in Chapter 1, Cloud Computing has emerged as a new paradigm for

on-demand delivery of computing resources. With the advent of this technology

effortless access to large number of distributed resources has become more feasible.

However, its adoption by the HPC community has been limited. First, because of the

difficulty in employing cloud-based resources. The learning curve to understand the

different architectures and runtime environments of various cloud platforms discour-

age from adopting it as an alternative computational system. Second, because clouds

also raise important challenges in performance aspects. Recently, there have been

many research works evaluating the promise of cloud platforms for HPC computing,

most of them concluding that cloud-based clusters need a significant performance

improvement to become competitive for HPC applications.

In this chapter, we evaluate the previously proposed parallel metaheuristics in

a public cloud infrastructure: the Microsoft Azure cloud. Additionally, we also

present a preliminary comparison of the MPI solution proposed for DE, which is HPC

oriented, with another implementation that uses a throughput oriented computing

model, Spark. The organization of this chapter is as follows. Section 5.1 briefly

describes the related work. Section 5.2 assesses the performance in the cloud of

the parallel DE implementation proposed in Chapter 2, including a comparison

with a Spark-based implementation. Section 5.3 evaluates in the cloud the saCeSS

145
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implementation proposed in Chapter 4 (saCeSS2) for MINLP problems. Finally,

Section 5.4 summarizes the main conclusions of this chapter.

5.1. Related work

The evaluation of traditional HPC solutions in cloud environments has received

a lot of attention during the last decade. Several researchers have studied the per-

formance of MPI applications in the cloud. Most of these studies use classic MPI

benchmarks to compare the performance of MPI on public cloud platforms. The

NAS benchmarks have been used in [66], while the Linpack benchmark has been em-

ployed in [147]. In [156] a variety of microbenchmarks and kernels were studied. Real

applications have also been assessed in the cloud, such as bioinformatics applica-

tions [91], high-energy and nuclear physics experiments [112], and different e-Science

applications [124,177]. In [102] the performance of a set of applications that repre-

sent the typical workload run at a supercomputing center have been examined. Fur-

thermore, an extensive analysis to detect the more critical issues and bottlenecks of

HPC applications in the cloud has been carried out in [70]. All these works conclude

that the lack of high-bandwidth, low-latency networks, as well as the virtualization

overhead, has a large effect on the performance of MPI applications in the cloud.

Among the new programming models that have been proposed to deal with

large scale computations on cloud systems, MapReduce [53] is the most popular

one. MapReduce executes in parallel several instances of a pair of user-provided

map and reduce functions over a distributed network of worker processes driven by

a single master. Executions in MapReduce are made in batches, using a distributed

filesystem (HDFS) to take the input and store the output. MapReduce has been

applied to a wide range of applications, but, when applied to iterative algorithms

MapReduce exhibits serious performance bottlenecks [64] mainly because there is

no way of reusing data or computation from previous iterations efficiently. New

proposals, like Spark [235], aim to provide efficient support for iterative algorithms.

According to [235] the performance of iterative algorithms using Spark can be im-

proved by an order of magnitude when compared to MapReduce.

Additionally, in an attempt at converging cloud platforms and HPC, projects like
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DataMPI [129] or CloudMPI [3] arose. DataMPI [129] aimed at extending MPI by

key-value pair based communication operations to provide high performance com-

munications in cloud scenarios. The cloudMPI [3] framework aimed at designing and

implementing an MPI-like framework for cloud platforms, the Azure cloud platform

being their preliminary testbed. Unfortunately, none of these projects seems to be

active at this moment.

As extensively shown throughout this Thesis, the parallelization of metaheuris-

tics methods has received much attention to reduce the time for solving large-scale

problems. However, most of these proposals are parallel implementations based

on traditional parallel programming interfaces. Research on cloud-oriented parallel

metaheuristics based mainly on MapReduce has also received increasing attention in

recent years [105,123,135,176,217]. Some proposals are specific on studying how to

apply MapReduce to parallelize the DE algorithm to be used in the cloud. In [239]

the fitness evaluation in the DE algorithm is performed in parallel using Hadoop (the

well-known open-source MapReduce framework). However, the experimental results

reveal that the extra cost of Hadoop DFS I/O operations and the system book-

keeping overhead significantly reduces the benefits of the parallelization. The use

of Spark for the parallelization of the DE algorithm was explored in [198]. In this

chapter Spark-based implementations of two different parallel schemes of the DE

algorithm, the master-slave and the island-based, were proposed and evaluated. Re-

sults showed that the island-based solution is by far the best suited to the distributed

nature of Spark. Also, a comparison of the previous Spark implementation of the DE

algorithm with a MapReduce implementation has been performed in [200], already

concluding that Spark outperforms MapReduce in this kind of iterative algorithms.

In this chapter we will explore the implications of the use of MPI and Spark in

the parallel implementation of the DE algorithm. We will discuss the differences that

arise from the inherent features of each programming model, and we will assess the

performance of both implementations in the Microsoft Azure public cloud. Unfortu-

nately, to the best of our knowledge, there are no Spark or Hadoop implementations

of SS to compare with the proposed saCeSS method. Nevertheless, an evaluation of

the saCeSS method in the Microsoft Azure public cloud has also been done, with

the aim of assessing the impact of the overhead related to the virtualization and use

of non-dedicated resources in a multitenant platform.
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5.2. Parallel DE in the cloud

In this section we will assess the performance of the DE algorithm in the cloud by

means of two different implementations: the asynPDE method proposed in Chap-

ter 2, and a Spark-based parallel implementation of the DE algorithm, called eS-

iPDE, proposed in [201]. First, since the MPI-based asynPDE implementation has

already been described in Chapter 2, here we briefly describe the Spark-based im-

plementation remarking the key differences between them. Then, we describe the

experiments performed and discuss the results obtained.

5.2.1. Spark island-based Parallel DE

To understand the Spark-based parallel implementation of the DE algorithm

(eSiPDE), some previous insights into the way data is distributed and processed by

Spark are needed. Spark uses the resilient distributed dataset (RDD) abstraction

to represent fault-tolerant distributed data. RDDs are immutable sets of records

that can optionally be in the form of key-value pairs. Spark programs are run by a

driver (the master in Spark terminology) which partitions RDDs and distributes the

partitions to workers (the slaves in Spark terminology), that persist and transform

them and return results to the driver. There is no communication among workers.

Shuffle operations (i.e. join, groupBy) that need data movement among workers

through the network are expensive and should be avoided.

With the aim of better understanding Spark intricacies and assess the perfor-

mance of different alternatives when implementing DE, in [198] a preliminary evalua-

tion of different variants of the master-slave parallel implementation (SmsPDE), and

an island-based parallel implementation (this being the previously named SiPDE)

have been performed. The main conclusion of that paper is that the island-based

parallel implementation is the best suited to the distributed nature of Spark and

obtains the best performance results.

The eSiPDE used in the evaluation performed in this chapter follows the scheme

shown in Figure 5.1. The algorithm is based on the island model approach, the

population matrix is divided in subpopulations where the algorithm is executed

isolated. Phases such as selection, recombination and mutation are performed only
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Figure 5.1: Spark implementation of the island-based DE algorithm (eSiPDE).

within each island, which implies absence of collaboration among processes. Sparse

individual exchanges are performed among islands to introduce diversity into the

subpopulations, preventing search from getting stuck in local optima. In Figure 5.1,

boxes with solid outlines are RDDs. Partitions are shaded rectangles, darker if they

are persistent in memory. A key-value pair RDD has been used to represent the

population where each individual is uniquely identified by its key. There are two

execution flows that run asynchronously in different threads of the Spark driver.

The main flow is a version of the island-based parallel DE implementation (SiPDE)

described in [199], modified to allow for heterogeneous islands and to incorporate to

the islands the result of a local search using a substitution strategy. The secondary

flow executes an asynchronous local search on the best individual, found up to that

moment, that is far enough away from those used in previous searches.

Some steps in the main flow of the algorithm are executed in a distributed fashion:

The random generation and initial evaluation of individuals that form the

population, implemented as a Spark map transformation.

The evolution of the population. As has been said, the proposed enhanced

parallel DE (eSiPDE) is based on the island-based parallel DE (SiPDE) [199],
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in which every partition of the population RDD is considered to be an is-

land, all with the same number of individuals. Islands evolve isolated during

a number of evolutions. This number can be configured and is the same for

all islands. During these evolutions every worker calculates mutations picking

random individuals from its local partition only. With this respect, eSiPDE

enhances SiPDE by allowing islands to be heterogeneous, that is, having dif-

ferent combinations of CR and F values to enhance diversity.

The migration strategy, which introduces diversity by exchanging selected indi-

viduals among islands every time the evolution of the islands ends. In order to

evaluate the communications overhead a custom Spark partitioner has been

implemented that randomly and evenly shuffles elements among partitions

without replacement.

The checking of the termination criterion, implemented as a Spark reduce

action (a distributed OR operation).

The main flow repeats this evolution-migration loop until the termination crite-

rion is met, after which the best individual is selected by means of a Spark reduce

action (a distributed MIN operation).

An asynchronous local search runs concurrently with the main flow using a dif-

ferent thread on the Spark driver. As can be seen in Figure 5.1, synchronization

with the main flow takes place at two points:

Before the evolution of the islands (label ”1” in the figure), where a new search

is initiated if no other is in progress. The candidate solution used as input

of the local search would be the best individual, found up to that moment,

that was far enough away from candidate solutions used in previous searches.

A tabu list is used to keep track of already explored candidate solutions and

the input is selected by executing a Spark distributed filtering followed by a

reduce action (a distributed MIN operation).

Once the local search finishes (label ”2” in the figure), if it has improved the

candidate solution, a substitution strategy is applied in between the evolution

and migration steps to incorporate the improved solution into the population.
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Figure 5.2: Schematic representation of asynPDE.

For this work, a strategy that replaces the worst individual in each island with

the local search solution (only if it is better) is used. It has been implemented

as a Spark map transformation.

5.2.2. Key differences between the MPI and the Spark im-

plementations

For illustrative purposes, Figure 5.2 shows a conceptual scheme of asynPDE, so

as to enable a straightforward comparison with Figure 5.1. There are four main

differences between the MPI and the Spark implementations described above. All

these differences arise from the inherent features of the programming model used in

each implementation, and more specifically from the fact that the communication

among workers is not allowed in Spark.

Migration strategy. While in asynPDE the migration strategy consists of a

selection of the best individuals in one island to replace the worst individuals

in the neighbor, the migration strategy in eSiPDE consists of randomly and

evenly shuffling elements among islands without replacement.

Synchronization. The use of a partitioner to perform the migration strategy
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leads to a synchronization step in the Spark implementation. The MPI im-

plementation, on the contrary, performs the information exchange between

islands through non-blocking asynchronous message-passing operations.

Stopping criterion checking. Although the stopping criterion is evaluated dur-

ing each island evolution, when it is met by one or more islands the Spark

implementation only stops after the reduce operation at the end of the stage.

Thus, the Spark implementation cannot stop just right when the stopping

criterion is reached as asynPDE code does.

Local solver. While in the asynPDE the local solver is called every m iterations

inside each island, in the eSiPDE, there would be at most one local search run-

ning concurrently with islands evolution at every moment. If the local search

finishes before the islands evolution, its result is incorporated into the popu-

lation once the evolution ends and a new local search is initiated before the

following evolution. On the contrary, if the islands evolution finishes before

the local search, a migration is done and a new evolution started without

waiting for the local solver to end. This avoids the drawback of synchronous

approaches where the evolution of the population gets blocked waiting for a lo-

cal search to finish. Note also that, in the eSiPDE, the input to the local search

is selected from the whole population, and its result is included in every island.

5.2.3. Experimental results

In order to carry out the proposed performance evaluation, the Circadian model,

already used in the evaluation of Chapter 2, was considered. It consists of a pa-

rameter estimation in a nonlinear dynamic model of the circadian clock in the plant

Arabidopsis thaliana, as presented in [127]. The model contains 7 ordinary differ-

ential equations with 27 parameters (13 of them were estimated) with data sets

from 2 experiments. This problem is known to be particularly difficult due to its

ill-conditioning and non-convexity [141,218]. It must be noted that, as already avail-

able implementations in C/C++ and/or FORTRAN existed for this benchmark, we

have wrapped it in the Scala code by using Scala native interfaces (i.e. JNI, JNA,

SNA). Thus, the code for the benchmark function evaluation has been the same in

both Spark and MPI implementations.
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For the experimental testbed two different platforms have been used. First,

experiments were conducted in cluster Pluton, that consists of 16 nodes powered

by two octa-core Intel Xeon E5-2660 @2.20GHz CPUs with 64 GB of RAM, and

connected through an InfiniBand FDR network. Second, experiments were deployed

with default settings in the Microsoft Azure public cloud using clusters with A3

instances (4 cores, 7GB). For the MPI experiments a custom cluster with canonical

Ubuntu Server nodes was used, while for the Spark experiments we used a standard

HDInsight Spark cluster with A3 instances for head and worker nodes. All the nodes

were located in the North Europe region, although there is no further guarantee on

proximity of nodes allocated together, which can lead to significant variability in

latency between nodes. Additionally, we had no control over in which underlying

hardware the clusters were instantiated on. To avoid ending up with different virtual

clusters in every experiment, we instantiated one cluster for MPI experiments and

another cluster for the Spark experiments and all the tests have been performed in

these clusters. By examining /proc/cpuinfo we have identified that the actual CPU

used in both clusters was an Intel Xeon E5-2673 @2.40GHz with 7GB of RAM.

As mentioned in Chapter 2, there are many configurable parameters in the clas-

sic DE algorithm, such as the population size (NP), the mutation scaling factor (F),

the crossover constant (CR) or the mutation strategy (MSt), whose selection may

have a great impact in the algorithm performance. The objective of this work is

not to evaluate the impact of these parameters, thus, only results for one config-

uration are reported here. For the selection of the settings in these experiments,

the guideline in [194] has been followed. For all the experiments in this section

NP=256, F=0.9, CR=0.8, and MSt=DE/rand/1 were used. The target value, or

value-to-reach (V TR), used as stopping criterion in the following experiments was

1.0e-5.

As well, in parallel island DE algorithms, new parameters have also to be con-

sidered, such as the migration frequency (µ), the island size (λ), the communication

topology between processes, or the selection and replacement policy in the migration

step. The migration frequency will have a significant impact in the performance of

both implementations, because a high migration rate will emphasize the communi-

cations overhead, particularly affecting the performance on cloud platforms. Thus,

we performed a preliminary study to determine the optimal migration frequency for
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Table 5.1: Performance evaluation of asynPDE and eSiPDE in local cluster Pluton.

meth. #cores #evals time±std(s) speedup

as
y
n

P
D

E

1 6480102 15230.22±886.80 -
2 3540889 4078.36±1852.32 3.73
4 1815689 1100.08±180.96 13.84
8 1231094 380.99±77.64 39.97
16 1236346 220.79±51.17 68.98
32 1700782 149.82±30.37 101.65

eS
iP

D
E

1 6437670 40883.39±3712.56 -
2 5980416 19275.65±1281.63 2.12
4 5729536 9305.30±909.41 4.39
8 3904256 3319.33±296.88 12.32
16 1835776 790.97±90.50 51.69
32 1577216 348.36±43.47 117.36

both implementations. A migration frequency of 50 iterations between migrations

for asynPDE, and of 200 iterations between migrations for eSiPDE, has been chosen.

In addition, the island size will be λ = NP/#cores. Finally, in the MPI implemen-

tation, the communication topology used is a star, and the selection policy consists

in selecting only the best individual in the island population to be sent as a promis-

ing solution, while the replacement policy consists in replacing the worst individual

in the island population with the incoming solution. Note that in the Spark imple-

mentation the migration step consists in a shuffle of the island populations instead

of a selective send and replacement in each island.

Comparing the different implementations of the parallel metaheuristic is not

an easy task due to their key differences that affect the convergence rate of the

algorithms. So we carried out two different experiments. First, we have analysed

the performance of both approaches without the local solver and tabu list features.

Thus, a more accurate discussion can be made regarding the differences introduced

by the cooperation scheme in both implementations. Second, we activated the local

solver and tabu list features, so we can discuss the differences introduced by the

strategy that the local solver follows in each implementation.

Results in cluster Pluton for both asynPDE and eSiPDE implementations, with

the local and tabu list disabled, are shown in Table 5.1. We carried out experi-

ments varying the number of cores, from 2 to 32. We have not used more than 32
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Figure 5.3: Speedup achieved by asynPDE vs eSiPDE in Pluton.

cores because the scalability of the parallel DE algorithm is heavily restricted by the

population size, and, according to the guideline of [194], the population size should

be around 10D (being D the dimension of the problem, which in the case of the

Circadian benchmark is 13). We have set the population size to 256 individuals, so

as to be able to scale up to 32 islands of λ = 8 individuals each. And, although

some authors [149] have shown that a population size lower than the dimensionality

of the problem can be optimal in many cases, the fact is that the smaller the island

population size is, the less chances for the combination between individuals and a

lower convergence rate will be achieved. Table 5.1 displays, for each experiment, the

number of cores (#cores) used, the mean number of evaluations required (#evals),

the mean and deviation of the execution times (time(s)), and the speedup achieved

versus the sequential execution. As we already knew from Chapter 2, results show

that the parallelization improves the execution time required for convergence, not

only by performing the evaluations in parallel but also because the cooperation be-

tween islands leads to an improvement in the convergence rate (fewer evaluations are

needed), thus, achieving superlinear speedups. As can be seen, the convergence rate

in both implementations differs when the number of islands increases. Although for

a small number of islands the MPI implementation clearly outperforms in number

of evaluations to the eSiPDE implementation, it should be noted that the conver-

gence of the asynPDE implementation stagnates for more than 8 processes, while it

improves for the Spark implementation. This can be also observed in the speedup

trend, shown graphically in Figure 5.3. This important feature is due to differences
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in the migration strategy followed by both implementations. When the number of

islands increases, selecting the best individuals to be shared in the migration step

leads to small populations full of cooperative solutions that has an adverse impact

on diversity, and could even cause premature convergence to local optima. Shuffling

the islands population, on the contrary, maintains the diversity of the searches when

the number of islands increases.

The same experiments were performed in the Azure public cloud from 2 to 16

cores. Results are shown in Table 5.2. As can be seen, the Azure experiments ob-

tain similar results as those carried out in the local cluster in terms of convergence

(number of evaluations required). However, results in terms of execution times and

speedup differ. On the one hand, the overhead introduced in Azure due to virtualiza-

tion and use of non-dedicated resources in a multitenant platform are not negligible,

the execution times obtained in Azure being between 2x and 3x those obtained in

Pluton. On the other hand, the speedups achieved in Azure, in particular when the

number of cores grows, are larger than in Pluton. This is due to the computation-

to-communication ratio, that is, the ratio of the time spent computing to the time

spent communicating, which depends on the relative speeds of the processor and the

communication medium. In particular, for the asynPDE implementation the num-

ber of communications increases with the number of cores, and the computation, on

its turn, decreases. Thus, since the computation is slower in Azure, the scalability

is better in this platform.

To further compare the performance of both implementations without attending

Table 5.2: Performance evaluation of asynPDE and eSiPDE in Azure public cloud.

meth. #cores #evals time±std(s) speedup

a
sy

n
P

D
E

1 6633830 37952.61±3224.67 -
2 3067622 9196.63±1110.82 4.13
4 1809942 2659.65±410.31 14.27
8 1279609 929.77±204.21 40.82
16 1301888 491.92±87.50 77.15

eS
iP

D
E

1 6565461 93977.02±5216.28 -
2 5333186 41140.87±6474.26 2.28
4 5716736 21030.04±2443.06 4.47
8 3983616 7444.79±928.91 12.62
16 1953536 1768.25±166.51 53.15



5.2 Parallel DE in the cloud 157

Figure 5.4: Eval/s/core achieved by asynPDE vs eSiPDE in local cluster Pluton
and Microsoft Azure public cloud.

to the convergence rate achieved in each case, the number of evaluations per second

and per core (eval/s/core) has been calculated. Note that this computation includes

not only the CPU time for the evaluation itself but also the communication time

and other overhead introduced by the algorithm implementation, thus, it is a good

metric to assess the performance of Spark versus MPI for this problem. Figure 5.4

shows the eval/s/core achieved for both implementations and the two infrastructures

used. We encountered that the eval/s/core of the MPI implementation was between

2.1x and 2.5x the one obtained by the Spark implementation. A drop can also

be observed in the number of evaluations per second and core in Pluton for the

asynPDE implementation when the number of cores grows. The reason is that the

number of communications, and thus their overhead, increases with the number

of cores in the MPI implementation, and, additionally, since the computation of

each island decreases with the number of cores, the trade-off between computations

and communications degrades. However, in the Spark implementation the number

of communications in each shuffle is always the same, and this data movement is

spread among the number of cores, thus, providing a good scalability.

After assessing the performance of the cooperation scheme in both implemen-

tations, we performed the experiments enabling the local solver and tabu list en-

hancements. Results for these experiments are reported in Table 5.3. Table 5.3

displays, for each experiment, the number of cores (#cores) used, the mean number
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Table 5.3: Comparison of asynPDE versus eSiPDE with local solver and tabu list
enabled.

method #cores #evals time±std(s)

P
lu

to
n

2 78276 94.62±66.75
4 78903 49.23±35.79

asynPDE 8 79992 26.38±21.12
16 87341 17.13±14.11
2 179456 472.41±441.29
4 230656 388.31±736.39

eSiPDE 8 171776 134.01±140.78
16 225536 115.48±119.04

A
zu

re

2 70332 201.49±110.32
4 57195 84.68±2.55

asynPDE 8 69469 54.45±22.06
16 72244 30.54±5.07
2 102656 745.88±656.98
4 120576 453.78±431.47

eSiPDE 8 156416 355.51±347.84
16 135936 160.30±151.85

of evaluations needed (#evals) used, and the mean of the execution times (time(s)).

As can be observed in both implementations, the reduction in the number of re-

quired evaluations is significant. However, this improvement is larger in the MPI

implementation. It converges between 5 and 7 times more quickly than the Spark

implementation, mostly because it achieves a reduction in the number of function

evaluations required between 2x and 3x. Two are the main causes. First, because

although the stopping criterion is evaluated during each island evolution, when it is

met by one or more islands the Spark implementation only stops after the reduce

operations at the end of the stage (see Figure 5.1). Thus, if the stopping criterion

is met by the local solver, which in the Circadian problem occurs frequently, the

Spark implementation cannot stop until the end of the islands evolution. Second,

because in the Spark-based implementation only one local solver is running at each

time, while in the MPI implementation each island executes its local solver, thus,

augmenting the probabilities of finding the target value. These results can be useful

to guide the improvement of the Spark implementation by means of increasing the

number of local solvers that can run concurrently.
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5.2.3.1. Performance/cost evaluation

Before finishing the evaluation we wondered how much performance we can ob-

tain when using larger (and more expensive) instances in the Azure platform. Azure

provides a number of different instance types that have varying performance charac-

teristics and prices. Previous results were obtained in clusters of A3 instances. For

this new comparison, we have also built a cluster with compute-intensive instances

where we have carried out the tests with the MPI implementation. We have chosen

A11 compute-intensive instances that are 16-core nodes with Intel Xeon E5-2670

@2.6GHz CPUs with 112GB of RAM. Figure 5.5 shows the results obtained and its

comparison with the results obtained in the previous Azure A3-cluster and also in

the local cluster Pluton. For the fairest comparison, the local solver and the tabu

list were disabled. It can be seen that execution times (shown in a logarithmic scale

in the primary axis) in the A11-cluster are competitive with those obtained in the

local cluster, and even outperforms Pluton when the number of cores grows, showing

a better scalability. The number of evaluations per second and core is also shown in

the secondary axis and clearly illustrate the improvement in scalability when using

the compute-intensive Azure instances. If we take a look to the price of these in-

stances, we can see that in November 2016 the cost of each A3-instance was 150.58
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Figure 5.5: Comparison of asynPDE results in local cluster Pluton with results in a
cluster of A3 instances and a cluster of A11 instances in Azure.
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EUR/node/month, while the cost of the A11-instance was 978.77 EUR/node/month.

To run the experiments in this section we used 16-core clusters, so we need four A3

instances which results in an estimated cost of 600 EUR/month, and we need only

one A11 instance which has an estimated cost of 980 EUR/month. Taking into

account that the performance, in terms of execution time, of the A11-cluster in the

tests performed in this work has been 2.5x over the A3-cluster, we can conclude that

the savings using A11 instances over A3 in this case-study would be around 35%.

5.3. Evaluation of saCeSS method in the cloud

As was already demonstrated in Chapter 3 and Chapter 4, though saCeSS clearly

outperforms the sequential and the non-cooperative parallel versions of the eSS,

it still requires large computational times to achieve convergence in very complex

problems. Additionally, it has been shown that the diversity introduced by the

increase in the number of islands clearly improves the algorithm convergence rate.

However, an increase in the number of islands should be attended of an increase in

the number of computational resources (cores), and this is not always practicable.

The cloud may help in solving this issue by providing effortless access to a larger

number of distributed resources. For this reason, we decided to evaluate the ap-

plicability and performance of saCeSS2 method in a cloud platform, comparing the

results obtained with those discussed in Chapter 4 achieved in a local cluster.

5.3.1. Experimental results

Experiments were deployed in the Microsoft Azure public cloud using clus-

ters with compute-intensive A9 instances (16 cores, 112GB). These instances are

designed and optimized for compute-intensive and network-intensive applications.

Each A9 instance uses an Intel Xeon E5-2670 @2.6GHz CPUs with 112GB of RAM.

Additionally, A9 instances feature a second network interface for remote direct mem-

ory access (RDMA) connectivity. This interface allows instances to communicate

with each other over an InfiniBand network, operating at QDR rates, boosting the

scalability and performance of many MPI applications.
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Table 5.4: Performance of saCeSS for SSP and HePG2 case studies. Stopping
criteria: V TRSSP = 10 and V TRHePG2 = 33.

problem infr. #cores iter±std evals±std time±std(s)

S
S

P A
zu

re

10 23±8 246256±73545 3153±948
20 21±9 470857±175723 3057±1177
40 31±44 571966±423381 1861±1426

cl
u

st
er 10 25±9 246082±68925 3478±1114

20 18±6 402613±120260 2779±870
40 19±8 470746±142702 1602±523

H
eP

G
2

A
zu

re

10 807±782 11790096±10574631 151939±128256
20 305±243 10617112±7403497 87802±58619
40 731±707 17438937±19853336 68214±77442

cl
u

st
er 10 1056±1873 13637565±20933642 167880±242658

20 396±496 13196677±15577101 89433±108108
40 560±431 11959105±9383238 44037±32346

Benchmarks SSP and HePG2, already used and described in Chapter 4, have

been evaluated. Table 5.4 shows the performance of the saCeSS method for both

case studies in the Azure public cloud. In order to ease the comparison, we include

in this table the results obtained in the local cluster, that have already been reported

in Tables 4.2 and 4.4 of Chapter 4. As can be seen, the behavior of the algorithm

differs slightly from the results obtained in the local cluster. In particular, results

for a small number of processors are better in Azure than in the local cluster,

however, the results obtained in the local cluster outperforms the ones in Azure

when the number of processors grows. Moreover, note that the number of function

evaluations required for convergence is larger in the experiments carried out in the

local cluster than in the same experiments carried out in Azure when the number of

processors is small (10 cores), and it is the opposite for the experiments that use 20

and 40 cores. This behaviour can be attributed to the efficiency of the inter-node

communications (remember that each Azure instance has 16 cores). The higher

latency in the inter-node communications in Azure leads to a slow propagation of

promising results between islands, that results in a slower convergence.

Besides, it is noteworthy that the dispersion of the results is larger for exper-

iments carried out in the Azure public cloud, when the number of cores grows.

Figure 5.6 illustrates with hybrid violin/boxplots this fact. As can be seen, the
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Table 5.5: Cost evaluation.

problem #cores time±std(s) mean price

10 3153.95± 948.41 1.99 EUR
SSP 20 3057.12± 1177.64 1.93 EUR

40 1861.63± 1426.08 1.18 EUR

10 151939.74± 128256.27 96.10 EUR
HePG2 20 87802.45± 58619.36 55.53 EUR

40 68214.13± 77442.20 43.14 EUR

number of outliers increases with the number of cores in Azure. Notice that this

is exactly the opposite behavior than in the local cluster, and it can be explained

by the virtualization overhead in Azure and the use of non-dedicated resources in a

multi-tenant platform.

To conclude this evaluation we have found it interesting to carry out a brief

study on the cost of these experiments in the Azure public cloud. Conducting a cost

analysis comparing the cost of relying on cloud computing and that of owning an in-

house cluster would be of particular interest, although is a very difficult task [237].

The acquisition and operational expenses have to be used in estimating the local

clusters’ cost. However, the actual cost of local clusters is related to its utilization

level. For a local cluster acquired as one unit and maintained for several years,

the higher the actual utilization level, the lower the effective cost rate. Besides,

labor cost in management and maintenance should also be included, which could be

significant. Thus, we found unfeasible an accurate estimation of the cost per hour in

our local cluster. Besides, if we take a look to the price of the used instances, we can

see that in February 2017 the cost of each A9-instance is 2.2769 EUR/hour. The

mean pricing for each experiment is shown in Table 5.5. In the view of the obtained

results we can conclude that, though our experiments in the cloud demonstrates

a slightly poorer performance, in terms of execution time, the cloud pay-as-you-go

model can be potentially a cost-effective and timely solution for the needs of many

users.
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5.4. Concluding remarks

In this chapter, we present an evaluation in a public cloud infrastructure of the

different parallel algorithms previously proposed in this Thesis. First, we explore

and compare the performance of a parameter estimation problem in computational

systems biology using the asynPDE implementation proposed in Chapter 2, that is

HPC oriented, and a Spark-based implementation, which is throughput oriented. We

have assessed both implementations in two different infrastructures: a local cluster

and the Microsoft Azure public cloud. Results show that, as was expected, from

a computational point of view the MPI implementation outperforms the Spark in

terms of execution time. This is mainly due to its low level programming language

and reduced overhead. Nevertheless, the Spark implementation should be positively

considered since it allows easier programmability and because it also presents further

advantages, such as inherent support to node failures and data replication.

Then, we have also evaluated the performance of saCeSS method, proposed in

Chapter 4, in the cloud. Unfortunately, we do not know any cloud-based implemen-

tation of SS method to compared with.

Although this research was designed and tested with a focus on the field of

parameter estimation problems in computational systems biology, we believe that

the results obtained in this work can be useful for those researchers interested in the

performance of existing traditional parallel metaheuristics in new cloud platforms, as

well as in those interested in the potential of new programming models for developing

parallel metaheuristic methods.

The results of this chapter have been published in (or submitted to):

P. González, X. C. Pardo, D. R. Penas, D. Teijeiro, J. R. Banga, and R. Doallo.

Using the Cloud for parameter estimation problems: comparing Spark vs MPI

with a case-study. Workshop on Clusters, Clouds and Grids for Life Sciences,

in conjunction with CCGrid 2017 Conference. [82]

D. Teijeiro, X. C. Pardo, D. R. Penas, P. González, J. R. Banga, and R.

Doallo. A cloud-based enhanced differential evolution algorithm for parameter

estimation problems in computational systems biology. Cluster Computing,

under minor revision. [201]
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D. R. Penas, D. Henriques, P. González, R. Doallo, J. Saez-Rodriguez, and J.

R. Banga. A parallel metaheuristic for large mixed-integer nonlinear dynamic

optimization problems, with applications in computational biology. PLOS

ONE, under review. [168]

The source code of the two DE implementations used in this work are publicly

available at:

eSiPDE: https://bitbucket.org/xcpardo/sipde

asynPDE: https://bitbucket.org/DavidPenas/asynpde, see also Appendix A.





Conclusions and future work

Global optimization is being increasingly used in engineering and across most

basic and applied sciences, such as bioinformatics and computational systems biol-

ogy. In the case of chemical and biological processes, during the last decade there

has been a growing interest in modelling their dynamics, i.e. developing kinetic

models which are able to encapsulate the time-varying nature of these systems. As

a consequence, many research efforts are now being invested in exploiting those dy-

namic models by mathematical optimization techniques. Metaheuristics are gaining

recognition in this context, however, for most realistic applications they still require

excessive computation times. In order to reduce the computational cost of these

methods, this Thesis makes the following contributions:

An improved Differential Evolution algorithm (asynPDE) designed to solve

complex problems in computational systems biology. The key idea behind

this proposal has been to achieve a proper balance of the exploration abilities

of DE and the exploitation abilities of efficient local search. The method im-

proved global search through an asynchronous parallel implementation based

on a cooperative island-model. The improved local search is implemented by

means of several heuristics (efficient local solver, tabu list, logarithmic search)

which exploit the structure of parameter estimation problems in systems bi-

ology, the main application area considered here. The improved local search

mechanism, combined with the parallel cooperation scheme, allows an ade-

quate balance between exploration and exploitation for the class of problems

considered. Convergence time can be reduced by several orders of magnitude

when the local search heuristics are included in the DE algorithm. Besides, the

asynchronous parallel strategy proposed attains a further reduction in the con-

167



168 Conclusions and Future Work

vergence time through collaboration of the parallel processes, demonstrating

also a competitive speedup against the synchronous approaches.

A novel parallel method based on the Scatter Search method, the so-called self-

adaptive parallel Cooperative enhanced Scatter Search (saCeSS) algorithm.

The implementation proposed combines a coarse-grained parallelization, fo-

cused on stimulating the diversification in the search and the cooperation

between different processes, with a fine-grained parallelization, aimed at ac-

celerating the computation by performing separate evaluations in parallel. The

main features of this proposal have been: (i) a coarse-grained parallelization

using a centralized master-slave approach; (ii) a fine-grained parallelization

to perform separate cost-function evaluations in parallel and, thus, accelerate

the global search; (ii) a cooperation between processes driven by the quality of

the solution; (iv) an asynchronous communication protocol to minimize pro-

cesses’ halts; and (v) the dynamical tune of the islands’ settings based on their

individual progress.

An extension of the saCeSS method, called saCeSS2, to successfully solve

realistic mixed-integer dynamic optimization (MIDO) problems. To this end,

the following features have been included in the new saCeSS2 implementation:

(i) an efficient mixed-integer local solver (MISQP), (ii) a novel self-adaption

mechanism to avoid convergence stagnation, and (iii) the injection of extra

diversity during the adaptation steps.

An extensive and thorough evaluation of the previous proposals using local

clusters and supercomputers. The proposed asynPDE method demonstrates

its potential for solving non-linear programming (NLP) problems of small and

medium size. Moreover, the excellent performance and scalability of saCeSS

method have been illustrated considering a set of very challenging parameter

estimation problems in large-scale dynamic models of biological systems. The

results show that saCeSS is a robust and efficient method, allowing very signif-

icant reduction of computation times with respect to previous state of the art

methods. Additionally, saCeSS2 has been applied to a set of very challenging

MIDO-MINLP problems obtaining also encouraging results.

An evaluation in a public cloud infrastructure, the Microsoft Azure public
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cloud, of the different proposals in this Thesis. The asynPDE implementa-

tion proposed, that is HPC oriented, has been compared with a Spark-based

implementation, which is throughput oriented. A detailed discussion on the

differences that arise from the inherent features of the programming model

used in each implementation has been provided, supported by the assessment

of the experimental results. Also, a performance evaluation of the saCeSS2

method applied to MIDO-MINLP problems in the Microsoft Azure public

cloud has been also reported.

As extensively reported in this Thesis, metaheuristic algorithms have become

established as the solution strategies of choice for a large range of optimization

problems. Unfortunately, it is not always easy, or even feasible, to anticipate which

one of the numerous algorithms already existent will be most suitable for solving a

particular problem. This uncertainty is not only limited to different algorithms on

different problem classes. There may even be issues with respect to large variations in

algorithm performance over different instances of the same problem. Thus, regarding

future work, our research will pay attention to extend the developed methods and

implementations to be useful for a broader range of applications. In particular, we

will focus on:

extending the saCeSS and saCeSS2 methods to handle multi-objective opti-

mization problems, since many key problems in systems biology involve the

simultaneous optimization of multiple conflicting objectives.

incorporating additional local solvers, especially for the case of MINLP prob-

lems.

generalizing the idea of self-adaptive cooperative search, already explored in

this Thesis, through the concept of multimethod optimization in which multiple

different search algorithms are performed concurrently, and cooperate between

them through information exchange.

considering challenging applications in the related domain of large-scale design

in synthetic biology.

Finally, although this research has been designed and tested with focus on the

field of parameter estimation problems in computational systems biology, we believe
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that the results obtained in this Thesis can be useful for those researchers interested

in the performance of parallel metaheuristics for global optimization, whether in

local clusters, supercomputers, or new cloud platforms, as well as in those inter-

ested in the potential of parallel programming models for developing novel parallel

metaheuristic methods.

All the proposals in this Thesis, including both the code and the data files needed

to reproduce the results reported, have been made publicly available:

asynPDE:

https://bitbucket.org/DavidPenas/asynpde

saCeSS:

https://bitbucket.org/DavidPenas/sacess-library

saCeSS2:

https://doi.org/10.5281/zenodo.290219
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[182] M. Ruciński, D. Izzo, and F. Biscani. On the impact of the migration topology

on the island model. Parallel Computing, 36(10-11):555–571, 2010.



Bibliography 191

[183] J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauf-

fenburger, S. Klamt, and P. K. Sorger. Discrete logic modelling as a means to

link protein signalling networks with functional analysis of mammalian signal

transduction. Molecular Systems Biology, 5:331, 2009.

[184] J. Saez-Rodriguez, J. C. Costello, S. H. Friend, M. R. Kellen, L. Mangravite,

P. Meyer, T. Norman, and G. Stolovitzky. Crowdsourcing biomedical re-

search: leveraging communities as innovation engines. Nature Reviews Ge-

netics, 17(8):470–486, 2016.

[185] S. Sager. A benchmark library of mixed-integer optimal control problems. In

Mixed Integer Nonlinear Programming, pages 631–670. Springer, 2012.

[186] S. Sager, H. G. Bock, and M. Diehl. The integer approximation error in mixed-

integer optimal control. Mathematical Programming, 133(1-2):1–23, 2012.

[187] S. Sager, M. Claeys, and F. Messine. Efficient upper and lower bounds

for global mixed-integer optimal control. Journal of Global Optimization,

61(4):721–743, 2014.

[188] F. Sambo, M. A. Montes de Oca, B. Di Camillo, G. Toffolo, and T. Stutzle.

More: Mixed optimization for reverse engineering—an application to model-

ing biological networks response via sparse systems of nonlinear differential

equations. IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics (TCBB), 9(5):1459–1471, 2012.
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Appendix A

Released codes

The implementations of the proposed algorithms in this Thesis have been released

in the form of several publicly available tools. This appendix describes the main

functionalities of these tools.

A.1. asynPDE library

The asynPDE library aims to solve NLP problems applying global optimization,

parallelization techniques, and local searches. Version 0.1 of this tool includes the

implementation of the island-based MPI asynchronous enhanced Differential Evo-

lution algorithm presented in Chapter 2. This code incorporates several key new

mechanisms:

Asynchronous cooperation between parallel processes based on the island-

model.

Three enhanced strategies: the use of logarithmic space, a local solver and a

tabu list, to improve the search.

Besides, for comparative purposes, this library also includes a synchronous im-

plementation of the proposed method.
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The local solver included in this library is the ”Nonlinear Least-Squares Al-

gorithm” (nl2sol) [54]. The version used is the nl2sol solver from the PORT li-

brary [170].

This version of the library also includes different benchmarks to be tested:

BBOB [87] and a set of problems within computational systems biology:

Circadian model: a parameter estimation problem in a dynamic model of the

circadian clock in the plant Arabidopsis thaliana, as presented in [127].

NF-κB model: a problem based on the two-feedback-loop regulatory module

of nuclear factor kappa B (NF-κB) signaling pathway presented in [126].

3-step pathway model : a problem considering a 3-step generic and highly non-

linear pathway, as presented in [141].

The asynPDE code has been implemented using C. MPI has been used in the

parallel implementation. It has been tested in Linux clusters running CentOS 6.7

and Debian 8.

The source code of the asynPDE library is available at:

https://bitbucket.org/DavidPenas/asynpde

A.2. saCeSS library

The saCeSS code is a tool distributed as a library with several parallel solvers

based on the Scatter Search (SS) metaheuristic. The saCeSS library aims to solve

NLP and MINLP problems. It also provides efficient local solvers for nonlinear

parameter estimation problems associated with complex models. The current dis-

tribution of saCeSS includes a set of optimization examples that can be used as

benchmarks, taken from the BBOB [87] and BioPreDyn [220] testbeds.

The library includes a set of different versions of SS:

eSS: sequential version of enhanced Scatter Search [61].
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eSSm: eSS with multiple configurations, where a specific number of instances

of sequential SS are executed in parallel without cooperation among them.

This option corresponds to np-eSS algorithm described and used in Chapter 3

and Chapter 4.

CeSS: Cooperative enhanced Scatter Search, i.e. a parallel cooperative eSS

scheme where different eSS processes run in parallel and exchange information

in a synchronous fashion (based on a pre-defined time interval), as described

in [219].

aCeSS: asynchronous Cooperative enhanced Scatter Search, a distributed asyn-

chronous version as described in [166].

saCeSS: Self-adaptive asynchronous Cooperative enhanced Scatter Search.

This version corresponds with the method proposed in Chapter 3.

Local solvers are a key element in Scatter Search, significantly accelerating its

convergence. Although Scatter Search can be executed without a local solver, this is

only recommended for extremely pathological cost functions (e.g. very noisy, or with

many sharp discontinuities). The local solvers provided with the current version of

saCeSS, are:

nl2sol, which stands for ”Nonlinear Least-Squares Algorithm” [54]. The ver-

sion used is the nl2sol solver from the PORT library [170].

DHC, which stands for ”Dynamic Hill Climbing” [52].

Figure A.1 summarizes the general structure of the saCeSS optimization library.

The code is organized in several folders:

benchmark: contains the source code of the different optimization problems

integrated in this distribution. New problems may be add, modifying the

template files in the customized folder.

doc: documentation generated by Doxygen, in several formats (including

HTML).



202 Appendix A. Released codes

SRC

LIB

BENCHMARKS

BBOB

ByoPredyn

custom

input module

method module
( C )

output module

XML input

libAmigo libXML libhdf5 libBLASlibGSL

main_file.c

setup_bench
mark.c

method module 
fortran ( F90 )

saCeSS eSS

CeSS

(1) MATLAB scripts: 
convergence graph

(2) MATLAB scripts: 
gantt graph

(3) MATLAB scripts: 
percentage graph

log output files

load 
benchmarks

execute  solvers             

generate 
graphs 

Figure A.1: Structure of saCeSS optimization library.

include: header files of C functions.

src: Fortran 90 and C files, with I/O modules.

inputs: set of templates and examples for the required XML input file.

lib: set of required libraries, such as BLAS, hdf5, libxml2, GSL, etc.

output: folder for the results files generated in each execution.

The execution of these solvers produces the following output files:

a main output file, reporting general information, such as optimization problem

characteristics, search options enabled, final solution achieved, final computa-

tion time, etc.

a specific log file per process.
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output plots: convergence plots and, in the case of saCeSS method, Gantt

charts illustrating cooperation among processors, and plots detailing the search

improvements history.

The saCeSS library has been implemented using Fortran 90 and C. Parallelization

has been achieved through MPI and openMP. Current version of saCeSS library has

the following requirements:

Linux command line systems. The saCeSS library has been tested under Cen-

tOS 6.6, CentOS 6.7 and Debian 8.

GNU or Intel compilers. The library has been compiled with GCC compiler

(gcc-4.4.7) and Intel compilers (icc-13.1.1 and intel-14.0.2).

openMPI or IntelMPI implementations of MPI. The saCeSS library has been

compiled with openmpi-1.8.3 and openmpi-1.8.4. It has also been tested with

intelmpi-5.0.

The source code of the saCeSS library is available at:

https://bitbucket.org/DavidPenas/sacess-library

A.3. saCeSS2 library

The saCeSS2 library is a new version of the saCeSS library intended for the

solution of large-scale mixed-integer dynamic optimization (MIDO) problems. This

library incorporates these novel key features:

Improved self-tuning strategies, suitable for large mixed-integer nonlinear op-

timization.

An efficient mixed-integer nonlinear optimization local solver: MISQP, which

stands for ”Mixed Integer Sequential Quadratic Programming” [69].
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The set of very challenging case studies from the domain of computational biology

(reverse engineering of cell signaling) used in Chapter 4 are provided with this

distribution:

SSP: the simpler case study, considering a synthetic signaling pathway with

84 continuous and 34 binary decision

HePG2: a second case study considering the dynamic modeling of liver cancer

data, with 135 continuous and 109 binaries decision variables.

HPN-DREAM: an extremely difficult case study related with breast cancer,

involving 690 continuous and 138 binary decision variables.

The saCeSS2 library has the following requirements:

Linux command line systems. The saCeSS2 version has been tested under

CentOS 6.6, CentOS 6.7 and Debian 8.

GNU or Intel compilers. This version has been compiled with gcc-4.4.7 and

with Intel compilers: intel-13.1.1 and intel-14.0.2.

openMPI or IntelMPI implementation of MPI. The saCeSS2 version has been

compiled with openmpi-1.8.3, openmpi-1.8.4 and intelmpi-5.0.

R programming language should be installed in the system. This version has

beed tested with R-3.2.0.

The source code of the saCeSS2 library is available at:

https://doi.org/10.5281/zenodo.290219
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Muchos problemas de gran transcendencia en campos como la bioloǵıa de siste-

mas o la bioinformática se pueden formular y resolver usando técnicas de optimiza-

ción global. La complejidad existente en los modelos matemáticos desarrollados en

estos campos requiere el uso de herramientas eficientes para obtener resultados sa-

tisfactorios en tiempos de cálculo razonables. En este contexto, las metaheuŕısticas

son algoritmos de optimización estocásticos muy populares, con los que se puede

localizar la vecindad de la solución global sin tener que explorar todo el espacio de

direcciones disponible para un problema dado. De esta forma se reduce el número

de evaluaciones y, como consecuencia, también el tiempo de ejecución. Sin embar-

go, cuando se trata de resolver problemas vinculados a muchas aplicaciones reales,

es habitual que estos algoritmos todav́ıa requieran un gran esfuerzo computacio-

nal y demasiado tiempo de ejecución. Esta tesis se centra en desarrollar nuevas

metaheuŕısticas que permitan acelerar la resolución de muchos de estos problemas,

planteados como problemas de programación no lineal (NLP) o bien como problemas

de programación no lineal entera mixta (MINLP). Ambos tipos de problemas están

sujetos a restricciones dinámicas no lineales de igualdad o desigualdad, que convier-

ten la tarea de optimización en algo muy complejo debido a la multimodalidad y a

la naturaleza no convexa de dichos procesos.

En la actualidad existe una gran cantidad de infraestructuras multiprocesador

fácilmente accesibles, como pequeños clústeres computacionales existentes en multi-

tud de departamentos y centros de investigación, ciertos superordenadores en gran-

des centros de cálculo, o también recientes instalaciones de computación en la nube.

Usando estas infraestructuras se puede mejorar el rendimiento de las metaheuŕısti-

cas para resolver costosos problemas utilizando técnicas de computación de altas

prestaciones (HPC). La paralelización de las metaheuŕısticas persigue uno o más de

205
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los siguientes objetivos: aumentar el tamaño de los problemas que se pueden resol-

ver, acelerar los cálculos efectuados, y/o intentar una exploración más completa del

espacio de la solución. Sin embargo, lograr una paralelización eficiente de estos algo-

ritmos no es una tarea sencilla, ya que, t́ıpicamente en estos algoritmos, la búsqueda

de nuevas soluciones depende de las iteraciones previas, lo que no solo complica la

paralelización sino que también limita la escalabilidad.

Esta tesis propone el diseño, implementación y evaluación de diferentes me-

taheuŕısticas paralelas distribuidas, aplicadas a problemas NLP o MINLP en pro-

cesos de optimización extremadamente dif́ıciles dentro del campo de la bioloǵıa de

sistemas. Los algoritmos propuestos en los sucesivos caṕıtulos de esta tesis se basan

en reconocidas metaheuŕısticas, como el algoritmo de evolución diferencial (Diffe-

rential Evolution - DE) y el algoritmo de búsqueda dispersa (Scatter Search - SS).

También se hace una incursión en la computación en la nube, evaluando las pro-

puestas en una infraestructura pública, Microsoft Azure.

La tesis se organiza en cinco caṕıtulos. El caṕıtulo 1 contextualiza de forma

breve el tipo de problemas que esta tesis pretende resolver, y los medios que se han

usado para alcanzar este objetivo. El caṕıtulo 2 presenta el diseño e implementación

de una versión paralela aśıncrona del algoritmo DE. El caṕıtulo 3 describe una

nueva metaheuŕıstica paralela basada en el método de búsqueda dispersa mejorada

(enhanced Scatter Search - eSS). El caṕıtulo 4 se centra en la modificación de la

propuesta anterior para su uso en problemas MINLP. Y, por último, el caṕıtulo 5

explora el rendimiento de las propuestas anteriores en una infraestructura en la nube,

y lo compara con los resultados obtenidos en clústeres locales y supercomputadores.

En las siguientes secciones se resumen las principales ideas de cada caṕıtulo.

Evolución diferencial mejorada paralela

El algoritmo de evolución diferencial (DE) [194] es una de las heuŕısticas más

populares en optimización global, y se ha utilizado con éxito en áreas muy diferen-

tes [42,48,172]. En la actualidad, el DE sigue siendo un método ampliamente usado

para la identificación paramétrica de modelos complejos [47, 175, 241]. Sin embar-

go, en la mayoŕıa de aplicaciones reales, este método poblacional requiere un gran
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número de evaluaciones de la función de coste, y en consecuencia mucho tiempo,

para obtener un resultado aceptable.

En el caṕıtulo 2 de esta tesis se presenta una mejora del algoritmo DE diseñado

para resolver problemas muy complejos en el campo de la bioloǵıa de sistemas. El

método propuesto, llamado evolución diferencial paralela aśıncrona (asynchronous

Parallel Differential Evolution - asynPDE), tiene como objetivo conseguir un buen

equilibrio entre la exploración del espacio de búsqueda y la intensificación de la

misma. Primero, se propone una paralelización del algoritmo usando un protocolo

aśıncrono de comunicaciones que consigue no solo reducir el tiempo de computación,

gracias al reparto de trabajo entre los recursos computacionales disponibles, sino

también incrementar el espacio de búsqueda, a través de la exploración simultánea

y concurrente en diferentes espacios. Segundo, se incluye un método de búsqueda

local y otras mejoras algoŕıtmicas, como una lista tabú para controlar las soluciones

que entran en la mencionada búsqueda local, o la búsqueda en el espacio logaŕıtmico.

Aśı se mejora la propuesta clásica del algoritmo DE a través de la intensificación en

la búsqueda, reduciendo drásticamente el número de evaluaciones necesarias para

llegar a las proximidades del óptimo global.

La nueva metaheuŕıstica propuesta se ha probado utilizando diferentes tipos de

problemas. Por un lado se ha usado una serie de programas de prueba populares

en optimización, como es el conjunto de pruebas BBOB [87]. Por otro lado se han

empleado tres problemas de estimación de parámetros en el campo de la bioloǵıa

de sistemas que son especialmente dif́ıciles de resolver: el reloj circadiano de la

planta Arabidopsis thaliana [127], el modelo NF-κB descrito en [126], y un modelo

de camino en tres pasos presentado en [141]. Cabe señalar que, aunque el método

presentado aqúı se basa en un método h́ıbrido (global-local), las mejoras heuŕısticas

introducidas son fundamentales para explotar con éxito las caracteŕısticas especiales

de los problemas de estimación de parámetros en bioloǵıa de sistemas que usamos

en nuestra evaluación, ya que están muy mal acondicionados y presentan una gran

multimodalidad [218].

Como ejemplo de la importancia práctica de esta propuesta, destacamos los

resultados obtenidos para uno de los problemas considerados en las pruebas, el

modelo de camino en tres pasos. T́ıpicamente este problema necesita más de 3 d́ıas

de tiempo de cálculo si se utiliza una versión clásica del algoritmo DE en un único
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procesador. En cambio, usando el método propuesto, asynPDE, este problema se

puede resolver en menos de un minuto con 10 procesadores.

Aunque el método propuesto fue diseñado e implementado teniendo en cuenta las

caracteŕısticas que presentan los problemas de estimación de parámetros en bioloǵıa

de sistemas, también puede aplicarse a la resolución de otro tipo de problemas de

optimización global, como se ha demostrado en la evaluación experimental llevada

a cabo.

Búsqueda dispersa mejorada cooperativa y auto-

adaptativa

El algoritmo de búsqueda dispersa (SS) [81] es una metaheuŕıstica poblacional

muy prometedora para resolver problemas de optimización combinatoria y no lineal.

Este método evolutivo utiliza estrategias que combinan vectores solución almacena-

dos en una pequeña población con el fin de obtener buenos resultados sin gastar

muchos recursos. En la literatura, se han propuesto diferentes implementaciones en

las que SS demuestra que puede superar a otros métodos de optimización global

estocásticos de última generación [22, 50, 61, 71, 74, 94, 104, 181]. Sin embargo, de

nuevo cuando se trata de aplicar esta metaheuŕıstica a problemas de optimización

vinculados a modelos de casos reales, la complejidad asociada es tan grande que el

algoritmo SS necesita un tiempo de cálculo inasumible para obtener soluciones de

calidad.

En el caṕıtulo 3 se propone una versión paralela y mejorada del algoritmo SS

llamado: búsqueda dispersa mejorada cooperativa y auto-adaptativa (self-adaptive

Cooperative enhanced Scatter Search - saCeSS). Esta nueva metaheuŕıstica propone

una estrategia paralela que incorpora:

un esquema cooperativo, que incluye un mecanismo de intercambio de solu-

ciones basado en la calidad de estas.

un protocolo de comunicación aśıncrono para gestionar el intercambio de in-

formación entre procesos.
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la combinación de una solución paralela de grano grueso usando MPI y una

paralelización de grano fino con openMP, con el fin de mejorar la escalabilidad

de la propuesta final.

un procedimiento autoadaptativo para ajustar dinámicamente los parámetros

de configuración de las búsquedas paralelas durante el progreso del algoritmo.

El rendimiento y la escalabilidad de este nuevo método se ilustra usando un

conjunto de problemas muy complejos de estimación de parámetros en modelos

dinámicos de gran escala en el campo de la bioloǵıa de sistemas. Estos problemas

abarcan una variedad de modelos cinéticos, como el de la bacteria E. Coli, la levadura

de panadeŕıa S. Cerevisiae, la mosca del vinagre D. Melanogaster, las células de

ovario de hámster chino, y una red genérica de transducción de señales.

Los resultados obtenidos y el análisis estad́ıstico realizado para comparar la so-

lución propuesta con otras versiones del algoritmo SS, muestran que la estrategia

cooperativa y autoadaptativa propuesta (saCeSS) es robusta y eficiente, permitiendo

una reducción muy significativa del tiempo de cálculo con respecto a otros méto-

dos, incluso cuando se utiliza un pequeño número de procesadores. Por ejemplo, el

modelo de las células de ovario de hámster chino necesita más de 10 horas usando

el método de búsqueda dispersa mejorada (eSS) secuencial, y puede ser resuelto

en cinco minutos usando saCeSS con 10 procesadores. Los resultados experimen-

tales demuestran que el método propuesto puede desempeñar un papel clave en el

desarrollo de modelos dinámicos a gran escala en bioloǵıa de sistemas.

Búsqueda dispersa en problemas de optimización

dinámica entera mixta

Durante la última década ha crecido de forma significativa el interés en modelar

la dinámica de los sistemas biológicos. Como consecuencia, se están realizando im-

portantes esfuerzos en la explotación de estos modelos dinámicos mediante técnicas

de optimización matemática. En este contexto, el caṕıtulo 4 de esta tesis se centra en

la resolución de problemas de optimización dinámica entera mixta (MIDO), donde

parte de las variables de decisión son discretas (binarias o enteras) [41].
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Muchos problemas de optimización dinámica se centran en extraer poĺıticas y/o

diseños operativos útiles de un modelo dinámico. Dichas formulaciones también pue-

den aplicarse al propio proceso de construcción del modelo, es decir, al llamado pro-

blema de ingenieŕıa inversa [56,75,88,103,113,116,138,188], que es extremadamente

dif́ıcil [218]. Dado que el método saCeSS descrito en el caṕıtulo 3 ha demostrado su

potencial para resolver problemas NLP muy complejos, en el caṕıtulo 4 se presen-

ta una nueva versión, llamada saCeSS2, en la que el algoritmo saCeSS se modifica

para manejar y resolver problemas MIDO y MINLP. Para ello, se han incluido las

siguientes caracteŕısticas en la nueva implementación propuesta:

un método eficiente de búsqueda local especializado en enteros mixtos (MISQP)

un nuevo mecanismo de autoadaptación para evitar el estancamiento de la

convergencia

la inyección de diversidad extra durante las tareas de adaptación, reiniciando

la mayor parte de las poblaciones de los procesos reconfigurados

Los resultados obtenidos al resolver una serie de casos de estudio muy comple-

jos en bioloǵıa de sistemas, planteados como problemas MIDO-MINLP, muestran

que la propuesta reduce significativamente el tiempo de ejecución necesario para

obtener una solución de calidad. Por ejemplo, en el tercer y más complejo caso de

estudio, se puede alcanzar un valor de la función objetivo de 41000 en poco más

de 24 horas usando saCeSS2 con 40 procesadores, frente a los más de 10 d́ıas que

se necesitan usando la versión eSS secuencial. Además, la dispersión en los resul-

tados es menor a medida que aumenta el número de procesadores utilizados. Estos

resultados confirman que el método puede utilizarse para realizar ingenieŕıa inversa

en modelos dinámicos muy complejos, y también podŕıa ser adecuado para otras

aplicaciones basadas en la optimización a gran escala de enteros mixtos, como la

ingenieŕıa metabólica [192], la planificación óptima de medicamentos [44, 57], o en

bioloǵıa sintética [158].
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Computación de metaheuŕısticas paralelas en la

nube

La computación en la nube ha surgido en los últimos años como un nuevo para-

digma donde los recursos de computación se ofrecen al usuario bajo demanda. Con

la aparición de esta nueva tecnoloǵıa, el acceso a un gran número de recursos dis-

tribuidos resulta mucho más sencillo. Sin embargo, diversas razones han frenado su

adopción por parte de la comunidad HPC. Primero, debido a la dificultad de emplear

los recursos de computación en la nube. La curva de aprendizaje para entender las

diferentes arquitecturas y entornos de ejecución, y también las diversas plataformas

existentes, complica la adopción como alternativa de cómputo por parte de la comu-

nidad HPC. Y segundo, porque los recursos en la nube todav́ıa presentan desaf́ıos

importantes en aspectos como su prestación computacional. Recientemente algunos

trabajos de investigación se han centrado en evaluar el uso de estas plataformas con

aplicaciones HPC [63, 66, 70, 102, 147], y concluyen que, en la mayoŕıa de los casos,

estas infraestructuras necesitan una mejora significativa en cuanto a prestaciones

para convertirse en una alternativa competitiva a los recursos HPC tradicionales.

En el caṕıtulo 5 se presenta la evaluación en Microsoft Azure, una infraestructu-

ra de nube pública, de los diferentes algoritmos paralelos propuestos en esta tesis.

Primero, se ha explorado y comparado el rendimiento de problemas de estimación de

parámetros en bioloǵıa de sistemas, usando por un lado la implementación aśıncrona

paralela del algoritmo DE, asynPDE, propuesta en el caṕıtulo 2, que usa MPI (orien-

tado a la computación de alto rendimiento), y por otro lado una implementación

paralela del algoritmo DE basada en Spark (orientado hacia la productividad). Los

resultados obtenidos en Azure se han comparado con aquellos obtenidos en clústeres

locales. Los resultados muestran que, como se esperaba, desde un punto de vista

computacional la implementación MPI supera a la realizada con Spark en términos

de tiempo de ejecución. Sin embargo, existen aspectos positivos en la versión desa-

rrollada en Spark que merece la pena tener en cuenta, como que su programación

es más sencilla o que incluye soporte de tolerancia a fallos y replicación de datos.

A mayores, se ha evaluado el rendimiento del método de búsqueda dispersa mejo-

rada paralelo para MIDO, saCeSS2, propuesto en el caṕıtulo 4, también en Microsoft

Azure. Se ha observado que el comportamiento del algoritmo es ligeramente diferen-
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te en el clúster local que en la plataforma Azure. En particular, los resultados para

un número relativamente pequeño de procesadores son mejores en Azure que en el

clúster local. Sin embargo, los resultados en el clúster superan en rendimiento a los

obtenidos en Azure cuando el número de procesadores crece. Este comportamiento se

atribuye a la eficiencia de las comunicaciones intra-nodo cuando usamos las instan-

cias Azure para cómputo intensivo, frente a la mayor latencia en las comunicaciones

inter-nodo.

Conclusiones y trabajo futuro

Las técnicas de optimización global se utilizan cada vez más en diversos campos

de la ingenieŕıa y en la mayoŕıa de las ciencias básicas y aplicadas, como la bioin-

formática o la bioloǵıa de sistemas. En el caso de procesos qúımicos y biológicos,

durante la última década ha sido creciente el interés por modelar su dinámica, es

decir, por desarrollar modelos cinéticos que sean capaces de encapsular la naturaleza

variable en el tiempo de estos sistemas. Como consecuencia, muchas investigacio-

nes se están centrando en explotar estos modelos dinámicos mediante técnicas de

optimización matemática. Las metaheuŕısticas están ganando reconocimiento en es-

te contexto, sin embargo, para las aplicaciones más realistas todav́ıa se necesitan

tiempos de cálculo excesivos. Con el fin de reducir este coste temporal, esta tesis ha

realizado las siguientes contribuciones:

Se ha diseñado un algoritmo paralelo de evolución diferencial (DE), llamado

asynPDE, con el objetivo de resolver problemas complejos dentro de la bio-

loǵıa de sistemas. La idea clave detrás de esta propuesta ha sido lograr un

equilibrio adecuado de las habilidades de exploración existentes en el algorit-

mo DE y en las capacidades de explotación existentes en los algoritmos de

búsqueda local. Aśı, el método consigue mejorar la búsqueda global mediante

una implementación paralela aśıncrona basada en un modelo de isla coopera-

tivo, e incluyendo también un método de búsqueda local mejorada junto con

la implementación de varias heuŕısticas adicionales. Los resultados experimen-

tales muestran que (i) el tiempo de convergencia se reduce en varios órdenes

de magnitud cuando se introduce un método local en el algoritmo DE, y (ii)
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la estrategia paralela aśıncrona propuesta consigue una reducción adicional

del tiempo de convergencia, demostrando también una aceleración importante

frente a otras propuestas con comunicaciones śıncronas.

Se ha presentado un nuevo método distribúıdo basado en el algoritmo de

búsqueda dispersa (SS), denominado algoritmo de búsqueda dispersa mejo-

rada cooperativa autoadaptable (saCeSS). Las principales caracteŕısticas de

esta nueva implementación han sido: (i) una paralelización de grano grueso

utilizando un esquema maestro-esclavo centralizado, enfocada a estimular la

diversificación en la búsqueda y la cooperación entre diferentes procesos; (ii)

una paralelización a grano fino para realizar evaluaciones de la función de

coste concurrentemente y, por lo tanto, acelerar la búsqueda global; (iii) una

cooperación entre procesos impulsada por la calidad de las soluciones encon-

tradas; (iv) un protocolo de comunicación aśıncrono para evitar peŕıodos de

espera entre los procesos; y por último (v) un mecanismo dinámico de auto-

adaptación de los parámetros de configuración de cada proceso distribúıdo,

que se realiza basándose en el comportamiento de cada uno de ellos a lo lar-

go de la ejecución. En su evaluación se han considerado problemas complejos

de estimación de parámetros de modelos dinámicos a gran escala de sistemas

biológicos. El método saCeSS ha sido comparado tanto con versiones secuen-

ciales del algoritmo SS, como con otras implementaciones paralelas de este

algoritmo, obteniendo una mejora substancial frente a todas ellas, tanto en

rendimiento como en escalabilidad. Los resultados muestran que saCeSS es un

método robusto y eficiente, que permite una reducción muy significativa de los

tiempos de cálculo con respecto a los métodos anteriores del estado del arte.

Se ha desarrollado una extensión del método saCeSS, denominada saCeSS2,

para resolver con éxito problemas complejos de optimización dinámica entera

mixta (MIDO). Esta extensión ha consistido por una parte en la inclusión de

un método local adecuado para manejar problemas MIDO, y por otra parte

en introducir cambios en el algoritmo que eviten el habitual estancamiento

a la hora de resolver este tipo de problemas: el mecanismo que dispara la

reconfiguración se ha modificado, y a la vez se inyecta una mayor diversidad

durante las etapas de adaptación. En la evaluación de la propuesta se ha

aplicado saCeSS2 a un conjunto de problemas MIDO-MINLP en los que resulta
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muy dif́ıcil alcanzar buenas soluciones en un tiempo razonable. Los resultados

obtenidos muestran una importante reducción en los tiempos de cálculo.

Se ha realizado una evaluación de los diferentes métodos propuestos en esta

tesis en una infraestructura de nube pública, en concreto en Microsoft Azure.

Por un lado, la implementación asynPDE que se ha propuesto, orientada a la

computación de altas prestaciones, se ha comparado con una implementación

basada en Spark, orientada a la productividad. Se ha proporcionado un análisis

detallado de las diferencias que surgen en ambos modelos, fruto de las carac-

teŕısticas inherentes al modelo de programación que se ha utilizado en cada

implementación, apoyado por la evaluación de los resultados experimentales.

Además, también se ha evaluado el rendimiento del método saCeSS2 aplicado

a los problemas MIDO-MINLP en Microsoft Azure.

Como se ha comentado ampliamente a lo largo de esta tesis, las metaheuŕısticas

se han posicionado como una alternativa exitosa para solucionar una gran variedad

de problemas de optimización. Desafortunadamente, no siempre es fácil, o incluso

posible, anticipar cuál de los numerosos algoritmos ya existentes será el más ade-

cuado para resolver un problema particular. Esta incertidumbre no sólo se limita a

diferentes métodos en diferentes clases de problemas. Puede haber incluso proble-

mas que sufran grandes variaciones en el rendimiento del algoritmo entre diferentes

instancias del mismo. Por lo tanto, en relación con el trabajo futuro, nuestra investi-

gación se centrará en ampliar los métodos desarrollados y las implementaciones para

ser útiles a una gama más amplia de aplicaciones. En particular, nos centraremos

en:

extender los métodos saCeSS y saCeSS2 para manejar problemas de optimi-

zación multiobjetivo, ya que muchos problemas que son clave en la bioloǵıa

de sistemas implican la optimización simultánea de múltiples objetivos que

entran en conflicto.

incorporar métodos locales adicionales, especialmente para el caso de proble-

mas MINLP.

generalizar la idea de búsqueda cooperativa autoadaptativa, explorada en esta

tesis, a través del concepto de optimización multimétodo, en la que múltiples
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algoritmos de búsqueda se podŕıan ejecutar concurrentemente y cooperando

entre ellos a través del intercambio de información.

considerar la optimización en aplicaciones que constituyen un desaf́ıo especial

en el diseño a gran escala en bioloǵıa sintética.

Finalmente, aunque esta investigación se ha centrado en buscar soluciones efi-

cientes en el campo de la estimación de parámetros en bioloǵıa de sistemas, creemos

que los resultados obtenidos en esta tesis pueden ser útiles para aquellos investi-

gadores interesados en el rendimiento de metaheuŕısticas paralelas en optimización

global, bien sea en clústeres locales, supercomputadores o nuevas plataformas de

computación en la nube, aśı como también a aquellos interesados en el potencial

de los modelos de programación paralelos para desarrollar nuevas metaheuŕısticas

paralelas.

Todas las propuestas realizadas en esta tesis, incluyendo tanto el código desarro-

llado como los ficheros de datos necesarios para reproducir los resultados mostrados

aqúı, se encuentran publicamente disponibles en:

asynPDE:

https://bitbucket.org/DavidPenas/asynpde

saCeSS:

https://bitbucket.org/DavidPenas/sacess-library

saCeSS2:

https://doi.org/10.5281/zenodo.290219

Los resultados de los trabajos de investigación que constituyen esta tesis han sido

publicados (o están en proceso de revisión) en las siguiente revistas y conferencias:

Revistas internacionales (4):

• D. R. Penas, J. R. Banga, P. González, y R. Doallo. Enhanced parallel

differential evolution algorithm for problems in computational systems

biology. Applied Soft Computing, 33:86–99, 2015. [165]

Indexada en JCR. Factor de impacto (JCR 2015): 2.857. Ranking: Q1

[16/104].
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• D. R. Penas, P. González, J. A. Egea, R. Doallo, y J. R. Banga. Parame-

ter estimation in large-scale systems biology models: a parallel and self-

adaptive cooperative strategy. BMC Bioinformatics, 18(1):52, 2017. [167]

Indexada en JCR. Factor de impacto (JCR 2015): 2.435. Ranking: Q1

[10/56].

• D. Teijeiro, X. C. Pardo, D. R. Penas, P. González, J. R. Banga, y R.

Doallo. A cloud-based enhanced differential evolution algorithm for pa-

rameter estimation problems in computational systems biology. Cluster

Computing, en revisión menor. [201]

Indexada en JCR. Factor de impacto (JCR 2015): 1.514. Ranking: Q2

[28/105].

• D. R. Penas, D. Henriques, P. González, R. Doallo, J. Saez-Rodriguez,

y J. R. Banga. A parallel metaheuristic for large mixed-integer nonli-

near dynamic optimization problems, with applications in computational

biology. PLOS ONE, en revisión. [168]

Indexada en JCR. Factor de impacto (JCR 2015): 3.057. Ranking: Q1

[11/63].

Conferencias internacionales (6):

• D. R. Penas, J. R. Banga, P. González, y R. Doallo. A parallel dif-

ferential evolution algorithm for parameter estimation in dynamic mo-

dels of biological systems. Advances in Intelligent Systems and Compu-

ting, 294:173–181, 2014. Proceedings of the 8th International Conference

on Practical Applications of Computational Biology & Bioinformatics

(PACBB 2014). [164]

• D. R. Penas, P. González, J. A. Egea, J. R. Banga, y R. Doallo. Parallel

metaheuristics in computational biology: an asynchronous cooperative

enhanced scatter search method. Procedia Computer Science, 51:630 –

639, 2015. Proceedings of the International Conference On Computational

Science (ICCS 2015). [166]

• D. R. Penas, P. González, R. Doallo, J. A. Egea y J. R. Banga. An

asynchronous cooperative search metaheuristic for computational systems
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Biology (CompSysBio 2015). Presentación poster.

• D. R. Penas, P. González, D. Henriques, J. Saez-Rodriguez, R. Doallo,

J. R. Banga. A parallel global optimization method to reverse engineer

dynamic models of complex biochemical pathways. Bioinformatics for

Young international researchers Expo: Maastricht-Aachen-Liège (byte-

MAL 2016). Presentación poster.

• D. R. Penas, P. González, J. A. Egea, R. Doallo, J. R. Banga. Develop-

ment of large-scale dynamic models of complex biochemical pathways via

high-performance computational optimization. 17th International Confe-

rence on Systems Biology (ICSB 2016). Presentación poster.

• P. González, X. C. Pardo, D. R. Penas, D. Teijeiro, J. R. Banga, y R.
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