
ESCUELA POLIT ÉCNICA SUPERIOR
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ABSTRACT

In many multibody system dynamics applications, in which the requirements of
weight, operational speed, etc., are highly demanding, thedeformation of certain ele-
ments of a mechanism can not be neglected. On the other hand, the currently available
computational power makes the real–time simulation of flexible systems possible with
standard workstations. The present work aims at developingformulations for flexible
multibody dynamics meeting the efficiency, precision and robustness requirements of
real–time applications.

The first chapter is a brief introduction to the existing developments, with the
objective of situating the present work within the framework of flexible multibody
dynamics.

In the second chapter, a new formulation for flexible multibody dynamics is pre-
sented. The method is an extension to the flexible case of an existing semi–recursive
formulation for rigid systems in dependent relative coordinates. The flexible bodies
are modeled by using the floating frame of reference approachwith component mode
synthesis, in order to meet the real–time requirements. Three different systems are
simulated by using the new method, and the results are compared, in terms of effi-
ciency and accuracy, to those obtained by means of a method innatural coordinates.

The third chapter addresses the calculation of the inertia terms by means of an
alternative method, which does not depend on the size of the finite element model.
The method uses the inertia shape integrals, which are a set of invariant integrals that
can be obtained in a preprocessing stage, for achieving its objective. It is implemented
in both the new formulation in relative coordinates, and theformulation in natural
coordinates to which it is compared in the second chapter.

In the fourth chapter, three solutions for dealing with geometrically nonlinear
problems are explored. The use of substructuring, a nonlinear stiffness matrix, and
the inclusion of the axial foreshortening effect, are implemented and compared. Very
good results are obtained when using the foreshortening method, capturing the geo-
metric stiffening effect without problems where the linearmethod fails.

Finally, the conclusions extracted from the present work, along with the possible
future developments, are presented in Chapter 5.





RESUMEN

En numerosas aplicaciones de dinámica de sistemas multicuerpo, en las que los re-
querimientos de peso, velocidad de operación, etc. son muy exigentes, la deformación
de ciertos elementos de un mecanismo no puede ser despreciada. Por otro lado, la
potencia de los ordenadores actuales hace posible la simulación de sistemas flexibles
en tiempo real con estaciones de trabajo estándar. El presente trabajo está enfocado
al desarrollo de formulaciones para sistemas multicuerpo flexibles que satisfagan los
requerimientos de eficiencia, precisión y robustez de las aplicaciones de tiempo real.

El primer caṕıtulo es una breve introducción a los desarrollos existentes, con el ob-
jetivo de situar el presente trabajo en el marco de la dinámica de sistemas multicuerpo
flexibles.

En el segundo capı́tulo, se presenta una nueva formulación para dińamica de sis-
temas multicuerpo flexibles. El ḿetodo es una extensión de una formulación semi–
recursiva en coordenadas relativas dependientes ya existente para sistemas rı́gidos. Los
cuerpos flexibles son modelizados usando sistema de referencia flotante con śıntesis
de componentes, para cumplir con los requerimientos de tiempo real. Se simulan tres
sistemas diferentes mediante el nuevo método, y los resultados son comparados con
los obtenidos mediante un método en coordenadas naturales, en términos de eficiencia
y precisíon.

El tercer caṕıtulo trata sobre el ćalculo de los t́erminos de inercia por medio de un
método alternativo, que no depende del tamaño del modelo de elementos finitos. Para
conseguir este objetivo, el ḿetodo usa un conjunto de integrales de forma, que son
constantes y se obtienen en una fase de preproceso. Se ha implementado tanto en la
nueva formulacíon en coordenadas relativas como en la formulación en coordenadas
naturales con la que se ha comparado en el segundo capı́tulo.

En el cuarto caṕıtulo se exploran tres soluciones para abordar problemas que pre-
sentan no linealidad geométrica. Se han implementado y comparado el uso de sub-
estructuras, matriz de rigidez no lineal, y la inclusión del efecto delforeshortening
axial. El ḿetodo delforeshorteningha dado muy buenos resultados, capturando el
efecto de rigidizacíon geoḿetrica donde falla el ḿetodo lineal.

Finalmente, las conclusiones extraı́das del presente trabajo, junto con posibles de-
sarrollos futuros, se presentan en el Capı́tulo 5.
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Chapter 1

Introduction

1.1 Motivation

The consideration of flexibility in the simulation of multibody systems has been in-
creasingly acquiring interest since the early seventies. Especially in the aerospatial
and robotics fields, the need for more lightweight and slender elements in mecha-
nisms such as manipulator arms or deployable solar arrays, along with the obvious
difficulties presented by the work with actual prototypes, increased the demand for
simulation methods capable of including flexibility effects.

Nowadays, the simulation of flexible multibody systems is used in many engineer-
ing fields and applications, such as vehicle dynamics, biomechanics, manufacturing
machines, serial and parallel robots, etc., and most commercial computer codes, such
as ADAMS, RecurDyn, SAMCEF Mecano, or SIMPACK, along with many other aca-
demic ones, include capabilities for considering flexibility in their simulations. The in-
crease of computing power experienced during the last yearsallows for including flex-
ible bodies in applications where efficiency is of key importance, such as simulations
with real–time requirements, optimization processes thatrequire many evaluations of
the simulation, etc.

Real–time requirements appear, among others, in the so–called human–in–the–
loop andhardware–in–the-loopsimulations, like virtual reality applications, driving
simulators, simulation–driven controllers, etc., where the simulation is carried out in
real–time, and the response to the inputs must be immediate.In these applications,
the main concern is efficiency, but not forgetting accuracy and, more importantly,
robustness. A compromise must be achieved, by combining these three factors in an
adequate form. It is obvious that the efficiency must be such that the simulation is run
in real–time or faster, and it depends on the combination of four factors: the type of
coordinates and modelization, the dynamic formulation, the numerical integrator, and
the computer implementation. In some cases, formulations that are theoretically less
efficient than others since they perform more arithmetic operations, can achieve better
performance if they are combined with the adequate computerimplementation and
numerical integrator.

1



2 Introduction

In the Laboratory of Mechanical Engineering of the University of La Corũna,
several works have been dedicated to the real-time simulation. On the one hand, a
very efficient semirecursive formulation for the simulation of rigid multibody systems
(Cuadrado et al., 2004a,b; Dopico, 2004) has shown very goodcapabilities for real-
time applications. On the other hand, a method for the simulation of flexible systems
in natural coordinates was tested and validated against experimental results (Cuadrado
et al., 2004c; Gutíerrez, 2003). The objective of this thesis is the development of meth-
ods as efficient as possible for flexible multibody dynamics,in order to meet the re-
quirements for real–time applications. In order to do that,a new formulation is defined,
by extending the aforementioned semi–recursive formulation for rigid systems to the
flexible case. In the new formulation, the modeling of flexible bodies is taken from
the cited formulation in natural coordinates. The efficiency is then further improved
by introducing an alternative method for calculating the variable inertia terms, which,
as opposed to that used in the original formulation, does notdepend on the size of
the finite element models used. This method is introduced in both the new and the
original formulation in natural coordinates. Finally, several methods for dealing with
geometrically nonlinear problems such as beams undergoinglarge deflections are im-
plemented, for extending the range of applicability of the formulations.

1.2 Background

As pointed out in the previous section, the simulation of flexible multibody systems
has been under research for the last 30 years. In such a long time, many different meth-
ods have been developed, and the existing literature is currently very extensive. Sev-
eral books, either fully or partially devoted to flexible multibody dynamics, have been
already published, by authors like Amirouche (1992), Géradin and Cardona (2001)
or Shabana (1998). Some review papers have also appeared along these years, such
as that of Shabana (1997), Bremer (1999), or Wasfy and Noor (2003). The last one
is a particularly comprehensive and well organized review of the different methods,
having a total of 877 references. In that survey article, theformulations are classified
according to the frame of reference chosen for the modeling of flexible bodies.

The elastic displacements, which are usually modeled by means of the finite el-
ement method, can be then referred to three different types of frame of reference, as
shown in Figure 1.1, depending on the entity they are associated to.

� In thefloating frame of referenceformulations, FFR in what follows, the elastic
displacements are measured in local coordinates, with respect to a floating frame
attached to the body, which in turn undergoes the large amplitude orreference
motion. In the figure, the local frame is that represented by the vectorsu andv.

� The inertial frameor global formulations use the global inertial frame as the
reference for the material positions of all the points of themechanism, in such a
way that there is no formal separation between the large amplitude rigid–body
motion and the elastic displacements; therefore, the system variables are the
absolute positions and orientations of all the finite element nodes.
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Figure 1.1: Inertial, floating and corotational frames of reference.

� The last type of formulations are thecorotationalones, which define a coro-
tational frame of reference, also known as convected frame,for each finite el-
ement, which is represented by the vectorsun and vn in the rightmost finite
element of the figure.

Most of the currently used formulations fall into one of these three categories. Other
methods, which do not clearly belong to any of them, are discussed at the end of this
section.

1.2.1 Earlier developments in flexible multibody dynamics

Linear theory of elastodynamics

There exist several survey papers (Erdman and Sandor, 1972;Lowen and Chassapis,
1986; Lowen and Jandrasits, 1972) about the first approximated methods for flexible
multibody dynamics, known as thelinear theory of elastodynamics. In this approach,
it is assumed that the elastic deformations have no significant effect on the global
motion of the mechanism, so that the latter can be obtained from a preliminary rigid
body simulation. The total motion is considered as the superposition of the elastic dis-
placements to the global “nominal” motion, as it happens in FFR methods, although
in this case they are not solved simultaneously. In order to obtain the elastic displace-
ments, a dynamic analysis is carried out, assuming that the reference motion is that
obtained from the rigid body simulation. This means that theelastic displacements are
dynamically affected by the global motion, but the oppositeeffect, i.e. the influence
of the deformations on the large amplitude motion, is completely neglected. Some
of these methods (Sunada and Dubowsky, 1981, 1983) already introduced the use of
component mode synthesis (Hurty, 1965) for reducing the number of unknowns.

Finite segment method

The finite segment method (Huston, 1981, 1991), can be considered as an applica-
tion of the rigid body formalism to the simulation of flexiblesystems, more than as
a flexible multibody formalism. The method consists of approximating a deformable
body by a set of rigid bodies interconnected by force elements, in such a way that,
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provided that the discretization and the force elements aredetermined, the simula-
tion can be carried out by using any existing method for rigidsystems. This method
has been successfully used for several applications, including vehicle crashworthiness
tests (Nikravesh et al., 1983), or the simulation of flexiblebeams (Banerjee and Na-
garajan, 1997; Zahariev, 2000). The most important problemit presents is, obviously,
the definition of the discretization, along with the connection and parameters of the
force elements, in such a way that the response of the equivalent flexible body is re-
tained, especially in the case of complex geometries.

1.2.2 Floating frame of reference formulations

The floating frame of reference formulations, due to their high computational effi-
ciency, are the most widely used in flexible multibody dynamics. In these methods,
the motion of a flexible body is considered as the superposition of small elastic defor-
mations to a large amplitude rigid–body motion. This reference motion is undergone
by a local frame attached to the body, which can be represented, according to the spe-
cific formulation, by different types of rigid–body or reference coordinates. The elastic
displacements are then considered within the local frame, after being linearized about
the undeformed position. Due to this linearization, the useof these methods is, a pri-
ori, restricted to small–deformation problems, although some workarounds have been
developed in order to extend their range of applicability.

The underlying idea of the FFR methods is that the absolute position of any given
point of a flexible body,r , can be expressed as

r D r0 C A Nr D r0 C A
�

Nru C Nrf

�

(1.1)

wherer0 is the absolute position of the origin of the local frame, andA is a trans-
formation matrix that defines its orientation. The local position Nr of the point within
the local frame is, in turn, the sum of the elastic displacement, Nrf , to the undeformed
position, Nru, which is obviously constant. The elastic displacement canbe modeled
by using a finite element mesh defined in the local frame. As pointed out before, the
deformations are assumed to remain small, so that in order toreduce the number of
system variables, they can be approximated by using the component mode synthesis
technique (Hurty, 1965), which approximates the deformation field as a linear combi-
nation of assumed mode shapes,

Nrf D

1
X

iD1

ˆi�i �

n
X

iD1

ˆi�i (1.2)

In this equation,̂ i are Ritz vectors defining the mode shapes, and�i are the so–called
modal amplitudes, also known as elastic coordinates, whichare in general added to the
set of problem variables. An additional advantage of the component mode synthesis,
apart from the reduction of the problem size, is the elimination of the higher frequency
modes, which are undesirable from the numerical integration point of view.

FFR methods, as opposed to the earlier methods based on the linear theory of
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elastodynamics, take into account the coupling between thereference motion and the
deformation, since they integrate the reference and elastic coordinates simultaneously.
One of their most important drawbacks is that, due to this fact, the inertia terms are
highly nonlinear. Another typical problem of FFR formulations, as pointed out by
Kane et al. (1987), is their inability to capture some nonlinear effects such as the
geometric stiffening in rotating beams, due to the linearization of the elastic displace-
ments. The most general technique for avoiding this limitation, without introducing
any modification to the formulation, is the substructuring strategy proposed by Wu
and Haug (1988), which consists of dividing the body into several substructures, be-
ing each of them a flexible body with its own floating frame of reference. The adjacent
substructures are interconnected through the so–calledbracket joints, in such a way
that the full set of substructures behaves like a whole body.This approach allows for
capturing the nonlinear effects, although at the cost of a considerable increase in the
number of variables. Other methods use a nonlinear formulation of the elastic forces
(Sharf, 1996), or take into account the effect at geometric level, by introducing into the
kinematic model the effect of theforeshortening, i.e. the axial displacement produced
by the transversal deflection (Mayo et al., 1995). This aspect, however, is the object of
the fourth chapter of this thesis, so that it will not be further discussed here.

As has been previously pointed out, the floating frame of reference formulations
characterize the motion of the local frame by using rigid–body coordinates. Three
main types of coordinates are commonly used for describing the motion of rigid bod-
ies, namely the reference point coordinates, the natural coordinates, and the relative
coordinates; therefore, the FFR methods can be classified accordingly. The difference
among the different types of coordinates is illustrated in Figure 1.2, where a planar
two degree of freedom manipulator arm is shown.

Figure 1.2: Reference point, natural and relative coordinates.

� Thereference pointcoordinates model a rigid body by using the coordinates of
one of its points, usually the center of gravity, for definingits translation, and
at least three parameters, such as Bryant or Euler angles, for defining its ori-
entation. Theoretically, this would allow for modeling thesix degrees of free-
dom of a spatial rigid body, although, as it is well known, therepresentation
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of three–dimensional rotations by using only three parameters presents prob-
lems of singularity at certain positions, so that the commonchoice is the use of
redundant parameters, such as the four Euler parameters, or3 � 3 orthogonal
rotation tensors. In the 2D manipulator arm shown in the figure, the reference
point parameters would be the positions of the centers of gravity of the two
arms.x1;y1/ and.x2;y2/, along with their orientation angles with respect to
the global frame,�1 and�2. This makes a total of six parameters, to which four
constraints must be applied for keeping the hinge points coincident.

� Thenaturalcoordinates (Garcı́a de Jaĺon and Bayo, 1994) consist of points and
unit vectors, expressed in Cartesian coordinates. In general, the points coincide
with the positions of the kinematic pairs, and the unit vectors define their princi-
pal axes. This allows for modeling many kinematic pairs by sharing coordinates.
Moreover, when using natural coordinates, the mass matrix of a rigid body can
have a constant value, depending on the parameters chosen for its modeling. In
the figure, the natural coordinates are the positions of the two revolute joints
.xA;yA/ and.xB;yB/, thus making a total of four parameters. It is observed
that the coordinatesxA andyA are shared for both bodies, so that no algebraic
constraint will be needed for the corresponding revolute joint. Only two con-
straints are needed, in this case for imposing the constant length of the links,
thus reducing the dimension of the problem from 6 to 4.

� Therelativecoordinates are relative distances and angles between adjacent bod-
ies. They usually form a minimal set of parameters for defining the position of
a mechanism, which may be independent in the case of open–loop topologies.
The relative coordinates relate the position of a body to that of its predecessor
in the kinematic chain, which allows for implementing very efficient recursive
algorithms for the solution of the equations of motion, although these methods
are in general much more involved than the methods that use absolute coordi-
nates. Many of these methods use symbolic algebra for obtaining the equations
of motion, thus allowing for eliminating many repeated operations, leading to
highly efficient methods. In the figure, the relative parameters are the anglesz1

andz2, and, since the mechanism has two degrees of freedom, no additional
constraints are required.

FFR formulations in reference point coordinates

The method developed for the planar case by Song and Haug (1980) is the first FFR
method that totally accounts for the inertia coupling between the reference motion
and the local elastic displacements. The method is later generalized to the three–
dimensional case and further developed by several authors (Shabana and Wehage
(1983); Agrawal and Shabana (1985); Shabana (1985, 1998)).In these methods, the
reference motion is parameterized by using a point and the four Euler parameters,
and the elastic displacements are approximated by means of component mode syn-
thesis. In Agrawal and Shabana (1986), the problem of how thefloating frame should
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be attached to the body is addressed, introducing the concept of mean–axis frame. A
mean–axis frame is not attached to a physical point of the body, and leads to the min-
imal coupling between the reference motion and the elastic deformation. The already
mentioned substructuring method, proposed by Wu and Haug (1988) for addressing
the nonlinearity problems, is based on this FFR method in reference point coordinates.

FFR formulations in natural coordinates

One of the first flexible multibody implementations in natural coordinates is that in-
troduced by Vukasovic (1990). According to the natural coordinates formalism, the
frame of reference is modeled by a point and two orthogonal unit vectors, and the
elastic displacements are approximated by means of a Craig–Bampton modal reduc-
tion (Craig and Bampton, 1968), in local coordinates. That formulation, however, is
not fully consistent with the natural coordinates philosophy, since the coordinates that
model the boundary points and unit vectors are those of theirfictitious undeformed po-
sition, instead of the actual deformed position and orientation. This means that one of
the main advantages of the natural coordinates, i.e. the possibility of sharing boundary
entities to reduce the number of kinematic restrictions, islost. Another drawback of
this method is that it uses a velocity transformation technique for obtaining a system
of equations in independent coordinates, and the calculation of that velocity transfor-
mation, which can be advantageous in rigid systems, is rather inefficient in the flexible
case, due to the higher number of independent coordinates.

The method of Cuadrado (1993), also found in Cuadrado et al. (1996), addresses
the two main drawbacks of this method. In this case, each flexible body is modeled
by a point, three unit vectors, and a set of Craig–Bampton modes. The amplitudes of
the static modes are eliminated, since they can be expressedas a function of the frame
variables and the actual deformed boundary points and vectors. The coordinates of a
body are then the frame parameters and the Cartesian coordinates of the boundaries,
plus the dynamic modal amplitudes, which are independent. Moreover, the equations
of motion are stated in dependent coordinates, by using a classical Lagrangian for-
mulation with Baumgarte stabilization (Baumgarte, 1972).The inertia terms, i.e. the
mass matrix and the velocity dependent inertia forces vector, are obtained by inte-
grating the kinetic energy over the whole volume of the body,thus obtaining fully
consistent inertia terms, but at the cost of a rather involved implementation, despite
the use of invariant matrices (Shabana, 1991) to reduce the computation time.

In order to simplify the calculation of the inertia terms, Avello (1995) introduced
a method based on the corotational inertia proposed by Cardona and Ǵeradin (1988),
which enables to obtain the mass matrix as a projection of thestandard mass matrix
of the finite element method into the coordinates of the body,although with some
further simplifications. Avello assumed that the velocities could be interpolated in the
global frame by means of the finite element interpolation functions, which is true in
the case of isoparametric finite elements but, in the case of structural elements using
infinitesimal rotations as nodal coordinates, such as beams, plates and shells, this is
only an approximation. Another difference with respect to the method of Cuadrado
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is the explicit use of the static modal amplitudes as system variables. This work has
been continued by Gutiérrez (2003), who introduced a nonlinear stiffness method to
account for the geometric stiffening in rotating beams. This FFR formulation in natural
coordinates has been validated against nonlinear finite element methods (Cuadrado
et al., 2001), and also against experimental tests, by comparing the results to the actual
measured stresses in the chassis of a prototype car (Cuadrado et al., 2004c). In this
case, the same index–3 augmented Lagrangian formulation used in the present work
is used for integrating the equations of motion.

FFR formulations in relative coordinates

Prior to describing the FFR formulations in relative coordinates, the recursive methods
for rigid body systems, on whose principles the flexible formulations rely, are briefly
introduced here.

Traditionally, the efficiency of recursive methods has beenassociated to their com-
putational complexity, understood as the number of floatingpoint operations needed
for obtaining the accelerations. This number of operations, for a given formulation, is
a function of the number of elements of the mechanism,n, and the order of complex-
ity of a formulation is defined as the exponent ofn in that function. Although some
other methods with different orders of complexity exist, the majority of them can be
considered as either semi–recursiveO

�

n3
�

or fully–recursiveO .n/ formulations.
The first family of formulations, those with anO

�

n3
�

complexity, were initially
developed by Walker and Orin (1982) for open–loop robotic manipulators. The main
idea of the original method is to take advantage of an inversedynamics algorithm,
more specifically the recursive Newton–Euler method (Featherstone, 1987), for the
solution of the forward dynamics problem. The inverse dynamics problem consists
of finding the forces and moments required at the actuators ofa mechanism,£, for
obtaining a prescribed motion, according to the following equations of motion

M.z/Rz D £ � Q.z; Pz/ (1.3)

where the vectorQ absorbs all the generalized forces not introduced by the actuators,
such as the centrifugal and Coriolis forces, the gravitational forces, etc. Since the mo-
tion is prescribed, the relative positionsz, velocitiesPz and accelerationsRz are known a
priori. The inverse dynamics algorithm obtains first the Cartesian positions, velocities
and accelerations of all the elements of the mechanism, by performing a forward recur-
sive analysis from the root to the leaves. Then, the forces and inertias are accumulated
in the inverse direction, from the leaves to the root. Duringthis process, the dynamic
equilibrium is imposed at each kinematic pair, thus obtaining the unknown actuator
forces. In order to solve the forward dynamics, the method proposed by Walker and
Orin uses the inverse Newton–Euler method, by applying combinations of zero and
unit values to the accelerations, for calculating the mass matrix M and the forces vec-
tor Q. Once they have been determined, the accelerations are obtained by solving the
resulting linear system in Eq. (1.3). TheO

�

n3
�

complexity resides at this point, since
the number of operations needed to solve a linear system grows with the cube of its
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dimension.
A more efficient revision of this method, referred to asmethod 3in the paper of

Walker and Orin, and ascomposite rigid–body methodin Featherstone (1987), uses an
alternative recursive method, going from the leaves to the root, for calculating the mass
matrix. First, the mass matrices of the individual bodies are computed in Cartesian
coordinates, at the current position. These individual mass matrices are all referred to
the global origin, instead of the center of gravity of each body, in order to facilitate
their accumulation. The composite mass matrix at a jointj , for a given position of
the mechanism, is the equivalent mass matrix that all the bodies placed between the
joint and the end of the tree would have, if considered as a composite rigid body. This
accumulated mass matrix can be obtained as the sum of the individual matrices of all
the corresponding bodies, since all of them are calculated with respect to a common
point. Finally, by using the recursive relations at the joints, the mass matrix in relative
coordinates is assembled, which allows for stating the linear system that leads to the
relative accelerations.

Featherstone (1983) introduces a fully–recursiveO .n/ formulation, thearticu-
lated inertia method, which was proven to be more efficient than the semi–recursive
ones for systems with more than ten elements (Featherstone,1987). This method was
further developed by Bae and Haug (1987), who use a differentnotation, and obtain
the equations of motion from a variational approach. In the fully–recursive algorithms,
the backward recursive accumulation of inertias and forcesis performed by introduc-
ing the kinematic relations. The resulting mass matrices and forces vectors can then be
used, in a second forward recursive analysis from the root tothe leaves, for obtaining
the accelerations at each joint. If an additional body is added to the mechanism, one
more step is added to each recursive propagation, so that thenumber of operations
grows according to anO .n/ law.

The same authors extended the fully–recursive method to closed–loop topologies
(Bae and Haug, 1988). In order to apply the method to a closed–loop system, the
closed loops are cut first, in order to obtain an open–loop version of the mechanism.
Then, the reaction forces, which are introduced by means of Lagrange multipliers, are
propagated as unknowns, along with the other forces, in the backward recursive inertia
and force accumulation, thus keeping the fully–recursiveO .n/ nature of the method.

In Jiménez (1993), a variation of the composite rigid–body methodis presented,
based on the notation introduced by Bae and Haug for theO .n/ formalism. In this
case, the equations of motion in relative coordinates are obtained by means of a ve-
locity transformation, although the underlying idea is thesame as in the composite
rigid–body method. ThisO

�

n3
�

method is generalized for closed–loop systems, by
using two different solutions. The first one consists of stating the equations of mo-
tion in relative dependent coordinates, by using a penalty Lagrangian formulation
(Bayo et al., 1988). The second solution performs a second velocity transformation
(Garćıa de Jaĺon and Bayo, 1994), for obtaining a reduced set of independent coor-
dinates, so that the equations of motion can be integrated asa standard ODE system.
In the same work, a fully–recursive method, that uses the global origin as reference
for the Cartesian mass matrices, as done in the composite rigid–body method, is also
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introduced. In Stelzle et al. (1995), the computational complexity of fully–recursive
formulations is thoroughly analyzed and compared, concluding that the global ori-
gin is the reference point leading to the lowest complexity,if the dynamic terms are
obtained in global coordinates.

Dopico (2004) performs a comparison between the formulation in natural coordi-
nates, and the twoO

�

n3
�

methods in relative coordinates proposed by Jiménez, by
simulating several systems of different sizes. The resultsof the comparison indicate
that the penalty semi–recursive method is more efficient than that in natural coordi-
nates for large systems. On the other hand, the semi–recursive method in independent
coordinates, in spite of integrating a smaller set of coordinates, is found to be less
robust and efficient than its penalty–based counterpart. According to these results, the
O
�

n3
�

method in dependent relative coordinates is chosen for being extended to the
flexible case in this thesis.

One of the first FFR methods for flexible systems in relative coordinates is that de-
scribed by Book (1984). The method, limited to the simulation of open–loop robots,
shares some features with that of Sunada and Dubowsky, such as the Lagrangian for-
mulation of the equations of motion, the use of the Denavit–Hartenberg parameteri-
zation (Hartenberg and Denavit, 1963) for the recursive relations, and the reduction
of the finite element models by means of component mode synthesis. The method
proposed by Book, however, fully accounts for the inertia coupling between the large
amplitude and the elastic motion, instead of obtaining the former from a rigid body
analysis. Each flexible link is modeled by means of two framesof reference, one
placed at the input joint, which is the actual floating frame of reference of the body,
and another frame at the output joint, whose displacement and rotation with respect
to the body frame depend on the modal amplitudes. The recursive relations are as
follows: from the parameters of the local frame of a bodyi , along with the modal
amplitudes, the position of the output frame is determined.Then, the input frame of
the next bodyj is related the output frame ofi by means of a transformation ma-
trix, which is a function of the relative coordinate betweenlinks i andj . Thus, the
orientation of the input frame of bodyj is obtained as,

Aj D AiAf iAr (1.4)

whereAi andAj are the absolute transformation matrices of the input frames of links
i and j with respect to the inertial frame. The transformationAf i is produced by
the deformation of bodyi , and the resulting frame is transformed byAr , which is
a function of the relative coordinates. In the formulation presented here, a similar
approach is used, although it does not use the Denavit–Hartenberg formalism for the
recursive relations, and, moreover, the floating frame doesnot necessarily have to be
placed at the input joint. This method pertains to the familyof O

�

n3
�

formulations,
since it uses the recursive relations for obtaining the equations of motion in relative
coordinates, and then solves a linear system for the accelerations.

The method proposed by Kim and Haug (1988, 1989) represents the natural exten-
sion to the flexible case of the method of Bae and Haug for rigidsystems. In this case,
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the floating frame of the body is placed at the center of gravity, so that joint frames
are required at both the input and output joints. The flexiblebodies are modeled by
using component mode synthesis, and the inertia terms are approximated by using a
lumped mass approach. This formulation is also developed for its use in closed–loop
systems, and uses the sameO .n/ articulated inertia approach for the calculation of
the accelerations.

Later, Shabana et al. (1992) and Wehage et al. (1992) introduced a new recur-
sive formulation, which is only described for open–loop systems in the cited refer-
ences. The kinematic modeling is the same as that used by Kim and Haug, although it
presents several differences. On the one hand, the inertia terms are calculated by using
consistent mass integrals, by means of the inertia shape integrals already used by the
same authors in non–recursive algorithms. Due to the fact that the inertia properties
of the elastic coordinates are constant, the second time derivatives of the modal am-
plitudes are eliminated by means of the Gauss–Jordan methodprior to the recursive
solution of the accelerations. This operation is efficiently performed since the block of
the mass matrix corresponding to the elastic coordinates must be inverted only once.
This is a recursiveO .n/ formulation, although the equations of motion are stated from
a Newton–Euler perspective. At the end of the second one of the cited papers, however,
the modal elimination in an augmented Lagrangian approach is briefly commented.

The work of Znameńaček and Vaĺǎsek (1998), described only for open–loop sys-
tems, is a reformulation of theO .n/ approach, based on the Gauss principle of least
constraint. This method also performs the modal amplitudeselimination and uses the
fully consistent inertia approach. In the cited work, two different orthogonalization
methods, intended for optimizing the computational complexity, are introduced. Each
one of the methods is optimized for bodies with either less ormore than 17 mode
shapes.

In Bae et al. (2001) a method for including flexible bodies into an existing rigid–
body code is presented. The idea is to define modules that introduce the flexible bodies
as virtual joints, in such a way that the core software is not modified.

The formulation recently introduced by Vampola and Valá̌sek (2007) is very simi-
lar to that presented in this thesis, since it is anO

�

n3
�

method that relies on the ideas
of the composite rigid body method of Walker and Orin, and accounts for open– and
closed–loop topologies. This formulation is different in many aspects, however, since
the equations of motion are stated, as in Znamenáček and Vaĺǎsek (1998), by means of
the Gauss principle. The inertia terms are obtained by usinga lumped mass approach,
and the number of nodes of the discretization appears in the total number of floating
point operations, meaning that efficiency depends on the resolution of the mesh.

1.2.3 Inertial frame formulations

The formulations in absolute coordinates are derived from the finite element method,
so that they use the nodal coordinates as system variables. The conventional finite
element formulations (Bathe, 1995) do not allow for rigid body rotations without in-
troducing elastic deformation, thus making them unsuitable for the simulation of flex-
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ible multibody systems. The absolute formulations introduce different modifications
to the finite element method, aimed for obtaining finite elements that are invariant to
rigid body rotations. In general, these formulations differ in the parameters they use
for defining the orientation of the finite element nodes, being the positions defined by
absolute Cartesian coordinates in all of them.

Most of the inertial frame formulations are developed for the modeling of flexible
beams. The common approach is to define the position and orientation of a finite
element node by its Cartesian coordinates, and its orientation, usually represented by
a trihedron that remains perpendicular to the cross section. The formulation of Siḿo
and Vu-Quoc (1986a,b,c,d) is one of the earliest applications of the inertial frame
approach. In this formulation, developed first for two–dimensional beam elements
and then generalized to the three–dimensional case, a reference trihedron is defined
at every point of the beam, such that one of its directions is always orthogonal to the
cross section. In order to interpolate its orientation, theEuler parameters defined at
the nodes are used. In this formulation, as it happens to all the formulations based on
the inertial frame approach, the mass matrix is a simple expression, being the elastic
forces the most complicated term to evaluate.

A similar formulation is that proposed by Cardona and Géradin (1988), which
introduces therotational vectorfor the parameterization of the section orientations,
instead of the Euler parameters. These authors developed a complete formulation, in
the context of a general purpose multibody simulation software.

The method of Jonker (1989) shares some features with the FFRformulations.
This method is intended for beam elements only, and uses the position and Euler pa-
rameters as nodal coordinates, being the intermediate points interpolated by means
of cubic polynomials. The similarity with the substructuring FFR method of Wu and
Haug (1988) is clear, since the finite elements can be seen as beams with only static
deformation modes, and the nodal coordinates are shared between elements thus be-
having like bracket joints.

An inertial frame formulation in natural coordinates, intended to be fully compat-
ible with rigid or FFR methods based on the same coordinates,is presented by Avello
(1990) and Avello et al. (1991). This method uses, as nodal parameters, the position of
a point and three orthogonal unit vectors, all of them expressed in fully Cartesian coor-
dinates, thus making a total of 12 variables per node. Six algebraic constraints must be
then introduced for each trihedron, to keep its vectors orthonormal, as happened to the
local frame vectors in FFR formulations. To avoid the interpolation of angles or Euler
parameters, the orientation of the intermediate sections is obtained by interpolating
the unit vectors themselves, thus obtaining as a result a constant mass matrix. This ap-
proach, however, is not completely exact, since the interpolated vectors are no longer
unit and orthogonal, although the introduced error can be acceptable, converging to
the exact solution as the mesh is refined.

A different approach is that presented by Shabana in the Absolute Nodal Coor-
dinates Formulation (ANCF). This formulation uses positions of points and global
slopes as nodal coordinates. In the earliest forms of the formulation, a corotational
frame was defined at each element, which was then modeled in local coordinates as a
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two–dimensional Euler–Bernoulli beam (Escalona et al., 1998). In order to avoid the
use of such local frames, Omar and Shabana (2001) reformulated the planar beam, cal-
culating the elastic forces by using continuum mechanics, and then this approach was
generalized to the three–dimensional beam element by Shabana and Yakoub (2001)
and Yakoub and Shabana (2001). Later, Sopanen and Mikkola (2003) studied the
elastic forces obtained by using this approach, finding thata beam element of this
characteristics suffers of poor convergence due to shear locking problems. Several au-
thors studied alternative workarounds, such as Dufva et al.(2005), who interpolate
separately the rotation of the section due to deflection and shear forces, or Von Dom-
browski (2002), who returns to the local frame approach and loses one of the main
advantages of the ANCF, the constant mass matrix. The ANCF isnot limited to beam
elements, and several authors (Dmitrochenko and Pogorelov, 2003; Mikkola and Sha-
bana, 2003) have also developed plate and shell elements. InGarćıa-Vallejo et al.
(2003) and Garćıa-Vallejo (2006), a methodology for integrating flexible bodies mod-
eled with ANCF into a rigid body formulation in natural coordinates is developed.

1.2.4 Corotational frame formulations

The first reference about this approach is the work of Belytschko and Hsieh (1973),
who formulated it for planar beam and triangle elements. Theidea has been further
developed by many other authors, such as Crisfield (1997). These methods are in-
tended for addressing the problems presented by the use of structural finite elements
in the analysis of multibody systems. Structural elements,as opposed to the isopara-
metric ones, use infinitesimal rotations as nodal coordinates, and their interpolation
functions do not correctly model the finite rigid–body rotations. However, if it is as-
sumed that they are valid for small rotations, a local frame can be attached to every
finite element, in such a way that the rotation between two consecutive configurations
is correctly modeled in local coordinates. Two main families of these methods exist:
the total Lagrangian (TL) methods, which calculate the deformations with respect to
an undeformed reference position, and the updated Lagrangian (UL) ones, that refer
them to the position in the last time–step. One common problem of these methods is
that they do not model the exact rigid body dynamics. In orderto overcome this prob-
lem, Shabana (1996) introduces a method that actually models the exact rigid body
inertia, by using four different frames of reference simultaneously.

1.2.5 Other types of formulations

Discrete time transfer matrix method

The discrete time transfer matrix method, which has alreadybeen used in the structural
mechanics field, was first adapted for its use in the simulation of rigid multibody sys-
tems by Rui et al. (2005). In this method, a state vector is defined at every connection
point, containing its six position and orientation parameters, along with the internal
force and moment vectors. The dynamic equations can be stated for an entityj , be
it a body or a joint, then linearized, in order to obtain a position–dependent transfer
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matrix Uj , that yields the state vector of the output pointzjk as a function of that at
the input pointzij :

zjk D Uj zij (1.5)

This recursive relation means that a transfer matrix between two given entities can be
obtained as the product of all the transfer matrices existing between them. This allows
for stating the equations of motion of a given body in terms ofthe transfer matrix
between itself and the inertial frame of reference. Since, in the three–dimensional
case, all these matrices are of dimension13 � 13, the dimension of the problem does
not depend on the number of bodies. There exists a different type of transfer matrix
according to the entity it is associated to, and in the case ofkinematic joints, the
transfer matrix depends also on the type of the adjacent entities, so that a wide variety
of transfer matrices need to be defined in order to cover all the possible configurations.

An application to flexible multibody dynamics is found in He et al. (2007), where
a flexible beam is modeled by means of the finite segment method(Banerjee and
Nagarajan, 1997). The discrete time transfer matrix methodis later used by Rui et al.
(2008) to compute the vibrational response of a multibody system including elastic
beams, although no dynamic simulation is performed in that work.

Global modal parameterization

The global modal parameterization (GMP), introduced by Brüls et al. (2007), consists
of applying a configuration–dependent modal reduction to the whole system, at a given
configuration range, instead of doing it on a per–body basis.The flexible bodies are
modeled in the global inertial frame of reference, at a givenposition, by using the
finite element method. The coordinates of the system, prior to the application of the
reduction, are divided into the relative coordinates at theactuators,™, the coordinates
of other points where external forces might be applied,qg, and the remaining finite
element internal degrees of freedom,u.

For a given configuration, three sets of modes are defined. Each rigid–body mode
is the result of applying a unit displacement to an actuator degree of freedom while
keeping the remaining actuators fixed. The constraint modesare static deformation
modes obtained by doing the same to theqg coordinates, while keeping the actuators
fixed. The remaining modes are obtained by fixing the rigid andconstraint degrees of
freedom, and obtaining the eigenmodes for the remaining coordinatesu. The method
uses then a set of independent coordinates, which means thatit is only valid within
singularity–free regions of the subspace of possible configurations.

In practice, the method divides the domain of possible configurations into different
subdomains within which a specific modal reduction is valid,so that only a finite
number of mode sets will be needed. In order to assess the validity of the modal
reduction within a configuration subdomain, the modal assurance criterion (MAC)
is used. Moreover, a tracking strategy must be implemented in order to ensure the
adequate identification of the dynamic modes according to their shape, since their
frequencies can vary from one configuration to another.
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As long as the number of degrees of freedom of a mechanism, i.e. the dimension
of the possible configurations domain, grows, it is obvious that the amount of data
needed for covering all the possible positions might increase exponentially. However,
this method is primarily intended for control applications, where the trajectories are
usually known in advance, so that the domain of possible configurations can be limited
to cover only those trajectories.

Recursive finite element formulations

The concept of these formulation is a combination between the inertial frame approach
and the recursive methods. Avello (1990) presented the ideaof representing the coor-
dinates of the finite element nodes of his formulation in a recursive way, although the
method could become inefficient due to the need of calculating a velocity transforma-
tion for each node. The method of Bae (2005) is based on the same ideas, i.e. a finite
element method in which the nodes are defined in relative coordinates. This approach
is very similar to the FFR substructuring method, as used in relative coordinates by
Kim and Haug (1988).

1.3 Objectives

The objectives of this work are the following:

� Definition of a new FFR formulation for flexible multibody dynamics in relative
coordinates. The formulation is based on theO

�

n3
�

penalty method described
for rigid systems in Jiḿenez (1993) and Dopico (2004), and models the flexi-
ble bodies as done in Avello (1995) and Gutiérrez (2003). The new formulation
must be totally compatible with the rigid body formulation it is based on, in
order to allow for combining both rigid and flexible bodies. It must keep, as
much as possible, the philosophy and simplicity of the original semi–recursive
method. The geometry of the flexible elements must not be limited to any par-
ticular type, accepting flexible body data obtained from anyexternal means,
including commercial finite element software, experimental analysis, etc.

� Evaluation of the capabilities of the new formulation for real–time applications,
by comparing it to the formulation in natural coordinates (Gutiérrez, 2003), in
terms of efficiency and robustness. The comparison is performed for systems
with different sizes, in order to verify if the advantages shown in rigid systems
are kept when flexible bodies are included in the simulation,and how the num-
ber of flexible bodies may affect the results.

� Calculation of the inertia terms by means of the inertia shape integrals or invari-
ants in both the FFR formulations in absolute (natural) and relative coordinates,
and evaluation of the efficiency and range of applicability with respect to the
projection method used in Avello (1995) and Gutiérrez (2003).
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� Implementation of different methods for capturing the geometric stiffening ef-
fect, comparing the alternatives in terms of efficiency, accuracy and simplicity
of implementation.



Chapter 2

Method in Relative Coordinates

2.1 Introduction

In this chapter, a new formulation for flexible multibody dynamics based on relative
coordinates is introduced. The formulation is the result ofcombining a method in
relative coordinates for rigid multibody systems, with a floating frame of reference
formulation in natural coordinates. The main objective of this work is, apart from im-
plementing flexibility into a semi–recursive formulation for rigid systems (Cuadrado
et al., 2004a,b; Dopico, 2004), is to see whether the benefitsobtained by using relative
coordinates are kept in flexible systems or not.

The formulation in relative coordinates in which the present work is based is a re-
formulation, in terms of a velocity transformation, of the composite rigid–body inertia
method, originally developed by Walker and Orin (1982). Thevelocity transformation
uses the recursive relations defined by Bae and Haug (1987) for fully–recursive meth-
ods, although in this case the inertia terms are calculated with respect to the global
origin, as in the original composite rigid–body inertia method, instead of the center of
mass. The method performs a forward recursive analysis for calculating the positions
and velocities, followed by a backward recursive accumulation of forces and inertias
from the leaves to the root, and then obtains the accelerations by solving a linear sys-
tem. According to this, the method pertains to theO

�

n3
�

family, i.e. methods whose
computational complexity grows with the cube of the number of elementsn.

The method is intended for both open– and closed–loop systems; in the latter case,
the mechanism is transformed into an open–loop system with one or more open chains,
by means of the cut–joint method. This means that the formulation uses a set of rel-
ative dependent coordinates, and in order to close the loops, the corresponding kine-
matic constraints must be imposed, in this case by means of anaugmented Lagrangian
formulation, which uses a set of kinematic constraints defined in natural coordinates
(Garćıa de Jaĺon and Bayo, 1994). The method calculates the accumulated inertia and
generalized forces corresponding to the relative coordinates, which are first obtained
in an intermediate Cartesian coordinate system, then projected into the relative coor-
dinates by means of a variable matrix. This matrix projection is performed in a very

17
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efficient recursive way, yielding the terms of the equationsof motion expressed in the
relative dependent coordinates. In order to perform the time integration, two solutions
are explored in Cuadrado et al. (2004a), Dopico (2004). The first one consists of ob-
taining the equations of motion expressed in a subset of independent coordinates by
using a second velocity transformation, whereas the secondone consists of the direct
integration of the DAE system in dependent coordinates, along with kinematic con-
straints, using an augmented Lagrangian formulation. The second approach has been
chosen here, due to the good results obtained in the cited works. This formulation is
efficient, robust, and relatively simple to implement.

The flexibility problem is addressed by means of the floating frame of reference
(FFR) approach (Shabana, 1998). The flexible bodies are modeled as in a previ-
ously existing method in natural coordinates (Cuadrado et al., 2001, 2004c; Gutiérrez,
2003). In the cited method, each flexible body has a local frame of reference attached
to it, which is defined by a point at the origin and three orthogonal unit vectors along
the axes. This frame experiences the large amplitude motion, and deformations are
added on local coordinates, by using component mode synthesis to reduce the model
size. This method has been chosen because, due to how the elastic coordinates are
defined, it integrates in a very convenient way into the formulation in relative coordi-
nates. Some work has been previously done in this direction by Funes et al. (2004),
but using the double velocity projection instead of the DAE integration.

The integration of the equations of motion is performed stating them as an index–3
DAE, with the positions as primary variables (Cuadrado et al., 1997), and then com-
bining them with a numerical Newmark integrator (Newmark, 1959). This method
needs to perform subsequent velocity and acceleration projections in order to fulfill
the kinematic constraints at the velocity and accelerationlevels, since the index–3
augmented Lagrangian formulation only enforces their fulfillment at position level
(Cuadrado et al., 2000). The resulting method has a very goodbalance among accu-
racy, efficiency and robustness, and this behavior is kept inflexible systems as shown
by the results obtained in this thesis.

In this chapter, the method in relative coordinates for flexible multibody systems
will be thoroughly described. The first section explains thekinematic description of
the system, which can be considered as divided into two parts: the modeling of the
flexible bodies, and the kinematics of the open–loop system in relative coordinates.
In the next section, the calculation of the inertia terms is addressed. This is followed
by the description of the additional non–inertial forces that may appear in the sys-
tem, including applied forces and moments, springs and dampers, and volume forces.
Then, the problem of the kinematic constraints is addressed. Finally, the assembly and
integration of the equations of motion is explained in detail, including the velocity
projection needed to express all the previously described terms in the relative coordi-
nates. Three examples are simulated in the results section,including a planar double
four–bar mechanism, a vehicle suspension, and a full vehicle, using both the formu-
lation in natural coordinates, and that in relative coordinates described in this chapter.
Finally, some conclusions and criteria of use are extractedfrom the obtained results.
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2.2 Modeling and kinematics of the flexible body

According to the FFR formalism, the motion of a body is studied as the superposition
of two components: a large amplitude motion, undergone by a local floating frame, and
small local elastic displacements with respect to that frame. This separation begins
at the kinematic modeling stage, so both components of the motion, although not
independent, will be studied separately: first, how the elastic body is modeled within
the local frame and, then, how this local frame moves in the global frame and how the
flexibility affects the global motion.

The modeling of flexible bodies is essentially the same for all FFR formulations:
each flexible body is attached to a floating frame of reference, which undergoes the
large rigid body displacements and rotations, being the total motion the result of
adding the elastic deformation, obtained in local coordinates with respect to the float-
ing frame, to the motion of the frame itself. Following the partition introduced by
Shabana (1991), the set of generalized coordinates needed to describe the motion of a
flexible body can be considered as divided into two subsets: the reference coordinates,
qt andq� , which represent the position and orientation, respectively, of the floating
frame of reference, and the elastic coordinates,qf , also noted asy, which model the
local elastic deformation. The former depend on the type of rigid body coordinates
used for modeling the large amplitude motion, whereas the latter in most cases consist
of the modal amplitudes of a Rayleigh–Ritz reduction.

The proposed formulation in relative coordinates for flexible bodies is based on
a previously existing one, developed for rigid body dynamics (Cuadrado et al., 2001,
2004a; Dopico, 2004). In this formulation, the dependent set of relative coordinates
is namedz, to which only the elastic coordinates must be added in orderto include
flexible bodies. This means that the reference coordinates are the relative ones and,
since it is difficult to obtain the inertia terms directly expressed in these coordinates,
an intermediate Cartesian coordinate setZ is used for this purpose. These inertia terms
are subsequently projected into the relative coordinates in order to build the equations
of motion, and this projection is performed in an optimal waydue to the recursive rela-
tions established between neighbor bodies. Therefore, it can be said that two different
sets of reference coordinates exist for each body, whereas the elastic coordinates are
common to both the relative and the Cartesian sets, since they represent the deforma-
tion with respect to the same floating frame, no matter which set of coordinates is used
to model its motion.

2.2.1 Floating frame of reference in natural coordinates

In the FFR formulation in natural coordinates (Cuadrado et al., 2004c), the local frame
of each flexible body is represented by the absolute positionof its origin r0, and by
three orthogonal unit vectorsu, v andw, also expressed in the inertial frame of refer-
ence, which define its orientation, making a total of 12 variables. The frame behaves as
a rigid body with six degrees of freedom, so that six kinematic constraints are needed
for keeping the three vectors orthonormal (Garcı́a de Jaĺon and Bayo, 1994). These
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vectors can be considered as the three columns of a rotation matrix A, which allows
for transforming a vector in local coordinates into its global coordinates counterpart.
In what follows, all vectors expressed in local coordinatesare noted with a bar on top.
According to this, the absolute positionr of an arbitrary pointP of a deformed body,
as seen in Figure 2.1, is defined as follows:

r D r0 C A Nr D r0 C A
�

Nru C Nrf

�

(2.1)

where Nr is the deformed position in local coordinates, which is in turn equal to the
sum of the undeformed positionNru plus the elastic displacementNrf . The elastic dis-
placement is a continuum field, characterized by a reduced set of elastic coordinates,
which depend on how the flexible body is modeled in the local frame.
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Figure 2.1: General flexible body.

The frame of reference can be connected to the flexible body byestablishing differ-
ent conditions, known in multibody dynamics asreference conditions. One common
approach is the so calledtangent frame, which is rigidly attached to a material point
of the body. An opposite philosophy is themean–axisframe, which is chosen in such
a way that the mean elastic displacements with respect to it are minimized; this is also
known as the Tisserand or Buckens frame (Agrawal and Shabana, 1986; Schwertassek
et al., 1999b), and unlike the tangent frame, it is an actual floating frame of reference,
not attached to any point of the body. The choice of the type offrame will condition
how the elastic displacements are obtained and, in many cases, the results will also be
affected (Escalona et al., 2002; Shabana, 1995). Accordingto the reference conditions
used, the motion is split into large amplitude motion and local deformation in different
ways; in theory, the total motion should be the same no matterwhich type of frame
is used, although in practice this is not true, due to the use of a reduced set of mode
shapes.

The motion of the elastic body is completely defined by the reference and elas-
tic coordinates but, in general, more points and unit vectors are needed to model the
kinematic constraints of the mechanism. Following the natural coordinates formalism,
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these points and unit vectors are system variables, and theycan be shared between
neighbor bodies, which is a very simple method for introducing constraints. In Fig-
ure 2.2 this is illustrated through an example. A 3D beam withthe local frame placed
at one end, with theu vector aligned to its undeformed neutral axis, is connectedto the
adjacent body by means of a revolute joint placed at the opposite end, represented by
shared entities: a pointP and a unit vectorv2. Since the motion of the body is already

v

w

u

P

Figure 2.2: 3D beam with boundary point and vector at the tip.

represented by the reference and elastic coordinates, the additional point and vector
can be considered as coordinates in excess, so that they are massless, and they must
be connected to the elastic coordinates by means of kinematic constraints (Cuadrado
et al., 2004c). In the method in relative coordinates, the position and orientation of the
revolute joint are also needed for defining the recursive kinematic relations but, as will
be seen later, they are not system variables, so no kinematicconstraints are needed,
which is one of the advantages of the formulation.

2.2.2 Component mode synthesis

As previously stated, the elastic displacementNrf is a continuum field, which makes
the use of an approximation technique necessary in order to make its computation
practical. The most common method used for this purpose in FFR formulations is the
Rayleigh–Ritz method, due to the fact that the elastic deformation is obtained in lo-
cal coordinates with respect to a local frame, so that it can be linearized around the
undeformed position for small deformations. The Ritz method allows to represent the
deformed state of a solid with a minimum set of variables, by approximating it as a lin-
ear combination of constant deformation modes, whose coefficients are the so called
modal amplitudes or elastic coordinates. The deformation modes, also known as mode
shapes, are deformed configurations that can be obtained according to different crite-
ria, in order to allow for modeling the displacement field to the required accuracy,
while keeping their number as low as possible. Several typesof mode shapes can be
used, according to the criteria they are based on. Natural vibration modes or eigen-
modes are calculated in order to keep the natural frequencies of the system. Other
types of modes, such as the Krylov subspaces (Lehner and Eberhard, 2006), alone or
combined with Gramian matrices (Lehner and Eberhard, 2007), are intended to keep
the dynamic response within a frequency range. Static modesare obtained as the de-
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formed shape under certain displacement or loading conditions. In the present work,
only static modes and eigenmodes are used, although any constant deformed shapes
can be used as long as they fulfill the reference conditions. There exist several ways to
obtain the mode shapes of a flexible body. In simple structural elements such as beams,
plates or shells, there may exist an analytical solution formany of them. In case no
analytical functions are available, the mode shapes can be obtained by means of the
finite element method, or even by performing an experimentalmodal analysis. These
deformation modes are calculated in the local frame of reference, and they depend on
the type of frame, i.e. the type of reference conditions.

In the present work, a Craig–Bampton reduction (Craig and Bampton, 1968) is
used in combination with a tangent frame (Schwertassek et al., 1999b), although the
modeling is easily generalizable for different types of floating frames and reduction
methods. The Craig–Bampton reduction is especially designed for the modeling of
interconnected bodies, through the use of static and dynamic modes. According to
this method, the local elastic displacement can be approximated by means of a linear
combination ofns static modes andnd dynamic modes, where each static modeˆi

is the displacement field that results from applying a unit displacement or rotation
to a boundary degree of freedom, while keeping the remainingones fixed, and the
dynamic modes‰j are normal eigenmodes calculated in a fixed undeformed interface
configuration

Nrf D

nsX

iD1

ˆi�i C

ndX

jD1

‰j�j (2.2)

where�i and�j are the static and dynamic modal amplitudes respectively, which are
added as new coordinates of the multibody system. This expression can be written in
matrix form

Nrf D
h
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D Xy (2.3)

beingX a matrix formed by the modes as columns, andy a vector containing all the
modal amplitudes of the body, i.e. the elastic coordinates vector. This combination
of static and fixed–interface dynamic modes can conform a setof quasi–comparison
functions (Meirovitch and Kwak, 1990; Schwertassek et al.,1999b). This allows them
for achieving better convergence than a set of admissible functions, such as normal
eigenmodes, due to a better fulfillment of the dynamic boundary conditions. Moreover,
the use of Craig–Bampton modes simplifies the kinematic constraints that link the
elastic coordinates to the frame coordinates.
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The static and dynamic modes are calculated within the localframe, thus obtaining
the mode shapes expressed in local coordinates. In case a tangent frame is used, the
body is considered to be clamped to the frame origin, which may or may not coincide
with a kinematic pair, although, in order to reduce the number of coordinates of the
system, it is more practical to use a kinematic pair to locatea tangent frame. By doing
this, if a body hasn connection points, onlyn � 1 of these points are defining static
modes. In Figure 2.3 a 3D beam is shown, with a tangent frame located at one end,
and the six static modes defined by the degrees of freedom at the opposite end: unit
axial translation along theu axis, unit bending translations along thev andw axes,
and three unit rotations: torsion about theu axis, and bending due to unit rotation
about thev andw axes. The dynamic modes are obtained as natural vibration modes,
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Figure 2.3: Static modes defined at the tip of a cantilever 3D beam.

with all the boundaries fixed. In the example of the beam, theycan be obtained as
the eigenmodes of a beam clamped at both ends. In Figure 2.4 two bending dynamic
modes are shown, where it can be observed that there is neither rotation nor translation
at any of the boundaries. This means that if a beam is deformedaccording to any of
these modes, the boundaries will not be affected, so only thestatic modal amplitudes
are used when the position of the kinematic pairs is calculated.
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Figure 2.4: Dynamic modes in the localxy plane of a cantilever beam.

The Craig–Bampton modes can be systematically calculated from the finite el-
ement mass and stiffness matrices, by imposing the adequatedisplacements to the
boundary degrees of freedom, and solving the static and dynamic problems for the re-
maining internal displacements. In case a tangent frame is used, the rows and columns
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corresponding to the degrees of freedom of the clamped node(s) are eliminated, for
being equal to zero. The remaining degrees of freedom can be divided into boundary
b and internali , so that the finite element mass and stiffness matrices, along with the
mode shapes matrixX�, can be partitioned into blocks accordingly,

M� D

"

M�
bb

M�
bi

M�
ib

M�
ii

#

I K� D

"

K�
bb

K�
bi

K�
ib

K�
ii

#

I X� D

"
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bs

X�
bd

X�
is X�

id

#

(2.4)

The asterisk indicates nodal values, i.e. referred to a finite element discretization. In
the mode shapes matrixX�, the column subindicess andd stand for static and dy-
namic modes, for the sake of clarity. The displacements of the boundary nodes are
imposed in all the mode shapes, so that the blocks referred toboundary degrees of
freedom,X�

bs
andX�

bd
, can be substituted by their actual values. By definition, each

static mode has a unit displacement at the corresponding DOFwhile keeping the re-
maining boundaries fixed, which means that theX�

bs
block is nothing but an identity

matrix. Analogously, the dynamic modes have no boundary displacements, which is
the same as stating thatX�

bd
is equal to zero.

In order to calculate the static modes, a static equilibriumproblem must be solved.
The elastic equilibrium equation, which leads to the displacements of the internal
nodes, can be written as a linear system with multiple right hand sides

K�X�
s D F� (2.5)

The forces that would be needed to apply to the boundariesF�
b

are unknowns, whereas
there are no applied forces to the internal nodes. Therefore, the system can be written
in partitioned form, after substituting the known values offorces and displacements
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The solution of the equations corresponding to the internalnodes yields the internal
displacements, so that the static modes can be directly obtained
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The internal displacements of the dynamic modes,X�
id

, which are the only unknowns
they have, are obtained as a solution of a generalized eigenvalues problem stated only
for the internal nodes
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(2.8)

The type of kinematic pairs which connect the flexible body tothe rest of the
system affect the boundary conditions used for the calculation of the mode shapes. In
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Figure 2.3, the static modes are calculated by imposing three translations and three
rotations to the tip of the beam, in order to account for the deformation produced by
forces or moments in the corresponding directions. In most cases, the connection to the
adjacent body is such that in one or more of these directions,degrees of freedom exist,
which means that no force or moment will be transmitted to thebody. The static modes
are then not strictly obtained as described before. Each degree of freedom added to a
boundary kinematic pair, will eliminate the correspondingstatic mode, and the finite
element DOF in that direction becomes an internal one. In order to illustrate this, the
example shown in Figure 2.2 is used. If the beam has a revolutejoint at the tip, with
its axis oriented in thev direction, the static modê 5 shown in Figure 2.3 no longer
exists, since no moment in that direction is transmitted at the joint. Accordingly,̂ 3

is calculated with the rotation in thev direction allowed, taking the shape shown in
Figure 2.5. The same happens to the dynamic modes. In Figure 2.6, the first dynamic
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Figure 2.5: Static modes at the tip of a beam with revolute joint.

modes in both thev andw directions are shown, where it can be observed that the
mode in thew direction has the rotation along the revolute axis allowed.The two
static modeŝ 2 andˆ3 are also shown, in order to see more clearly the difference
between them. In short, the modes are calculated considering the beam as clamped in
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Figure 2.6: Static bending mode with fixed and free tip rotation.



26 Method in Relative Coordinates

the uv plane, while the conditions used for theuw plane are clamped–pinned. This
is easily generalizable to any kind of kinematic joint: eachdegree of freedom in the
multibody model eliminates one static mode from the elasticbody, and makes the
corresponding finite element DOF become internal.

Arbitrarily oriented boundaries

In the general case, the degrees of freedom of a joint are not aligned to the princi-
pal directions of the local frame of reference. In order to calculate the mode shapes
correctly, a local frame of reference must be defined at the joint i , located at point
P , defined by a local orientation matrixNAP

ui , where theu subindex stands forunde-
formed. The degrees of freedom of the joint must be defined along thisjoint frame
prior to eliminating the corresponding static modes and solving for the internal nodes.
As an example, the calculation of the mode shapes of a 2D cantilever beam with a
slider joint whose direction is rotated an angle� with respect to thev vector of the
frame of reference, as shown in Figure 2.7, is described. Thelocal frame of reference,
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Figure 2.7: 2D cantilever beam with arbitrarily oriented slider joint.

fixed to the kinematic joint, is defined by vectorsu0 andv0, which are rotated an angle
� with respect to the original frame of reference. There exists a degree of freedom in
thev0 direction, so that the beam must have motion allowed in that direction when cal-
culating both the static and the dynamic mode shapes. In order to do that, the degrees
of freedom of the corresponding node can be rotated by means of a transformation ma-
trix T. Let M�, K� andX� be the mass, stiffness and mode shapes matrices obtained
with all the degrees of freedom aligned to the local frame. The transformed matrices
M�

r , K�
r andX�

r , with the end node rotated to theu0v0 base, are obtained as

M�
r D TTM�TI K�

r D TTK�TI X� D TX�
r (2.9)

The transformation matrixT is an identity matrix, containingNAP
ui at the diagonal

block corresponding to the affected node. If structural finite elements are used, the
finite element nodes have six coordinates, so that twoNAP

ui blocks must be placed.
According to the new orientation of the degrees of freedom, there will still be three
static modes: two unit displacements in theu0 andv0 directions, and a unit in–plane
rotation. However, the row and column corresponding to the displacement alongv0

can now be moved into the set of internal degrees of freedom, thus calculating the
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modes in the normal way.

Considerations about isoparametric finite elements

In case that isoparametric finite elements are used, with only translation degrees of
freedom at their nodes, some precautions should be taken when calculating the mode
shapes. The problem comes from the fact that a node with no rotations cannot be
clamped, but only pinned, thus still allowing rigid body rotations that might render
the system matrix singular. For instance, a beam can be totally clamped if the six de-
grees of freedom are locked at a specific node, but a solid discretized into 4–node
tetrahedrons cannot, since a node has only three degrees of freedom. Even if six de-
grees of freedom are locked, for example by fixing two nodes, there could still exist
rotation about the axis defined by them. In general, when onlytranslations are used as
nodal degrees of freedom, it is better to apply the referenceconditions to lines in the
plane case, or surfaces in the three–dimensional case, in order to avoid undesired rigid
body modes.

2.2.3 Kinematics of boundary points and joint frames

Provided that the position and velocity of a flexible body, i.e. the position and orienta-
tion of its local floating frame of reference, are known, the first step to be carried out
in order to apply the kinematic relations is the calculationof the position and velocity
of its boundary points and their corresponding joint frames. Each boundary can un-
dergo a maximum of three translations and three rotations, which can be immediately
obtained from the amplitudes of its static modes if they are defined as unit displace-
ments, however in the general case one or more of these possible motions will not
appear due to the joint degrees of freedom, as has been pointed out when the modal
reduction has been described. Only in case a bracket joint isconsidered, such as those
used in substructuring techniques, the six static modes will appear. These amplitudes
can be grouped into a vector˜P that contains the translational˜P

t and rotational̃ P
�

modal amplitudes, which will be defined in the frame of reference associated to the
joint.

The local positionNrP of a boundary pointP is the sum of its undeformed position
NrP
u in local coordinates, plus the elastic displacementNrP

f
. The local elastic displace-

ment is approximated by a modal superposition, which, if evaluated at the specific
boundary nodeP , results to be equal toNAP

u ˜
p
t , as long as the static modes are defined

as unit displacements along the principal directions of theundeformed joint frame,
namelyu0 andv0 in Figure 2.8. According to this, the local position ofP can be ob-
tained as

NrP D NrP
u C NAP

u ˜
p
t D NrP

u C NAP
u
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(2.10)

where NAP
u is the orientation matrix of the joint in local coordinates,already used for
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Figure 2.8: Deformed joint frame of reference.

obtaining theT matrix in Eq. (2.9). This matrix contains, in the 2D example of Fig-
ure 2.8, theu0 andv0 vectors as columns, expressed in theu, v base; the choice of a
two–dimensional representation is made in order to simplify the figures, but the math-
ematical expressions will be all developed for a 3D general case, so there is no loss of
generality. The position of pointP in global coordinates will finally be

rP D r0 C A NrP D r0 C A
�

NrP
u C NAP

u ˜
p
t

�

(2.11)

As shown in Figure 2.8, the final orientation of a joint frame in local coordinates,
NAP , represented by vectorsu00 andv00, is obtained after two transformations. The first
transformation is defined by the constant matrixNAP

u , and, as has been previously
pointed out, it is only needed in case the joint axisv0 is not parallel to any of the
principal axes of the local frame of the body. Then, a second transformation is applied
to calculate the deformed orientation of the joint, and it isdefined by an infinitesi-
mal rotation matrixI3 C Q̃ P

�
, which is itself expressed in the joint frame since the

rotations are considered about the joint axes. The matrixQ̃ P
�

is the skew–symmetric
matrix associated to the vector of rotation modal amplitudes ˜P

�
, which are assumed

to be small, so that cos� � 1 and sin� � �,
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By rotating this deformed local system into the local frame of the body, the absolute
orientation of the joint frame results

AP D A NAP D A NAP
u

�

I3 C Q̃ P
�

�

(2.13)

By using all the previous expressions, the absolute position rP and orientation
AP of a joint frame can be derived from the variables of the body it is attached to.
When performing the forward position analysis, the oppositesituation may arise: the
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data of an input joint is known, and the objective is to calculate the parameters of the
corresponding body. In this case, the position of the local frame of the body is obtained
by following the inverse procedure. First, the orientationis obtained by performing the
inverse transformation of Eq. (2.13),

A D AP NAPT D AP
�

I3 � Q̃ P
�

�

APT
u (2.14)

and this allows for obtaining the position of the origin of the local frame, by isolating
it in Eq. (2.11),

r0 D rP � A
�

NrP
u C NAP

u ˜
p
t

�

(2.15)

The need for evaluating these inverse relations can be avoided if the local frame of
the body is placed at its input joint, as a tangent frame. In such a case, the local frame
of the input joint directly coincides with the body reference frame, thus simplifying
the kinematic relations. Additionally, the use of this kindof frame reduces the number
of static modes, due to the fact that the boundaries at the input joint are fixed by
definition. However, the use of a tangent frame can have some drawbacks, which have
been studied by many authors such as Shabana (1995), Schwertassek et al. (1999a,b),
or Escalona et al. (2002). Firstly, it leads to larger elastic displacements with respect to
the undeformed mean axis, as can be appreciated in Figure 2.9. On the left, a deformed
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Figure 2.9: Buckens versus tangent reference frame.

beam with a Buckens frame is shown, where it can be seen that the mean elastic
displacement is smaller than on the right, where a tangent frame is attached to the same
beam. This also means that, when a tangent frame is used, there will exist a stronger
coupling between the reference and elastic motions, thus reducing the sparsity of the
mass matrix. Another drawback of the tangent frame can be theloss of symmetry,
which can introduce spurious stresses if the number of deformation modes is low.

At this point, the position and orientation of any joint frame can be calculated
from those of the corresponding body, and vice–versa. The remaining step needed to
complete the forward position analysis is the calculation of the parameters of an input
frame from those of the output frame of the preceding body. These relations, since
they are established between joint frames, which are considered as locally rigid, can
be derived from rigid body mechanics.
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2.3 Recursive kinematics in open–loop systems

2.3.1 Opening of closed loops

As already pointed out at the introduction of this chapter, the formulation here pro-
posed uses relative coordinates for modeling the large amplitude orreferencemotion.
These coordinates are defined as relative displacements androtations between a body
and its predecessor in the kinematic chain, meaning that theposition of a body is not
completely determined by its own coordinates, but those of the preceding one are also
required. According to this, in order to obtain the absoluteposition of a bodyj , it
must be first calculated for all the preceding bodies, by performing a forward loop
from the first body of the mechanism (root or base body) to bodyj . This is done
throughrecursive relations, that express the position of a bodyj as a function of that
of its predecessori , and the relative coordinates between them. In order to perform
a velocity or acceleration analysis, i.e. calculate the velocities and accelerations of
the bodies from the first and second time derivatives of the relative coordinates, the
corresponding recursive relations must be also established. In order to define the rel-
ative coordinates and establish the recursive relations, the closed loops must be cut
to obtain a open–loop or spanning–tree mechanism. This open–loop mechanism is
characterized by a set of relative dependent coordinates, to which a set of kinematic
constraints are later applied in order to enforce the closure of the cut joints.
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Figure 2.10: Closed–loop mechanism.

An example mechanism will be used along this chapter to illustrate the formu-
lation. The mechanism, shown in Figure 2.10, consists of a planar double four–bar
mechanism, in which only bodies 2 and 3 are flexible. The rigidversion of this mech-
anism has one degree of freedom, represented by thez1 angle. In case a body is con-
sidered as flexible, more degrees of freedom are added, sinceeach deformation mode,
let it be static or dynamic, adds one degree of freedom to the system. In what follows,
the degrees of freedom corresponding to kinematic pairs, which are associated to the
rigid body or large amplitude motion, will be referred to asreferencedegrees of free-
dom, as opposed to theflexibledegrees of freedom due to elasticity of the bodies. One
possible open–loop configuration for the example mechanismis shown in Figure 2.11,
obtained as a result of cutting the joints atC andE.

This open–loop mechanism has five reference degrees of freedom, plus the even-
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Figure 2.11: Open–loop mechanism.

tual modal amplitudes, so that four kinematic constraints must be added in order to
link pointsC andE to their respective ground attachments, thus eliminating four of
the five reference degrees of freedom.

Having an open–loop structure enables to perform the position and velocity anal-
yses in a recursive forward loop, and then to accumulate forces and inertias from the
leaves to the root in a recursive backward loop, which would not be possible in a
closed–loop mechanism. In the open–loop version of the system, each bodyj is con-
nected to its predecessor in the kinematic chain by a jointj , which will be considered
as itsinput joint, and can be followed, if it is not the end of the tree, by one or more
bodies connected throughoutputjoints. In the example, body 2 has an input joint with
a relative anglez2, and two output joints 3 and 4, which are in turn the input joints of
bodies 3 and 4 respectively, placed at the same pointB. In order to make the kinematic
relationships clearer, bodies are numbered from the root tothe leaves, in such a way
that if bodyi precedes bodyj in the kinematic chain, immediately or not, it never can
happen thati > j ; the same convention is applied to the points where static modes
are defined.

The choice of which joints to cut is not unique, and can affectboth the accuracy of
the solution and the complexity of the resulting model. The accuracy can be affected
especially in long branches, because of the numerical round–off error accumulated
from the root to the leaves, and the solution in Figure 2.11 isnot optimal from this
point of view, since the position of body 5 depends on four coordinates; cutting the
two joints atB would lead to three shorter branches, meaning that the resulting system
is less prone to numerical error. In what regards the complexity of the model, although
not seen in the example, the type of joints being cut is of great importance; in the
general 3D case, for instance, cutting a spherical joint would eliminate three relative
coordinates, asking for three additional kinematic constraints, whereas doing so to a
cylindrical joint would eliminate one coordinate and add five constraints, which is
obviously a worse choice.

In this case, five relative coordinates along with the modal amplitudes are needed
to correctly position all the bodies of the mechanism. In natural coordinates, if the
ground attachments are not considered as system variables,the system would have
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six coordinates, i.e. the positions ofA, B andD, so that using relative coordinates
would only reduce the size of the problem in one variable. In this example, therefore,
no efficiency improvement is expectable in the rigid case from the use of relative
coordinates, since the reduction of the problem size does not compensate for the higher
complexity of the formulation, but as will be seen later, improvement appears as the
number of variables is increased.

2.3.2 Modeling of the kinematic joints

There exist two basic types of kinematic joints, on which allthe others are based:
translation along a straight line, and rotation about an axis. In both cases, the relative
motion is characterized by a principal axis, which can be represented by a pointP
and a unit vectorv, expressed in global Cartesian coordinates. As pointed outwhen
addressing the modeling of flexible bodies, as long as the axis of a joint is not parallel
to any of the principal directions of the local frame, a jointframe must be defined at
its position, in such a way that one of its three principal directions is coincident to that
of the joint. In the formulation in natural coordinates, theunit vector is directly used
for defining the kinematic pair and its three components are system variables, but in
relative coordinates a complete frame is needed in order to correctly position the next
body in the chain, although the joint frame is used as an intermediate reference and
does not add any variable to the system.

v
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j
j

i

Q

Figure 2.12: Basic translational and revolute joints.

These two basic joints are shown in Figure 2.12. The translational joint, which can
be seen in the left side of the figure, consists of a translation along an axis that passes
through pointP , and whose direction is defined by vectorv, in such a way that point
Q of bodyj is placed at a distance fromP equal tozj along thev axis. The revolute
joint, shown in the right side, is a rotation about an axis, also defined by a point and a
unit vector, so that the orientation of the joint frame, considered as pertaining to body
j , is obtained after applying a rotation of valuezj about the revolute axisv.

These are the basic one degree of freedom joints, but, in the general case, other
types of joints with more than one degree of freedom can appear, such as cylindrical,
spherical, universal, etc. These joints can be considered as a combination of transla-
tions and rotations, being each of them undergone by intermediate virtual bodies with
zero mass and length. In Figure 2.13, it can be seen an exampleof how a cylindrical
joint, connecting two bodiesi andk, is derived from a translational and a revolute
joint. This is a two–degree–of–freedom joint, in which the translation and the rota-
tion share the same axis. Therefore, it can be modeled by introducing an intermediate
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Figure 2.13: Cylindrical joint as a combination of a translational and a revolute joint.

zero–length bodyj between the two actual bodies, in such a way that the rotation
is defined between bodiesi andj , and the translation is afterwards applied between
bodiesj andk. This is easily generalizable to other types of kinematic joints, and it
can even be used to model the relative motion between two bodies that are not inter-
connected, or the motion of a free body with respect to the inertial frame of reference,
by means of the so calledfloating joint or six–degree–of–freedom joint(Wittenburg,
1977). A floating joint can be considered as a combination of three translational plus
three revolute joints, each of them acting between two bodies, so that five intermediate
virtual massless bodies should be added.

When a simulation is carried out in relative coordinates, thefirst step is the so-
lution, from a known set of relative coordinates and velocities, of the position and
velocity problems in a forward recursive loop. This is achieved by applying recursive
position and velocity relations, going from the root to the leaves, in order to obtain
the position and velocity of all the bodies and kinematic pairs. These positions and
velocities are expressed in natural coordinates, as pointsand unit vectors, which are
only used as an intermediate coordinate set. Two kinds of recursive relations can be
considered at this point: the internal relations between points of a body, characterized
by the flexible relative coordinates, and the relative motion at the joints, modeled by
the reference coordinates.

v

u

u u

w w

v

u

Figure 2.14: Analogy between relative coordinates and static modal amplitudes.

The Craig–Bampton reduction is very well suited for using incombination with
this formulation. The dynamic modes are calculated with allthe boundaries fixed,
which means that they do not affect their relative positions, and this implies that they
do not affect the kinematic relations. And the static modes are defined as basic trans-
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lations and rotations, which affect only one position or orientation parameter, so that
they behave exactly like basic kinematic joints. This is illustrated with an example in
Figure 2.14, where a translational and a revolute joint are shown on the left, in this
case with their axes coincident with those of the local frameof the body. On the right,
the analogy to the translation and rotation static modes is shown. If the modes are
defined as unit displacements or rotations, the value of the modal amplitude will be
the actual value of the displacement or rotation at that point, in the local coordinates
of the joint, which is very convenient for establishing the recursive relations.

2.3.3 Kinematic relations for the forward position analysis

The forward position analysis consists of obtaining, from agiven set of relative co-
ordinates, the Cartesian positions of all the relevant points and unit vectors of the
system, i.e. all those implied in kinematic pairs or constraints, force elements, etc.
This is achieved by following a recursive procedure, going from the root or base body
to the leaves, in such a way that the position of a body is needed to obtain that of the
following one in the chain.

The position relations are different depending on the type of kinematic joint. How-
ever, differences only exist in the relation between the local frame at an output joint
and the corresponding input frame of the next body, which is where the kinematic joint
is actually defined. In order to avoid excessive repetition,the common characteristics
of both joints are to be described first, being the specific relations addressed later. A
generic joint can be defined as a relative motion between two consecutive bodiesi and
j , in such a way that the relative coordinatezj acts between an output pointP of the
first body, and an input pointQ of the second one. This relative motion can be either
a translation, as shown in Figure 2.15, or a rotation as in Figure 2.16. The sequence
for obtaining the position and orientation of bodyj from those of bodyi , regardless
of the type of joint, is the following:

� The deformed local positionNrP
i and orientationNAP

i of a joint frame within body
i are obtained by means of Eqs. (2.10) and (2.12).

� They are substituted, along with the body positionr i and rotation matrixAi ,
into Eqs. (2.11) and (2.13), in order to obtain their absolute counterpartsrP

i and
AP

i .

� The relative displacement or rotationzj yields the absolute parameters of the
input frame of bodyj , namelyrQ

j andAQ
j . This is the only step that is specific

to the type of kinematic joint.

� The values ofNrQ
j and NAQ

j are obtained as done for bodyi in the first step.

� By applying the inverse relations (2.14) and (2.15), the absolute parameters of
the floating frame of the second body,rj andAj , can be finally determined.

The only undetermined step is the third one, and it will be detailed next, for both the
translational and the revolute joints.
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Translational joint

A 2D translational joint is shown in Figure 2.15, acting between two bodiesi andj .
All the development, as done when addressing the elastic coordinates, will be carried
out for a general spatial joint, so that there is no loss of generality due to the use of 2D
figures.

x

y

Q

P

Figure 2.15: Planar translational joint.

In the case of a translational joint, the relative motion between both frames is
determined by the value of the relative coordinatezj , which represents a translation
of pointQ with respect toP along a direction defined by a unit vectorvP

i , so that the
position ofQ is obtained as

rQ
j D rP

i C zj vP
i (2.16)

If the joint frame atP is defined, as suggested in the component mode synthesis
section, such that the relative translation axis coincideswith one of its three principal
directions, the unit vectorvP

i will be directly the corresponding column inAP
i . In

what regards the orientation of the frames, the translational joint does not introduce
any relative rotation, so that

AQ
j D AP

i (2.17)

thus completely defining the position and orientation of theframe atQ, from that at
P and the relative coordinatezj .

Revolute joint

A planar revolute joint can be seen in Figure 2.16. In this case, pointsP andQ are
coincident, and the axis that defines the rotation is the vector wP

i , perpendicular to the
plane of the figure.
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x

y

P

Figure 2.16: Planar revolute joint.

Being the pointP the same for both bodies, the only thing that must be determined
is the orientation of the input frame at pointP , considered as pertaining to bodyj . It
can be obtained by means of a generic rotation matrixAw

�

zj

�

,

AP
j D AP

i Aw
�

zj

�

(2.18)

A finite rotation� about a generic unit vectoru, defined in the local coordinates of the
joint frame atP , can be obtained by means of the Rodrigues’ formula (Wittenburg,
1977),

Au .�/ D I3 C Qu sin� C Qu Qu .1 � cos�/ (2.19)

In the example, since the vectorwP
i , expressed in the local frame atP , is the third

vector of the canonical base, the rotation matrix results,

Aw
�

zj

�

D

2

6
4

coszj � sinzj 0

sinzj coszj 0

0 0 1

3

7
5 (2.20)

When a static mode corresponding to a revolute joint is removed from the finite
element model of a flexible body, an important side effect canappear. Due to the
lack of a static mode defining a rotation about the joint axis,the joint frame obtained
after the deformation will not reflect the actual orientation of the joint. This can be
seen in Figure 2.17, where a revolute joint with the rotationmode eliminated from
bodiesi andj is shown. As can be seen in the figure, after the first body is deformed,
point P suffers a displacement̃Pti , but the joint frame remains parallel to the body
frame, and the same happens to the second body. Since the joint frames are no longer
perpendicular to the neutral axis of the beams, the anglezj will not be the actual angle
rotated at the joint. In some cases, when the joint is allowedfree motion, it can be
justified to eliminate the mode for the sake of efficiency, butin case the angle value is
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P

Figure 2.17: Effect of eliminating rotation modes at revolute joints.

required because of control demand, or due to the presence ofan actuator, a rotational
spring, etc., the rotation mode can not be eliminated.

Fixed rigid–body rotations

Apart from the possible rotations introduced by revolute joints, a fixed relative rotation
might exist between two consecutive frame joints. For instance, in the case of a revo-
lute joint, both frames can be defined to be coincident forzj D 0, but there can also
exist a fixed offset for that value of the coordinate. Analogously, in the translational
joint shown in Figure 2.15, theuQ

j andwQ
j vectors might be rotated a fixed amount

� about thevP
i direction. Any of these possibilities can be considered by means of

a constant rotation matrix, which can be obtained in the general case by using the
Rodrigues’ formula. In such a case, the total rotation at a translational joint shown in
Eq. (2.17) becomes

AQ
j D AP

i Av .�/ (2.21)

and the same happens to Eq. (2.18) for a revolute joint

AP
j D AP

i Aw .�/Aw
�

zj

�

(2.22)

Another case in which these fixed rotations might be needed iswhen the direction
of the joint does not correspond to the same axis in both frames, due to differences
in how the local frames of the finite element models are chosen. For example, the
rotation axis can be defined as theuP

i vector of the first body, but coinciding with the

vQ
j vector of the second one. In such a case, the necessary� or ˙�=2 rotations must

be also performed at this point.

2.3.4 Recursive relations for velocities and accelerations

When relative coordinates are used, the calculation of the inertia parameters associated
to them is anything but straightforward. The solution, in the general case, is to first
calculate them in terms of an intermediate set of Cartesian coordinatesZ, defined
at velocity level for each body, in such a way that they can be afterwards projected
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into the relative coordinatesz by means of a velocity transformation. In the present
subsection, recursive relations between the Cartesian velocities of consecutive bodies
are to be established, thus enabling to define the velocity transformation in an efficient
way. In order to calculate the time derivative of the velocity transformation, needed
for obtaining the velocity dependent inertia forces, theserelations are also obtained
at acceleration level. Firstly, the recursive relations for rigid bodies are derived for
the joint frames, and then they will be extended to include the effect of static modal
amplitudes.

The intermediate Cartesian coordinates can be divided intoreference velocitiesZr ,
representing the motion of the floating frame of reference, and elastic velocitiesZf ,
which will be nothing but the derivatives of the modal amplitudesPy. The reference
section is in turn divided into translational and angular velocities, Z t and Z� . The
translational reference velocityZ t used here, as pointed out in the introduction to this
chapter, is chosen following the approach of Jiménez (1993), i.e. the velocity of the
point of the body which instantly coincides with the origin of the global frame of
reference, considering the point as rigidly attached to thelocal frame of the body. The
angular velocityZ� is represented by the instant angular velocity vector¨, so that the
complete set of Cartesian velocities that characterize thevelocity field of a flexible
body is

Z D

8

<̂

:̂

Z t

Z�

Zf

9

>=

>;

D

8

<̂

:̂

Ps

¨

Py

9

>=

>;

(2.23)

The use of these coordinates features some advantages when deriving the final equa-
tions of motion in relative coordinates. On the one hand, therotary inertias of all the
bodies are obtained with respect to the same point, so that the Cartesian mass matrices
can be directly accumulated without any further transformation. On the other hand,
the recursive relations derived for these coordinates are simpler than those obtained
when the center of mass is used as the point of reference. The only drawback of using
the global origin is the increased complexity of the resulting inertia terms in Cartesian
coordinates.

The recursive relations consist of expressing the velocityof a bodyj , more specif-
ically its reference partZrj , as a function of that of the preceding body,Zri , and the
relative velocity produced at the joint between them. The relative coordinate at the
joint j is namedzj , and depending on the joint type, it will be the translation along
or the rotation about the direction defined by the joint vector. In what follows, with-
out any loss of generality, the vector defining the axis of thejoint will be generically
namedvP

i . The objective is to find a relation between the velocities oftwo consecutive
bodies of the form

Zrj D Zri C bj Pzj (2.24)

wherebj depends only on the type and position parameters of the joint, namelyrP
j
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andvP
j . In order to establish recursive relations for the accelerations as well, these

velocity relations can be differentiated with respect to time

PZrj D PZri C bj Rzj C Pbj Pzj D PZri C bj Rzj C dj (2.25)

where the termdj depends on the relative velocityPzj , and on the position and velocity
parameters of the joint frame. The calculation of these recursive terms is performed
in a two–stage process. First, a forward position analysis is carried out, in order to
calculate all thebj terms, which depend only on the position. Once they are obtained,
a velocity analysis will enable to construct thedj terms. These two steps can be car-
ried out in parallel: from the position parameters of a body,those of the output joint
are obtained, which in turn allow for calculating the correspondingb term; then, the
velocity of the joint frame is obtained, finally leading to thed term, before moving on
to the next body in the kinematic chain. If a tree structure with multiple branches is
present, the forward analysis of the different branches canbe carried out in parallel
processes.

These recursive relations, as opposed to what happens in rigid systems, are not
actually defined between bodies, but between reference frames, which are themselves
considered as rigid bodies. There will exist, then, two types of such relations: the
relation between two consecutive joint frames, i.e. an actual kinematic joint, and the
relative motion between the frame of a body and that of a boundary point, produced
by the elastic deformation. The expressions of the terms of the recursive relations
between bodies, i.e. those appearing at the joints, will be first derived. The relative
elastic displacements and rotations are to be addressed later, since they are based upon
the same kinematic relations defined for the joints.

In order to derive these recursive relations, it is useful toexpress the velocityPr and
accelerationRr of the origin of a frame of reference, let it be that of a body ora joint,
in terms ofZr and PZr :

Pr D PsC ¨ � r (2.26)

Rr D RsC P̈ � r C ¨ � .¨ � r/ (2.27)

Translational joint

The relative translational velocity introduced between two joint frames by a transla-
tional joint is obtained by differentiating Eq (2.16), being the angular velocities un-
modified

PrQ
j D PrP

i C Pzj vP
i C ¨P

i � zj vP
i (2.28)

¨
Q
j D ¨P

i (2.29)

If these equations are combined with the expressions of the absolute velocitiesPrP
i and

PrQ
j in terms of theZr velocities of both frames, by means of Eq. (2.26), the following
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relation between the reference translational velocities can be derived:

PsQ
j D PsP

i C vP
i Pzj (2.30)

This equation, along with the equality between the angular velocities, can be written
in vector form, leading to an expression of the form shown in Eq. (2.24), thus yielding
thebj term for this type of joint

(

Psj
¨

Q
j

)

D

(

PsP
i

¨P
i

)

C

(

vP
i

0

)

Pzj H) bj D

(

vP
i

0

)

(2.31)

The same reasoning can be applied to the accelerations, in order to obtain thedj

term. First, the velocity relations in terms of the absolutepositions and velocities of
the joints are differentiated with respect to time,

RrQ
j D RrP

i C Rzj vP
i C P̈ P

i � zj vP
i C ¨P

i � ¨P
i � zj vP

i C 2¨P
i � Pzj vP

i (2.32)

P̈
Q
j D P̈ P

i (2.33)

The translational accelerationsRrQ
j and RrP

i can be expressed in terms ofZ and PZ, in
this case by using Eq. (2.27). By combining all these equations, it is not difficult to
find that

RsQ
j D RsP

i C vP
i Rzj C 2 Q̈ P

i vP
i Pzj (2.34)

If this expression is again written in vector form, along with the equality between the
angular accelerations, the result is an expression of the form of Eq. (2.25) so that, by
analogy, the form of thedj term for a translational joint can be finally obtained

(

RsQ
j

P̈
Q
j

)

D

(

RsP
i

P̈ P
i

)

C

(

vP
i

0

)

Rzj C

(

2 Q̈ P
i vP

i Pzj

0

)

H) dj D

(

2 Q̈ P
i vP

i Pzj

0

)

(2.35)

Revolute joint

The velocities of two consecutive frames connected by a revolute joint j , defined by
a vectorvP

i , are related as follows:

PrP
j D PrP

i (2.36)

¨
Q
j D ¨P

i C Pzj vP
i (2.37)

It they are combined with the velocities expressed in terms of the Ps and¨ velocities,
as done in the translational joint, and the result is writtenin vector form, an expression
of the form of Eq. (2.24) is again obtained, leading to the following result for thebj
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term of a revolute joint:

bj D

(

QrQ
j vP

i

vP
i

)

(2.38)

By differentiating the velocity relations, the relative translational and angular ac-
celerations can be obtained

RrP
j D RrP

i (2.39)

P̈
Q
j D P̈ P

i C Rzj vP
i C ¨P

i � Pzj vP
i (2.40)

After several manipulations, by following an analogous procedure to that used in the
translational joint, the value ofdj for a revolute joint can be shown to be

dj D

(

QrP
i Q̈ P

i vP
i Pzj C

�

Q̈ P
i Q̈ P

i � Q̈
Q
j Q̈

Q
j

�

rP
i

Q̈ P
i vP

i Pzj

)

(2.41)

Static modes

Since the static modal amplitudes behave as relative coordinates, recursive relations
analogous to those obtained for rigid joints can be established for them. Considering
an output joint, placed at pointP of body i , the relation is to be defined in this case
between theZr velocities of the body itself, and those of the local frame attached to
the joint

ZP
ri D Zri C ®P

i P̃ P
i (2.42)

where®P
i is a matrix containing the recursive velocity relations of all the six static

modes defined at pointP of body i . This term is the result of assembling theb terms
of three translational and three revolute joints, whose axes coincide with those of the
undeformed frame in absolute coordinates

®P
i D

"

AP
ui QrP

i AP
ui

0 AP
ui

#

(2.43)

In this expression,AP
ui is the orientation of the undeformed joint frame, in global

coordinates, directly obtained asAi
NAP

ui . In case that any of the six static modes is not
present, let it be because the corresponding degree of freedom of the kinematic joint
eliminates it, or because the mode is meant to be neglected, the corresponding column
of ®P

i is simply removed from the matrix.
A relation, analogous to that shown in Eq. (2.42), might be defined at the input

joint of bodyj . It must be taken into account that, since in the case of inputjoints the



42 Method in Relative Coordinates

relation goes from the joint to the body, the®
Q
j must have its sign reversed,

®
Q
j D �

"

AQ
uj QrQ

j AQ
uj

0 AQ
uj

#

(2.44)

The complete set of recursive relations produced at a joint between two flexible bodies
results, after considering the three relative motions

ZP
ri D Zri C ®P

i P̃ P
i (2.45)

ZQ
rj D ZP

ri C bj Pzj (2.46)

Zrj D ZQ
rj C ®

Q
j P̃

Q
j (2.47)

These three relations can be combined into one, thus yielding the complete relation
between the velocities of two flexible bodiesi and j , as a function of the relative
coordinates:

Zrj D Zri C ®P
i P̃ P

i C bj Pzj C ®
Q
j P̃

Q
j (2.48)

In what regards accelerations, the complete recursive relationship is obtained by
differentiating this expression,

PZrj D PZri C ®P
i R̃ P

i C bj Rzj C ®
Q
j R̃

Q
j C ”P

i C dj C ”
Q
j (2.49)

The ”P
i terms appearing here are obtained from the relation betweenaccelerations.

In order to calculate them, the angular velocity at the jointframe will be needed.
This velocity is directly obtained during the forward velocity analysis, by means of
Eq. (2.42), and it is equal to

¨P
i D ¨i C AP

ui P̃ P
� i D ¨i C ¨P

f i (2.50)

where¨P
f i

is the relative angular velocity due to deformation. By using these values of
the angular velocities, the total vector of velocity–dependent terms for a deformable
boundary results,

”P
i D

(

2 Q̈ iAP
ui P̃ P

ti

0

)

C

(

QrP
i Q̈ i¨

P
f i

C
�

Q̈ i Q̈ i � Q̈ P
i Q̈ P

i

�

rP
i

Q̈ i¨
P
f i

)

(2.51)

The first term is a Coriolis acceleration produced by the translational static modes, and
the second one includes the velocity–dependent accelerations produced by the elastic
rotations. As it happens to the velocity relations, in case the considered point with
static modes is placed at the input of a body, the sign of the corresponding”Q

j vector
must be changed.

If a tangent frame at the input joint of each body is used, as suggested when de-
scribing the kinematics of a flexible body, there will be no input static modes, so that
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the velocity and acceleration relations from bodyi to bodyj are simplified to

Zrj DZri C ®P
i P̃ P

i C bj Pzj (2.52)

PZrj D PZri C ®P
i R̃ P

i C bj Rzj C ”P
i C dj (2.53)

2.4 Inertia terms in Cartesian coordinates

In this section, the derivation of the inertia terms, i.e. the mass matrixM and the ve-
locity dependent inertia forces vectorQv, is addressed. As has been mentioned before,
the direct calculation of these terms in relative coordinatesz is not practical, and for
that reason an intermediate Cartesian set of velocitiesZ is used, obtaining intermedi-
ate inertia termsNM and NQv for each body, which are later projected into the relative
coordinates by means of a velocity transformation. This section is focused on the cal-
culation of these intermediate terms in Cartesian coordinates.

The kinetic energy can be expressed as the mass integral of the square of the
modulus of the velocityPr over the whole volumeV of a body,

T D
1

2

Z

V

jPr j2 dm D
1

2

Z

V

PrT Pr dm (2.54)

and in general, if a relation can be established between the velocity of a particlePr and
the generalized velocitiesPq, it is always possible to find an expression of the form

T D
1

2
PqTM Pq (2.55)

whereM is the mass matrix, which contains the inertia properties associated to the
generalized coordinates. When rigid bodies are considered,and depending on the type
of modeling chosen, it is possible to obtain a constant expression for this matrix. In
the inertial family of formulations for flexible systems, this matrix is also constant.
But in the FFR formulations the mass matrix is highly nonlinear, ant this introduces
velocity dependent inertia forces in the system. In what follows, the calculation of the
mass matrix and the inertia forces vector is explained in detail.

2.4.1 Mass matrix

The mass matrix of each body in Cartesian coordinates is obtained from the kinetic
energy expression. The kinetic energy is, in turn, obtainedhere by following the coro-
tational approach proposed by Cardona and Géradin (1991). This method assumes that
the velocity of any given point of the body, previously rotated into the local frame of
the corresponding finite element, can be interpolated amongthe nodal velocities by
using the standard finite element interpolation functions.This is not fully consistent
with the interpolation used for calculating the elastic potential, although it yields good
results and enables to calculate the inertia terms in a very simple way.

The velocity of any given point of a flexible body can be expressed in global coor-
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dinates, or in a corotated frame defined by a transformation matrix R, which defines
the local orientation in the vicinity of the point. This enables to write the kinetic energy
in local coordinates

T D
1

2

Z

V

PrT Pr dm D
1

2

Z

V

PrTRRT Pr dm (2.56)

The corotated frame can be defined at finite element level. Theabsolute orientation of
a finite elemente with respect to the global frame,Re, is the result of two transforma-
tions:

Re D A NAe (2.57)

whereA is the transformation matrix of the body, andNAe is that of the finite element,
within the local frame defined byA. The corotational approximation introduced by
Géradin and Cardona assumes that the velocity, expressed in the corotated frame, can
be interpolated among the nodal velocities by using the finite element interpolation
functions. In a general non–isoparametric element withn nodes, this can be written as

ReT Pr � N PNqe (2.58)

wherePNqe is a vector containing the derivatives of the nodal positions, Pr e
i , and infinites-

imal rotations,�e
i , rotated into the local coordinates of the element
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9

>>>>>>>=

>>>>>>>;

(2.59)

The kinetic energy of a finite element can then be obtained as afunction of the nodal
velocities in element coordinates

T e D
1

2

Z

V e

PNqeTNTN PNqe dm (2.60)

If the local element orientationNAe appearing in theRe matrices ofPNqe is retained inside
the integral, thediscrete formof the kinetic energy is obtained

T e D
1

2
PqeTM e Pqe (2.61)

whereM e is the standard mass matrix of the finite element, andPqe is a vector contain-
ing the nodal velocities, both of them expressed in the localframe of the body, so that
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Pqe D

8

ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂

:̂

AT Pr e
1

AT�e
1

:::

AT Pr e
n

AT�e
n

9

>>>>>>>=

>>>>>>>;

D

8

ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂

:̂

PNr e
1

N�e
1
:::

PNr e
n

N�e
n

9

>>>>>>>=

>>>>>>>;

(2.62)

This approximation can be exact in some certain cases, as long as the interpolation
matrix is invariant to rotation, as it happens in the case of isoparametric elements. The
interpolation of positions and displacements in isoparametric elements ofn nodes has
the form
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i ni I z D

n
X

iD1

ze
i ni (2.63)

whereni is the interpolation function corresponding to nodei . According to this, the
interpolation matrix will be always formed by diagonal blocks, which are invariant to
rotation, so that in Eq. (2.61), even the absolute velocities can be used with the same
mass matrix without changing the results.

The total kinetic energy will be the sum of that of all thene finite elements
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PqeTM e Pqe (2.64)

A finite element mass matrix can be assembled for the whole body, following the
standard finite element procedure. The velocities of all thefinite element nodes are
put together in a nodal velocity vectorPq�. Then, a full–size mass matrixM e� is de-
fined for each finite element, being its size the number of degrees of freedom of the
finite element model. It contains zeros in all elements, and the element mass matrix
M e at the positions corresponding to the coordinates of the element within the nodal
velocities vector,
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where Pr e includes the velocities of all the nodes of finite elemente. The total finite
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element mass matrix is the sum of all these full–size elementmass matrices

M� D

neX

eD1

M e� (2.66)

This allows for writing the kinetic energy into its discreteform

T D
1

2
Pq�TM� Pq� (2.67)

The finite element mass matrix is constant, and it can be directly obtained from any
standard finite element code, so that this approximation leads to a very convenient
method for calculating the kinetic energy. The accuracy is also very good, and it con-
verges to the exact energy as the finite element size decreases, being, as has been noted
before, exact in case that isoparametric elements are used.

In order to calculate the mass matrix expressed in the intermediate Cartesian coor-
dinatesZ, a linear relationship between the velocity of any given node of the bodyPq
and the body velocitiesZ must be established. The position shown in Eq. (2.1) can be
differentiated to yield the velocity, by taking into account that the local deformation
velocity PNr is equal toX Py, since both the undeformed positionNru and the mode shapes
matrixX are constant,

Pr D Pr0 C PA Nr C AX t Py (2.68)

where the matrixX t contains only the translational components of the mode shapes.
At this point, the instantaneous angular velocity vector¨ is introduced, since the time
variation of the orientation matrix is

PA D
h

¨ � u ¨ � v ¨ � w
i

D Q̈ A (2.69)

where the cross product has been substituted by the skew–symmetric matrix associated
to the angular velocitÿ . This leads to

Pr D Pr0 C Q̈ A Nr C AX t Py (2.70)

The velocity of the origin of the frame of reference,Pr0, must be expressed as a function
of Psand¨, and this is done by applying Eq. (2.26),

Pr0 D PsC ¨ � r0 D PsC Q̈ r0 (2.71)

By substituting this into Eq. (2.70), it can be shown that,

Pr D PsC Q̈ .r0 C A Nr/C AX t Py D PsC Q̈ r C AX t Py (2.72)

The cross product can be inverted, in order to obtain the velocity Pr as a linear function
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of the intermediate Cartesian velocitiesZ

Pr D Ps� Qr¨ C AX t Py (2.73)

The angular velocity at a node is that of the body, plus the part due to the deformation,
expressed in absolute coordinates,

� D ¨ C AX� Py (2.74)

whereX� contains the rotational components of the mode shapes. Thisexpression,
along with Eq. (2.73), can be rotated into the local frame of the body and written
in matrix form, to yield a matrixB that relates the nodal translational and angular
velocities in the local axesPq to the intermediate Cartesian velocitiesZ:
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In the case of isoparametric elements, since the interpolation functions are invariant
to rotation, and there exist no infinitesimal rotations, this can be written in a simpler
form, directly relating the absolute velocities of the nodes toZ
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In what follows, the isoparametric expressions are used forthe sake of simplicity, be-
ing the development for non–isoparametric elements straightforward. A fullB� matrix
can be assembled, containing the transformation for all then nodes, as follows:
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This largeB� matrix, which has3n rows (6n in structural finite elements) and6 C nm

columns, can be used to calculate the velocities of all finiteelement nodes at once,

Pr� D B�Z (2.78)

so that it can be substituted into the discrete form of the kinetic energy to yield,

T D
1

2
ZTB�TM�B�Z (2.79)

which means that the mass matrix is the result of projecting the finite element mass
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matrix into the intermediate Cartesian coordinates, by means of the velocity transfor-
mation matrixB�,

NM D B�TM�B� (2.80)

The calculation of the mass matrix at every iteration of the integrator involves then
two steps. First, theB� matrix must be assembled, by calculating its value at each
finite element node. Then, the finite element mass matrix is projected into theZ co-
ordinates by performing the product in Eq. (2.80). This product can become a very
CPU intensive task if the finite element models are too large,which is one of the main
drawbacks of this method. The reduction of the finite elementmodel by means of
component mode synthesis is not fully taken advantage of, since although only the
modal amplitudes are problem variables, operations involving the finite element mass
matrix still need to be performed. It must be noted that the finite element mass matrix
is in general highly sparse, and if the projection is carriedout taking advantage of this
sparsity, the method is still applicable to relatively large finite element models. The so-
lution to this problem is addressed in the next chapter, by introducing the inertia shape
integrals, which allow for completely eliminating the finite element mass matrix from
the problem, at the cost of a more involved implementation.

In Avello (1995) and Gutíerrez (2003), the finite elements are always treated as if
they were isoparametric. Instead of using theB� matrix as defined in Eq. (2.75), i.e.
in local coordinates and including the rows corresponding to rotations, the expression
for isoparametric elements is adopted. This implies that a new finite element mass
matrix must be calculated by using the isoparametric interpolation functions, in order
to perform the projection in Eq. (2.80). This approximationworks very well and sig-
nificantly reduces the computation time, since the number ofrows ofB� is cut to its
half, and so happens to the order of the finite element mass matrix. In the examples
addressed in this thesis, no difference in the results has been observed from using this
simplified interpolation, so that this is the method adopted.

2.4.2 Centrifugal and Coriolis forces vector

Application of the Lagrange’s equations to a single body, with the kinetic energy ex-
pressed in theZ coordinates, leads to the following expression for the velocity depen-
dent inertia forces:

NQv D �B�TM� PB�Z (2.81)

It can be observed that the productB�TM� has been already performed when project-
ing the mass matrix, so that it can be stored and used to calculate the inertia forces
also. Once this product has been carried out and stored, thePB�Z product is the only
thing left to be calculated, and the acceleration will be calculated for this purpose. The
acceleration of any given point is, by differentiating Eq. (2.76),

Rr D B PZ C PBZ (2.82)



2.4 Inertia terms in Cartesian coordinates 49

The acceleration can also be obtained by differentiating the velocity of a generic point
shown in Eq. (2.70),

Rr D Rr0 C PQ̈ A Nr C Q̈ PA Nr C Q̈ AX Py C PAX Py C AX Ry (2.83)

which can be rewritten as,

Rr D Rr0 C PQ̈ A Nr C Q̈ Q̈ A Nr C 2 PAX Py C AX Ry (2.84)

By using Eq. (2.27), the acceleration of the origin of the floating frame is derived

Rr0 D RsC P̈ � r0 C ¨ � .¨ � r0/ D RsC PQ̈ r0 C Q̈ Q̈ r0 (2.85)

and this can be substituted into Eq. (2.84),

Rr D RsC PQ̈ .r0 C A Nr/C Q̈ Q̈ .r0 C A Nr/C 2 PAX Py C AX Ry (2.86)

where, after substitutingr0 C A Nr by r and swapping the angular acceleration product,
the first term of Eq. (2.82) is easily identified,

Rr D .Rs� Qr P̈ C AX Ry/C Q̈ Q̈ r C 2 PAX Py D B PZ C Q̈ Q̈ r C 2 PAX Py (2.87)

which means that the productPBZ must be

PBZ D Q̈ Q̈ r C 2 PAX Py (2.88)

Since PA is equal to Q̈ A, andAX Py is nothing but the relative velocity of deformation
in global coordinates, these two terms are easily identifiable as the centrifugal and
Coriolis accelerations of pointr , respectively. The resulting expression forPB will be
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(2.89)

The total vector for the whole body can be obtained by evaluating this at every finite
element node,
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The most practical way to compute the inertia terms is to calculate PB�Z within the
same loop in whichB� is assembled. Then, the sparseB�TM� product is evaluated,
and used to calculate both the mass matrix and the inertia forces vector.
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2.5 Non–inertial forces

In this section, all the forces that are not related to inertia are explained. The elastic
forces, due to the fact that the elastic deformation is obtained in local coordinates,
are very easy to implement, since they only involve the modalamplitudes, and are
completely linear. The remaining forces are calculated first in absolute Cartesian co-
ordinates. The externally applied forces are then projected into the intermediate coor-
dinatesZ, enabling them to be added to the Cartesian forces vectorNQ, which will be in
turn projected into the relative coordinatesz. The forces that depend on the position or
velocity, such as those originated by springs and dampers, are directly projected into
the relative coordinates, since this makes the calculationof their generalized stiffness
or damping matrices easier.

2.5.1 Elastic forces

The elastic potential of a deformed body is obtained from thefinite element stiffness
matrixK� and the nodal elastic displacements (Bathe, 1995),

U D
1

2
Nr�T
f K� Nr�

f (2.91)

This potential can be obtained also in terms of the modal amplitudes, by projecting
the stiffness matrix using the transformation defined in Eq.(2.3). The stiffness matrix
projected into the elastic coordinates results,

U D
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2
yTX�TK�X�y H) K D X�TK�X� (2.92)

and this constant matrix can be used for the calculation of the elastic forces,

NQf D �
@U

@q
D �Ky (2.93)

In case thata structural finite elements are considered, thestiffness matrix should in-
clude the effect of the infinitesimal rotations, so that the full K� and X� matrices,
including all the degrees of freedom, must be used for the projection into the modal
space. After the projected stiffness matrix is calculated,the rotations can be eliminated
from the mode shapes matrix, since they are not needed for theevaluation of the in-
ertia terms. The fact that the elastic coordinates are the same in both the intermediate
Cartesian coordinatesZ and the relative dependent coordinatesz, implies that the elas-
tic forces are immediately obtained in relative dependent coordinates by performing
theKy product, so that they do not need to be projected.

When a Craig–Bampton reduction is used, the discrete mode shapes matrixX� is
as follows, according to Eqs. (2.7) and (2.8):
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If the partition is applied toK� and the projection is carried out, the projected stiffness
matrix can be shown to be

K D

"

K s 0

0 �2

#

(2.95)

whereK s is a symmetric matrix representing the stiffness of the static modes, and�2

is a diagonal matrix containing the squared natural frequencies of the dynamic modes,
which are always mass and stiffness–orthogonal. The off–diagonal blocks are zero,
meaning that the static modes are stiffness–orthogonal to the dynamic ones.

2.5.2 Applied forces

Applied forces are introduced in body coordinates by means of the virtual power prin-
ciple. The virtual power of a point forceF applied at nodei will be,

PW �
a D Pr�T

i F (2.96)

where the asterisk denotes virtual power or velocity. The virtual velocity can be ex-
pressed in terms of theZ velocities,
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Since the virtual power can also be expressed in the intermediate Cartesian coordi-
nates,

PW �
a D Z�T NQa (2.98)

the generalized forces are identified as
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whereBti is the three–row submatrix ofB, expressed in global coordinates, corre-
sponding to the three translational degrees of freedom at node i . If the point is not
a node, the finite element interpolation functions can be used for evaluatingB. The
case of an applied momentT is treated analogously, but using the rotation part of the
transformation matrix,
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In case that the point of application of an external force is known a priori, it can
be a good idea to include that point as a boundary, including static modes associated
to it, in such a way that the deformation produced by that force is more accurately
captured.
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2.5.3 Volume forces

In order to introduce volume forces such as weight in the system, the same approach
for point forces is used, but integrating them over all the volume of the body to which
the force is applied. Expressing Eq. (2.99) in integral form
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BTf dV (2.101)

wheref is the force per unit volume, expressed in absolute coordinates,
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By introducing this and the expression ofB previously obtained into Eq. (2.101), the
integral remains,

NQV D

Z

V

2

6
4

I3

Qr

XTAT

3

7
5

8

<̂

:̂

fx

fy

fz

9

>=

>;

dV (2.103)

The force applied to the translational coordinate is the total force acting in the three
global directions,
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The next block contains the moment of that force about the global origin of coordi-
nates, since the components of the position appearing in theintegrals are expressed
with respect to that point
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and the elements represent the effect of the volume forces onthe body deformation.
In the particular case of weight, considering a density�, and assuming that the

gravity acts in the negative direction of thez global axis, with an accelerationg, the
force per unit volume can be written,
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(2.106)
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The three first components are the translational forces, which are nothing but the
weight acting in the negative direction of thez axis:
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beingm the total mass of the body. The rotational forces are

NQV� D �g

Z

V

8

<̂

:̂

y

�x

0

9

>=

>;

�dV D

8

<̂

:̂

�gmy

gmx

0

9

>=

>;

(2.108)

wheremx , my andmz are the three components of the static moment of the deformed
body,m, expressed in global coordinates. This is the moment of the weight acting in
the deformed center of gravityrG , about the global origin of coordinates. Finally, the
forces affecting the modal amplitudes,
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3 (2.109)

where the inertia shape integralS appears. The calculation of bothm andS is ad-
dressed in more detail in the second chapter, where the inertia shape integrals are
defined. It can be said in advance that the integral of the modeshapesS, which is
defined in Eq. (3.9), is needed for obtaining the static moment, as shown in Eq. (3.21).

2.5.4 Springs and dampers

Springs and dampers connect different bodies of a mechanismby introducing forces
or moments between them, which depend on the position in the case of springs, and
on the velocity in the case of dampers. Since they explicitlydepend on the general-
ized coordinatesz or their time derivativesPz, it is more convenient to project them
directly into them without performing any intermediate step. In general, when using
relative coordinates, rotational springs and dampers connect consecutive bodies, and
since there should exist a coordinate representing the relative angle at that point, in-
troducing them is completely straightforward, as will be seen later. In what follows,
the introduction of translational springs and dampers is described in detail.

A translational force element, connecting two pointsA and B, introduces two
opposite forces in the mechanism,fAB at pointA, and�fAB at pointB. Both forces
actuate along the straight line connecting them, as can be seen in Figure 2.18, and
their magnitudefs depends on the distances betweenA andB, if it is a spring, and
of its time derivative,Ps, if it is a viscous damper. In general, since in many cases the
same element may include stiffness and viscous damping, themagnitude of the force
will be considered as a general nonlinear function of the distance and its derivative
fs.s; Ps/, so that the following applies to any generic force element of this kind.
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s

B

A
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B
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Figure 2.18: Spring and damper in an open–loop mechanism.

The first step is to obtain the force in Cartesian coordinates, which is not difficult
provided that the positions and velocities of both pointsA andB are known. It is a
good idea to include those points as boundaries in the flexible body model, adding
the corresponding static modes in order to obtain a good approximation of the actual
deformation field. The distance between two points of absolute positionsrA andrB is
obtained as

s D jrB � rAj D
h

.rB � rA/
T .rB � rA/

i1=2

(2.110)

and its time derivative,Ps, is

Ps D
1

s
.PrB � PrA/

T .rB � rA/ D .PrB � PrA/
T uAB (2.111)

whereuAB is a unit vector, pointing fromA to B, so that the derivative of the distance
is actually the projection of the relative velocity into thedirection defined byuAB.
By introducing the constitutive lawfs.s; Ps/ as the magnitude, the force is obtained
directly in Cartesian coordinates as the product of the unitvector times the magnitude

fAB D fsuAB (2.112)

In order to project the forces into the dependent relative coordinates, the virtual power
principle is applied as usual, although the projection is performed into the relative co-
ordinates directly. If the two forces corresponding to a spring–damper are introduced
simultaneously,

Qs D �
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�
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@z

�T

fAB (2.113)

By introducing the definition offAB from Eq. (2.112), and after some manipulations,
the following expression for the generalized forces of a translational force element can
be derived:

Qs D �fssT
z (2.114)
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wheresz is the derivative ofs with respect toz,
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Each of its components can be expressed as follows, after performing the derivative:
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This can be seen as a vector that contains the variation produced ins by a unit variation
of any coordinate inz. This can be easily calculated considering that the derivative of
s with respect to a relative coordinatezi is the relative velocity between pointsA and
B when a unit velocity is applied to coordinatezi and the rest of thez coordinates
remains unchanged. It is obvious that only coordinates thataffect the distances would
have a derivative different from zero. In the examples shownin Figure 2.18, a variation
of z1 does not affects if z2 andz3 remain unchanged, so that the derivative ofs with
respect toz1 will be zero.

It is useful to obtain the stiffness and damping matrices forthese forces, since
they are needed later for the tangent matrix of the Newton–Raphson iteration of the
integrator. The generalized stiffness and damping matrices can be expressed as,
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The stiffness matrix due to a spring force can be obtained by differentiating Eq. (2.114)
with respect toz

K s D �
@Qs

@z
D

@

@z

�

fs

@s

@z

�

�
@fs

@z
@s

@z
D
@fs

@s
sT

z sz (2.118)

When the force element is a damper, the following analogous expression can be ob-
tained,
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It can be observed that the same productsT
z sz appears in both the stiffness and damping

matrices, so it only has to be calculated once, and the difference resides in the scalar
multiplying it. In the common case of linear springs or dampers, this scalar will be a
constant, let it be the stiffness constant of the springks or the damping constant of the
dampercs.

2.6 Kinematic constraints

Once the dynamic terms have been obtained in relative coordinates for the open loop
system, the closure conditions must be imposed. Constraints are expressed in natural
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coordinates, namingq the set of points and unit vectors involved in the constraints.
The conditions are expressed as a set of nonlinear constraints, as it would have been
done in a formulation in natural coordinates, although including only the constraints
that are needed to close the previously cut joints. The example of the double four bar
mechanism shown in Figure 2.11 will be used to more clearly illustrate the procedure.
In this example, the natural coordinates involved are the positions of pointsC andE,
which must coincide with those of the fixed pointsC 0 andE0 respectively, so that the
vectorq will have four variables, and the constraints vector is
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xC � xC 0

yC � yC 0
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9

>>>>=

>>>>;

(2.120)

Obviously, in order to evaluate the constraints, the positions of C and E must be
calculated when solving the forward position problem.

When the equations of motion are established in relative coordinates, the Jacobian
matrix of the constraints is necessary. In order to obtain it, the chain differentiation
rule is used

ˆz D ˆqqz (2.121)

The first term is the classical Jacobian in natural coordinates, which happens to be a
4 � 4 identity matrix for the example, since each variable appears in one constraint.
In general, since the kinematic constraints are imposed to close previously cut closed
loops, the constraints in natural coordinates will either impose the values of coordi-
nates, or equalities between them, so that the Jacobian in natural coordinates is likely
constant. The second term can be seen as a matrix containing one column for each rel-
ative coordinate. The column corresponding tozi will contain the velocities in natural
coordinatesPq, when a unit velocity is given tozi and the remaining relative coordi-
nateszj are fixed

@q
@zi

D PqjPzi D1;Pzj D0Ij¤i (2.122)

According to this, the computation ofqz is a simple procedure. It is easy to demon-
strate that the derivative of the position of a point in natural coordinatesr i , with respect
to a relative coordinatezj or a static modal amplitudẽj , is, in the case of a transla-
tional joint or mode, the actual vector defining the translational directionuj , and, in
the case of a revolute joint, it is equal touj �

�

r i � rj

�

, where in this caseuj defines the
axis of rotation. If the required derivative is that of a unitvector, it is obvious that its
direction is not modified by any change in translational relative coordinates, whereas
in the case of revolute joints, the unit vector is modified exactly as it happened to the
position, i.e.uj � ui .

In order to impose the fulfillment of the constraints at acceleration level, the eval-
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uation of their second derivative is also needed. In this derivative, the term P̂ zPz will
appear, and it can be expressed as,

P̂ zPz D
�

P̂ qqz C ˆq Pqz

�

Pz (2.123)

The time derivative of the Jacobian in natural coordinates needs the velocities of the
cut joints in natural coordinates, which are obtained, along with their positions, during
the forward analysis. However, in most cases, since this Jacobian will be probably con-
stant, the first term of this equation does not need to be evaluated. The only unknown
term so far is the time derivative ofqz, which is directly obtained by differentiating its
terms. For instance, the time derivative ofuj � ui will be Puj � ui C uj � Pui , where all
the appearing terms have been calculated in the forward analysis.

2.7 Projection of the dynamic terms

For the sake of clarity, the Cartesian and relative coordinates of all thenb rigid and
flexible bodies in the system will be grouped into two vectors, in such a way that the
reference coordinates are put together at the beginning, followed by the static modal
amplitudes, then leaving the dynamic modal amplitudes at the end,

Z D
n

ZT
r1 � � � ZT

rnb
P̃ T

1 � � � P̃ T
nb

PŸT
1 � � � PŸT

nb

oT

Pz D
n

Pz1 � � � Pznb
P̃ T

1
� � � P̃ T

nb

PŸT
1

� � � PŸT
nb

oT
(2.124)

The total number of bodiesnb includes the virtual massless bodies that are added when
the kinematic joints have more than one degree of freedom. This number will coincide
with the number of reference relative coordinates of the open–loop mechanism, since
each body is allowed to have only one input joint, so that there will exist aZri set
of six reference Cartesian coordinates for eachzi relative reference coordinate, both
associated to the same bodyi .

The mass matrix and forces vector of a bodyi in Cartesian coordinates, after being
obtained as explained in sections 2.4 and 2.5, can be partitioned according to the same
convention used for theZi coordinates

NM i D

2

6
4

NM ri
NM r�i

NM r� i

NM�i
NM�� i

sym: NM � i

3

7
5 I NQi D

8

<̂

:̂

NQri

NQ�i

NQ� i

9

>=

>;

(2.125)

Unless only eigenmodes were used for the representation of the elastic deformation,
for example in combination with a Buckens frame, the three lower blocks of the mass
matrix, which contain the inertia of the elastic coordinates, do not form a diagonal ma-
trix, since the Craig–Bampton modes are not mass–orthogonal (Géradin and Cardona,
2001). Only the set of dynamic modes is mass–orthogonal, since they are obtained as
eigenmodes, so that the last blockNM � i is the only one that will be always diagonal. If
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the mode shapes are constant, however, these three blocks will be constant, as it will
be seen in the next hapter.

The full mass matrix and force vector can be assembled for thewhole system, ac-
cording to the full Cartesian coordinates vectorZ defined in Eq. (2.124), having the
same structure as in the case of an individual body, with separated blocks for the ref-
erence coordinates, the static modal amplitudes, and the dynamic modal amplitudes.

NM D
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6
4

NM r
NM r�

NM r�

NM�
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sym: NM �

3

7
5 I NQ D

8

<̂
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>;
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The rigid bodies will have only the block corresponding to the reference coordinates,
and the intermediate virtual bodies are massless, so that their mass matrices, which
appear only in the reference coordinates block, are equal tozero. This global mass as-
sembly is never carried out actually, it is used only to describe the recursive procedure
used for projecting itself into the relative coordinates. The structure that it would have
for the example of a double four–bar mechanism shown in Figure 2.11 can be seen in
Eq. (A.3) of the Appendix.

In order to derive the equations of motion of the open–loop system, the virtual
power principle is used. Given a set of virtual velocitiesZ�, the virtual power produced
by them can be obtained as

Z�T
�

NM PZ � NQ
�

D 0 (2.127)

Since theZ velocities are not independent, this expression does not mean that NM PZ �
NQ D 0. It must be expressed in the dependent relative coordinates, which are inde-
pendent if the open–loop version of the mechanism is considered. At this point, the
velocity transformation betweenZ and Pz is introduced. By assembling all the recur-
sive velocity relationsb and® defined when addressing the recursive kinematics, a
position dependent matrixR can be defined, such that

Z D RPz (2.128)

Differentiating the velocities with respect to time, the accelerations can also be ob-
tained,

PZ D RRz C PRPz (2.129)

In this expression, thePRPz term contains the position and velocity dependentd and”

terms, also defined when the kinematic relationships were established. The velocity
transformation can be applied also to the virtual velocities, leading to the following
expression if it is introduced in Eq. (2.127), along with theacceleration transformation
defined in Eq. (2.129):

Pz�TRT
�

NMR Rz C NM PRPz � NQ
�

D 0 (2.130)
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and, since thez coordinates are independent, the expression into parentheses must be
always equal to zero to fulfill the virtual power principle. This means that the equations
of motion can be written, for the open–loop version of the mechanism, as

RT NMR Rz D RT
�

NQ � NM PRPz
�

(2.131)

Leading to the following expressions for the mass matrix andthe generalized forces
vector in relative coordinates:

M D RT NMR I Q D RT
�

NQ � NM PRPz
�

(2.132)

These operations can be performed very efficiently by takingadvantage of the
open loop topology. TheR matrix is the result of assembling in matrix form the recur-
sive velocity relationships defined for the open loop system, which makes its structure
rather particular. It can be divided into blocks if theZ andPz coordinates are arranged
as described in Eq. (2.124),

R D

2

6
4

Rr R� 0

0 I 0

0 0 I

3

7
5 (2.133)

whereRr andR� are two submatrices which relate the Cartesian rigid body velocities,
Zr , to the relative velocitiesPz and to the time derivatives of the static modal amplitudes
P̃ respectively. The first submatrix, the rigid body or reference part ofR, would be the
R matrix of an equivalent rigid mechanism in the current deformed configuration.

The example mechanism described in Figure 2.11 is used to show how theR ma-
trix terms look like. It consists, as pointed out before, of adouble four–bar mechanism,
in which the joints at pointsc ande have been cut, and bodies 2 and 3 are considered
as flexible. The reference block of the projection matrix canbe obtained as a product
of a connectivity matrixTr , which depends exclusively on the topology of the mech-
anism, times a block diagonal matrixRd

r , containing the kinematicb terms associated
to the reference relative coordinates
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D Tr Rd
r (2.134)

The structure of the connectivity matrixTr is such that each block column is asso-
ciated to a joint, and it contains identity matrices in the block rows corresponding to
those bodies which would be affected by a variation of the column’s relative coordi-
nate, while the rest of the relative coordinates remain fixed. The connectivity matrix
Tr contains an identity at blockij if and only if bodyj precedes bodyi when go-
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ing from the root to the leaves, and they are both in the same branch. In the example
mechanism, the zero blocks at positions (4,3) and (5,3) are due to the fact that body 3
is not in the same branch as bodies 4 and 5, so that a variation of z3 would not affect
them. If the bodies are numbered and sorted from the root to the leaves, this matrix
will be always lower triangular, leading to an also lower triangular block structure for
theRr matrix, as it happens in the example.

A similar procedure can be employed to define the flexible transformation matrix,
where in this case the connectivity matrix contains identity blocks when the corre-
sponding body is affected by the elastic displacement of a boundary point, and the
diagonal matrix contains the® terms, which have one column for each static mode
defined at a boundary point. In the example mechanism, these matrices are as follows,
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D T�Rd
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and the fullR matrix for this mechanism can be seen in the Appendix, although, as it
happens to theNM matrix, it is never actually assembled.

2.7.1 Mass matrix projection

The mass matrix projection can be very efficiently calculated by dividing the products
into blocks. By expanding the products needed to perform themass matrix projection
in Eq. (2.132), it can be found that the resulting mass matrixis the sum of three
different terms, as pointed out by Funes et al. (2004),

RT NMR D
�

RT NMR
�

r
C
�

RT NMR
�

rf
C
�

RT NMR
�

f
(2.136)

The first term contains the projections of the mass matrix blocks corresponding to the
reference coordinates, and it is the only one which needs to be calculated in a recursive
way,
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3

7
5 (2.137)

The second one is formed by projections of the blocks that couple the inertias of the
reference and elastic coordinates. These terms are not calculated in a recursive way
due to the fact that in the assembledNM matrix in Cartesian coordinates, the blocks of
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different bodies are not coupled

�
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5 (2.138)

The blocks of the mass matrix involving only the elastic coordinates appear unchanged
in the last term. They do not need to be projected since the elastic coordinates are the
same in both thePz andZ coordinate sets,
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It can be seen, by observing the structure of the first term of the projected mass
matrix, that there exists inertia coupling between the inertias of the reference and
elastic coordinates, even between those of different bodies. The inertias of the elastic
coordinates, except the dynamic modes blockM � , are no longer constant after the
projection into the relative coordinates. The efficient calculation of these two terms
will now be addressed in detail, and the actual matrices obtained for the example
double four–bar mechanism can be found in the Appendix.

Projection of the reference mass matrix blocks

In order to calculate the three different blocks of the first term of the mass matrix,
shown in Eq. (2.137), an optimal method that takes advantageof the structure of the
mechanism, accumulating the inertias and forces from the leaves to the root, is used. A
recursive accumulation of the reference mass matrices can be performed in such a way
that the accumulated massM ri at a jointi is the sum of the reference mass submatrices
of all the bodies that would be affected by a variation of the relative coordinatezi ,
while the rest of the coordinates remain fixed. In the examplemechanism shown in
Figure 2.11, the accumulation of reference mass matrices would be:

M r5 D NM r5

M r4 D NM r4 C M r5

M r3 D NM r3

M r2 D NM r2 C M r3 C M r4

M r1 D NM r1 C M r2

(2.140)

Each accumulatedM ri matrix is equal to the sum of the reference mass matrices
of the bodies with an identity block at the columni of the connectivity matrixTr ;
therefore, the connectivity matrix can be used to automate this process, going from
the rightmost column to the first and identifying the sums already performed in order
to avoid repeated operations. There exists a second type of accumulation, in this case
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that due to the static modal amplitudes, which is performed exactly in the same way,
taking into account the topology of the open–loop mechanism:

MB
r3 D NM r3

MB
r2 D NM r4 C NM r5 C MB

r3

MA
r2 D NM r2 C MB

r2

(2.141)

where eachMP
ri is the accumulated mass at the pointP , considered as pertaining

to bodyi , analogously as done in Eq. (2.140). This accumulated mass is that of the
bodies which would be affected by a variation of the modal amplitudes at pointP ,
due to a deformation of bodyi . As can be seen,MB

r3
is only the mass of body 3, since

its own deformation does not affect any other body in the open–loop configuration,
whereasMB

r2
is the accumulated mass of bodies 3, 4 and 5, i.e. those affected by a

displacement of pointB, produced by a deformation of body 2. Also, it is observed
that pointc does not have an accumulated mass associated, since, in the open–loop
mechanism, its deformation affects nothing but its own position.

The first block,RT
r

NM r Rr , coincides with the mass matrix of an equivalent rigid
body mechanism, in the current deformed configuration. Eachone of its sub blocks
will correspond to a pair of relative coordinates (or bodies) i andj , and it can be
calculated from the accumulated mass at jointj , and the kinematic terms of both
jointsbi andbj as follows:

�

RT
r

NM r Rr

�

ij
D bT

i M rj bj I i � j (2.142)

where only the upper triangle is considered, since the use ofsparse symmetric solvers
makes unnecessary to fill in the symmetric part of the matrix.Some of these terms are
zero, however, since there is no inertia coupling between the reference coordinates of
bodies pertaining to different branches of the mechanism. In the example mechanism,
the blocks (3,4) and (3,5) are zero since body 3 is in a different branch from bodies 4
and 5. It is easy to automate the decision by examining the structure ofTT

r Tr , since
a block ij in Eq. (2.142) is zero if the corresponding block ofTT

r is also zero. The
resulting matrix obtained by following this procedure in the example mechanism can
be seen in the Appendix.

The projection of the reference mass matrices into the modalamplitudes is per-
formed exactly in the same way, by using the recursive velocity relations associated to
the static modes® and the accumulated mass matrices defined in Eq. (2.141), so that
the sub–block corresponding to a pair of boundary points will be

�

RT
�

NM r R�

�pq

ij
D ®PT

i MP
rj ®

Q
j I i � j ;P � Q (2.143)

where the position of the null blocks can be determined analogously as done in the
reference coordinates block, by examining the structure ofTT

�.
And the remaining block, which has the same nonzero blocks structure asTT

r T�,
has a mixed structure, using the mass accumulation from Eq. (2.140) in the lower
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triangle and that based on the static modes in the upper triangle, in such a way that,

�

RT
r

NM r R�

�P

ij
D

8

<̂

:̂

bT
i MP

rj ®P
j i � j

bT
i M rj ®P

j i > j
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Projection of the reference–elastic coupling blocks

The terms appearing in Eq. (2.138) are simpler to obtain thanthose in Eq. (2.137),
since they are not obtained from recursive accumulation. The structure of the assem-
bled NM matrix is such that there is no coupling between the different bodies, so that
the NM r� and NM r� blocks will be also an assembly of independentNM r�i and NM r� i

blocks. The projections into the relative coordinates are

�
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D bT

i
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being each term different from zero if a variation ofzi , while all other coordinates
remain fixed, affects the position of bodyj . The remaining terms are obtained in the
same way,
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with a structure determined in a similar way, although in this case the static modes at
pointP of bodyi are the coordinates that should affect the position of bodyj . All the
blocks of the projected mass matrix are shown in the Appendix.

2.7.2 Projection of the forces vector

The generalized forces vectorQ can be projected into the relative coordinates by
means of Eq. (2.132),

Q D RT
�

NQ � NM PRPz
�

D RT NQt (2.147)

The term NQt contains the forces computed for each body in Cartesian coordinates,
assembled into a vectorNQ, to which velocity dependent inertia forces are added, due
to the time dependency of the projection matrixR. The first operation needed in order
to calculate NQt is the evaluation ofPRPz, which is totally straightforward since it is
formed by thedj and”P

j terms appearing in the acceleration kinematic relationships.
This product can be divided into three blocks,

�

PRPz
�

r
D PRr Pzr C PR� Pz�I

�

PRPz
�

�
D 0I

�

PRPz
�

�
D 0 (2.148)

The only nonzero block, which corresponds to the reference coordinates, will contain
a 6 � 1 block for each body. Each one of these blocks can be efficiently calculated
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as the accumulation, in this case from the root to the leaves,of thedj and”P
j terms

associated to the coordinates whose variation would affectthe position of the body. In
the example mechanism, this results
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This accumulated vector can be directly calculated when performing the position and
velocity analyses during the forward loop, since thedj and”P

j terms are not needed

elsewhere. Once this vector is computed, the calculation ofNQt is straightforward.
Due to the block diagonal structure ofNM r , each sub–block ofNQt associated to a
bodyj will depend only on the terms of its individual reference mass matrix, and the
corresponding block of the reference part ofPRPz, so that

NQt
rj D NQrj � NM rj

�

PRPz
�

rj
(2.150)

In the case of the modal amplitudes blocks, the calculation is the same, existing one
block for each bodyj having whether static or dynamic modes,
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Finally, the projection ofRT NQt is performed
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The second term of this equation is already available, and the products in the first one
are obtained by accumulation, from the leaves to the root, ashas been done with the
masses, i.e. calculating the accumulated rigid body forcesboth from the point of view
of relative coordinates and modal amplitudes. A blocki of RT

r
NQt

r is obtained as

�

RT
r

NQt
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i
D bT

i Qri (2.153)
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where theQri is the accumulated force at jointi . These accumulations are as follows
for the example mechanism,

Qr5 D NQt
r5

Qr4 D NQt
r4 C Qr5

Qr3 D NQt
r3

Qr2 D NQt
r2 C Qr3 C Qr4

Qr1 D NQt
r1 C Qr2

(2.154)

The calculation of the projection of the reference forces into the modal amplitudes
will be obtained analogously
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D ®PT
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There exists a second type of accumulation, in this case thatdue to the static modal
amplitudes, which is performed exactly in the same way, taking into account the topol-
ogy of the open–loop mechanism:

QB
r3 D NQt

r3

QB
r2 D NQt

r4 C NQt
r5 C QB

r3

QA
r2 D NQt

r2 C QB
r2

(2.156)

2.8 Dynamic formalism

2.8.1 Equations of motion

This formulation uses dependent coordinates, along with a set of algebraic constraints,
therefore the problem can be formulated by the classical Lagrange multipliers ap-
proach. This means that the equations of motion will be a set of n second order ordi-
nary differential equations, withm added algebraic constraints that turn it into a set of
differential algebraic equations, more specifically an index–3 DAE system

M Rz C ˆT
z œ D Q

ˆ D 0
(2.157)

Most of the strategies for DAE integration are based on turning it into an ODE sys-
tem, since there exist many well–known methods for their integration. The simplest
approach is to differentiate the constraints twice with respect to time, leading to an
index–1 DAE system that can be directly integrated (Goldstein, 1950),
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M ˆT
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ˆz 0

#(

Rz

œ
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D
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Q

� P̂ zPz � P̂
t

)

(2.158)
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The problem of this approach is that it does not impose the fulfillment of the con-
straints but their second derivative, thus causing a position drift in long simulations.
A solution to this problem, proposed by Baumgarte (1972), consists of stabilizing the
constraints by substitutingR̂ D 0 by

R̂ C 2�! P̂ C !2ˆ D 0 (2.159)

where the parameters� and! can be considered as the damping ratio and the natural
frequency of a one degree of freedom vibrating system, thus� commonly takes the
value of 1 in order to obtain the fastest stabilization of theconstraints possible, and
the usual value of! is 10. This leads to the following set of equations
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D
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� P̂ zPz � 2�! P̂ � !2ˆ
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(2.160)

This method does not strictly impose the fulfillment of the constraints or their deriva-
tives but a combination of them, and it adds a dissipative term 2�! P̂ that should be
taken into account. Moreover, neither this method nor the classical approach can deal
with systems having redundant constraints, and they need tointegratenCm equations.
In order to eliminate this problem, Bayo et al. (1988) proposed the penalty formula-
tion, that approximates the Lagrange multipliers as the Baumgarte stabilization term,
multiplied by a penalty factor̨ , so that the force associated to the constraints is pro-
portional to the violation of the constraints and their derivatives,

œ D ˛
�

R̂ C 2�! P̂ C !2ˆ
�

(2.161)

The penalty factor takes large values, ranging from107 to 1010, in such a way that a
small violation of a constraint introduces a large opposingforce. The resulting system
is, after substituting the approximation ofœ into the equations of motion
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z˛ˆz
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P̂ zPz C 2�! P̂ C !2ˆ
�

(2.162)

where the leading matrix is onlyn�n. An alternative to this approach, that obtains the
exact values of the Lagrange’s multipliers, but retaining the advantages of the penalty
formulation such as the integration of onlyn equations and the possibility of dealing
with redundant constraints, is the augmented Lagrangian formulation (Garćıa de Jaĺon
and Bayo, 1994), which had been already used by Vanderplaats(1984) in optimization
problems. This formulation consists of the penalty formulation, with an added iteration
to calculate the exact value of the Lagrange multipliers. The equations of motion are
stated as follows

M Rz C ˆT
z˛
�

P̂ zPz C 2�! P̂ C !2ˆ
�

C ˆT
z œ� D Q (2.163)
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whereœ� is the Lagrange multipliers vector, obtained from an iteration process carried
out within each time step,

œ�
iC1 D œ�

i C ˛
�

R̂ C 2�! P̂ C !2ˆ
�

i D 0; 1; 2; : : : (2.164)

which starts withœ�
0

equal to zero, or to the value ofœ� obtained in the previous
time–step.

Other methods for turning the DAE system into an ODE are thosebased on coordi-
nate partitioning (Wehage and Haug, 1982), which separate the dependent coordinates
into a set of independent and another set of dependent coordinates, and integrate only
the independent coordinates. One of these methods, proposed by Garćıa de Jaĺon and
Bayo (1994), uses a velocity transformation to obtain the dependent coordinates as
a function of the independent ones. These methods integratea minimum set of vari-
ables, but there exist some disadvantages. On the one side, the velocity transformation
must be carried out at every time–step, leading in this case to a double velocity trans-
formation, first from Cartesian to dependent relative, and then from dependent relative
to independent relative coordinates. On the other side, thechosen set of independent
coordinates may not be valid for all the positions of the mechanism, so that a checking
must be carried out at every time–step, and in case the set is not valid, a new transfor-
mation must be defined, which implies the integration of a different set of variables
and, therefore, restarting the integration.

The actual formulation used is a variation of the augmented Lagrangian formula-
tion, but stating it as an index–3 instead of an index–1 formulation. As opposed to the
augmented Lagrangian, the formulation used in this thesis applies the penalty only to
the constraints vector, so that their fulfillment is totallyassured. The final equations of
motion are as follows:

M Rz C ˆT
z˛ˆ C ˆT

z œ� D Q (2.165)

œ�
iC1 D œ�

i C ˛ˆ i D 1; 2; : : : (2.166)

Since this method only enforces the fulfillment of the constraints at position level,
the velocities and accelerations are later projected in order to enforce them to fulfill
the constraints at velocity and acceleration level, using mass–orthogonal projections
as proposed by Bayo and Ledesma (1996). As it will be seen in the numerical inte-
gration section, the projections actually used in this formulation are modified in order
to improve the efficiency (Cuadrado et al., 2000), so that they are no longer mass–
orthogonal.

The full procedure for the assembly of the equations of motion is schematized
in Figure 2.19. Starting from known values of the relative positions and velocities,
the first step is to perform the forward position and velocityanalyses, in order to
obtain the positions and velocities of the bodies and jointsin natural coordinates. This
allows for calculating, on the one side, the kinematic and inertia terms, expressed in
the Cartesian coordinatesZ and, on the other side, the kinematic constraints and their
Jacobian matrix. The kinematic and inertia terms are used tocalculate the projection
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Relative positions and velocities

Natural coordinates

Kinematic terms in Z

Projection of the dynamic terms

EQUATIONS OF MOTION

FORWARD RECURSIVE ANALYSIS

BACKWARD ACCUMULATION

Constraints and Jacobian

Dynamic terms in Z

Figure 2.19: Procedure for building the equations of motion.

of the dynamic terms into the relative coordinates, in a recursive backward process,
which is one of the keys of the formulation. Once the projection has been performed,
all the terms of the equations of motion are available in relative coordinates.

2.8.2 Time integration

Once the equations of motion have been transformed into a second order ODE sys-
tem, the choice of numerical integrators is considerably widened. The structural inte-
grators, originally developed for their use in the field of structural dynamics (Bathe,
1995), have been adapted and successfully used by many authors like Garćıa de Jaĺon
and Bayo (1994), Ǵeradin and Cardona (2001), or Cuadrado et al. (2000), for the
integration of the equations of motion in multibody systems. In this thesis, the New-
mark dissipative integrator (Newmark, 1959), an implicit integrator from the structural
family, has been chosen for the time integration of the equations of motion due to the
excellent results obtained by using it in rigid multibody systems, as shown by the work
of Cuadrado et al. (2004b) and Dopico (2004). This integrator can introduce a variable
amount of numerical damping, based on the choice of a parameter � and, in the limit
case when there is no damping, the integrator becomes the well–known trapezoidal
rule, which is the form actually used in this work. The numerical damping is later in-
troduced in order to test the efficiency that can be reached, although all the examples
are integrated without problems with the trapezoidal rule.
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Combination of the equations of motion with the numerical integrator

The difference equations of a general Newmark integrator, which yield the position
and velocity at the time–stepn C 1 by using the accelerations as primary variables,
are as follows for a time–steph:

znC1 D zn C hPzn C
h2

2
Œ.1 � 2ˇ/ Rzn C 2ˇRznC1� (2.167)

PznC1 D Pzn C h Œ.1 � 
 / Rzn C 
 RznC1� (2.168)

In the dissipative subfamily of the Newmark integrators, the parameterš and
 are
allowed to take the following values, with� � 0, for keeping the integrator in its
unconditionally stable zone,

ˇ D
.1 � �/2

4
I 
 D

1 � 2�

2
(2.169)

For � D 0, ˇ is equal to 0.25 and
 to 0.5, so that the integrator becomes the trape-
zoidal rule, which adds no numerical damping and shows second order precision.
Lowering the value of� increases the amount of numerical damping, thus improv-
ing the stability although at the price of becoming an integrator of only first order
precision.

In order to combine the equations of the integrator with the equations of motion
stated according to the described index–3 augmented Lagrangian formulation, the po-
sitions are used as primary variables, so that the equationsof the integrator turn into

PznC1 D



ˇh
znC1 � OPzn (2.170)

RznC1 D
1

ˇh2
znC1 � ORzn (2.171)

where

OPzn D



ˇh
zn C

�



ˇ
� 1

�

Pzn C

�



2ˇ
� 1

�

hRzn (2.172)

ORzn D
1

ˇh2
zn C

1

ˇh
Pzn C

�
1

2ˇ
� 1

�

Rzn (2.173)

If dynamic equilibrium is imposed at stepn C 1 by combining the equations of the
integrator (2.170) and (2.171) with the equations of motion(2.165), a nonlinear sys-
tem of algebraic equationsf .znC1/ D 0 must be solved for the relative positions.
This system can be solved by using the Newton–Raphson iteration with the following
approximated tangent matrix and residual vector:

fz � M C 
hC C ˇh2
�

ˆT
z˛ˆz C K

�

(2.174)

f D ˇh2
�

M Rq C ˆT
z˛ˆ C ˆT

z œ� � Q
�

(2.175)
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beingK andC the already described generalized stiffness and damping matrices

K D �
@Q
@z

I C D �
@Q
@Pz

(2.176)

The procedure for obtaining the position at stepn C 1 starts by calculating firstly
an initial guess

z0
nC1 D zn C hPzn C

h2

2
Rzn (2.177)

then obtaining the corresponding velocity and acceleration at n C 1 from the equa-
tions of the integrator (2.170) and (2.171). Then, the Newton–Raphson iteration is
performed, by calculating the terms of the tangent matrix and the residual, obtaining
the correction in positions, and obtaining the new velocities and accelerations again
from the equations of the integrator, until the norm of the correction or the residual
goes under a specified tolerance. The iteration used in the augmented Lagrangian for-
mulation for updating the Lagrange multipliers of Eq. (2.166) can be performed along
with the position correction loop.

Projection of velocities and accelerations

The solution off .znC1/ D 0 obtained after the convergence of the corrector yields
a position vector that fulfills the dynamic equilibrium equations, along with the kine-
matic constraints at position level.ˆ D 0/. However, the velocities and accelerations
thus obtained are not guaranteed to satisfy the time derivatives of the constraints, since
they have not been imposed. Bayo and Ledesma (1996) proposeda solution that con-
sists of projecting the velocities and accelerations, in such a way that the new values
fulfill the first and second time derivatives of the constraints. The projection of veloc-
ities is performed by solving the following minimization problem,

minV D
1

2

�

Pz � Pz�
�T

M
�

Pz � Pz�
�

s:t: P̂ D 0

(2.178)

wherePz� are the velocities obtained after the convergence of the Newton–Raphson it-
eration, andPz are the updated values obtained after solving the minimization problem.
This problem consists then in finding the velocities that fulfill the constraints at ve-
locity level, while producing the smallest possible deviation from the original values,
weighted by the mass matrix. This problem can be solved by means of the Lagrange
multipliers method, although, in order to avoid an iterative process, a penalty approach
is more convenient. This leads to solving the following linear system forPz:

�

M C ˆT
z˛ˆz

�

Pz D M Pz� � ˆT
z˛ˆt (2.179)

A similar procedure can be used for projecting the accelerations. The minimization
problem of Eq. (2.178) can be applied to them, in this case subject to the restriction
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R̂ D 0, leading to a linear system with the same leading matrix and adifferent right–
hand–side

�

M C ˆT
z˛ˆz

�

Rz D M Rz� � ˆT
z˛
�

P̂ zPz C P̂
t

�

(2.180)

where theP̂ zPzC P̂
t terms might be previously updated by using the already projected

velocities.
Instead of using the mass matrix as the weighting matrix of the objective function,

Cuadrado et al. (2000) proposed to use a different one that makes the leading matrix
of Eqs. (2.179) and (2.180) become the tangent matrix (2.174), already assembled
and factorized when calculating the positions in the Newton–Raphson iteration. The
proposed weighting matrix is defined as

W D M C 
hC C ˇh2K (2.181)

so that if the restrictions of both the velocity and acceleration minimization problems
are scaled by a factor of̌h2, the linear systems to be solved in order to perform the
projections become,

fzPz D W Pz� � ˇh2ˆT
z˛ˆt (2.182)

fzRz D W Rz� � ˇh2ˆT
z˛
�

P̂ zPz C P̂
t

�

(2.183)

This allows to make use of the last factorization of the tangent matrix performed dur-
ing the Newton–Raphson iteration for evaluating the projections, thus reducing their
impact on the required CPU–time.

Algorithm

In order to initiate the integration process, the index–3 augmented Lagrangian for-
mulation combined with a Newmark integrator here describedneeds the positions,
velocities and accelerations at the first time–step. The positions and velocities can be
obtained from those of the degrees of freedom, that must be known at t D 0, by
performing a standard kinematic analysis. The positions are obtained by means of a
Newton–Raphson iteration in order to solve the nonlinear systemˆ D 0 for the un-
known variables. The unknown velocities, on the other side,must satisfy the equation
ˆzPz D 0, in which the Jacobian appears again. Once the positions andvelocities are
known, the accelerations at the initial instant can be obtained by means of any of the
methods previously described, such as the penalty method, described in Eq. (2.162).

Then, the procedure for obtaining the positions, velocities and accelerations at step
n C 1 from those at stepn can be seen in Figure 2.20. This procedure is divided into
three main steps: first, an initial guess is calculated for stepn C 1 by means of the pre-
dictor; then, a corrector loop calculates the positions, velocities and accelerations that
satisfy the equations of motion; and finally, the velocitiesand accelerations are pro-
jected in order to minimize the violation of the constraintsat velocity and acceleration
level. The resulting algorithm for obtaining the positions, velocities and accelerations
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PREDICTOR ( 0)i=

Position: Newmark:

Multipliers:
True

Position: Newmark:

Correction:Tangent and Residual:
i=i+1

CORRECTOR

PROJECTIONS

Velocities and Accelerations:

False

True

False

0

t=t+h

Figure 2.20: Time integration of the equations of motion.

atn C 1 is as follows:

1. Increase time:t D t C h.

2. Predictor:i D 0

(a) Positionsz0
nC1

from Eq. (2.177).

(b) VelocitiesPz0
nC1

and accelerationsRz0
nC1

from Eqs. (2.170) and (2.171).

3. Corrector:

(a) If i > 0, update Lagrange’s multipliers (Eq. (2.166)).

(b) Evaluate tangent matrixfi
z and residualfi by means of Eqs. (2.174) and

(2.175).

(c) Solve the linear systemfi
z�z D fi for �z.

(d) Calculate the correctedziC1
nC1

D zi
nC1

C�z.
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(e) Update velocities and accelerations with Eqs. (2.170) and (2.171).

(f) If the errork�zk is larger than the tolerance", i D i C 1; go to step 3.

4. Projections:

(a) Projection of relative velocities: Eq. (2.182).

(b) Velocity analysis for Cartesian coordinates, updateP̂ zPz and P̂
t .

(c) Projection of relative accelerations: Eq. (2.183).

In order to evaluate all the terms needed at the steps 3(a) and3(b), the procedure
described in Figure 2.19 for obtainingM , Q, ˆ, ˆz, P̂ zPz and P̂

t must be used. The
K andC matrices are directly obtained by following the procedure described in their
corresponding sections.

2.9 Numerical examples

Three examples, already used for a natural vs. relative coordinates comparison in rigid
multibody systems (Cuadrado et al., 2004a; Dopico, 2004), have been implemented
in the flexible case through both the formulation in natural coordinates described in
Gutiérrez (2003), Cuadrado et al. (2004c), and that in relative coordinates here devel-
oped. The first one is a planar double four–bar mechanism formed by five identical
bars, the second one is the front left suspension of the Bombardier Iltis vehicle (Frik
et al., 1993), and the third one is the full Iltis vehicle. Performance measurements have
been carried out with different numbers of flexible elements, in order to evaluate the
influence of such parameter in each formulation. The first twoexamples were imple-
mented in MATLAB, so the CPU–times should not be considered as a reference for
the efficiency, but only for comparison between formulations. The Iltis vehicle is pro-
grammed in FORTRAN, obtaining faster simulations despite of being a much larger
system.

2.9.1 Double four–bar mechanism

The system consists of five identical steel bars, as seen in Figure 2.21. Each of them
has unit length and mass, and they are all connected by revolute joints. All bars can be
considered individually as rigid or flexible, modeled in theflexible case by 10 beam
elements, with one axial static, one bending static, and twobending dynamic modes.
The closed loops have been cut as done in the double four–bar mechanism shown in
the example in Figure 2.11.

The number of coordinates increases as more flexible bars areconsidered in the
system, being this increment different in the absolute (natural coordinates) and relative
formulations, because the latter does not include as coordinates the unit vectors of the
local frames. The number of coordinates for each formulation and number of flexible
bodies is given in Table 2.1. This number tends to be double innatural coordinates
when more flexible bodies are considered, because each flexible body adds four modal
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Figure 2.21: Double four–bar mechanism.

amplitudes plus four unit vector components, while, in relative coordinates, each body
adds only the four modal amplitudes.

Table 2.1: Number of system coordinates in the first example.

# flexible bars 0 1 2 3 4 5

Absolute 6 13 20 27 34 41
Relative 5 8 11 14 17 20

The system is subject to gravity, and its leftmost ground–attached bar receives
an initial velocity of 1 rad/s in clockwise direction. Motion is integrated during 5 s
–the time to approximately complete 2.7 revolutions– by using the trapezoidal rule
.� D 0/, with a time–step of 10 ms. The CPU–times required for the integration are
those provided in Table 2.2. As it may be seen in the Table, theCPU–times reduce
their difference when more bodies are considered flexible. In the rigid case, the ab-
solute formulation is five times faster, while, in the fully flexible model, the relative
formulation needs only 37% more time for integration, probably due to the propor-
tionally lower number of coordinates mainly.

Table 2.2: CPU–times (s) in the first example.

# flexible bars 0 1 2 3 4 5

Absolute 0.91 3.30 6.24 9.61 11.51 15.22
Relative 4.85 9.11 12.62 15.74 17.74 20.92

The energy conservation has been checked to assess the precision of both formula-
tions. In this example, the total energy fluctuates each timethe system passes through
the singular position, so instead of the energy loss at the end of the simulation, its
mean value along the whole five seconds has been measured. Therelative method,
whose mean energy loss ranges from 0.004 J in the rigid case to0.013 J in the fully
flexible case, has showed a higher precision than the absolute one, which loses a mean
of 0.021 J in both cases.
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2.9.2 Iltis suspension

The Bombardier Iltis vehicle (Frik et al., 1993) is a well–known benchmark system for
simulation software. The second example chosen for the comparison of formulations
is its left front suspension, shown in Figure 2.22. The modelis formed by a total of
five bodies, having three of them the possibility of being flexible or not. The bodies
that can be considered as flexible, namely the A–arm, the upper link and the track rod,
appear in dashed lines in the figure. The A–arm is connected tothe chassis through
a revolute joint, and to the lower side of the stub axle by means of a spherical joint.
The stub axle is considered as a rigid body, and it is connected to both the upper link
and the track rod by spherical joints. The upper link is connected to the chassis by a
revolute joint, whereas the track rod uses a spherical one for that purpose. Three force
elements appear in this system: a shock absorber, acting between the A–arm and the
chassis; a spring, which connects the upper joint of the stubaxle to the chassis; and
the wheel, which is modeled as a simple spring dependent on the distance to the floor.

Track rod (R)

Upper link (L)

A-arm (A)

1/4 chassis

Stub axle

Spring

Shock absorber

Figure 2.22: Sketch of the Iltis left front suspension.

The modeling used in relative coordinates is described here. The system is again
a closed loop and, in order to transform it into an open–loop system, the two upper
spherical joints at the top of the stub axle, i.e. the connections to the upper link and
the track rod, are cut. Then, the topology of the mechanism isas follows:

� A translational jointz1, defined in the vertical direction, connects the chassis to
the inertial system.

� The A–arm is connected to the chassis by means of a revolute joint z2. Then,
three revolute jointsz3, z4 andz5 are used to model the spherical joint between
the A–arm and the stub axle. This completes the first branch that starts from the
chassis.

� The second branch consists of the upper link, attached to thechassis by means
of a revolute jointz6.
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� The track rod is pinned to the chassis, having two degrees of freedomz7 andz8.
This is the third and last branch of the mechanism.

Six constraints are established to impose the closure of thecut joints, since both are
of the spherical type.

In this case, modal damping has been added to the flexible elements, using a modal
damping matrix equal to 1% of their modal stiffness matrix. The flexible bodies are
modeled by using a tangent frame at the input joint, which is,for the three of them,
placed at the connections to the chassis. Then, the A–arm hastwo off–plane static
modes, defined at the connections to the shock absorber and tothe stub axle, plus the
first two dynamic modes to complete the deformation field. It has been modeled by
means of a finite element model, using 3D beam elements, and isformed by two bars,
discretized into 10 elements each, that converge at the connection to the stub axle,
plus an additional rigid element that models the connectionto the shock absorber. The
other two elements are simple beams, discretized into 10 elements, and they both use
the same modal reduction, consisting of two transversal static modes defined at their
tips, plus the first four dynamic modes.

The number of coordinates needed in all the possible combinations of formulation
and flexible bodies are shown in Table 2.3. Being this a three–dimensional system,
the consideration of a body as flexible in natural coordinates can add up to 9 coordi-
nates in addition to the modal amplitudes, since a local reference frame needs three
unit vectors, although in practice some of the vectors can beshared between neighbor
elements thus reducing the total number of variables. In this case the number of co-
ordinates in the absolute model is around three times larger, and, unlike the previous
example, this relation remains almost constant with the number of flexible bodies.

Table 2.3: Number of system coordinates in the second example.

Flexible elements None A L R A+L A+R L+R All

Absolute 35 45 47 50 57 60 62 72
Relative 8 12 14 14 18 18 20 24

The suspension reaches equilibrium and then runs down a 0.2 mstep att=2 s.
The integration, performed again with the trapezoidal rulewith a time step of 10 ms,
is carried out for 5 seconds until the suspension reaches equilibrium again. The time
history of the vertical coordinate of the chassis, as well asthat of the wheel center,
with all possible flexible elements, are plotted in Figure 2.23, showing a very good
agreement between the two formulations.

The CPU–times required to carry out the simulation are displayed in Table 2.4, as
well as in Figure 2.24. In order to more clearly show the influence of the number of
bodies, Figure 2.25 shows the CPU–times for the cases of one or two flexible bodies
obtained as the mean values of the three different combinations. It is observed that
the method in relative coordinates is now faster than that inabsolute coordinates, and
the difference grows as the number of flexible bodies is increased. However, the im-
provement is not very significant, taking into account that the implementation of the
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Figure 2.23: Iltis suspension simulation results.

Table 2.4: CPU–times (ms) in the second example.

Flexible elements None A L R A+L A+R L+R All

Absolute 45 155 120 91 234 231 175 298
Relative 31 125 52 67 169 167 98 216

method in relative coordinates is much more involved. The energy loss has been mea-
sured for this example as well in order to compare the precision of the two methods.
The total energy at the end of the simulation must be equal to the total energy at the
beginning, minus the energy dissipated in the damper, and the difference between this
theoretical value and the actual energy at the end of the simulation is taken as a preci-
sion measurement. The results are very similar although slightly better in the relative
formulation, which loses 14.07 J in the rigid case and 15.08 Jin the fully flexible one,
as opposed to 15.73 J and 15.45 J respectively for the absolute method.

2.9.3 Iltis vehicle

The third example chosen is the full Iltis vehicle, which is agood example of a large
system. The four suspensions of the Iltis vehicle are identical to the one described in
the previous example.

In the model in relative coordinates, the connection of the chassis to the inertial
frame is made by using a floating joint, and the closed loops have been cut in all
the suspensions at the same joints, thus having 12 branches starting from the chassis.
When performing the forward position and velocity analyses for the open–loop sys-
tem, as well as the backward mass and force accumulation, thecomputation of the
four suspensions can be parallelized, since they are independent.

As done in the single suspension problem, all possible combinations of rigid and
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Figure 2.24: CPU–times in the second example.
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Figure 2.25: CPU–times vs. number of flexible bodies in the second example.

flexible bodies have been tested, using both formulations. The combinations have been
chosen keeping the modeling of the four suspensions identical, i.e. if one element (A,
L or R) is considered as flexible, it is done in all four suspensions. The number of
coordinates obtained for each combination is shown in Table2.5. As can be observed,
the coordinate numbers tends to be three times lower in the relative case, as it happened
in the previous example. But the relative formulation, due to the modal amplitudes,
no longer has the very low number of coordinates common for such formulations,
reaching a total of 98 coordinates in case of the highest number of flexible bodies.

Table 2.5: Number of system coordinates in the third example.

Flexible elements None A L R A+L A+R L+R All

Absolute 168 196 216 228 244 256 276 304
Relative 34 50 58 58 74 74 82 98
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Figure 2.26: Iltis vehicle.
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0.5

Figure 2.27: Road profile for the Iltis vehicle simulation.

The vehicle runs during 8 s over the road profile shown in Figure 2.27, going from
left to right with an initial velocity of 5 m/s. The integration is carried out with a time–
step of 10 ms, using the Newmark integrator with� D 0, i.e. the trapezoidal rule.
The time histories of the height of both the chassis origin and the center of the front
left wheel, when all the elements are considered as flexible,are plotted in Figs. 2.28
and 2.29, showing a very good agreement between the different methods. It is ob-
served that this is a rather violent maneuver, since the car bounces several times when
running down the steps. The good agreement between both formulations is also ob-
tained in the elastic coordinates, as can be seen in Figure 2.30, where the deflections
of the tip of the front left A–arm obtained by using both formulations are plotted. The
CPU–times obtained can be seen in Table 2.6 and Figure 2.31, including all combina-
tions of flexible and rigid bodies. Figure 2.32 shows the CPU–times vs. the number of
flexible bodies, in order to more clearly show its influence. In this figure, the times for
four and eight flexible bodies (one and two per suspension) are the mean values of all
the corresponding different cases, as was done in the secondexample.

As it happened in the rigid case, the relative method is faster than the absolute one
for large systems, but not to the same extent. As can be seen inTable 2.6, the relative
method is roughly 5.5 times faster in the rigid case, but only3 times in the fully flexible
case. This happens because the computation of the flexible mass matrices takes most
of the computing time.

The error with respect to a reference solution, calculated with a time–step of10�4

s, is measured in order to evaluate the precision of both methods. This error is de-
fined as the mean deviation of the height of the chassis from the reference solution,
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Figure 2.28: Time–history of the origin of the chassis.

Table 2.6: CPU–times (s) in the third example.

Flexible elements None A L R A+L A+R L+R All

Absolute 1.25 2.33 2.35 2.41 3.35 3.44 3.31 4.48
Relative 0.23 0.74 0.57 0.58 1.22 1.21 0.93 1.48

measured along the last three seconds,

e D
1

ns C 1

nsX

iD0

ˇ
ˇzi � z�

i

ˇ
ˇ (2.184)

wherezi andz�
i are the calculated and reference chassis heights respectively, andns

is the number of time–steps. Only the last three seconds of the simulation, where the
most violent bounces occur, have been taken into account to make the error more
significant. It can be observed in Table 2.7 that the relativeformulation, following the
trend observed in the previous two examples, is also slightly more accurate than the
absolute one for the time–step of 0.01 s.

In order to compare the robustness of the two methods, several simulations have
been carried out increasing the time–step up to the maximum possible. As it is shown
in Table 2.7, the absolute method can run with a maximum time–step of 14 ms in the
flexible case, obtaining a CPU–time reduction of about 15%. The relative formula-
tion reaches a time–step of 44 ms, with a significant improvement in the CPU–time,
reaching a real–time ratio of more than 13 times in a system with 12 flexible bodies.
Obviously, such high time–steps can only be obtained at the expense of introducing
significant errors, especially in the case of the relative method where the time–step
is three times higher. Going even further, Table 2.7 shows also the fastest results ob-
tained by adding numerical damping to the Newmark integrator, keeping the time–step
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Figure 2.29: Time–history of the height of the front left wheel.

below 50 ms. All these results have a mean error of almost 0.1 m, which may be not
admissible for certain applications, but they serve to showhow robust the relative for-
mulation is, reaching a time–step of 50 ms in the flexible case, where the absolute
method cannot go further than 22 ms.

2.10 Conclusions and criteria of use

As expected, the formulation in relative coordinates obtains lower performance than
that in natural coordinates for small systems, and higher performance for medium and
large systems, being somewhat more accurate in both cases. The higher time–steps
reached by the relative method in the last example, especially with the trapezoidal
rule, show that it is not only faster for large systems, but also more robust.

It must be pointed out that the first example is implemented inMATLAB, so that
the results are not completely reliable. In the rigid case, the absolute method should
keep the advantage since the relative method only reduces the coordinates from 6 to 5,
but the results obtained when more flexible bodies are added might vary if a compiled
language is used.

The introduction of finite element models through the corotational approximation
is very easy but can have a high impact on performance. Profiling shows that the
B� matrix calculation and mass matrix projection takes most ofthe total integration
time. The impact of these operations obviously grows with the number of flexible
bodies, reaching, for the Iltis vehicle with the twelve flexible elements, 82% of the
total time in the relative formulation and 72% in the absolute one, despite of the coarse
finite element meshes used. In order to avoid this problem, the implementation of a
different method for evaluating the inertia terms, based ona preprocessing stage for
extracting constant mass matrix terms, instead of keeping the size of the underlying
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Figure 2.30: Time–history of the tip deflection of the front left A–arm.
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Figure 2.31: CPU–times in the third example.

finite element model –as it happens with matrixB�– is addressed in the next chapter.
These operations (B� calculation and mass projection) are performed faster in the
relative method, due to the fact that in natural coordinatesa flexible body has 12 rigid
body variables, as opposed to only 6 in the method in relativecoordinates. Each of
these coordinates adds a column to theB� matrix, which affects very significantly its
size in systems with few modes per flexible body.
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Figure 2.32: CPU–times vs. number of flexible bodies in the third example.

Table 2.7: Efficiency and precision in the third example.

Rigid Flexible
Absolute Relative Absolute Relative

Trapezoidal rule, time–step 0.01 s

CPU–time (s) 1.255 0.231 4.483 1.478
Error (�10�2 m) 2.472 1.934 2.224 2.175
Real–time ratio 6.37 34.63 1.78 5.41

Trapezoidal rule, highest time–step below 0.05 s

Time–step (s) 0.034 0.044 0.014 0.044
CPU–time (s) 0.610 0.094 3.859 0.609
Error (�10�2 m) 7.297 7.303 3.031 8.550
Real–time ratio 13.11 85.11 2.07 13.14

Newmark, highest time–step below 0.05 s

� parameter -0.8 -0.8 -0.8 -0.8
Time–step (s) 0.050 0.050 0.022 0.050
CPU–time (s) 0.359 0.063 2.062 0.375
Error (�10�2 m) 9.301 9.479 9.989 9.517
Real–time ratio 22.28 126.98 3.88 21.33





Chapter 3

Inertia Shape Integrals

3.1 Introduction

The projection of the inertia terms into the body coordinates by means of a fullB� ma-
trix, the projection methodin what follows, was first introduced into a FFR formula-
tion in natural coordinates by Avello (1995). This method isvery simple to implement,
as can be seen in the previous chapter, and if the sparsity of the finite element matrix
is taken advantage of, it is reasonably efficient for small tomedium size meshes. If
large finite element models are required, however, the method can become unusable
due to the dependency on the size of the finite element mesh. The two formulations
compared in Chapter 2 show a very good performance, but theirpractical application,
due to the use of this method for calculating the inertia terms, can be restricted for this
reason.

This chapter is focused on the implementation and efficiencyof a different method
for the calculation of the inertia terms, thepreprocessing method, based on the use of
the inertia shape integrals orinvariants(Shabana, 1991; Sugiyama et al., 2006). These
integrals were already used by Cuadrado et al. (1996) in a FFRformulation in nat-
ural coordinates, similar to that used in the present work for comparison purposes
(Cuadrado et al., 2004c; Gutiérrez, 2003). That formulation used a different modeling
for the flexible bodies, not considering the static modes as system variables, but writ-
ing them in terms of the points coordinates and unit vectors components, a difference
that completely modified the resulting implementation.

The inertia shape integrals are a set of invariant matrices which are obtained at a
preprocessing stage, by integrating the deformation modes, the undeformed positions,
and some certain products between them, over the whole volume of the body. The use
of inertia shape integrals for obtaining the inertia terms leads to operations involving
only matrices the size of the reduced model. This means that their use eliminates the
size of the finite element mesh from the system, taking full advantage of the modal
reduction, so that the CPU–time will only depend on the size of the reduced model,
i.e. the number of deformation modes selected, and the mesh can be refined as much
as needed without introducing any penalty to the simulationtime. Wallrapp (1994)
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included these integrals in a proposal for standardizationof the input data, externally
generated, required by a multibody code to model flexible bodies.

In this chapter, the implementation of the inertia shape integrals in both the ab-
solute and the relative formulations is discussed, and an efficiency comparison to the
original full B� matrix projection method is performed, in order to provide some prac-
tical criteria of use. All the development is carried out forisoparametric elements,
for the sake of simplicity, although everything is easily generalizable to the non–
isoparametric case. First, the main idea of the method, common to both formulations,
is described. Then, the implementation of the method in bothabsolute and relative co-
ordinates is detailed. A method for efficiently calculatingthe inertia shape integrals,
based on simple matrix products, is described in the next section, and then detailed for
three–dimensional beams. Finally, the results obtained with both the projection and
the preprocessing methods are presented and discussed.

3.2 General description

The velocity of an arbitrary point of a flexible body can be expressed as a linear func-
tion of the generalized velocitiesPq, by means of a projection matrixB,

Pr D B .q/ Pq (3.1)

This is applicable to both the velocities in natural coordinates,Pq, or in the intermediate
Cartesian velocities used in the previous chapter,Z, being theB matrix obviously
different for each coordinate set. The mass matrix and the velocity dependent inertia
forces vector must be expressed in terms of thePq or Z coordinates in order to include
them in the equations of motion. In the methods described so far, this has been done by
assembling a fullB� matrix including all the finite element nodes, and then performing
the projection of the inertia terms at every iteration of theintegrator. This procedure,
as pointed out at the beginning of this chapter, is very simple to implement, but if
the finite element model becomes too large, being the number of DOFs several orders
of magnitude larger than the number of modes, a different method should be used
in order to keep the efficiency requirements. The main idea isto eliminate the size
of the finite element model, making the CPU–time dependent only on the number
of modes chosen for the model reduction, which is actually the objective of using a
modal reduction.

3.2.1 Derivation of the inertia terms

Three steps might be distinguished when deriving the mass matrix from the kinetic
energy expression: the finite element discretization, the transformation between abso-
lute and generalized velocities, and the mass integration.The key difference between
the projection method and the preprocessing method addressed in this chapter is the
order in which these three operations are performed. In the previous method, the finite
element discretization was first introduced, then the integration of the interpolation
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matrices led to the constant finite element mass matrixM�, which could be finally
projected into the generalized velocitiesPq by means of the full transformation matrix
B� at every time step:

T D
1

2

Z

V

PrT Pr dm �
1

2
Pr�TM� Pr� H) M � B�TM�B� (3.2)

In the method addressed in this chapter, the velocity projection for a generic point is
applied first, and after takingPq out of the integral, the kinetic energy is obtained as,

T D
1

2

Z

V

PrT Pr dm D
1

2
PqT
�Z

V

BTB dm

�

Pq (3.3)

which means that the mass matrix expressed in the body coordinatesq is

M D

Z

V

BTB dm (3.4)

and in order to calculate this integral, the finite element discretization is introduced.
The results obtained are then the same as in the projection method, since only the order
in which operations are performed is changed. In the case of beams, this integral can
be done by using the analytical functions of the deformationmodes, thus eliminating
the inconsistency and obtaining their exact values.

The definition of the kinetic energy in Eq. (3.3) can be introduced into the La-
grangian, then the Lagrange equations can be applied to obtain the expression of the
velocity dependent inertia forces vector, as done in the projection method,

Qv D �

�Z

V

BT PB dm

�

Pq (3.5)

3.2.2 Definition of the inertia shape integrals

As mentioned before, the integrals needed for obtaining themass matrix and the ve-
locity dependent forces vector can be efficiently calculated by matrix and vector op-
erations if some invariant matrices are extracted. The complete set needed consists of
16 mass integrals, including the undeformed positions, themode shapes, and several
combinations of products between them. These integrals canbe divided into two sets.
The first set consists of three mass integrals, where only undeformed positions appear,
so that they lead to inertia terms associated to the undeformed body motion. The iner-
tia shape integrals are the remaining 13 ones, which includethe mode shapes, hence
they are used to obtain the variation of the inertia properties produced by deformation.

The first three integrals can be obtained from the undeformedgeometry of the
body, and include the mass of the bodym, the static momentNmu, and the planar
inertia tensorNPu, all of them calculated in the local frame,

m D

Z

V

dmI Nmu D

Z

V

Nru dmI NPu D

Z

V

Nru NrT
u dm (3.6)
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The first integral does not need to be calculated unless the mass of the body is un-
known, and has been included in the set only for completeness. The static moment
Nmu can also be directly obtained without integration, if the mass and the undeformed
position of the center of gravityNrG

u are known,

Nmu D

Z

V

Nru dm D mNrG
u (3.7)

And the planar inertia tensor can be derived from the undeformed inertia tensorNJu in
case it is available,

NPu D

Z

V

Nru NrT
u dm D

1

2

3
X

iD1

�
NJu

�

ii
I3 � NJu D NJuI3 � NJu (3.8)

being NJu the moment of inertia of the undeformed body with respect to the origin of
the local frame of reference.

All the remaining integrals involve the mode shapesX; therefore, they will be used
to obtain the variable part of the inertia terms. Three kindsof these integrals can be
defined, generating a total of 13 constant matrices. The firsttype is the integral of the
mode shapes themselves, which results in a3 � nm matrix, beingnm the number of
columns inX, i.e. the number of deformation modes chosen for the reduction of the
finite element model,

S D

Z

V

X dm (3.9)

If the mode shapesX are multiplied by the three components of the undeformed posi-
tion and integrated, three more constant3 � nm matrices are obtained,

Si D

Z

V

NruiX dm; i D 1; 2; 3 (3.10)

And the remaining nine matrices, of sizenm �nm, include the integrals of the products
between the three directions of the mode shapes,

Sij D

Z

V

XT
i Xj dm; i; j D 1; 2; 3 (3.11)

whereXi is thei th row of X. It must be noted that only six of these integrals need to
be calculated, sinceSji is equal to the transpose ofSij .

The complete set of undeformed geometry integrals and inertia shape integrals
here defined, along with the generalized coordinates vectorq and its time derivative
Pq, contain all the necessary information required to calculate the mass matrix and the
velocity dependent forces vector of a deformable body. In order to make the procedure
clearer, the inertia terms can be considered as divided intoblocks, according to the
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structure of the generalized coordinates vector,

M D

2

6
4

M t t M t� M tf

M�� M�f

sym: Mff

3

7
5 ; Qv D

8

<̂

:̂

Qvt

Qv�

Qvf

9

>=

>;

(3.12)

where the subindext refers to the inertia associated to the translation of the frame of
reference,� to that of its rotation, andf to the inertia of the elastic coordinates.

3.3 Implementation in absolute coordinates

As pointed out in the previous section, the velocity of a point can be expressed as a
linear function of the generalized velocitiesPq, by means of a variable transformation
matrixB. On the formulation in natural coordinates, the generalized velocities are

PqT D
n

PrT
0

PuT PvT PwT PyT
o

(3.13)

wherer0 is the position of the origin of the local frame,u, v andw are its three unit
vectors expressed in global coordinates, which can be grouped into a rotation matrix
A, andPy is the vector of elastic coordinates. In order to obtain an expression for theB
matrix, the velocity of a point can be obtained by differentiating the position given by
Eqs. (2.1) and (2.3), thus leading to

Pr D Pr0 C PA Nr C A PNr D Pr0 C PA Nr C AX Py (3.14)

which is a linear relationship between the velocity of the point and the generalized
velocities Pq. This can be expressed in matrix form, as in Eq. (3.1), thus obtaining an
expression for theB matrix of a generic point in natural coordinates,

B D
h

I3 Nr1I3 Nr2I3 Nr3I3 AX
i

(3.15)

The components of the local deformed positionNr , provided thatNr D Nru C Xy, are,

Nri D Nrui C Xiy; i D 1; 2; 3 (3.16)

3.3.1 Mass matrix

In order to obtain the mass matrix, theBTB product must be developed

M D

Z

V

BTB dm D

Z

V

2

6
6
6
6
6
6
4

I3 Nr1I3 Nr2I3 Nr3I3 AX

Nr2
1 I3 Nr1 Nr2I3 Nr1 Nr3I3 Nr1AX

Nr2
2

I3 Nr2 Nr3I3 Nr2AX

sym: Nr2
3

I3 Nr3AX

XTX

3

7
7
7
7
7
7
5

dm (3.17)
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In what follows, the derivation of the different blocks in terms of the inertia shape
integrals will be addressed in detail.

Mass terms associated to the reference coordinates

The first three blocksM t t , M t� andM�� contain the inertia terms related to the motion
of the frame of reference. They have the same physical meaning as in rigid body
dynamics, although most of their terms are now variable.

The first blockM t t is a constant3 � 3 diagonal matrix, representing the transla-
tional inertia of the body,

M t t D

Z

V

I3 dm D mI3 (3.18)

The second blockM t� contains the mass terms that couple the translational and
rotational inertia of the reference frame,

M t� D

Z

V

h

Nr1I3 Nr2I3 Nr3I3

i

dm (3.19)

and its calculation requires the integration of the three components of the deformed
local positionNr . The integral ofNr is by definition the static momentNm, in the deformed
configuration, and it can be considered as divided into a constant and a variable part,

Nm D

Z

V

Nr dm D

Z

V

.Nru C Xy/ dm (3.20)

The integral of the undeformed positionNru is already known, since it is the unde-
formed static momentNmu. The second term represents the variation introduced by the
deformation, and it can be easily calculated by taking the modal amplitudes vector
y out of the integral, so that the remaining integral is nothing but the integral of the
mode shapesS. The static moment is finally obtained as,

Nm D Nmu C Sy (3.21)

and its three components are the respective diagonals of thethree3 � 3 blocks that
form theM t� submatrix,

M t� D
h

Nm1I3 Nm2I3 Nm3I3

i

(3.22)

In the center of the mass matrix the blockM�� is found. It contains the rotational
inertia of the frame of reference, and it is itself formed by nine diagonal3 � 3 blocks,

M�� D

Z

V

2

6
4

Nr2
1

I3 Nr1 Nr2I3 Nr1 Nr3I3

Nr2
2

I3 Nr2 Nr3I3

sym: Nr2
3 I3

3

7
5 dm (3.23)
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In this case, the terms to be integrated are the components ofthe deformed planar
inertia tensorNP,

NPij D

Z

V

Nri Nrj dm; i; j D 1; 2; 3 (3.24)

EachNri Nrj product can be calculated by first decomposingNri and Nrj into their constant
and variable parts,

Z

V

Nri Nrj dm D

Z

V

. Nrui C Xiy/
�

Nruj C Xj y
�

dm; i; j D 1; 2; 3 (3.25)

and then developing the product,

Z

V

�

Nrui Nruj C NruiXj y C Nruj Xiy C XiyXj y
�

dm; i; j D 1; 2; 3 (3.26)

Each NPij needs the evaluation of four integrals. The first one is the integral of Nrui Nruj ,
which is constant and is recognised as the elementij of the undeformed planar inertia
tensor. The remaining three terms depend all ony, so that they represent the variation
produced by deformation. Two of them are linear iny, and they includeSi

j andSj
i ,

which are thej th row of Si and thei th row of Sj respectively. The last term is equal
to the integral ofyTXT

i Xj y, and it leads to a quadratic expression iny. Finally, each
element NPij of the planar inertia tensor can be found to be

NPij D
�

NPu

�

ij
C
�

Si
j C Sj

i

�

y C yTSij y; i; j D 1; 2; 3 (3.27)

and used to assemble the rotational inertia submatrix,

M�� D

2

6
4

NP11I3
NP12I3

NP13I3

NP22I3
NP23I3

sym: NP33I3

3

7
5 (3.28)

It is observed that, if only the constant termsNmu and NPu are used for obtaining
these blocks, the resulting matrix is the mass matrix of the body, considered as rigid
in its undeformed state.

Mass terms coupling the reference coordinates to the elasticcoordinates

The first four blocks of the last column, all of them of size3�nm, represent the inertia
coupling between the reference and the elastic coordinates.

The first one, which will only depend on the orientation but not on the deforma-
tion state, will couple the translational inertia to the elastic deformation, and is easily
obtained by takingA out of the integral,

M rf D

Z

V

AX dm D AS (3.29)
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The second, third and fourth blocks couple the rotational and deformation inertias:

M�f D

Z

V

2

6
4

Nr1AX

Nr2AX

Nr3AX

3

7
5 dm (3.30)

These are the only terms which depend both on the orientationand on the deformation
state, and are the most involved of the mass matrix. If the rotation matrixA is taken
out of the integral in each block, the remaining integrals are those ofNriX. It can be
observed that these integrals are analogous to the inertia shape integralsSi , but, in this
case, the factors that multiply the mode shapes are the components of the deformed
local position, which may be namedSi

d
,

Si
d D

Z

V

NriX dm; i D 1; 2; 3 (3.31)

In order to evaluate them, the local deformed position is decomposed as usual:

Z

V

NriX dm D

Z

V

. Nrui C Xiy/X dm; i D 1; 2; 3 (3.32)

The first term of the integral is the inertia shape integralSi , and in order to obtain the
second, some manipulations are needed. First, the scalar productXiy can be trans-
posed, butyT can not yet be taken out of the integral since the remaining productXT

i X
is not compatible. To avoid this problem,X can be divided into its three rows, yielding

Z

V

XiyX dm D

Z

V

yTXT
i X dm D

Z

V

2

6
4

yTXT
i X1

yTXT
i X2

yTXT
i X3

3

7
5 dm; i D 1; 2; 3 (3.33)

where the three inertia shape integralsSi1, Si2 andSi3 are recognized, leading to

Si
d D Si C

2

6
4

yTSi1

yTSi2

yTSi3

3

7
5 ; i D 1; 2; 3 (3.34)

TheM�f block of the mass matrix is finally obtained by rotating theSi
d

integrals:

M�f D

2

6
4

AS1
d

AS2
d

AS3
d

3

7
5 (3.35)

Mass terms associated to the elastic coordinates

The lastnm�nm block of the mass matrix is constant, as it happened to the mass inertia
associated to the origin of the reference framer0. The value of this block, according to
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Eq. (3.4), is equal toXTATAX . Since the vectors of the frame of referenceu, v andw
have been defined as unit orthogonal vectors, the rotation matrix A is orthogonal, and
this makes the productATA identically equal toI3 independently on the orientation of
the frame, thus making this block constant. This block, onceeliminated the orientation
dependency, is nothing but the well–known modal mass matrix, widely used in the
structural dynamics field and, as will be seen later, is the same for the method in
relative coordinates. It can be obtained as,

Z

V

XTX dm D S11 C S22 C S33 (3.36)

3.3.2 Velocity dependent inertia forces

The velocity dependent inertia forces are obtained by meansof Eq. (3.5), so that the
first step to be performed is theB matrix differentiation, a straightforward operation
if the structure of the local position components, shown in Eq. (3.16), is taken into
account,

PB D
h

0 X1 PyI3 X2 PyI3 X3 PyI3
PAX
i

(3.37)

If the PB Pq product is evaluated, not forgetting thatPA is formed by the derivatives of the
unit vectorsPu, Pv and Pw as columns, it can be easily found that

PB Pq D X1 Py Pu C X2 PyPv C X3 Py Pw C PAX Py D 2 PAX Py (3.38)

It the derivative of the orientation matrix is expressed in terms of the angular velocity
¨, it can be observed that this expression coincides with the Coriolis acceleration,

PB Pq D 2¨ � A PNr (3.39)

The different blocks of the velocity dependent forces vector, defined according to the
partition shown in Eq. (3.12), can be obtained after evaluating the productBT PB Pq and
performing the integration,

Qvt D �2

Z

V

PAX Py dm (3.40)

Qv� D �2

Z

V

2

6
4

PA Nr1X
PA Nr2X
PA Nr3X

3

7
5 Py dm (3.41)

Qvf D �2

Z

V

XTAT PAX Py dm (3.42)

The forces associated to the reference coordinates are straightforward if the inertia
shape integrals are already known. The first block includes the integral of the mode
shapes, so that it is immediately obtained by taking the rotation matrix out of the
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integral

Qvt D �2 PASPy (3.43)

The rotational forces require the integrals of the deformedlocal position components
times the mode shapes, which have been already calculated

Qv� D �2

2

6
4

PAS1
d

PAS2
d

PAS3
d

3

7
5 Py (3.44)

The only problem left is calculating the integral ofXTAT PAX , needed to obtain the
Qvf forces. In order to do this, firstly theAT PA product is studied,

AT PA D

2

6
4

uT

vT

wT

3

7
5

h

Pu Pv Pw
i

D

2

6
4

uT Pu uT Pv uT Pw

vT Pu vT Pv vT Pw

wT Pu wT Pv wT Pw

3

7
5 (3.45)

This resulting matrix is skew–symmetric, sincePA D Q̈ A and Q̈ is skew–symmetric by
definition. If the wholeXTAT PAX product is rewritten, taking into account the skew–
symmetry ofAT PA and dividingX into its three rows,

XTAT PAX D
h

XT
1

XT
2

XT
3

i

2

6
4

0 uT Pv uT Pw

�uT Pv 0 vT Pw

�uT Pw �vT Pw 0

3

7
5

2

6
4

X1

X2

X3

3

7
5 (3.46)

after developing this expression and integrating, the following result forQvf is ob-
tained:

Qvf D�2
h

uT Pv
�

S12� S21
�

C uT Pw
�

S13� S31
�

C vT Pw
�

S23� S32
�i

Py (3.47)

The terms within parentheses are constant, so that they can be calculated in the pre-
processing stage and stored before starting the simulation.

3.4 Implementation in relative coordinates

In the relative method, the velocity of a point of the solid can be expressed, using the
intermediate Cartesian coordinatesZ, as,

Pr D PsC ¨ � r C A PNr D Ps� Qr¨ C AX Py (3.48)

which leads to the following expression of theB matrix,

B D
h

I3 �Qr AX
i

(3.49)
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3.4.1 Mass matrix

The procedure to obtain the mass matrix of a flexible body, expressed in the interme-
diate coordinatesZ, is essentially the same as that used in the absolute method.The
first step is to develop the integral ofBTB,

NM D

Z

V

BTB dm D

Z

V

2

6
4

I3 �Qr AX

�Qr Qr QrAX

sym: XTX

3

7
5 dm (3.50)

There is a key difference between this expression of the massmatrix and the ex-
pression obtained for the absolute method: the integrals appearing here involve the
absolute position, as opposed to Eq. (3.17), where only the local deformed position
components appear in the integrals. In the relative method,the mass matrix contains
fewer terms than in the absolute one, but these terms are somewhat more complicated
to calculate.

Mass terms associated to the reference coordinates

The3 � 3 block corresponding toPs, as it happened in the absolute method, contains
the translational inertia of the body, being a diagonal matrix containing the total mass
of the body:

NM t t D

Z

V

I3 dm D mI3 (3.51)

The terms couplingPs and¨ contain the integral of�Qr , which is nothing but the
skew–symmetric matrix associated to the static moment of the deformed body with
respect to the global origin of coordinatesm:

NM t� D

Z

V

�Qr dm D � Qm (3.52)

This integral can be easily derived from the static moment ofthe deformed body in
local coordinatesNm, which can be calculated by using Eq.(3.21), and then expressed
in global coordinates by rotation and translation,

m D mr0 C A Nm (3.53)

The integral of the terms related to rotation is the inertia tensor, expressed in global
coordinates, and calculated with respect to the global origin,

NM�� D

Z

V

�Qr Qr dm D J (3.54)

If the Qr Qr product is developed, the expressions obtained are very involved, being much
easier to calculate the inertia tensor in local coordinateswith respect to the local origin,
then transforming it by means of the Steiner theorem and rotation. First the inertia
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tensor is obtained from the planar inertia tensor describedin the absolute method,
by using Eq. (3.8), which is also applicable to the deformed configuration. Then it is
translated to the center of mass by means of the Huygens’ formula,

NJG D NJ0 C mQNrG QNrG (3.55)

The next step is rotating it in order to express it in global coordinates,

JG D A NJGAT (3.56)

and finally translating it again from the center of mass to theglobal origin,

J D JG � mQrG QrG (3.57)

The rotational inertia of the deformed body, with respect tothe global origin, results

NM�� D A
�

NJ0 C mQNrG QNrG
�

AT � mQrG QrG (3.58)

In short, in order to obtain the mass matrix terms corresponding to¨, the planar inertia
tensor in local coordinates, for the deformed configurationand with respect to the
body local frame origin, must be calculated as described forthe absolute method, then
transformed into the inertia tensorNJ0, and finally converted into the global inertia
tensor by applying Eq. (3.58).

By using the undeformed static momentNmu and inertia tensorNJ0
u instead of their

deformed counterparts, the mass matrix of the body in the undeformed configuration,
is the result obtained for the reference blocks. Therefore,the mass matrix of any rigid
body can be calculated by using these expressions.

Mass terms coupling the reference coordinates to the elasticcoordinates

The block containing the inertia coupling the translation to the elastic coordinates is
exactly the same as in the absolute method, and can be obtained directly by rotating
the inertia shape integralS, as shown in Eq. (3.29).

The coupling between the rotation and the elastic deformation is the most compli-
cated term. If the rotation matrixA is divided into its three rowsA1, A2 andA3, and
the product is developed, it can be found, after some manipulation, that,

NM�f D

Z

V

QrAX dm D

Z

V

2

6
4

A3r2X � A2r3X

A1r3X � A3r1X

A2r1X � A1r2X

3

7
5 dm (3.59)

This means that the integrals ofr1X, r2X andr3X are needed. Analogously to what
has been done to the integrals of the components of the deformed local position times
the mode shapes, these integrals can be namedS1

a, S2
a andS3

a respectively, since they
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are the integrals of the components of the absolute positiontimes the mode shapes.

Si
a D

Z

V

riX dm D

Z

V

.r0i C Ai Nr/X dm; i D 1; 2; 3 (3.60)

After developing this expression, the following expression for the three integrals can
be obtained,

Z

V

riX dm D r0iSC

3
X

jD1

Aij Sj

d
dm; i D 1; 2; 3 (3.61)

which includes the variable integralsSj

d
, the same as those already needed for ob-

taining the planar inertia tensor by means of Eq. (3.34). Theintegral of QrAX is, in
short, obtained by following two steps: first, theSi

a integrals are calculated by means
of Eq. (3.61) using the already storedSi

d
integrals obtained from Eq. (3.34); then, the

results can be substituted into Eq. (3.59) to obtain the massterms coupling the rotation
to the elastic deformation:

NM�f D

2

6
4

A3S2
a � A2S3

a

A1S3
a � A3S1

a

A2S1
a � A1S2

a

3

7
5 (3.62)

Mass terms associated to the elastic coordinates

As happened to the translational inertia and the coupling between translation and elas-
tic deformation, the mass associated to the elastic coordinates is the same as in the
absolute formulation, being again the constant modal mass matrix already shown in
Eq. (3.36).

3.4.2 Velocity dependent inertia forces

The velocity dependent inertia forces vector in the intermediate Cartesian coordinate
systemNQv is obtained, as previously described, from

NQv D �

Z

V

BT PBZ dm (3.63)

where, as seen in Chapter 2, the productPBZ is equal to

PBZ D Q̈ Q̈ r C 2 PAX Py (3.64)
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After several manipulations, the following expressions for the three sections ofNQv can
be obtained:

NQvt D

Z

V

�

Q̈ Qr¨ � 2 PAX Py
�

dm (3.65)

NQv� D

Z

V

�

Q̈ Qr Qr¨ � 2Qr PAX Py
�

dm (3.66)

NQvf D

Z

V

��

Qr PAX
�T

¨ � 2XTAT PAX Py
�

dm (3.67)

The integral of the first section corresponds to the translational forces. The first term
includes the integral of the skew–symmetric matrix associated to the absolute posi-
tion Qr , which is equal to the skew–symmetric matrix associated to the static moment.
The second term is directly obtained from the integral of themodesS. Therefore, the
translational forces result

NQvt D Q̈ Qm¨ � 2 PASPy (3.68)

The second section are the rotational inertia forces, wherethe deformed inertia tensor
in absolute coordinates is recognised in the first term,

NQv� D � Q̈ J¨ � 2

�Z

V

Qr PAX dm

�

Py (3.69)

and the second one is calculated as done for the integral ofQrAX in Eq. (3.59), but
using PA instead ofA:

Z

V

Qr PAX dm D

2

6
4

PA3S2
a � PA2S3

a

PA1S3
a � PA3S1

a

PA2S1
a � PA1S2

a

3

7
5 (3.70)

The inertia forces of a rigid body can also be obtained from these expressions, as
happened to the mass matrix, if the constant undeformed static moment and inertia
tensor are used, and the terms coming from the modal amplitudes are eliminated. The
last section ofQv is related to the elastic coordinates,

NQvf D

�Z

V

Qr PAX dm

�T

¨ � 2

�Z

V

XTAT PAX dm

�

Py (3.71)

and it can be directly calculated from the already used integral of Qr PAX , and from that
of XTAT PAX , which is obtained, as in the absolute formulation, by meansof Eq. (3.47).

3.5 Efficient calculation of the inertia shape integrals

The calculation of the inertia shape integrals might appeara priori as a cumbersome
task, but it is actually much faster than the calculation of the deformation modes them-
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selves. This is because the integrals are calculated by using interpolation functions,
which can be integrated independently of the nodal displacements and rotations, there-
fore allowing for their calculation by means of simple matrix products.

The method for calculating the inertia shape integrals by means of matrix prod-
ucts will be described for three–dimensional isoparametric 2–node beam elements, al-
though it can be generalized for any other type of isoparametric or non–isoparametric
finite elements. All the positions and displacements appearing here will be expressed
in the local frame of the body, since the interpolation matrices of isoparametric el-
ements are invariant to rotation. In case structural elements are used, the individual
orientation of each element within the model must be taken into account by applying
the corresponding transformations to the interpolation matrices.

When isoparametric finite elements are used, the same interpolation is applied to
geometry and elastic displacements. The positionNr or the elastic displacementNrf of
any point within a beam elemente can be therefore interpolated among its values at the
end nodes, represented by the nodal coordinates vectorqe or the nodal displacements
vectorqe

f
, by means of the same interpolation matrixN (Bathe, 1995),

Nr D NqeI Nrf D Nqe
f (3.72)

The interpolation matrixN, according to the type of finite elements used, will depend
on one or more parameters or material coordinates. In the particular case of beam
elements, only one parameter` can be used, corresponding to the position along the
undeformed neutral axis, meaning that the same interpolation functions are used for
position and displacement, in thex, y andz directions.

Figure 3.1: Interpolation in a 2–node beam element.

In a general isoparametric beam element ofnn nodes, any of the three components
of position or displacement can be calculated at any point asan interpolation among
its nodal values. The interpolation is performed by means ofnn interpolation functions
ni.`/, such that eachni evaluates to unity at nodei and to zero at all other nodes. For
the components of the position,

Nx.`/ D

nnX

iD1

Nxe
i ni.`/I Ny.`/ D

nnX

iD1

Nye
i ni.`/I Nz.`/ D

nnX

iD1

Nze
i ni.`/ (3.73)

In the case of a 2–node beam element, if the parametrization is chosen so that the
parameter̀ can take values between -1 (first node) and 1 (second node), asshown for
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the Ny component in Figure 3.1, theni functions result,

n1.`/ D
1

2
.1 � `/I n2.`/ D

1

2
.1 C `/ (3.74)

If the interpolation described by Eqs.(3.73) and (3.74) is used for the position, pro-
vided thatqe is a vector containing the positions of nodes 1 and 2 of element e, it can
be written,

Nr D

2

6
4

n1 0 0 n2 0 0

0 n1 0 0 n2 0

0 0 n1 0 0 n2

3

7
5

(

Nr e
1

Nr e
2

)

D Nqe (3.75)

leading to the following compact expression for the interpolation matrixN,

N D
h

n1I3 n2I3

i

(3.76)

which can be also used for interpolating elastic displacements.
Once the interpolation matrix is completely determined, itcan be used for integrat-

ing positions or displacements along the finite element. Theintegral of the positionNr
over the whole volume of an elementVe is,

Z

Ve

Nr dm D

Z

Ve

Nqe dm D Neqe (3.77)

beingNe the integral of the interpolation matrix over the volume of the finite element.
Considering the density� and the cross–sectional areaA to be constant along the
element,

Ne D

Z

Ve

N dm D �A

Z Le

0

h

n1I3 n2I3

i

ds (3.78)

beingds the differential of length of arch, andLe the length of the finite element,
measured along its neutral axis. This integral can be evaluated by substitution, since
n1 andn2 are functions of̀ ,

ds D
@s

@`
d` (3.79)

where,

@s

@`
D

s
�
@ Nx

@`

�2

C

�
@ Ny

@`

�2

C

�
@Nz

@`

�2

(3.80)

Substituting the components of the local positionNx, Ny and Nz by their interpolations,
as shown in Eq.(3.73), and differentiating with respect to`, it is easily demonstrable
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that,

@s

@`
D

1

2

q

. Nx2 � Nx1/
2 C . Ny2 � Ny1/

2 C .Nz2 � Nz1/
2 D

Le

2
(3.81)

The integral results, after the substitution,

�A

Z Le

0

h

n1I3 n2I3

i

ds D �A
Le

2

Z 1

�1

h

n1I3 n2I3

i

d` (3.82)

Evaluation of the integral, taking into account that the product�ALe is the mass of
the element,me, yields,

Ne D
me

2

h

I3 I3

i

(3.83)

which means that the integral of the interpolation matrix only depends on the mass of
the element.

The same procedure can be employed to integrate the square ofthe position, the
square of the displacement, or the product between them. Forinstance, the integral of
the position times the elastic displacement is,

Z

Ve

NrT Nrf dm D

Z

Ve

qeTNTNqe
f dm D qeTM eqe

f (3.84)

where in this caseM e, the integral ofNTN, is the mass matrix of the finite element, and
it is easy to demonstrate, by following a similar procedure to that used for integrating
N, that,

M e D
me

6

"

2I3 I3

I3 2I3

#

(3.85)

The integration of scalar magnitudes or products between them appears in sev-
eral inertia shape integrals, such as the product of one component of the undeformed
position times another component of the elastic displacement. These integrals can be
performed by usingNe

s andM e
s , the scalar versions of the previously defined integrals,

Ne
s D

Z

Ve

n

n1 n2

o

dV D
me

2

n

1 1
o

(3.86)

M e
s D

Z

Ve

(

n1

n2

)
n

n1 n2

o

dV D
me

6

"

2 1

1 2

#

(3.87)

With these four matrices, the mass integral of any scalar or vector magnitude and
products between them over the volume of an element can be obtained by simple
multiplication.

BothNe andM e matrices and their scalar versions are defined for a single element,
so that integrals over the full body can be obtained as the sumof the integrals over all
the finite elements. For example, the integrals ofNr or NrT Nr over the total volumeV of a
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body discretized intone elements, are,

Z

V

Nr dm D

neX

eD1

NeqeI

Z

V

NrT Nr dm D

neX

eD1

qeTM eqe (3.88)

If only one component is to be integrated, or the product of one component times
another, the scalar versions must be used. For one component

Z

V

Nri dm D

neX

eD1

Ne
s qe

i ; i D 1; 2; 3 (3.89)

and for two components

Z

V

Nri Nrj dm D

neX

eD1

qeT
i M e

s qe
j ; i; j D 1; 2; 3 (3.90)

where eachqe
i andqe

j are2 � 1 vectors containing only thei or j components of the
nodal coordinatesqe.

The application of the described procedure for the calculation of the inertia shape
integrals is very simple and efficient. First, the mass of allfinite elements must be cal-
culated, which is easy since the density, the cross–sectional area and the undeformed
positions of the nodes are known. Then, any integral can be obtained as the sum of the
integrals over all the finite elements.

Each column ofS is the integral of a mode shape, which is an elastic displacement.
The integrals of all modes can be performed simultaneously since the interpolation
matrices, and consequently their integrals, are the same for all the modes. If a matrix
Xe is defined for each finite elemente, containing the modal displacements for the
two nodes of elemente, it can be written,

S D

Z

V

X dm D

neX

eD1

NeXe (3.91)

The integrals of the undeformed position times the mode shapes involve products
of scalars and vectors, therefore they must be subdivided into three scalar by scalar
products in order to perform the integration:

Si D

Z

V

NruiX dm D

Z

V

2

6
4

NruiX1

NruiX2

NruiX3

3

7
5 dm D

2

6
4

Si
1

Si
2

Si
3

3

7
5 ; i D 1; 2; 3 (3.92)

Then each of the three rows can be integrated by using theM e
s matrices,

Si
j D

neX

eD1

qeT
ui M e

s Xe
j ; i; j D 1; 2; 3 (3.93)
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The integrals of products between directions of the modes are also performed in the
same way,

Sij D

neX

eD1

XeT
i M e

s Xe
j ; i; j D 1; 2; 3 (3.94)

Even the rigid body integrals such as the planar inertia tensor can be obtained by using
this method, although their values are generally already known.

These sums can be calculated directly or by assembling the matrices by following
the standard finite element procedure. As an example, if all the mass matricesM e are
assembled into aM� matrix, and aX� matrix is also created containing the modal
displacements at all finite element nodes, Eq. (3.91) can be written as,

S D M�X� (3.95)

A similar procedure of assembly can be used for all the integrals.

3.6 Numerical example

The Iltis vehicle (Frik et al., 1993), the third example usedin the previous chapter, is
used also here as the base system for the tests. In this case, all the 12 possible flexible
bodies are included, and instead of using a fixed mesh size, the flexible elements are
discretized into a variable numberne of finite elements per bar. The A–arm, as previ-
ously pointed out, is modeled as two bars, coincident at the hub connection, and one
additional element for the damper attachment, so that it has2ne C 1 finite elements.
This makes a total, for the 12 flexible bodies, of16ne C 4 finite elements, and 64
modes.

In the test, the Iltis performs the same maneuver described in the previous chapter.
The simulation is carried out by using both the absolute and the relative formulations,
either with the projection method or the inertia shape integrals preprocessing, with a
time–step of 10 ms, and with four different finite element discretizations (5, 10, 50
and 100 elements per bar). The full model in absolute coordinates, as pointed out in
the previous chapter, has 304 variables, whereas the model in relative coordinates has
a total of 98 variables.

The method used for calculating the inertia terms does not practically affect the
results obtained from the simulations. As can be seen in Table 3.1 and Figure 3.2, the
preprocessing (P) makes the CPU–time completely invariantwith respect to the finite
element mesh size. Both the absolute and the relative formulations benefit from this
improvement, especially in the case of large finite element models, where the B matrix
projection (B) takes a significantly larger amount of time.
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Table 3.1: CPU–times for different finite element mesh sizes
Nı elementsne 5 10 50 100

Absolute, B 4.19 4.48 7.58 12.59
Absolute, P 3.85 3.85 3.85 3.85
Relative, B 1.11 1.48 4.32 8.21
Relative, P 0.79 0.79 0.79 0.79

5 10 50 100
Elements per bar

C
P

U
-t

im
e 

(s
)

Absolute coordinates Relative coordinates

Projection

Preprocessing

12

10

8

6

4

2

5 10 50 100
Elements per bar

Figure 3.2: CPU–time vs. number of finite elements

3.7 Conclusions and criteria of use

From the obtained results, it can be said that the inertia shape integrals preprocess-
ing very significantly improves the performance in all cases. When very large finite
element models are used, the projection method can become unpractical, whereas the
preprocessing one keeps the CPU–time dependent only on the number of modes. Apart
from the higher difficulty of implementation, the only drawback of the method could
be the preprocessing time but, in practice, it is negligible, especially if compared to
the calculation of the mode shapes by solving the finite element system, since all the
integrals can be obtained by direct matrix multiplication.In the present work, the pre-
processing has been done in MATLAB, and it takes less than 0.02 s for an A–arm with
100 elements per bar (i.e. 201 elements).

The projection method, on the other hand, is much easier to implement, and the
only input data it needs from finite element software are the mass and mode shapes
matrices, along with the undeformed local positions of the nodes. This might make
it more convenient for certain applications where the implementation time is more
relevant, as long as the size of the finite element models is not too large.

In what respects the comparison between the formulations inabsolute and relative
coordinates, the latter seems to improve the advantage whenusing the preprocessing
method, despite of its more involved inertia terms. It achieves a CPU–time around
5 times faster than the formulation in absolute coordinates, whereas in the case of
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projection with ten elements, as used in the previous chapter, the ratio is about 3. It is
also observed that the improvement with respect to the preprocessing method is always
more noticeable in the case of the formulation in relative coordinates; for instance, in
the case of 100 elements per bar, the simulation in absolute coordinates is three times
faster when using preprocessing, whereas in relative coordinates it becomes up to ten
times faster.





Chapter 4

Geometric Stiffening

4.1 Introduction

All the methods addressed so far allow for simulating flexible multibody systems in a
very efficient way. However, the use of component mode synthesis to reduce the size
of the finite element models, due to the linearization of the elastic forces, limits their
use to applications where the elastic deformations remain small. In order to accurately
simulate systems with larger deformations, a possible solution could be the use of
fully nonlinear methods, such as the absolute formulationsor nonlinear finite element
analysis, but none of these techniques is suitable for real–time simulation due to their
elevated CPU cost.

In specific applications, involving beams under high rotational speeds, such as
helicopter rotor or turbine blades, a stiffening effect appears due to the geometrical
nonlinearity. This effect has been studied by many authors,like Kane et al. (1987),
Mayo et al. (1995, 2004), Sharf (1996), Valembois et al. (1997), Zahariev (2000, 2002)
or Shi et al. (2001). Helicopter rotor blades, a typical example, are bent by their own
weight, but the rotation speed makes them rise toward the horizontal position, due
to centrifugal forces, as if the bending stiffness is increasing. In a linear model, this
effect is not captured due to the absence of coupling betweenaxial and transversal
deformation, which implies that rotational speed has no effect on bending, but only on
the radial displacement.

There exist several techniques aiming for including this effect in beams, without
resorting to fully nonlinear methods, thus allowing for extending the range of usability
of the FFR formulations. The most general of these techniques is the substructuring
method (Wu and Haug, 1988), which consists of dividing the beam into small pieces,
being each of them a flexible body with its own frame of reference and mode shapes.
Each substructure is clamped to the adjacent ones by means ofthe so–calledbracket
joints, sharing the points and frames of reference, thus making thefull set behave
as a whole beam. The main drawback of this method is the large number of coor-
dinates needed, although this problem is reduced by using relative coordinates (Kim
and Haug, 1988); moreover, when this technique is used, the number of deformation

107
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modes required per substructure remains small, since it is obvious that the higher fre-
quency modes become unnecessary as long as the length of the divisions decreases.

Other less general methods are based on introducing nonlinearity into the elastic
forces or into the modeling of the flexible body. In this chapter, the implementation
of two of these techniques is addressed, along with substructuring in relative coordi-
nates, and the results are compared to reference solutions obtained with fully nonlinear
methods, such as the ANCF or the finite element method (FEM).

4.2 Substructuring

The substructuring technique allows for introducing nonlinear effects into FFR formu-
lations in a completely general way, requiring no modifications to the original formu-
lation. As can be seen in Figure 4.1, the beam is divided into several elements, which
are interconnected by means of bracket joints, in such a way that the output frame
of each element coincides with the input frame of the next one. If the formulation in
natural coordinates is used, this means that the point and the three unit vectors defined
at each bracket joint are shared between the two adjacent bodies. In relative coordi-
nates, the only relative coordinates appearing at a bracketjoint are the static modal
amplitudes.

u2

u3

u1

v1

v3

v2

Figure 4.1: Beam divided into three substructures.

Since the substructures have a short length, they are modeled by using a small
number of deformation modes. If substructures are modeled usingnm modes, the use
of natural coordinates implies that each additional substructure introduces12 C nm

extra variables, along with 12 algebraic constraints, whereas in relative coordinates
only nm variables are added; for this reason, only substructuring in relative coordinates
is considered here.

4.3 Nonlinear stiffness matrix

The case of a planar flexible beam in natural coordinates is tobe described for the
sake of simplicity. In the case of a two dimensional beam, thefloating frame of refer-
ence is described by a point and two vectorsu andv, making a total of six reference
coordinates. The position of an arbitrary point of the beam remains, as in the three
dimensional case

r D r0 C A
�

Nru C Nrf

�

(4.1)
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wherer0 is the position of the local frame origin,A the rotation matrix defined now
by the two orthogonal local unit vectorsu andv, Nru the undeformed position in local
coordinates, andNrf the local elastic displacement (see Figure 4.2).

x

y

v
u

r

P

Figure 4.2: Deformed 2D beam.

The elastic displacements fieldNrf .x;y/ of an Euler–Bernoulli beam takes the
following vector form (Sharf, 1996):

Nrf .x;y/ D

(

u

v

)

D

(

u0 � yv0
0

v0

)

(4.2)

whereu0 andv0 are the axial and transversal displacements of the neutral axis, and
the apostrophe indicates differentiation with respect to thex coordinate. The nonlinear
strain–displacement relationship inx direction can be expressed as,

"xx D u0 C
1

2

�

u02 C v02
�

Š u0 C
1

2
v02 (4.3)

where the termu02 is dropped since it is much smaller thanu0. The elastic potential of
the beam, after applying the stress–strain relation, is,

U D
1

2

Z

V

E"2
xx dV (4.4)

whereE is the Young modulus andV is the volume of the beam. Introduction of the
displacement field described by Eq. (4.2) in the strain–displacement relation, yields
the deformation energy of the beam in terms of the deformed shape of the neutral axis
(Sharf, 1996),
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(4.5)
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with A the cross–sectional area andI the second moment of area with respect to the
neutral axis. Different levels of approximation can be achieved depending on which
terms of Eq. (4.5) are kept: they are discussed in the following subsections.

4.3.1 Linear formulation

The linear formulation includes only the first two terms of Eq. (4.5) in the elastic po-
tential, neglecting the higher order ones. Introducing thefinite element discretization
into the equation and integrating the interpolation functions, the following expression
can be obtained for the elastic potential in terms of the finite element coordinates,

U D
1

2
qT

f K�
Lqf (4.6)

Here,K�
L is the linear stiffness matrix, which is constant, andqf is a vector containing

the nodal displacements of the whole beam. This potential can be projected into the
modal base by using matrixX,

U D
1

2
yTXTK�

LXy D
1

2
yTKLy (4.7)

By differentiation of the elastic potential, an expressionfor the elastic forces is
obtained,

Fel D �

�
@U

@y

�T

D �KLy (4.8)

which is a linear relationship between the forces and the modal amplitudes.
A closer look to the elastic potential expression used in this formulation, consti-

tuted by the first two terms of Eq. (4.5), reveals the cause of its inability to capture
the geometric stiffening effect: axial and transversal displacements separately con-
tribute to the deformation energy. Only transversal forcescan produce transversal dis-
placements, therefore the axial forces introduced by the rotation have no effect on the
deflection.

4.3.2 First nonlinear formulation

When the third term of Eq. (4.5) is considered too, the coupling between axial and
transversal deformation is introduced through the integral of u0

0
v0

0
2. This enables

to capture the geometric stiffening effect, since it couples the longitudinal and the
transversal displacements, but at the cost of a non–constant stiffness matrix.

The same steps as in the linear formulation must be carried out to obtain the elas-
tic potential: theu0 andv0 derivatives are substituted by their finite element interpo-
lations, and the integrals are evaluated; then, writing it in matrix form (Mayo et al.,
1995, 2004),

U D
1

2
qT

f

�

K�
L C K�

G

�

qf (4.9)
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The geometric stiffness matrixK�
G

is variable, and must be calculated at every time–
step. In case that the axial displacementu0 has a linear distribution, the strain is con-
stant along the whole beam, andK�

G
can be expressed as the product of a scalar vari-

able times a constant matrix. But in any other case, this is only applicable to each
finite element, and the matrix must be assembled at every time–step, which is rather
inefficient.

It is better to expressu0 andv0 in terms of the mode shapes and then carry out
the spatial integration. First, the neutral axis displacements are approximated by the
modal superposition,

u0.x/ D

ns
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iD1

�l
i .x/�i C

nd
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jD1

 l
j .x/�j

v0.x/ D

ns
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iD1

�t
i .x/�i C

nd
X

jD1

 t
j .x/�j

(4.10)

where the superindicesl andt indicate longitudinal or transversal component, respec-
tively. These approximated displacements are then used to calculate the integral. The
analytical functions of the mode shapes are usually known for a beam and, therefore,
they can be directly integrated. In the case that the modes are finite element displace-
ment vectors, the integrals must be calculated by using the interpolation functions.
The geometric stiffness matrix, already projected into themodal subspace, takes the
following linear combination form, with the modal amplitudes as coefficients,

KG D
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X
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X

jD1

�j KGj (4.11)

where all theKGi andKGj matrices are constant, and have the form,
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with  0l
j instead of�0l

i for KGj . These matrices are non–zero for modei or j only if
the mode is longitudinal, so that there is one matrix for eachaxial mode. According to
this, in order to obtain a nonzeroKG matrix, this method needs to incorporate at least
one axial mode.

Differentiation of the elastic potential with respect toy, neglecting the term which
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contains the derivative ofKG , yields the elastic forces vector,

Fel D �

�
@U

@y

�T

D � .KL C KG/ y (4.13)

The modifications with respect to the linear formulation areminimal. All the in-
tegrals of Eq. (4.12) must be calculated in a preprocessing stage, thus obtaining one
constant matrix for each axial mode. Since the stiffness matrix is no longer constant,
it must be calculated at every integrator iteration by adding the variableKG , obtained
from Eq. (4.11), to the linear stiffness matrixKL.

4.3.3 Second nonlinear formulation

In this formulation, the four terms of the elastic energy in Eq. (4.5) are considered,
being the most suitable for severe deformation conditions but, logically, at the cost of
a higher computational effort.

U D
1

2
qT

f

�

K�
L C K�

G C K�
H

�

qf (4.14)

The inclusion of the higher order term adds a second–order nonlinear matrixK�
H

, and
the elastic forces are obtained by differentiation,

Fel D �

�
@U

@qf

�T

D �
�

K�
L C K�

G C K�
H

�

qf C Qg (4.15)

where all the terms depending on the derivatives of the variableK matrices are grouped
into the generalized nonlinear forces vectorQg. The main problem of this formulation
is that it needs a high number of axial modes to obtain accurate results (Mayo et al.,
1995, 2004), making its use inefficient.

4.4 Foreshortening formulation

The axial shortening of a beam due to its deflection is known asforeshortening (Fig-
ure 4.3). This effect cannot be captured by using the linear or first nonlinear formula-

x

y

Figure 4.3: Foreshortening produced by deflection.

tions. The explicit inclusion of the foreshortening effectin the model leads to a simpler
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and more efficient method (Mayo et al., 1995, 2004), and provides the same level of
accuracy as the second nonlinear formulation.

4.4.1 Calculation of the foreshortening

The longitudinal displacement of any point of the neutral axis can be divided into the
axial deformation produced by the actual axial forces,s, and the shortening produced
by the deflectionuf s,

u0 D s C uf s (4.16)

The foreshortening of a curve infinitesimalds can be obtained, as shown in Figure 4.4,
from the projection ofds � dx into the undeformed neutral axis,

α

Figure 4.4: Foreshortening of a curve infinitesimal.
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This expression can be simplified for small values ofv0
0
, by developing it into a Taylor

series up to the second order,

df s �
1

2
v0

0
2
dx (4.18)

The total shortening accumulated from a reference pointx0, which has zero axial
displacement, is then obtained by integration,

uf s.x/ D �
1

2

Z x

x0

v0
0

2
dx (4.19)

Substituting the longitudinal displacement of Eq. (4.16) into Eq. (4.5), yields the fol-
lowing expression for the elastic potential,
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EAs02 dx C
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EIv00
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2
dx (4.20)
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It is observed that the elastic energy has the same form as in the linear formulation,
although the meaning is different. The stiffness matrix is the same as the one used
for the linear caseKL, and so happens with the elastic forces. Therefore, the stiffen-
ing effect does not appear now in the elastic forces: it is translated to the inertia and
constraint forces, since the foreshortening is introducedat kinematic level.

Using the finite element method to discretize the beam with 2Dbeam elements,
the neutral axis displacement within a finite elemente, Nr e

f 0
, can be interpolated from

its nodal displacements,qe
f

, by means of the interpolation matrix,N, which can be
split into longitudinal and transversal interpolation submatrices,Nl andNt ,

Nr e
f 0 D

(

u0

v0

)

D Nqe
f D

"

Nl

Nt

#

qe
f (4.21)

whereu0 andv0 are the local components ofNr e
f 0

. In order to calculate the total fore-
shortening on a finite element, the nodal displacement must be modified so that,
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(

ue
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0
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(4.22)

whereue
f s

is the foreshortening produced in that finite element by its own deflection,
and can be calculated by applying Eq. (4.19) over the whole length of the element,
Le. Substitutingv0

0 by its interpolation,
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1

2
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qeT
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t
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t q
e
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2
qeT

f Heqe
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The shortening suffered by one element is then a quadratic function of the nodal coor-
dinates, whereHe is a constant matrix depending only on the transversal interpolation
functions and the length of the element, defined as

He D

Z Le

0

N0
t
TN0

t dx (4.24)

The total shortening accumulated by the finite elements located between the ref-
erence node (with zero axial displacement) and the finite elementn, itself included, is
the sum of all the element–level shortenings, as shown in Figure 4.5.

x

y

2 n1

Figure 4.5: Accumulated foreshortening at elementn.
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This expression can be written in matrix form for each element, assembled for all the
finite element coordinates of the beam, and then projected into the modal subspace,
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If analytical functions are available for the mode shapes, theseGn matrices can be
directly calculated by using the second expression of Eq. (4.10) to evaluate Eq. (4.19),
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whereLn is the length of the beam from the reference point to the end node (nodei )
of finite elementn. If the modes are finite element displacement vectors, the integrals
must be calculated by using the interpolation functions.

4.4.2 Inertia terms

In the previous chapter, the use of inertia shape integrals is demonstrated to be the most
efficient way to calculate the inertia terms, especially when the finite element models
are very large. However, the shape integrals are no longer constant if foreshortening is
considered, making the method much more involved. Moreover, in the case of beams,
the finite element models are usually small, in such a way thatthe projection method is
efficient enough to achieve real–time performance. For these reasons, the inertia terms
are here calculated by using theB� matrix projection method. The foreshortening is
introduced at the calculation of theB� matrix and thePB� Pq or PB�Z vector, which are
later used to obtain the mass matrix and the inertia forces vector as described in the
second chapter, by using Eq. (2.80) and Eq. (2.81).

The expression previously obtained for the accumulated foreshortening at a finite
elementn can be used to obtain the elastic displacement of its end nodei

Nr i
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yTGny (4.28)

which can be rewritten in terms of a new variableXi
f s

matrix, which depends linearly
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on the modal amplitudesy,

Xi
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f sy (4.29)

Substituting the elastic displacement given by this expression into Eq. (4.1) yields the
new nodal velocity

Pr i� D Pr0 C PA
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�

(4.30)

The term within the last parentheses can be found to be, if thesymmetry of theGn

matrices is taken into account,
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!

Py D NXi
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This result finally enables to define theBi matrix of a node for the foreshortening
formulation, either in natural coordinates:

Bi D
h

I2 Nr i
1
I2 Nr i

2
I2 A NXi

f s

i

(4.32)

or in relative coordinates:

Bi D
h

I2 �Qr i A NXi
f s

i

(4.33)

where two differences with respect to the original matricesare found. Firstly, the axial
component of the local positionNr i

1
is modified by the foreshortening, thus affecting the

global positionr i . Secondly, the mode shapes matrix in the last block is a modified
version ofX, given by Eq. (4.31).

The calculation of the centrifugal and Coriolis forces vector is straightforward. In
natural coordinates, thePBi Pq product is evaluated at all the nodes and assembled,

PBi Pq D 2
�

PA NXi
f s C A PXi

f s

�

Py (4.34)

and if relative coordinates are chosen, the calculation ofPBiZ is completely analogous
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�

Py (4.35)

These changes affect the mass matrix, the velocity–dependent inertia forces, and
the applied forces as well, since they depend in turn on theB matrix at the point of
application. Moreover, those constraints involving nodesundergoing foreshortening
must also be modified, since transversal modes affect the beam length. Therefore, the
geometric stiffening effect is considered now through inertia and constraint forces,
instead of through the elastic forces, as happened in the first and second nonlinear
formulations. If relative coordinates are used, it must be taken into account the fact



4.5Examples and results 117

that the bending modes introduce an axial displacement, which affects the kinematic
relations at the joints, and also in the Jacobian of the constraints vector, if any cut joint
is placed at a point including foreshortening.

4.5 Examples and results

The example system is a typical case of geometric stiffening, studied by many authors,
such as Kane et al. (1987), Mayo et al. (1995, 2004), Sharf (1996), Valembois et al.
(1997), Zahariev (2000, 2002), or Shi et al. (2001): a beam pinned at one of its ends,
as shown in Figure 4.6, which rotates an angle�.t/ about the origin,
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The characteristics of the beam are the following: lengthL=10 m, cross–sectional area
A=4 � 10�4 m2, second moments of areaIy;z=2 � 10�7 m4, density�=3000 Kg/m3 and
Young modulusE=7 � 1010 N/m2.

x

y

Figure 4.6: Spin–up beam.

4.5.1 Two–dimensional case

In all the cited previous works, this example is treated as a 2D problem, studying the
behavior of the beam in thexy plane in absence of gravity acceleration. By using the
first nonlinear and foreshortening formulations, both of them in either absolute or rel-
ative coordinates, the in–plane tip deflection is obtained for Ts=15 s and!s=6 rad/s.
The beam is discretized into ten finite elements, approximating the elastic displace-
ments by using two transversal modes, one static and anotherdynamic, defined in the
local xy plane. The results are compared to a reference solution calculated by means
of the ANCF, a fully nonlinear formulation that automatically captures the geometric
stiffening effect. In order to obtain the reference solution, the beam is discretized into
15 elements, using the ANCF–based 2D beam element developedby Omar and Sha-
bana (2001). Since the tip deflections obtained are nearly the same regardless of the
type of coordinates used, only the plots for absolute coordinates will be shown here.

The results obtained for the linear formulation reveal that, as expected, it cannot
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account for the geometric stiffening effect. As can be seen in Figure 4.7, the tip de-
flection becomes too large, crashing the simulation before its end.
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Figure 4.7: Linear formulation vs. ANCF in the first example.

The first nonlinear formulation needs to include at least oneaxial mode, as the
geometric stiffness matrix depends on the axial deformation. In the example, the axial
displacement, caused by centrifugal forces, has a nonlinear distribution, so that the
first dynamic axial mode is required to achieve reasonable accuracy. Figure 4.8 shows
that using only one linear static mode (FNL1 curve) yields unacceptable results, in-
creasing the stiffness excessively. Therefore, two axial modes are at least needed to
correctly simulate the motion of the beam (FNL2 curve). A more efficient and accu-
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Figure 4.8: First nonlinear formulation vs. ANCF in the firstexample.

rate, although less general alternative to the use of a combination of static and dynamic
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axial modes, would be the use of a singleacceleration mode. The idea is to introduce
a deformation mode specifically designed for fitting the axial displacement field pro-
duced by a variable centrifugal acceleration, such as that produced by rotation.

The foreshortening formulation (FS curve in Figure 4.9) achieves the best results,
despite the absence of axial modes. The quality of the correlation becomes more ob-
vious at the steady–state stage, where the first nonlinear formulation shows a higher
oscillation amplitude.
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Figure 4.9: Foreshortening formulation vs. ANCF in the firstexample.

Table 4.1 shows the CPU–times for all the simulations, run with the same inte-
grator and parameters, with a time–step of 0.01 s. The reference solution takes more
than one hour to be computed, but this should not be taken as a reference for the
performance of the ANCF, since the used formulation is one ofthe earliest ANCF
developments and, moreover, it has been implemented in MATLAB. The FFR for-
mulations are sorted according to their accuracy, from the lowest to the highest: first
nonlinear with one axial mode (FNL1), first nonlinear with two axial modes (FNL2),
and foreshortening (FS0). For a fixed number of modes, the foreshortening method
is slower than the first nonlinear formulation, since it recalculates the mode shapes
at every iteration; however, in order to achieve a similar accuracy, the first nonlinear
formulation needs two additional axial modes, making it less efficient in practice than
the foreshortening formulation.

Table 4.1: CPU–times (s) in the 2D spin–up beam.

Formulation FNL1 FNL2 FS0

Absolute 0.266 0.297 0.266
Relative 0.094 0.125 0.094

Moreover, it is observed that the performance is greatly increased when using
relative coordinates. According to the results obtained inthe second chapter, the use
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of relative coordinates should not be advantageous in such asmall system, but in this
particular case it is, due to the extremely simple topology.Since the system consists of
only one body with one relative coordinate, the forward position and velocity analyses
are trivial, and the same happens to the backward accumulation of forces and inertias,
so that the reduction of the number of variables is completely taken advantage of.

4.5.2 Three–dimensional case

In this example, a gravity acceleration of 9.81 m/s2 in the negative direction of thez
axis is added to the previously studied case, leading to a three–dimensional problem.
The beam is simulated by using substructuring in relative coordinates, along with the
same four methods compared in the two–dimensional case. In this example, a commer-
cial nonlinear finite element code (COSMOS/M) is used for obtaining the reference
solution. The reference model is discretized into 20 elements, and the numerical in-
tegration is carried out by using, as well as in the FFR formulations, the trapezoidal
rule with a time–step of 10 ms. In order to obtain a numerical value for the error, the
position of the beam tip (in the local frame) is compared withthat of the reference
solution. For thex direction,

�x D
1

ns C 1

nsX

iD0

ˇ
ˇxi � x�

i

ˇ
ˇ (4.37)

wherexi andx�
i are the calculated and reference values respectively, andns is the

number of time–steps. The same is done fory andz directions. In all the simulations,
the beam is let reach its equilibrium position prior to starting the spin–up maneuver.

Substructuring

In the substructuring model, each one of then substructures is discretized into two fi-
nite elements, being their elastic deformation approximated by four transversal bend-
ing modes. The firstn � 1 substructures use the static modes defined by unit displace-
ments along the localy and z directions, along with unit rotations about the same
axes, whereas the last substructure, since it has a free end,is modeled by using the
first four free–end dynamic modes.

The displacements of the tip of the beam in the localx, y andz directions are
shown in Figures 4.10 and 4.11, for three, five and ten substructures. In this example,
due to the large deflections, the use of the infinitesimal rotation matrices defined in
Eq. (2.12) for the rotation static modes introduces a significant error in the solution,
especially in the axial direction. If three consecutive orthogonal rotations are used, as
suggested by Kim and Haug (1988), the accuracy is significantly improved, although
this is not fully consistent with the definition of the deformation modes, since the ro-
tations are defined about the undeformed axes. The CPU–timesand mean errors with
respect to the reference solution, obtained by using 3, 5, 10and 20 substructures, are
shown in Table 4.2. The last column (20b) shows the results obtained if infinitesimal
rotation matrices are used. The finite element model takes 19seconds with 20 ele-
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Figure 4.10: Substructuring vs. FEM in the second example (y).

ments, although it can be lowered to 14 seconds if only 10 elements are used, with no
significant loss of accuracy.

Table 4.2: 3D spin–up beam results (substructuring).

Substructures 3 5 10 20 20b

CPU–time (s) 0.375 0.609 1.312 4.578 4.562

�x (mm) 3.734 1.337 0.502 0.320 3.061
�y (mm) 47.681 13.128 3.193 1.481 1.757
�z (mm) 38.458 11.682 2.329 0.742 0.920

First nonlinear formulation

The FNL formulation does not need any modification for being extended to the 3D
case. This formulation, whose results are shown in Figures 4.12 and 4.13, does not
obtain acceptable results for the axial displacement, no matter how many axial modes
are introduced, since the large deflection makes the foreshortening effect much more
relevant than the actual beam shortening. At the equilibrium position, there is a tip
displacement of more than 6 cm in thex direction, which is not captured, and the error
at the steady–state stage is about 3.5 mm with respect to the reference. It is observed
that the use of free–end dynamic modes leads to better results than the combination
of a static and a fixed–interface dynamic mode used in the firstexample. This makes
sense because in this particular case the beam has a free end,so that this combination
of modes represents better the actual reference conditionsof the beam. However, two
axial modes are still needed to reach a good accuracy in they direction. The CPU–
times and mean errors obtained when using the first nonlinearformulation with both
absolute and relative coordinates are shown in Table 4.3.
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Figure 4.11: Substructuring vs. FEM in the second example (x andz).

Table 4.3: 3D spin–up beam results (first nonlinear formulation).

Formulation
Absolute Relative

FNL1 FNL2 FNL1 FNL2

CPU–time (s) 0.271 0.286 0.105 0.125

�x (mm) 27.943 27.946 27.944 27.947
�y (mm) 11.046 5.937 10.313 5.576
�z (mm) 7.709 3.844 7.502 3.907

Foreshortening formulation

The extension of the FS formulation to the three–dimensional case is straightforward,
since the effects iny andz directions can be considered independent. The foreshort-
ening can be obtained from the following expression, wherew0 is the neutral axis
displacement in thez direction (Shi et al., 2001; Valembois et al., 1997),
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2
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0
2
�

dx (4.38)

In the case of the foreshortening method, as can be seen in Figures 4.14 and 4.15,
the precision in thex direction is significantly improved. In the vertical direction, the
results are approximately the same obtained with the FNL2 formulation, despite using
fewer deformation modes.

In Table 4.4 the CPU–times and deviations from the referencesolution are shown
for the foreshortening formulation. The results for none (FS0), one (FS1), and two
(FS2) axial modes are included, in order to compare the efficiency to that of the first
nonlinear formulation, although the plotted results correspond to the model with no
axial modes. As it happened in the two–dimensional case, theFNL formulation is
faster for the same number of modes, but when the efficiency iscompared for a similar
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Figure 4.12: First nonlinear formulation vs. FEM in the second example (y).

level of accuracy iny andz directions, the FS method is slightly faster (i.e. FNL2 vs.
FS0).

Table 4.4: 3D spin–up beam results (foreshortening formulation).

Formulation
Absolute Relative

FS0 FS1 FS2 FS0 FS1 FS2

CPU–time (s) 0.250 0.292 0.328 0.105 0.125 0.125

�x (mm) 0.503 0.360 0.363 0.496 0.363 0.366
�y (mm) 3.128 3.116 3.116 3.152 3.149 3.149
�z (mm) 4.780 4.786 4.786 4.811 4.818 4.818

4.6 Conclusions and criteria of use

In the present chapter, several methods for capturing the geometric stiffening effect in
FFR formulations have been successfully implemented and compared. As the results
obtained for the Kane’s beam demonstrate, the FFR formulation with linearized elastic
forces cannot capture this effect, at least if the beam is modeled as one single flexible
body. If the beam is divided into smaller substructures, theeffect is accurately captured
and, if relative coordinates are used, the performance is very good if compared to
ANCF or nonlinear FEM.

Among the methods that introduce modifications to the formulation, the first non-
linear formulation is the easiest to implement, obtaining very good results in a fraction
of the time required when using substructures. However, it presents some problems,
since only one axial mode is not sufficient to obtain accurateresults, and the use of
axial modes of high natural frequencies hinders the integration process. Moreover, if
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Figure 4.13: First nonlinear formulation vs. FEM in the second example (x andz).

the deflections are large enough, this method fails also to accurately measure the axial
displacements.

Finally, the foreshortening formulation has proven to havebetter accuracy and
efficiency than the first nonlinear formulation, and almost the same accuracy as sub-
structuring. It does not require axial modes for obtaining good results for the transver-
sal deflections and, in case that axial stresses are needed, longitudinal modes can be
added without problems. For the same number of modes, it is slightly slower since it
involves more operations, but if the efficiency/accuracy ratio is considered, it is always
advantageous to include the foreshortening in the kinematic modeling.

The use of relative coordinates dramatically improves the efficiency in the exam-
ples here addressed, despite being small systems. On the onehand, there is only one
relative reference coordinate, namely the rotated angle, whereas the formulation in
natural coordinates requires 12 additional variables for modeling the frame of refer-
ence. On the other hand, the time–consuming forward loops needed for calculating the
positions and velocities, along with the backward projection of the mass matrix and
the inertia forces vector, are completely trivial in this case.
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Figure 4.14: Foreshortening formulation vs. FEM in the second example (y).
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Figure 4.15: Foreshortening formulation vs. FEM in the second example (x andz).





Chapter 5

Conclusions and Future
Research

5.1 Conclusions

All the different methods presented in this thesis are aimedat achieving real–time
performance in the simulation of flexible multibody systems. The results obtained,
including a full car simulated ten times faster than real–time, show that the objectives
have been successfully achieved.

The main conclusions that can be extracted from this thesis are the following:

� A new semi–recursiveO
�

n3
�

formulation in dependent relative coordinates for
flexible multibody dynamics has been successfully implemented. The method
has been used for the simulation of three different systems,including a full
model of a car with twelve flexible elements, and compared in terms of effi-
ciency and robustness to a method in natural coordinates which uses the same
flexible body modeling. All the tested systems are closed–loop mechanisms, and
two of them are three–dimensional problems performing violent maneuvers that
are integrated without problems, even with very large time–steps, which demon-
strates the robustness of the formulation.

� The method in relative coordinates, as it happens in the rigid case, presents
a higher efficiency than its counterpart in natural coordinates when simulat-
ing large systems such as the Iltis vehicle, achieving a 500%performance im-
provement, something that can be determinant for real–timeapplications. The
performance is also increased for medium–size problems, e.g. the single Iltis
suspension, although not to the same extent (150% to 200%), so that in certain
applications the performance increase may not be worth the extra implementa-
tion effort. In the case of very small systems, the method in relative coordinates
is slower, since the reduction in the number of variables does not compensate
the additional computational burden. However, it should bepointed out that the
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double four–bar example has been implemented in MATLAB, so that the re-
sults obtained are not concluding; moreover, in some specific cases, such as
the Kane’s beam studied in Chapter 4, the use of relative coordinates improves
the performance despite being a very small system, due to itsextremely simple
topology.

As a rule of thumb, it can be said that the method in relative coordinates can
improve performance in problems that, in the rigid case, have more than 25
variables when using natural coordinates, although significant improvement is
to be expected only for large systems, above 50 variables.

� A further efficiency improvement has been achieved by implementing the cal-
culation of the inertia terms by means of the inertia shape integrals. The method
has been introduced into the new formulation, as well as intothe original formu-
lation in natural coordinates, leading to a very compact andsystematic imple-
mentation. The use of the inertia shape integrals improves performance even for
very small finite element models and, since it completely eliminates the mesh
size from the problem, enables to use models of any size.

However, the projection of the finite element mass matrix, used in the original
method in natural coordinates, is much simpler to implement, and reasonably
efficient for small finite element models, making it more recommendable for
certain applications.

� In order to extend the range of applicability of FFR methods,three different
methods for capturing the geometric stiffening effect in beams have been also
implemented and compared. One of them, the substructuring technique, has
been only tested in relative coordinates, since the number of variables otherwise
required makes it less competitive for real–time applications. The remaining two
methods have been implemented in both absolute and relativecoordinates.

The most accurate approach, at least regarding the transversal deflections, is the
use of the substructuring technique. It enables to capture the nonlinear effects
without introducing any modification to the formulation, atthe cost of increas-
ing the number of variables, a problem that can be minimized by using relative
coordinates. By using substructures, the simulation of theKane’s beam can be
performed about ten times faster than by using a commercial nonlinear finite–
element code, with equivalent results.

Among the methods that introduce modifications in the formulation in order to
capture the geometric stiffening effect, the use of a nonlinear stiffness matrix is
the simplest and most straightforward one, obtaining very good results if its ex-
treme simplicity is taken into account, although the requirement of introducing
axial modes may be a problem due to their high stiffness.

The introduction of the axial foreshortening at the modeling stage yields the
most accurate results in the axial direction and, although the accuracy in the
transverse directions is slightly lower than that obtainedby using substructures,
the achieved real–time ratio is about 200, 15 times faster than substructuring
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and 150 times faster than nonlinear finite elements, making it the most adequate
approach for real–time applications.

5.2 Future Research

The work presented in this thesis can be further developed inseveral directions, such
as efficiency improvements or different applications.

� In order to further improve the efficiency, different methods for the reduction
of the finite element model can be explored. In Koutsovasilisand Beitelschmidt
(2008), a review of different existing methods is presented, being the Krylov
subspaces (Lehner and Eberhard, 2006) a promising alternative to the classical
static and dynamic modes.

� Another important issue that must be addressed is the optimal selection of the
mode shapes. The choice of the mode shapes is in general left to the criterion
of the analyst, and it is difficult to establish automated methods for that critical
task. Several efforts have been carried out in that direction, such as the calcula-
tion of modal participation factors from the results of a preliminary rigid body
simulation (Wallrapp and Wiedemann, 2002).

� The inertia terms obtained by using the preprocessing method can be analyzed
in detail, in order to identify terms that can be neglected, thus reducing the
number of operations. For instance, some of the terms are quadratic in the modal
amplitudes, and since the deformations are asumed to be small, they can be
probably neglected without any significant effect on the accuracy.





Appendix

In this Appendix, the resulting matrices obtained for the example mechanism shown
in Chapter 2, after the projection of the mass matrix into therelative coordinates are
fully developed. The mechanism is shown in Figure 2.11, which is here repeated.
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2

3

4

5

B
D

E

C

Figure A.1: Example mechanism of Chapter 2.

The mechanism has two flexible bodies, namely bodies 2 and 3. The first one has
an input boundary at pointA, and its output at pointB. PointB is in turn the input
point of body 3, which has also an output boundary at pointC . There exist two flexible
bodies and four boundaries, so that there will be four sets ofstatic modes, and two sets
of dynamic modes. The specific sets of Cartesian and relativecoordinates are, if both
of them are sorted in such a way that reference coordinates, static modal amplitudes
and dynamic modal amplitudes, are grouped,
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(A.1)

As pointed out in the second chapter, the mass matrix of each flexible body has
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the following structure:

NM i D
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7
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If the mass matrices of the five bodies are assembled into a full matrix, the mass matrix
of the mechanism in the Cartesian set of coordinatesZ results, taking into account that
the rigid bodies will only have aNM r submatrix:
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The assembly of theR matrix, according to Eqs. (2.133), (2.134) and (2.135), would
be
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As pointed out in Chapter 2, these two matrices are never actually assembled, but
their terms are directly used to obtain the following results for the different terms of
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the mass matrix. The terms appearing in the projections of the rigid body or reference
mass matrices, shown in Eq. (2.142), result as follows:
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where the accumulated mass matricesM ri andMP
ri are those defined in Eqs. (2.140)

and (2.141). The four different terms appearing in Eq. (2.143) result
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where the mass blocks in Cartesian coordinatesNM r�i and NM r� i are considered as a
whole for each flexible body, e.g.

NM r�2 D
h

NMA
r�2

NMB
r�2

i

(A.10)
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de grandes deformaciones. PhD thesis, University of Navarra, San Sebastián, Spain,
1990.
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J. Mayo, D. Garćıa-Vallejo, and J. Doḿınguez. Study of the geometric stiffening
effect: comparison of different formulations.Multibody System Dynamics, 11(4):
321–341, 2004.

L. Meirovitch and M. K. Kwak. Convergence of the classical Rayleigh–Ritz method
and the finite element method.AIAA Journal, 28(8):1509–1516, 1990.



140 BIBLIOGRAPHY

A. M. Mikkola and A. A. Shabana. A non–incremental finite element procedure for the
analysis of large deformation of plates and shells in mechanical system applications.
Multibody System Dynamics, 9(3):283–309, 2003.

N. Newmark. A method of computation for structural dynamics. Journal of the Engi-
neering Mechanics Division, ASCE, 85(EM3):67–94, 1959.

P. E. Nikravesh, I. Chung, and R. L. Bendict. Plastic hinge approach to vehicle crash
simulation.Computers & Structures, 16:395–400, 1983.

M. Omar and A. A. Shabana. A two–dimensional shear deformable beam for large
rotation and deformation problems.Journal of Sound and Vibration, 243:565–576,
2001.

X. Rui, B. He, Y. Lu, W. Lu, and G. Wang. Discrete time transfermatrix method for
multibody system dynamics.Multibody System Dynamics, 14(3–4):317–344, 2005.

X. Rui, G. Wang, Y. Lu, and L. Yun. Transfer matrix method for linear multibody
system.Multibody System Dynamics, 19(3):179–207, 2008.

R. Schwertassek, S. Dombrowski, and O. Wallrapp. Modal representation of stress in
flexible multibody simulation.Nonlinear Dynamics, 20(4):381–399, 1999a.

R. Schwertassek, O. Wallrapp, and A. A. Shabana. Flexible multibody simulation and
choice of shape functions.Nonlinear Dynamics, 20(4):361–380, 1999b.

A. A. Shabana. Substructure synthesis methods for dynamic analysis of multi–body
systems.Computers & Structures, 20(4):737–744, 1985.

A. A. Shabana. Constrained motion of deformable bodies.International Journal for
Numerical Methods in Engineering, 32(8):1813–1831, 1991.

A. A. Shabana. Finite element incremental approach and exact rigid body inertia.
Journal of Mechanical Design, 118(2):171–178, 1996.

A. A. Shabana. Resonance conditions and deformable body co–ordinate systems.
Journal of Sound and Vibration, 192(1):389–398, 1995.

A. A. Shabana. Flexible multibody dynamics: review of past and recent developments.
Multibody System Dynamics, 1(2):189–222, 1997.

A. A. Shabana.Dynamics of Multibody Systems. Cambridge University Press, Cam-
bridge, MA, 1998.

A. A. Shabana and R. A. Wehage. Variable degree of freedom component mode
analysis of inertia–variant flexible mechanical systems.Journal of Mechanisms,
Transmissions and Automation in Design, 105:370–378, 1983.

A. A. Shabana and R. Y. Yakoub. Three–dimensional absolute nodal coordinate for-
mulation for beam elements: Theory.Journal of Mechanical Design, 123:606–613,
2001.



BIBLIOGRAPHY 141

A. A. Shabana, Y. L. Hwang, and R. A. Wehage. Projection methods in flexible multi-
body dynamics. Part I: Kinematics.International Journal for Numerical Methods
in Engineering, 35(10):1927–1939, 1992.

I. Sharf. Geometrically non–linear beam element for dynamics simulation of multi-
body systems.International Journal for Numerical Methods in Engineering, 39:
763–786, 1996.

P. Shi, J. McPhee, and G. Heppler. A deformation field for Euler–Bernoulli beams
with applications to flexible multibody dynamics.Multibody System Dynamics, 5
(1):79–104, 2001.
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