
Journal of Supercomputing, 58(3):357366, 2011
Post-print version

Parallel Hierarchical Radiosity on Hybrid Platforms

Emilio J. Padrón · Margarita Amor ·
Montserrat Bóo · Gabriel Rodŕıguez ·
Ramón Doallo

Abstract Achieving an efficient realistic illumination is an important aim of
research in computer graphics. In this paper a new parallel global illumina-
tion method for hybrid systems based on the hierarchical radiosity method
is presented. Our solution allows the exploitation of systems that combine
independent nodes with multiple cores per node. Thus, multiple nodes work
in parallel in the computation of the global illumination for the same scene.
Within each node, all the available computational cores are used through a
shared-memory multithreading approach. The good results obtained in terms
of speedup on several distributed-memory and shared-memory configurations
show the versatility of our hybrid proposal.

Keywords Hybrid Platforms · Global Illumination · Hierarchical Radiosity

1 Introduction

Radiosity [3] is one of the best solutions to get a physically-based illumina-
tion, essential key for realistic rendering. Unfortunately, the radiosity method,
like other global illumination alternatives, has high computational and mem-
ory requirements which justifies the use of parallel computing techniques to
implement it.

In the last years, the progressive popularization of multicomputers and
multicore-based systems makes the design and implementation of efficient par-
allel algorithms an appealing alternative for high demanding computer graph-
ics techniques. The main challenge nowadays is to take advantage of all the dif-
ferent computational resources in a system, putting together shared-memory

E. Padrón · M. Amor · G. Rodŕıguez · R. Doallo
Computer Architecture Group, Universidade da Coruña
E-mail: emilioj@udc.es, margamor@udc.es, grodriguez@udc.es, ramon.doallo@udc.es

M. Bóo
Computer Architecture Group, Universidade de Santiago de Compostela
E-mail: montserrat.boo@usc.es



2

and distributed-memory concepts by means of versatile and efficient hybrid
approaches.

There are multiple parallel approaches in the literature that have been
proposed to speed up the radiosity calculation. However, most of the existing
proposals for parallel global illumination fall in one of these two categories:
either purely shared-memory oriented or purely distributed-memory oriented.
Shared-memory approaches [10] are simpler and achieve really good speedups,
but they present the inherent scalability problems of this kind of systems. Fur-
thermore, they are mostly fine-grain approaches, so a considerable overhead
is introduced due to synchronization issues. On the other hand, distributed-
memory approaches to parallel global illumination are notably more com-
plex [1, 8] and have typically obtained worse performance, mainly due to
the important communication overhead, above all if the geometric data is
distributed among the memories of the system nodes.

In [6] we find a hybrid distributed-shared proposal, based on what authors
call task pool teams, basically an extension of the task pool approach commonly
used in SMP (Symmetric Multiprocessing) computing. It is a generic non-
specific alternative for irregular algorithms, using global illumination and HR
as an example of application. Unfortunately, only results for quite small and
unrealistic scenes are shown, so the method can not be considered as a valid
solution for real global illumination. More HR specific is the work in [2], but
the details about the shared memory part of this hybrid proposal are roughly
described and, since the work is previous to the advent and popularization of
multi-core processors, it is not clear how it will scale to more than two threads
per node (the maximun number of threads used in the paper).

Last trends in global illumination are mostly focusing on the exploitation
of GPGPU (General-purpose computing on graphics processing units) [4, 7]
taking the most data-parallel parts out of the CPUs to run on the GPU.
However, since some important parts of global illumination methods are not
suitable for this kind of processing they usually make a coarse approximation
of the indirect illumination by using imperfect visibility or a simplified scheme
for a plausible indirect lighting.

In this paper we propose a novel parallel global illumination method using
the hierarchical radiosity algorithm [5] (HR), a radiosity solution based on an
adaptive refinement that gets a good quality/performance trade-off. The irreg-
ular and mostly unpredictable workload of this approach makes traditionally
difficult to achieve good parallel solutions, especially in distributed-memory
contexts. Our parallel design is focused on obtaining a versatile hybrid ap-
proach. The message-passing scheme we have implemented allows the parallel
execution of HR in independent nodes of a distributed-memory cluster, min-
imizing the communication among nodes. As far as each node is concerned,
a multithreading scheduling for the efficient processing of the input scene in
a multi-core environment has been implemented. This scheduling follows a
coarse-grain approach, balancing the computational load within a node at a
patch level and introducing a minimal overhead.



3

The paper is organized as follows: Section 2 presents the HR method and
Section 3 outlines the generic structure of our parallel proposal. Experimental
results and concluding remarks are presented in Section 4 and Section 5.

2 Hierarchical Radiosity Algorithm

Radiosity [3] tackles the global illumination problem by applying a finite ele-
ment approach to compute the transport of energy in an environment. Thus,
the scene to be illuminated is discretized into a set of surface elements, usu-
ally called patches in the context of radiosity, and the light energy leaving each
surface is computed, obtaining the classical discrete radiosity equation:

Bi = Ei + ρi

n∑
j=1

BjFij , 1 ≤ i ≤ n; (1)

where Bi is the radiosity value (light energy per unit time per unit area leaving
the surface) of a patch Pi, computed as the emittance of that patch (Ei, light
energy produced by the surface itself, i.e. in case of light sources) plus the
energy coming from the rest of the scene and reflected by it. Thus, the term
ρi is the diffuse reflectance index of Pi, and the summation represents the
energy reaching the patch from the other patches of the scene. The interaction
or link between two patches in the scene is based on a geometric term called
form factor, Fij , that represents the proportion of radiosity leaving Pi that is
received by the patch Pj .

The hierarchical approach to radiosity [5] is based on the application of
a basic idea taken from the classic N-body problem: the importance of small
details decreases with increasing distance. Thus, the input patches are sub-
divided into a hierarchy of surface elements with links with different level of
refinement between them that simulate the light transport in the scene.

In general terms, the sequential HR method consists of three main stages:
Initial Stage, Linking Stage and Iterative Stage, this last one being the core of
the HR process. The Initial Stage includes preprocessing work such as building
auxiliary data structures to accelerate the visibility determination between
patches during the radiosity computation.

In the Linking Stage the starting interactions between pairs of patches in
the scene are computed, building a list of initial links for each patch in the
scene. Basically, two patches are interacting when they are (at least partially)
visible to each other. The corresponding form factor is computed and stored
for each link. Visibility determination and form factor computation are the
main tasks performed in this stage. Of course, since one half of the links are
the reciprocal of the other half (Pa linked to Pb usually means Pb linked to
Pa), only one visibility computation is needed for each two reciprocal links.

The global illumination of the scene is computed in the Iterative Stage. This
is an iterative process which computes the energy being transported through
all the links in the scene, refining those links when necessary. One common



4

approach is to apply a three-step process to every patch of the scene in each
iteration. In the first step (Refinement), each link of the target patch is an-
alyzed and adaptively refined when the energy transported through this link
exceeds a threshold value. Once the refinement step for a patch is completed,
the energy received from the rest of elements in the scene is computed (Gath-
ering). After gathering the light energy coming from the rest of the scene,
the radiosity values of the patch are coherently updated along the hierarchical
structure resulting from the two previous steps (Sweeping).

Each iteration is completed once all the patches of the scene have been
processed. Then, the convergence is checked, comparing with a certain thresh-
old the difference in the total energy transported between two consecutive
iterations. If the convergence criterion is not fulfilled a new iteration begins.

3 Parallel Hierarchical Radiosity

Our parallel approach to HR targets systems that combine several indepen-
dent nodes with multiple cores per node. The scene is partitioned into non-
overlapping sub-scenes, and the computation of each sub-scene is carried out
independently in a different node. Our method lies in an SPMD paradigm,
with a unique process per node and message passing for communicating up-
dated illumination values among nodes. Within a node, the HR algorithm is
applied to a sub-scene concurrently by multiple tasks that exploit the patch-
level parallelism in the Linking and Iterative Stages.

3.1 Distributed-Memory Solution for HR

The irregular behavior of the hierarchical approach to radiosity, based on an
adaptive refinement, makes difficult to achieve a good parallel solution, above
all in a distributed-memory context. Our approach is based on the minimiza-
tion of communications and on avoiding to establish an excessive number of
synchronization points among the different processes, yet without renounc-
ing to process highly complex scenes. With that aim in mind, only the input
patches (coarse geometric data) need to be replicated in the memory of every
node. This allows the resolution of visibility queries with no communication
at all, and the penalty is not too high anyway, given the large amounts of
memory per node and the low storage requirements of the coarse patches.

In Fig. 1, an outline of the parallel algorithm executed in each node is de-
picted. The three stages seen in the sequential method are carried out in par-
allel by all the processes in the distributed-memory system, with a unique pro-
cess running on each node. Communication among nodes is performed through
asynchronous non-blocking messages, overlapping communication and compu-
tation as much as possible. The steps that involve communication with other
nodes are shadowed in the diagram. Within a node, the Linking and the Iter-
ative Stages can be executed concurrently, spawning multiple threads within
the process, as will be described in Subsection 3.2.



5
IN

IT
IA

L
 S

T
A

G
E

L
IN

K
IN

G
 S

T
A

G
E

YES

NO

Postprocess: T-verts, 

shading...
END

Node Ni

Scene loading & precomp
 vis. acceleration struct

Scene partitioning
local sub-scene assigned to Ni

Initial linking: assigned remote links
for each patch in local sub-scene

ITERATIVE STAGE

multithreaded

execution

Remote HR iteration
for each patch in local sub-scene:

- refinement of remote links
- gathering from remote links
- sweeping

Send request to other nodes
1 R-mesg per node, asking for updated

radiosity values of patches in remote links

Local HR iteration
for each patch in local sub-scene:

- refinement of local links
- gathering from local links
- sweeping

Send total radiosity transported

in local sub-scene to other nodes
1 T-mesg per node

Respond requests & Receive updates

- receive R-mesgs, sending updated
radiosity values (U-mesgs) as response
- receive and process U-mesgs
- receive and process T-mesg

Convergence check
difference in total radiosity transported

in last two iterations < threshold?

multithreaded

execution

Distribute remote links computation
a sub-set of remote links are assigned to Ni

Send reciprocal remote links
1 I-mesg per node with remote links

data involving both nodes

Initial linking: local links
for each patch in local sub-scene

Receive reciprocal remote links
I-mesg are received and

remote links data locally stored

Fig. 1: Outline of the distributed-memory scheduling

The preliminary work regarding the loading of the input scene and the
construction of auxiliary structures for accelerating visibility determination is
performed concurrently in every node, but is not parallelized (first step of the
Initial Stage in Fig. 1). As a result of this stage, all the nodes keep the initial
patches (coarse geometric data) in its local memory. That will permit to avoid
a lot of communication in the next two stages, as commented above.

The other main task carried out during the Initial Stage is to distribute
the computation among the nodes by making a partition of the scene. Each
node assigns itself one of the disjoint sub-scenes resulting from this partition.
The process in the node will calculate the global illumination in that local sub-
scene. Although a uniform geometric partition has been employed, specifically
a regular 3D grid with a final volume optimization to obtain a tight-fitting
bounding box of each sub-scene, this parallel proposal is independent of the
kind of partition to be applied. Nevertheless, convex geometric partitions allow
the exploitation of spatial locality of the objects in a scene.

With regards to the Linking Stage, all the patches in the local sub-scene
are processed and two different lists of links are built for each patch: links
to other patches in the local sub-scene (local links) and links to patches in
the rest of the scene (remote links). Since all the initial geometry is accessible
in the local memory, no communication among nodes is needed to compute
the visibility between patches in different sub-scenes and the whole stage can
be completely performed with no interaction between nodes. However, this
would mean to replicate visibility computations in different nodes since for each
remote link a reciprocal remote link is assigned to another node and both have



6

the same visibility value. Therefore, the Linking Stage has been parallelized
to avoid the bottleneck due to the duplicate visibility determination of remote
links. The total remote links to be computed are previously distributed among
the different nodes (Distribute remote links computation in Fig. 1). At this
point, different strategies can be applied to try and balance the computation
of all the links (local and remote) in the system. We have implemented a
simple distribution that minimizes the number of messages among nodes: all
the remote links between two nodes are assigned to the end with less links
already assigned (counting both local and remote links).

After the distribution of the remote links, every node computes its local
sub-set and sends the reciprocal remote links computed to the corresponding
nodes. To overlap computation and communication this process is split into
four steps. Firstly, only the remote links are computed for each patch in the
node (Initial linking: assigned remote links in Fig. 1). Then, the reciprocal
remote links are sent to the corresponding nodes (Send reciprocal remote links
in Fig. 1): the data sent consists basically in the visibility values and the
form factors. At this point, communication overlaps with the computation
of the local links for each patch on the node (Initial linking: local links in
Fig. 1). Finally, the remote links computed in other nodes are received (Receive
reciprocal remote links in Fig. 1).

In the Iterative Stage, the three steps involved in the sequential HR iter-
ation are computed for the local sub-scene using the links computed for each
patch as a starting point. This stage entails communication among nodes, since
data from remote nodes should be refreshed for each new iteration. Specifically,
two different kinds of remote data need to be updated between iterations: ra-
diosity values of patches, for the refinement and gathering of remote links, and
the total radiosity transported in each sub-scene, for the convergence checking.
A scheduling with 6 steps for the Iterative Stage, as depicted in Fig. 1, has
been proposed. The objective is to favor an asynchronous and independent
execution with few synchronization points among nodes

The first thing a node would do in our scheme would be the processing of
the remote links associated with all the patches in the local sub-scene (Remote
HR iteration in Fig. 1). The decision of splitting up the processing of local
and remote links has been taken based on two reasons: firstly, processing the
remote energy earlier assures the presence of energy to be transported in every
sub-scene, even though some of them have no light sources; on the other hand,
the radiosity values from remote patches that interact with the local patches
must be updated after each iteration. This update is done by means of message
passing, and it means a first message requesting the remote radiosity values
needed to the rest of nodes. Our scheduling tries to overlap this communication
phase with the processing of the local links.

The second step is to send a message to each of the rest of the nodes (R-
mesg in Send request to other nodes in Fig. 1), asking for the updated radiosity
values needed for the next iteration. The information that needs to be sent for
this request is only the id of the elements whose radiosity value is needed.



7

In the step three, Local HR iteration in Fig. 1, the local links are processed.
Once all the energy has been transported in the local sub-scene for an iteration,
the total radiosity value obtained is sent to the rest of the nodes in step four,
Send total radiosity transported (T-mesg).

The fifth step, Respond requests & Receive updates in Fig. 1, deals with the
exchange of messages among nodes. Each node receives request messages, R-
mesg, that must be properly responded by sending messages with the updated
radiosity values requested by each node (U-mesg). The U-messages sent by the
rest of the nodes are also received in this step, together with the T-messages
with the total radiosity transported in each sub-scene.

The last step, Convergence check, does not involve communication and is
carried out in every node as in the sequential version.

3.2 HR on SMT Multi-core Processors

At this point, HR computation on shared-memory parallel environments is
addressed by applying a multithreading approach to exploit all potential com-
putational resources available in each node: multiple computational cores, all
of them with local access to a common memory, as well as potential SMT
capabilities. Specific details about this scheduling and the mutual exclusion
protocol designed to allow the parallel subdivision of patches during each HR
iteration can be read in [9].

Initially, only one thread (Main thread) is being executed in the node. The
preliminary work regarding the loading of the input scene and the construction
of visibility acceleration structures is performed by this thread and is not
parallelized within a node (Initial Stage in Fig. 1).

After this stage, multiple threads are spawned to carry out the radiosity
computation. Thus, there is only one process running on the physical node,
but it consists of multiple threads sharing the same virtual address space and
exploiting the multiple cores and SMT capabilities available in the node. These
threads will work concurrently until convergence is achieved in the Iterative
Stage. The number of threads to be spawned, t, can be different on each node
and can be either the total number of processing cores in the node or not.

A patch is assigned on demand to a thread, all the computation associated
with that patch during the stage is carried out by this thread.

Of course, every piece of code executed by the threads must be thread-safe,
since they are running simultaneously in a shared address space. Therefore,
multiple access to shared data must be satisfied and protected, avoiding race
conditions and deadlocks among the threads. All these issues are managed
by setting critical sections in the code by means of mutual exclusion (mutex )
algorithms and operations.

During the Iterative Stage, specific actions must be taken due to the refine-
ment process performed during the HR computation. Thus, multiple threads
could try to subdivide the same element while refining different links. A link
refinement means that either the source or the interacting destination element



8

is subdivided, so different threads may try to subdivide the same element at
the same time. Therefore, element subdivision is an important critical section
in this scenario.

To obtain an efficient multithreaded HR computation, a simple yet effec-
tive mutual exclusion protocol to deal with the refinement process has been
implemented. This protocol allows an efficient thread-safe adaptive refinement
with a minimal storage cost (t + 1 mutex variables for t threads spawned in
the node). Specific details about how this protocol works can be read in [9].

During each HR iteration each thread uses a local variable, localRad, to
accumulate all the radiosity being gathered. A thread-safe shared variable,
totalRad, is needed to add up the contribution of the energy gathered by all
the threads at the end of each iteration.

4 Experimental Results

The HR parallel solution presented in this paper has been tested on a system
with eight nodes with 8 GB RAM and two Intel Xeon E5520 2.26 GHz quad
core processors per node, with a 2-context SMT configuration enabled on each
core (Intel HyperThreading), resulting in a total of 16 virtual processing units
per node (though with only 8 physical cores per node). All nodes are equipped
with IB 4X DDR cards (Qlogic IBA7220), so they communicate each other
through a low latency InfiniBand network with 16 Gb/s of effective bandwidth.

Our parallel implementation was coded using the C programming language
(gcc 4.1.2). The POSIX threads library (Pthreads) is used to implement all the
thread-related issues. Pthreads are the best alternative when writing portable
multithreaded code, as it offers a system-level standard library, much more
flexible and versatile than higher-level libraries like OpenMP. Message-passing
is managed through the MVAPICH2 library, a free implementation of the MPI
API especially designed for InfiniBand and other low latency networks.

Two input scenes have been used for our tests (see Fig. 2): Building and
Classroom, with respectively 2880 and 9253 input triangles, and 135480 and
360184 output triangles after the HR refinement. The scene Building has mul-
tiple identical rooms communicated by doors, so radiosity is transported be-
tween contiguous spaces. In contrast, Classroom has a unique clear room with
many polygons seeing each other.

In the table of Fig. 2c the execution time and the corresponding speedup
achieved for the HR computation of the two test scenes are shown. Different
configurations of distributed and shared-memory resources have been checked:
the first column shows the number of distributed-memory nodes used for the
computation, whereas the second column indicates the number of threads
spawned per node. Since each node of the target platform has really 8 physi-
cal cores, running 16 threads per node allow us to effectively exploit the SMT
support available in Xeon processors.

In order to analyze the table, it should be noticed that the different con-
figurations with only one node show a pure shared-memory scenario, allowing



9

(a) Building

(b) Classroom

Building Classroom
Nodes Thrs Time Sp Time Sp

1 1 42.91 1 1813.99 1
2 21.76 1.97 965.86 1.88
4 11.95 3.59 487.90 3.72
8 6.52 6.58 256.54 7.07
16 5.25 8.17 194.47 9.33

2 1 24.16 1.78 1114.30 1.63
2 12.88 3.33 531.86 3.41
4 6.90 6.22 297.38 6.10
8 3.86 11.12 155.91 11.63
16 3.05 14.07 139.10 13.04

4 1 12.86 3.34 716.02 2.53
2 6.84 6.27 357.08 5.08
4 3.70 11.60 190.34 9.53
8 2.11 20.34 119.03 15.24
16 1.78 24.11 102.66 17.67

8 1 6.60 6.50 488.94 3.71
2 3.45 12.44 260.25 6.97
4 1.89 22.70 132.22 13.72
8 1.25 34.33 69.96 25.93
16 1.15 37.31 61.91 29.30

(c) Performance: Time (s) and Speedup

Fig. 2: Test scenes and performance results

us to confirm the good performance of our multithreading approach. Thus,
speedups of 8.17 and 9.33 have been obtained for the two scenes, significant
values considering that there are only 8 physical cores within a node.

On the other hand, the shadowed rows in the table correspond to a pure
distributed-memory configuration, with a unique thread running on each node.
we can appreciate the drastic improvement achieved by our parallel approach
for the Building scene in all cases: a speedup of 6.50 for 8 nodes with 1 thread
per node, and up to 37.31 for 8 nodes with 16 threads per node. The Classroom
scene achieves good results with regards to the multithreaded shared-memory
part, but gets a poorer distributed-memory performance, probably due to
the work imbalance across the different nodes produced by a more irregular
geometric data distribution. Since our parallel HR approach is independent of
the scene partitioning method, we expect to improve the results for irregular
scenes through spatially adaptive, non-uniform partitions.

5 Conclusions and Future Work

This work approaches the parallelization of the HR method, a reference model
in global illumination, in a hybrid context, exploiting distributed and shared
memory architectures. Our approach is based on: a workload distribution
among nodes through a convex partition of the scene; a minimum number
of message-passing communications among nodes thanks to the replication
of the coarse geometric data in the different nodes; an efficient multithreaded



10

scheduling within a node based on kernel-level threads, taking advantage of the
multiple computing resources with access to a shared memory; and a low-cost
mutual exclusion algorithm for the concurrent refinement of the scene.

First results have been obtained using a uniform space partition, but we
expect to improve the performance by means of a non-uniform partition that
prevent load imbalance among nodes. Besides, the full hybrid system will be
enhanced in a future version with an extension to heterogeneous multi-core
systems, using GPGPU.

Acknowledgements This work was partially supported by the Ministry of Education and
Science of Spain under the contract MEC TIN 2010-16735 and also supported by the Xunta
de Galicia under the contracts 08TIC001206PR, INCITE08PXIB105161PR.

References

1. Baiardi F, Mori P, Ricci L (2006) Parallel hierarchical radiosity: the PIT
approach. Applied Parallel Computing (LNCS) Volume 3732/2006:1031–
1040

2. Caballer M, Guerrero D, Hernández V, Roman JE (2003) A parallel ren-
dering algorithm based on hierarchical radiosity. LNCS 2565:523–536

3. Cohen MF, Wallace JR (1993) Radiosity and realistic image synthesis.
Academic Press Professional

4. Dachsbacher C, Stamminger M, Drettakis G, Durand F (2007) Implicit
visibility and antiradiance for interactive global illumination. ACM Trans-
actions on Graphics 26(3):61:1–61:10

5. Hanrahan P, Saltzman D, Aupperle L (1991) A rapid hierarchical radiosity
algorithm. In: Proc. SIGGRAPH’91, vol 25, pp 197–206

6. Hippold J, Rünger G (2003) Task pool teams for implementing irregu-
lar algorithms on clusters of SMPs. In: Proc. International Parallel and
Distributed Processing Symposium (IPDPS’03), p 54.2

7. Kaplanyan A, Dachsbacher C (2010) Cascaded light propagation vol-
umes for real-time indirect illumination. In: I3D ’10: Proceedings of
the 2010 ACM SIGGRAPH symposium on Interactive 3D Graph-
ics and Games, ACM, New York, NY, USA, pp 99–107, DOI
http://doi.acm.org/10.1145/1730804.1730821

8. Padrón EJ, Amor M, Bóo M, Doallo R (2007) A hierarchical radiosity
method with scene distribution. In: Proc. 15th Euromicro Conf. on Paral-
lel, Distributed and Network Based Processing (PDP 2007), pp 134–138

9. Padrón EJ, Amor M, Bóo M, Doallo R (2009) High performance global
illumination on multi-core architectures. In: Proc. of the 17th Euromicro
Conf. on Parallel, Distributed and Network Based Processing (PDP 2009),
pp 93–100

10. Singh JP, Gupta A, Levoy M (1994) Parallel visualization algorithms: Per-
formance and architectural implications. IEEE Computer Graphics and
Applications 27(7):45–55


