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Abstract 

Block-matching techniques have been widely used in the task of estimating displacement in medical images, 

and they represent the best approach in scenes with deformable structures such as tissues, fluids, and gels. In 

this article, a new iterative block-matching technique—based on successive deformation, search, fitting, 

filtering, and interpolation stages—is proposed to measure elastic displacements in two-dimensional 

polyacrylamide gel electrophoresis (2D–PAGE) images. The proposed technique uses different deformation 

models in the task of correlating proteins in real 2D electrophoresis gel images, obtaining an accuracy of 

96.6% and improving the results obtained with other techniques. This technique represents a general solution, 

being easy to adapt to different 2D deformable cases and providing an experimental reference for block-

matching algorithms. 

 

Keywords 

2D gel images; Block-matching; Deformations; Electrophoresis; Optical flow; Proteomics 

Proteomics is the study of protein properties in a cell, tissue, or serum aimed at obtaining a 

global integrated view of disease, physiological and biochemical processes of cells, and regulatory 

networks. One of the most powerful techniques used to analyze protein mixtures extracted from 

cells, tissues, or other biological samples is two-dimensional polyacrylamide gel electrophoresis 

(2D–PAGE).
1
 With this method, proteins are separated by molecular weight and isoelectric point 

using a controlled laboratory process and digital imaging equipment [1]. 

 

2D–PAGE images represent 2D patterns of proteins derived from a sample that appear in the 

images as dark spots and where the sizes of the spots depend on the amounts of protein. In 

association studies, a pair of images is compared to find differences between proteins of interest. 

For this purpose, it is necessary to register the images and find the spots’ correspondence. 

 

The analysis of 2D gel images is a bottleneck in proteomics research due to potential 

displacements, appearance changes between proteins, or differences in protein expression and 

experimental conditions [2] and [3]. Over the years, several works studied this problem [4], 

[5] and [6], but the correspondence between proteins problem is still far from a standard solution. 

 

In this work, a block-matching technique is proposed to be used as a pair of 2D electrophoresis 

gel images considering the test image as a deformation of the reference image so that the 

correspondence between the different proteins of the pair is estimated by analyzing the 
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deformation. Block-matching techniques calculate the displacement of points (xi, yi) defined in a 

source image I by comparing the region or block around them with candidate blocks defined in a 

destination image I′, representing each candidate block with a possible displacement of the original 

region, and selecting the block in I′ centered at (xi′, yi′) with the largest similarity value with the 

original one. 

 

Over time, several works have focused on block-matching techniques, and important 

contributions were made. To increase accuracy, sub-pixel estimation using parabola fitting over 

three points was used in several works [7] and [8]. In addition, multiresolution approaches were 

widely proposed [9], [10] and [11]. A related contribution is the adaptive reduction of the search 

area [12] and [13]. Another important contribution was the analysis of displacements in the 

frequency domain using fast Fourier transforms (FFTs) to increase performance [8] and [14]. 

 

Based on early iterative image registration principles [15], some new methods have been 

proposed to explicitly include deformation in the search process [16]. In these techniques, dense 

fields are calculated iteratively by interpolating the block displacement field. Some examples of 

these techniques are based on the use of B-spline interpolation [17], first-order bidimensional 

Taylor series [16], and radial basis functions (RBFs) [9] and [18]. 

 

In addition, some works have used different approaches to improve the obtained flow. Some 

examples include the use of the particle swarm optimization technique [19], the inclusion of edge 

analysis [20], the use of feature information [21] and [22], and the use of Markov random fields 

(MRFs) [23]. 

 

The main advantages of block-matching techniques are simplicity, flexibility, robustness, and 

locality. However, these techniques are limited due to the block concept itself. Because a block has 

a size and shape defined a priori, this leads to wrong measurements near discontinuities in the 

motion field [24] and [25]. 

 

Several works have attempted, with some success, to reduce this problem by using a multilayer 

approach [26], pairwise affinities based on boundaries [24], adaptive shape windows [27], [28], 

[29], [30], [31] and [32], adaptive support weight windows [33], barycentric corrections [34], 

feature matching methods [35], and stereo analysis of cost volumes [25]. But the question is still 

far from having a standard solution. 

 

Currently, it can be assumed that block matching might not be appropriate when analyzing a 

scene with different objects moving with different motions. However, it is one of the most robust 

methods for extracting the displacement field of a surface without reference points such as corners 

and edges. Therefore, block matching has been applied in several fields such as in analysis of 

flows [16] and deformable materials [36]. In medical imaging, its general application was studied 

in Refs. [37] and [38], and the use of block matching in rigid medical image registration was 

shown in Ref. [17] where a B-spline technique was visually tested with different examples of 

medical images. More concrete works have applied block matching to ultrasound images 

[39] and [40], echocardiography images [41], [42] and [43], and magnetic resonance imaging 

(MRI) brain images [44] and [45]. 

 

Current block-matching algorithms are created for each problem [17], usually using traditional 

noniterative and nondeformable techniques [36]. In this work, a general solution for the 2D 

scenario is provided. This approach has the advantage of being easily adaptable to different 

problems, allowing comparison with different motion algorithms. 
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The main contributions of this article are as follows: 

 

 A block-matching algorithm is proposed to solve the medical problem of matching proteins 

in images of 2D electrophoresis gels, defining a methodology to conduct and evaluate 

assays and improving the performance and accuracy of available state-of-the-art techniques. 

 

 The proposed algorithm uses a multiresolution iterative process integrated with several 

deformation models that can be used as restrictions to guarantee the smoothness and 

freedom of the flow and to interpolate a dense flow for each pixel from an arbitrary set of 

points, allowing the registration of a warped image. 

 

 A new methodology to conduct and evaluate experiments with 2D electrophoresis gels has 

been carried out. 

Materials and methods 

The 2D–PAGE image registration problem involves correlating the same protein in two 2D 

electrophoresis gel images from the same tissue but from different patients and obtained in 

different conditions (Fig. 1). The proposed technique was applied to the problem, assuming that 

one image can be mapped in the space of a reference image through a process of deformation. 

 
 

 
Fig.1. A pair of 2D electrophoresis silver-stained gel images that will be compared. Left: Reference image. Right: Test 
image. 

Because there are no published datasets with ground truth data in this field, and a standard 

methodology to conduct experiments or evaluate protein-matching algorithms does not exist, eight 

samples (grouped into four pairs) of 2D gel electrophoresis images were selected from the dataset 

of Yang and coworkers [4]. These images have been used in several publications [46] and [47], 

and they correspond to an experiment where the effect of a plant extract on the protein expression 

of IBR3 human dermal fibroblasts was investigated. Both control and candidate samples were 

taken from homogeneous cell cultures grown in the laboratory where the candidate samples were 

treated with the plant extract. 
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The conducted tests correspond to intergroup comparisons with 1024 × 1024 8-bit images, and 

2D protein separation patterns were visualized by silver staining using standard protocols 

[48] and [49]. 

 

The defined methodology to evaluate the proposed registration technique on the dataset uses 

the following steps. First, the ground truth data are obtained from a pair of images by selecting 

proteins with Beads [50], a software program for spot detection in 2D gel images using surface 

information, and then correlating the detected spots using the criterion of experts. Then, the 

accuracy is measured for every point corresponding to a protein detected by Beads and taking into 

account only proteins expressed in the two images. 

Proposed technique 

The proposed technique divides the image into regular regions called blocks and solves the 

correspondence problem for each block (Fig. 2). To this end, it uses an iterative approach with 

different stages. 

 
 

 
Fig.2. General scheme of the proposed algorithm. 
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The main steps of the algorithm to analyse the displacement between two frames are as 

follows: 

 

(1) The displacement field from the previous iteration is used to update the search area. Then, a 

deformation model is applied to change the shape of the block. 

 

(2) Optionally, the image is down-sampled, whereas the block size remains constant and the 

search range is reduced. The number of pyramids can be selected by the user. 

 

(3) A similarity metric and a search strategy are used to calculate the best displacement for 

each block. 

 

(4) The obtained vectors are filtered and smoothed. Here, local root mean square (RMS) is 

used to remove outliers, and a bidimensional Gaussian filter is used to obtain a soft field. 

 

(5) The similarity values are used to perform a fitting to a selected function to achieve a higher 

accuracy. 

 

(6) The optical flow is processed with a deformation model used to interpolate the 

displacements and to impose restrictions on the displacement field. Then, an estimation of 

the deformed image is obtained from the dense field using a bilinear model to obtain 

nondiscrete image values. The deformed image is used in the next iteration to refine the 

results. 

 

The block-matching model considers only linear displacements, making the assumption that if 

the time interval between the compared images and the regions or blocks are small enough [51], 

then the second-order effects may be disregarded, so body deformations may be calculated from 

the locally linear displacements in every region. Current block-matching techniques do not face 

this assumption properly, using several pyramidal decomposition stages or not addressing image 

sequences properly, measuring the total displacement in a sequence from the initial frame 

(augmenting the time interval). 

 

The proposed technique uses the linear assumption only between consecutive frames, obtaining 

a linear estimation of the movement in the first iteration and computing deformations in 

subsequent iterations from previous ones. To this end, the source frame and the source block are 

dynamically updated after a number of images or when the displacement reaches a threshold. In 

addition, previous displacements are used to update the search area and the shape of the block even 

if the source image and source blocks are not updated, and the pyramidal decomposition is 

optional. 

 

With this procedure, each measurement point follows the position of the original point through 

time, and movement can be calculated without violating the locality condition. 

Block-matching algorithm 

The proposed algorithm measures movements using the statistical similarity of the gray levels 

in each region of the image. For this purpose, a region or block is formally defined as a sub-area of 

the image of a particular and constant size and shape. Therefore, given a block Bxy, the similarity 

value Su,v will be the result of comparing the initial block with a candidate one B′x′y′ using a 

similarity function f(Bxy, B′x′y′), which output measures the confidence in the hypothesis Bxy = B′x′y′ 

being d(x, y) = (u, v), a displacement accomplishing (x + u, y + x) = (x′, y′). 

 

In the proposed technique, the Pearson correlation quotient (R) has been used. It measures the 

strength of linear dependence between two variables. The Pearson correlation quotient has the 

advantage of being invariant to the average gray level: 
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𝑅(𝐵𝑥𝑦 ,𝐵𝑥′𝑦′
′ ) =

∑𝑥,𝑦 ((𝐵𝑥𝑦(𝑝) − 𝜇) × (𝐵𝑥′𝑦′
′ (𝑝) − 𝜇′)

√∑𝑝 (𝐵𝑥𝑦(𝑝) − 𝜇)2 × ∑𝑝 (𝐵𝑥′𝑦′
′ (𝑝) − 𝜇′)2

 
(1) 

 

The data obtained in the similarity analysis led us to the most probable discrete displacement. 

In addition, to achieve measurements below the pixel level, these correlation values can be 

translated to a continuous space using a fitting technique. 

 

In this work, 2D Gaussian and polynomial functions have been used with the Levenberg–

Marquardt (L-M) technique, which can be expressed as follows: 

 

(𝐽𝑛×𝑚
𝑇 × 𝐽𝑛×𝑚 + 𝑑 × 𝐼𝑚) × 𝐼𝑛𝑐𝑚×1 = 𝐽𝑛×𝑚

𝑇 × 𝐸𝑛×1, (2) 

 

 

where En×1 is the error matrix calculated using n observations and the values predicted with the 

model, Jn×m is the Jacobian matrix of the used function, Im is the identity matrix, Incm×1 is the 

vector of increments for the next iteration, and d > 0 is a constant adjusted in each iteration k 

according to the residual sum of squares (RSS) as shown in Eq. (3): 

 

𝑅𝑆𝑆𝑘 < 𝑅𝑆𝑆𝑘−1 → 𝑑𝑘+1 = 𝑑𝑘/2𝑘

𝑅𝑆𝑆𝑘 ⩾ 𝑅𝑆𝑆𝑘−1 → 𝑑𝑘+1 = 𝑑𝑘 × 2𝑘.
 

(3) 

 

An example of L-M fitting is illustrated in Fig. 3. 

 
 

 
Fig.3. Similarity peak in a synthetic image sequence: (A) discrete correlation values; (B) correlation values near the peak 

using bilinear interpolation of the image; (C) L-M fitting performed with a Gaussian model using a 3 × 3 window of 
discrete values around the maximum. 

Deformation models 

A deformation model is a transformation that maps all positions in one image plane to 

positions in a second plane. Therefore, the deformation of an image is primarily a transformation 

of the plane to itself where the gray-level values are transformed according their associated 

coordinates. 

 

In this case, the transformation of a set of points (xi, yi), which has been calculated using the 

block-matching technique, is used to find a transformation model for each pixel of the image: 
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𝑓: 𝑅2 → 𝑅2𝑓(𝑥,𝑦) = (𝑥′,𝑦′), (4) 

 

where the function f must satisfy the conditions f(xi, yi) = (xi′, yi′) for the known points. 

 

It should be noted that the terms interpolation and warping are, at this point, equivalent 

concepts. Furthermore, they are also related to filtering and smoothing because the warping model 

will be a compromise between a smooth distortion and one that achieves a good match. 

Parametric models 

Parametric deformation models are easy to compute and need only a few points to be solved. 

They model simple transformations such as scaling, rotation, and linear displacement. They are 

useful in many applications where it is important to use a transformation that is no more general 

than it need be [52]. 

 

In the proposed algorithm, the parametric models can be used as a constraint in the first 

iterations of the algorithm to remove outliers and the linear component of the deformation. Then, 

the search area can be reduced in the next iterations where more general models can also be used 

[52]. 

 

The mathematical formulation of the models used in this article can be expressed as described 

here. Linear displacement is the traditional model of block matching. Its mathematical formulation 

can be expressed as follows: 

 

Linear Displacement {
𝑥′ = 𝑥 + 𝑎
𝑦′ = 𝑦 + 𝑏

. 
(5) 

 

The affine transformation is a six-parameter transformation. It models changes in the shape, 

preserving the collinearity relation between points. 

 

This transformation is modeled with first-order polynomial equations as follows: 

 

Affine {
𝑥′ = 𝑎0 + 𝑎1 × 𝑥 + 𝑎2 × 𝑦

𝑦′ = 𝑏0 + 𝑏1 × 𝑥 + 𝑏2 × 𝑦
. 

(6) 

 

The homography transformation, or perspective transformation, is an eight-parameter nonlinear 

transformation. It models the projection of a planar object viewed from a point in space. Their 

equations can be expressed as follows: 

 

Homography {
𝑥′ = (𝑎0 + 𝑎1 × 𝑥 + 𝑎2 × 𝑦)/(𝑐0 × 𝑥 + 𝑐1 × 𝑦 + 1)

𝑦′ = (𝑏0 + 𝑏1 × 𝑥 + 𝑏2 × 𝑦)/(𝑐0 × 𝑥 + 𝑐1 × 𝑦 + 1)
. 

(7) 

 

Radial basis function models 

Radial functions have proven to be an effective tool in multivariate interpolation problems of 

scattered data [53]. These techniques solve the interpolation warping problem using a set of radial 

functions S defined in a set of points (xi, yi) as follows: 

 

𝑓: 𝑅2 → 𝑅2𝑓(𝑥,𝑦) = (𝑥′,𝑦′)

𝑓(𝑥,𝑦) =∑

𝑖

𝑐𝑖𝑆(‖𝑥 − 𝑥𝑖,𝑦 − 𝑦𝑖‖) + 𝑝(𝑥,𝑦), 

(8) 

 

where ‖ ‖ represents the Euclidean distance from the current point to the center of the radial 

function.  
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In this article, the approach proposed in Ref. [54] was used to estimate the deformation. This 

technique uses the thin plate radial function with affine transforms to represent the deformation in 

a pair of 2D surfaces and can be expressed as follows: 

 

𝑓𝑥(𝑥,𝑦) =∑

𝑖

𝑐𝑖𝑆 (√(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2) + 𝑎0 + 𝑎1 × 𝑥 + 𝑎2 × 𝑦 = 𝑥′

𝑓𝑦(𝑥,𝑦) =∑

𝑖

𝑐𝑖𝑆 (√(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2) + 𝑏0 + 𝑏1 × 𝑥 + 𝑏2 × 𝑦 = 𝑦′

𝑆(𝑡) = 𝑡2 × log(𝑡2)

. 

(9) 

 

Therefore, to find out the deformation for a given point (x, y) using a set of n anchor points 

(xi, yi) where the position (xi′, yi′) after deformation is known, the coefficients of the model can be 

calculated as the solution of a system with (n + 3) simultaneous linear equations as proposed in 

Ref. [54]. 

Results and discussion 

To validate the proposed technique, the conducted experiments were performed calculating the 

error statistics of every technique according to the ground truth data [55]. The endpoint (EP) error 

metric defined in Eq. (10) was used to measure the accuracy of the techniques: 

 

𝐸𝑃 = √(𝑢𝑀 − 𝑢𝑇)
2 + (𝜈𝑀 − 𝜈𝑇)

2, (10) 

 

where (uM, vM) is the measured flow in a point and (uT, vT) is the true flow. The EP error represents 

the Euclidian distance with the real displacement, and it is more relevant than the angular error 

(AE) [55]. 

 

The results obtained with the proposed algorithm were compared with the following state-of-

the-art techniques: 

 

 The block-matching technique provided by the computer vision library OPENCV available 

in Ref. [56]. 

 

 Modern implementations of the classic Black and Anandan technique and Horn and 

Schunck technique carried out in Ref. [57]. These implementations can be found in Ref. 

[58]. 

 

 The classic + Non Local term technique carried out in Ref. [59] and available in Ref. [58]. 

 

 A variational optical flow technique carried out in Ref. [60], extended in Ref. [61], and 

available in Ref. [62]. 

 

The proposed technique was used to analyze the proteins of interest using 55 × 55 blocks built 

around the proteins. Three iterations were used, including two levels of pyramidal decomposition 

with homography deformation models and using the radial basis function deformation model in 

the last iteration. 

 

An example of the output obtained with the proposed technique is shown in Fig. 4. The use of 

deformation models allows obtaining the full displacement field from the selected proteins and 

obtaining a registered image warping the test image to match the reference image. Fig. 5 shows the 

accuracy of the obtained registered image. 
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Fig.4. Results obtained with the proposed technique for the reference and test images from Fig. 1. Left: Matching of 

proteins represented as vectors superimposed to the test image. Right: Registered test image representing the test image 

warped to match the reference image. 

 
 

 
Fig.5. Accuracy of registering the example of Fig. 1. Left: Reference image, colored in red, superimposed to the original 

test image, colored in green. Right: Reference image, colored in red, superimposed to the registered image, colored in 

green. Overlapped spots can be seen in yellow. (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article.) 

The configuration used for the other block-matching techniques was as similar as possible to 

the one used with the proposed technique. The configurations for the rest of the techniques were 

those suggested by their respective authors, using the default parameters (which are supposedly 

optimal to the Middlebury training set) whenever possible [63]. 

 

In analyzing the obtained results (Table 1), it can be seen that the proposed technique produced 

significantly more accurate results than all of the other techniques in the gel scenario. In addition, 

the execution time was significantly reduced because it was not necessary to analyze the full 

image.  
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Table 1. Comparative results from the test with 2D gel images. 

Accuracy Average error (pixel) SD error (pixel) Correct (%) Missed (%) Execution time (s) 

      

BA 18.65 39.74 84.0 16.0 1027.5 

HS 21.36 47.33 83.8 16.2 297.5 

Classic + NL 34.88 62.87 69.5 30.5 2326.5 

Brox 24.36 19.44 34.6 65.4 77.8 

OPENCV 34.85 39.15 55.2 44.8 43117.5 

Our technique 3.10 4.94 96.6 3.4 22.3 

      

 
Note: SD, standard deviation; BA, Black and Anandan; HS, Horn and Schunck; OPENCV, Open Source Computer Vision; 

NL, Non Local term. 

Conclusions 

The current article has proposed a new iterative block-matching technique to solve the problem 

of protein matching in 2D–PAGE images. The proposed algorithm can be used with different 

deformation models with different degrees of freedom that can be imposed in different stages of 

the algorithm, so the measurements can be obtained by using a regular grid of blocks and a local 

deformation model or by analyzing an arbitrary set of points and a global model. 

 

The proposed technique outperformed others in the 2D electrophoresis gels field, improving 

the results obtained by different state-of-the-art algorithms. 

 

Finally, a new methodology to conduct and evaluate experiments with 2D electrophoresis gels 

has been carried out. 
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