© 2012 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org

Proteome Analysis During Chondrocyte Differentiation in a New Chondrogenesis Model Using Human Umbilical Cord Stroma Mesenchymal Stem Cells*

Alexandre De la Fuente‡, Jesús Mateos§, Iván Lesende-Rodríguez‡, Valentina Calamia§, Isaac Fuentes-Boquete¶||, Francisco J. de Toro¶, Maria C. Arufe‡¶||**, and Francisco J. Blanco‡§||**

Umbilical cord stroma mesenchymal stem cells were differentiated toward chondrocyte-like cells using a new in vitro model that consists of the random formation of spheroids in a medium supplemented with fetal bovine serum on a nonadherent surface. The medium was changed after 2 days to one specific for the induction of chondrocyte differentiation. We assessed this model using reverse transcriptase-polymerase chain reaction, flow cytometry, immunohistochemistry, and secretome analyses. The purpose of this study was to determine which proteins were differentially expressed during chondrogenesis. Differential gel electrophoresis analysis was performed, followed by matrix-assisted laser desorption/ionization mass spectrometry protein identification. A total of 97 spots were modulated during the chondrogenesis process, 54 of these spots were identified as 39 different proteins and 15 were isoforms. Of the 39 different proteins identified 15 were down-regulated, 21 were up-regulated, and 3 were up- and down-regulated during the chondrogenesis process. Using Pathway Studio 7.0 software, our results showed that the major cell functions modulated during chondrogenesis were cellular differentiation, proliferation, and migration. Five proteins involved in cartilage extracellular matrix metabolism found during the differential gel electrophoresis study were confirmed using Western blot. The results indicate that our in vitro chondrogenesis model is an efficient and rapid technique for obtaining cells similar to chondrocytes that express proteins characteristic of the cartilage extracellular matrix. These chondrocyte-like cells could prove useful for future cell therapy treatment of cartilage pathologies. *Molecular* & *Cellular Proteomics* 11: 10.1074/mcp.M111.010496, 1–10, 2012.

Mesenchymal stem cells (MSCs)¹ are undifferentiated cells with unlimited self-renewal capacity found in most organs and tissues of adult organisms. MSCs have proven to be a versatile source of cells capable of differentiating into various cellular lineages (1). MSCs have been isolated from a number of organs or tissues including adipose tissue (2), muscle (3), and umbilical cord (UC) (4). Our group has conducted proteome studies of chondrocytes with diverse pathologies (5, 6) and has also achieved differentiation toward chondrocyte-like cells of MSCs from UC stroma using a new spheroid model and defined chondrogenic medium (7). Our findings demonstrate that MSCs from UC stroma are multipotent cells capable of differentiation into mesodermal and ectodermal cell lineages (7). Various techniques, including immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR), and one-dimensional SDS-PAGE (1D-SDS-PAGE) coupled to nano liquid chromatography matrix-assisted laser desorption/ionization (nano LC MALDI) time-of-flight (TOF)/ TOF yielded evidence of proteins and gene expressions characteristic of native cartilage by these cells (7). The goal of the study reported here was to quantify the proteome of MSCs of human UC stroma (UCs) using differential gel electrophoresis (DIGE) proteome analysis to identify key pathways involved in our chondrogenic process that may prove useful for cell therapy of cartilage pathologies.

ASBMB

Molecular & Cellular Proteomics 11.2

10.1074/mcp.M111.010496-1

Want to cite this article? Please look on the last page for the proper citation format.

From the ‡Rheumatology Division, Cellular Therapy Unit, INIBIC-Hospital Universitario A Coruña, 15006 A Coruña-Spain; §Rheumatology Division, Proteomics Unit-ProteoRed/ISCIII, INIBIC-Hospital Universitario A Coruña, 15006 A Coruña-Spain; ¶Department of Medicine, Area of Anatomy and Human Embryology, University of A Coruña-Spain; ∥CIBER-BBN-Instituto de Salud Carlos III-Madrid-Spain

Received May 2, 2011, and in revised form, September 25, 2011 Published, MCP Papers in Press, October 17, 2011, DOI 10.1074/mcp.M111.010496

¹ The abbreviations used are: MSC, mesenchymal stem cells; UC, umbilical cord; DIGE, differential gel electrophoresis; MALDI-TOF, matrix-assisted laser desorption ionization/time of flight; SODm, superoxide dismutase mitochondrial; PDIA, protein disulfide isomerase A1; GRP78, 78kDa glucose-regulated protein; PPIA, Peptidyl-prolyl cis-trans isomerase A; HSP90, heat shock protein 90.

MATERIALS AND METHODS

Tissue Collection—Human UCs were obtained from caesarean sections performed on 23 healthy women at the Maternity Facility at Complejo Hospitalario Universitario A Coruña (CHUAC). All tissues were obtained with fully informed consent and ethical approval by the supervisor of the Ethical Committee (CEIC) of Galicia. All the women were between 26 and 35 years-old.

Isolation and Culture of MSCs—MSCs were isolated from UCs using the protocol developed by our group (4). Briefly, the tissue was washed with phosphate buffered saline and cut into small pieces (explants). These explants were then incubated for three five-minute periods in an enzyme mixture containing 1.2 U/ml dispase and 112 U/ml type I collagenase (all from Sigma-Aldrich) and cultured in Dulbecco's Modified Eagles Medium with 10% fetal bovine serum, 1% penicillin, and 1% streptomycin (all from Sigma-Aldrich) and growth adhered to the plastic plate. After 3 days, the explants were removed from the plate, leaving the attached UC MSCs, which were then cultured in monolayer in the same medium. When the cells were 90% confluent, they were removed from the plate using 2% trypsin (Sigma-Aldrich) in phosphate-buffered saline and induced to differentiate toward chondrogenesis.

The MSCs were seeded into 96-well plates (*Sarstedt*, Inc., Barcelona, Spain) at 2 × 10⁴ cells per well in Dulbecco's modified Eagle's medium with 10% fetal bovine serum, 1% penicillin, 1% streptomycin, 1.5 × 10⁻⁴ M of monothioglycerol, 5 mg/ml ascorbic acid, and 6 μ g/ml transferrin (all from Sigma-Aldrich) to facilitate spontaneous spheroid formation. The medium was then changed to a chondrogenic medium, composed of Dulbecco's modified Eagle's medium with 15% knockout serum (Invitrogen, Barcelona, Spain), 5 mg/ml ascorbic acid, 6 μ g/ml transferrin, 10 μ M dexamethasone, 1 × 10–7 M retinoic acid and 1 ng/ml recombinant human transforming growth factor- β 3 (ProSpec-Tany TechnoGene, Deltaclon, Madrid, Spain). This medium was changed every 3 days. After 4, 7, 14, 28, and 46 days in the chondrogenic medium, spheroids were collected, frozen, and stored at 4 °C for later analyses.

DIGE Sample Preparation and Labeling—Spheroids recovered from the culture plates were washed twice with phosphate-buffered saline. The spheroids were disaggregated using a Mixer Mill MM 200 (RESTCH, Haan, Germany) with zirconium balls in liquid nitrogen followed by a one-hour incubation with gentle agitation in 200 μ l of isolectric focusing-compatible lysis buffer containing 8.4 M urea, 2.4 M thiourea, 5% 3-[(3-cholamidopropyl)dimethylammonio]propanesulfonate, 1% carrier ampholytes [imobilized pH gradient (IPG) buffer], 0.4% Triton X-100 and 2 mM dithiothreitol (Sigma-Aldrich) at pH 8 to 9. Total proteins in each lysate were quantified using the Bradford protein assay (Sigma-Aldrich). The samples were labeled using fluorescent Cy Dyes according to the manufacturer's instructions (GE Healthcare, Buckinghamshire, UK). Three chondrogenic differentiations were used for each sample at each collection time. The sample labeling is shown in Table I.

2D-Gel Electrophoresis—IPG strips (pH 3–11, 24 cm, Bio-Rad Laboratories, Hercules, CA) were rehydrated with hydration buffer (8.4 M Urea, 2 M thiourea, 2% 3-[(3-cholamidopropyl)dimethylammonio]propanesulfonate, 0.02% bromphenol blue, 0.5% carrier ampholytes, 1.2% Destreak (GE Healthcare) for 18 h at room temperature. Cy Dye-labeled samples were loaded into a cap-load covered with Cover Fluid (GE Healthcare) and isoelectric focusing was performed for a total of 95,000 Vh for 24 cm strips using the IPGphor-II apparatus (GE Healthcare). The strips were equilibrated prior to SDS-PAGE for 15 min in equilibration buffer (6 M urea, 50 mM Tris pH 8.8, 20% (v/v) glycerol, 2% (w/v) SDS) with 1% (v/v) dithiotreitol, then for an additional 15 min in the same equilibration buffer with 4% (v/v) iodine acetamine. The strips were overlaid with 1% agarose in SDS running buffer containing bromphenol blue. Tris-glycine running buffer (24.8 mM Tris, 192 mM glycine, 0.1% (w/v) SDS) was used. The 24-cm gels were run on a Criterion gel system (Bio-Rad Laboratories) for the second dimension until the dye front passed the bottom of the gel. The gels were immediately scanned. A non-DIGE preparative gel was run with 500 μ g protein from a pool of all samples under the same conditions. This gel was stained with Coomassie blue and spots were excised for protein identification.

Gel Imaging—The gels were scanned using a Typhoon9410 scanner (GE Healthcare) following the manufacturer's instructions. Image analysis was performed using the DeCyder software package version 5 (GE Healthcare), a 2-DE analysis software specifically designed for DIGE experiments. [1370 spots were identified and quantified using the DeCyder difference in-gel analysis (DIA) module. Proteins were deemed to be differentially expressed if they showed a greater than 1.5-fold change in abundance and if p < 0.05 was found using a 1-way ANOVA. Ninety-seven spots were observed to be modulated.

MS Analysis-The samples were first reduced using dithiotreitol, then alkylated with iodoacetamide and digested at 37 °C using 6.66 ng/µl sequencing-grade trypsin (Roche Molecular Biochemicals, Indianapolis, IN). Following digestion, the supernatant was collected and a 1 µl spot placed on a MALDI target plate (ABSciex, Framingham, MA) and allowed to air-dry at room temperature. When dried, 0.5 μ l of a 3 mg/ml solution of α -cyano-4-hydroxy-trans-cinnamic acid matrix in 0.1% trifluroacetic acid-50% acetonitrile was added to the dried peptide spots and allowed to air-dry. The samples were analyzed using the MALDI-TOF/TOF mass spectrometer 4800 Proteomics Analyzer (ABSciex, Framingham, MA) and 4000 Series Explorer™ Software (ABSciex). MALDI-TOF spectra were acquired in reflector positive-ion mode using 1000 laser shots per spectrum. Data Explorer version 4.2 (ABSciex) was used for spectra analyses and generating peak-picking lists. All mass spectra were internally calibrated using autoproteolytic trypsin fragments and externally calibrated using a standard peptide mixture 4700 CAL MIX (ABSciex). TOF/TOF fragmentation spectra were acquired by selecting the 20 most abundant ions of each MALDI-TOF peptide mass map, excluding trypsin autolytic peptides and other known background ions, using an average of 1500 laser shots per fragmentation spectrum. The parameters utilized for analysis were a signal to noise threshold of 20, a minimum area of 100 and a resolution higher than 10,000 with a mass accuracy of 20 ppm.

Database Search-The amino acid sequence tag obtained from each peptide fragmentation in MS/MS analyses were used to search for protein candidates using Mascot online 2.0 as search engine (www.matrixscience.com). Peak intensity was used to select up to 50 peaks per spot for peptide mass fingerprinting, and 50 peaks per precursor for MS/MS identification. Tryptic autolytic fragments, keratin, and matrix-derived peaks were removed from the data used for the search. The searches for peptide mass fingerprints and tandem MS spectra were performed in the Swiss-Prot release 53.0 database (269.293 entries) without taxonomy restriction. Fixed and variable modifications were considered (Cys as carbamidomethyl derivate and Met as oxidized methionine, respectively), allowing one trypsinmissed cleavage site and a mass tolerance of 50 ppm. For MS/MS identifications, a precursor tolerance of 50 ppm and MS/MS fragments tolerance of 0.3 Da were used. Identification was accepted as positive when at least two peptides matched and at least 10% of the peptide coverage of the theoretical sequences matched within a mass accuracy of 50 or 25 ppm with internal calibration. Probability scores were significant at p < 0.01 for all matches. Proteins of interest were excised from the preparative gel for protein identification. Preparation for protein identification used the protocol from Gez et al. (8).

Protein Isolation and Immunoblot Analysis—Immunoblot analysis was performed using 40 μ g of total protein extracted from cells in culture, as previously described (9). The blots were probed with

Fig. 1. **Chondrogenesis model.** *A*, Experimental plan indicating which days of chondrogenesis were used for differential-in-gel electrophoresis (DIGE) analyses. Representative immunohistochemical images of the expression of collagen type II (COL2) from spheroids engineered from umbilical stroma mesenchymal stem cells collected at different time points before DIGE analysis are shown at the top (Magnification $10 \times$). *B*, Graph showing modulated proteins (previously identified as directly associated with the native cartilage extracellular matrix or chondrocytes) identified by mass spectroscopy during the chondrogenesis process at 4 and 46 days and their expression relative to that found in undifferentiated cells at time 0. They were listed in order from lowest to highest.

antibodies directed against human superoxide dismutase mitochondrial (SODm), protein disulfide-isomerase A1 (PDIA), 78 kDa glucoseregulated protein (GRP78), peptidyl-prolyl cis-trans isomerase A (PPIA), heat shock protein HSP90-beta (HSP90), procollagen-lysine (PLOD2) (all from Santa Cruz Biotechnology, Santa Cruz, CA) and glycerol-3-phosphate dehydrogenase (GAPDH) (Sigma-Aldrich). A secondary anti-mouse antibody (Santa Cruz Biotechnology) was used to visualize proteins using an Amersham Biosciences[™] ECL[™] Western blotting analysis system (GE Healthcare, Amersham Biosciences Biotechnology, UK). Ideal concentrations for each antibody were determined empirically. Working concentrations were 1:1000 of the recommended stock solutions. Three experiments were performed. One of them was a pool from the DIGE/MS analysis and the other two were from other random experiments.

Real-time Reverse Transcriptase PCR (qRT-PCR) Analysis—The reported sequences of genes for human SODm (forward: CTGGAC-AAACCTCAGCCCTA; reverse: TGATGGCTTCCAGCAACTC), PDIA (forward: TTGGCCTCACCAAGGACA; reverse: TGACCAGGAAGCG-CGACA), GRP78 (forward: GGATCATCAACGAGCCTACG; reverse: CACCCAGGTCAAACACCAG), PPIA (forward: ATGCTGGACCCAAC-ACAAAT; reverse: TCTTTCACTTTGCCAAACACC), HSP90 (forward: CGTTGCTCACTATTACGTATAATCCT; reverse: TGCCTGAAAGGCA-AAAGTCT), PLOD2 (forward: TCATGGACACAGGATAATGGCTGCA; reverse: AGGTAGAAAAGGGGTTGGTTGCTCA), and 50S ribosomal protein L16 (RPLP) (forward: TCTACAACCCTGAAGTGCTTGAT; reverse: CAATCTGCAGACAGACACTGG) as housekeeping were used for primer design. The amplification program consisted of an initial denaturation at 92 °C for 2 min followed by 40 cycles from 92 °C for 15 s, annealing at 61 °C for 30 s, and an extension at 72 °C for 15 s. Each PCR analysis was performed in duplicate, with each set of assays repeated three times. To minimize effects of unequal quantities of starting RNA and to eliminate potential sources of inconsistency, relative expression levels of each gene were normalized to RPLP using the $2-\Delta\Delta$ Ct method (10). Control experiments contained no reverse transcriptase.

RESULTS

All proteins from chondrocyte-like cells were compared with proteins secreted by undifferentiated cells at time point 0. Twelve differentiations of MSCs from human UC stroma donors were achieved. Representative images of the chondrogenic process identified using immunohistochemistry against human collagen type II (COL2) for each collection time are shown in Fig. 1*A*.

Three pools from three differentiation experiments were combined to perform three different DIGE analyses (Table I). 1370 spots were detected, 97 of which were significant at p < 1000

TABLE I

Samples used for the differential gel electrophoresis (DIGE) analysis. Mesenchymal stem cells from 12 donors were differentiated toward chondrocyte-like cells. The top of the table indicates the amount of protein used in DIGE experiments labeled with Cy2, Cy3, or Cy5 dye. The first column indicates the gel number; the following columns indicate the days in differentiation medium charged in the gel. Three different experiments were performed and are indicated as *, ', and ''. Each experiment utilized a pool of three chondrogenic differentiations from three different donors. Standard is the mix of same amount of protein of each condition

	Cy2 (50 µg)	Cy3 (50 µg)	Cy5 (50 µg)
GEL1	Standard	0*	4*
GEL2	Standard	7*	14*
GEL3	Standard	28*	46*
GEL4	Standard	4′	0′
GEL5	Standard	14′	7′
GEL6	Standard	46′	28′
GEL7	Standard	0′′	4''
GEL8	Standard	7''	14''
GEL9	Standard	28''	46′

0.01 (one way ANOVA). From the 97 spots, 54 proteins were identified by MS/MS (Table II). All modulated 54 proteins expressed during the chondrogenesis process were up- or down-regulated as early as 4 days of culture in chondrogenic medium. From a total of 97 proteins modulated during chondrogenesis differentiation, 15 were down-regulated, 21 were up-regulated, and three were down-regulated at the beginning of chondrogenesis and up-regulated at the final of process (Table III). Interestingly, from all modulated proteins 12 have been identified in the literature as characteristic proteins of the chondrogenesis process or as directly associated with the native cartilage extracellular matrix (ECM) or chondrocytes (Table III). PDIA3, SOD2, ZYX, and PLOD2 were clearly up-regulated during chondrogenesis at 4 and 46 days (Fig. 1B).

Principal component analysis was used to determine whether the proteomic profile obtained from our chondrogenesis model was homogenous. Proteomic maps were utilized for variables and spots from the different groups were used as observations in "score graphs." Score graphs are useful for reducing complexity and obtaining a simplified examination of proteomic spots. Score graphs can be used to determine whether the samples express a similar proteomic profile and whether the spots belong to the same experimental group. Fig. 2A shows that day 0 spots (pink) were much closer to each other and situated at one side of the graph, whereas day 46 spots (green) were clustered at the opposite side. Spots corresponding to the intermediate differentiation days are situated between these positions. Plotting these data using the same variable on both axes to make the data linear did not change the proteomic profile (Fig. 2B). These results indicated that our data were very homogeneous with no discordant data affecting the statistical analysis.

The major proteins found in our chondrogenesis model after day 4 of differentiation were grouped according to three primary cell functions. In cellular proliferation were annexins 1 (ANXA1) and 6 (ANXA6), heat shock 70 kDa protein 14 (HSP70), caldesmon (CALD1), transgeline (TAGL), and zyxin (ZYX), all up-regulated. Proteins involved in cell differentiation were peptidyl-prolyl cis-trans isomerase A (PPIA), heat shock 90 kDa protein (HSP90) and glutathione S-transferase P (GSTP1), all down-regulated. Proteins involved in cell migration were protein disulfide-isomerase A1 (PDIA1) and nucleoside diphosphate kinase A (NME1), which were down-requlated. The modulated proteins grouped according to cell function were examined and we found that those involved in cell organization were 45% of the total modulated proteins, followed by of 19% involved in reduction-oxidation stress, 16% in metabolism and 7% in signal transduction (Fig. 3).

The expression of six representative proteins was determined throughout chondrogenesis in our model using immunoblot analysis to validate the results from the DIGE technique. SODm, GRP78, and PLOD2 increased their expression at 4 days and continued to increase throughout the differentiation process. PDIA1, PPIA, and HSP90 were decreased at 4 days and continued decreasing throughout (Fig. 4A). These results confirm the results obtained from the DIGE analyses. Gene expressions for each protein was analyzed by qRT-PCR during chondrogenic process and they were coincident with their protein levels for the different times of chondrogenic differentiation found by DIGE and validated by immunoblotting (Fig. 4B).

DISCUSSION

Over the past year, our group has reported proteomic studies of chondrocytes in various pathologies and under differing culture conditions (11). This is the first report of a study of chondrogenic differentiation of MSCs from a novel source, the UC stroma. DIGE has previously been used to analyze osteoblast differentiation from MSCs of adipose tissue (12) and to study nuclear proteomes from human embryonic and MSCs (13). However, to our knowledge, our study is the first one using DIGE to study the proteome of UC MSCs undergoing chondrogenic differentiation at six different time points (0, 4, 7, 14, 28, and 46 days) (Fig. 1). This approach represents a new global comparative proteomics approach with broad applications for basic and clinical biological sciences. Our primary goal was to identify pathways involved in chondrogenesis to validate and improve our in vitro chondrogenic model (4) with our ultimate objective being to develop new therapies for cartilage degeneration pathologies.

The principal components analysis results indicated that our data were very homogeneous with no discordant data affecting the statistical analysis (Fig. 2). The modulated proteins were either up- or down-regulated in the directed medium at all the time points from 4 days to 46 days, with significant differences found mainly between undifferentiated

TABLE II

Proteomic analysis at different times of chondrogenesis from mesenchymal stem cells (MSCs) from human umbilical cord stroma using a two-dimensional DIGE technique coupled to MALDI-TOF/TOF. Only those proteins modulated during chondrogenesis identified by at least two specific human peptides with confidence >99% are included in the list

Annexin A2 ANXA2_HUMAN Extracellular matrix 973 15 775 2.58E-01 Proxitedioxin-5 PEROX_HUMAN Endoplasmic reticulum 772 17 656 6.0011 GRP78 Choplasmic reticulum 772 13 675 0.001 Tropportigin beta chain TPM2_HUMAN Endoplasmic reticulum 173 15 637 0.002 Transgelin TAGL_HUMAN Choplasmic reticulum 61 2 9 751 0.002 Yimentin TAGL_HUMAN Nucleus 270 9 833 0.003 Protein B2T SET_HUMAN Nucleus 270 9 833 0.003 Carreliculin CALR_HUMAN Nucleus 64 2 653 0.004 Annexin A1 ANXA5_HUMAN Extracellular matrix 644 1 788 0.004 Annexin A1 ANXA5_HUMAN Extracellular matrix 715 15 760 0.004 Annexin A1 ANXA5_HUMAN Extracellular matr	NAME	MSMS match	Location	Score	# ID peptides	Spot	p anova
Percentredoxin-5 PRDX5_HUMAN Mitchondrion 475 7 555 6.782-01 GRP78 Endoplasmic reticulum 872 13 655 0.001 Protein disulfide-isomerase A3 PDIA3_HUMAN Endoplasmic reticulum 872 13 655 0.002 Transgelin TAGL_HUMAN Cytoplasm 673 15 637 0.002 Vimentin CH00_HUMAN Kitochondrion 75 3 1001 0.002 Vimentin CH00_HUMAN Kitochondrion 75 8 0.003 Catreticulin CALL_HUMAN Endoplasmic reticulum 66 2 683 0.003 Catreticulin CALL_HUMAN Endoplasmic reticulum 423 768 0.004 Annexin A5 XNXA1_HUMAN Endoplasmic reticulum 51 85 86.849 0.005 Annexin A1 XNXA1_HUMAN Endoplasmic reticulum 52 56 0.005 Annexin A1 XNXA1_HUMAN Endoplasmic reticulum membrane 184 321	Annexin A2	ANXA2 HUMAN	Extracellular matrix	973	15	775	2.58E-01
GRP78 Endoplasmic reticulum 772 17 656 0.001 Tropomyosin beta chain TPM2, HUMAN Crytoplasmic reticulum 192 13 675 0.002 Transgelin TAGL_HUMAN Crytoplasmic reticulum 193 4 759 0.002 Heat shock protein, mitochondrial CHE0_HUMAN Mitochondrino 75 3 1091 0.002 Protein GJ-1 PARKZ HUMAN Nucleus 270 9 833 0.003 Calrencin DJ-1 PARKZ HUMAN Endoplasmic reticulum 651 8 578 0.003 Calrencin A ANXAL HUMAN Endoplasmic reticulum 551 766 0.004 Armexin A1 ANXAL HUMAN Extracellular matrix 1329 15 776 0.005 Armexin A1 ANXAL HUMAN Extracellular matrix 1329 15 776 0.005 Armexin A1 ANXAL HUMAN Extracellular matrix 1329 15 776 0.005 Armexin A1 ANXAL HUMAN Extr	Peroxiredoxin-5	PRDX5 HUMAN	Mitochondrion	475	7	565	6.73E-01
Protein disulfide-isomerase A3 PDIA3_HUMAN Endoplasmic reticulum 872 13 675 0.001 Trapomyosin bats chain TFAL_HUMAN Cytoplasm 673 15 637 0.002 Heat shock protein, mitochondrial CH0U HUMAN Kitochondrion 75 3 1001 0.002 Vimentin 252 9 751 0.002 757 3 0.003 Carreticulin CALE, HUMAN Endoplasmic reticulum 66 2 653 0.003 Garreticulin CALE, HUMAN Endoplasmic reticulum 423 7 655 0.004 Annexin A5 ANXA1_HUMAN Endoplasmic reticulum 423 7 655 0.004 Annexin A1 ANXA1_HUMAN Endoplasmic reticulum 51 8 80 0.005 Annexin A1 ANXA1_HUMAN Endoplasmic reticulum 52 56 0.005 Annexin A1 ANXA1_HUMAN Endoplasmic reticulum 54 8 90 0.005 Ferdoplasmin A1	GRP78	GRP78	Endoplasmic reticulum	772	17	656	0.001
Troponyosin bata chain TPM2_HUMAN Cytoplasm 190 4 759 0.002 Heat shock protein, mitochondrial TGG, HUMAN Cytoplasm 673 15 637 0.002 Wimentin VIME_HUMAN Intermediate filament 252 9 751 0.002 Protein SET SET, HUMAN Endoplasmic reticulum 66 2 683 0.003 Catreticulin CALE, HUMAN Endoplasmic reticulum 531 8 578 0.004 Annexin AS ANXAS, HUMAN Extracellular matrix 644 12 786 0.004 Annexin AS ANXAS, HUMAN Extracellular matrix 1329 15 776 0.004 Annexin AS ANXAS, HUMAN Extracellular matrix 129 15 772 0.005 Heat shock protein bata-1 HSPB1 HUMAN Extracellular matrix 129 5 656 8 649 0.005 Procolagen-lysin PLOD2_HUMAN Endoplasmic reticulum membrane 184 3221 0.006	Protein disulfide-isomerase A3	PDIA3 HUMAN	Endoplasmic reticulum	872	13	675	0.001
Transgelin TAGI, HUMAN Cytoplasm 673 15 637 0.002 Wimentin Protein DJ-1 PRRT, HUMAN Intermediate filament 250 9 751 0.002 Protein DJ-1 PRRT, HUMAN Intermediate filament 250 9 751 0.002 Caretiscuin CAL Protein DJ-1 PRRT, HUMAN Endoplasmic reticulum 551 8 578 0.003 Caretiscuin CAL ANXAS, HUMAN Endoplasmic reticulum 423 7 655 0.004 Annexin AS ANXAS, HUMAN Extracellular matrix 6149 12 778 0.004 Annexin A1 ANXAS, HUMAN Extracellular matrix 1029 15 777 0.004 Annexin A1 ANXAS, HUMAN Extracellular matrix 1029 15 778 0.005 Annexin A5 ANXAS, HUMAN Extracellular matrix 708 3 91 0.005 Stress-induce-phosphoprotein STIP1_HUMAN Extracellular matrix 708 <td< td=""><td>Tropomvosin beta chain</td><td>TPM2 HUMAN</td><td>Cvtoplasm</td><td>190</td><td>4</td><td>759</td><td>0.002</td></td<>	Tropomvosin beta chain	TPM2 HUMAN	Cvtoplasm	190	4	759	0.002
Heat Shock protein, mitochondrial CH60_HUMAN Mitochondrion 76 3 1091 0.002 Winentin VIME_HUMAN Nucleus 270 9 833 0.003 Protein SET SET_HUMAN Endoplasmic reticulum 66 2 683 0.003 Catreticulin CALR_HUMAN Endoplasmic reticulum 423 7 655 0.004 Annexin A5 ANXA1_HUMAN Endoplasmic reticulum 423 7 655 0.004 Annexin A5 ANXA1_HUMAN Extracellular matrix 1029 15 776 0.004 Annexin A6 ANXA1_HUMAN Extracellular matrix 1029 15 772 0.005 Endoplasmin ENPL_HUMAN Extracellular matrix 102 15 83 931 0.005 Procollagen-lysine PLO2_HUMAN Endoplasmic reticulum 560 8 449 0.005 Stress-induced-phosphoprotein 1 ROX1_HUMAN Extracellular matrix 708 3391 0.005 Stretac	Transgelin	TAGL HUMAN	Cvtoplasm	673	15	637	0.002
Wimerin Protein D-1 VIME_HUMAN Intermediate filament 250 9 751 0.002 Protein SET SET_HUMAN Intermediate filament 270 9 673 0.003 Carreticulin CALP, HUMAN Endoplasmic reticulum 66 2 683 0.003 Annexin A5 ANXA5_HUMAN Endoplasmic reticulum 423 7 655 0.004 Annexin A5 ANXA5_HUMAN Extracellular matrix 644 12 788 0.004 Annexin A1 ANXA5_HUMAN Extracellular matrix 1029 15 776 0.004 Annexin A1 ANXA5_HUMAN Extracellular matrix 1029 15 772 0.005 Fendoplasmin EMOplasmin Extracellular matrix 708 3 391 0.005 Annexin A5 ANXA5_HUMAN Extracellular matrix 708 3 391 0.005 Stress-induce-phosphoprotein 1 STIP_HUMAN Extracellular matrix 708 15 60.008 0.008 St	Heat shock protein, mitochondrial	CH60 HUMAN	Mitochondrion	75	3	1091	0.002
Protein D.1-1 PARK7_HUMAN Nucleus Parkola	Vimentin	VIME HUMAN	Intermediate filament	252	9	751	0.002
Protein SET SET_HUMAN Endoplasmic reticulum 66 2 633 0.003 Carleticulin CALR, HUMAN Endoplasmic reticulum 551 8 578 0.003 Annexin AS ANXAS, HUMAN Endoplasmic reticulum 423 7 655 0.004 Annexin AS ANXAS, HUMAN Extracellular matrix 1329 15 1089 0.004 Annexin A1 ANXAS, HUMAN Extracellular matrix 1329 15 1089 0.004 Annexin A1 ANXAS, HUMAN Extracellular matrix 1029 15 772 0.005 Findoplasmin END HUMAN Cytoplasm 585 8 49 0.005 Annexin A1 ANXAG, HUMAN Extracellular matrix 708 3391 0.005 Stress-induce-phosphoretin 1 STFIP1_HUMAN Cytoplasm 1643 221 5671 0.008 Stress-induce-phosphoretin 1 STFIP1_HUMAN Cytoplasm 156 8 1220 0.000 Stress-induce-phosp	Protein DJ-1	PARK7 HUMAN	Nucleus	270	9	833	0.003
Careticulin CALP, HUMAN Endoplasmic reticulum 551 8 578 0.003 Reticulocalbin-3 ANXA5, HUMAN Extracellular matrix 123 7 655 0.004 Annexin A5 ANXA5, HUMAN Extracellular matrix 1329 15 776 0.004 Annexin A1 ANXA5, HUMAN Extracellular matrix 1329 15 776 0.004 Annexin A5 ANXA5, HUMAN Extracellular matrix 1029 15 772 0.005 Annexin A6 ANXA5, HUMAN Extracellular matrix 1029 15 772 0.005 Endoplasmin ENPL, HUMAN Extracellular matrix 708 3.991 0.005 Procollagen-lysine PLOD2, HUMAN Endoplasmic reticulum 187 4 695 0.008 Stress-induced-phosphoprotein 1 STIP1, HUMAN Cytoplasm & nucleus 22 5 671 0.008 Peptidyi-prolyl cis-trans isomerase A PPA, HUMAN Cytoplasm & nucleus 206 18 0.011 Zyx	Protein SET	SET HUMAN	Endoplasmic reticulum	66	2	693	0.003
Particulocalbin-3 PCN2_HUMAN Endoplasmic reticulum 4.23 7 655 0.004 Annexin A5 ANXA5_HUMAN Extracellular matrix 644 12 778 0.004 Annexin A1 ANXA1_HUMAN Extracellular matrix 1329 15 776 0.004 Annexin A1 ANXA1_HUMAN Extracellular matrix 1329 15 778 0.004 Annexin A1 ANXA1_HUMAN Extracellular matrix 1029 15 772 0.005 Endoplasmin ENTA_HUMAN Extracellular matrix 708 3 391 0.005 Annexin A6 PLOLDZ_HUMAN Extracellular matrix 708 3 391 0.006 Stress-induce-phosphoretin 1 STD1_HUMAN Extracellular matrix 786 5 671 0.008 Stress-induce-phosphoretin 1 STD1_HUMAN Extracellular matrix 874 15 632 0.009 Annexin A1 ANXA1_HUMAN Extracellular matrix 874 15 632 0.011	Calreticulin	CALR HUMAN	Endoplasmic reticulum	551	8	578	0.003
Annexin A5 ANXA5_HUMAN Extracellular matrix 644 12 788 0.004 Annexin A1 ANXA5_HUMAN Extracellular matrix 1329 15 776 0.004 Annexin A1 ANXA1_HUMAN Extracellular matrix 129 15 772 0.005 Annexin A5 ANXA1_HUMAN Extracellular matrix 109 0.005 772 0.005 Endoplasmin ENPL_HUMAN Extracellular matrix 708 3.91 0.005 Procollagen-lysine PLOD2_HUMAN Endoplasmic reticulum 184 3 221 0.008 Breticulocalibin-1 RCNL_HUMAN Cytoplasm & nucleus 122 5 671 0.008 Stress-induced-phosphoprotein 1 ANXA1_HUMAN Cytoplasm & nucleus 122 5 671 0.008 Peptidyl-prolyl cis-trans isomerase A PPIA_HUMAN Cytoplasm & nucleus 206 6 186 0.011 Zyxin ZYX_HUMAN CYX_CPluar matrix 691 10011 205 0.017 <td< td=""><td>Reticulocalbin-3</td><td>RCN3 HUMAN</td><td>Endoplasmic reticulum</td><td>423</td><td>7</td><td>655</td><td>0.004</td></td<>	Reticulocalbin-3	RCN3 HUMAN	Endoplasmic reticulum	423	7	655	0.004
Annexin A1 ANXA1_HUMAN Extracellular matrix 1329 15 776 0.004 Transgelin TAGL_HUMAN Extracellular matrix 1029 15 772 0.005 Annexin A1 ANXA1_HUMAN Extracellular matrix 1029 15 772 0.005 Endoplasmin ENPE_HUMAN Extracellular matrix 1029 3 391 0.005 Annexin A6 ANXA5_HUMAN Extracellular matrix 708 3 391 0.005 Procollagen-lysine PCD2_HUMAN Extracellular matrix 708 3 210.008 Reticulocatibin-1 RCN1_HUMAN Cytoplasm & nucleus 122 5 671 0.008 Peptidyl-prokyl cis-trans isomerase A PNA_HUMAN Cytoplasm & nucleus 206 6 166 0.011 Annexin A2 ANXA5_HUMAN Extracellular matrix 874 15 632 0.019 Syperoxide dismutase 10 PAL_HUMAN Cytoplasm 12 1081 0.011 Annexin A2	Annexin A5	ANXA5 HUMAN	Extracellular matrix	644	12	788	0.004
Transgelin TAGL_HUMAN S71 15 1089 0.005 Annexin A1 ANXA1_HUMAN Extracellular matrix 1029 15 772 0.005 Endoplasmin ENPL_HUMAN Cytoplasm 585 8 849 0.005 Endoplasmin ENPL_HUMAN Cytoplasm 585 8 490 0.005 Annexin A6 ANXA1_HUMAN Endoplasmic reticulum membrane 184 3 221 0.008 Perciculocalibin-1 RCN1_HUMAN Endoplasmic reticulum membrane 184 3 221 0.008 Stress-induced-phosphoprotein 1 STIP1_HUMAN Cytoplasm & nucleus 122 5 671 0.008 Peptidyl-prolyl cis-trans isomerase A PIA_HUMAN Cytoplasm 508 8 1285 0.0011 Zyxin ZYX_HUMAN Cytoplasm & nucleus 206 6 186 0.011 Zyxin ZYX_HUMAN Cytoplasm & nucleus 206 6 186 0.011 Superoxide dismutase SODM_HUMAN <td>Annexin A1</td> <td>ANXA1 HUMAN</td> <td>Extracellular matrix</td> <td>1329</td> <td>15</td> <td>776</td> <td>0.004</td>	Annexin A1	ANXA1 HUMAN	Extracellular matrix	1329	15	776	0.004
Annexin A1 ANXA1_HUMAN Extracellular matrix 1029 15 772 0.005 Heat shock protein beta-1 HSPB1_HUMAN Cytoplasm 585 8 849 0.005 Endoplasmin ENPL_HUMAN Endoplasmic reticulum 542 12 25.60 0.005 Annexin A6 ANXA6_HUMAN Endoplasmic reticulum membrane 184 3 221 0.008 Reticulocalbin-1 RON1_HUMAN Endoplasmic reticulum 187 4 695 0.008 Stress-induced-phosphorotein 1 RON1_HUMAN Extracellular matrix 187 4 695 0.008 Annexin A1 RON1_HUMAN Cytoplasm 126 6 10.008 Annexin A1 ANXA5_HUMAN Cytoplasm 508 8 1250 0.0011 Annexin A2 ANXA5_HUMAN Extracellular matrix 981 12 1081 0.011 Annexin A2 ANXA2_HUMAN Cytoplasm 381 8 43.0015 1082 0.017 Dispotropic el in utas	Transgelin	TAGI HUMAN		371	15	1089	0.005
Heat shock protein beta-1 HSPB1-HUMAN Cytoplasm 585 8 849 0.005 Endoplasmin ENPL_HUMAN Endoplasmic reticulum 542 12 526 0.005 Annexin A6 ANXA6, HUMAN Extracellular matrix 708 3 311 0.005 Procollagen-lysine PLOD2, HUMAN Endoplasmic reticulum membrane 184 3 221 0.008 Stress-induced-phosphoprotein 1 STIP1, HUMAN Endoplasmic reticulum membrane 187 4 695 0.009 Annexin A1 ANXA1, HUMAN Cytoplasm nucleus 152 5 671 0.008 Peptidyl-prolyl cis-trans isomerase A PPIA, HUMAN Cytoplasm Stresselluar matrix 601 12 1081 0.011 Zyxin ZYX, HUMAN Extracellular matrix 601 12 1081 0.011 Zyxin ZYX, HUMAN Zytoplasm nucleus 206 6 186 0.014 Protein disuffich chain FRIL, HUMAN Cytoplasm 130	Annexin A1	ANXA1 HUMAN	Extracellular matrix	1029	15	772	0.005
Endoplasmin ENPL_HUMAN Endoplasmic reticulum 542 12 526 0.005 Annexin A6 ANXA6_HUMAN Extracellular matrix 708 3 311 0.005 Procollagen-lysine PLO2L HUMAN Endoplasmic reticulum 187 4 695 0.008 Stress-induced-phosphoprotein RCN1_HUMAN Endoplasmic reticulum 187 4 695 0.009 Annexin A1 RCN1_HUMAN Cytoplasm 8.0125 0.009 4 0.009 Annexin A1 ANXA1_HUMAN Cytoplasm 508 8 1250 0.009 Annexin A5 ANXA2_HUMAN Extracellular matrix 691 12 1081 0.011 Annexin A2 ANXA2_HUMAN Extracellular matrix 396 13 783 0.013 Superoxide dismutase SODM_HUMAN Ktracellular matrix 396 13 783 0.017 Superoxide dismutase SODM_HUMAN Ktracellular matrix 492 13 781 0.017	Heat shock protein beta-1	HSPB1 HUMAN	Cytoplasm	585	8	849	0.005
Annexin A6 ANXA6_HUMAN Extracellular matrix 708 3 391 0.005 Procollagen-lysine PLOD2_HUMAN Extracellular matrix 708 3 391 0.005 Procollagen-lysine PLOD2_HUMAN Endoplasmic reticulum membrane 184 3 221 0.006 Stress-induced-phosphoprotein 1 STIP1_HUMAN Cytoplasm & nucleus 122 5 671 0.008 Peptidy-lprolyl cis-trans isomerase A PPIA_HUMAN Cytoplasm 508 8 1285 0.001 Annexin A5 ANXA5_HUMAN Cytoplasm & nucleus 206 6 186 0.011 Zyxin ZYX_HUMAN Extracellular matrix 391 5 864 0.011 Zyxin ZYX_HUMAN Extracellular matrix 391 5 864 0.011 Zyxin ZYX_HUMAN Cytoplasm nucleus 206 186 0.017 Superoxide dismutase SODM_HUMAN Extracellular matrix 391 5 646 0.017 <td< td=""><td>Endoplasmin</td><td>ENPL HUMAN</td><td>Endoplasmic reticulum</td><td>542</td><td>12</td><td>526</td><td>0.005</td></td<>	Endoplasmin	ENPL HUMAN	Endoplasmic reticulum	542	12	526	0.005
Procollagen-lysine PLOD2_HUMAN Endoplasmic reticulum membrane 184 3 221 0.008 Reticulocalbin-1 RCN1_HUMAN Endoplasmic reticulum 187 4 695 0.008 Stress-induced-phosphoprotein 1 RCN1_HUMAN Cytoplasm & nucleus 122 5 671 0.008 Annexin A1 Peptidyl-protyl cis-trans isomerase A PPIA_HUMAN Cytoplasm 508 8 1285 0.011 Annexin A5 ANXA1_HUMAN Extracellular matrix 691 12 1081 0.011 Zyxin ZYX_HUMAN Extracellular matrix 396 13 783 0.013 Superoxide dismutase PGAM1_HUMAN Cytoplasm 321 8 843 0.015 Ubiquitin carboxyl-terminal hydrolase SODM_HUMAN Cytoplasm 130 4 1305 0.017 Ferrith light chain FRIL_HUMAN Cytoplasm & Nucleus 269 6 1278 0.018 Superoxide dismutase PDIA3_HUMAN Cytoplasm & Nucleus 269 6	Annexin A6	ANXA6 HUMAN	Extracellular matrix	708	3	391	0.005
Reticulccalbin-1 RCN1_HUMAN Endoplasmic reticulum 187 4 695 0.008 Stress-induced-phosphoprotein 1 STIP1_HUMAN Cytoplasm & nucleus 122 5 671 0.008 Peptidyl-prolyl cis-trans isomerase A Annexin A1 Cytoplasm 508 8 1250 0.009 Peptidyl-prolyl cis-trans isomerase A ANXA1_HUMAN Cytoplasm 508 8 1285 0.011 Zyxin ZYX_HUMAN Cytoplasm & nucleus 206 6 186 0.011 Zyxin ZYX_HUMAN Cytoplasm & nucleus 206 138 0.011 Superoxide dismutase SODM_HUMAN Extracellular matrix 391 5 864 0.011 Prosphoglycerate mutase 1 PGAM1_HUMAN Cytoplasm 218 843 0.015 0.017 Nucleoside diphosphate kinase A NDKA_HUMAN Cytoplasm 310 4 1305 0.017 Superoxide dismutase SODM_HUMAN Krotenlurantrix 492 13 781 0.018	Procollagen-lysine	PLOD2 HUMAN	Endoplasmic reticulum membrane	184	3	221	0.008
Stress-induced-phosphoprotein 1 STIP1_HUMAN Cytoplasm & nucleus 122 5 671 0.008 Peptidyl-prolyl cis-trans isomerase A PPIA_HUMAN Cytoplasm 550 8 1250 0.009 Annexin A1 ANXA1_HUMAN Cytoplasm 508 8 1285 0.011 Annexin A2 ANXA5_HUMAN Extracellular matrix 601 12 1081 0.011 Zyxin ZYX_HUMAN Extracellular matrix 396 13 783 0.013 Superoxide dismutase SODM_HUMAN Extracellular matrix 396 13 783 0.017 Superoxide dismutase SODM_HUMAN Cytoplasm 381 8 843 0.017 Nucleoside diphosphate kinase A PRA1_HUMAN Cytoplasm & Nucleus 269 6 1278 0.018 Superoxide dismutase SODM_HUMAN Cytoplasm & Nucleus 269 6 1278 0.017 Nucleoside diphosphate kinase A NDKA_HUMAN Cytoplasm & Nucleus 269 6 1278 0.018<	Beticulocalbin-1	RCN1 HUMAN	Endoplasmic reticulum	187	4	695	0.008
Paptidy-proly cis-trans isomerase A Annexin A1 PPIA_HUMAN Cytoplasm 550 8 1250 0.009 Annexin A1 Annexin A5 Annexin A5 500 8 1285 0.009 Peptidy-proly cis-trans isomerase A Annexin A5 ANXA1_HUMAN Cytoplasm 508 8 1285 0.011 Zyxin ANXA2_HUMAN Cytoplasm antrix 691 12 1081 0.011 Zyxin ANXA2_HUMAN Cytoplasm antrix 396 13 783 0.013 Superoxide dismutase SODM_HUMAN Cytoplasm 381 8 843 0.017 Vicipolase VCH1_HUMAN Cytoplasm 30 4 1305 0.017 Superoxide dismutase SODM_HUMAN Cytoplasm 130 4 1305 0.017 Nucleoside diphosphate kinase A NDKA_HUMAN Cytoplasm & Nucleus 269 6 1278 0.018 Annexin A2 SODM_HUMAN Mitochondrion 130 5 1082 0.020 Superoxide dismutas	Stress-induced-phosphoprotein 1	STIP1 HUMAN	Cytoplasm & nucleus	122	5	671	0.008
Annexin A1 Anxin A1 Cytoplasm 508 8 128 0.001 Zyxin Annexin A5 Anxin A1 Anxin A1 Cytoplasm 508 8 128 0.001 Zyxin Anxin A2 AnXin A2 AnXin A2 AnXin A2 Cytoplasm & nucleus 206 6 186 0.011 Annexin A2 ANXA2_HUMAN Extracellular matrix 396 13 733 0.013 Superoxide dismutase SODM_HUMAN Kitrochondrion 391 5 864 0.014 Phosphoglycerate mutase 1 PGAM1_HUMAN Cytoplasm 381 8 843 0.015 Ubiquitin carboxyl-terminal hydrolase ISODM_HUMAN Cytoplasm 130 4 1305 0.017 Vucleoside diphosphate kinase A NDKA_HUMAN Extracellular matrix 492 13 781 0.019 Superoxide dismutase SODM_HUMAN Nitochondrion 130 5 1022	Pentidyl-prolyl cis-trans isomerase A	PPIA HIIMAN	Cytoplasm	550	8	1250	0.009
Annexin AS PPIA, HUMAN Cytoplasm 508 1 22 0.003 Annexin AS ANXAS_HUMAN Cytoplasm 508 1 22 1 081 0.011 Zyxin ZYX, HUMAN Cytoplasm & nucleus 206 6 1 86 0.011 Annexin A2 ANXA2_HUMAN Extracellular matrix 396 13 783 0.013 Superoxide dismutase SODM_HUMAN Cytoplasm 381 8 43 0.015 Ubiquitin carboxyl-terminal hydrolase UCHL1_HUMAN Cytoplasm 223 8 896 0.017 Ferritin light chain FRIL_HUMAN Cytoplasm 130 4 1305 0.017 Nucleoside diphosphate kinase A NDKA_HUMAN Cytoplasm 130 4 1305 0.018 Annexin A2 ANXA2_HUMAN Cytoplasm 130 4 1305 0.018 Superoxide dismutase SODM_HUMAN Cytoplasm 130 5 1082 0.020 Protein disulfide-isomerase A3 PDIA3_HUMAN	Annexin A1		Extracellular matrix	874	15	632	0.009
Annexin A5 ANXA5_HUMAN Extracellular matrix 691 12 1081 0.011 Zyxin ZYX_HUMAN Cytoplasm & nucleus 206 6 186 0.011 Superoxide dismutase SODM_HUMAN Cytoplasm & nucleus 206 6 186 0.011 Superoxide dismutase SODM_HUMAN Cytoplasm 391 5 864 0.014 Phosphoglycerate mutase 1 PGAM1_HUMAN Cytoplasm 381 8 843 0.015 Ubiquitin carboxyl-terminal hydrolase UCHL1_HUMAN Cytoplasm 130 4 1305 0.017 Nucleoside diphosphate kinase A NDKA_HUMAN Cytoplasm 130 4 1305 0.018 Annexin A2 ANXA2_HUMAN Extracellular matrix 492 13 781 0.019 Superoxide dismutase SODM_HUMAN Extracellular matrix 492 13 781 0.019 Superoxide dismutase SODM_HUMAN Mitochondrion 130 5 1082 0.020 <t< td=""><td>Peptidyl-prolyl cis-trans isomerase A</td><td>PPIA HUMAN</td><td>Cytoplasm</td><td>508</td><td>8</td><td>1285</td><td>0.011</td></t<>	Peptidyl-prolyl cis-trans isomerase A	PPIA HUMAN	Cytoplasm	508	8	1285	0.011
Annoxin / Company Zitxi Cytoplasm Buncleus 201 1.2 7.00 0.011 Annexin A2 ANXA2_HUMAN Cytoplasm Buncleus 206 6 186 0.011 Annexin A2 ANXA2_HUMAN Extracellular matrix 396 13 783 0.013 Superoxide dismutase SODM_HUMAN Extracellular matrix 396 13 783 0.011 Phosphoglycerate mutase 1 PGAM1_HUMAN Cytoplasm 381 8 643 0.015 Ubiquitin carboxyl-terminal hydrolase UCHL1_HUMAN Cytoplasm 130 4 1305 0.017 Nucleoside diphosphate kinase A NDKA_HUMAN Cytoplasm & Nucleus 269 6 1278 0.018 Superoxide dismutase SODM_HUMAN Cytoplasm Nucleus 269 6 1278 0.011 Tyrosyl-tRNA synthetase, cytoplasmic SYC_HUMAN Endoplasmic reticulum 457 13 672 0.033 Glyceratdehyde-3-phosphate G32_HUMAN Kytoplasm & Nucleus <	Annexin A5	ANXA5 HUMAN	Extracellular matrix	691	12	1081	0.011
Dynn Differ Differ Differ Differ Differ Differ Annexin A2 ANXA2_HUMAN ExtraceIllular matrix 396 13 783 0.013 Superoxide dismutase SODM_HUMAN ExtraceIllular matrix 391 5 864 0.014 Phosphoglycerate mutase 1 PGAM1_HUMAN Cytoplasm 381 8 843 0.015 Ubiquitin carboxyl-terminal hydrolase UCHL1_HUMAN Cytoplasm 223 8 896 0.017 Nucleoside diphosphate kinase A NDKA_HUMAN Cytoplasm & Nucleus 266 6 1278 0.019 Superoxide dismutase SDDM_HUMAN Extracellular matrix 492 13 781 0.019 Superoxide dismutase SDDM_HUMAN Endoplasmic reticulum 457 13 672 0.031 Tyrosyl-tRNA synthetase, cytoplasmic SYYC_HUMAN Membrane 62 3 509 0.033 Glyceraldehyde-3-phosphate G3P_HUMAN Membrane 809 14 1075 0.034 <td>Zvyzin</td> <td>ZYX HUMAN</td> <td>Cytoplasm & nucleus</td> <td>206</td> <td>6</td> <td>186</td> <td>0.011</td>	Zvyzin	ZYX HUMAN	Cytoplasm & nucleus	206	6	186	0.011
Ninote	Annexin A2	ANXA2 HIIMAN	Extracellular matrix	396	13	783	0.013
Deposition<	Superoxide dismutase	SODM HUMAN	Mitochondrion	391	5	864	0.014
Horming/formationCytoplasmStateStateStateUbiquitin carboxyl-terminal hydrolase isozyme L1UCHL_HUMANCytoplasm22388960.017Ferritin light chainFRIL_HUMANCytoplasm & Nucleus269612780.018Annexin A2ANXA2_HUMANCytoplasm & Nucleus269612780.019Superoxide dismutaseSODM_HUMANExtracellular matrix492137810.019Superoxide dismutaseSODM_HUMANExtracellular matrix4921366420.033Glyceraldehyde-3-phosphateG3P_HUMANEndoplasmic reticulum457136720.031Glyceraldehyde-3-phosphateG3P_HUMANMembrane6235090.033dehydrogenaseTransgelin-2TAGL2_HUMANMembrane8091410750.033Nicotinamide N-methyltransferaseNNMT_HUMANCytoplasm & Nucleus40589780.034Nicotinamide N-methyltransferaseNNMT_HUMANCytoplasmic reticulum44876800.035Peroxiredoxin-6PRDX6_HUMANExtracellular matrix277126340.039Triosephosphate isomeraseTPIS_HUMANCytoplasm1061148580.039Annexin A2ANXA5_HUMANExtracellular matrix277126340.039Glutathione S-transferase PGSTP1_HUMANCytoplasm1061148580.039AnxA2ANXA5_HUM	Phosphoglycerate mutase 1	PGAM1 HUMAN	Cytoplasm	381	8	843	0.015
Bisozyme L1EndBisozymeBisozymeFerritin light chainFRIL_HUMANCytoplasm130413050.017Nucleoside diphosphate kinase ANDKA_HUMANCytoplasm & Nucleus269612780.018Annexin A2ANXA2_HUMANExtracellular matrix492137810.019Superoxide dismutaseSODM_HUMANExtracellular matrix492137810.019Protein disulfide-isomerase A3PDIA3_HUMANExtracellular matrix492137810.019Glyceraldehyde-3-phosphateG3P_HUMANExtracellular matrix492137810.019Glyceraldehyde-3-phosphateG3P_HUMANCytoplasm6424690.033dehydrogenaseTransgelin-2TAGL2_HUMANMembrane8091410750.034Heat shock protein beta-1HSPB1_HUMANCytoplasm & Nucleus40589780.034Nicotinamide N-methyltransferaseNNMT_HUMANCytoplasm486108730.034CalumeninCALU_HUMANExtracellular matrix277126340.039Peroxiredoxin-6PRDX6_HUMANExtracellular matrix63196500.040Annexin A5ANXA5_HUMANExtracellular matrix643137740.043AlumeninCALD_HUMANCytoplasm4061148580.039Alpha-enolaseENOA_HUMANCytoplasm43136730.046 </td <td>Libiquitin carboxyl-terminal hydrolase</td> <td></td> <td>Cytoplasm</td> <td>223</td> <td>8</td> <td>896</td> <td>0.017</td>	Libiquitin carboxyl-terminal hydrolase		Cytoplasm	223	8	896	0.017
Ferritin light chain FRIL_HUMAN Cytoplasm 130 4 1305 0.017 Nucleoside diphosphate kinase A NDKA_HUMAN Cytoplasm & Nucleus 269 6 1278 0.018 Annexin A2 ANXA2_HUMAN Extracellular matrix 492 13 781 0.019 Superoxide dismutase SODM_HUMAN Extracellular matrix 492 13 672 0.031 Protein disulfide-isomerase A3 PDIA3_HUMAN Endoplasmic reticulum 457 13 672 0.033 Glyceraldehyde-3-phosphate G3P_HUMAN Cytoplasm 64 2 469 0.033 Glyceraldehyde-3-phosphate G3P_HUMAN Cytoplasm & Nucleus 405 8 978 0.034 Nicotinamide N-methyltransferase NNMT_HUMAN Cytoplasm & Nucleus 405 8 978 0.034 Calumenin CALU_HUMAN Extracellular matrix 277 12 634 0.039 Annexin A5 ANXA5_HUMAN Extracellular matrix 277 12 634 <t< td=""><td>isozyme L1</td><td></td><td>o y topiaom</td><td>220</td><td>Ū</td><td>000</td><td>0.017</td></t<>	isozyme L1		o y topiaom	220	Ū	000	0.017
Nucleoside diphosphate kinase A NDKA_HUMAN Cytoplasm & Nucleus 269 6 1278 0.018 Annexin A2 ANXA2_HUMAN Extracellular matrix 492 13 781 0.019 Superoxide dismutase SODM_HUMAN Mitochondrion 130 5 1082 0.020 Protein disulfide-isomerase A3 PDIA3_HUMAN Endoplasmic reticulum 457 13 672 0.031 Tyrosyl-tRNA synthetase, cytoplasmic G3P_HUMAN Cytoplasm 64 2 469 0.033 dehydrogenase G3P_HUMAN Membrane 809 14 1075 0.034 Transgelin-2 TAGL2_HUMAN Membrane 809 14 1075 0.034 Heat shock protein beta-1 HSPB1_HUMAN Cytoplasm & Nucleus 405 8 978 0.034 Calumenin CALU_HUMAN Ktracellular matrix 277 12 634 0.039 Annexin A5 ANXA5_HUMAN Extracellular matrix 277 12 634 0.039	Ferritin light chain	FRIL_HUMAN	Cytoplasm	130	4	1305	0.017
Annexin A2ANXA2_HUMANExtracellular matrix492137810.019Superoxide dismutaseSODM_HUMANMitochondrion130510820.020Protein disulfide-isomerase A3PDIA3_HUMANEndoplasmic reticulum457136720.031Tyrosyl-tRNA synthetase, cytoplasmicSYYC_HUMANCytoplasm6424690.033Glyceraldehyde-3-phosphateG3P_HUMANMembrane6235090.033dehydrogenaseTransgelin-2TAGL2_HUMANMembrane8091410750.034Nicotinamide N-methyltransferaseNNMT_HUMANCytoplasm & Nucleus40589780.034CalumeninCALU_HUMANEndoplasmic reticulum44876800.035Peroxiredoxin-6PRDX6_HUMANEndoplasmic reticulum44876800.035Annexin A5ANXA5_HUMANExtracellular matrix277126340.039Alpha-enolaseENOA_HUMANExtracellular matrix63196500.040Annexin A2ANXA2_HUMANExtracellular matrix643137740.043Glutathione S-transferase PGSTP1_HUMANCytoplasm43969510.045CaldesmonCALD1_HUMANIntermediate filament19396730.046Protein disulfide-isomerase A1PDIA1_HUMANEndoplasmic reticulum1045136160.046Protein disulfide-isomerase A3PDIA	Nucleoside diphosphate kinase A	NDKA_HUMAN	Cytoplasm & Nucleus	269	6	1278	0.018
Superoxide dismutaseSODM_HUMANMitochondrion130510820.020Protein disulfide-isomerase A3PDIA3_HUMANEndoplasmic reticulum457136720.031Tyrosyl-tRNA synthetase, cytoplasmicSYYC_HUMANCytoplasm6424690.033Glyceraldehyde-3-phosphateG3P_HUMANMembrane623500.033dehydrogenaseTransgelin-2TAGL2_HUMANMembrane8091410750.033Heat shock protein beta-1HSPB1_HUMANCytoplasm & Nucleus40589780.034CalumeninCALU_HUMANCytoplasm & Nucleus486108730.034Peroxiredoxin-6PRDX6_HUMANEndoplasmic reticulum44876800.035Annexin A5ANXA5_HUMANExtracellular matrix277126340.039Triosephosphate isomeraseTPIS_HUMANCytoplasm1061148580.039Alpha-enolaseENOA_HUMANExtracellular matrix277126340.040Annexin A2ANXA2_HUMANExtracellular matrix63196500.040Annexin A2GSTP1_HUMANCytoplasm43969510.045CaldesmonCALD1_HUMANPlasma membrane28082830.046VimentinVIME_HUMANEndoplasmic reticulum1045136160.046Protein disulfide-isomerase A1PDIA1_HUMANEndoplasmic reticulum543<	Annexin A2	ANXA2_HUMAN	Extracellular matrix	492	13	781	0.019
Protein disulfide-isomerase A3PDIA3_HUMANEndoplasmic reticulum457136720.031Tyrosyl-tRNA synthetase, cytoplasmicSYYC_HUMANCytoplasm6424690.033Glyceraldehyde-3-phosphateG3P_HUMANMembrane6235090.033dehydrogenaseTransgelin-2TAGL2_HUMANMembrane8091410750.033Heat shock protein beta-1HSPB1_HUMANCytoplasm & Nucleus40589780.034Nicotinamide N-methyltransferaseNNMT_HUMANCytoplasm & Nucleus486108730.034CalumeninCALU_HUMANEndoplasmic reticulum44876800.035Peroxiredoxin-6PRDX6_HUMANExtracellular matrix277126340.039Annexin A5ANXA5_HUMANExtracellular matrix277126340.039Alpha-enolaseENOA_HUMANExtracellular matrix63196500.040Annexin A2ANXA2_HUMANExtracellular matrix643137740.043Glutathione S-transferase PGSTP1_HUMANCytoplasm43969510.046VimentinVIME_HUMANIntermediate filament19396730.046VimentinVIME_HUMANEndoplasmic reticulum1045136160.046Protein disulfide-isomerase A1PDIA1_HUMANEndoplasmic reticulum543136150.048Protein disulfide-isomerase A3	Superoxide dismutase	SODM_HUMAN	Mitochondrion	130	5	1082	0.020
Tyrosyl-tRNA synthetase, cytoplasmicSYYC_HUMANCytoplasm6424690.033Glyceraldehyde-3-phosphate dehydrogenaseG3P_HUMANMembrane6235090.033Transgelin-2TAGL2_HUMANMembrane8091410750.033Heat shock protein beta-1HSPB1_HUMANCytoplasm & Nucleus40589780.034Nicotinamide N-methyltransferaseNNMT_HUMANCytoplasm486108730.034CalumeninCALU_HUMANEndoplasmic reticulum44876800.035Peroxiredoxin-6PRDX6_HUMANExtracellular matrix277126340.039Annexin A5ANXA5_HUMANExtracellular matrix277126340.039Alpha-enolaseFINA_HUMANCytoplasm1061148580.039Alpha-enolaseENOA_HUMANExtracellular matrix643137740.043Glutathione S-transferase PGSTP1_HUMANCytoplasm43969510.045CaldesmonCALD1_HUMANIntermediate filament19396730.046Protein disulfide-isomerase A1PDIA1_HUMANEndoplasmic reticulum1045136160.048Protein disulfide-isomerase A3PDIA3_HUMANEndoplasmic reticulum543136150.048Heterogeneous nuclear ribonucleoprotein D-likeCALD1_HUMANPlasma membrane20447700.048	Protein disulfide-isomerase A3	PDIA3_HUMAN	Endoplasmic reticulum	457	13	672	0.031
Glyceraldehyde-3-phosphate dehydrogenaseG3P_HUMANMembrane6235090.033Transgelin-2TAGL2_HUMANMembrane8091410750.033Heat shock protein beta-1HSPB1_HUMANCytoplasm & Nucleus40589780.034Nicotinamide N-methyltransferaseNNMT_HUMANCytoplasm486108730.034CalumeninCALU_HUMANEndoplasmic reticulum44876800.035Peroxiredoxin-6PRDX6_HUMANExtracellular matrix277126340.039Annexin A5ANXA5_HUMANExtracellular matrix277126340.039Annexin A5ANXA5_HUMANExtracellular matrix643137740.043Glutathione S-transferase PGSTP1_HUMANCytoplasm43969510.045CaldesmonCALD1_HUMANPlasma membrane28082830.046VimentinVIME_HUMANEndoplasmic reticulum1045136160.046Protein disulfide-isomerase A1PDIA1_HUMANEndoplasmic reticulum1045136160.046Protein disulfide-isomerase A3PDIA3_HUMANEndoplasmic reticulum543136150.048Heterogeneous nuclear ribonucleoprotein D-likeHNRDL_HUMANPlasma membrane26782750.050	Tyrosyl-tRNA synthetase, cytoplasmic	SYYC_HUMAN	Cytoplasm	64	2	469	0.033
Transgelin-2TAGL2_HUMANMembrane8091410750.033Heat shock protein beta-1HSPB1_HUMANCytoplasm & Nucleus40589780.034Nicotinamide N-methyltransferaseNNMT_HUMANCytoplasm486108730.034CalumeninCALU_HUMANEndoplasmic reticulum44876800.035Peroxiredoxin-6PRDX6_HUMANEndoplasmic reticulum44876800.039Annexin A5ANXA5_HUMANExtracellular matrix277126340.039Triosephosphate isomeraseTPIS_HUMANCytoplasm1061148580.039Alpha-enolaseENOA_HUMANCytoplasm63196500.040Annexin A2ANXA2_HUMANExtracellular matrix643137740.043Glutathione S-transferase PGSTP1_HUMANCytoplasm43969510.045CaldesmonCALD1_HUMANIntermediate filament19396730.046VimentinVIME_HUMANEndoplasmic reticulum1045136160.046Protein disulfide-isomerase A3PDIA3_HUMANEndoplasmic reticulum543136150.048Heterogeneous nuclearHNRDL_HUMANCytoplasm & Nucleus20447700.048ribonucleoprotein D-likeCALD1_HUMANPlasma membrane26782750.050	Glyceraldehyde-3-phosphate dehydrogenase	G3P_HUMAN	Membrane	62	3	509	0.033
Heat shock protein beta-1HSPB1_HUMANCytoplasm & Nucleus40589780.034Nicotinamide N-methyltransferaseNNMT_HUMANCytoplasm486108730.034CalumeninCALU_HUMANEndoplasmic reticulum44876800.035Peroxiredoxin-6PRDX6_HUMANEndoplasmic reticulum44876800.039Annexin A5ANXA5_HUMANExtracellular matrix277126340.039Triosephosphate isomeraseTPIS_HUMANCytoplasm1061148580.039Alpha-enolaseENOA_HUMANCytoplasm63196500.040Annexin A2ANXA2_HUMANExtracellular matrix643137740.043Glutathione S-transferase PGSTP1_HUMANCytoplasm43969510.045CaldesmonCALD1_HUMANIntermediate filament19396730.046VimentinVIME_HUMANEndoplasmic reticulum1045136160.046Protein disulfide-isomerase A1PDIA1_HUMANEndoplasmic reticulum543136150.048Protein disulfide-isomerase A3PDIA3_HUMANEndoplasmic reticulum543136150.048ribonucleoprotein D-likeCaldesmonCALD1_HUMANPlasma membrane26782750.050	Transgelin-2	TAGL2_HUMAN	Membrane	809	14	1075	0.033
Nicotinamide N-methyltransferaseNNMT_HUMANCytoplasm486108730.034CalumeninCALU_HUMANEndoplasmic reticulum44876800.035Peroxiredoxin-6PRDX6_HUMANEndoplasmic reticulum38178480.039Annexin A5ANXA5_HUMANExtracellular matrix277126340.039Triosephosphate isomeraseTPIS_HUMANCytoplasm1061148580.039Alpha-enolaseENOA_HUMANCytoplasm63196500.040Annexin A2ANXA2_HUMANExtracellular matrix643137740.043Glutathione S-transferase PGSTP1_HUMANCytoplasm43969510.045CaldesmonCALD1_HUMANPlasma membrane28082830.046VimentinVIME_HUMANIntermediate filament19396730.046Protein disulfide-isomerase A1PDIA1_HUMANEndoplasmic reticulum1045136160.048Heterogeneous nuclearHNRDL_HUMANEndoplasmic reticulum543136150.048ribonucleoprotein D-likeCALD1_HUMANPlasma membrane26782750.050	Heat shock protein beta-1	HSPB1_HUMAN	Cytoplasm & Nucleus	405	8	978	0.034
CalumeninCALU_HUMANEndoplasmic reticulum44876800.035Peroxiredoxin-6PRDX6_HUMAN38178480.039Annexin A5ANXA5_HUMANExtracellular matrix277126340.039Triosephosphate isomeraseTPIS_HUMANCytoplasm1061148580.039Alpha-enolaseENOA_HUMANCytoplasm63196500.040Annexin A2ANXA2_HUMANExtracellular matrix643137740.043Glutathione S-transferase PGSTP1_HUMANCytoplasm43969510.045CaldesmonCALD1_HUMANPlasma membrane28082830.046VimentinVIME_HUMANIntermediate filament19396730.046Protein disulfide-isomerase A1PDIA1_HUMANEndoplasmic reticulum1045136160.048Heterogeneous nuclearHNRDL_HUMANCytoplasm & Nucleus20447700.048ribonucleoprotein D-likeCALD1_HUMANPlasma membrane26782750.050	Nicotinamide N-methyltransferase	NNMT_HUMAN	Cytoplasm	486	10	873	0.034
Peroxiredoxin-6PRDX6_HUMAN38178480.039Annexin A5ANXA5_HUMANExtracellular matrix277126340.039Triosephosphate isomeraseTPIS_HUMANCytoplasm1061148580.039Alpha-enolaseENOA_HUMANCytoplasm63196500.040Annexin A2ANXA2_HUMANExtracellular matrix643137740.043Glutathione S-transferase PGSTP1_HUMANCytoplasm43969510.045CaldesmonCALD1_HUMANPlasma membrane28082830.046VimentinVIME_HUMANIntermediate filament19396730.046Protein disulfide-isomerase A1PDIA1_HUMANEndoplasmic reticulum1045136160.048Heterogeneous nuclearHNRDL_HUMANCytoplasm & Nucleus20447700.048ribonucleoprotein D-likeCALD1_HUMANPlasma membrane26782750.050	Calumenin	CALU_HUMAN	Endoplasmic reticulum	448	7	680	0.035
Annexin A5ANXA5_HUMANExtracellular matrix277126340.039Triosephosphate isomeraseTPIS_HUMANCytoplasm1061148580.039Alpha-enolaseENOA_HUMAN63196500.040Annexin A2ANXA2_HUMANExtracellular matrix643137740.043Glutathione S-transferase PGSTP1_HUMANCytoplasm43969510.045CaldesmonCALD1_HUMANPlasma membrane28082830.046VimentinVIME_HUMANIntermediate filament19396730.046Protein disulfide-isomerase A1PDIA1_HUMANEndoplasmic reticulum1045136160.048Heterogeneous nuclearHNRDL_HUMANCytoplasm & Nucleus20447700.048ribonucleoprotein D-likeCALD1_HUMANPlasma membrane26782750.050	Peroxiredoxin-6	PRDX6_HUMAN		381	7	848	0.039
Triosephosphate isomeraseTPIS_HUMANCytoplasm1061148580.039Alpha-enolaseENOA_HUMANENOA_HUMAN63196500.040Annexin A2ANXA2_HUMANExtracellular matrix643137740.043Glutathione S-transferase PGSTP1_HUMANCytoplasm43969510.045CaldesmonCALD1_HUMANPlasma membrane28082830.046VimentinVIME_HUMANIntermediate filament19396730.046Protein disulfide-isomerase A1PDIA1_HUMANEndoplasmic reticulum1045136160.046Protein disulfide-isomerase A3PDIA3_HUMANEndoplasmic reticulum543136150.048Heterogeneous nuclearHNRDL_HUMANCytoplasm & Nucleus20447700.048ribonucleoprotein D-likeCALD1_HUMANPlasma membrane26782750.050	Annexin A5	ANXA5_HUMAN	Extracellular matrix	277	12	634	0.039
Alpha-enolaseENOA_HUMAN63196500.040Annexin A2ANXA2_HUMANExtracellular matrix643137740.043Glutathione S-transferase PGSTP1_HUMANCytoplasm43969510.045CaldesmonCALD1_HUMANPlasma membrane28082830.046VimentinVIME_HUMANIntermediate filament19396730.046Protein disulfide-isomerase A1PDIA1_HUMANEndoplasmic reticulum1045136160.048Protein disulfide-isomerase A3PDIA3_HUMANEndoplasmic reticulum543136150.048Heterogeneous nuclearHNRDL_HUMANCytoplasm & Nucleus20447700.048ribonucleoprotein D-likeCALD1_HUMANPlasma membrane26782750.050	Triosephosphate isomerase	TPIS_HUMAN	Cytoplasm	1061	14	858	0.039
Annexin A2ANXA2_HUMANExtracellular matrix643137740.043Glutathione S-transferase PGSTP1_HUMANCytoplasm43969510.045CaldesmonCALD1_HUMANPlasma membrane28082830.046VimentinVIME_HUMANIntermediate filament19396730.046Protein disulfide-isomerase A1PDIA1_HUMANEndoplasmic reticulum1045136160.046Protein disulfide-isomerase A3PDIA3_HUMANEndoplasmic reticulum543136150.048Heterogeneous nuclearHNRDL_HUMANCytoplasm & Nucleus20447700.048ribonucleoprotein D-likeCALD1_HUMANPlasma membrane26782750.050	Alpha-enolase	ENOA_HUMAN		631	9	650	0.040
Glutathione S-transferase PGSTP1_HUMANCytoplasm43969510.045CaldesmonCALD1_HUMANPlasma membrane28082830.046VimentinVIME_HUMANIntermediate filament19396730.046Protein disulfide-isomerase A1PDIA1_HUMANEndoplasmic reticulum1045136160.046Protein disulfide-isomerase A3PDIA3_HUMANEndoplasmic reticulum543136150.048Heterogeneous nuclearHNRDL_HUMANCytoplasm & Nucleus20447700.048ribonucleoprotein D-likeCALD1_HUMANPlasma membrane26782750.050	Annexin A2	ANXA2_HUMAN	Extracellular matrix	643	13	774	0.043
CaldesmonCALD1_HUMANPlasma membrane28082830.046VimentinVIME_HUMANIntermediate filament19396730.046Protein disulfide-isomerase A1PDIA1_HUMANEndoplasmic reticulum1045136160.046Protein disulfide-isomerase A3PDIA3_HUMANEndoplasmic reticulum543136150.048Heterogeneous nuclearHNRDL_HUMANCytoplasm & Nucleus20447700.048ribonucleoprotein D-likeCALD1_HUMANPlasma membrane26782750.050	Glutathione S-transferase P	GSTP1_HUMAN	Cytoplasm	439	6	951	0.045
VimentinVIME_HUMANIntermediate filament19396730.046Protein disulfide-isomerase A1PDIA1_HUMANEndoplasmic reticulum1045136160.046Protein disulfide-isomerase A3PDIA3_HUMANEndoplasmic reticulum543136150.048Heterogeneous nuclearHNRDL_HUMANCytoplasm & Nucleus20447700.048ribonucleoprotein D-likeCALD1_HUMANPlasma membrane26782750.050	Caldesmon	CALD1_HUMAN	Plasma membrane	280	8	283	0.046
Protein disulfide-isomerase A1PDIA_HUMANEndoplasmic reticulum1045136160.046Protein disulfide-isomerase A3PDIA3_HUMANEndoplasmic reticulum543136150.048Heterogeneous nuclearHNRDL_HUMANCytoplasm & Nucleus20447700.048ribonucleoprotein D-likeCALD1_HUMANPlasma membrane26782750.050	Vimentin	VIME_HUMAN	Intermediate filament	193	9	673	0.046
Protein disulfide-isomerase A3PDIA3_HUMANEndoplasmic reticulum543136150.048Heterogeneous nuclearHNRDL_HUMANCytoplasm & Nucleus20447700.048ribonucleoprotein D-likeCALD1_HUMANPlasma membrane26782750.050	Protein disulfide-isomerase A1	PDIA1_HUMAN	Endoplasmic reticulum	1045	13	616	0.046
Heterogeneous nuclearHNRDL_HUMANCytoplasm & Nucleus20447700.048ribonucleoprotein D-likeCaldesmonCALD1_HUMANPlasma membrane26782750.050	Protein disulfide-isomerase A3	PDIA3_HUMAN	Endoplasmic reticulum	543	13	615	0.048
ribonucleoprotein D-like Caldesmon CALD1_HUMAN Plasma membrane 267 8 275 0.050	Heterogeneous nuclear	HNRDL_HUMAN	Cytoplasm & Nucleus	204	4	770	0.048
	riponucleoprotein D-like Caldesmon	CALD1_HUMAN	Plasma membrane	267	8	275	0.050

MCP

TABLE III

Modulated proteins identified by MALDI-TOF/TOF during chondrogenesis using our spheroid model. The first column on the left lists the name of the protein and the top line shows the days of differentiation. The numbers indicate the score. The controls (undifferentiated cells at time 0) were assigned the number 1; therefore proteins with scores <1 were down-regulated and those with scores >1 were up-regulated. The shaded, colored boxes indicate proteins found in cartilage or chondrocytes with the literature source citation

Name/diff day	4	7	14	28	46	Source
HSP90B1	0.1	0.1	0.1	0.1	0.2	(Ruiz-Romero C. et al. 2010)
PPIA	0.2	0.2	0.1	0.1	0.1	(Satoh et al. 2009)[1]
Calumenin	0.4	0.3	0.1	0.2	0.2	(Coppinger et al. 2004)[2]
FTL	0.3	0.3	0.2	0.2	0.1	
ANXA5	0.4	0.3	0.2	0.1	0.1	(Ulbrich et al. 2010)[3]
SET	0.3	0.2	0.2	0.3	0.3	
NME1	0.3	0.5	0.3	0.2	0.2	
CALR3	0.2	0.2	0.3	0.2	0.3	(Van Duyn Graham et al. 2010)[4]
RCN3	0.2	0.3	0.3	0.2	0.1	
RCN1	0.3	0.3	0.3	0.3	0.2	
PRDX5	0.3	0.3	0.3	0.2	0.2	
PDIA1	0.3	0.6	0.3	0.3	0.3	(Ruiz-Romero C. et al. 2010)
VIM	0.5	0.5	0.4	0.4	0.4	(Bobick et al. 2010)[5]
GSTP1	0.6	0.5	0.4	0.5	0.5	
PGAM1	0.6	0.6	0.8	0.8	2.5	
GRP78	0.6	1.2	1.2	2.4	2.7	(Calamia V. et al. 2010)
PRDX6	1.0	1.0	0.9	1.0	2.4	
TPI1	0.8	0.9	1.0	0.8	2.2	
HSPA5	0.7	1.2	1.3	2.7	3.0	
HSPB1	1.0	1.1	1.1	1.5	2.0	
ENO1	1.0	1.0	1.1	1.1	1.9	
PHGDH	1.6	1.4	1.1	1.4	1.9	
STIP1	1.4	1.6	1.2	1.6	3.2	
PDIA3	1.6	1.6	1.4	1.8	3.0	(Boyan and Schwartz 2009)
NNMT	2.0	2.3	1.5	2.0	3.3	
HNRPDL	2.8	2.3	1.5	1.5	2.8	
ANXA2	1.7	2.0	1.7	2.0	5.3	
UCHL1	2.0	2.0	1.8	1.8	4.0	
SODm	2.7	2.3	2.0	3.0	4.7	(Kim et al. 2010)[6]
YARS	1.3	1.8	2.0	2.2	1.7	
ADAM15	3.0	3.2	2.2	1.8	1.8	
ANXA1	2.3	2.0	2.3	2.0	3.5	
HSPD1	1.7	2.3	2.3	3.0	4.7	
TAGLN2	1.7	2.3	2.3	2.3	4.3	
ANXA6	4.2	4.4	3.0	3.0	3.8	
CALD1	3.5	2.3	3.8	6.6	3.2	
TAGLN	3.0	3.5	4.5	5.0	6.5	
ZYX	4.7	4.0	4.7	3.7	4.0	(Hirsch et al. 1996, Petroll and Ma 2003)[7]
PLOD2	7.0	5.5	5.0	3.5	5.0	(van den Bogaerdt et al. 2009)[8]

[1] Not in ref list.

[2] Not in ref list.[3] Not in ref list.

[4] Not in ref list.

[5] Not in ref list.

[6] Not in ref list.

[7] Not in ref list.

[8] Not in ref list.

time 0 MSCs and the chondrocyte-like cells after 4 days of differentiation (Table III). Recent studies have shown that MSCs are capable of differentiation toward chondrocyte-like cells as soon as 3 days under appropriate culture conditions (14) and are able to maintain this differentiated stage for a long time in these culture conditions. That the modulated proteins in our study retain either the up or down-regulation through-

out the chondrogenic process indicates the consistency of our model and corroborates the results obtained in the principal components analysis. Proteins involving cell organization processes were the most abundant when we grouped the modulated proteins by function at 45% of the total modulated protein (Fig. 3), followed by proteins involved in stress-related mechanisms at 19%. These results are consistent with cellu-

●0 day; ●4 day; ●7 day; ● 14 day; ● 28 day; ●46 day

Fig. 2. Principal components analysis of differential-in-gel electrophoresis (DIGE) data. Scores graphs combining proteomic maps (variables) and spots from different groups (observations) were constructed. A, Principal components analysis clustered the nine individual Cy3- and Cy5-labeled expression maps into six different groups. Principal component 1 was 66.75% from the modulated proteins and principal component 2 was 14.32% from the modulated proteins. B, Principal component 1 was 66.75%.

FIG. 3. Cellular functions during chondrogenesis. The graph represents the percentage of modulated proteins found in our chondrogenesis model involved in the main cellular functions.

lar changes shown experimentally in MSCs during the differentiation process.

The goal of this study was identify novel proteomic changes during chondrocyte development using a human cell model for chondrogenesis validated previously by our group (7).

Results demonstrate that mesenchymal stem cells cultured in the chondrogenic medium become chondrocyte-like, as cells express protein observed in differentiated chondrocytes or in cartilage (Table II). Six proteins from all proteins modulate during chondrogenesis were validated by qRT-PCR and Western blot analysis. These proteins were SODm, PDIA, GRP78, PPIA, HSP90, and PLOD2, all of which have been previously identified in human chondrocytes (15). The Western blot and real-time reverse transcriptase PCR (gRT-PCR) results validate the results obtained by DIGE analysis (Fig. 4). The results for each protein were maintained independent of donor or analysis used.

Modulated proteins found to be up-regulated were procollagen-lysine (PLOD2), which stabilizes the synthesis of collagen type I and II and is involved in the chondrocytic response to TNF-a-mediated stimuli affecting cartilage homeostasis (16), enolase (ENO1), which increases hypoxia tolerance and is involved in glycolysis (17), Heat shock protein beta-1 (HSPB1), which increases cell survival in changing environ-

FIG. 4. Validation of six representative proteins found to be modulated during chondrogenesis. A, Western blot at 0, 4, 7, 14, 28, and 46 days in chondrogenic medium of each protein. The density value of each band was normalized to the GAPDH level and expressed relative to the control, shown as fold-induction written under each band. B, Histogram represents gene expression of each protein by Real-time reverse transcriptase PCR (gRT-PCR) analysis normalized by expression of RPLP gene, which was taken as housekeeping. Superoxide dismutase mitochondrial = SODm; Protein disulfide-isomerase A1, PDIA; 78kDa glucose-regulated protein, GRP78; Peptidylprolyl cis-trans isomerase A, PPIA; Heat shock protein HSP90-beta, HSP90; Procollagen-lysine, PLOD2; Glycerol-3-phosphate dehydrogenase, GAPDH. The sample used for the representative western shown was a pool from the DIGE/MS analysis. Three replicates were made.

ments (18), superoxide dismutase (SODm), which destroys free radicals (a reduction in SODm is associated with the earliest stages of osteoarthritis in an animal model) (19), and zyxin (ZYX), which is involved in signaling pathways. Recent research elaborated by our group revealed that overexpression of Lamin A leads to defects in differentiation potential of MSCs. The chondrogenic potential is defective in Lamin A-MSCs, and this lineage has an increase in hypertrophy markers during chondrogenic differentiation, as well as a decrease in manganese superoxide dismutase and an increase of mitochondrial manganese superoxide dismutase-dependent reactive oxygen species. Interestingly, defects in chondrogenesis are partially reversed by periodic incubation with a SODM-mimic agent, supporting the idea that the effect of

Lamin A on chondrogenesis could be because it increases reactive oxygen species levels (20).

The proteins we found to be down-regulated were calreticulin, which is involved in processing and transport of wild type cartilage oligomeric matrix protein in normal chondrocytes and in the retention of mutant cartilage oligomeric matrix protein in pseudoachondroplasic chondrocytes (21), PDIA, which in low quantities increases protein aggregation and is involved in ECM formation (22), and vimentin, which is abundantly expressed in MSCs. The disruption of vimentin reduces stiffness ~2.8-fold in normal chondrocytes, but osteoarthritic chondrocytes are less stiff and less affected by vimentin disruption (23). This three-dimensional experimental system revealed contributions of vimentin to chondrocyte

Fig. 5. Relationships among proteins modulated during chondrogenesis. Graphic generated by Pathway Study 2 for PC software showing linked bibliographic information among the proteins found in our model directly involved in the native cartilage extracellular matrix, or chondrocytes. Proteins found to be up-regulated in our model are in red and those down-regulated are in blue. Functions and structures are in the rectangles and the yellow color indicates catabolism.

stiffness not previously apparent, and correlated changes in vimentin-based chondrocyte stiffness with osteoarthritis (23). Some of the modulated proteins found by our DIGE analysis were involved in ossification, such as PARK7, which was down-regulated indicating that our model did not produce cellular hypertrophy (24). The up-regulation of ANXA2, ANX6, and ANXA1, and the down-regulation of ANXA5 indicate that chondrogenesis prevailed over osteogenesis (25) (Fig. 5). These results are logical in consideration that in our chondrogenic model undifferentiated MSCs at the beginning required proliferation before the process to change them into chondrocyte-like cells as a second step.

Our study of the role of zyxin and its mechanism to maintain mechanical homeostasis during the differentiation process from MSCs to chondrocyte-like cells is of particular interest. It is known that cells recognize and respond to changes in cytoskeletal integrity and zyxin could be performing this function. A recent study showed that actin stress fibers undergo local, acute, force-induced elongation and thinning events that compromise their stress transmission function, followed by stress fiber repair that restores this capability (26). Zyxin promoted recruitment of the actin regulatory proteins, α -actinin and Vasopresine, in compromised stress fiber zones (26), their findings demonstrate a mechanism for rapid repair

and maintenance of the structural integrity of the actin cytoskeleton.

We conclude that MSCs differentiating toward chondrocyte-like cells express proteins characteristic of the native cartilage ECM. We have demonstrated that our *in vitro* chondrogenic model could be used for a variety of cell-based transplantation and tissue engineering studies. All these experiments are very relevant in the rheumatic disease field because a good *in vitro* model is necessary to study this pathology, which it is not accessible at present.

Acknowledgments—We thank the Purificación Filgueira and M^a José Sánchez for technical support and Nelson Alexandre da Cruz Soares for helpful suggestions.

* This study was supported by grants from Fundación Española de Reumatologia (programa GEN-SER) and from Fondo Investigación Sanitaria (CIBER-CB06/01/0040)-Spain, Fondo Investigacion Sanitaria-PI 08/2028 Ministerio Ciencia en Innovacion PLE2009–0144, with participation of funds from FEDER (European Community). Arufe is the beneficiary of an Isidro Parga Pondal contract from Xunta de Galicia, A Coruna, Spain. Alexandre de la Fuente is the beneficiary of a contract from Xunta de Galicia (2008), Spain.

** To whom correspondence should be addressed: Centro de Investigación Biomédica, INIBIC-Hospital Universitário A Coruña, C/. Xubias 84, 15006-A Coruña. E-mail: fblagar@sergas.es & E-mail: maria.arufe@udc.es

REFERENCES

- Duca, M., Dozza, B., Lucarelli, E., Santi, S., Di Giorgio, A., and Barbarella, G. (2010) Fluorescent labeling of human mesenchymal stem cells by thiophene fluorophores conjugated to a lipophilic carrier. *Chem. Commun.* 46, 7948–7950
- Pachón-Peña, G., Yu, G., Tucker, A., Wu, X., Vendrell, J., Bunnell, B., and Gimble, J. (2010) Stromal stem cells from adipose tissue and bone marrow of age matched female donors display distinct immunophenotypic profiles. *J. Cell. Physiol.* **246**, 843–851
- Torsney, E., and Xu, Q. (2011) Resident vascular progenitor cells. J Mol Cell Cardiol. 2, 304–311
- Nishiyama, N., Miyoshi, S., Hida, N., Uyama, T., Okamoto, K., Ikegami, Y., Miyado, K., Segawa, K., Terai, M., Sakamoto, M., Ogawa, S., Umezawa, A., The significant cardiomyogenic potential of human umbilical cord blood-derived mesenchymal stem cells in vitro. *Stem Cells* 2007; 25: 2017–2024
- Ruiz-Romero, C., Calamia, V., Rocha, B., Mateos, J., Fernández-Puente, P., and Blanco, F. J. (2010) Hypoxia conditions differentially modulate human normal and osteoarthritic chondrocyte proteomes. *J. Proteome Res.* 9, 3035–3045
- Cillero-Pastor, B., Ruiz-Romero, C., Caramés, B., López-Armada, M. J., and Blanco, F. J. (2010) Proteomic analysis by two-dimensional electrophoresis to identify the normal human chondrocyte proteome stimulated by tumor necrosis factor alpha and interleukin-1beta. *Arthritis Rheum.* 62, 802–814
- Arufe, M. C., De la Fuente, A., Mateos, J., Fuentes, I., De Toro, F. J., and Blanco, F. J. (2010) Analysis of the Chondrogenic Potential and Secretome of Mesenchymal Stem Cells Derived from Human Umbilical Cord Stroma. *Stem Cells Dev.* 2011 Jul; **20(7):** 1199–1212
- Gez, S., Crossett, B., and Christopherson, R. I. (2007) Differentially expressed cytosolic proteins in human leukemia and lymphoma cell lines correlate with lineages and functions. *Biochim. Biophys. Acta* 1774, 1173–1183
- Matsushime, H., Quelle, D. E., Shurtleff, S. A., Shibuya, M., Sherr, C. J., and Kato, J. Y. (1994) D-type cyclin-dependent kinase activity in mammalian cells. *Mol. Cell. Biol.* 14, 2066–2076
- Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 25, 402–408
- Calamia, V., Ruiz-Romero, C., Rocha, B., Fernández-Puente, P., Mateos, J., Montell, E., Vergés, J., and Blanco, F. J. (2010) Pharmacoproteomic study of the effects of chondroitin and glucosamine sulfate on human articular chondrocytes. *Arthritis Res. Ther.* **12**, R138
- Giusta, M. S., Andrade, H., Santos, A. V., Castanheira, P., Lamana, L., Pimenta, A. M., and Goes, A. M. (2010) Proteomic analysis of human mesenchymal stromal cells derived from adipose tissue undergoing osteoblast differentiation. *Cytotherapy* **12**, 478–490
- Jaishankar, A., Barthelery, M., Freeman, W. M., Salli, U., Ritty, T. M., and Vrana, K. E. (2009) Human embryonic and mesenchymal stem cells express different nuclear proteomes. *Stem Cells Dev.* 18, 793–802

- Rothenberg, A. R., Ouyang, L., and Elisseeff, J. H. (2010) Mesenchymal stem cell stimulation of tissue growth depends on differentiation state. *Stem Cells Dev.* 2011 Mar; 20(3): 405–414
- Lires-Deán, M., Caramés, B., Cillero-Pastor, B., Galdo, F., López-Armada, M. J., and Blanco, F. J. (2008) Anti-apoptotic effect of transforming growth factor-beta1 on human articular chondrocytes: role of protein phosphatase 2A. Osteoarthritis Cartilage 16, 1370–1378
- Ah-Kim, H., Zhang, X., Islam, S., Sofi, J. I., Glickberg, Y., Malemud, C. J., Moskowitz, R. W., and Haqqi, T. M. (2000) Tumour necrosis factor alpha enhances the expression of hydroxyl lyase, cytoplasmic antiproteinase-2 and a dual specificity kinase TTK in human chondrocyte-like cells. *Cytokine* **12**, 142–150
- Ruiz-Romero, C., Carreira, V., Rego, I., Remeseiro, S., López-Armada, M. J., and Blanco, F. J. (2008) Proteomic analysis of human osteoarthritic chondrocytes reveals protein changes in stress and glycolysis. *Proteomics* 8, 495–507
- Lambrecht, S., Dhaenens, M., Almqvist, F., Verdonk, P., Verbruggen, G., Deforce, D., and Elewaut, D. (2010) Proteome characterization of human articular chondrocytes leads to novel insights in the function of small heat-shock proteins in chondrocyte homeostasis. *Osteoarthritis Cartilage* 18, 440–446
- Scott, J. L., Gabrielides, C., Davidson, R. K., Swingler, T. E., Clark, I. M., Wallis, G. A., Boot-Handford, R. P., Kirkwood, T. B., Talyor, R. W., and Young, D. A. (2010) Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. *Ann. Rheum. Dis.* 69, 1502–1510
- 20. Mateos J, De la Fuente A, Lesende-Rodriguez L, Arufe MC, Blanco FJ. Lamin A deregularion in human mesenchymal stem cells promotes an impairment in their chondrogenic potential and imbalance in their response to oxidative stress. *Arthritis Rheumatism*, 2011 (in revision)
- Hecht, J. T., Hayes, E., Snuggs, M., Decker, G., Montufar-Solis, D., Doege, K., Mwalle, F., Poole, R., Stevens, J., and Duke, P. J. (2001) Calreticulin, PDI, Grp94 and BiP chaperone proteins are associated with retained COMP in pseudoachondroplasia chondrocytes. *Matrix Biol.* 20, 251–262
- Boyan, B. D., and Schwartz, Z. (2009) 1,25-Dihydroxy vitamin D3 is an autocrine regulator of extracellular matrix turnover and growth factor release via ERp60-activated matrix vesicle matrix metalloproteinases. *Cells Tissues Organs.* 189, 70–74
- Haudenschild, D. R., Chen, J., Pang, N., Steklov, N., Grogan, S. P., Lotz, M. K., and D'Lima, D. D. (2011) Vimentin contributes to changes in chondrocyte stiffness in osteoarthritis. *J. Orthop. Res.* 29, 20–25
- Shim, S., Kwon, Y. B., Yoshikawa, Y., and Kwon, J. (2008) Ubiquitin C-terminal hydrolase L1 deficiency decreases bone mineralization. *J. Vet. Med. Sci.* **70**, 649–651
- Wang, W., Xu, J., and Kirsch, T. (2005) Annexin V and terminal differentiation of growth plate chondrocytes. *Exp. Cell Res.* 305, 156–165
- Smith, M. A., Blankman, E., Gardel, M. L., Luettjohann, L., Waterman, C. M., and Beckerle, M. C. (2010) A zyxin-mediated mechanism for actin stress fiber maintenance and repair. *Dev. Cell* **19**, 365–376

n order to cite this article properly, please include all of the following information: De la Fuente, A., Mateos, J., Lesende-Rodríguez, I., Calamia, V., Fuentes-Boquete, I., de Toro, F. J., Arufe, M. C., and Blanco, F. J. 2012) Proteome Analysis During Chondrocyte Differentiation in a New Chondrogenesis Model Using Human Umbilical Cord Stroma Mesenchymal Stem Cells. *Mol. Cell. Proteomics* 11(2):M111.010496. DOI: 10.1074/mcp.M111.010496.