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ABSTRACT

In many multibody system dynamics applications, in whicé tequirements of
weight, operational speed, etc., are highly demandingdéfi@rmation of certain ele-
ments of a mechanism can not be neglected. On the other h@ncirently available
computational power makes the real-time simulation of ffllegystems possible with
standard workstations. The present work aims at develdpimgulations for flexible
multibody dynamics meeting the efficiency, precision artslisiness requirements of
real-time applications.

The first chapter is a brief introduction to the existing degenents, with the
objective of situating the present work within the framekvof flexible multibody
dynamics.

In the second chapter, a new formulation for flexible mulipalynamics is pre-
sented. The method is an extension to the flexible case ofiatingxsemi—recursive
formulation for rigid systems in dependent relative coonades. The flexible bodies
are modeled by using the floating frame of reference appragtbhcomponent mode
synthesis, in order to meet the real-time requirementsed different systems are
simulated by using the new method, and the results are caupar terms of effi-
ciency and accuracy, to those obtained by means of a methwtunal coordinates.

The third chapter addresses the calculation of the inegtimgs by means of an
alternative method, which does not depend on the size of tiite #lement model.
The method uses the inertia shape integrals, which are & swaoiant integrals that
can be obtained in a preprocessing stage, for achievinjgstive. It is implemented
in both the new formulation in relative coordinates, and fitienulation in natural
coordinates to which it is compared in the second chapter.

In the fourth chapter, three solutions for dealing with getmally nonlinear
problems are explored. The use of substructuring, a nanlisgffness matrix, and
the inclusion of the axial foreshortening effect, are impémted and compared. Very
good results are obtained when using the foreshorteningadetapturing the geo-
metric stiffening effect without problems where the lineaethod fails.

Finally, the conclusions extracted from the present woidn@with the possible
future developments, are presented in Chapter 5.






RESUMEN

En numerosas aplicaciones dedatimica de sistemas multicuerpo, en las que los re-
guerimientos de peso, velocidad de opdracetc. son muy exigentes, la deforntaci
de ciertos elementos de un mecanismo no puede ser despree@dotro lado, la
potencia de los ordenadores actuales hace posible la sidnide sistemas flexibles
en tiempo real con estaciones de trabaj@mdar. El presente trabajo @stnfocado
al desarrollo de formulaciones para sistemas multicuegxibfes que satisfagan los
requerimientos de eficiencia, preéisiy robustez de las aplicaciones de tiempo real.

El primer cafitulo es una breve introdudsi a los desarrollos existentes, con el ob-
jetivo de situar el presente trabajo en el marco de lardina de sistemas multicuerpo
flexibles.

En el segundo cafulo, se presenta una nueva formufacpara didmica de sis-
temas multicuerpo flexibles. El&ndo es una exterisi de una formuladin semi—
recursiva en coordenadas relativas dependientes yargrigigra sistemaggidos. Los
cuerpos flexibles son modelizados usando sistema de rei@fstante conintesis
de componentes, para cumplir con los requerimientos d@teeal. Se simulan tres
sistemas diferentes mediante el nuevetado, y los resultados son comparados con
los obtenidos mediante uratodo en coordenadas naturalesgminos de eficiencia
y precisbn.

El tercer caftulo trata sobre ela@culo de losérminos de inercia por medio de un
método alternativo, que no depende del thmeel modelo de elementos finitos. Para
conseguir este objetivo, elatodo usa un conjunto de integrales de forma, que son
constantes y se obtienen en una fase de preproceso. Se emignphdo tanto en la
nueva formuladn en coordenadas relativas como en la formolaein coordenadas
naturales con la que se ha comparado en el segunétolcap

En el cuarto cajpulo se exploran tres soluciones para abordar problemagpi@
sentan no linealidad gedrica. Se han implementado y comparado el uso de sub-
estructuras, matriz de rigidez no lineal, y la incarsidel efecto deforeshortening
axial. El metodo delforeshorteningha dado muy buenos resultados, capturando el
efecto de rigidiza€in geongtrica donde falla el &todo lineal.

Finalmente, las conclusiones extfas del presente trabajo, junto con posibles de-
sarrollos futuros, se presentan en el @ap 5.
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Chapter 1

Introduction

1.1 Motivation

The consideration of flexibility in the simulation of multitly systems has been in-
creasingly acquiring interest since the early seventispeEially in the aerospatial
and robotics fields, the need for more lightweight and slemdiements in mecha-
nisms such as manipulator arms or deployable solar arréysg avith the obvious
difficulties presented by the work with actual prototypesréased the demand for
simulation methods capable of including flexibility effect

Nowadays, the simulation of flexible multibody systems isclis;i many engineer-
ing fields and applications, such as vehicle dynamics, batraeics, manufacturing
machines, serial and parallel robots, etc., and most coniai@omputer codes, such
as ADAMS, RecurDyn, SAMCEF Mecano, or SIMPACK, along withmgather aca-
demic ones, include capabilities for considering flexipiiin their simulations. The in-
crease of computing power experienced during the last ydlargs for including flex-
ible bodies in applications where efficiency is of key imparte, such as simulations
with real—-time requirements, optimization processesrgire many evaluations of
the simulation, etc.

Real-time requirements appear, among others, in the $eddaiman—in—the—
loop and hardware—in—the-looimulations, like virtual reality applications, driving
simulators, simulation—driven controllers, etc., whére simulation is carried out in
real-time, and the response to the inputs must be immediateese applications,
the main concern is efficiency, but not forgetting accuraegl, anore importantly,
robustness. A compromise must be achieved, by combinirggttigee factors in an
adequate form. It is obvious that the efficiency must be shiahthe simulation is run
in real-time or faster, and it depends on the combinatioroof factors: the type of
coordinates and modelization, the dynamic formulatioa rthmerical integrator, and
the computer implementation. In some cases, formulatioasare theoretically less
efficient than others since they perform more arithmeticajiens, can achieve better
performance if they are combined with the adequate comprmglementation and
numerical integrator.
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In the Laboratory of Mechanical Engineering of the Univigrsif La Corlia,
several works have been dedicated to the real-time siroala®n the one hand, a
very efficient semirecursive formulation for the simulatiof rigid multibody systems
(Cuadrado et al., 2004a,b; Dopico, 2004) has shown very gapdbilities for real-
time applications. On the other hand, a method for the sitiounlaf flexible systems
in natural coordinates was tested and validated againstiexental results (Cuadrado
et al., 2004c; Guérrez, 2003). The objective of this thesis is the develogmemeth-
ods as efficient as possible for flexible multibody dynamiicsyrder to meet the re-
guirements for real-time applications. In order to do taatew formulation is defined,
by extending the aforementioned semi—recursive formuddir rigid systems to the
flexible case. In the new formulation, the modeling of fleziblodies is taken from
the cited formulation in natural coordinates. The efficierscthen further improved
by introducing an alternative method for calculating thgalale inertia terms, which,
as opposed to that used in the original formulation, doesdepend on the size of
the finite element models used. This method is introducedth the new and the
original formulation in natural coordinates. Finally, seal methods for dealing with
geometrically nonlinear problems such as beams underdamigg deflections are im-
plemented, for extending the range of applicability of therfulations.

1.2 Background

As pointed out in the previous section, the simulation ofiexmultibody systems
has been under research for the last 30 years. In such atoagtiany different meth-
ods have been developed, and the existing literature igmilyrvery extensive. Sev-
eral books, either fully or partially devoted to flexible ribibdy dynamics, have been
already published, by authors like Amirouche (1992¢r&ilin and Cardona (2001)
or Shabana (1998). Some review papers have also appeargfdthése years, such
as that of Shabana (1997), Bremer (1999), or Wasfy and N@f3[2 The last one
is a particularly comprehensive and well organized reviéthe different methods,
having a total of 877 references. In that survey article foneulations are classified
according to the frame of reference chosen for the modelifigxible bodies.

The elastic displacements, which are usually modeled bynmehthe finite el-
ement method, can be then referred to three different typ&ame of reference, as
shown in Figure 1.1, depending on the entity they are aswutta.

o In thefloating frame of referencirmulations, FFR in what follows, the elastic
displacements are measured in local coordinates, witleottpa floating frame
attached to the body, which in turn undergoes the large &umlgliorreference
motion. In the figure, the local frame is that representecheyectorss andv.

e Theinertial frameor global formulations use the global inertial frame as the
reference for the material positions of all the points ofttechanism, in such a
way that there is no formal separation between the largeiardplrigid—body
motion and the elastic displacements; therefore, the systriables are the
absolute positions and orientations of all the finite eletmedes.
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Figure 1.1: Inertial, floating and corotational frames dérence.

e The last type of formulations are tle®rotational ones, which define a coro-
tational frame of reference, also known as convected frdoneach finite el-
ement, which is represented by the vectogsandv, in the rightmost finite
element of the figure.

Most of the currently used formulations fall into one of te¢kree categories. Other
methods, which do not clearly belong to any of them, are dised at the end of this
section.

1.2.1 Earlier developments in flexible multibody dynamics
Linear theory of elastodynamics

There exist several survey papers (Erdman and Sandor, L&%2n and Chassapis,
1986; Lowen and Jandrasits, 1972) about the first approgriunaiethods for flexible
multibody dynamics, known as thi@ear theory of elastodynamick this approach,
it is assumed that the elastic deformations have no signifietiect on the global
motion of the mechanism, so that the latter can be obtaired & preliminary rigid
body simulation. The total motion is considered as the qgsétion of the elastic dis-
placements to the global “nominal” motion, as it happenskiR Ffnethods, although
in this case they are not solved simultaneously. In ordebtaip the elastic displace-
ments, a dynamic analysis is carried out, assuming thatefleeence motion is that
obtained from the rigid body simulation. This means thatlastic displacements are
dynamically affected by the global motion, but the opposifect, i.e. the influence
of the deformations on the large amplitude motion, is comegpfeneglected. Some
of these methods (Sunada and Dubowsky, 1981, 1983) alrerdgiiced the use of
component mode synthesis (Hurty, 1965) for reducing thebmsmaf unknowns.

Finite segment method

The finite segment method (Huston, 1981, 1991), can be cemesldas an applica-
tion of the rigid body formalism to the simulation of flexibégstems, more than as
a flexible multibody formalism. The method consists of apprating a deformable
body by a set of rigid bodies interconnected by force eleméntsuch a way that,
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provided that the discretization and the force elementsdatermined, the simula-
tion can be carried out by using any existing method for rigyidtems. This method
has been successfully used for several applications,dmgwehicle crashworthiness
tests (Nikravesh et al., 1983), or the simulation of flexindams (Banerjee and Na-
garajan, 1997; Zahariev, 2000). The most important prolil@mesents is, obviously,
the definition of the discretization, along with the conimttand parameters of the
force elements, in such a way that the response of the egoiviiéxible body is re-
tained, especially in the case of complex geometries.

1.2.2 Floating frame of reference formulations

The floating frame of reference formulations, due to theghhtomputational effi-
ciency, are the most widely used in flexible multibody dynesnin these methods,
the motion of a flexible body is considered as the superposidf small elastic defor-
mations to a large amplitude rigid—body motion. This refeeemotion is undergone
by a local frame attached to the body, which can be repredeateording to the spe-
cific formulation, by different types of rigid—body or reéarce coordinates. The elastic
displacements are then considered within the local frafier, laeing linearized about
the undeformed position. Due to this linearization, the afsthese methods is, a pri-
ori, restricted to small-deformation problems, althougime workarounds have been
developed in order to extend their range of applicability.

The underlying idea of the FFR methods is that the absolwsgipo of any given
point of a flexible bodyr, can be expressed as

r=ro+AF=ro+A(F,+y) (1.1)

wherer, is the absolute position of the origin of the local frame, @ a trans-
formation matrix that defines its orientation. The localipos ' of the point within
the local frame is, in turn, the sum of the elastic displacetie, to the undeformed
position,,, which is obviously constant. The elastic displacementtmamodeled
by using a finite element mesh defined in the local frame. Astpdiout before, the
deformations are assumed to remain small, so that in ordexdiece the number of
system variables, they can be approximated by using the @oemp mode synthesis
technique (Hurty, 1965), which approximates the deforametield as a linear combi-
nation of assumed mode shapes,

o0 n
fr=Y &~y i (1.2)
i=1 i=1

In this equation®; are Ritz vectors defining the mode shapes,grate the so—called
modal amplitudes, also known as elastic coordinates, wdrieln general added to the
set of problem variables. An additional advantage of thegmment mode synthesis,
apart from the reduction of the problem size, is the elimamaodf the higher frequency
modes, which are undesirable from the numerical integngimnt of view.

FFR methods, as opposed to the earlier methods based oméae theory of
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elastodynamics, take into account the coupling betweerefieeence motion and the
deformation, since they integrate the reference and elestirdinates simultaneously.
One of their most important drawbacks is that, due to thi§ the inertia terms are
highly nonlinear. Another typical problem of FFR formutats, as pointed out by
Kane et al. (1987), is their inability to capture some naogdin effects such as the
geometric stiffening in rotating beams, due to the linestitn of the elastic displace-
ments. The most general technique for avoiding this lingitgtwithout introducing
any modification to the formulation, is the substructuritgtegy proposed by Wu
and Haug (1988), which consists of dividing the body intoesal/substructures, be-
ing each of them a flexible body with its own floating frame dérence. The adjacent
substructures are interconnected through the so—chibsket joints in such a way
that the full set of substructures behaves like a whole bohbig approach allows for
capturing the nonlinear effects, although at the cost ofresicierable increase in the
number of variables. Other methods use a nonlinear forioulaff the elastic forces
(Sharf, 1996), or take into account the effect at geomedsiel| by introducing into the
kinematic model the effect of tHereshorteningi.e. the axial displacement produced
by the transversal deflection (Mayo et al., 1995). This asp@avever, is the object of
the fourth chapter of this thesis, so that it will not be fertkdiscussed here.

As has been previously pointed out, the floating frame ofregfee formulations
characterize the motion of the local frame by using rigichbooordinates. Three
main types of coordinates are commonly used for descrilbiagrtotion of rigid bod-
ies, namely the reference point coordinates, the natu@damates, and the relative
coordinates; therefore, the FFR methods can be classifeeddingly. The difference
among the different types of coordinates is illustrated igufe 1.2, where a planar
two degree of freedom manipulator arm is shown.

Figure 1.2: Reference point, natural and relative cootdma

e Thereference pointoordinates model a rigid body by using the coordinates of
one of its points, usually the center of gravity, for definitggtranslation, and
at least three parameters, such as Bryant or Euler angledefming its ori-
entation. Theoretically, this would allow for modeling thi& degrees of free-
dom of a spatial rigid body, although, as it is well known, tepresentation
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of three—dimensional rotations by using only three paramegbresents prob-
lems of singularity at certain positions, so that the commiwice is the use of
redundant parameters, such as the four Euler paramete¥sx 6rorthogonal
rotation tensors. In the 2D manipulator arm shown in the &gtire reference
point parameters would be the positions of the centers aofitgraf the two
arms(xy, y1) and(x,, y2), along with their orientation angles with respect to
the global framef); andé,. This makes a total of six parameters, to which four
constraints must be applied for keeping the hinge pointscidént.

Thenatural coordinates (Gafa de Jadn and Bayo, 1994) consist of points and
unit vectors, expressed in Cartesian coordinates. In gérike points coincide
with the positions of the kinematic pairs, and the unit vextiefine their princi-
pal axes. This allows for modeling many kinematic pairs grstg coordinates.
Moreover, when using natural coordinates, the mass mateaxigid body can
have a constant value, depending on the parameters chasenrfmdeling. In
the figure, the natural coordinates are the positions ofwleerévolute joints
(x4, y4) and (xp, yp), thus making a total of four parameters. It is observed
that the coordinates, andy4 are shared for both bodies, so that no algebraic
constraint will be needed for the corresponding revolutetjd@nly two con-
straints are needed, in this case for imposing the constagth of the links,
thus reducing the dimension of the problem from 6 to 4.

Therelativecoordinates are relative distances and angles betweereadljzod-
ies. They usually form a minimal set of parameters for degjrifre position of
a mechanism, which may be independent in the case of opgntdpologies.
The relative coordinates relate the position of a body tt ¢fits predecessor
in the kinematic chain, which allows for implementing vefficent recursive
algorithms for the solution of the equations of motion, althh these methods
are in general much more involved than the methods that usauib coordi-
nates. Many of these methods use symbolic algebra for ahtgihe equations
of motion, thus allowing for eliminating many repeated @tiems, leading to
highly efficient methods. In the figure, the relative parasmeare the angleg
and z;, and, since the mechanism has two degrees of freedom, ntioaadli
constraints are required.

FFR formulations in reference point coordinates

The method developed for the planar case by Song and Hau@)(kothe first FFR

method that totally accounts for the inertia coupling betwéhe reference motion
and the local elastic displacements. The method is lateergéired to the three—
dimensional case and further developed by several autlsirabgna and Wehage
(1983); Agrawal and Shabana (1985); Shabana (1985, 1988)ese methods, the
reference motion is parameterized by using a point and the Eoler parameters,
and the elastic displacements are approximated by mear@mmgianent mode syn-
thesis. In Agrawal and Shabana (1986), the problem of holdhaéng frame should
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be attached to the body is addressed, introducing the cbntepean—axis frame. A
mean-axis frame is not attached to a physical point of thg,krodl leads to the min-
imal coupling between the reference motion and the elasficrthation. The already
mentioned substructuring method, proposed by Wu and Ha@8gjIfor addressing
the nonlinearity problems, is based on this FFR method ereeice point coordinates.

FFR formulations in natural coordinates

One of the first flexible multibody implementations in natwaordinates is that in-
troduced by Vukasovic (1990). According to the natural damates formalism, the
frame of reference is modeled by a point and two orthogondlwattors, and the
elastic displacements are approximated by means of a @Gaigpton modal reduc-
tion (Craig and Bampton, 1968), in local coordinates. Thatfulation, however, is
not fully consistent with the natural coordinates phildsggsince the coordinates that
model the boundary points and unit vectors are those offibétrous undeformed po-
sition, instead of the actual deformed position and origmaThis means that one of
the main advantages of the natural coordinates, i.e. thaplity of sharing boundary
entities to reduce the number of kinematic restriction$pss. Another drawback of
this method is that it uses a velocity transformation tegheifor obtaining a system
of equations in independent coordinates, and the caloulati that velocity transfor-
mation, which can be advantageous in rigid systems, isratb#ficient in the flexible
case, due to the higher number of independent coordinates.

The method of Cuadrado (1993), also found in Cuadrado e1896), addresses
the two main drawbacks of this method. In this case, eachbfexiody is modeled
by a point, three unit vectors, and a set of Craig—Bamptonesothe amplitudes of
the static modes are eliminated, since they can be exprassetlinction of the frame
variables and the actual deformed boundary points and reectbe coordinates of a
body are then the frame parameters and the Cartesian catasliaf the boundaries,
plus the dynamic modal amplitudes, which are independeatebVer, the equations
of motion are stated in dependent coordinates, by usingssickl Lagrangian for-
mulation with Baumgarte stabilization (Baumgarte, 1972je inertia terms, i.e. the
mass matrix and the velocity dependent inertia forces veate obtained by inte-
grating the kinetic energy over the whole volume of the bdHys obtaining fully
consistent inertia terms, but at the cost of a rather ingiweplementation, despite
the use of invariant matrices (Shabana, 1991) to reduceotih@uatation time.

In order to simplify the calculation of the inertia terms,effo (1995) introduced
a method based on the corotational inertia proposed by Gardod @radin (1988),
which enables to obtain the mass matrix as a projection o$tdnedard mass matrix
of the finite element method into the coordinates of the battiiough with some
further simplifications. Avello assumed that the veloaitt®uld be interpolated in the
global frame by means of the finite element interpolatiorcfioms, which is true in
the case of isoparametric finite elements but, in the castaftaral elements using
infinitesimal rotations as nodal coordinates, such as beplates and shells, this is
only an approximation. Another difference with respecttte method of Cuadrado
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is the explicit use of the static modal amplitudes as systariables. This work has
been continued by Guirez (2003), who introduced a nonlinear stiffness method t
account for the geometric stiffening in rotating beamssHER formulation in natural
coordinates has been validated against nonlinear finitaegle methods (Cuadrado
etal., 2001), and also against experimental tests, by congpie results to the actual
measured stresses in the chassis of a prototype car (Coagtradl, 2004c). In this
case, the same index—3 augmented Lagrangian formulat@hinghe present work
is used for integrating the equations of motion.

FFR formulations in relative coordinates

Prior to describing the FFR formulations in relative coaates, the recursive methods
for rigid body systems, on whose principles the flexible folations rely, are briefly
introduced here.

Traditionally, the efficiency of recursive methods has bessociated to their com-
putational complexity, understood as the number of flogpioigt operations needed
for obtaining the accelerations. This number of operatiforsa given formulation, is
a function of the number of elements of the mechanisnand the order of complex-
ity of a formulation is defined as the exponentoin that function. Although some
other methods with different orders of complexity exisg thajority of them can be
considered as either semi—recurs@¢n?) or fully—recursiveO (n) formulations.

The first family of formulations, those with a? (n*) complexity, were initially
developed by Walker and Orin (1982) for open—loop robotioipalators. The main
idea of the original method is to take advantage of an invdggemics algorithm,
more specifically the recursive Newton—Euler method (Fexatbne, 1987), for the
solution of the forward dynamics problem. The inverse dyicamproblem consists
of finding the forces and moments required at the actuatoesroéchanismg, for
obtaining a prescribed motion, according to the followigga&tions of motion

M@z =1 —Q(z2) (1.3)

where the vectof absorbs all the generalized forces not introduced by theatmts,
such as the centrifugal and Coriolis forces, the gravitetidorces, etc. Since the mo-
tion is prescribed, the relative positionsvelocitiesz and acceleratiorisare known a
priori. The inverse dynamics algorithm obtains first thet€sian positions, velocities
and accelerations of all the elements of the mechanism, tigrp@ng a forward recur-
sive analysis from the root to the leaves. Then, the forcdsrartias are accumulated
in the inverse direction, from the leaves to the root. Dutimg process, the dynamic
equilibrium is imposed at each kinematic pair, thus obtejrthe unknown actuator
forces. In order to solve the forward dynamics, the methappsed by Walker and
Orin uses the inverse Newton—Euler method, by applying ¢oations of zero and
unit values to the accelerations, for calculating the maasinM and the forces vec-
tor Q. Once they have been determined, the accelerations areabtay solving the
resulting linear system in Eq. (1.3). Tiée(n*) complexity resides at this point, since
the number of operations needed to solve a linear systemsgndth the cube of its
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dimension.

A more efficient revision of this method, referred torasthod 3n the paper of
Walker and Orin, and asomposite rigid—body methad Featherstone (1987), uses an
alternative recursive method, going from the leaves todbg for calculating the mass
matrix. First, the mass matrices of the individual bodies @mputed in Cartesian
coordinates, at the current position. These individualsmaatrices are all referred to
the global origin, instead of the center of gravity of eacklypan order to facilitate
their accumulation. The composite mass matrix at a jginfor a given position of
the mechanism, is the equivalent mass matrix that all théebgalaced between the
joint and the end of the tree would have, if considered as goasite rigid body. This
accumulated mass matrix can be obtained as the sum of thvidinal matrices of all
the corresponding bodies, since all of them are calculaiddrespect to a common
point. Finally, by using the recursive relations at the fgjthe mass matrix in relative
coordinates is assembled, which allows for stating thealisystem that leads to the
relative accelerations.

Featherstone (1983) introduces a fully-recursivéz) formulation, thearticu-
lated inertia methodwhich was proven to be more efficient than the semi—recarsiv
ones for systems with more than ten elements (Featherst®8&). This method was
further developed by Bae and Haug (1987), who use a differetation, and obtain
the equations of motion from a variational approach. In thig-frecursive algorithms,
the backward recursive accumulation of inertias and foicpsrformed by introduc-
ing the kinematic relations. The resulting mass matricearces vectors can then be
used, in a second forward recursive analysis from the rottiddeaves, for obtaining
the accelerations at each joint. If an additional body iseaddid the mechanism, one
more step is added to each recursive propagation, so thatuther of operations
grows according to a® (n) law.

The same authors extended the fully—recursive method sedidoop topologies
(Bae and Haug, 1988). In order to apply the method to a cldeed-system, the
closed loops are cut first, in order to obtain an open-loopierrof the mechanism.
Then, the reaction forces, which are introduced by meansagfdnge multipliers, are
propagated as unknowns, along with the other forces, inabkvsard recursive inertia
and force accumulation, thus keeping the fully—recuréMe:) nature of the method.

In Jiménez (1993), a variation of the composite rigid—body metisqutesented,
based on the notation introduced by Bae and Haug fortfie) formalism. In this
case, the equations of motion in relative coordinates atairdd by means of a ve-
locity transformation, although the underlying idea is #zne as in the composite
rigid—body method. Thi® (n?) method is generalized for closed-loop systems, by
using two different solutions. The first one consists ofistpthe equations of mo-
tion in relative dependent coordinates, by using a penadtyrangian formulation
(Bayo et al., 1988). The second solution performs a secolwtitye transformation
(Garda de Jabn and Bayo, 1994), for obtaining a reduced set of indepenotesT-
dinates, so that the equations of motion can be integratadstendard ODE system.
In the same work, a fully-recursive method, that uses thbajlorigin as reference
for the Cartesian mass matrices, as done in the composite-bigdy method, is also
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introduced. In Stelzle et al. (1995), the computational plexity of fully—recursive

formulations is thoroughly analyzed and compared, conetuthat the global ori-
gin is the reference point leading to the lowest complexitihe dynamic terms are
obtained in global coordinates.

Dopico (2004) performs a comparison between the formulationatural coordi-
nates, and the tw® (n3) methods in relative coordinates proposed byéfise, by
simulating several systems of different sizes. The resiiltse comparison indicate
that the penalty semi-recursive method is more efficiem that in natural coordi-
nates for large systems. On the other hand, the semi—reeunsithod in independent
coordinates, in spite of integrating a smaller set of cowtiis, is found to be less
robust and efficient than its penalty—based counterpadosiing to these results, the
O (n*) method in dependent relative coordinates is chosen foghmitended to the
flexible case in this thesis.

One of the first FFR methods for flexible systems in relativerdimates is that de-
scribed by Book (1984). The method, limited to the simulatid open—loop robots,
shares some features with that of Sunada and Dubowsky, sutble &agrangian for-
mulation of the equations of motion, the use of the Denawdrtéhberg parameteri-
zation (Hartenberg and Denavit, 1963) for the recursivati@hs, and the reduction
of the finite element models by means of component mode sgisthEhe method
proposed by Book, however, fully accounts for the inertiaglimg between the large
amplitude and the elastic motion, instead of obtaining trenér from a rigid body
analysis. Each flexible link is modeled by means of two framesgeference, one
placed at the input joint, which is the actual floating franieederence of the body,
and another frame at the output joint, whose displacemetht@tation with respect
to the body frame depend on the modal amplitudes. The reeurslations are as
follows: from the parameters of the local frame of a badwlong with the modal
amplitudes, the position of the output frame is determifdan, the input frame of
the next body;j is related the output frame @fby means of a transformation ma-
trix, which is a function of the relative coordinate betwdirks i and j. Thus, the
orientation of the input frame of bodjis obtained as,

A = AAsA, (1.4)

whereA; andA; are the absolute transformation matrices of the input feaofdinks
i and j with respect to the inertial frame. The transformati®p; is produced by
the deformation of body, and the resulting frame is transformed Ay, which is
a function of the relative coordinates. In the formulatioesented here, a similar
approach is used, although it does not use the Denavit—itete formalism for the
recursive relations, and, moreover, the floating frame do¢siecessarily have to be
placed at the input joint. This method pertains to the faraflyy (n3) formulations,
since it uses the recursive relations for obtaining the gojs of motion in relative
coordinates, and then solves a linear system for the aatieles.

The method proposed by Kim and Haug (1988, 1989) repredemtsatural exten-
sion to the flexible case of the method of Bae and Haug for sg&dems. In this case,
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the floating frame of the body is placed at the center of gyasit that joint frames
are required at both the input and output joints. The flexlidies are modeled by
using component mode synthesis, and the inertia terms grexdmated by using a
lumped mass approach. This formulation is also developetisfose in closed—loop
systems, and uses the safi€n) articulated inertia approach for the calculation of
the accelerations.

Later, Shabana et al. (1992) and Wehage et al. (1992) intemtla new recur-
sive formulation, which is only described for open—loopteyss in the cited refer-
ences. The kinematic modeling is the same as that used by idrilaug, although it
presents several differences. On the one hand, the inemtiss tare calculated by using
consistent mass integrals, by means of the inertia shapgrais already used by the
same authors in hon-recursive algorithms. Due to the fattttte inertia properties
of the elastic coordinates are constant, the second tinteatiees of the modal am-
plitudes are eliminated by means of the Gauss—Jordan metimdto the recursive
solution of the accelerations. This operation is efficigptrformed since the block of
the mass matrix corresponding to the elastic coordinatest bmiinverted only once.
This is a recursiv® (n) formulation, although the equations of motion are stateuhfr
a Newton—Euler perspective. At the end of the second oneafited papers, however,
the modal elimination in an augmented Lagrangian appraabhiefly commented.

The work of Znameatek and Vahsek (1998), described only for open—loop sys-
tems, is a reformulation of th@ (n) approach, based on the Gauss principle of least
constraint. This method also performs the modal amplitediesination and uses the
fully consistent inertia approach. In the cited work, twdéfatient orthogonalization
methods, intended for optimizing the computational coxipteare introduced. Each
one of the methods is optimized for bodies with either lessore than 17 mode
shapes.

In Bae et al. (2001) a method for including flexible bodie®iah existing rigid—
body code is presented. The idea is to define modules thatlinte the flexible bodies
as virtual joints, in such a way that the core software is nodified.

The formulation recently introduced by Vampola and&ek (2007) is very simi-
lar to that presented in this thesis, since it is@un*) method that relies on the ideas
of the composite rigid body method of Walker and Orin, andbaots for open— and
closed-loop topologies. This formulation is different iamy aspects, however, since
the equations of motion are stated, as in Znamek and VadSek (1998), by means of
the Gauss principle. The inertia terms are obtained by wsinghped mass approach,
and the number of nodes of the discretization appears irotaertumber of floating
point operations, meaning that efficiency depends on theutsn of the mesh.

1.2.3 Inertial frame formulations

The formulations in absolute coordinates are derived frioafinite element method,
so that they use the nodal coordinates as system varialidescdnventional finite
element formulations (Bathe, 1995) do not allow for rigiddpaotations without in-
troducing elastic deformation, thus making them unsuiét the simulation of flex-
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ible multibody systems. The absolute formulations inteldifferent modifications
to the finite element method, aimed for obtaining finite eleta¢hat are invariant to
rigid body rotations. In general, these formulations diffethe parameters they use
for defining the orientation of the finite element nodes, pehe positions defined by
absolute Cartesian coordinates in all of them.

Most of the inertial frame formulations are developed far thodeling of flexible
beams. The common approach is to define the position andtatitem of a finite
element node by its Cartesian coordinates, and its orientaisually represented by
a trihedron that remains perpendicular to the cross seclio@ formulation of Sirb
and Vu-Quoc (1986a,b,c,d) is one of the earliest applinatiof the inertial frame
approach. In this formulation, developed first for two—dirsienal beam elements
and then generalized to the three—dimensional case, @&netetrihedron is defined
at every point of the beam, such that one of its directionswgys orthogonal to the
cross section. In order to interpolate its orientation, Huder parameters defined at
the nodes are used. In this formulation, as it happens tbafiarmulations based on
the inertial frame approach, the mass matrix is a simpleesgion, being the elastic
forces the most complicated term to evaluate.

A similar formulation is that proposed by Cardona anér&lin (1988), which
introduces theotational vectorfor the parameterization of the section orientations,
instead of the Euler parameters. These authors developeagiete formulation, in
the context of a general purpose multibody simulation sarftw

The method of Jonker (1989) shares some features with theféifulations.
This method is intended for beam elements only, and usesoigqn and Euler pa-
rameters as nodal coordinates, being the intermediatdspimiterpolated by means
of cubic polynomials. The similarity with the substruchgiFFR method of Wu and
Haug (1988) is clear, since the finite elements can be seeaasswith only static
deformation modes, and the nodal coordinates are sharegéretlements thus be-
having like bracket joints.

An inertial frame formulation in natural coordinates, imtied to be fully compat-
ible with rigid or FFR methods based on the same coordinet@sesented by Avello
(1990) and Avello et al. (1991). This method uses, as nodalpeters, the position of
a point and three orthogonal unit vectors, all of them exg@dsn fully Cartesian coor-
dinates, thus making a total of 12 variables per node. Skedaltjic constraints must be
then introduced for each trihedron, to keep its vectorsomtimal, as happened to the
local frame vectors in FFR formulations. To avoid the intéagion of angles or Euler
parameters, the orientation of the intermediate sectisrbiained by interpolating
the unit vectors themselves, thus obtaining as a resultstaoimass matrix. This ap-
proach, however, is not completely exact, since the intatpd vectors are no longer
unit and orthogonal, although the introduced error can loe@able, converging to
the exact solution as the mesh is refined.

A different approach is that presented by Shabana in the Iatesblodal Coor-
dinates Formulation (ANCF). This formulation uses posisiaf points and global
slopes as nodal coordinates. In the earliest forms of thadtation, a corotational
frame was defined at each element, which was then modeledahdoordinates as a
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two—dimensional Euler—Bernoulli beam (Escalona et al98)9In order to avoid the
use of such local frames, Omar and Shabana (2001) reforealtlag planar beam, cal-
culating the elastic forces by using continuum mechaniud then this approach was
generalized to the three—dimensional beam element by Shadral Yakoub (2001)
and Yakoub and Shabana (2001). Later, Sopanen and Mikk6@3]2studied the
elastic forces obtained by using this approach, finding gheeam element of this
characteristics suffers of poor convergence due to shekinigp problems. Several au-
thors studied alternative workarounds, such as Dufva €28D5), who interpolate
separately the rotation of the section due to deflection hedrsforces, or Von Dom-
browski (2002), who returns to the local frame approach asdd one of the main
advantages of the ANCF, the constant mass matrix. The AN@BtiBmited to beam
elements, and several authors (Dmitrochenko and Pogo2063; Mikkola and Sha-
bana, 2003) have also developed plate and shell elemenarda-Vallejo et al.
(2003) and Gaiia-Vallejo (2006), a methodology for integrating flexibledies mod-
eled with ANCF into a rigid body formulation in natural coandtes is developed.

1.2.4 Corotational frame formulations

The first reference about this approach is the work of Behks@and Hsieh (1973),
who formulated it for planar beam and triangle elements. itlea has been further
developed by many other authors, such as Crisfield (199®sdImethods are in-
tended for addressing the problems presented by the useiofustl finite elements
in the analysis of multibody systems. Structural elemeagypposed to the isopara-
metric ones, use infinitesimal rotations as nodal coordsjand their interpolation
functions do not correctly model the finite rigid—body radas. However, if it is as-
sumed that they are valid for small rotations, a local framue loe attached to every
finite element, in such a way that the rotation between twseoutive configurations
is correctly modeled in local coordinates. Two main fansileg# these methods exist:
the total Lagrangian (TL) methods, which calculate the de#iions with respect to
an undeformed reference position, and the updated LagnarfbiL) ones, that refer
them to the position in the last time—step. One common proldEthese methods is
that they do not model the exact rigid body dynamics. In otdewvercome this prob-
lem, Shabana (1996) introduces a method that actually madelexact rigid body
inertia, by using four different frames of reference siran#ously.

1.2.5 Other types of formulations
Discrete time transfer matrix method

The discrete time transfer matrix method, which has alréséy used in the structural
mechanics field, was first adapted for its use in the simulaifaigid multibody sys-
tems by Rui et al. (2005). In this method, a state vector isxddfat every connection
point, containing its six position and orientation paraangt along with the internal
force and moment vectors. The dynamic equations can bald@ten entityj, be
it a body or a joint, then linearized, in order to obtain a fori-dependent transfer
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matrix U;, that yields the state vector of the output paift as a function of that at
the input pointz;;:

zk = Uz (1.5)

This recursive relation means that a transfer matrix betve given entities can be
obtained as the product of all the transfer matrices exjdigtween them. This allows
for stating the equations of motion of a given body in termghaf transfer matrix
between itself and the inertial frame of reference. Sinoethe three—dimensional
case, all these matrices are of dimensi@rk 13, the dimension of the problem does
not depend on the number of bodies. There exists a diffeypet of transfer matrix
according to the entity it is associated to, and in the caskirefmatic joints, the
transfer matrix depends also on the type of the adjacerttentso that a wide variety
of transfer matrices need to be defined in order to coveralptssible configurations.

An application to flexible multibody dynamics is found in Hea¢ (2007), where
a flexible beam is modeled by means of the finite segment megBaderjee and
Nagarajan, 1997). The discrete time transfer matrix methtater used by Rui et al.
(2008) to compute the vibrational response of a multibodstesy including elastic
beams, although no dynamic simulation is performed in thaakw

Global modal parameterization

The global modal parameterization (GMP), introduced hiyi8et al. (2007), consists
of applying a configuration—dependent modal reductionéanthole system, at a given
configuration range, instead of doing it on a per—body basis. flexible bodies are
modeled in the global inertial frame of reference, at a gigenition, by using the
finite element method. The coordinates of the system, poitiné application of the
reduction, are divided into the relative coordinates atitteiators, the coordinates
of other points where external forces might be applgd,and the remaining finite
element internal degrees of freedam,

For a given configuration, three sets of modes are definedh Egid—body mode
is the result of applying a unit displacement to an actuatgree of freedom while
keeping the remaining actuators fixed. The constraint madestatic deformation
modes obtained by doing the same to ¢fiecoordinates, while keeping the actuators
fixed. The remaining modes are obtained by fixing the rigid @mstraint degrees of
freedom, and obtaining the eigenmodes for the remainingdoaatesu. The method
uses then a set of independent coordinates, which meang thamnly valid within
singularity—free regions of the subspace of possible cordigpns.

In practice, the method divides the domain of possible conditions into different
subdomains within which a specific modal reduction is vadid,that only a finite
number of mode sets will be needed. In order to assess thdityadif the modal
reduction within a configuration subdomain, the modal asste criterion (MAC)
is used. Moreover, a tracking strategy must be implememteatder to ensure the
adequate identification of the dynamic modes according é& ghape, since their
frequencies can vary from one configuration to another.
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As long as the number of degrees of freedom of a mechanisnthé@imension
of the possible configurations domain, grows, it is obvicuast the amount of data
needed for covering all the possible positions might ineeesxponentially. However,
this method is primarily intended for control applicatiomsere the trajectories are
usually known in advance, so that the domain of possible gordtions can be limited
to cover only those trajectories.

Recursive finite element formulations

The concept of these formulation is a combination betweeinirtial frame approach
and the recursive methods. Avello (1990) presented thedflesgpresenting the coor-
dinates of the finite element nodes of his formulation in airgige way, although the
method could become inefficient due to the need of calcgativelocity transforma-
tion for each node. The method of Bae (2005) is based on the &eas, i.e. a finite
element method in which the nodes are defined in relativedioates. This approach
is very similar to the FFR substructuring method, as useelistive coordinates by
Kim and Haug (1988).

1.3 Obijectives

The objectives of this work are the following:

e Definition of a new FFR formulation for flexible multibody dgmics in relative
coordinates. The formulation is based on thén3) penalty method described
for rigid systems in Jirenez (1993) and Dopico (2004), and models the flexi-
ble bodies as done in Avello (1995) and Guiez (2003). The new formulation
must be totally compatible with the rigid body formulatianis based on, in
order to allow for combining both rigid and flexible bodies must keep, as
much as possible, the philosophy and simplicity of the aagjsemi—recursive
method. The geometry of the flexible elements must not bedairtio any par-
ticular type, accepting flexible body data obtained from amternal means,
including commercial finite element software, experimeatealysis, etc.

e Evaluation of the capabilities of the new formulation foalrdime applications,
by comparing it to the formulation in natural coordinatesi(i&rrez, 2003), in
terms of efficiency and robustness. The comparison is pagdrfor systems
with different sizes, in order to verify if the advantageswh in rigid systems
are kept when flexible bodies are included in the simulatorl, how the num-
ber of flexible bodies may affect the results.

e Calculation of the inertia terms by means of the inertia shiafegrals or invari-
ants in both the FFR formulations in absolute (natural) &tative coordinates,
and evaluation of the efficiency and range of applicabiliithwespect to the
projection method used in Avello (1995) and Gutez (2003).
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e Implementation of different methods for capturing the getmn stiffening ef-
fect, comparing the alternatives in terms of efficiency,uaacy and simplicity
of implementation.



Chapter 2

Method in Relative Coordinates

2.1 Introduction

In this chapter, a new formulation for flexible multibody @mics based on relative
coordinates is introduced. The formulation is the resultafbining a method in
relative coordinates for rigid multibody systems, with aafiog frame of reference
formulation in natural coordinates. The main objectivehi$ tvork is, apart from im-
plementing flexibility into a semi—recursive formulatioor frigid systems (Cuadrado
et al., 2004a,b; Dopico, 2004), is to see whether the bemdfitsned by using relative
coordinates are kept in flexible systems or not.

The formulation in relative coordinates in which the praseork is based is a re-
formulation, in terms of a velocity transformation, of thengposite rigid—body inertia
method, originally developed by Walker and Orin (1982). Vakcity transformation
uses the recursive relations defined by Bae and Haug (198fllfip-recursive meth-
ods, although in this case the inertia terms are calculaitdrespect to the global
origin, as in the original composite rigid—body inertia imed, instead of the center of
mass. The method performs a forward recursive analysisatoulating the positions
and velocities, followed by a backward recursive accunmutadf forces and inertias
from the leaves to the root, and then obtains the accelesaltip solving a linear sys-
tem. According to this, the method pertains to m¢n3) family, i.e. methods whose
computational complexity grows with the cube of the numidexlements:.

The method is intended for both open— and closed—loop sgsiarthe latter case,
the mechanism is transformed into an open—loop system wéloomore open chains,
by means of the cut—joint method. This means that the fortiomaises a set of rel-
ative dependent coordinates, and in order to close the |dlopgorresponding kine-
matic constraints must be imposed, in this case by meansaigmented Lagrangian
formulation, which uses a set of kinematic constraints @effim natural coordinates
(Garda de Jan and Bayo, 1994). The method calculates the accumulagetibimnd
generalized forces corresponding to the relative cootd#avhich are first obtained
in an intermediate Cartesian coordinate system, thengiegjénto the relative coor-
dinates by means of a variable matrix. This matrix project®performed in a very

17
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efficient recursive way, yielding the terms of the equatiofotion expressed in the
relative dependent coordinates. In order to perform the tirtegration, two solutions
are explored in Cuadrado et al. (2004a), Dopico (2004). Teedne consists of ob-
taining the equations of motion expressed in a subset opemndent coordinates by
using a second velocity transformation, whereas the seapaaonsists of the direct
integration of the DAE system in dependent coordinates)caloith kinematic con-
straints, using an augmented Lagrangian formulation. Boersd approach has been
chosen here, due to the good results obtained in the citeklswdhis formulation is
efficient, robust, and relatively simple to implement.

The flexibility problem is addressed by means of the floatiagnee of reference
(FFR) approach (Shabana, 1998). The flexible bodies are Istbdes in a previ-
ously existing method in natural coordinates (Cuadradb,2@01, 2004c; Guérrez,
2003). In the cited method, each flexible body has a localdrafmeference attached
to it, which is defined by a point at the origin and three ortirag unit vectors along
the axes. This frame experiences the large amplitude madioth deformations are
added on local coordinates, by using component mode systiteseduce the model
size. This method has been chosen because, due to how tkie etesdinates are
defined, it integrates in a very convenient way into the fdation in relative coordi-
nates. Some work has been previously done in this directyoRumes et al. (2004),
but using the double velocity projection instead of the DAEegration.

The integration of the equations of motion is performedrmsggthem as an index—3
DAE, with the positions as primary variables (Cuadrado gt1#97), and then com-
bining them with a numerical Newmark integrator (Newmar59). This method
needs to perform subsequent velocity and acceleratioegirons in order to fulfill
the kinematic constraints at the velocity and acceleragorls, since the index—3
augmented Lagrangian formulation only enforces their [fiéint at position level
(Cuadrado et al., 2000). The resulting method has a very patathce among accu-
racy, efficiency and robustness, and this behavior is kefxible systems as shown
by the results obtained in this thesis.

In this chapter, the method in relative coordinates for Bexmultibody systems
will be thoroughly described. The first section explains kireematic description of
the system, which can be considered as divided into two :piwsmodeling of the
flexible bodies, and the kinematics of the open—loop systenelative coordinates.
In the next section, the calculation of the inertia termsddrassed. This is followed
by the description of the additional non—inertial forceattmay appear in the sys-
tem, including applied forces and moments, springs and desnpnd volume forces.
Then, the problem of the kinematic constraints is addresdadlly, the assembly and
integration of the equations of motion is explained in detacluding the velocity
projection needed to express all the previously describedd in the relative coordi-
nates. Three examples are simulated in the results sestmuading a planar double
four—bar mechanism, a vehicle suspension, and a full wehiging both the formu-
lation in natural coordinates, and that in relative cocatis described in this chapter.
Finally, some conclusions and criteria of use are extratted the obtained results.
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2.2 Modeling and kinematics of the flexible body

According to the FFR formalism, the motion of a body is stddis the superposition
of two components: a large amplitude motion, undergone bygal Floating frame, and
small local elastic displacements with respect to that &aihis separation begins
at the kinematic modeling stage, so both components of thisomaalthough not
independent, will be studied separately: first, how thetield®dy is modeled within
the local frame and, then, how this local frame moves in tbbalframe and how the
flexibility affects the global motion.

The modeling of flexible bodies is essentially the same foF&R formulations:
each flexible body is attached to a floating frame of referemtegch undergoes the
large rigid body displacements and rotations, being thal teiotion the result of
adding the elastic deformation, obtained in local cooriavith respect to the float-
ing frame, to the motion of the frame itself. Following thertiteon introduced by
Shabana (1991), the set of generalized coordinates neaededdribe the motion of a
flexible body can be considered as divided into two subdetsgference coordinates,
g, andgg, which represent the position and orientation, respdgtieé the floating
frame of reference, and the elastic coordinatgs,also noted ag, which model the
local elastic deformation. The former depend on the typdgifl body coordinates
used for modeling the large amplitude motion, whereas tierlen most cases consist
of the modal amplitudes of a Rayleigh—Ritz reduction.

The proposed formulation in relative coordinates for fléxibodies is based on
a previously existing one, developed for rigid body dynanficuadrado et al., 2001,
20044a; Dopico, 2004). In this formulation, the dependenb$eelative coordinates
is namedz, to which only the elastic coordinates must be added in awarclude
flexible bodies. This means that the reference coordinatetha relative ones and,
since it is difficult to obtain the inertia terms directly egpsed in these coordinates,
an intermediate Cartesian coordinateset used for this purpose. These inertia terms
are subsequently projected into the relative coordinatesder to build the equations
of motion, and this projection is performed in an optimal wiang to the recursive rela-
tions established between neighbor bodies. Thereforanibe said that two different
sets of reference coordinates exist for each body, wheheaslastic coordinates are
common to both the relative and the Cartesian sets, singe¢peesent the deforma-
tion with respect to the same floating frame, no matter whitlocoordinates is used
to model its motion.

2.2.1 Floating frame of reference in natural coordinates

In the FFR formulation in natural coordinates (Cuadradd.e2@804c), the local frame
of each flexible body is represented by the absolute positidts originry, and by
three orthogonal unit vectorg v andw, also expressed in the inertial frame of refer-
ence, which define its orientation, making a total of 12 \@désa. The frame behaves as
a rigid body with six degrees of freedom, so that six kinematinstraints are needed
for keeping the three vectors orthonormal (Garde Jabn and Bayo, 1994). These
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vectors can be considered as the three columns of a rotatinixm, which allows
for transforming a vector in local coordinates into its gibboordinates counterpart.
In what follows, all vectors expressed in local coordinarsnoted with a bar on top.
According to this, the absolute positiorof an arbitrary pointP of a deformed body,
as seen in Figure 2.1, is defined as follows:

r=ro+Af=ro+A(,+7y) (2.1)

wherer is the deformed position in local coordinates, which is imtequal to the
sum of the undeformed positidiy plus the elastic displacemeny. The elastic dis-
placement is a continuum field, characterized by a redudesf stastic coordinates,
which depend on how the flexible body is modeled in the locahtk.

Figure 2.1: General flexible body.

The frame of reference can be connected to the flexible boégtaplishing differ-
ent conditions, known in multibody dynamics @$erence conditiondOne common
approach is the so calledngent framewhich is rigidly attached to a material point
of the body. An opposite philosophy is theean—axigrame, which is chosen in such
a way that the mean elastic displacements with respect te maimized; this is also
known as the Tisserand or Buckens frame (Agrawal and Shah886; Schwertassek
et al., 1999b), and unlike the tangent frame, it is an actoatifig frame of reference,
not attached to any point of the body. The choice of the typeashe will condition
how the elastic displacements are obtained and, in mang dhseresults will also be
affected (Escalona et al., 2002; Shabana, 1995). Accotditige reference conditions
used, the motion is split into large amplitude motion anélaeformation in different
ways; in theory, the total motion should be the same no muaitéch type of frame
is used, although in practice this is not true, due to the isereduced set of mode
shapes.

The motion of the elastic body is completely defined by thenaice and elas-
tic coordinates but, in general, more points and unit vacéme needed to model the
kinematic constraints of the mechanism. Following the raedttoordinates formalism,
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these points and unit vectors are system variables, andctireye shared between
neighbor bodies, which is a very simple method for introdgatonstraints. In Fig-
ure 2.2 this is illustrated through an example. A 3D beam tithlocal frame placed
at one end, with tha vector aligned to its undeformed neutral axis, is conneici¢ide
adjacent body by means of a revolute joint placed at the ofgpesd, represented by
shared entities: a poit and a unit vectov,. Since the motion of the body is already

Figure 2.2: 3D beam with boundary point and vector at the tip.

represented by the reference and elastic coordinatesdthitonal point and vector
can be considered as coordinates in excess, so that theyaastess, and they must
be connected to the elastic coordinates by means of kinematistraints (Cuadrado
et al., 2004c). In the method in relative coordinates, thatjpm and orientation of the
revolute joint are also needed for defining the recursivelrkiatic relations but, as will
be seen later, they are not system variables, so no kinegw@igtraints are needed,
which is one of the advantages of the formulation.

2.2.2 Component mode synthesis

As previously stated, the elastic displacemignis a continuum field, which makes
the use of an approximation technique necessary in orderate@rits computation

practical. The most common method used for this purpose B fBFnulations is the

Rayleigh—Ritz method, due to the fact that the elastic ae#&tion is obtained in lo-

cal coordinates with respect to a local frame, so that it aaltirearized around the
undeformed position for small deformations. The Ritz mdthtiows to represent the
deformed state of a solid with a minimum set of variables,figyraximating it as a lin-

ear combination of constant deformation modes, whose caffs are the so called
modal amplitudes or elastic coordinates. The deformatiodes, also known as mode
shapes, are deformed configurations that can be obtaineddang to different crite-

ria, in order to allow for modeling the displacement field be trequired accuracy,
while keeping their number as low as possible. Several tgp@sode shapes can be
used, according to the criteria they are based on. Natupahton modes or eigen-
modes are calculated in order to keep the natural frequendithe system. Other
types of modes, such as the Krylov subspaces (Lehner anti&de2006), alone or
combined with Gramian matrices (Lehner and Eberhard, 2G0®&)intended to keep
the dynamic response within a frequency range. Static madesbtained as the de-
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formed shape under certain displacement or loading camditiln the present work,

only static modes and eigenmodes are used, although antanbdeformed shapes
can be used as long as they fulfill the reference conditionsr& exist several ways to
obtain the mode shapes of a flexible body. In simple strubéleenents such as beams,
plates or shells, there may exist an analytical solutiomfany of them. In case no

analytical functions are available, the mode shapes carbtzened by means of the

finite element method, or even by performing an experimantadal analysis. These
deformation modes are calculated in the local frame of egfeg, and they depend on
the type of frame, i.e. the type of reference conditions.

In the present work, a Craig—Bampton reduction (Craig anchfdan, 1968) is
used in combination with a tangent frame (Schwertassek,et@9b), although the
modeling is easily generalizable for different types of filog. frames and reduction
methods. The Craig—Bampton reduction is especially desidar the modeling of
interconnected bodies, through the use of static and dynamides. According to
this method, the local elastic displacement can be appmateidhby means of a linear
combination ofn; static modes and,; dynamic modes, where each static maele
is the displacement field that results from applying a urspllicement or rotation
to a boundary degree of freedom, while keeping the remaioimes fixed, and the
dynamic moded; are normal eigenmodes calculated in a fixed undeformedaceer
configuration

ng nq
Fr=> ®ni+y ¥ (2:2)
i=1 j=1

wheren; and§; are the static and dynamic modal amplitudes respectivéficiware
added as new coordinates of the multibody system. This sgjme can be written in
matrix form

Uht
Nns

r=[ o @ W W o= (2.3)

Snd
beingX a matrix formed by the modes as columns, gralvector containing all the
modal amplitudes of the body, i.e. the elastic coordinatxtor. This combination
of static and fixed—interface dynamic modes can conform afsgiasi—-comparison
functions (Meirovitch and Kwak, 1990; Schwertassek etl&99b). This allows them
for achieving better convergence than a set of admissilmetians, such as normal
eigenmodes, due to a better fulfillment of the dynamic boandanditions. Moreover,

the use of Craig—Bampton modes simplifies the kinematictcainss that link the

elastic coordinates to the frame coordinates.
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The static and dynamic modes are calculated within the foaade, thus obtaining
the mode shapes expressed in local coordinates. In casgentdrame is used, the
body is considered to be clamped to the frame origin, which ananay not coincide
with a kinematic pair, although, in order to reduce the nunddecoordinates of the
system, it is more practical to use a kinematic pair to loeasngent frame. By doing
this, if a body has: connection points, only — 1 of these points are defining static
modes. In Figure 2.3 a 3D beam is shown, with a tangent fracetdd at one end,
and the six static modes defined by the degrees of freedone aipihosite end: unit
axial translation along tha axis, unit bending translations along thendw axes,
and three unit rotations: torsion about theaxis, and bending due to unit rotation
about thev andw axes. The dynamic modes are obtained as natural vibratiolesno

v

Figure 2.3: Static modes defined at the tip of a cantilever 8ani

with all the boundaries fixed. In the example of the beam, ttay be obtained as
the eigenmodes of a beam clamped at both ends. In Figure @.8anding dynamic
modes are shown, where it can be observed that there is ngithgon nor translation
at any of the boundaries. This means that if a beam is defoaneording to any of
these modes, the boundaries will not be affected, so onlgtdte modal amplitudes
are used when the position of the kinematic pairs is caledlat

Figure 2.4: Dynamic modes in the loce) plane of a cantilever beam.

The Craig—Bampton modes can be systematically calculated the finite el-
ement mass and stiffness matrices, by imposing the adedisgiacements to the
boundary degrees of freedom, and solving the static andndignaroblems for the re-
maining internal displacements. In case a tangent frameeid, uhe rows and columns
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corresponding to the degrees of freedom of the clamped spdef eliminated, for
being equal to zero. The remaining degrees of freedom caiviged into boundary
b and internal, so that the finite element mass and stiffness matricesgalith the
mode shapes matrix*, can be partitioned into blocks accordingly,

M*:|:Méb Mﬂ; K*=|:K§b K;’;’}; x*:[x% X;id} (2.4)
Mib M Kib K Xis Xid

12} 12
The asterisk indicates nodal values, i.e. referred to eefel#ment discretization. In
the mode shapes matrk*, the column subindices andd stand for static and dy-
namic modes, for the sake of clarity. The displacements @fsibundary nodes are
imposed in all the mode shapes, so that the blocks referreduadary degrees of
freedom X3 = andXj ;, can be substituted by their actual values. By definitioshea
static mode has a unit displacement at the corresponding \RIGIE keeping the re-
maining boundaries fixed, which means that ¥jg block is nothing but an identity
matrix. Analogously, the dynamic modes have no boundamlaiements, which is
the same as stating th4f ; is equal to zero.

In order to calculate the static modes, a static equilibjuablem must be solved.
The elastic equilibrium equation, which leads to the disphaents of the internal
nodes, can be written as a linear system with multiple rigimchsides

K*X* = F* (2.5)

The forces that would be needed to apply to the boundB&jjese unknowns, whereas
there are no applied forces to the internal nodes. Thergloeesystem can be written
in partitioned form, after substituting the known valuesates and displacements

K;'kb K;kl X;ks 0

The solution of the equations corresponding to the intemodkes yields the internal
displacements, so that the static modes can be directlynelta

K5) ™ K,

ii

!
Ki +KiXE =0 = X! = [_( ] @2.7)

The internal displacements of the dynamic modé€s, which are the only unknowns
they have, are obtained as a solution of a generalized eagjgrs/problem stated only
for the internal nodes

0
(K5 —@2M5) X5y =0 = X = [x* ] (2.8)
id

The type of kinematic pairs which connect the flexible bodythe rest of the
system affect the boundary conditions used for the caiomaif the mode shapes. In



2.2Modeling and kinematics of the flexible body 25

Figure 2.3, the static modes are calculated by imposingttremslations and three
rotations to the tip of the beam, in order to account for thiemeation produced by
forces or moments in the corresponding directions. In masts, the connection to the
adjacent body is such that in one or more of these directastgees of freedom exist,
which means that no force or moment will be transmitted tdtby. The static modes
are then not strictly obtained as described before. Eacredetf freedom added to a
boundary kinematic pair, will eliminate the correspondatatic mode, and the finite
element DOF in that direction becomes an internal one. lera@illustrate this, the
example shown in Figure 2.2 is used. If the beam has a revjolutieat the tip, with
its axis oriented in the direction, the static mod®s shown in Figure 2.3 no longer
exists, since no moment in that direction is transmittedatjoint. Accordingly,®;

is calculated with the rotation in thedirection allowed, taking the shape shown in
Figure 2.5. The same happens to the dynamic modes. In Fighirén2 first dynamic

Figure 2.5: Static modes at the tip of a beam with revolutetjoi

modes in both the andw directions are shown, where it can be observed that the
mode in thew direction has the rotation along the revolute axis allowEuke two
static modesb, and ®; are also shown, in order to see more clearly the difference
between them. In short, the modes are calculated consiprinbeam as clamped in

Figure 2.6: Static bending mode with fixed and free tip rotati
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the uv plane, while the conditions used for thev plane are clamped—pinned. This
is easily generalizable to any kind of kinematic joint: eaegree of freedom in the

multibody model eliminates one static mode from the elalstidy, and makes the

corresponding finite element DOF become internal.

Arbitrarily oriented boundaries

In the general case, the degrees of freedom of a joint areligoied to the princi-
pal directions of the local frame of reference. In order tiwdate the mode shapes
correctly, a local frame of reference must be defined at the jo located at point
P, defined by a local orientation matr?,, where theu subindex stands fainde-
formed The degrees of freedom of the joint must be defined alongjdiris frame
prior to eliminating the corresponding static modes andisglfor the internal nodes.
As an example, the calculation of the mode shapes of a 2Dleasmtibeam with a
slider joint whose direction is rotated an anglevith respect to ther vector of the
frame of reference, as shown in Figure 2.7, is described|dda frame of reference,

Figure 2.7: 2D cantilever beam with arbitrarily orienteidlst joint.

fixed to the kinematic joint, is defined by vectarsandv’, which are rotated an angle

6 with respect to the original frame of reference. There exastlegree of freedom in
theV’ direction, so that the beam must have motion allowed in thattion when cal-
culating both the static and the dynamic mode shapes. I tod that, the degrees

of freedom of the corresponding node can be rotated by mdartsamsformation ma-

trix T. LetM*, K* andX* be the mass, stiffness and mode shapes matrices obtained
with all the degrees of freedom aligned to the local framee frAnsformed matrices
M7, K andX}, with the end node rotated to v’ base, are obtained as

M* =TTM*T; K¥=T'K*T; X*=TX! (2.9

The transformation matriX is an identity matrix, containing_\,fi at the diagonal
block corresponding to the affected node. If structurakdimlements are used, the
finite element nodes have six coordinates, so that Afioblocks must be placed.
According to the new orientation of the degrees of freeddrere will still be three
static modes: two unit displacements in thieandV’ directions, and a unit in—plane
rotation. However, the row and column corresponding to tispldcement along’
can now be moved into the set of internal degrees of freedious, ¢alculating the
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modes in the normal way.

Considerations about isoparametric finite elements

In case that isoparametric finite elements are used, with tbahslation degrees of
freedom at their nodes, some precautions should be taken eabeulating the mode
shapes. The problem comes from the fact that a node with @ions cannot be
clamped, but only pinned, thus still allowing rigid body atibns that might render
the system matrix singular. For instance, a beam can bdytatamped if the six de-
grees of freedom are locked at a specific node, but a solidetized into 4-node
tetrahedrons cannot, since a node has only three degreeedbfm. Even if six de-
grees of freedom are locked, for example by fixing two nodesret could still exist
rotation about the axis defined by them. In general, when tvahslations are used as
nodal degrees of freedom, it is better to apply the referencelitions to lines in the
plane case, or surfaces in the three—dimensional casaléntwravoid undesired rigid
body modes.

2.2.3 Kinematics of boundary points and joint frames

Provided that the position and velocity of a flexible body, the position and orienta-
tion of its local floating frame of reference, are known, thistfstep to be carried out
in order to apply the kinematic relations is the calculatibthe position and velocity
of its boundary points and their corresponding joint frantesch boundary can un-
dergo a maximum of three translations and three rotatiohi&shwcan be immediately
obtained from the amplitudes of its static modes if they afnéd as unit displace-
ments, however in the general case one or more of these [asitions will not
appear due to the joint degrees of freedom, as has been gpaintevhen the modal
reduction has been described. Only in case a bracket jaionisidered, such as those
used in substructuring techniques, the six static moddsapilear. These amplitudes
can be grouped into a vectq that contains the translationgf and rotationahg
modal amplitudes, which will be defined in the frame of refees associated to the
joint.

The local positiorf £ of a boundary poin® is the sum of its undeformed position
72 in local coordinates, plus the elastic displacerrfghtThe local elastic displace-
ment is approximated by a modal superposition, which, ilietad at the specific
boundary nodeP, results to be equal téfn{’, as long as the static modes are defined
as unit displacements along the principal directions ofuthdeformed joint frame,
namelyu’ andv’ in Figure 2.8. According to this, the local position Bfcan be ob-
tained as

PP =1l + A =tL + AL {m (2.10)

whereA,f is the orientation matrix of the joint in local coordinatefready used for
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X

Figure 2.8: Deformed joint frame of reference.

obtaining theT matrix in Eq. (2.9). This matrix contains, in the 2D exampld-m-
ure 2.8, theu’ andv’ vectors as columns, expressed in ther base; the choice of a
two—dimensional representation is made in order to simié figures, but the math-
ematical expressions will be all developed for a 3D genaxs¢¢so there is no loss of
generality. The position of poin® in global coordinates will finally be

(P =ro+ AP =1y +A (r;’ +A?) (2.11)

As shown in Figure 2.8, the final orientation of a joint framddcal coordinates,
AP represented by vectowd andv”, is obtained after two transformations. The first
transformation is defined by the constant matﬁi;,? , and, as has been previously
pointed out, it is only needed in case the joint axiss not parallel to any of the
principal axes of the local frame of the body. Then, a secaartsformation is applied
to calculate the deformed orientation of the joint, and itlédined by an infinitesi-
mal rotation matrixli; + ﬁg’, which is itself expressed in the joint frame since the
rotations are considered about the joint axes. The mﬁﬁifxs the skew—symmetric
matrix associated to the vector of rotation modal amplimﬁ@, which are assumed
to be small, so that cos= 1 and sim ~ 7,

I —ne 75
AP <AL (s+af)=Al| ne 1 -m (2.12)
—1Ns N4 1

By rotating this deformed local system into the local frarhéhe body, the absolute
orientation of the joint frame results

AP = AAP = AAP (|3 n ﬁ;’) (2.13)

By using all the previous expressions, the absolute positfo and orientation
AP of a joint frame can be derived from the variables of the bddy attached to.
When performing the forward position analysis, the oppasiigation may arise: the
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data of an input joint is known, and the objective is to caltelthe parameters of the
corresponding body. In this case, the position of the lagahe of the body is obtained
by following the inverse procedure. First, the orientai®abtained by performing the
inverse transformation of Eq. (2.13),

A =APAPT — AP (|3 — ﬂg’) APT (2.14)

and this allows for obtaining the position of the origin oétocal frame, by isolating
itin Eq. (2.11),

ro=rP—A (rf + A;’nf’) (2.15)

The need for evaluating these inverse relations can beeddithe local frame of
the body is placed at its input joint, as a tangent frame. thsucase, the local frame
of the input joint directly coincides with the body referenitame, thus simplifying
the kinematic relations. Additionally, the use of this kiofdframe reduces the number
of static modes, due to the fact that the boundaries at thet jgnt are fixed by
definition. However, the use of a tangent frame can have soavebacks, which have
been studied by many authors such as Shabana (1995), Sabsedet al. (1999a,b),
or Escalona et al. (2002). Firstly, it leads to larger etediplacements with respect to
the undeformed mean axis, as can be appreciated in Figur@2ife left, a deformed

Figure 2.9: Buckens versus tangent reference frame.

beam with a Buckens frame is shown, where it can be seen thanh#an elastic
displacement is smaller than on the right, where a tangamtdiis attached to the same
beam. This also means that, when a tangent frame is used wiikexist a stronger
coupling between the reference and elastic motions, thlugcieg the sparsity of the
mass matrix. Another drawback of the tangent frame can béoseof symmetry,
which can introduce spurious stresses if the number of deftion modes is low.

At this point, the position and orientation of any joint framan be calculated
from those of the corresponding body, and vice—versa. Timairéng step needed to
complete the forward position analysis is the calculatibthe parameters of an input
frame from those of the output frame of the preceding bodys€hrelations, since
they are established between joint frames, which are ceresidas locally rigid, can
be derived from rigid body mechanics.
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2.3 Recursive kinematics in open—loop systems

2.3.1 Opening of closed loops

As already pointed out at the introduction of this chaptee, formulation here pro-
posed uses relative coordinates for modeling the largeirdplorreferencemotion.
These coordinates are defined as relative displacementetatidns between a body
and its predecessor in the kinematic chain, meaning thgidhition of a body is not
completely determined by its own coordinates, but those®preceding one are also
required. According to this, in order to obtain the absolubsition of a bodyy, it
must be first calculated for all the preceding bodies, byquering a forward loop
from the first body of the mechanism (root or base body) to bpdyhis is done
throughrecursive relationsthat express the position of a boghyas a function of that
of its predecessar, and the relative coordinates between them. In order toparf
a velocity or acceleration analysis, i.e. calculate thecitbs and accelerations of
the bodies from the first and second time derivatives of tkaive coordinates, the
corresponding recursive relations must be also establisheorder to define the rel-
ative coordinates and establish the recursive relatidtresclosed loops must be cut
to obtain a open—loop or spanning—tree mechanism. This-épgm mechanism is
characterized by a set of relative dependent coordinaieshich a set of kinematic
constraints are later applied in order to enforce the csiithe cut joints.

Figure 2.10: Closed—-loop mechanism.

An example mechanism will be used along this chapter totititis the formu-
lation. The mechanism, shown in Figure 2.10, consists ofaagl double four—bar
mechanism, in which only bodies 2 and 3 are flexible. The ngicion of this mech-
anism has one degree of freedom, represented by, thagle. In case a body is con-
sidered as flexible, more degrees of freedom are added,esitedeformation mode,
let it be static or dynamic, adds one degree of freedom toytsies. In what follows,
the degrees of freedom corresponding to kinematic pairghndre associated to the
rigid body or large amplitude motion, will be referred toraferencedegrees of free-
dom, as opposed to tliexibledegrees of freedom due to elasticity of the bodies. One
possible open-loop configuration for the example mechaisisimown in Figure 2.11,
obtained as a result of cutting the jointsGaand E.

This open—loop mechanism has five reference degrees obfreqaus the even-
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Figure 2.11: Open-loop mechanism.

tual modal amplitudes, so that four kinematic constraintstibe added in order to
link points C and E to their respective ground attachments, thus eliminating 6f
the five reference degrees of freedom.

Having an open—loop structure enables to perform the posiind velocity anal-
yses in a recursive forward loop, and then to accumulateefoand inertias from the
leaves to the root in a recursive backward loop, which wouwtibe possible in a
closed—loop mechanism. In the open—loop version of thesystach body is con-
nected to its predecessor in the kinematic chain by a jaimthich will be considered
as itsinput joint, and can be followed, if it is not the end of the tree, Inge@r more
bodies connected througlutputjoints. In the example, body 2 has an input joint with
a relative angle,, and two output joints 3 and 4, which are in turn the input®iof
bodies 3 and 4 respectively, placed at the same it order to make the kinematic
relationships clearer, bodies are numbered from the rotitetdeaves, in such a way
that if bodyi precedes body in the kinematic chain, immediately or not, it never can
happen that > j; the same convention is applied to the points where statidesio
are defined.

The choice of which joints to cut is not unique, and can affeth the accuracy of
the solution and the complexity of the resulting model. Tbeuaacy can be affected
especially in long branches, because of the numerical reaffi@rror accumulated
from the root to the leaves, and the solution in Figure 2.1doisoptimal from this
point of view, since the position of body 5 depends on fourrdomtes; cutting the
two joints atB would lead to three shorter branches, meaning that thetirggalstem
is less prone to numerical error. In what regards the contglekthe model, although
not seen in the example, the type of joints being cut is oftgireportance; in the
general 3D case, for instance, cutting a spherical jointldveliminate three relative
coordinates, asking for three additional kinematic caists, whereas doing so to a
cylindrical joint would eliminate one coordinate and addefiwonstraints, which is
obviously a worse choice.

In this case, five relative coordinates along with the modgbldudes are needed
to correctly position all the bodies of the mechanism. Iruretcoordinates, if the
ground attachments are not considered as system varigiiesystem would have
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six coordinates, i.e. the positions df B and D, so that using relative coordinates
would only reduce the size of the problem in one variablehis ¢xample, therefore,
no efficiency improvement is expectable in the rigid casenfithe use of relative
coordinates, since the reduction of the problem size doesomapensate for the higher
complexity of the formulation, but as will be seen later, hmyement appears as the
number of variables is increased.

2.3.2 Modeling of the kinematic joints

There exist two basic types of kinematic joints, on whichth# others are based:
translation along a straight line, and rotation about as.driboth cases, the relative
motion is characterized by a principal axis, which can beasgnted by a poinP
and a unit vectow, expressed in global Cartesian coordinates. As pointedvbah
addressing the modeling of flexible bodies, as long as treabd joint is not parallel
to any of the principal directions of the local frame, a jdirsme must be defined at
its position, in such a way that one of its three principagdiions is coincident to that
of the joint. In the formulation in natural coordinates, tivt vector is directly used
for defining the kinematic pair and its three components gséesm variables, but in
relative coordinates a complete frame is needed in ordesrtectly position the next
body in the chain, although the joint frame is used as anrnmeérate reference and
does not add any variable to the system.

Figure 2.12: Basic translational and revolute joints.

These two basic joints are shown in Figure 2.12. The traoslaltjoint, which can
be seen in the left side of the figure, consists of a translationg an axis that passes
through pointP, and whose direction is defined by vectoiin such a way that point
Q of body j is placed at a distance frof equal toz; along thev axis. The revolute
joint, shown in the right side, is a rotation about an axispalefined by a point and a
unit vector, so that the orientation of the joint frame, ddased as pertaining to body
J, 1s obtained after applying a rotation of valgieabout the revolute axis.

These are the basic one degree of freedom joints, but, inghergl case, other
types of joints with more than one degree of freedom can appeeh as cylindrical,
spherical, universal, etc. These joints can be considesedcmbination of transla-
tions and rotations, being each of them undergone by in@iatesvirtual bodies with
zero mass and length. In Figure 2.13, it can be seen an exarptev a cylindrical
joint, connecting two bodies andk, is derived from a translational and a revolute
joint. This is a two—degree—of—freedom joint, in which thenslation and the rota-
tion share the same axis. Therefore, it can be modeled lmydinting an intermediate
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Figure 2.13: Cylindrical joint as a combination of a tratisiaal and a revolute joint.

zero—length bodyj between the two actual bodies, in such a way that the rotation
is defined between bodiésand j, and the translation is afterwards applied between
bodies; andk. This is easily generalizable to other types of kinematiotf and it

can even be used to model the relative motion between twebdhat are not inter-
connected, or the motion of a free body with respect to theialdrame of reference,

by means of the so calldtbating joint or six—degree—of—freedom joifiVittenburg,
1977). A floating joint can be considered as a combinatiomie translational plus
three revolute joints, each of them acting between two lmd@that five intermediate
virtual massless bodies should be added.

When a simulation is carried out in relative coordinates,fifs step is the so-
lution, from a known set of relative coordinates and velesit of the position and
velocity problems in a forward recursive loop. This is agbiby applying recursive
position and velocity relations, going from the root to tkaues, in order to obtain
the position and velocity of all the bodies and kinematiagarhese positions and
velocities are expressed in natural coordinates, as pairdaunit vectors, which are
only used as an intermediate coordinate set. Two kinds efrsa@ relations can be
considered at this point: the internal relations betweeantp@f a body, characterized
by the flexible relative coordinates, and the relative nrotibthe joints, modeled by
the reference coordinates.

ﬁ
I

We =\V

Figure 2.14: Analogy between relative coordinates andcstaddal amplitudes.

The Craig—Bampton reduction is very well suited for using@mbination with
this formulation. The dynamic modes are calculated withtlal boundaries fixed,
which means that they do not affect their relative positi@msl this implies that they
do not affect the kinematic relations. And the static modesdafined as basic trans-
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lations and rotations, which affect only one position oeatation parameter, so that
they behave exactly like basic kinematic joints. This igstrated with an example in
Figure 2.14, where a translational and a revolute joint amve on the left, in this
case with their axes coincident with those of the local frarfnie body. On the right,
the analogy to the translation and rotation static mode$asva. If the modes are
defined as unit displacements or rotations, the value of theéatnamplitude will be
the actual value of the displacement or rotation at thattpairthe local coordinates
of the joint, which is very convenient for establishing tleeursive relations.

2.3.3 Kinematic relations for the forward position analyss

The forward position analysis consists of obtaining, fromigen set of relative co-
ordinates, the Cartesian positions of all the relevanttsaamd unit vectors of the
system, i.e. all those implied in kinematic pairs or corietg force elements, etc.
This is achieved by following a recursive procedure, goiagrthe root or base body
to the leaves, in such a way that the position of a body is rieemlebtain that of the
following one in the chain.

The position relations are different depending on the tyfgén@matic joint. How-
ever, differences only exist in the relation between thalld@me at an output joint
and the corresponding input frame of the next body, whichhisne the kinematic joint
is actually defined. In order to avoid excessive repetitiba,common characteristics
of both joints are to be described first, being the specifiatiahs addressed later. A
generic joint can be defined as a relative motion between tweerutive bodiesand
J, in such a way that the relative coordinageacts between an output poiftof the
first body, and an input poin® of the second one. This relative motion can be either
a translation, as shown in Figure 2.15, or a rotation as inr€i@.16. The sequence
for obtaining the position and orientation of bogyfrom those of body, regardless
of the type of joint, is the following:

e The deformed local positioff’ and orientatiorA? of a joint frame within body
i are obtained by means of Egs. (2.10) and (2.12).

e They are substituted, along with the body positigrand rotation matrixa;,
into Eqgs. (2.11) and (2.13), in order to obtain their abmhﬂunterpartsf and
AP,

o The relative displacement or rotatian yields the absolute parameters of the
input frame of body;, namelyer andAjQ. This is the only step that is specific
to the type of kinematic joint.

e The values oij andAJQ are obtained as done for bodyn the first step.

e By applying the inverse relations (2.14) and (2.15), theohlte parameters of
the floating frame of the second body,andA;, can be finally determined.

The only undetermined step is the third one, and it will baied next, for both the
translational and the revolute joints.
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Translational joint

A 2D translational joint is shown in Figure 2.15, acting besém two bodieg and ;.
All the development, as done when addressing the elastidirates, will be carried
out for a general spatial joint, so that there is no loss oegality due to the use of 2D
figures.

Figure 2.15: Planar translational joint.

In the case of a translational joint, the relative motionwestn both frames is
determined by the value of the relative coordingtewhich represents a translation
of point Q with respect taP along a direction defined by a unit vecuﬁ, so that the
position of Q is obtained as

@ =rf 4 ovf (2.16)

If the joint frame atP is defined, as suggested in the component mode synthesis
section, such that the relative translation axis coincdiéis one of its three principal
directions, the unit vectov? will be directly the corresponding column i’ In

what regards the orientation of the frames, the translatifmint does not introduce

any relative rotation, so that
AL =Af (2.17)

thus completely defining the position and orientation offtlaene atQ, from that at
P and the relative coordinatg.

Revolute joint

A planar revolute joint can be seen in Figure 2.16. In thi:casintsP and Q are
coincident, and the axis that defines the rotation is thecwmﬁ, perpendicular to the
plane of the figure.



36 Method in Relative Coordinates

X

Figure 2.16: Planar revolute joint.

Being the pointP the same for both bodies, the only thing that must be detemunin
is the orientation of the input frame at poift considered as pertaining to bogly|t
can be obtained by means of a generic rotation mmj)(zj),

Al =A7Aw () (2.18)

A finite rotationg about a generic unit vector, defined in the local coordinates of the
joint frame atP, can be obtained by means of the Rodrigues’ formula (Wittemb
1977),

Ay () = I3 + Gising + 0 (1 — cose) (2.19)

In the example, since the vectwrf, expressed in the local frame &t is the third
vector of the canonical base, the rotation matrix results,

cosz; —sinz; 0
Aw(zj) = | sinz; cosz;; 0 (2.20)
0 0 1

When a static mode corresponding to a revolute joint is rechdram the finite
element model of a flexible body, an important side effect appear. Due to the
lack of a static mode defining a rotation about the joint atkis,joint frame obtained
after the deformation will not reflect the actual orientatf the joint. This can be
seen in Figure 2.17, where a revolute joint with the rotatioode eliminated from
bodiesi and; is shown. As can be seen in the figure, after the first body isrdefd,
point P suffers a displacememtﬁ, but the joint frame remains parallel to the body
frame, and the same happens to the second body. Since th&gomes are no longer
perpendicular to the neutral axis of the beams, the anghéll not be the actual angle
rotated at the joint. In some cases, when the joint is allofseel motion, it can be
justified to eliminate the mode for the sake of efficiency,ibutase the angle value is
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Figure 2.17: Effect of eliminating rotation modes at reveljoints.

required because of control demand, or due to the presersceatituator, a rotational
spring, etc., the rotation mode can not be eliminated.

Fixed rigid—body rotations

Apart from the possible rotations introduced by revolutet® a fixed relative rotation
might exist between two consecutive frame joints. For imstain the case of a revo-
lute joint, both frames can be defined to be coincidentzfos 0, but there can also
exist a fixed offset for that value of the coordinate. Analaglg, in the translational
joint shown in Figure 2.15, than andWJ.Q vectors might be rotated a fixed amount
¢ about theviP direction. Any of these possibilities can be considered ®ans of

a constant rotation matrix, which can be obtained in the ggrease by using the
Rodrigues’ formula. In such a case, the total rotation ahadational joint shown in
Eq. (2.17) becomes

A7 = ATA (@) (2:21)
and the same happens to Eq. (2.18) for a revolute joint
Af = ALAw (@) Aw (z7) (2.22)

Another case in which these fixed rotations might be neededhen the direction
of the joint does not correspond to the same axis in both fsahee to differences
in how the local frames of the finite element models are choBen example, the
rotation axis can be defined as th vector of the first body, but coinciding with the
va vector of the second one. In such a case, the necessary-/2 rotations must
be also performed at this point.

2.3.4 Recursive relations for velocities and acceleratien

When relative coordinates are used, the calculation of g#rtitnparameters associated
to them is anything but straightforward. The solution, ie tieneral case, is to first
calculate them in terms of an intermediate set of CartestamdinatesZ, defined
at velocity level for each body, in such a way that they canfbenaards projected
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into the relative coordinatesby means of a velocity transformation. In the present
subsection, recursive relations between the Cartesiagities of consecutive bodies
are to be established, thus enabling to define the veloaitgformation in an efficient
way. In order to calculate the time derivative of the velp¢insformation, needed
for obtaining the velocity dependent inertia forces, thedations are also obtained
at acceleration level. Firstly, the recursive relationsrigid bodies are derived for
the joint frames, and then they will be extended to includedfiect of static modal
amplitudes.

The intermediate Cartesian coordinates can be dividedefeoence velocities, ,
representing the motion of the floating frame of referenaoe, elastic velocitieg r,
which will be nothing but the derivatives of the modal ampdiésy. The reference
section is in turn divided into translational and angulaloeies, Z, andZy. The
translational reference velociB; used here, as pointed out in the introduction to this
chapter, is chosen following the approach of 8imaz (1993), i.e. the velocity of the
point of the body which instantly coincides with the origihtbe global frame of
reference, considering the point as rigidly attached tddbal frame of the body. The
angular velocityZy is represented by the instant angular velocity veetpso that the
complete set of Cartesian velocities that characterizevéhecity field of a flexible
body is

Z; S
Z=17s¢t=1o (2.23)
Zy y

The use of these coordinates features some advantages etidnglthe final equa-
tions of motion in relative coordinates. On the one handyditary inertias of all the
bodies are obtained with respect to the same point, so th&dhtesian mass matrices
can be directly accumulated without any further transfdaioma On the other hand,
the recursive relations derived for these coordinatesiarpler than those obtained
when the center of mass is used as the point of reference.nhem@mwback of using
the global origin is the increased complexity of the resglinertia terms in Cartesian
coordinates.

The recursive relations consist of expressing the velatitybodyj, more specif-
ically its reference paiZ,;, as a function of that of the preceding body,, and the
relative velocity produced at the joint between them. THatine coordinate at the
joint j is namedz;, and depending on the joint type, it will be the translatitong
or the rotation about the direction defined by the joint vedtowhat follows, with-
out any loss of generality, the vector defining the axis ofjtia will be generically
namedv? . The objective is to find a relation between the velocitiesvaf consecutive
bodies of the form

Z,; = Zyi + by (2.24)

whereb; depends only on the type and position parameters of the, jmeimnelyrf
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andv}’. In order to establish recursive relations for the accétama as well, these
velocity relations can be differentiated with respect hoeti

er = Zri + bjfj + bjéj = Zri + bjfj + dj (2.25)

where the ternt; depends on the relative velocity, and on the position and velocity
parameters of the joint frame. The calculation of thesersdea terms is performed
in a two—stage process. First, a forward position analgsisarried out, in order to
calculate all théo; terms, which depend only on the position. Once they are obtki
a velocity analysis will enable to construct ttieterms. These two steps can be car-
ried out in parallel: from the position parameters of a badgse of the output joint
are obtained, which in turn allow for calculating the cop@sdingb term; then, the
velocity of the joint frame is obtained, finally leading tetthterm, before moving on
to the next body in the kinematic chain. If a tree structurthwultiple branches is
present, the forward analysis of the different branchesbeaparried out in parallel
processes.

These recursive relations, as opposed to what happensidnsgigtems, are not
actually defined between bodies, but between referencefanhich are themselves
considered as rigid bodies. There will exist, then, two $/pé such relations: the
relation between two consecutive joint frames, i.e. anadinmematic joint, and the
relative motion between the frame of a body and that of a bagngdoint, produced
by the elastic deformation. The expressions of the term$efrécursive relations
between bodies, i.e. those appearing at the joints, will isé dierived. The relative
elastic displacements and rotations are to be addressegsiate they are based upon
the same kinematic relations defined for the joints.

In order to derive these recursive relations, it is usefepress the velocitiy and
acceleratiort of the origin of a frame of reference, let it be that of a bodygoint,
in terms ofZ, andZ,:

Fr=%8+wxr (2.26)
F=54+oxr+mwx(mxr) (2.27)

Translational joint

The relative translational velocity introduced between juint frames by a transla-
tional joint is obtained by differentiating Eq (2.16), bgithe angular velocities un-
modified

f

C =il +5vf +of xzvf (2.28)

wl=of (2.29)
If these equations are combined with the expressions ofitbelate velocitiesfl.P and

f]Q in terms of theZ, velocities of both frames, by means of Eq. (2.26), the foilayv
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relation between the reference translational velocitéeshe derived:
2 =8+l (2.30)

This equation, along with the equality between the anguddaities, can be written
in vector form, leading to an expression of the form showndn(®.24), thus yielding
theb; term for this type of joint

S1_Js | v, .\
SR MR

The same reasoning can be applied to the accelerationsién wr obtain thel;
term. First, the velocity relations in terms of the absolsitions and velocities of
the joints are differentiated with respect to time,

)
j

ol =af (2.33)

=iF +3vf +of x vl +of xof xzvf +20f xz;vF (2.32)

The translational acceleratioﬁjg andi’? can be expressed in terms BfandZ, in
this case by using Eq. (2.27). By combining all these equatid is not difficult to
find that

" P P ~ P P-

If this expression is again written in vector form, alonghwilhe equality between the
angular accelerations, the result is an expression of time & Eq. (2.25) so that, by
analogy, the form of thd; term for a translational joint can be finally obtained

20 &P P ~P\P: ~P\P:

5 s ; 20; V; zj 27 Vi Z;

SR I A A SRS s ¥ o)
®; OF 0 0 0

Revolute joint

The velocities of two consecutive frames connected by auegoint j, defined by
a vectorvf’ , are related as follows:

iP=¢f (2.36)

0l =0wf +zvf (2.37)
It they are combined with the velocities expressed in terfith@s andw velocities,
as done in the translational joint, and the result is writevector form, an expression

of the form of Eq. (2.24) is again obtained, leading to théofeing result for theb;
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term of a revolute joint:

=0 P
b; = {rf v } (2.38)

V:

1

By differentiating the velocity relations, the relativanislational and angular ac-
celerations can be obtained

=iF (2.39)

wJQ =of +5vl +of xzvP (2.40)
After several manipulations, by following an analogousgadure to that used in the
translational joint, the value af; for a revolute joint can be shown to be

zP~P\ P ~P~P _ ~0~0\_P

r.w.v.z-+<w-w. —w,w,)r.

dj: i i i ~P1Pl' J L (241)
(‘)ivi Zj

Static modes

Since the static modal amplitudes behave as relative auateh, recursive relations
analogous to those obtained for rigid joints can be estaddisor them. Considering
an output joint, placed at poir of body, the relation is to be defined in this case
between theZ, velocities of the body itself, and those of the local framadted to
the joint

zfi =2+ ol (2.42)

whereq)f is a matrix containing the recursive velocity relations bftlae six static
modes defined at poi® of bodyi. This term is the result of assembling théerms
of three translational and three revolute joints, whoses @xencide with those of the
undeformed frame in absolute coordinates

P ui i " ltui 2
‘ '. = .43
l 0 ! ‘zfi ( )

In this expressionAfi is the orientation of the undeformed joint frame, in global
coordinates, directly obtained AsA,fi. In case that any of the six static modes is not
present, let it be because the corresponding degree ofoireefithe kinematic joint
eliminates it, or because the mode is meant to be negletiedptresponding column
of (pl.P is simply removed from the matrix.

A relation, analogous to that shown in Eq. (2.42), might bfinde at the input
joint of body ;. It must be taken into account that, since in the case of ijginuis the
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relation goes from the joint to the body, tb$ must have its sign reversed,
A2 2p2
Q_ Vw7 u 2.44

The complete set of recursive relations produced at a j@iwween two flexible bodies
results, after considering the three relative motions

2l =2+ o0/ (2.45)
2% =zF + bz (2.46)
Z,; =22 + ¢23? (2.47)

These three relations can be combined into one, thus yeeltli@ complete relation
between the velocities of two flexible bodiesand j, as a function of the relative
coordinates:

Zrj=Zri+ oM +biz + 0292 (2.48)

In what regards accelerations, the complete recursivéiopthip is obtained by
differentiating this expression,

Zyj=Zni+olil + b5 + %2 + vl +d; +y? (2.49)
They? terms appearing here are obtained from the relation betaeeelerations.
In order to calculate them, the angular velocity at the jdiatne will be needed.
This velocity is directly obtained during the forward velycanalysis, by means of
Eqg. (2.42), and itis equal to

of =0 + AW = w; + w}’i (2.50)
wherew ;’l. is the relative angular velocity due to deformation. By gdimese values of

the angular velocities, the total vector of velocity—degmmt terms for a deformable
boundary results,

20,AENE PPo,0f + (060, —oFaF)rf
w”:{‘”’ ”’"”}+{’ o+ (O po i (2.51)
0 (oiwfl.

The first term is a Coriolis acceleration produced by thedligtional static modes, and
the second one includes the velocity—dependent accelesgtroduced by the elastic
rotations. As it happens to the velocity relations, in cdse donsidered point with
static modes is placed at the input of a body, the sign of th&sspondlngrj vector
must be changed.

If a tangent frame at the input joint of each body is used, ggasted when de-
scribing the kinematics of a flexible body, there will be npuhstatic modes, so that
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the velocity and acceleration relations from badp body j are simplified to

er =Z,; + (sznIP + bjéj (252)
Z,j =2+ oWl +b;% +yP +d; (2.53)

2.4 |Inertia terms in Cartesian coordinates

In this section, the derivation of the inertia terms, i.e thass matriM and the ve-
locity dependent inertia forces vecQy,, is addressed. As has been mentioned before,
the direct calculation of these terms in relative coordiratis not practical, and for
that reason an intermediate Cartesian set of velodtimssused, obtaining intermedi-
ate inertia term#1 andQ, for each body, which are later projected into the relative
coordinates by means of a velocity transformation. Thisigeds focused on the cal-
culation of these intermediate terms in Cartesian cooteia

The kinetic energy can be expressed as the mass integrak cfgiinare of the
modulus of the velocity over the whole volumé” of a body,

1 1
T = -/ 1> dm = -/ iTF dm (2.54)
2 Jy 2 Jy

and in general, if a relation can be established betweendloeity of a particle® and
the generalized velocitidgg it is always possible to find an expression of the form

T — %QTMQ (2.55)

whereM is the mass matrix, which contains the inertia propertis®eiated to the
generalized coordinates. When rigid bodies are considarebidepending on the type
of modeling chosen, it is possible to obtain a constant esgiwa for this matrix. In
the inertial family of formulations for flexible systemsjghmatrix is also constant.
But in the FFR formulations the mass matrix is highly nordineant this introduces
velocity dependent inertia forces in the system. In whdofad, the calculation of the
mass matrix and the inertia forces vector is explained initet

2.4.1 Mass matrix

The mass matrix of each body in Cartesian coordinates isrsatdrom the kinetic
energy expression. The kinetic energy is, in turn, obtaheé by following the coro-
tational approach proposed by Cardona agda@in (1991). This method assumes that
the velocity of any given point of the body, previously re@@into the local frame of
the corresponding finite element, can be interpolated antomgodal velocities by
using the standard finite element interpolation functidrss is not fully consistent
with the interpolation used for calculating the elasticgmiial, although it yields good
results and enables to calculate the inertia terms in a vegls way.

The velocity of any given point of a flexible body can be expeskin global coor-
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dinates, or in a corotated frame defined by a transformatiatnixR, which defines
the local orientation in the vicinity of the point. This efedbto write the kinetic energy
in local coordinates

1 1
T = -/ P dm = -/ FTRRTF dm (2.56)
2 )y 2 Jy

The corotated frame can be defined at finite element levelabbelute orientation of
a finite element with respect to the global framB¢, is the result of two transforma-
tions:

R = AA® (2.57)

whereA is the transformation matrix of the body, aAd is that of the finite element,
within the local frame defined bj. The corotational approximation introduced by
Geéradin and Cardona assumes that the velocity, expressied aototated frame, can
be interpolated among the nodal velocities by using theefieiement interpolation
functions. In a general non—isoparametric element witledes, this can be written as

RTF ~ Ng° (2.58)

whereg is a vector containing the derivatives of the nodal posgjéfy and infinites-
imal rotations ¢, rotated into the local coordinates of the element

ReTi¢
ReTﬂi
(2.59)

Q-
o
Il

eTpe
Ré'r¢
eTQoe
RTQ¢

The kinetic energy of a finite element can then be obtainedfascion of the nodal
velocities in element coordinates

1 . )
T® = 3 / q°"N"NG¢ dm (2.60)

If the local element orientatioA® appearing in th&®¢ matrices ofj¢ is retained inside
the integral, theliscrete fornof the kinetic energy is obtained

1
T¢ = Eq”Meqe (2.61)

whereM¢€ is the standard mass matrix of the finite element,@hid a vector contain-
ing the nodal velocities, both of them expressed in the livaahe of the body, so that
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ATi¢ P
ATQ¢ Q¢
=1 t=1: (2.62)
ATie re
ATQ¢ Q¢

This approximation can be exact in some certain cases, gsaeithe interpolation
matrix is invariant to rotation, as it happens in the cassaparametric elements. The
interpolation of positions and displacements in isopatamelements of: nodes has
the form

n n n
x=Y xfmi y=Yy ying z=y zn (2.63)
i=1

i=1 i=1

wheren; is the interpolation function corresponding to nadéccording to this, the
interpolation matrix will be always formed by diagonal btscwhich are invariant to
rotation, so that in Eq. (2.61), even the absolute velaitEn be used with the same
mass matrix without changing the results.

The total kinetic energy will be the sum of that of all thefinite elements

RHe He
: e 1 : ~eTppexe
T=;T =§;q Meq (2.64)

A finite element mass matrix can be assembled for the wholeg, fotlowing the
standard finite element procedure. The velocities of allfithiee element nodes are
put together in a nodal velocity vectgf. Then, a full-size mass matrM¢* is de-
fined for each finite element, being its size the number ofelegof freedom of the
finite element model. It contains zeros in all elements, &edefement mass matrix
M€ at the positions corresponding to the coordinates of thmehé within the nodal
velocities vector,

Q' I ]
qz
Sk . — M — : . . : . : 265
q q‘—’ o o0 --- M¢ ... 0 ( )
qne _() 0o ... 0 ()_

wherer¢ includes the velocities of all the nodes of finite elemenThe total finite



46 Method in Relative Coordinates

element mass matrix is the sum of all these full-size elemmasis matrices

Ne

M* =) "M (2.66)

e=1

This allows for writing the kinetic energy into its discrdétem

T = %q*TM*q* (2.67)
The finite element mass matrix is constant, and it can betlirebtained from any
standard finite element code, so that this approximatiodsléa a very convenient
method for calculating the kinetic energy. The accuracyse gery good, and it con-
verges to the exact energy as the finite element size desrdeeieg, as has been noted
before, exact in case that isoparametric elements are used.

In order to calculate the mass matrix expressed in the irgdiaie Cartesian coor-
dinatesZ, a linear relationship between the velocity of any givenenotithe bodyg
and the body velocitieZ must be established. The position shown in Eq. (2.1) can be
differentiated to yield the velocity, by taking into accouhat the local deformation
velocity f is equal toXy, since both the undeformed positibpand the mode shapes
matrix X are constant,

F =Fo+ AF + AX,y (2.68)

where the matriXX,; contains only the translational components of the modeeshap
At this point, the instantaneous angular velocity veaias introduced, since the time
variation of the orientation matrix is

A=[mxu ® XV wxw]:de (2.69)

where the cross product has been substituted by the skewnelyim matrix associated
to the angular velocitw. This leads to

P =T+ ®AT + AX,Y (2.70)

The velocity of the origin of the frame of referenég, must be expressed as a function
of §andw, and this is done by applying Eq. (2.26),

fo=8+wxryg=8+®rg (271)
By substituting this into Eq. (2.70), it can be shown that,
=54+ ((rg + A + AX;y =5+ 6r + AX,y (2.72)

The cross product can be inverted, in order to obtain thecitgld as a linear function
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of the intermediate Cartesian velocitiés
I =8—Ffw + AX,y (2.73)

The angular velocity at a node is that of the body, plus thedhss to the deformation,
expressed in absolute coordinates,

2 =+ AXgy (2.74)

where Xy contains the rotational components of the mode shapes.ekpigssion,
along with Eq. (2.73), can be rotated into the local framehef body and written

in matrix form, to yield a matrixB that relates the nodal translational and angular
velocities in the local axe to the intermediate Cartesian velocitiés

]
ATi AT _ATF X,
g = = :BZ 2-75
q {ATSZ} [0 AT X9:|(; &79)

In the case of isoparametric elements, since the inteiipal&inctions are invariant
to rotation, and there exist no infinitesimal rotationssttén be written in a simpler
form, directly relating the absolute velocities of the neteZ

f:[l3 _F AX] :) —BZ (2.76)
y

In what follows, the isoparametric expressions are usethfosake of simplicity, be-
ing the development for non—isoparametric elements $ttfmgvard. A full B* matrix
can be assembled, containing the transformation for alt thedes, as follows:

By I —f1 AX,
B I, —f2 AX

Br=| =" 7 (2.77)
By ls —fn AX,

This largeB* matrix, which hassn rows (6 in structural finite elements) ared4- 7,
columns, can be used to calculate the velocities of all feléenent nodes at once,

i* =B*Z (2.78)
so that it can be substituted into the discrete form of theticrenergy to yield,
1
T = EzTB*TM*B*z (2.79)

which means that the mass matrix is the result of projectiegfinite element mass
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matrix into the intermediate Cartesian coordinates, bymaed the velocity transfor-
mation matrixB*,

M = B*"M*B* (2.80)

The calculation of the mass matrix at every iteration of thiegrator involves then
two steps. First, th&* matrix must be assembled, by calculating its value at each
finite element node. Then, the finite element mass matrixagepted into theZ co-
ordinates by performing the product in Eqg. (2.80). This piciccan become a very
CPU intensive task if the finite element models are too lakgech is one of the main
drawbacks of this method. The reduction of the finite elermeatlel by means of
component mode synthesis is not fully taken advantage wéesalthough only the
modal amplitudes are problem variables, operations inwglthe finite element mass
matrix still need to be performed. It must be noted that thitefielement mass matrix
is in general highly sparse, and if the projection is cardetitaking advantage of this
sparsity, the method is still applicable to relatively kfupite element models. The so-
lution to this problem is addressed in the next chapter, trpducing the inertia shape
integrals, which allow for completely eliminating the fmiélement mass matrix from
the problem, at the cost of a more involved implementation.

In Avello (1995) and Guérrez (2003), the finite elements are always treated as if
they were isoparametric. Instead of using Bfematrix as defined in Eq. (2.75), i.e.
in local coordinates and including the rows correspondingtations, the expression
for isoparametric elements is adopted. This implies thatw finite element mass
matrix must be calculated by using the isoparametric imtietpn functions, in order
to perform the projection in Eq. (2.80). This approximatiworks very well and sig-
nificantly reduces the computation time, since the numbeows of B* is cut to its
half, and so happens to the order of the finite element masixmatthe examples
addressed in this thesis, no difference in the results hexs dleserved from using this
simplified interpolation, so that this is the method adopted

2.4.2 Centrifugal and Coriolis forces vector

Application of the Lagrange’s equations to a single bodyhule kinetic energy ex-
pressed in th& coordinates, leads to the following expression for the cigfalepen-
dent inertia forces:

Q, = -B*"M*B*Z (2.81)

It can be observed that the prod®t' M * has been already performed when project-
ing the mass matrix, so that it can be stored and used to agdctiie inertia forces
also. Once this product has been carried out and store®*theproduct is the only
thing left to be calculated, and the acceleration will begkted for this purpose. The
acceleration of any given point is, by differentiating E2.76),

F=BZ+Bz (2.82)
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The acceleration can also be obtained by differentiatieg/édocity of a generic point
shown in Eq. (2.70),

P = Fo + @AT + ®AT + @AXY + AXY + AXY (2.83)
which can be rewritten as,

F =Fo 4+ @AF + @DAF + 2AXY + AXY (2.84)
By using Eq. (2.27), the acceleration of the origin of thetfla@aframe is derived

Fo=58+®@xXT)+®X (X)) =58+ ® + ®@dg (2.85)
and this can be substituted into Eq. (2.84),

F =38+ ®(fo + AF) + @@ (rg + AF) + 2AXY + AXY (2.86)

where, after substituting, + Ar by r and swapping the angular acceleration product,
the first term of Eq. (2.82) is easily identified,

F = (@—To+AXY) + 0@r + 2AXy = BZ + @r + 2AXy (2.87)
which means that the produBZ must be
BZ = &@ar + 2AXy (2.88)

SinceA is equal to@A, andAXY is nothing but the relative velocity of deformation
in global coordinates, these two terms are easily identiials the centrifugal and
Coriolis accelerations of poimt respectively. The resulting expression Bowill be

B:[o _&f zAx] (2.89)

The total vector for the whole body can be obtained by evadgdhis at every finite
element node,

0 —af 2AX,] @ar; + 2AX,y

. 0 —af, 28X, | |° B®I 4 2AX,y
B*Z = , _ = . (2.90)

0 of, 2AX, ®or, + 2AX,y

The most practical way to compute the inertia terms is toutateB*Z within the
same loop in whictB* is assembled. Then, the spaB&&M* product is evaluated,
and used to calculate both the mass matrix and the inertagorector.
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2.5 Non-inertial forces

In this section, all the forces that are not related to iaeatie explained. The elastic
forces, due to the fact that the elastic deformation is akthiin local coordinates,
are very easy to implement, since they only involve the meaaplitudes, and are
completely linear. The remaining forces are calculated ifirabsolute Cartesian co-
ordinates. The externally applied forces are then prajeict® the intermediate coor-
dinatesZ, enabling them to be added to the Cartesian forces v&gtahich will be in
turn projected into the relative coordinate§ he forces that depend on the position or
velocity, such as those originated by springs and dampergligectly projected into
the relative coordinates, since this makes the calculatidheir generalized stiffness
or damping matrices easier.

2.5.1 Elastic forces

The elastic potential of a deformed body is obtained fronfithiee element stiffness
matrix K* and the nodal elastic displacements (Bathe, 1995),

1—*T * ok

This potential can be obtained also in terms of the modal dnggls, by projecting
the stiffness matrix using the transformation defined in(B@). The stiffness matrix
projected into the elastic coordinates results,

1
U= EyTX*TK*X*y = K = X*TK*X* (2.92)

and this constant matrix can be used for the calculationegthstic forces,

- U

- % _ K 2.93
£ aq y (2.93)

In case thata structural finite elements are considereditiffreess matrix should in-
clude the effect of the infinitesimal rotations, so that thik K* and X* matrices,
including all the degrees of freedom, must be used for thgeption into the modal
space. After the projected stiffness matrix is calculatieelyotations can be eliminated
from the mode shapes matrix, since they are not needed favtiaation of the in-
ertia terms. The fact that the elastic coordinates are time $@a both the intermediate
Cartesian coordinate&sand the relative dependent coordinatgsplies that the elas-
tic forces are immediately obtained in relative dependentdinates by performing
theKy product, so that they do not need to be projected.

When a Craig—Bampton reduction is used, the discrete mogeshaatrixX* is
as follows, according to Egs. (2.7) and (2.8):

w_ Tux <1 I 0
SRICRE| WP oo

ii
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If the partition is applied t& * and the projection is carried out, the projected stiffness
matrix can be shown to be

K = [KOS ng} (2.95)

whereK ; is a symmetric matrix representing the stiffness of théstabdes, and2?

is a diagonal matrix containing the squared natural fregesrof the dynamic modes,
which are always mass and stiffness—orthogonal. The @ffetial blocks are zero,
meaning that the static modes are stiffness—orthogonkktdynamic ones.

2.5.2 Applied forces

Applied forces are introduced in body coordinates by meéttseovirtual power prin-
ciple. The virtual power of a point forde applied at node will be,
W =¢rTF (2.96)

where the asterisk denotes virtual power or velocity. Thiual velocity can be ex-
pressed in terms of the velocities,

ot s
= (aLz) 7% (2.97)

Since the virtual power can also be expressed in the intéatee@artesian coordi-
nates,

Wr=2*1Q, (2.98)

the generalized forces are identified as

_ A\ " T 3 T
O = (a_z) F=BlF= [|3 F AX ,,-] F (2.99)
whereB;; is the three—row submatrix @&, expressed in global coordinates, corre-
sponding to the three translational degrees of freedom @& haf the point is not

a node, the finite element interpolation functions can bel dgeevaluatingB. The
case of an applied momeitis treated analogously, but using the rotation part of the
transformation matrix,

- 9\ " T
Q. = (a_zl) T=B]T= [o Iy AXg,-] T (2.100)

In case that the point of application of an external forcenevin a priori, it can
be a good idea to include that point as a boundary, includisiicanodes associated
to it, in such a way that the deformation produced by thatdascmore accurately
captured.
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2.5.3 Volume forces

In order to introduce volume forces such as weight in theesysthe same approach
for point forces is used, but integrating them over all thieiree of the body to which
the force is applied. Expressing Eqg. (2.99) in integral form

Qv = / BTfdV (2.101)
14
wheref is the force per unit volume, expressed in absolute cooteina

Jx
t=17 (2.102)

e

By introducing this and the expressionBfpreviously obtained into Eq. (2.101), the
integral remains,

|3 fx
sz/ F £ dV (2.103)
YA s

The force applied to the translational coordinate is theltimrce acting in the three
global directions,

] fx
Qur = /V fy ¢ dm (2.104)
Iz

The next block contains the moment of that force about thbailorigin of coordi-
nates, since the components of the position appearing imtegrals are expressed
with respect to that point

. iz —zfy
Qo = / Zfx —xfz ¢ dm (2.105)
v . .
xfy - yfx
and the elements represent the effect of the volume forcéseonody deformation.
In the particular case of weight, considering a dengityand assuming that the

gravity acts in the negative direction of thaylobal axis, with an acceleratiqgn the
force per unit volume can be written,

f=43 0 (2.106)
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The three first components are the translational forcesctware nothing but the
weight acting in the negative direction of thexis:

0 0
Qyr = —g/ 0y pdV =1 0 (2.107)
4 1 —mg

beingm the total mass of the body. The rotational forces are

) y —gmy
Qo =g [ {-x pdv =1 o (2.108)
1o 0

wherem,, m, andm, are the three components of the static moment of the deformed
body, m, expressed in global coordinates. This is the moment of #ighwt acting in

the deformed center of gravity’, about the global origin of coordinates. Finally, the
forces affecting the modal amplitudes,

Qyy = —g/VxTA§ pdV = —gSTAT (2.109)

where the inertia shape integr@lappears. The calculation of both and S is ad-
dressed in more detail in the second chapter, where thaargrape integrals are
defined. It can be said in advance that the integral of the nsbdpesS, which is
defined in Eq. (3.9), is needed for obtaining the static mapzeshown in Eq. (3.21).

2.5.4 Springs and dampers

Springs and dampers connect different bodies of a mechamysmtroducing forces
or moments between them, which depend on the position inake of springs, and
on the velocity in the case of dampers. Since they explicidpend on the general-
ized coordinateg or their time derivativeg, it is more convenient to project them
directly into them without performing any intermediatepstéh general, when using
relative coordinates, rotational springs and dampersecroconsecutive bodies, and
since there should exist a coordinate representing théveskangle at that point, in-
troducing them is completely straightforward, as will berséater. In what follows,
the introduction of translational springs and dampers sdieed in detail.

A translational force element, connecting two poiatsand B, introduces two
opposite forces in the mechanisfpg at point4, and—f 45 at point B. Both forces
actuate along the straight line connecting them, as can dre iseFigure 2.18, and
their magnitudef; depends on the distanséetweend and B, if it is a spring, and
of its time derivative, if it is a viscous damper. In general, since in many cases the
same element may include stiffness and viscous dampingnégmitude of the force
will be considered as a general nonlinear function of théadise and its derivative
fs(s,8), so that the following applies to any generic force eleméttis kind.
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Figure 2.18: Spring and damper in an open—loop mechanism.

The first step is to obtain the force in Cartesian coordinatésch is not difficult
provided that the positions and velocities of both poidtand B are known. It is a
good idea to include those points as boundaries in the fliexibtly model, adding
the corresponding static modes in order to obtain a goocbappation of the actual
deformation field. The distance between two points of alteqlositions 4 andr  is
obtained as

/
s=1rp—r4] = [(rB —r10)" (rp— fA)]1 : (2.110)

and its time derivatives, is

R o
§=-(ip— i) (rg—14)=(0p—74)" Usp (2.111)

whereuy g is a unit vector, pointing fromt to B, so that the derivative of the distance
is actually the projection of the relative velocity into td&ection defined by, p.

By introducing the constitutive law; (s, §) as the magnitude, the force is obtained
directly in Cartesian coordinates as the product of thewettor times the magnitude

fap = fsUaB (2.112)

In order to project the forces into the dependent relativrdioates, the virtual power
principle is applied as usual, although the projection i$qgened into the relative co-
ordinates directly. If the two forces corresponding to argprdamper are introduced
simultaneously,

8rB arA T

By introducing the definition of4 g from Eq. (2.112), and after some manipulations,
the following expression for the generalized forces of agtational force element can
be derived:

Qs =—/fiS (2.114)



2.6 Kinematic constraints 55

wheres, is the derivative of with respect t,

as as as as
-1 = ... 2 2.115
%= %2 {821 072 azn} (2119

Each of its components can be expressed as follows, afterpeng the derivative:

ds _d(rp —fA)Tu

2.116
3 P 4B ( )

This can be seen as a vector that contains the variation peddos by a unit variation
of any coordinate irz. This can be easily calculated considering that the dérevalf
s with respect to a relative coordinatgis the relative velocity between pointsand
B when a unit velocity is applied to coordinatgand the rest of the coordinates
remains unchanged. It is obvious that only coordinatesaffiett the distance would
have a derivative different from zero. In the examples shiovfigure 2.18, a variation
of z; does not affect if z, andz; remain unchanged, so that the derivative @fith
respect ta; will be zero.

It is useful to obtain the stiffness and damping matricestli@se forces, since
they are needed later for the tangent matrix of the NewtophB@n iteration of the
integrator. The generalized stiffness and damping matiGea be expressed as,

9Q 9Q
K= 5 C= ) (2.117)
The stiffness matrix due to a spring force can be obtainedffarentiating Eq. (2.114)
with respect t

L 0Q 8(.8s)waf38_s_%Tsz

az 9z \”"faz) " 9z oz os

(2.118)

s =

When the force element is a damper, the following analogopsession can be ob-
tained,

(2.119)

s =

0Q; 0 as dfs ds s 1
—— = == ~ — =5
0z 0z

- S9z) T 9z 0z 05

It can be observed that the same prodilist appears in both the stiffness and damping
matrices, so it only has to be calculated once, and the differ resides in the scalar
multiplying it. In the common case of linear springs or danspéhis scalar will be a
constant, let it be the stiffness constant of the spkingr the damping constant of the
damperc;.

2.6 Kinematic constraints

Once the dynamic terms have been obtained in relative auatesi for the open loop
system, the closure conditions must be imposed. Congtraistexpressed in natural
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coordinates, naming the set of points and unit vectors involved in the constgaint
The conditions are expressed as a set of nonlinear coristragit would have been
done in a formulation in natural coordinates, althoughudiig only the constraints
that are needed to close the previously cut joints. The elaofihe double four bar
mechanism shown in Figure 2.11 will be used to more cledtlgtitate the procedure.
In this example, the natural coordinates involved are ttsitjpos of pointsC and E,
which must coincide with those of the fixed poit$ and E’ respectively, so that the
vectorq will have four variables, and the constraints vector is

XCc — X¢c/

o =1 (2.120)
XE — XE/
YE — VE’

Obviously, in order to evaluate the constraints, the pams#tiof C and £ must be
calculated when solving the forward position problem.

When the equations of motion are established in relativedinates, the Jacobian
matrix of the constraints is necessary. In order to obtaithé& chain differentiation
rule is used

®, = ®,0q; (2.121)

The first term is the classical Jacobian in natural coordmathich happens to be a
4 x 4 identity matrix for the example, since each variable app@aone constraint.

In general, since the kinematic constraints are imposetbs® @reviously cut closed

loops, the constraints in natural coordinates will eitepdse the values of coordi-
nates, or equalities between them, so that the Jacobianirahaoordinates is likely

constant. The second term can be seen as a matrix contamengptumn for each rel-

ative coordinate. The column correspondingtwill contain the velocities in natural

coordinatesy, when a unit velocity is given te; and the remaining relative coordi-
natesz; are fixed

3—2 = Alz=1.2=0ji (2.122)
According to this, the computation ¢f, is a simple procedure. It is easy to demon-
strate that the derivative of the position of a point in natapordinates;, with respect
to a relative coordinate; or a static modal amplitudg;, is, in the case of a transla-
tional joint or mode, the actual vector defining the transtail directionu;, and, in
the case of a revolute joint, itis equaltpx (r; — r;), where in this case; defines the
axis of rotation. If the required derivative is that of a uéttor, it is obvious that its
direction is not modified by any change in translationaltretacoordinates, whereas
in the case of revolute joints, the unit vector is modifiedotiyaas it happened to the
position, i.e.u; x u;.

In order to impose the fulfillment of the constraints at aecation level, the eval-
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uation of their second derivative is also needed. In thisvdtive, the termd,z will
appear, and it can be expressed as,

é,7 = (<i>qqz + <1>qqz) 7 (2.123)

The time derivative of the Jacobian in natural coordinatseds the velocities of the
cut joints in natural coordinates, which are obtained, @lith their positions, during
the forward analysis. However, in most cases, since thizhiae will be probably con-
stant, the first term of this equation does not need to be atedu The only unknown
term so far is the time derivative gf, which is directly obtained by differentiating its
terms. For instance, the time derivativeupfx u; will be U; x u; + u; x U;, where all
the appearing terms have been calculated in the forwargsisal

2.7 Projection of the dynamic terms

For the sake of clarity, the Cartesian and relative cootdmaf all then, rigid and
flexible bodies in the system will be grouped into two vectorsuch a way that the
reference coordinates are put together at the beginnitigwied by the static modal
amplitudes, then leaving the dynamic modal amplitudeseaétid,

. T
zz{zjl o ZD AT e WD ET e ;b}

T (2.124)
7= {21 e iy ﬂ fl;h ng g;h}

The total number of bodies, includes the virtual massless bodies that are added when
the kinematic joints have more than one degree of freedois.itmber will coincide
with the number of reference relative coordinates of thenefmp mechanism, since
each body is allowed to have only one input joint, so thateheitl exist aZ,; set
of six reference Cartesian coordinates for eactelative reference coordinate, both
associated to the same body

The mass matrix and forces vector of a bédly Cartesian coordinates, after being
obtained as explained in sections 2.4 and 2.5, can be pa#dtiaccording to the same
convention used for th&; coordinates

Mri ,\_/Irni I\_/Ir{-‘i Qri
M; = Myi  Mpg |3 Qi = Qni (2.125)
sym. Meg; Qg

Unless only eigenmodes were used for the representatidredalastic deformation,
for example in combination with a Buckens frame, the threeeldblocks of the mass
matrix, which contain the inertia of the elastic coordisatdo not form a diagonal ma-
trix, since the Craig—Bampton modes are not mass—orthd¢@asadin and Cardona,
2001). Only the set of dynamic modes is mass—orthogonale shrey are obtained as
eigenmodes, so that the last biddl; is the only one that will be always diagonal. If
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the mode shapes are constant, however, these three bldtke wonstant, as it will
be seen in the next hapter.

The full mass matrix and force vector can be assembled fontiade system, ac-
cording to the full Cartesian coordinates vecfodefined in Eq. (2.124), having the
same structure as in the case of an individual body, withrad¢gd blocks for the ref-
erence coordinates, the static modal amplitudes, and thandig modal amplitudes.

M, M,, M, Q
M = M, Muy|; Q=10Q, (2.126)
sym. Mg Qs

The rigid bodies will have only the block corresponding te thference coordinates,
and the intermediate virtual bodies are massless, so thatritass matrices, which
appear only in the reference coordinates block, are equartm This global mass as-
sembly is never carried out actually, it is used only to desdahe recursive procedure
used for projecting itself into the relative coordinateseBtructure that it would have
for the example of a double four—bar mechanism shown in Eigut1 can be seen in
Eq. (A.3) of the Appendix.
In order to derive the equations of motion of the open—loogtesy, the virtual

power principle is used. Given a set of virtual velocies the virtual power produced
by them can be obtained as

vadl (MZ - Q) —0 (2.127)

Since theZ velocities are not independent, this expression does nahrieatMZ —

Q = 0. It must be expressed in the dependent relative coordinatgsh are inde-
pendent if the open—loop version of the mechanism is coresidét this point, the
velocity transformation betwees andz is introduced. By assembling all the recur-
sive velocity relationd and ¢ defined when addressing the recursive kinematics, a

position dependent matriR can be defined, such that
Z=Rz (2.128)

Differentiating the velocities with respect to time, thecalerations can also be ob-
tained,

Z=Ri+Rz (2.129)

In this expression, thRz term contains the position and velocity dependiandy
terms, also defined when the kinematic relationships weaabkshed. The velocity
transformation can be applied also to the virtual velosijtieading to the following
expression if itis introduced in Eq. (2.127), along with #oeeleration transformation
defined in Eq. (2.129):

7TRT (I\7IR2 + MRz — Q) -0 (2.130)
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and, since the coordinates are independent, the expression into parsagimeust be
always equal to zero to fulfill the virtual power principléhi$ means that the equations
of motion can be written, for the open—loop version of the nagism, as

RTMRZ = R" (Q — MRz) (2.131)

Leading to the following expressions for the mass matrix goedgeneralized forces
vector in relative coordinates:

M =R'MR; Q=R" (Q _ I\7IF22) (2.132)

These operations can be performed very efficiently by takidgantage of the
open loop topology. ThR matrix is the result of assembling in matrix form the recur-
sive velocity relationships defined for the open loop syst&hich makes its structure
rather particular. It can be divided into blocks if tAeandZ coordinates are arranged
as described in Eq. (2.124),

R, R, 0
R=[0 1 o0 (2.133)
0 0 |

whereR, andR, are two submatrices which relate the Cartesian rigid bothycitees,
Z,,to the relative velocitiezand to the time derivatives of the static modal amplitudes
1 respectively. The first submatrix, the rigid body or refexepart ofR, would be the
R matrix of an equivalent rigid mechanism in the current defed configuration.

The example mechanism described in Figure 2.11 is used o lsbw theR ma-
trix terms look like. It consists, as pointed out before, dbable four—bar mechanism,
in which the joints at points ande have been cut, and bodies 2 and 3 are considered
as flexible. The reference block of the projection matrix barobtained as a product
of a connectivity matrixT ,, which depends exclusively on the topology of the mech-
anism, times a block diagonal matlﬁai’, containing the kinematib terms associated
to the reference relative coordinates

ls 0 0 0 0][b, 0 0 0 0
le 16 0 0 0[]0 by 0
Rr=|lg lg I¢ 0 0||0 0 b 0|=T,RY (2.134)
le le¢ 0 1g 0] O by 0
ls 16 0 lsg IO 0 0 0 bs

The structure of the connectivity matrix. is such that each block column is asso-
ciated to a joint, and it contains identity matrices in thedl rows corresponding to
those bodies which would be affected by a variation of themol's relative coordi-
nate, while the rest of the relative coordinates remain fifdek connectivity matrix
T, contains an identity at blockj if and only if body j precedes body when go-
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ing from the root to the leaves, and they are both in the saiechr In the example
mechanism, the zero blocks at positions (4,3) and (5,3) @edalthe fact that body 3
is not in the same branch as bodies 4 and 5, so that a varidtimnvould not affect
them. If the bodies are numbered and sorted from the rootetdettves, this matrix
will be always lower triangular, leading to an also loweatgjular block structure for
theR, matrix, as it happens in the example.

A similar procedure can be employed to define the flexiblesfiamation matrix,
where in this case the connectivity matrix contains idgribcks when the corre-
sponding body is affected by the elastic displacement ofumbary point, and the
diagonal matrix contains th@ terms, which have one column for each static mode
defined at a boundary point. In the example mechanism, thas&ss are as follows,

0 0 O

0 o4 0 0 0
le 0 0 0 0 ¢F 0 0 )
R'] = |6 |6 |6 O B 0 = Tan (2135)
le g 0 ‘p(; c
le I 0 AE

and the fullR matrix for this mechanism can be seen in the Appendix, athpas it
happens to th#l matrix, it is never actually assembled.

2.7.1 Mass matrix projection

The mass matrix projection can be very efficiently calculdig dividing the products
into blocks. By expanding the products needed to perfornmtags matrix projection
in Eg. (2.132), it can be found that the resulting mass masrithe sum of three
different terms, as pointed out by Funes et al. (2004),

RTMR = (RTMR) + (RTMR) = (RTMR>f (2.136)
r ¥
The first term contains the projections of the mass matrigkda@orresponding to the

reference coordinates, and it is the only one which needs taleulated in a recursive
way,

(RTMR) - RIM,R, 0 (2.137)
sym. 0
The second one is formed by projections of the blocks thapledtine inertias of the

reference and elastic coordinates. These terms are naflat@id in a recursive way
due to the fact that in the assembMdmatrix in Cartesian coordinates, the blocks of
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different bodies are not coupled

] 0 RIM,, RN ¢
(RTMR)rf = RIM,, + M, R, RIM, (2.138)
sym. 0

The blocks of the mass matrix involving only the elastic coates appear unchanged
in the last term. They do not need to be projected since tltielzoordinates are the
same in both the andZ coordinate sets,

0O 0 0
(RTMR)f - M, M (2.139)
sym. Mg

It can be seen, by observing the structure of the first ternh@fprojected mass
matrix, that there exists inertia coupling between thetiasrof the reference and
elastic coordinates, even between those of different Isodiee inertias of the elastic
coordinates, except the dynamic modes bldtk are no longer constant after the
projection into the relative coordinates. The efficientcoédtion of these two terms
will now be addressed in detail, and the actual matricesimddafor the example
double four—bar mechanism can be found in the Appendix.

Projection of the reference mass matrix blocks

In order to calculate the three different blocks of the fiestrt of the mass matrix,
shown in Eq. (2.137), an optimal method that takes advarg&gee structure of the
mechanism, accumulating the inertias and forces from theketo the root, is used. A
recursive accumulation of the reference mass matricesepatformed in such a way
that the accumulated malgl.; at a jointi is the sum of the reference mass submatrices
of all the bodies that would be affected by a variation of thktive coordinate;,
while the rest of the coordinates remain fixed. In the examméehanism shown in
Figure 2.11, the accumulation of reference mass matriceddnee:

Mys =M,s

Mys=M,s+M,s

M,3 =M,s (2.140)
M2 =M,2 +M,35+ M,y

My1 =My +M;s

Each accumulate,; matrix is equal to the sum of the reference mass matrices
of the bodies with an identity block at the columrof the connectivity matrixT, ;
therefore, the connectivity matrix can be used to autontategrocess, going from
the rightmost column to the first and identifying the sumsadty performed in order

to avoid repeated operations. There exists a second typofralation, in this case
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that due to the static modal amplitudes, which is performextty in the same way,
taking into account the topology of the open—loop mechanism

Mfa =M,3
MB =M,s +M,5s + M5 (2.141)
Mfz =M;2 + M7,

where eacH\/I,’} is the accumulated mass at the poitit considered as pertaining
to bodyi, analogously as done in Eq. (2.140). This accumulated nsatssi of the
bodies which would be affected by a variation of the modal lgoges at pointP,
due to a deformation of body As can be seeM f’3 is only the mass of body 3, since
its own deformation does not affect any other body in the efmap configuration,
whereasM & is the accumulated mass of bodies 3, 4 and 5, i.e. those edfégt a
displacement of poinB, produced by a deformation of body 2. Also, it is observed
that pointc¢ does not have an accumulated mass associated, since, ipehelaop
mechanism, its deformation affects nothing but its own tmsi

The first bIock,RIl\?I,R,, coincides with the mass matrix of an equivalent rigid
body mechanism, in the current deformed configuration. Emehof its sub blocks
will correspond to a pair of relative coordinates (or boyliesind j, and it can be
calculated from the accumulated mass at jointand the kinematic terms of both
jointsb; andb; as follows:

(RII\?I,R,)U =bIM,jb;; i< (2.142)
where only the upper triangle is considered, since the uspare symmetric solvers
makes unnecessary to fill in the symmetric part of the maBmme of these terms are
zero, however, since there is no inertia coupling betweemdference coordinates of
bodies pertaining to different branches of the mechaniarthd example mechanism,
the blocks (3,4) and (3,5) are zero since body 3 is in a diffelbeanch from bodies 4
and 5. It is easy to automate the decision by examining thetstre of T T,, since

a blockij in Eq. (2.142) is zero if the corresponding blockTof is also zero. The
resulting matrix obtained by following this procedure i ttixample mechanism can
be seen in the Appendix.

The projection of the reference mass matrices into the mahglitudes is per-
formed exactly in the same way, by using the recursive vBloelations associated to
the static modeg and the accumulated mass matrices defined in Eq. (2.141aso t
the sub—block corresponding to a pair of boundary pointsheil

prq
ij rJ

(RIM,R,) " =of ™Ml 0l i<j.P=<0 (2.143)
where the position of the null blocks can be determined aymalsly as done in the
reference coordinates block, by examining the structu@of

And the remaining block, which has the same nonzero blockstsire asT | T,,
has a mixed structure, using the mass accumulation from Z#§4@) in the lower
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triangle and that based on the static modes in the uppegteaim such a way that,

Tn P P ; ;
» b;M; e; i <j

(RIMar> = (2.144)

i S
b,'TMrj(ij 1>

Projection of the reference—elastic coupling blocks

The terms appearing in Eq. (2.138) are simpler to obtain thase in Eq. (2.137),
since they are not obtained from recursive accumulatiom. Skhucture of the assem-
bledM matrix is such that there is no coupling between the diffebenlies, so that
the M, andM,,, blocks will be also an assembly of independdht,; andM,¢;
blocks. The projections into the relative coordinates are

(RIM”?).. = b/ My (RIMrS).. = b/ M,; (2.145)
ij 1

being each term different from zero if a variation 5f while all other coordinates
remain fixed, affects the position of body The remaining terms are obtained in the
same way,

_ \P - _\P _
(RIM,,])U = P ™™, (RIM,S)U = F™™ ¢ (2.146)
with a structure determined in a similar way, although is tase the static modes at
point P of bodyi are the coordinates that should affect the position of badyl the

blocks of the projected mass matrix are shown in the Appendix

2.7.2 Projection of the forces vector

The generalized forces vect@ can be projected into the relative coordinates by
means of Eq. (2.132),

Q=RT (Q —-M RZ) =RTQ (2.147)

The termQ’ contains the forces computed for each body in Cartesiardaowates,
assembled into a vect€}, to which velocity dependent inertia forces are added, due
to the time dependency of the projection maRixThe first operation needed in order
to calculateQ’ is the evaluation oRz, which is totally straightforward since it is
formed by thed; andyf’ terms appearing in the acceleration kinematic relatigrsshi
This product can be divided into three blocks,

(F'ez) = R, 2, + Ry2y: (F‘ez) =0 (F‘ez)E =0 (2.148)

r n

The only nonzero block, which corresponds to the referenoedinates, will contain
a6 x 1 block for each body. Each one of these blocks can be effigiealculated
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as the accumulation, in this case from the root to the leafethe d; andyf terms
associated to the coordinates whose variation would affiegbosition of the body. In
the example mechanism, this results

d
(R2)

(F'zz)r3 — (Rz) +dy+yB+yB (2.149)
(R2)

This accumulated vector can be directly calculated whefopaing the position and
velocity analyses during the forward loop, since d}eandyjp terms are not needed
elsewhere. Once this vector is computed, the calculatio®’ofs straightforward.
Due to the block diagonal structure df,, each sub—block 0@’ associated to a
body j will depend only on the terms of its individual reference mamtrix, and the
corresponding block of the reference parfif. so that

C ij = er - I\7|rj (Rz)rj (2.150)
In the case of the modal amplitudes blocks, the calculagadhé same, existing one
block for each body having whether static or dynamic modes,

T WV
L= Q=M (Rz)rj, Q= Qg — M1, (Rz)rj (2.151)

Finally, the projection oRTQ! is performed

LA
Q=R'Q = |RIQ! |+ | Q, (2.152)
0 Qt

The second term of this equation is already available, amgtbducts in the first one
are obtained by accumulation, from the leaves to the rodtaaseen done with the
masses, i.e. calculating the accumulated rigid body fdsoés from the point of view
of relative coordinates and modal amplitudes. A blodk RT Q" is obtained as

(RIQi) = blQ,; (2.153)

i
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where theQ,; is the accumulated force at joint These accumulations are as follows
for the example mechanism,

Qrs = Qls

Qra=0QL, +Qss

Qr3 = QL4 (2.154)
Qr2 = Q;z +Qr3 + Qs

Qi =Q + Q2

The calculation of the projection of the reference forces the modal amplitudes
will be obtained analogously
&\, PTAP
(RnQr>i =0 Q (2.155)
There exists a second type of accumulation, in this casedtigto the static modal

amplitudes, which is performed exactly in the same wayni@kito account the topol-
ogy of the open-loop mechanism:

B ~\¢

r3 — r3

5 =Ql, + Qs +Q4 (2.156)
A ~ B

5 =Qn+ Q5

2.8 Dynamic formalism

2.8.1 Equations of motion

This formulation uses dependent coordinates, along wigt afslgebraic constraints,
therefore the problem can be formulated by the classicatdrage multipliers ap-
proach. This means that the equations of motion will be afsetsecond order ordi-
nary differential equations, witle added algebraic constraints that turn it into a set of
differential algebraic equations, more specifically areie3 DAE system

Mz 4+ &% =Q

2.157
®—0 (2.157)

Most of the strategies for DAE integration are based on hgiiti into an ODE sys-
tem, since there exist many well-known methods for theggrdation. The simplest
approach is to differentiate the constraints twice withpees to time, leading to an
index—1 DAE system that can be directly integrated (Goldsf950),

[M ‘I’H}z{ 0 } (2.158)
P, O A —0,7z— P,
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The problem of this approach is that it does not impose th@lfiént of the con-
straints but their second derivative, thus causing a posdrift in long simulations.
A solution to this problem, proposed by Baumgarte (1972)sisis of stabilizing the
constraints by substituting = 0 by

® + 260 + 0P =0 (2.159)

where the parametegsandw can be considered as the damping ratio and the natural
frequency of a one degree of freedom vibrating system, §heemmonly takes the
value of 1 in order to obtain the fastest stabilization of thastraints possible, and
the usual value ab is 10. This leads to the following set of equations

[M ‘ﬂ{z}z{ Q. } 2160
d, 0 N —®,7 - 2(0® — 0*®

This method does not strictly impose the fulfillment of thestaints or their deriva-
tives but a combination of them, and it adds a dissipative & ® that should be
taken into account. Moreover, neither this method nor thesital approach can deal
with systems having redundant constraints, and they ndategrate: 4+ m equations.

In order to eliminate this problem, Bayo et al. (1988) praabthe penalty formula-
tion, that approximates the Lagrange multipliers as thengarte stabilization term,
multiplied by a penalty factok, so that the force associated to the constraints is pro-
portional to the violation of the constraints and their datives,

2=« (<'1'> +2twd + a)2<I>) (2.161)

The penalty factor takes large values, ranging frid@mto 10'°, in such a way that a
small violation of a constraint introduces a large oppos$arge. The resulting system
is, after substituting the approximation bfinto the equations of motion

(M + <1>Ia<1>z) 2=Q-da (<i>zz F2twd + a)2<I>) (2.162)

where the leading matrix is onlyx n. An alternative to this approach, that obtains the
exact values of the Lagrange’s multipliers, but retainimgadvantages of the penalty
formulation such as the integration of omyequations and the possibility of dealing
with redundant constraints, is the augmented Lagrangiemuiation (Garca de Jadn
and Bayo, 1994), which had been already used by Vanderglkgf4) in optimization
problems. This formulation consists of the penalty forrtiala with an added iteration
to calculate the exact value of the Lagrange multipliere €huations of motion are
stated as follows

M2+ & (ézz +2twd + w2q>) + o =Q (2.163)
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where\* is the Lagrange multipliers vector, obtained from an iferaprocess carried
out within each time step,

L :x;"+a(<’i>+2sw<i>+w2<1>) i=01,2,... (2.164)

which starts withk§ equal to zero, or to the value &f* obtained in the previous
time—step.

Other methods for turning the DAE system into an ODE are thased on coordi-
nate partitioning (Wehage and Haug, 1982), which sepanatdépendent coordinates
into a set of independent and another set of dependent catedi and integrate only
the independent coordinates. One of these methods, prbpysBarda de Jabn and
Bayo (1994), uses a velocity transformation to obtain theeddent coordinates as
a function of the independent ones. These methods integnati@imum set of vari-
ables, but there exist some disadvantages. On the onelsdeelocity transformation
must be carried out at every time—step, leading in this casedbuble velocity trans-
formation, first from Cartesian to dependent relative, e from dependent relative
to independent relative coordinates. On the other sideghibeen set of independent
coordinates may not be valid for all the positions of the nami$m, so that a checking
must be carried out at every time—step, and in case the set \&lid, a new transfor-
mation must be defined, which implies the integration of fedint set of variables
and, therefore, restarting the integration.

The actual formulation used is a variation of the augmentsgtangian formula-
tion, but stating it as an index—3 instead of an index—1 fdatian. As opposed to the
augmented Lagrangian, the formulation used in this thegi$es the penalty only to
the constraints vector, so that their fulfillment is totalgsured. The final equations of
motion are as follows:

MZ+ ®Jad + ®]\* =Q (2.165)
Mo =Mtaed =12, (2.166)

Since this method only enforces the fulfillment of the caaistis at position level,
the velocities and accelerations are later projected ierai@ enforce them to fulfill
the constraints at velocity and acceleration level, usirgsnorthogonal projections
as proposed by Bayo and Ledesma (1996). As it will be seeneimtimerical inte-
gration section, the projections actually used in this faation are modified in order
to improve the efficiency (Cuadrado et al., 2000), so thay #re no longer mass—
orthogonal.

The full procedure for the assembly of the equations of rmoisoschematized
in Figure 2.19. Starting from known values of the relativesifons and velocities,
the first step is to perform the forward position and veloa@halyses, in order to
obtain the positions and velocities of the bodies and jomtstural coordinates. This
allows for calculating, on the one side, the kinematic aredtia terms, expressed in
the Cartesian coordinat@and, on the other side, the kinematic constraints and their
Jacobian matrix. The kinematic and inertia terms are usedltulate the projection
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Figure 2.19: Procedure for building the equations of motion

of the dynamic terms into the relative coordinates, in anmsea backward process,
which is one of the keys of the formulation. Once the progctias been performed,
all the terms of the equations of motion are available intredacoordinates.

2.8.2 Time integration

Once the equations of motion have been transformed into@dearder ODE sys-
tem, the choice of numerical integrators is considerabtjewed. The structural inte-
grators, originally developed for their use in the field afistural dynamics (Bathe,
1995), have been adapted and successfully used by manyalikecGaréa de Jabn
and Bayo (1994), €&radin and Cardona (2001), or Cuadrado et al. (2000), for the
integration of the equations of motion in multibody systeighis thesis, the New-
mark dissipative integrator (Newmark, 1959), an implictegrator from the structural
family, has been chosen for the time integration of the eqaatof motion due to the
excellent results obtained by using it in rigid multibodg®ms, as shown by the work
of Cuadrado et al. (2004b) and Dopico (2004). This integreada introduce a variable
amount of numerical damping, based on the choice of a paeaghand, in the limit
case when there is no damping, the integrator becomes thiekwelvn trapezoidal
rule, which is the form actually used in this work. The nuroakidamping is later in-
troduced in order to test the efficiency that can be reachédhugh all the examples
are integrated without problems with the trapezoidal rule.
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Combination of the equations of motion with the numerical irntegrator

The difference equations of a general Newmark integratbichvyield the position
and velocity at the time—step+ 1 by using the accelerations as primary variables,
are as follows for a time—step

, 5 "
Znt1 = Zp + hz, + 7 [(1 - 2,3) Zy + 2,an+1] (2-167)

Znt1 = 2Zn + h[(A = y) 20 + yZyt1] (2.168)

In the dissipative subfamily of the Newmark integratorg ffarameterg andy are
allowed to take the following values, with < 0, for keeping the integrator in its
unconditionally stable zone,

(=& -2
B = T r=— (2.169)

For&é = 0, B is equal to 0.25 angt to 0.5, so that the integrator becomes the trape-
zoidal rule, which adds no numerical damping and shows skocoder precision.
Lowering the value of increases the amount of nhumerical damping, thus improv-
ing the stability although at the price of becoming an ingégr of only first order
precision.

In order to combine the equations of the integrator with tipeations of motion
stated according to the described index—3 augmented Lgigraformulation, the po-
sitions are used as primary variables, so that the equatfdhs integrator turn into

zn+1 = ﬁlhzn-i-l _%n (2-170)
. 1 4
Zpy1 = Wzn+l — 4y (2.171)
where

5 y y . 4 .

= — = —1 — —1}h 2.172
z, ﬁhzn+(ﬁ )szr(ZI3 ) 2y ( )
5=ty (L )z (2.173)
n — ,3//12 n ,3/1 n 2[3 n .

If dynamic equilibrium is imposed at step+ 1 by combining the equations of the
integrator (2.170) and (2.171) with the equations of mo{®165), a nonlinear sys-
tem of algebraic equationyz,+;) = 0 must be solved for the relative positions.
This system can be solved by using the Newton—Raphsonidenatth the following
approximated tangent matrix and residual vector:

f, ~ M + yhC + Bh? (<1>2Ta<1>z + K) (2.174)

f = Bh? (Mq +®lad + dN* — Q) (2.175)
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beingK andC the already described generalized stiffness and dampitgces
aQ 0Q

Sz’ 0z

K = (2.176)

The procedure for obtaining the position at stegp 1 starts by calculating firstly
an initial guess

2
Zyst = 2o+ hty + 2 (2.177)

then obtaining the corresponding velocity and accelemadio: + 1 from the equa-
tions of the integrator (2.170) and (2.171). Then, the NewRaphson iteration is
performed, by calculating the terms of the tangent matrik e residual, obtaining
the correction in positions, and obtaining the new velesitind accelerations again
from the equations of the integrator, until the norm of therection or the residual
goes under a specified tolerance. The iteration used in tpaented Lagrangian for-
mulation for updating the Lagrange multipliers of Eq. (&)6an be performed along
with the position correction loop.

Projection of velocities and accelerations

The solution off (z,+1) = 0 obtained after the convergence of the corrector yields
a position vector that fulfills the dynamic equilibrium etjoas, along with the kine-
matic constraints at position leveb = 0). However, the velocities and accelerations
thus obtained are not guaranteed to satisfy the time dexgadf the constraints, since
they have not been imposed. Bayo and Ledesma (1996) propas#dtion that con-
sists of projecting the velocities and accelerations, thsway that the new values
fulfill the first and second time derivatives of the constiaihe projection of veloc-
ities is performed by solving the following minimizationgimlem,

minV = - (z—2*)'M (z2— %)

1
2
st =0

(2.178)

wherez* are the velocities obtained after the convergence of thetbieviRaphson it-
eration, and are the updated values obtained after solving the minimoizgiroblem.
This problem consists then in finding the velocities thafilfithe constraints at ve-
locity level, while producing the smallest possible deeiatfrom the original values,
weighted by the mass matrix. This problem can be solved bynmefthe Lagrange
multipliers method, although, in order to avoid an iteragiwocess, a penalty approach
is more convenient. This leads to solving the following éineystem foe:

(M + <I>ZTa<I>Z) 7=Mz"— ®lad, (2.179)

A similar procedure can be used for projecting the accetarat The minimization
problem of Eq. (2.178) can be applied to them, in this casgstibo the restriction
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® = 0, leading to a linear system with the same leading matrix adifferent right—
hand—side

(M + @la®,) 2= M2 — ®]a (0,2 + ) (2.180)

where thed,z+ ®, terms might be previously updated by using the already pteje
velocities.

Instead of using the mass matrix as the weighting matrix@bthjective function,
Cuadrado et al. (2000) proposed to use a different one thigsrtae leading matrix
of Egs. (2.179) and (2.180) become the tangent matrix (2,lalteady assembled
and factorized when calculating the positions in the NewRephson iteration. The
proposed weighting matrix is defined as

W =M + yhC + Bh*K (2.181)

so that if the restrictions of both the velocity and accaleraminimization problems
are scaled by a factor ¢f4?, the linear systems to be solved in order to perform the
projections become,

f,z=WZ* — B’ ®)ad, (2.182)
f,2= W2 — Bh’®] (<i>zz + <i>,) (2.183)

This allows to make use of the last factorization of the tamgeatrix performed dur-
ing the Newton—Raphson iteration for evaluating the pitojes, thus reducing their
impact on the required CPU—time.

Algorithm

In order to initiate the integration process, the index—8naented Lagrangian for-
mulation combined with a Newmark integrator here describeeds the positions,
velocities and accelerations at the first time—step. Théipos and velocities can be
obtained from those of the degrees of freedom, that must bavkratz = 0, by
performing a standard kinematic analysis. The positiopsoaitained by means of a
Newton—Raphson iteration in order to solve the nonlineatesy® = 0 for the un-
known variables. The unknown velocities, on the other siugst satisfy the equation
&,z = 0, in which the Jacobian appears again. Once the positiongeladities are
known, the accelerations at the initial instant can be akethby means of any of the
methods previously described, such as the penalty metlesdrited in Eq. (2.162).
Then, the procedure for obtaining the positions, velogitied accelerations at step
n + 1 from those at step can be seen in Figure 2.20. This procedure is divided into
three main steps: first, an initial guess is calculated fepst- 1 by means of the pre-
dictor; then, a corrector loop calculates the positiongaites and accelerations that
satisfy the equations of motion; and finally, the velociéesl accelerations are pro-
jected in order to minimize the violation of the constraiatselocity and acceleration
level. The resulting algorithm for obtaining the positipmslocities and accelerations
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Figure 2.20: Time integration of the equations of motion.

atn + 1 is as follows:
1. Increase timer = ¢ + h.
2. Predictori =0

€)) P05|t|onszn+1 from Eq. (2.177).

(b) Velocltlesngr1 and acceleration'z‘sﬁH from Egs. (2.170) and (2.171).
3. Corrector:

(a) Ifi > 0, update Lagrange’s multipliers (Eg. (2.166)).

(b) Evaluate tangent matrif and residuaf’ by means of Egs. (2.174) and
(2.175).

(c) Solve the linear systefAz = fi for Az.
(d) Calculate the correcteg]t! =z | + Az
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(e) Update velocities and accelerations with Eqgs. (2.1A8)(@.171).
() Ifthe error||Az| is larger than the toleranegi = i + 1; go to step 3.

4. Projections:

(a) Projection of relative velocities: Eq. (2.182).
(b) Velocity analysis for Cartesian coordinates, updtz and®, .

(c) Projection of relative accelerations: Eq. (2.183).

In order to evaluate all the terms needed at the steps 3(aB@mdthe procedure
described in Figure 2.19 for obtainind, Q, ®, ®,, ®,z and®, must be used. The
K andC matrices are directly obtained by following the proceduesatibed in their
corresponding sections.

2.9 Numerical examples

Three examples, already used for a natural vs. relativedaweies comparison in rigid
multibody systems (Cuadrado et al., 2004a; Dopico, 200a)e been implemented
in the flexible case through both the formulation in natu@drdinates described in
Gutierrez (2003), Cuadrado et al. (2004c), and that in relatieedinates here devel-
oped. The first one is a planar double four—-bar mechanismefdrny five identical
bars, the second one is the front left suspension of the Batigydltis vehicle (Frik
etal., 1993), and the third one is the full lltis vehicle. i@emance measurements have
been carried out with different numbers of flexible elemem®rder to evaluate the
influence of such parameter in each formulation. The firstawamples were imple-
mented in MATLAB, so the CPU-times should not be considered eeference for
the efficiency, but only for comparison between formulagiofhe lltis vehicle is pro-
grammed in FORTRAN, obtaining faster simulations despiteeing a much larger
system.

2.9.1 Double four—bar mechanism

The system consists of five identical steel bars, as seemgimd=2.21. Each of them
has unit length and mass, and they are all connected by teyolats. All bars can be
considered individually as rigid or flexible, modeled in flexible case by 10 beam
elements, with one axial static, one bending static, anddgraling dynamic modes.
The closed loops have been cut as done in the double four-éaranism shown in
the example in Figure 2.11.

The number of coordinates increases as more flexible barsoasidered in the
system, being this increment different in the absoluteuf@toordinates) and relative
formulations, because the latter does not include as aovates the unit vectors of the
local frames. The number of coordinates for each formutetiod number of flexible
bodies is given in Table 2.1. This number tends to be doubleataral coordinates
when more flexible bodies are considered, because eachdlexily adds four modal
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7
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Figure 2.21: Double four-bar mechanism.

amplitudes plus four unit vector components, while, intieéacoordinates, each body
adds only the four modal amplitudes.

Table 2.1: Number of system coordinates in the first example.
#flexiblebars 0 1 2 3 4 5

Absolute 6 13 20 27 34 41
Relative 5 8 11 14 17 20

The system is subject to gravity, and its leftmost grounéehed bar receives
an initial velocity of 1 rad/s in clockwise direction. Motids integrated during 5 s
—the time to approximately complete 2.7 revolutions— byhngghe trapezoidal rule
(¢ = 0), with a time—step of 10 ms. The CPU-times required for thegrgtion are
those provided in Table 2.2. As it may be seen in the TableCfAg—times reduce
their difference when more bodies are considered flexibléhé rigid case, the ab-
solute formulation is five times faster, while, in the fullgxXible model, the relative
formulation needs only 37% more time for integration, ptadipadue to the propor-
tionally lower number of coordinates mainly.

Table 2.2: CPU-times (s) in the first example.

# flexible bars 0 1 2 3 4 5
Absolute 091 3.30 6.24 9.61 1151 15.22
Relative 485 9.11 1262 1574 17.74 20.92

The energy conservation has been checked to assess thegretiboth formula-
tions. In this example, the total energy fluctuates each tiraesystem passes through
the singular position, so instead of the energy loss at tldeoérthe simulation, its
mean value along the whole five seconds has been measuredeld@tiee method,
whose mean energy loss ranges from 0.004 J in the rigid ca&€18 J in the fully
flexible case, has showed a higher precision than the albsuheat which loses a mean
of 0.021 J in both cases.



2.9Numerical examples 75

2.9.2 lltis suspension

The Bombardier lltis vehicle (Frik et al., 1993) is a well-ekam benchmark system for
simulation software. The second example chosen for the adsgm of formulations
is its left front suspension, shown in Figure 2.22. The maslébrmed by a total of
five bodies, having three of them the possibility of beingifitxor not. The bodies
that can be considered as flexible, namely the A—arm, therlipgeand the track rod,
appear in dashed lines in the figure. The A—arm is connectéitbtohassis through
a revolute joint, and to the lower side of the stub axle by rsezra spherical joint.
The stub axle is considered as a rigid body, and it is condedoteoth the upper link
and the track rod by spherical joints. The upper link is catee to the chassis by a
revolute joint, whereas the track rod uses a spherical artbdb purpose. Three force
elements appear in this system: a shock absorber, actingbetthe A—arm and the
chassis; a spring, which connects the upper joint of the axld to the chassis; and
the wheel, which is modeled as a simple spring dependenteodistance to the floor.

Track rod (R)

1/4 chassis—m,

Spring

Shock absorber

Upper link (L)

Stub axle

Figure 2.22: Sketch of the lltis left front suspension.

The modeling used in relative coordinates is described. Adre system is again
a closed loop and, in order to transform it into an open—logtesn, the two upper
spherical joints at the top of the stub axle, i.e. the conaestto the upper link and
the track rod, are cut. Then, the topology of the mechanisas fellows:

e Atranslational jointz;, defined in the vertical direction, connects the chassis to
the inertial system.

e The A—arm is connected to the chassis by means of a revolutezjo Then,
three revolute jointss, z4 andzs are used to model the spherical joint between
the A—arm and the stub axle. This completes the first brarattstarts from the
chassis.

e The second branch consists of the upper link, attached tohthssis by means
of a revolute jointz.
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e The track rod is pinned to the chassis, having two degreeseflbmz; andzg.
This is the third and last branch of the mechanism.

Six constraints are established to impose the closure afuhints, since both are
of the spherical type.

In this case, modal damping has been added to the flexibleealsiusing a modal
damping matrix equal to 1% of their modal stiffness matrikeTlexible bodies are
modeled by using a tangent frame at the input joint, whicfficisthe three of them,
placed at the connections to the chassis. Then, the A—armwasff—plane static
modes, defined at the connections to the shock absorber dimel $tub axle, plus the
first two dynamic modes to complete the deformation field.aks been modeled by
means of a finite element model, using 3D beam elements, dodried by two bars,
discretized into 10 elements each, that converge at theection to the stub axle,
plus an additional rigid element that models the connedtigdhe shock absorber. The
other two elements are simple beams, discretized into Ifezlts, and they both use
the same modal reduction, consisting of two transverstitsteodes defined at their
tips, plus the first four dynamic modes.

The number of coordinates needed in all the possible cortibitsof formulation
and flexible bodies are shown in Table 2.3. Being this a thdieeensional system,
the consideration of a body as flexible in natural coordimata add up to 9 coordi-
nates in addition to the modal amplitudes, since a locafreefse frame needs three
unit vectors, although in practice some of the vectors cashiaeed between neighbor
elements thus reducing the total number of variables. mdhse the number of co-
ordinates in the absolute model is around three times laagel; unlike the previous
example, this relation remains almost constant with thebmrmof flexible bodies.

Table 2.3: Number of system coordinates in the second exampl
Flexible elements None A L R A+L A+R L+R All

Absolute 35 45 47 50 57 60 62 72
Relative 8 12 14 14 18 18 20 24

The suspension reaches equilibrium and then runs down a G@2mat:=2 s.
The integration, performed again with the trapezoidal with a time step of 10 ms,
is carried out for 5 seconds until the suspension reachdblegun again. The time
history of the vertical coordinate of the chassis, as welhas of the wheel center,
with all possible flexible elements, are plotted in Figurd3.showing a very good
agreement between the two formulations.

The CPU-times required to carry out the simulation are diggd in Table 2.4, as
well as in Figure 2.24. In order to more clearly show the influeeof the number of
bodies, Figure 2.25 shows the CPU-times for the cases of mweodlexible bodies
obtained as the mean values of the three different combimatit is observed that
the method in relative coordinates is now faster than thabsolute coordinates, and
the difference grows as the number of flexible bodies is amed. However, the im-
provement is not very significant, taking into account tihat implementation of the
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Figure 2.23: lltis suspension simulation results.

Table 2.4: CPU-times (ms) in the second example.
Flexible elements None A L R A+L A+R L+R All

Absolute 45 155 120 91 234 231 175 298
Relative 31 125 52 67 169 167 98 216

method in relative coordinates is much more involved. Thergynloss has been mea-
sured for this example as well in order to compare the pr@tisf the two methods.
The total energy at the end of the simulation must be equdieddtal energy at the
beginning, minus the energy dissipated in the damper, andifference between this
theoretical value and the actual energy at the end of thelafion is taken as a preci-
sion measurement. The results are very similar althoughtsfi better in the relative
formulation, which loses 14.07 J in the rigid case and 15.i08H3e fully flexible one,
as opposed to 15.73 J and 15.45 J respectively for the absuokthod.

2.9.3 lltis vehicle

The third example chosen is the full lltis vehicle, which ig@d example of a large
system. The four suspensions of the lltis vehicle are idahto the one described in
the previous example.

In the model in relative coordinates, the connection of thassis to the inertial
frame is made by using a floating joint, and the closed loop® teeen cut in all
the suspensions at the same joints, thus having 12 branrésgfrom the chassis.
When performing the forward position and velocity analysestifie open—loop sys-
tem, as well as the backward mass and force accumulatiorcotin@utation of the
four suspensions can be parallelized, since they are indepé.

As done in the single suspension problem, all possible coatioins of rigid and
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Figure 2.25: CPU—-times vs. number of flexible bodies in tlomsd example.

flexible bodies have been tested, using both formulatione cbmbinations have been
chosen keeping the modeling of the four suspensions idenitie. if one element (A,
L or R) is considered as flexible, it is done in all four suspems. The number of
coordinates obtained for each combination is shown in T2AlBeAs can be observed,
the coordinate numbers tends to be three times lower in taivescase, as it happened
in the previous example. But the relative formulation, do¢hte modal amplitudes,
no longer has the very low number of coordinates common foh $armulations,
reaching a total of 98 coordinates in case of the highest euwitflexible bodies.

Table 2.5: Number of system coordinates in the third example
Flexible elements None A L R A+L A+R L+R Al

Absolute 168 196 216 228 244 256 276 304
Relative 34 50 58 58 74 74 82 98
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Figure 2.26: lltis vehicle.
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Figure 2.27: Road profile for the lltis vehicle simulation.

The vehicle runs during 8 s over the road profile shown in iguR7, going from
left to right with an initial velocity of 5 m/s. The integrati is carried out with a time—
step of 10 ms, using the Newmark integrator with= 0, i.e. the trapezoidal rule.
The time histories of the height of both the chassis origit #ure center of the front
left wheel, when all the elements are considered as flexdneplotted in Figs. 2.28
and 2.29, showing a very good agreement between the differethods. It is ob-
served that this is a rather violent maneuver, since theamandes several times when
running down the steps. The good agreement between bothulations is also ob-
tained in the elastic coordinates, as can be seen in Fig8@e ®here the deflections
of the tip of the front left A—arm obtained by using both forations are plotted. The
CPU-times obtained can be seen in Table 2.6 and Figure 2@dding all combina-
tions of flexible and rigid bodies. Figure 2.32 shows the Ctdes vs. the number of
flexible bodies, in order to more clearly show its influencethiis figure, the times for
four and eight flexible bodies (one and two per suspensi@ha mean values of all
the corresponding different cases, as was done in the sesamaple.

As it happened in the rigid case, the relative method is falsta the absolute one
for large systems, but not to the same extent. As can be sdebie 2.6, the relative
method is roughly 5.5 times faster in the rigid case, but 8rilgnes in the fully flexible
case. This happens because the computation of the flexilde matrices takes most
of the computing time.

The error with respect to a reference solution, calculatigil atime—step of 0—*

s, is measured in order to evaluate the precision of both adsthThis error is de-
fined as the mean deviation of the height of the chassis fremdference solution,
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Figure 2.28: Time—history of the origin of the chassis.

Table 2.6: CPU—-times (s) in the third example.
Flexible elements None A L R A+L A+R L+R Al

Absolute 125 233 235 241 335 344 331 4.48
Relative 023 0.74 057 058 122 121 093 148

measured along the last three seconds,

1 &
p—— Z |Z,~ - zl*‘ (2.184)
i=0

e =

wherez; andz} are the calculated and reference chassis heights resggctindn,

is the number of time—steps. Only the last three secondsddithulation, where the
most violent bounces occur, have been taken into accountate rthe error more
significant. It can be observed in Table 2.7 that the reldtwaulation, following the
trend observed in the previous two examples, is also slightire accurate than the
absolute one for the time—step of 0.01 s.

In order to compare the robustness of the two methods, desigmalations have
been carried out increasing the time—step up to the maxinassilple. As it is shown
in Table 2.7, the absolute method can run with a maximum teteg-of 14 ms in the
flexible case, obtaining a CPU-time reduction of about 15#%e felative formula-
tion reaches a time-step of 44 ms, with a significant impramnn the CPU—-time,
reaching a real-time ratio of more than 13 times in a systetim 42 flexible bodies.
Obviously, such high time—steps can only be obtained atxtperee of introducing
significant errors, especially in the case of the relativéhog where the time-step
is three times higher. Going even further, Table 2.7 shoas #ile fastest results ob-
tained by adding numerical damping to the Newmark integrli&eping the time—step
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Figure 2.29: Time—history of the height of the front left vehe

below 50 ms. All these results have a mean error of almost QMhith may be not
admissible for certain applications, but they serve to show robust the relative for-
mulation is, reaching a time—step of 50 ms in the flexible cagesre the absolute
method cannot go further than 22 ms.

2.10 Conclusions and criteria of use

As expected, the formulation in relative coordinates otgddwer performance than
that in natural coordinates for small systems, and highdopaance for medium and
large systems, being somewhat more accurate in both casesigher time—steps
reached by the relative method in the last example, espeegiih the trapezoidal
rule, show that it is not only faster for large systems, bsbahore robust.

It must be pointed out that the first example is implementedATLAB, so that
the results are not completely reliable. In the rigid calse,absolute method should
keep the advantage since the relative method only redueestirdinates from 6 to 5,
but the results obtained when more flexible bodies are addigut vary if a compiled
language is used.

The introduction of finite element models through the cdroteal approximation
is very easy but can have a high impact on performance. Pigpfdhows that the
B* matrix calculation and mass matrix projection takes mogheftotal integration
time. The impact of these operations obviously grows with tlumber of flexible
bodies, reaching, for the lltis vehicle with the twelve fleri elements, 82% of the
total time in the relative formulation and 72% in the abselohe, despite of the coarse
finite element meshes used. In order to avoid this problemirtiplementation of a
different method for evaluating the inertia terms, based gmeprocessing stage for
extracting constant mass matrix terms, instead of keepiagize of the underlying
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Figure 2.31: CPU-times in the third example.

finite element model —as it happens with maBix is addressed in the next chapter.
These operationsB( calculation and mass projection) are performed faster én th
relative method, due to the fact that in natural coordinatiéexible body has 12 rigid
body variables, as opposed to only 6 in the method in relatardinates. Each of
these coordinates adds a column toBfematrix, which affects very significantly its
size in systems with few modes per flexible body.
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Table 2.7: Efficiency and precision in the third example.

Rigid Flexible
Absolute Relative Absolute Relative

Trapezoidal rule, time—step 0.01 s

CPU-time (s) 1.255 0.231 4.483 1.478
Error (x1072 m) 2.472 1.934 2.224 2.175
Real-time ratio 6.37 34.63 1.78 5.41
Trapezoidal rule, highest time—step below 0.05 s

Time—step (s) 0.034 0.044 0.014 0.044
CPU-time (s) 0.610 0.094 3.859 0.609

Error (x1072m)  7.297 7.303 3.031 8.550
Real-time ratio 13.11 85.11 2.07 13.14

Newmark, highest time—step below 0.05 s

& parameter -0.8 -0.8 -0.8 -0.8
Time—step (s) 0.050 0.050 0.022 0.050
CPU-time (s) 0.359 0.063 2.062 0.375

Error (x1072 m) 9.301 9.479 9.989 9.517
Real-time ratio 22.28 126.98 3.88 21.33







Chapter 3

Inertia Shape Integrals

3.1 Introduction

The projection of the inertia terms into the body coordisdig means of a fulB* ma-
trix, the projection methodn what follows, was first introduced into a FFR formula-
tion in natural coordinates by Avello (1995). This methodédsy simple to implement,
as can be seen in the previous chapter, and if the sparsitye dinite element matrix
is taken advantage of, it is reasonably efficient for smalhtdium size meshes. If
large finite element models are required, however, the ndetha become unusable
due to the dependency on the size of the finite element meghtvidhformulations
compared in Chapter 2 show a very good performance, butghesitical application,
due to the use of this method for calculating the inertia ggrwan be restricted for this
reason.

This chapter is focused on the implementation and efficieheydifferent method
for the calculation of the inertia terms, thesprocessing methothased on the use of
the inertia shape integrals imvariants(Shabana, 1991; Sugiyama et al., 2006). These
integrals were already used by Cuadrado et al. (1996) in afBFRulation in nat-
ural coordinates, similar to that used in the present workctomparison purposes
(Cuadrado et al., 2004c; Gatrez, 2003). That formulation used a different modeling
for the flexible bodies, not considering the static modes/atem variables, but writ-
ing them in terms of the points coordinates and unit vectorsponents, a difference
that completely modified the resulting implementation.

The inertia shape integrals are a set of invariant matridgshware obtained at a
preprocessing stage, by integrating the deformation maklesindeformed positions,
and some certain products between them, over the whole eotdithe body. The use
of inertia shape integrals for obtaining the inertia tereedls to operations involving
only matrices the size of the reduced model. This meanslteatuse eliminates the
size of the finite element mesh from the system, taking fulaatage of the modal
reduction, so that the CPU-time will only depend on the sizhe reduced model,
i.e. the number of deformation modes selected, and the nashesrefined as much
as needed without introducing any penalty to the simulatiore. Wallrapp (1994)

85
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included these integrals in a proposal for standardizaifahe input data, externally
generated, required by a multibody code to model flexiblédsod

In this chapter, the implementation of the inertia shapegrsdls in both the ab-
solute and the relative formulations is discussed, and fasiezfcy comparison to the
original full B* matrix projection method is performed, in order to provideng prac-
tical criteria of use. All the development is carried out feoparametric elements,
for the sake of simplicity, although everything is easilyngmalizable to the non-
isoparametric case. First, the main idea of the method, camtmboth formulations,
is described. Then, the implementation of the method in Bb#olute and relative co-
ordinates is detailed. A method for efficiently calculatihg inertia shape integrals,
based on simple matrix products, is described in the nefitse@and then detailed for
three—dimensional beams. Finally, the results obtaindéd bath the projection and
the preprocessing methods are presented and discussed.

3.2 General description

The velocity of an arbitrary point of a flexible body can be regsed as a linear func-
tion of the generalized velociti€g by means of a projection matr,

F=B(aq 3.1)

This is applicable to both the velocities in natural cooatié@s g, or in the intermediate
Cartesian velocities used in the previous chaperbeing theB matrix obviously
different for each coordinate set. The mass matrix and thecig dependent inertia
forces vector must be expressed in terms oftftoe Z coordinates in order to include
them in the equations of motion. In the methods describedrsthis has been done by
assembling a fulB* matrix including all the finite element nodes, and then peenfag
the projection of the inertia terms at every iteration of ifitegrator. This procedure,
as pointed out at the beginning of this chapter, is very sintplimplement, but if
the finite element model becomes too large, being the nunili#®&s several orders
of magnitude larger than the number of modes, a differenhateshould be used
in order to keep the efficiency requirements. The main idda iliminate the size
of the finite element model, making the CPU—-time dependelyt om the number
of modes chosen for the model reduction, which is actualydbjective of using a
modal reduction.

3.2.1 Derivation of the inertia terms

Three steps might be distinguished when deriving the magsgxnieom the kinetic
energy expression: the finite element discretization,rénesformation between abso-
lute and generalized velocities, and the mass integrafioa key difference between
the projection method and the preprocessing method addrésghis chapter is the
order in which these three operations are performed. Iné@qus method, the finite
element discretization was first introduced, then the attdgn of the interpolation
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matrices led to the constant finite element mass madrtx which could be finally
projected into the generalized velocitigdy means of the full transformation matrix
B* at every time step:

1 1
T = 5/ ETFdm ~ 5r'*TM’"r'* = M ~ B*"M*B* (3.2)
|4

In the method addressed in this chapter, the velocity ptiojedor a generic point is
applied first, and after taking out of the integral, the kinetic energy is obtained as,

1 1
T = -/ ETedm = =" (/ B'B dm) q (3.3)
2 Jy 2 v

which means that the mass matrix expressed in the body c@tedi is
M= / B'Bdm (3.4)
14

and in order to calculate this integral, the finite elemestudtization is introduced.
The results obtained are then the same as in the projectithrothesince only the order
in which operations are performed is changed. In the casearhb, this integral can
be done by using the analytical functions of the deformatmaes, thus eliminating
the inconsistency and obtaining their exact values.
The definition of the kinetic energy in Eq. (3.3) can be introed into the La-

grangian, then the Lagrange equations can be applied tnah&expression of the
velocity dependent inertia forces vector, as done in thgeption method,

Q= — (/V B'B dm) q (3.5)

3.2.2 Definition of the inertia shape integrals

As mentioned before, the integrals needed for obtainingrtaes matrix and the ve-
locity dependent forces vector can be efficiently calcddte matrix and vector op-
erations if some invariant matrices are extracted. The teteget needed consists of
16 mass integrals, including the undeformed positionspibde shapes, and several
combinations of products between them. These integralbealivided into two sets.
The first set consists of three mass integrals, where onlgfonthed positions appear,
so that they lead to inertia terms associated to the undefdbody motion. The iner-
tia shape integrals are the remaining 13 ones, which indluelenode shapes, hence
they are used to obtain the variation of the inertia propsgproduced by deformation.
The first three integrals can be obtained from the undeforgesnetry of the

body, and include the mass of the body the static moment,, and the planar
inertia tensoP,, all of them calculated in the local frame,

m:/ dm; m,,:/ fudm; ﬁu=/ Fuf) dm (3.6)
Vv 14 |4
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The first integral does not need to be calculated unless thss wfathe body is un-
known, and has been included in the set only for completerigss static moment
m, can also be directly obtained without integration, if thessiand the undeformed
position of the center of graviui/f are known,

m, = f Fudm = mr¢ (3.7)
|4

And the planar inertia tensor can be derived from the undedédrinertia tensaj,, in
case itis available,

3
_ o 1 - - _ -
P =/Vr,,r1dm=§§ ()1 = 3w = Juls = 3 (3.8)

i=1

beingJ, the moment of inertia of the undeformed body with respechéodrigin of
the local frame of reference.

All the remaining integrals involve the mode shapesherefore, they will be used
to obtain the variable part of the inertia terms. Three kiofithese integrals can be
defined, generating a total of 13 constant matrices. Thetyipstis the integral of the
mode shapes themselves, which results ¥va n,, matrix, beingn,, the number of
columns inX, i.e. the number of deformation modes chosen for the redgludf the
finite element model,

S= /Vde (3.9)

If the mode shapeX are multiplied by the three components of the undeformed pos
tion and integrated, three more constant n,, matrices are obtained,

s":/ FuiXdm, i=1,273 (3.10)
14

And the remaining nine matrices, of sizg x n,,, include the integrals of the products
between the three directions of the mode shapes,

sV =/Vx,Tx,~dm, i,j =123 (3.11)

whereX; is thei™ row of X. It must be noted that only six of these integrals need to
be calculated, sinc®’’ is equal to the transpose 8 .

The complete set of undeformed geometry integrals andianshiape integrals
here defined, along with the generalized coordinates vectard its time derivative
@, contain all the necessary information required to cateulae mass matrix and the
velocity dependent forces vector of a deformable body. diepto make the procedure
clearer, the inertia terms can be considered as dividedbilsitks, according to the
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structure of the generalized coordinates vector,

Mtt Mt9 Mtf Qvl
M = Moo Mor |, Qu=1Qus (3.12)
sym. Mff Qvf

where the subindexrefers to the inertia associated to the translation of thené of
referencef to that of its rotation, ang’ to the inertia of the elastic coordinates.

3.3 Implementation in absolute coordinates

As pointed out in the previous section, the velocity of a poen be expressed as a
linear function of the generalized velocitigsby means of a variable transformation
matrix B. On the formulation in natural coordinates, the generdlizdocities are

qT:{I;‘(I)' at vt owWT yT} (3.13)

wherer is the position of the origin of the local frame, v andw are its three unit
vectors expressed in global coordinates, which can be gubinto a rotation matrix
A, andy is the vector of elastic coordinates. In order to obtain gression for thd
matrix, the velocity of a point can be obtained by differatitig the position given by
Egs. (2.1) and (2.3), thus leading to

f =fo+ AF +AF = o + AT + AXy (3.14)

which is a linear relationship between the velocity of théenpand the generalized
velocitiesq. This can be expressed in matrix form, as in Eq. (3.1), thuaioing an
expression for th8 matrix of a generic point in natural coordinates,

B=[I3 Ay Fals Fals AX] (3.15)
The components of the local deformed positipprovided thaf = 1, + Xy, are,

i = Fyi + X,'y, i=1,2,3 (316)

3.3.1 Mass matrix

In order to obtain the mass matrix, tB&B product must be developed

712|3 7172|3 7173|3 f]AX

M =/ BTBdm=/ P23 Faisly | RAX | dm (3.17)
4 4 s 21, | FAX

ym. ryls r3

XTX
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In what follows, the derivation of the different blocks inrtes of the inertia shape
integrals will be addressed in detail.

Mass terms associated to the reference coordinates

The first three blockM ;;, M ;o andM 4 contain the inertia terms related to the motion
of the frame of reference. They have the same physical mgasnin rigid body
dynamics, although most of their terms are now variable.

The first blockM ; is a constang x 3 diagonal matrix, representing the transla-
tional inertia of the body;,

Mt,=/|3dm=m|3 (3.18)
14

The second blocl ;¢ contains the mass terms that couple the translational and
rotational inertia of the reference frame,

Mt9 Z/ I:F_'1|3 f2|3 f3|3] dm (319)
4

and its calculation requires the integration of the thremmonents of the deformed
local positiont. The integral of is by definition the static momernt, in the deformed
configuration, and it can be considered as divided into ataohand a variable part,

m:/Vde:/V(Fu—i-Xy) dm (3.20)

The integral of the undeformed positiap is already known, since it is the unde-
formed static moment,,. The second term represents the variation introduced by the
deformation, and it can be easily calculated by taking thelahamplitudes vector

y out of the integral, so that the remaining integral is naghut the integral of the
mode shapeS. The static moment is finally obtained as,

m = m, + Sy (3.21)

and its three components are the respective diagonals dfitbe3 x 3 blocks that
form theM ;49 submatrix,

Mt():I:I’I_/l1|3 I’I_/12|3 I’I_/l3|3:| (322)

In the center of the mass matrix the blddk, is found. It contains the rotational
inertia of the frame of reference, and it is itself formed lxyyendiagonaB x 3 blocks,

Mg =/ }722|3 Farsly | dm (3.23)
14 _
sym. il
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In this case, the terms to be integrated are the componerite afeformed planar
inertia tensoP,

P,'j :/ fl'fj dm, i,j = ],2,3 (324)
Vv

Eachi;#; product can be calculated by first decomposingndi; into their constant
and variable parts,

[ Fifj dm =[ (Fui + Xi¥) (Fuj + Xjy) dm, i, j =1,2,3 (3.25)
14 14
and then developing the product,

L(fuifuj —i—fuixjy—i—fujxiy—i-xiyxjy) dm, i,j= 1,2,3 (326)

Each}_’,-,- needs the evaluation of four integrals. The first one is thegimal ofi,; 7,
which is constant and is recognised as the elerjeat the undeformed planar inertia
tensor. The remaining three terms depend aly0so that they represent the variation
produced by deformation. Two of them are lineayinrand they includéS;? and S{
which are thej™ row of S’ and thei™ row of S/ respectively. The last term is equal
to the integral ofy"X[X;y, and it leads to a quadratic expressioryirFinally, each
eIementPij of the planar inertia tensor can be found to be

Py =(P)y + (S +8)y+y'sly, ij=123 (3.27)
and used to assemble the rotational inertia submatrix,

Piily  Pials  Prsls
Mgg = Pyl Pasls (3.28)
sym. P33|3

It is observed that, if only the constant termmg andP, are used for obtaining
these blocks, the resulting matrix is the mass matrix of teybconsidered as rigid
in its undeformed state.

Mass terms coupling the reference coordinates to the elastaordinates

The first four blocks of the last column, all of them of sken,,, represent the inertia
coupling between the reference and the elastic coordinates

The first one, which will only depend on the orientation but oo the deforma-
tion state, will couple the translational inertia to thestiiadeformation, and is easily
obtained by taking\ out of the integral,

M, = / AX dm = AS (3.29)
|4
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The second, third and fourth blocks couple the rotationdldeformation inertias:

ri1AX
M9f=/ 7 AX dm (3.30)
" 7 AX

These are the only terms which depend both on the orientatidion the deformation
state, and are the most involved of the mass matrix. If thetict matrixA is taken
out of the integral in each block, the remaining integraks thiose ofr; X. It can be
observed that these integrals are analogous to the inkajsesntegral§’, but, in this
case, the factors that multiply the mode shapes are the amnmof the deformed
local position, which may be namé’.g,

S, = / Xdm, i=12,3 (3.31)
14
In order to evaluate them, the local deformed position iodgmsed as usual:
/ FiXdm =[ (Fui + X;y) Xdm, i=1,2,3 (3.32)
V V

The first term of the integral is the inertia shape inte§aknd in order to obtain the
second, some manipulations are needed. First, the scaldngiiX;y can be trans-
posed, buy™ can not yet be taken out of the integral since the remaininngtXlTX

is not compatible. To avoid this probledd,can be divided into its three rows, yielding

yTX;rXI
/ XiyXdm = / Yy XIXdm = / y'XIX, | dm, i=1,2,3 (3.33)
14 v v YTXTX,
where the three inertia shape integrdls, S'? andS'’? are recognized, leading to
yTsl'l
=S +|y's?|, i=123 (3.34)
yTSl'3
TheMg, block of the mass matrix is finally obtained by rotating mfintegrals:
AS}
Mos = | AS2 (3.35)
AS}

Mass terms associated to the elastic coordinates

The lastz,, xn,, block of the mass matrix is constant, as it happened to the mesia
associated to the origin of the reference frameThe value of this block, according to
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Eq. (3.4), is equal tXTATAX. Since the vectors of the frame of reference andw
have been defined as unit orthogonal vectors, the rotatidrxais orthogonal, and
this makes the produét” A identically equal td ; independently on the orientation of
the frame, thus making this block constant. This block, aireinated the orientation
dependency, is nothing but the well-known modal mass maticely used in the
structural dynamics field and, as will be seen later, is thmeséor the method in
relative coordinates. It can be obtained as,

/ X™Xdm =S + 2 4 ¥ (3.36)
|4

3.3.2 Velocity dependent inertia forces

The velocity dependent inertia forces are obtained by mefhs|. (3.5), so that the
first step to be performed is thg matrix differentiation, a straightforward operation
if the structure of the local position components, shown in .16), is taken into
account,

B=[0 Xiyls Xa¥ls XaYls Ax] (3.37)

If the Bg product is evaluated, not forgetting thiais formed by the derivatives of the
unit vectordl, v andw as columns, it can be easily found that

BG = X yU + XoyV + X3yw + AXy = 2AXy (3.38)
It the derivative of the orientation matrix is expressedeimris of the angular velocity
w, it can be observed that this expression coincides with thréolls acceleration,

Bg = 2w x AF (3.39)

The different blocks of the velocity dependent forces veaefined according to the
partition shown in Eq. (3.12), can be obtained after evaigahe producB™B¢g and
performing the integration,

Qu =2 / AXy dm (3.40)
Vv
Ar X
Quo = —2 / ARX |ydm (3.41)
"1 AfsX
Quf = -2 / XTATAXY dm (3.42)
V

The forces associated to the reference coordinates aighstoaward if the inertia
shape integrals are already known. The first block inclubedritegral of the mode
shapes, so that it is immediately obtained by taking thetiostamatrix out of the
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integral
Q. = —2ASy (3.43)

The rotational forces require the integrals of the deforioed!| position components
times the mode shapes, which have been already calculated

As},
Qup=—2|AS |y (3.44)
AS},

The only problem left is calculating the integral XTATAX, needed to obtain the
Q. forces. In order to do this, firstly theTA product is studied,

u’ utu u'v uTw
ATA = |7 [u v v‘v] =|via viv viw (3.45)
w' wia w'v whw

This resulting matrix is skew—symmetric, sinke= @A and@ is skew—symmetric by
definition. If the wholeX TATAX product is rewritten, taking into account the skew—
symmetry ofATA and dividingX into its three rows,

0 utv uTw| [ X4
XTATAX = [x] x] X]]|-u™v 0 vw||X (3.46)
—u'w —vlw 0 X3

after developing this expression and integrating, theovalhg result forQ, s is ob-
tained:

Qup =—2 [UTV<312—321)+UTW(513—S31)~|—VTW<823—S32):|y (3.47)

The terms within parentheses are constant, so that theyecaalbulated in the pre-
processing stage and stored before starting the simulation

3.4 Implementation in relative coordinates

In the relative method, the velocity of a point of the solich ¢ee expressed, using the
intermediate Cartesian coordina#&sas,

F=5+wxr+Af =5—fw+ AXY (3.48)
which leads to the following expression of tBematrix,

Bz[l3 _F AX] (3.49)
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3.4.1 Mass matrix

The procedure to obtain the mass matrix of a flexible bodyresged in the interme-
diate coordinateZ, is essentially the same as that used in the absolute methed.
first step is to develop the integral Bf B,

l; —F AX
M =/ B'Bdm =/ —FF FAX | dm (3.50)
4 4 sym. XTX

There is a key difference between this expression of the mmdex and the ex-
pression obtained for the absolute method: the integrgeang here involve the
absolute position, as opposed to Eq. (3.17), where onlyab& deformed position
components appear in the integrals. In the relative metthedmass matrix contains
fewer terms than in the absolute one, but these terms arermaheore complicated
to calculate.

Mass terms associated to the reference coordinates

The 3 x 3 block corresponding t§, as it happened in the absolute method, contains
the translational inertia of the body, being a diagonal matntaining the total mass
of the body:

M,t:/|3dm:m|3 (351)
4

The terms coupling and contain the integral of-f, which is nothing but the
skew—symmetric matrix associated to the static momentefigformed body with
respect to the global origin of coordinates

M, = / —Fdm = —1n (3.52)
Vv

This integral can be easily derived from the static momerthefdeformed body in
local coordinatesn, which can be calculated by using Eq.(3.21), and then egptes
in global coordinates by rotation and translation,

m = mry + Am (3.53)

The integral of the terms related to rotation is the inedizsbr, expressed in global
coordinates, and calculated with respect to the globalrgrig

l\_/|99 = / —ffdm=1J (3.54)
14
If the Ff product is developed, the expressions obtained are veoyin, being much

easier to calculate the inertia tensor in local coordinatésrespect to the local origin,
then transforming it by means of the Steiner theorem andiootaFirst the inertia
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tensor is obtained from the planar inertia tensor describetie absolute method,
by using Eqg. (3.8), which is also applicable to the deformaafiguration. Then it is
translated to the center of mass by means of the Huygensularm

J9 = 3% + mrGrC (3.55)
The next step is rotating it in order to express it in globairdinates,

J9 = AJOAT (3.56)
and finally translating it again from the center of mass toglebal origin,

J =39 —mf%¢¢ (3.57)
The rotational inertia of the deformed body, with respedhtoglobal origin, results

Mg = A (30 4 m?G?G) AT — miCfC (3.58)

In short, in order to obtain the mass matrix terms corresipgio », the planar inertia
tensor in local coordinates, for the deformed configuratiod with respect to the
body local frame origin, must be calculated as describethioabsolute method, then
transformed into the inertia tensa?, and finally converted into the global inertia
tensor by applying Eq. (3.58).

By using the undeformed static momeny, and inertia tensod? instead of their
deformed counterparts, the mass matrix of the body in thefenched configuration,
is the result obtained for the reference blocks. Theretbeemass matrix of any rigid
body can be calculated by using these expressions.

Mass terms coupling the reference coordinates to the elastaoordinates

The block containing the inertia coupling the translatioritte elastic coordinates is
exactly the same as in the absolute method, and can be abt@ineetly by rotating
the inertia shape integr8l as shown in Eq. (3.29).

The coupling between the rotation and the elastic defoomasithe most compli-
cated term. If the rotation matriX is divided into its three row#, A, andAs, and
the product is developed, it can be found, after some maatipul, that,

A3}’2X —A2r3X
MGf :/ FAX dm = AirsX —Azr X | dm (359)
d A2r1X —A1}’2X

This means that the integrals ofX, X andr; X are needed. Analogously to what
has been done to the integrals of the components of the defblooal position times
the mode shapes, these integrals can be n8he®, andS} respectively, since they
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are the integrals of the components of the absolute pogitites the mode shapes.
sflzf r,»de=/ (roi + Aif)Xdm, i=1,2,3 (3.60)
|4 V

After developing this expression, the following expressior the three integrals can
be obtained,

3
/ rXdm=roS+ Y AyShdm, =123 (3.61)
14 N

j=1

which includes the variable integraﬁé, the same as those already needed for ob-
taining the planar inertia tensor by means of Eq. (3.34). ifkegral of fAX s, in
short, obtained by following two steps: first, tBg integrals are calculated by means
of Eqg. (3.61) using the already storsy integrals obtained from Eq. (3.34); then, the
results can be substituted into Eq. (3.59) to obtain the teasts coupling the rotation

to the elastic deformation:

A2 —A,S)
Mgr = | AiS} — A;S! (3.62)
A,SL - A S

Mass terms associated to the elastic coordinates
As happened to the translational inertia and the couplimgéxen translation and elas-
tic deformation, the mass associated to the elastic coamtebns the same as in the

absolute formulation, being again the constant modal madexralready shown in
Eq. (3.36).

3.4.2 \elocity dependent inertia forces

The velocity dependent inertia forces vector in the intatiaie Cartesian coordinate
systemQ, is obtained, as previously described, from

Q, =-— / B'BZ dm (3.63)
14

where, as seen in Chapter 2, the prodgiZtis equal to

BZ = @@r + 2AXy (3.64)
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After several manipulations, the following expressiongfie three sections @, can
be obtained:

Qur = /V (~Fw —2AXS/) dm (3.65)
Quo = /V (6FF0 — 2FAXY) dm (3.66)
Qur = fV [(FAX)Tw —2XTATAX§/:| dm (3.67)

The integral of the first section corresponds to the traiaslat forces. The first term
includes the integral of the skew—symmetric matrix as¢edi@o the absolute posi-
tion 7, which is equal to the skew—symmetric matrix associatetiecstatic moment.

The second term is directly obtained from the integral ofrtfealesS. Therefore, the

translational forces result

Qu = ®Mmw — 2ASy (3.68)

The second section are the rotational inertia forces, wiherdeformed inertia tensor
in absolute coordinates is recognised in the first term,

Qu = w02 [ rixdm)y (3.69)
14

and the second one is calculated as done for the integi@Xfin Eq. (3.59), but
usingA instead ofA:

A3 — A,S
/ FAX dm = | AS) — A8l (3.70)
4 AS! — A, S

The inertia forces of a rigid body can also be obtained froes¢hexpressions, as
happened to the mass matrix, if the constant undeformeid statment and inertia

tensor are used, and the terms coming from the modal ameéita eliminated. The
last section of, is related to the elastic coordinates,

B T
Qur = (/V FAX dm) w—2 (/V XTATAX dm) y (3.70)

and it can be directly calculated from the already used matesf FAX, and from that
of XTATAX, which is obtained, as in the absolute formulation, by me#is). (3.47).
3.5 Efficient calculation of the inertia shape integrals

The calculation of the inertia shape integrals might appeariori as a cumbersome
task, but it is actually much faster than the calculatiorhefdeformation modes them-
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selves. This is because the integrals are calculated by usti@rpolation functions,
which can be integrated independently of the nodal dispt@ces and rotations, there-
fore allowing for their calculation by means of simple maproducts.

The method for calculating the inertia shape integrals bamseof matrix prod-
ucts will be described for three—dimensional isoparammetrnode beam elements, al-
though it can be generalized for any other type of isoparaon@t non—isoparametric
finite elements. All the positions and displacements apipgdrere will be expressed
in the local frame of the body, since the interpolation ntasiof isoparametric el-
ements are invariant to rotation. In case structural elésnare used, the individual
orientation of each element within the model must be takemascount by applying
the corresponding transformations to the interpolatiotrices.

When isoparametric finite elements are used, the same itdéois applied to
geometry and elastic displacements. The position the elastic displacemenj of
any point within a beam elementan be therefore interpolated among its values at the
end nodes, represented by the nodal coordinates vgttmrthe nodal displacements
vectorq;, by means of the same interpolation matdXBathe, 1995),

F=Ng%  fr=Ng} (3.72)

The interpolation matriXN, according to the type of finite elements used, will depend
on one or more parameters or material coordinates. In thtecplar case of beam
elements, only one parametécan be used, corresponding to the position along the
undeformed neutral axis, meaning that the same interpaldtinctions are used for
position and displacement, in the y andz directions.

y ()

L=—1 (=0 (=1
Figure 3.1: Interpolation in a 2-node beam element.

In a general isoparametric beam element,phodes, any of the three components
of position or displacement can be calculated at any poianasterpolation among
its nodal values. The interpolation is performed by means, @fiterpolation functions
n;(£), such that each; evaluates to unity at nodeand to zero at all other nodes. For
the components of the position,

nn nn

RO =) ) 3O =) Fnm): 20 =Y Zn(0) (3.73)
i=1 i=1

i=1

In the case of a 2—-node beam element, if the parametrizaichasen so that the
parametef can take values between -1 (first node) and 1 (second nod&)pas for
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the y component in Figure 3.1, thg functions result,
1 1
ni(f) = 5(1 —10); na(f) = 5(1 +4) (3.74)

If the interpolation described by Eqgs.(3.73) and (3.74)dsdufor the position, pro-
vided thatg® is a vector containing the positions of nodes 1 and 2 of el¢ménhcan
be written,

ni 0 0 ny 0 0 Fe
Ff=]0 n, 0 0 ny O {F;} = Ng° (3.75)
0 0 ny 0 0 ny 2

leading to the following compact expression for the intémpon matrixN,
N = [n1I3 n2|3] (376)

which can be also used for interpolating elastic displacegme

Once the interpolation matrix is completely determinedait be used for integrat-
ing positions or displacements along the finite element.ifitegral of the positio
over the whole volume of an elemeVit is,

/ rdm =/ Ng® dm = N°q° (3.77)
e Ve

beingN¢ the integral of the interpolation matrix over the volumelw finite element.
Considering the density and the cross—sectional ardato be constant along the
element,

L,
NG =[V Ndm:pA/o [n1|3 n2I3] ds (3.78)

being ds the differential of length of arch, anfl, the length of the finite element,
measured along its neutral axis. This integral can be eteduay substitution, since
n1 andn, are functions of,

as
ds = —dt 3.79
S =37 (3.79)

where,

ds ax\>  [3p\* [09z\*

o - J (&) () + (&) 340
Substituting the components of the local positiony andz by their interpolations,
as shown in Eq.(3.73), and differentiating with respeat,tit is easily demonstrable
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that,

a 1 /- _ _ _ _ L
8_2: 5\/(X2—x1)2+(y2—y1)2+(22—21)2=Te (3.81)

The integral results, after the substitution,

L, L 1
,OA/ I:I’l1|3 n2|3] ds = ,OA—e/ [n1I3 1’12|3:| dl (382)
0 2 )

Evaluation of the integral, taking into account that theduct pA L, is the mass of
the elementy,, yields,

Ne = e [|3 |3] (3.83)
2
which means that the integral of the interpolation matriky@epends on the mass of
the element.
The same procedure can be employed to integrate the squtre pbsition, the
square of the displacement, or the product between theningtaince, the integral of
the position times the elastic displacement is,

/ Fiirdm = | q°"N'Ng§dm = g°"M°q} (3.84)
Ve Ve

where in this cashl¢, the integral oNTN, is the mass matrix of the finite element, and
it is easy to demonstrate, by following a similar procedorthtit used for integrating
N, that,

21 I
Me = e | < 3 (3.85)
6 |15 23
The integration of scalar magnitudes or products betweemthppears in sev-
eral inertia shape integrals, such as the product of one coemt of the undeformed

position times another component of the elastic displacéndese integrals can be
performed by usin§l¢ andM¢, the scalar versions of the previously defined integrals,

Mme

N‘jz/Ve {nl n2} dv:7{1 1} (3.86)

M¢ = /V {:;} {m nz} dv = % B j (3.87)

With these four matrices, the mass integral of any scalarestor magnitude and
products between them over the volume of an element can lzéneldtby simple
multiplication.

BothN¢ andM ¢ matrices and their scalar versions are defined for a singihaesit,
so that integrals over the full body can be obtained as thedauhe integrals over all
the finite elements. For example, the integralg of i ' over the total volumé’ of a
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body discretized inta, elements, are,

/ Fdm = N‘q / F'rdm =Y qTM°q’ (3.88)
4 e=1 4 e=1

If only one component is to be integrated, or the product af oomponent times
another, the scalar versions must be used. For one component

He
/ Frdm =Y Négf, i=1273 (3.89)
14

e=1

and for two components

He
/;/fifj dm =Y "q"MqS, i.j=1.2.3 (3.90)

e=1

where eaclyy andqj are2 x 1 vectors containing only theor j components of the
nodal coordinateg®.

The application of the described procedure for the calmnaif the inertia shape
integrals is very simple and efficient. First, the mass ofimile elements must be cal-
culated, which is easy since the density, the cross—settivaa and the undeformed
positions of the nodes are known. Then, any integral can teeraa as the sum of the
integrals over all the finite elements.

Each column ofis the integral of a mode shape, which is an elastic displaoém
The integrals of all modes can be performed simultaneousteghe interpolation
matrices, and consequently their integrals, are the sanmadlfihe modes. If a matrix
X¢ is defined for each finite elemeat containing the modal displacements for the
two nodes of elemer, it can be written,

S=/ Xdm = N¢X¢ 3.91
g > (3.91)

e=1

The integrals of the undeformed position times the mode eshapvolve products
of scalars and vectors, therefore they must be subdividedtiimee scalar by scalar
products in order to perform the integration:

Fui X1 S
g :/ FuiX dm :/ FuiXo | dm =[S, |, i=12]3 (3.92)
v Y FaiXs s,

Then each of the three rows can be integrated by usinlylthmatrices,

He
S =) guMIXs, i j =123 (3.93)
e=1
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The integrals of products between directions of the modesiso performed in the
same way,

Ne
S/ =) XTMXE, i j=1.2.3 (3.94)
e=1
Even the rigid body integrals such as the planar inertiaoteren be obtained by using
this method, although their values are generally alreadwkn
These sums can be calculated directly or by assembling ttricesaby following
the standard finite element procedure. As an example, iialitass matricdgl ¢ are
assembled into 8* matrix, and aX* matrix is also created containing the modal
displacements at all finite element nodes, Eq. (3.91) canrlieewas,

S=M*X* (3.95)

A similar procedure of assembly can be used for all the iategr

3.6 Numerical example

The lltis vehicle (Frik et al., 1993), the third example usethe previous chapter, is
used also here as the base system for the tests. In this ttake,l® possible flexible
bodies are included, and instead of using a fixed mesh sigdletkible elements are
discretized into a variable numbey of finite elements per bar. The A—arm, as previ-
ously pointed out, is modeled as two bars, coincident at thedonnection, and one
additional element for the damper attachment, so that i2hast 1 finite elements.
This makes a total, for the 12 flexible bodies, 16f:, + 4 finite elements, and 64
modes.

In the test, the lltis performs the same maneuver describtitkiprevious chapter.
The simulation is carried out by using both the absolute hadelative formulations,
either with the projection method or the inertia shape irglsgpreprocessing, with a
time—step of 10 ms, and with four different finite elementdiizations (5, 10, 50
and 100 elements per bar). The full model in absolute coatd#) as pointed out in
the previous chapter, has 304 variables, whereas the modshtive coordinates has
a total of 98 variables.

The method used for calculating the inertia terms does raattjpally affect the
results obtained from the simulations. As can be seen ireTail and Figure 3.2, the
preprocessing (P) makes the CPU-time completely invawéhtrespect to the finite
element mesh size. Both the absolute and the relative fationk benefit from this
improvement, especially in the case of large finite elemerdets, where the B matrix
projection (B) takes a significantly larger amount of time.
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Table 3.1: CPU—times for different finite element mesh sizes
N° elements:, 5 10 50 100

Absolute, B 419 4.48 7.58 1259
Absolute, P 385 3.85 385 3.85

Relative, B 1.11 148 432 821
Relative, P 0.79 0.79 0.79 0.79
Absolute coordinates Relative coordinates
12 ] [ 1Projection
10 [ Preprocessing

CPU-time (s)
N

4
2 ﬂ
5 10 50 100

Elements per bar Elements per bar

Bﬂﬂ 1
5 10 50

100

Figure 3.2: CPU-time vs. number of finite elements

3.7 Conclusions and criteria of use

From the obtained results, it can be said that the inertipesitategrals preprocess-
ing very significantly improves the performance in all cas&ben very large finite
element models are used, the projection method can becopnaatical, whereas the
preprocessing one keeps the CPU—-time dependent only onnfigan of modes. Apart
from the higher difficulty of implementation, the only draadk of the method could
be the preprocessing time but, in practice, it is negligibpecially if compared to
the calculation of the mode shapes by solving the finite eteérsgstem, since all the
integrals can be obtained by direct matrix multiplicatibnthe present work, the pre-
processing has been done in MATLAB, and it takes less thah$)f0r an A—arm with
100 elements per bar (i.e. 201 elements).

The projection method, on the other hand, is much easier péeiment, and the
only input data it needs from finite element software are tlassrand mode shapes
matrices, along with the undeformed local positions of tbdes. This might make
it more convenient for certain applications where the impatation time is more
relevant, as long as the size of the finite element modelsti®ndarge.

In what respects the comparison between the formulatioabsolute and relative
coordinates, the latter seems to improve the advantage ugieg the preprocessing
method, despite of its more involved inertia terms. It aghéea CPU-time around
5 times faster than the formulation in absolute coordinatdsereas in the case of
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projection with ten elements, as used in the previous chapeeratio is about 3. It is

also observed that the improvement with respect to the peegsing method is always
more noticeable in the case of the formulation in relativerdmates; for instance, in
the case of 100 elements per bar, the simulation in absobatelimates is three times
faster when using preprocessing, whereas in relative auates it becomes up to ten
times faster.






Chapter 4

Geometric Stiffening

4.1 Introduction

All the methods addressed so far allow for simulating flexiplultibody systems in a
very efficient way. However, the use of component mode swmhe reduce the size
of the finite element models, due to the linearization of tlaste forces, limits their
use to applications where the elastic deformations renmaallsin order to accurately
simulate systems with larger deformations, a possibletisolicould be the use of
fully nonlinear methods, such as the absolute formulat@mnsonlinear finite element
analysis, but none of these techniques is suitable fortig@-simulation due to their
elevated CPU cost.

In specific applications, involving beams under high rotaai speeds, such as
helicopter rotor or turbine blades, a stiffening effect eqs due to the geometrical
nonlinearity. This effect has been studied by many autHikes,Kane et al. (1987),
Mayo et al. (1995, 2004), Sharf (1996), Valembois et al. {}98ahariev (2000, 2002)
or Shi et al. (2001). Helicopter rotor blades, a typical eglemare bent by their own
weight, but the rotation speed makes them rise toward thizdrgal position, due
to centrifugal forces, as if the bending stiffness is insieg. In a linear model, this
effect is not captured due to the absence of coupling betaseh and transversal
deformation, which implies that rotational speed has neatfhn bending, but only on
the radial displacement.

There exist several techniques aiming for including thieatfin beams, without
resorting to fully nonlinear methods, thus allowing forexding the range of usability
of the FFR formulations. The most general of these techsiga¢he substructuring
method (Wu and Haug, 1988), which consists of dividing thenbénto small pieces,
being each of them a flexible body with its own frame of refeezand mode shapes.
Each substructure is clamped to the adjacent ones by medins sb—calledracket
joints, sharing the points and frames of reference, thus makindguthset behave
as a whole beam. The main drawback of this method is the langger of coor-
dinates needed, although this problem is reduced by uslativeecoordinates (Kim
and Haug, 1988); moreover, when this technique is used,uthwar of deformation

107
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modes required per substructure remains small, sincelivi®os that the higher fre-
guency modes become unnecessary as long as the length dofitiend decreases.

Other less general methods are based on introducing naritipéto the elastic
forces or into the modeling of the flexible body. In this clepthe implementation
of two of these techniques is addressed, along with sultating in relative coordi-
nates, and the results are compared to reference solutiteiged with fully nonlinear
methods, such as the ANCF or the finite element method (FEM).

4.2 Substructuring

The substructuring technique allows for introducing nogdir effects into FFR formu-
lations in a completely general way, requiring no modifizasi to the original formu-
lation. As can be seen in Figure 4.1, the beam is divided iewersl elements, which
are interconnected by means of bracket joints, in such a hatythe output frame
of each element coincides with the input frame of the next trtke formulation in
natural coordinates is used, this means that the point anithtbe unit vectors defined
at each bracket joint are shared between the two adjacemshdd relative coordi-
nates, the only relative coordinates appearing at a brgoketare the static modal
amplitudes.

V3

u;
Figure 4.1: Beam divided into three substructures.

Since the substructures have a short length, they are ntbbgleising a small
number of deformation modes. If substructures are modedetju,, modes, the use
of natural coordinates implies that each additional sulottire introduces?2 + n,,
extra variables, along with 12 algebraic constraints, wagiin relative coordinates
only n,,, variables are added; for this reason, only substructunimglative coordinates
is considered here.

4.3 Nonlinear stiffness matrix

The case of a planar flexible beam in natural coordinates etdescribed for the
sake of simplicity. In the case of a two dimensional beamflteging frame of refer-
ence is described by a point and two vecto@ndv, making a total of six reference
coordinates. The position of an arbitrary point of the beamains, as in the three
dimensional case

r=ro+A(fu+T7y) (4.1)



4.3 Nonlinear stiffness matrix 109

wherer is the position of the local frame origi the rotation matrix defined now
by the two orthogonal local unit vectowsandyv, r,, the undeformed position in local
coordinates, andy the local elastic displacement (see Figure 4.2).

X

Figure 4.2: Deformed 2D beam.

The elastic displacements fiefg (x, y) of an Euler—Bernoulli beam takes the
following vector form (Sharf, 1996):

() = {“} _ {”° > ”3} 4.2)

whereu, andv, are the axial and transversal displacements of the neutigland
the apostrophe indicates differentiation with respedt#octcoordinate. The nonlinear
strain—displacement relationshipxndirection can be expressed as,

1 1
Exx = Ll/ + 5 (u/z + U/z) = u/ + EU/Z (43)

where the terma’? is dropped since it is much smaller thah The elastic potential of
the beam, after applying the stress—strain relation, is,

1
U= -/ Ee dV (4.4)
2 )y
whereE is the Young modulus an¥l is the volume of the beam. Introduction of the
displacement field described by Eq. (4.2) in the strainHdtgment relation, yields

the deformation energy of the beam in terms of the deformagesbf the neutral axis
(Sharf, 1996),

1 (L ) 1 (L 5
U=—/ E Auy dx+—/ Elvy” dx
2 Jo 2 Jo

1 . Linear formullatim; (4.5)
+ 5/0 EAuE)v(’)2 dx + g/o EAv(’)4 dx

First nonlinear Second nonlinear
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with A4 the cross—sectional area ahdhe second moment of area with respect to the
neutral axis. Different levels of approximation can be aebd depending on which
terms of Eq. (4.5) are kept: they are discussed in the foligwgubsections.

4.3.1 Linear formulation

The linear formulation includes only the first two terms of E45) in the elastic po-
tential, neglecting the higher order ones. Introducingfihiée element discretization
into the equation and integrating the interpolation fumtsi, the following expression
can be obtained for the elastic potential in terms of thedfiaiement coordinates,

1 *
U =aiKias (4.6)

Here K7 is the linear stiffness matrix, which is constant, @pds a vector containing
the nodal displacements of the whole beam. This potentrabeaprojected into the
modal base by using matri,

1 . 1
U = EyTxTKLXy = 5yTKLy 4.7)

By differentiation of the elastic potential, an expressionthe elastic forces is
obtained,

AU\ "
F, = — =K 4.8
! ( ay) Ly (4.8)

which is a linear relationship between the forces and thearaahplitudes.

A closer look to the elastic potential expression used is thimulation, consti-
tuted by the first two terms of Eq. (4.5), reveals the causesahability to capture
the geometric stiffening effect: axial and transversapldisements separately con-
tribute to the deformation energy. Only transversal foma@sproduce transversal dis-
placements, therefore the axial forces introduced by ttaiom have no effect on the
deflection.

4.3.2 First nonlinear formulation

When the third term of Eq. (4.5) is considered too, the cogphatween axial and
transversal deformation is introduced through the imlegfaugv(’)z. This enables
to capture the geometric stiffening effect, since it coaplee longitudinal and the
transversal displacements, but at the cost of a non—cdrstifiness matrix.

The same steps as in the linear formulation must be carrietbabtain the elas-
tic potential: theuy andv, derivatives are substituted by their finite element interpo
lations, and the integrals are evaluated; then, writing mniatrix form (Mayo et al.,
1995, 2004),

1
U= Eq} (K; +Kg)ar (4.9)
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The geometric stiffness matrikg; is variable, and must be calculated at every time—
step. In case that the axial displacemeghas a linear distribution, the strain is con-
stant along the whole beam, aKg; can be expressed as the product of a scalar vari-
able times a constant matrix. But in any other case, this g applicable to each
finite element, and the matrix must be assembled at every-§tep, which is rather
inefficient.

It is better to express, anduv, in terms of the mode shapes and then carry out
the spatial integration. First, the neutral axis displagets are approximated by the
modal superposition,

ns nd
uo(x) =Y ¢l(mi + Y ¥ ()

o i (4.10)
vo(x) = D df (i + Y Y (0§
i=1 Jj=1

where the superindicdsand: indicate longitudinal or transversal component, respec-
tively. These approximated displacements are then usealdalate the integral. The
analytical functions of the mode shapes are usually knowa fieam and, therefore,
they can be directly integrated. In the case that the modefrdte element displace-
ment vectors, the integrals must be calculated by usingrttezgolation functions.
The geometric stiffness matrix, already projected intortteelal subspace, takes the
following linear combination form, with the modal amplitesias coefficients,

ns nd

Kg ZZU,'K(;,'-FZS]'KG]' (4.112)
i=1 j=1

where all theK g; andK ¢; matrices are constant, and have the form,

t

1

L 1t
Kg,-=/0 EAg) 4" {;f P G VI w;;d} dx  (4.12)
1

It
1'0nd

with wjf’ instead of(pl(’ for Kg;. These matrices are non—zero for madw j only if
the mode is longitudinal, so that there is one matrix for eadhl mode. According to
this, in order to obtain a nonzekoz matrix, this method needs to incorporate at least
one axial mode.

Differentiation of the elastic potential with respecttmeglecting the term which
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contains the derivative df ¢, yields the elastic forces vector,

.
Fer = — (%—g) =— (KL +Kg)y (4.13)

The modifications with respect to the linear formulation emi@imal. All the in-
tegrals of Eq. (4.12) must be calculated in a preprocessagesthus obtaining one
constant matrix for each axial mode. Since the stiffnessirmiatno longer constant,
it must be calculated at every integrator iteration by agdire variablek ¢, obtained
from Eq. (4.11), to the linear stiffness matkx. .

4.3.3 Second nonlinear formulation

In this formulation, the four terms of the elastic energy i E4.5) are considered,
being the most suitable for severe deformation conditiartislbgically, at the cost of
a higher computational effort.

1
U = Eq} (K7 +Kg +K5)ar (4.14)

The inclusion of the higher order term adds a second—orddinaar matrixK x,, and
the elastic forces are obtained by differentiation,

AU \'

For = — (W) =— (K] +K& +Kj)ar + Qg (4.15)
f

where all the terms depending on the derivatives of the blrka matrices are grouped

into the generalized nonlinear forces ved@yr. The main problem of this formulation

is that it needs a high number of axial modes to obtain aceuestults (Mayo et al.,

1995, 2004), making its use inefficient.

4.4 Foreshortening formulation

The axial shortening of a beam due to its deflection is knowfoi@shortening (Fig-
ure 4.3). This effect cannot be captured by using the lineérst nonlinear formula-

Figure 4.3: Foreshortening produced by deflection.

tions. The explicit inclusion of the foreshortening effacthe model leads to a simpler



4.4 Foreshortening formulation 113

and more efficient method (Mayo et al., 1995, 2004), and pes/the same level of
accuracy as the second nonlinear formulation.

4.4.1 Calculation of the foreshortening

The longitudinal displacement of any point of the neutrasaan be divided into the
axial deformation produced by the actual axial foreesnd the shortening produced
by the deflection:,,

ug =8 + ugsg (4.16)

The foreshortening of a curve infinitesima&l can be obtained, as shown in Figure 4.4,
from the projection of/s — dx into the undeformed neutral axis,

dx

Figure 4.4: Foreshortening of a curve infinitesimal.

dfs = (ds — dx) cosa = (l—d—x) dx = 1—; dx (4.17)

ds /1+U62

This expression can be simplified for small valuespfby developing it into a Taylor
series up to the second order,

1
dfs ~ Evgzdx (4.18)

The total shortening accumulated from a reference peojntwhich has zero axial
displacement, is then obtained by integration,

1 X
Uupg(x) = _5/ vy? dx (4.19)
X

0

Substituting the longitudinal displacement of Eq. (4.X8piEq. (4.5), yields the fol-
lowing expression for the elastic potential,

1 (L 1 (L )
U= —/ EAs”? dx + —/ Elvy” dx (4.20)
2 Jo 2 Jo



114 Geometric Stiffening

It is observed that the elastic energy has the same form dmilinear formulation,
although the meaning is different. The stiffness matrixhis same as the one used
for the linear cas& 1, and so happens with the elastic forces. Therefore, tHerstif
ing effect does not appear now in the elastic forces: it isdigted to the inertia and
constraint forces, since the foreshortening is introdwatddnematic level.

Using the finite element method to discretize the beam witth2Bm elements,
the neutral axis displacement within a finite eleme,rﬂj‘;o, can be interpolated from
its nodal displacementq;, by means of the interpolation matrikl, which can be
split into longitudinal and transversal interpolation swiricesN; andN,,

_ Uo N,
e, = = Ng% = ° 4.21

whereuy andvg are the local components bﬁo. In order to calculate the total fore-
shortening on a finite element, the nodal displacement neustddified so that,

—e Uo Nl e u;
Fe, = = + s 4.22

whereu}s is the foreshortening produced in that finite element by\ita deflection,
and can be calculated by applying Eq. (4.19) over the whaligtleof the element,
L¢. Substitutingy by its interpolation,

1 (L T 1
uj, =—5 \ a7"N; N;qf dx = —2qiTH j (4.23)
The shortening suffered by one element is then a quadratatiin of the nodal coor-
dinates, wherél¢ is a constant matrix depending only on the transversalgotation
functions and the length of the element, defined as

Le
He = / N, TN, dx (4.24)
0

The total shortening accumulated by the finite elementgéachetween the ref-
erence node (with zero axial displacement) and the finiteefer, itself included, is
the sum of all the element—level shortenings, as shown iargig.5.

1 2 n X
- ® o o >

Figure 4.5: Accumulated foreshortening at element
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1 n
uj == ) dj Haj (4.25)
e=1

This expression can be written in matrix form for each elemassembled for all the
finite element coordinates of the beam, and then projectedtie modal subspace,

1 1 1
uj = —qrHGAr = =2y XTHEXy = —y'G"y (4.26)
If analytical functions are available for the mode shaplkss¢éG” matrices can be
directly calculated by using the second expression of E@0j4o evaluate Eq. (4.19),

1t
1

t

Ln
an/o o ler gy e ) d (4.27)
1

1t
1'//n d

whereL" is the length of the beam from the reference point to the enle fivode’)
of finite element:. If the modes are finite element displacement vectors, tiegtials
must be calculated by using the interpolation functions.

4.4.2 Inertiaterms

In the previous chapter, the use of inertia shape integsaeronstrated to be the most
efficient way to calculate the inertia terms, especially wttee finite element models
are very large. However, the shape integrals are no longestant if foreshortening is
considered, making the method much more involved. Moreavéihe case of beams,
the finite element models are usually small, in such a waytliegbrojection method is
efficient enough to achieve real-time performance. Foethegsons, the inertia terms
are here calculated by using tB& matrix projection method. The foreshortening is
introduced at the calculation of tH&* matrix and theB*¢ or B*Z vector, which are
later used to obtain the mass matrix and the inertia forcetoras described in the
second chapter, by using Eqg. (2.80) and Eq. (2.81).

The expression previously obtained for the accumulatessfortening at a finite
element: can be used to obtain the elastic displacement of its end hode

=i i uns i uns i 1 f1 Trn
rf0=qf+{g}=Xy~l—{g}=Xy—§{0}yGy (4.28)

which can be rewritten in terms of a new variah(l}és matrix, which depends linearly
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on the modal amplitudeg

. 1|1 » .

Xy = X' — 3 {0} y'G" = Tj =Xy (4.29)
Substituting the elastic displacement given by this exgoesinto Eq. (4.1) yields the
new nodal velocity

F* = Fo 4+ A (r; n X}sy) +A (x}sy n X;Sy) (4.30)

The term within the last parentheses can be found to be, ifyh@ametry of theG”
matrices is taken into account,

. .. . 1 _ .
XfoY + Xy = (X’ - { 0} yTG") y =X}y (4.31)

This result finally enables to define thé matrix of a node for the foreshortening
formulation, either in natural coordinates:

B =[l, Al Hl AX] (4.32)
or in relative coordinates:
Bi:[|2 _yi AX}S] (4.33)

where two differences with respect to the original matreesfound. Firstly, the axial
component of the local positio‘t{i is modified by the foreshortening, thus affecting the
global positionr?. Secondly, the mode shapes matrix in the last block is a neadifi
version ofX, given by Eq. (4.31).

The calculation of the centrifugal and Coriolis forces weds straightforward. In
natural coordinates, tH& ¢ product is evaluated at all the nodes and assembled,

B'q = 2 (AX), +AX},)y (4.34)
and if relative coordinates are chosen, the calculatid® @fis completely analogous
B'Z = wx (0xr') +2 (A)‘(}s + AX}S) y (4.35)

These changes affect the mass matrix, the velocity—depéntsrtia forces, and
the applied forces as well, since they depend in turn orBtieatrix at the point of
application. Moreover, those constraints involving nodedergoing foreshortening
must also be modified, since transversal modes affect thra lagth. Therefore, the
geometric stiffening effect is considered now through tiaeand constraint forces,
instead of through the elastic forces, as happened in theafi second nonlinear
formulations. If relative coordinates are used, it mustdiesh into account the fact
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that the bending modes introduce an axial displacementhndiffects the kinematic
relations at the joints, and also in the Jacobian of the caimé$ vector, if any cut joint
is placed at a point including foreshortening.

4.5 Examples and results

The example system is a typical case of geometric stiffersituglied by many authors,
such as Kane et al. (1987), Mayo et al. (1995, 2004), Sha&}l9/alembois et al.
(1997), Zahariev (2000, 2002), or Shi et al. (2001): a beamed at one of its ends,
as shown in Figure 4.6, which rotates an arfle about the origin,

ws [ 1? Ty \? 2wt
7 \3 15, ) |cosl 7 ) - 1 0=1<T;

0(r) = s - d s (4.36)
wq (t — Ts) T, <t

The characteristics of the beam are the following: lerigti0 m, cross—sectional area
A=4-10"* m?, second moments of arda,=2-10~7 m*, densityp=3000 Kg/ni and
Young modulusE=7 - 10'% N/m?.

w (1)

0 (1)

X

Figure 4.6: Spin—up beam.

45.1 Two—-dimensional case

In all the cited previous works, this example is treated ab @blem, studying the
behavior of the beam in they plane in absence of gravity acceleration. By using the
first nonlinear and foreshortening formulations, both efnthin either absolute or rel-
ative coordinates, the in—plane tip deflection is obtaired/t=15 s andw;=6 rad/s.
The beam is discretized into ten finite elements, approxigahe elastic displace-
ments by using two transversal modes, one static and ambghamic, defined in the
local xy plane. The results are compared to a reference solutionlatdd by means
of the ANCF, a fully nonlinear formulation that automatigataptures the geometric
stiffening effect. In order to obtain the reference solutithe beam is discretized into
15 elements, using the ANCF-based 2D beam element devebyp®dhar and Sha-
bana (2001). Since the tip deflections obtained are neaglgdime regardless of the
type of coordinates used, only the plots for absolute coatds will be shown here.
The results obtained for the linear formulation reveal thatexpected, it cannot
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account for the geometric stiffening effect. As can be seefigure 4.7, the tip de-
flection becomes too large, crashing the simulation befsrerid.

Tip deflection (m)

ANCF|
—— Linear
0 2 4 6 8 10 12 14 16 18 20

Time (s)

Figure 4.7: Linear formulation vs. ANCF in the first example.

The first nonlinear formulation needs to include at least axial mode, as the
geometric stiffness matrix depends on the axial deformatiothe example, the axial
displacement, caused by centrifugal forces, has a nomlulis&tibution, so that the
first dynamic axial mode is required to achieve reasonalueracy. Figure 4.8 shows
that using only one linear static mode (FNL1 curve) yieldaageptable results, in-
creasing the stiffness excessively. Therefore, two axiadies are at least needed to
correctly simulate the motion of the beam (FNL2 curve). A enefficient and accu-

Tip deflection (m)
S
W

-0.5 ANCEF |
----FNL1
——FNL2
-0.6 i i i i i i i T T
60 2 4 6 & 10 12 14 16 18 20

Time (s)
Figure 4.8: First nonlinear formulation vs. ANCF in the fiesample.

rate, although less general alternative to the use of a etatibn of static and dynamic
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axial modes, would be the use of a singlzeleration modeThe idea is to introduce
a deformation mode specifically designed for fitting the bdisplacement field pro-
duced by a variable centrifugal acceleration, such as toaiyzed by rotation.

The foreshortening formulation (FS curve in Figure 4.9)iewbs the best results,
despite the absence of axial modes. The quality of the @timel becomes more ob-
vious at the steady-state stage, where the first nonlineaaufation shows a higher
oscillation amplitude.

-0.1¢

Tip deflection (m)
S
(%]

-0.5 1
ANCF
——FS
-0.6 : : : : . : . : :
2 4 6 8 10 12 14 16 18 20
Time (s)

Figure 4.9: Foreshortening formulation vs. ANCF in the facsample.

Table 4.1 shows the CPU-times for all the simulations, ruth Wie same inte-
grator and parameters, with a time—step of 0.01 s. The mafersolution takes more
than one hour to be computed, but this should not be taken afegence for the
performance of the ANCF, since the used formulation is onthefearliest ANCF
developments and, moreover, it has been implemented in MBI LThe FFR for-
mulations are sorted according to their accuracy, fromahest to the highest: first
nonlinear with one axial mode (FNLZ1), first nonlinear withotaxial modes (FNL2),
and foreshortening (FSO0). For a fixed humber of modes, theskartening method
is slower than the first nonlinear formulation, since it teakates the mode shapes
at every iteration; however, in order to achieve a similauagacy, the first nonlinear
formulation needs two additional axial modes, making i leSicient in practice than
the foreshortening formulation.

Table 4.1: CPU-times (s) in the 2D spin—up beam.
Formulation FNL1 FNL2 FSO

Absolute 0.266 0.297 0.266
Relative 0.094 0.125 0.094

Moreover, it is observed that the performance is greatlyeiased when using
relative coordinates. According to the results obtainethénsecond chapter, the use
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of relative coordinates should not be advantageous in ssafadl system, but in this
particular case it is, due to the extremely simple topol&iyce the system consists of
only one body with one relative coordinate, the forward fosiand velocity analyses
are trivial, and the same happens to the backward accuwmnilatiforces and inertias,
so that the reduction of the number of variables is complaédden advantage of.

45.2 Three—dimensional case

In this example, a gravity acceleration of 9.81 rifs the negative direction of the
axis is added to the previously studied case, leading toegtalimensional problem.
The beam is simulated by using substructuring in relatirdioates, along with the
same four methods compared in the two—dimensional caddslexample, a commer-
cial nonlinear finite element code (COSMOS/M) is used foraobihg the reference
solution. The reference model is discretized into 20 elémemd the numerical in-
tegration is carried out by using, as well as in the FFR foatiohs, the trapezoidal
rule with a time—step of 10 ms. In order to obtain a numeriedli® for the error, the
position of the beam tip (in the local frame) is compared wfitat of the reference
solution. For thex direction,

R

D |xi = xf| (4.37)

i=0

Ax =

ng + 1

wherex; andx; are the calculated and reference values respectivelyp amlthe
number of time—steps. The same is doneyf@ndz directions. In all the simulations,
the beam is let reach its equilibrium position prior to staythe spin—up maneuver.

Substructuring

In the substructuring model, each one of theubstructures is discretized into two fi-
nite elements, being their elastic deformation approx@udty four transversal bend-
ing modes. The first — 1 substructures use the static modes defined by unit displace-
ments along the local and z directions, along with unit rotations about the same
axes, whereas the last substructure, since it has a freasemhdeled by using the
first four free—end dynamic modes.

The displacements of the tip of the beam in the localy andz directions are
shown in Figures 4.10 and 4.11, for three, five and ten sutisties. In this example,
due to the large deflections, the use of the infinitesimaltimtanatrices defined in
Eq. (2.12) for the rotation static modes introduces a sicguifi error in the solution,
especially in the axial direction. If three consecutivéhogonal rotations are used, as
suggested by Kim and Haug (1988), the accuracy is significanproved, although
this is not fully consistent with the definition of the defation modes, since the ro-
tations are defined about the undeformed axes. The CPU-éintesiean errors with
respect to the reference solution, obtained by using 3, antiR0 substructures, are
shown in Table 4.2. The last column (20b) shows the resulisimdd if infinitesimal
rotation matrices are used. The finite element model takeset®nds with 20 ele-
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Figure 4.10: Substructuring vs. FEM in the second example (

ments, although it can be lowered to 14 seconds if only 10 @tésrare used, with no
significant loss of accuracy.

Table 4.2: 3D spin—up beam results (substructuring).

Substructures 3 5 10 20 20b

CPU-time(s) 0.375 0.609 1.312 4.578 4.562
Ax (mm) 3.734 1337 0.502 0.320 3.061
Ay (mm) 47.681 13.128 3.193 1.481 1.757
Az (mm) 38.458 11.682 2.329 0.742 0.920

First nonlinear formulation

The FNL formulation does not need any modification for beirtgreded to the 3D
case. This formulation, whose results are shown in Figuré2 dnd 4.13, does not
obtain acceptable results for the axial displacement, ritemiaow many axial modes
are introduced, since the large deflection makes the foresting effect much more
relevant than the actual beam shortening. At the equilibrosition, there is a tip
displacement of more than 6 cm in thelirection, which is not captured, and the error
at the steady—state stage is about 3.5 mm with respect tefirence. It is observed
that the use of free—end dynamic modes leads to better sebalh the combination
of a static and a fixed—interface dynamic mode used in thecfkatple. This makes
sense because in this particular case the beam has a fremehdt this combination
of modes represents better the actual reference condafdhe beam. However, two
axial modes are still needed to reach a good accuracy im thieection. The CPU-
times and mean errors obtained when using the first nonliioeaaulation with both
absolute and relative coordinates are shown in Table 4.3.
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Figure 4.11: Substructuring vs. FEM in the second examplendz).

Table 4.3: 3D spin—up beam results (first nonlinear fornoutét

Absolute Relative
FNL1 FNL2 FNL1 FNL2

CPU-time(s) 0.271 0.286 0.105 0.125

Formulation

Ax (mm) 27.943 27.946 27.944 27.947
Ay (mm) 11.046 5.937 10.313 5.576
Az (mm) 7.709 3.844 7502  3.907

Foreshortening formulation

The extension of the FS formulation to the three—dimensicase is straightforward,
since the effects iry andz directions can be considered independent. The foreshort-
ening can be obtained from the following expression, whegds the neutral axis
displacement in the direction (Shi et al., 2001; Valembois et al., 1997),

1 X
ups(x) = —5/ (v’02 + w(’f) dx (4.38)
x0

In the case of the foreshortening method, as can be seen imeSig.14 and 4.15,
the precision in ther direction is significantly improved. In the vertical dirgwt, the
results are approximately the same obtained with the FNtditation, despite using
fewer deformation modes.

In Table 4.4 the CPU—times and deviations from the referentigion are shown
for the foreshortening formulation. The results for non&Q@}; one (FS1), and two
(FS2) axial modes are included, in order to compare the effoyi to that of the first
nonlinear formulation, although the plotted results cgpand to the model with no
axial modes. As it happened in the two—dimensional caseFRie formulation is
faster for the same number of modes, but when the efficiermyngpared for a similar
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Figure 4.12: First nonlinear formulation vs. FEM in the set@xample {).

level of accuracy iry andz directions, the FS method is slightly faster (i.e. FNL2 vs.
FSO0).

Table 4.4: 3D spin—up beam results (foreshortening fortiara

Absolute Relative
FSO FS1 FS2 FSO FS1 FS2

CPU-time (s) 0.250 0.292 0.328 0.105 0.125 0.125

Formulation

Ax (mm) 0.503 0.360 0.363 0.496 0.363 0.366
Ay (mm) 3.128 3.116 3.116 3.152 3.149 3.149
Az (mm) 4780 4.786 4.786 4.811 4.818 4.818

4.6 Conclusions and criteria of use

In the present chapter, several methods for capturing thegeic stiffening effect in
FFR formulations have been successfully implemented ampaced. As the results
obtained for the Kane’s beam demonstrate, the FFR fornoulatith linearized elastic
forces cannot capture this effect, at least if the beam isateddas one single flexible
body. If the beam is divided into smaller substructureseffext is accurately captured
and, if relative coordinates are used, the performanceris geod if compared to
ANCEF or nonlinear FEM.

Among the methods that introduce modifications to the foatiaih, the first non-
linear formulation is the easiest to implement, obtainiagngood results in a fraction
of the time required when using substructures. Howevergsgnts some problems,
since only one axial mode is not sufficient to obtain accuraselts, and the use of
axial modes of high natural frequencies hinders the intemrarocess. Moreover, if
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Figure 4.13: First nonlinear formulation vs. FEM in the set@xample £ andz).

the deflections are large enough, this method fails alsodorately measure the axial
displacements.

Finally, the foreshortening formulation has proven to haetter accuracy and
efficiency than the first nonlinear formulation, and almd&t $ame accuracy as sub-
structuring. It does not require axial modes for obtainingdjresults for the transver-
sal deflections and, in case that axial stresses are needgitudinal modes can be
added without problems. For the same number of modes, igistlsi slower since it
involves more operations, but if the efficiency/accuradipria considered, it is always
advantageous to include the foreshortening in the kinemadideling.

The use of relative coordinates dramatically improves ffieiency in the exam-
ples here addressed, despite being small systems. On thendgethere is only one
relative reference coordinate, namely the rotated anghereas the formulation in
natural coordinates requires 12 additional variables fodeting the frame of refer-
ence. On the other hand, the time—consuming forward loopdetefor calculating the
positions and velocities, along with the backward prog@tif the mass matrix and
the inertia forces vector, are completely trivial in thisea
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Figure 4.14: Foreshortening formulation vs. FEM in the selbexample £).
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Figure 4.15: Foreshortening formulation vs. FEM in the sglcexample £ andz).






Chapter 5

Conclusions and Future
Research

5.1 Conclusions

All the different methods presented in this thesis are aimedchieving real-time
performance in the simulation of flexible multibody systerbe results obtained,
including a full car simulated ten times faster than reateti show that the objectives
have been successfully achieved.

The main conclusions that can be extracted from this thesitha following:

e A new semi-recursiv® (n3) formulation in dependent relative coordinates for
flexible multibody dynamics has been successfully impleieg:nThe method
has been used for the simulation of three different systématyding a full
model of a car with twelve flexible elements, and comparecims of effi-
ciency and robustness to a method in natural coordinateshwlses the same
flexible body modeling. All the tested systems are closeaj>-tnechanisms, and
two of them are three—dimensional problems performingevibmaneuvers that
are integrated without problems, even with very large tisteps, which demon-
strates the robustness of the formulation.

e The method in relative coordinates, as it happens in the iigse, presents
a higher efficiency than its counterpart in natural coortdisavhen simulat-
ing large systems such as the lltis vehicle, achieving a 5p8fformance im-
provement, something that can be determinant for real-#ippications. The
performance is also increased for medium-size problergstlee single lltis
suspension, although not to the same extent (150% to 20@)asin certain
applications the performance increase may not be worthxine enplementa-
tion effort. In the case of very small systems, the methoelative coordinates
is slower, since the reduction in the number of variablessdu# compensate
the additional computational burden. However, it shoulghdi@ted out that the
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double four-bar example has been implemented in MATLAB,hsd the re-
sults obtained are not concluding; moreover, in some spetifses, such as
the Kane’s beam studied in Chapter 4, the use of relativedaoates improves
the performance despite being a very small system, due ¢atitsmely simple
topology.

As a rule of thumb, it can be said that the method in relativerdimates can
improve performance in problems that, in the rigid caseghaore than 25
variables when using natural coordinates, although s@amfiimprovement is
to be expected only for large systems, above 50 variables.

A further efficiency improvement has been achieved by impleting the cal-

culation of the inertia terms by means of the inertia shategnals. The method
has been introduced into the new formulation, as well asthgwmriginal formu-

lation in natural coordinates, leading to a very compact sysiematic imple-
mentation. The use of the inertia shape integrals improgeepnance even for
very small finite element models and, since it completeljnilates the mesh
size from the problem, enables to use models of any size.

However, the projection of the finite element mass matrirdus the original

method in natural coordinates, is much simpler to implemand reasonably
efficient for small finite element models, making it more mecoendable for
certain applications.

In order to extend the range of applicability of FFR methdtisge different
methods for capturing the geometric stiffening effect imfdns have been also
implemented and compared. One of them, the substructueicionique, has
been only tested in relative coordinates, since the nuntherimbles otherwise
required makes it less competitive for real-time applarai The remaining two
methods have been implemented in both absolute and retativeinates.

The most accurate approach, at least regarding the tramaddeflections, is the
use of the substructuring technique. It enables to caphgaonlinear effects
without introducing any modification to the formulation,thé cost of increas-
ing the number of variables, a problem that can be minimizedding relative
coordinates. By using substructures, the simulation oktiee’s beam can be
performed about ten times faster than by using a commeroidinear finite—
element code, with equivalent results.

Among the methods that introduce modifications in the foatiah in order to
capture the geometric stiffening effect, the use of a nemlirstiffness matrix is
the simplest and most straightforward one, obtaining veldgesults if its ex-
treme simplicity is taken into account, although the regmient of introducing
axial modes may be a problem due to their high stiffness.

The introduction of the axial foreshortening at the modglétage yields the
most accurate results in the axial direction and, althoinghaiccuracy in the
transverse directions is slightly lower than that obtaibgdising substructures,
the achieved real-time ratio is about 200, 15 times fast&m gubstructuring
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and 150 times faster than nonlinear finite elements, makihg imost adequate
approach for real-time applications.

5.2 Future Research

The work presented in this thesis can be further developedvaral directions, such
as efficiency improvements or different applications.

¢ In order to further improve the efficiency, different metkddr the reduction
of the finite element model can be explored. In Koutsovaailid Beitelschmidt
(2008), a review of different existing methods is presenteng the Krylov
subspaces (Lehner and Eberhard, 2006) a promising alieriatthe classical
static and dynamic modes.

e Another important issue that must be addressed is the dpsiehection of the
mode shapes. The choice of the mode shapes is in general tef triterion
of the analyst, and it is difficult to establish automatedhnods for that critical
task. Several efforts have been carried out in that direcoch as the calcula-
tion of modal participation factors from the results of alppnenary rigid body
simulation (Wallrapp and Wiedemann, 2002).

e The inertia terms obtained by using the preprocessing rdethn be analyzed
in detail, in order to identify terms that can be neglectéudistreducing the
number of operations. For instance, some of the terms adrafimin the modal
amplitudes, and since the deformations are asumed to be, $shegl can be
probably neglected without any significant effect on theuaacy.






Appendix

In this Appendix, the resulting matrices obtained for tharaple mechanism shown
in Chapter 2, after the projection of the mass matrix intortiative coordinates are
fully developed. The mechanism is shown in Figure 2.11, tvidchere repeated.

Figure A.1: Example mechanism of Chapter 2.

The mechanism has two flexible bodies, namely bodies 2 ant&fifst one has
an input boundary at poit, and its output at poinB. Point B is in turn the input
point of body 3, which has also an output boundary at p@inthere exist two flexible
bodies and four boundaries, so that there will be four settadiic modes, and two sets
of dynamic modes. The specific sets of Cartesian and reletivedinates are, if both
of them are sorted in such a way that reference coordinatds; snodal amplitudes
and dynamic modal amplitudes, are grouped,

. . T
AT AR E

T
s — [T 2T 2T 2T T AT LSBT oSBT oCT £T &T
= {Zl L %3 4 Zs My My M3 My §) 53}

As pointed out in the second chapter, the mass matrix of eagibl¢ body has
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the following structure:

M; = Mpi My (A.2)
sym. Mg;
If the mass matrices of the five bodies are assembled intbméttix, the mass matrix

of the mechanism in the Cartesian set of coordinatessults, taking into account that
the rigid bodies will only have 8, submatrix:

_l\_/lrl 0 0 0 0 o 0o oo o |
My, 0 0 0 |MAME. 0 0 |[Myg 0
M, 0 0| 0 0 '\7'5,3 |\7|,Cn3 0 Mg

Myy O/ 0 0 0 0] 0 0

M,ss) 0O 0 0 0] 0 0

M = MA MAZ 0 0 MA, 0 | (A3

ME 0 0 [ME, 0

M M| 0 M7

sym. I\7InC3 0 M$$3

Mg O

L ME}

The assembly of thR matrix, according to Egs. (2.133), (2.134) and (2.135), iou
be

by 0 0 0 0[O0 0 0 0[0 O
by b, 0 0 0|ef 0O 0 00 O
by by by 0 0 |ef o8 o2 0]0 0
by b, 0 by 0|e@f 8 0 0|0 0
by by 0 by bs|ef 8 0 0|0 0
R=| 0 0 0 0 Ol 0 0 0[00 (A4)
00 0 0 0|0 I 0 0[00
00 0 0 0[O0 0 I 0[00
00 0 0 0|0 0 0 1|00
00 0 0 0[O0 0 0 Ol 0
L0 0 0 0 0[O0 0 0 0[O0 I |

As pointed out in Chapter 2, these two matrices are neveatytassembled, but
their terms are directly used to obtain the following res@dtr the different terms of
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the mass matrix. The terms appearing in the projectionseofitfid body or reference
mass matrices, shown in Eq. (2.142), result as follows:

[bTM,1b;  bIM,;b, bIM,3b; bIM,sbs bIM,sbs
b;Mrzbz b;Mr3b3 b-err4b4 b;Mr5b5
RIM,R, = bIM,3b; bIM,4by 0 (A.5)
sym. biM,sbs bIM,sbs
i bIM, sbs
0 ™MAes o MPeF @i MPeF 0
R'M,R, = 0 ME o7 ‘PZM%‘pg 0 (A.6)
03 M%e37 0
| sym. 0
_b-lerz(pf b-lerz‘pf bIMg(pf 0
bZMm‘P'z‘l b;Mf;z‘Pf bngs‘Pf 0
RIM,R; = | bIM 395 DbIM,39F bIMZeZ 0 (A7)
bIM,s03 bIM, 402 0 0
_b-Ser5(pi4 b-Ser5(pf 0 0

where the accumulated mass matribes ande are those defined in Egs. (2.140)

i

and (2.141). The four different terms appearing in Eq. (2)Xésult

_bIMrnZ bIMNﬂ _bIMrSZ bTMr&
bIM 2 BIM 3 bIM, &2 DIM g3
RIM,, = 0  DbIM,y |: RIM,¢ = 0 bIM,g (A.8)
0 0 0 0
|0 0 | 0 0
(05 ™™, 2 05 ™M 13 [0 ™™, 52 03 ™M 3
‘PfTMrnZ ‘PfTMrvﬂ q’fTMrsz (PfTMrga
RiMep=| 0 @ Mys|: RMpe=| 0  ¢F M, |(A9)
0 0 0 0
0 0 | 0 0

where the mass blocks in Cartesian coordin&ﬂegi andl\_/lrg,- are considered as a
whole for each flexible body, e.g.

- Y -
M’nz_[MrnZ Mfywﬂ

] (A.10)






Bibliography

O. P. Agrawal and A. A. Shabana. Dynamic analysis of multjpbegstems using
component mode€Computers & Structure1(6):1303-1312, 1985.

O. P. Agrawal and A. A. Shabana. Application of deformabtEhbmean axis to
flexible multibody system dynamicsComputer Methods in Applied Mechanics
and Engineering56:217-245, 1986.

F. M. L. Amirouche.Computational Methods in Flexible Multibody Dynami&en-
tice Hall, Englewood Cliffs, NJ, 1992.

A. Avello. Dindmica de mecanismos flexibles con coordenadas Cartesiateasig
de grandes deformaciond2hD thesis, University of Navarra, San Sel@astSpain,
1990.

A. Avello. Simulacén dinamica interactiva de mecanismos flexibles con pBgse
deformacionesPhD thesis, University of Navarra, San Sel@stiSpain, 1995.

A. Avello, J. Garta de Jabdn, and E. Bayo. Dynamics of flexible multibody systems
using Cartesian co—ordinates and large displacementthidernational Journal
for Numerical Methods in Engineerin82(8):1543—-1563, 1991.

D. S. Bae. Development of a new Multi-Flexible Body Dynam(ies-BD) platform:
A relative nodal displacement method for finite element wsial InProceedings
of the ASME 2005 IDECT/ClErolume 6 C, pages 1821-1829, Long Beach, CA,
2005.

D. S. Bae and E. J. Haug. A recursive formulation for consa@dimechanical system
dynamics: Part I. Open loop systemiglechanics of Structures and Machind$
(3):359-382, 1987.

D. S. Bae and E. J. Haug. A recursive formulation for constdimechanical system
dynamics: Part Il. Closed loop systemidechanics of Structures and Machiné$s
(4):481-506, 1988.

D. S. Bae, J. M. Han, J. H. Choi, and S. M. Yang. A generalizednave formulation
for constrained flexible multibody dynamickiternational Journal for Numerical
Methods in Engineering0(8):1841-1859, 2001.

135



136 BIBLIOGRAPHY

A. K. Banerjee and S. Nagarajan. Efficient simulation of¢éepgerall motion of beams
undergoing large deflectioMultibody System Dynamic$(1):113-126, 1997.

K. J. Bathe.Finite Element Procedured’rentice Hall, Englewood Cliffs, NJ, 1995.

J. Baumgarte. Stabilization of constraints and integralmation in dynamical sys-
tems.Computer Methods in Applied Mechanics and Engineerry):1-16, 1972.

E. Bayo and R. Ledesma. Augmented Lagrangian and massgortabprojection
methods for constrained multibody dynamiddonlinear Dynamics9(1-2):113—
130, 1996.

E. Bayo, J. Gafa de Jabn, and M. A. Serna. A modified Lagrangian formulation
for the dynamic analysis of constrained mechanical syst€amputer Methods in
Applied Mechanics and Engineeringl(2):183-195, 1988.

T. Belytschko and B. J. Hsieh. Non-linear transient finiem@nt analysis with con-
vected co—ordinatesnternational Journal for Numerical Methods in Engineagin
7(3):255-271, 1973.

W. J. Book. A recursive Lagrangian formulation of manipafatlynamics and
comparative study of dynamics formulation complexityternational Journal of
Robotics Researcl3:87-101, 1984.

H. Bremer. On the dynamics of elastic multibody systerpplied Mechanics Re-
views 52(9):275-296, 1999.

O. Brills, P. Duysinx, and J. C. Golinval. The global modal paramization for non—
linear model—order reduction in flexible multibody dynamiaternational Journal
for Numerical Methods in Engineering9(5):948-977, 2007.

A. Cardona and M. €radin. A beam finite element non-linear theory with finite
rotations. International Journal for Numerical Methods in Engineagjr26:2403—
2438, 1988.

A. Cardona and M. €radin. Modeling of superelements in mechanism anallrsis-
national Journal for Numerical Methods in Engineerjrg2(8):1565-1593, 1991.

R. R. Craig and M. C. C. Bampton. Coupling of substructureslijmamic analyses.
AlAA Journa) 6(7):1313-1319, 1968.

M. A. Crisfield. Non—Linear Finite Element Analysis of Solids and Strucuxél. 1
& 2. John Wiley & Sons Inc., New York, NY, 1997.

J. CuadradoUna nueva formulaéin en coordenadas naturales para el estudio de la
flexibilidad en los mecanismo®hD thesis, University of Navarra, San Selfasti
Spain, 1993.



BIBLIOGRAPHY 137

J. Cuadrado, J. Cardenal, and J. Gade Jabdn. Flexible mechanisms through natural
coordinates and component synthesis: An approach fullypeditsie with the rigid
case.International Journal for Numerical Methods in Engineegir89(20):3535—
3551, 1996.

J. Cuadrado, J. Cardenal, and E. Bayo. Modeling and soluatigthods for efficient
real-time simulation of multibody dynamicdvultibody System Dynamic4(3):
259-280, 1997.

J. Cuadrado, J. Cardenal, P. Morer, and E. Bayo. Intelligmtilation of multibody
dynamics: Space—state and descriptor methods in sedwerdiparallel computing
environmentsMultibody System Dynamicé4(1):55-73, 2000.

J. Cuadrado, R. Gu#tirez, M. A. Naya, and P. Morer. A comparison in terms of accu-
racy and efficiency between a MBS dynamic formulation witest analysis and a
non-linear FEA codelnternational Journal for Numerical Methods in Engineer-
ing, 51(9):1033-1052, 2001.

J. Cuadrado, D. Dopico, M. Goalez, and M. A. Naya. A combined penalty and
recursive real-time formulation for multibody dynamic3ournal of Mechanical
Design 126(4):602—608, 2004a.

J. Cuadrado, D. Dopico, M. A. Naya, and M. Gatez. Penalty, semi-recursive and
hybrid methods for MBS real-time dynamics in the contextfcural integrators.
Multibody System Dynamic$2(2):117-132, 2004b.

J. Cuadrado, R. Gu#tirez, M. A. Naya, and M. Gosatez. Experimental validation
of a flexible MBS dynamic formulation through comparisornvisetn measured and
calculated stresses on a prototype &éultibody System Dynamic1(2):147-166,
2004c.

O. N. Dmitrochenko and D. Y. Pogorelov. Generalization @itglfinite elements for
absolute nodal coordinate formulatioklultibody System Dynamic$0(1):17—43,
2003.

D. Dopico. Formulaciones semi—recursivas y de penalidacpara la diramica en
tiempo real de sistemas multicuerpehD thesis, University of La Cofia, Ferrol,
Spain, 2004.

K. E. Dufva, J. T. Sopanen, and A. M. Mikkola. A two—dimensabshear deformable
beam element based on the absolute nodal coordinate fdramuldournal of Sound
and Vibration 280(3-5):719-738, 2005.

A. G. Erdman and G. N. Sandor. Kineto—elastodynamics — Aeredf the state of
the art and trenddMechanism and Machine Theor§.19-33, 1972.

J. L. Escalona, H. A. Hussien, and A. A. Shabana. Applicabitihhe absolute nodal
coordinate formulation to multibody system dynamidaurnal of Sound and Vi-
bration, 214(5):833—-851, 1998.



138 BIBLIOGRAPHY

J. L. Escalona, J. M. Mayo, and J. Darguez. Influence of reference conditions on
the analysis of impact—induced elastic wavésultibody System Dynamicg(2):
209-228, 2002.

R. Featherstone. Calculation of robot dynamics using @éfed—body inertiasin-
ternational Journal of Robotics Resear@{1):13-30, 1983.

R. FeatherstoneRobot Dynamics AlgorithnKluwer Academic Publishers, Norwell,
MA, 1987.

S. Frik, G. Leister, and W. Schwartz. Simulation of the IAV&iad vehicle bench-
mark bombardier llitis with FASIM, MEDYNA, NEWEUL and SIMPACK In
Multibody Computer Codes in Vehicle System Dynamiossterdam, 1993. Swets
and Zeitlinger.

F. J. Funes, J. Gade Jadn, F. de Ribera, and Rlvarez. Soluobn de la ditamica
de sistemas flexibles mediante formulaciones togichs. InMétodos Computa-
cionais em Engenharjd.isbon, Portugal, 2004. APMTAC.

J. Garéa de Jabn and E. Bayo.Kinematic and Dynamic Simulation of Multibody
Systems: The Real-Time Challen§g@ringer—\Verlag, Berlin, 1994.

D. Garda-Vallejo.Dinamica de sistemas multicuerpgido—flexibles en coordenadas
absolutas PhD thesis, University of Sevilla, Sevilla, Spain, 2006.

D. Garda-Vallejo, J. L. Escalona, J. Mayo, and J. Doguez. Describing rigid—
flexible multibody systems using absolute coordinatBgnlinear Dynamics34
(1-2):75-94, 2003.

M. Géradin and A. CardonaFlexible Multibody Dynamics: A Finite Element Ap-
proach John Wiley & Sons, New York, NY, 2001.

H. Goldstein.Classical MechanicsAddison Wesley, Cambridge, MA, USA, 1950.

R. Gutérrez. Calculo de tensiones en componentes de sistentadlen mediante
dindmica de sistemas multicuerpo flexiblézhD thesis, University of La Cofia,
Ferrol, Spain, 2003.

R. S. Hartenberg and J. DenaviKinematic Synthesis of LinkagecGraw—Hill,
1963.

B. He, X. Rui, and G. Wang. Riccati discrete time transferrirahethod for elastic
beam undergoing large overall motioMultibody System Dynamic&8(4):579—
598, 2007.

W. C. Hurty. Dynamic analysis of structural systems usingnponent modesAlAA
Journal, 3(4):678—685, 1965.

R. L. Huston. Multi-body dynamics including the effect ofilaility and compliance.
Computers & Structured4:443-451, 1981.



BIBLIOGRAPHY 139

R. L. Huston. Computer methods in flexible multibody dynasninternational Jour-
nal for Numerical Methods in Engineering2(8):1657-1668, 1991.

J. M. Jimenez.Formulaciones cineaticas y dirfamicas para la simulaéin en tiempo
real de sistemas debBdos rigidos PhD thesis, University of Navarra, San Se-
bastan, Spain, 1993.

B. Jonker. A finite element dynamic analysis of spatial ma@ras with flexible links.
Computer Methods in Applied Mechanics and Engineerntgl7—40, 1989.

T. Kane, R. Ryan, and A. Banerjee. Dynamics of a cantilevanbattached to a
moving baseAlAA Journa) 10(2):131-151, 1987.

S. S. Kim and E. J. Haug. Recursive formulation for flexibldtibody dynamics, part
I: Open—loop systemsComputer Methods in Applied Mechanics and Engineegring
71(3):293-314, 1988.

S. S. Kim and E. J. Haug. Recursive formulation for flexibleltthady dynamics,
part Il: Closed loop systemsComputer Methods in Applied Mechanics and Engi-
neering 74(3):251-269, 1989.

P. Koutsovasilis and M. Beitelschmidt. Comparison of maddlction techniques for
large mechanical systemilultibody System Dynamic20(2):111-128, 2008.

M. Lehner and P. Eberhard. On the use of moment—matchingilih fmduced order
models in flexible multibody dynamicdMultibody System Dynamic&6(2):191—
211, 2006.

M. Lehner and P. Eberhard. A two—step approach for modelctextuin flexible
multibody dynamicsMultibody System Dynamic$7(2—-3):157-176, 2007.

G. G. Lowen and C. Chassapis. The elastic behavior of lir&kadye update Mecha-
nism and Machine Theor1(1):33-42, 1986.

G. G. Lowen and W. G. Jandrasits. Survey of investigatiottstime dynamic behavior
of mechanisms containing links with distributed mass amdtadity. Mechanism
and Machine Theoryr:13-17, 1972.

J. Mayo, J. Doringuez, and A. A. Shabana. Geometrically nonlinear fortinia of
beams in flexible multibody dynamicslournal of Vibration and Acoustic417:
501-509, 1995.

J. Mayo, D. Gar@a-Vallejo, and J. Doimguez. Study of the geometric stiffening
effect: comparison of different formulationddultibody System Dynamic$1(4):
321-341, 2004.

L. Meirovitch and M. K. Kwak. Convergence of the classicayR#gh—Ritz method
and the finite element methodIAA Journa) 28(8):1509-1516, 1990.



140 BIBLIOGRAPHY

A. M. Mikkola and A. A. Shabana. A non—incremental finite elrhprocedure for the
analysis of large deformation of plates and shells in meichhsystem applications.
Multibody System Dynamic8(3):283-309, 2003.

N. Newmark. A method of computation for structural dynamitsurnal of the Engi-
neering Mechanics Division, ASCB5(EM3):67-94, 1959.

P. E. Nikravesh, I. Chung, and R. L. Bendict. Plastic hingarapch to vehicle crash
simulation.Computers & Structured 6:395-400, 1983.

M. Omar and A. A. Shabana. A two—dimensional shear deforenbbam for large
rotation and deformation problem3ournal of Sound and Vibratigr243:565-576,
2001.

X. Rui, B. He, Y. Lu, W. Lu, and G. Wang. Discrete time transfeatrix method for
multibody system dynamic$dultibody System Dynamic$4(3—4):317—-344, 2005.

X. Rui, G. Wang, Y. Lu, and L. Yun. Transfer matrix method fordar multibody
system.Multibody System Dynamic$9(3):179-207, 2008.

R. Schwertassek, S. Dombrowski, and O. Wallrapp. Modaksgntation of stress in
flexible multibody simulationNonlinear Dynamics20(4):381-399, 1999a.

R. Schwertassek, O. Wallrapp, and A. A. Shabana. Flexiblélmdy simulation and
choice of shape function®onlinear Dynamics20(4):361-380, 1999b.

A. A. Shabana. Substructure synthesis methods for dynamailysis of multi—-body
systems Computers & Structure0(4):737—744, 1985.

A. A. Shabana. Constrained motion of deformable bodieternational Journal for
Numerical Methods in Engineering2(8):1813-1831, 1991.

A. A. Shabana. Finite element incremental approach andt eigd body inertia.
Journal of Mechanical Desigri18(2):171-178, 1996.

A. A. Shabana. Resonance conditions and deformable bodyrdinate systems.
Journal of Sound and Vibratior192(1):389-398, 1995.

A. A. Shabana. Flexible multibody dynamics: review of past eecent developments.
Multibody System Dynamic$(2):189-222, 1997.

A. A. ShabanaDynamics of Multibody System&€ambridge University Press, Cam-
bridge, MA, 1998.

A. A. Shabana and R. A. Wehage. Variable degree of freedonpooent mode
analysis of inertia—variant flexible mechanical systendsurnal of Mechanisms,
Transmissions and Automation in Desjid©5:370-378, 1983.

A. A. Shabana and R. Y. Yakoub. Three—dimensional absoldalrcoordinate for-
mulation for beam elements: Theodpurnal of Mechanical Desigri23:606—613,
2001.



BIBLIOGRAPHY 141

A. A. Shabana, Y. L. Hwang, and R. A. Wehage. Projection nughio flexible multi-
body dynamics. Part I: Kinematic$nternational Journal for Numerical Methods
in Engineering 35(10):1927-1939, 1992.

I. Sharf. Geometrically non—linear beam element for dymansimulation of multi-
body systems.International Journal for Numerical Methods in Engineagir89:
763-786, 1996.

P. Shi, J. McPhee, and G. Heppler. A deformation field for Edernoulli beams
with applications to flexible multibody dynamic$4ultibody System Dynamic§
(1):79-104, 2001.

J. C. Sind and L. Vu-Quoc. On the dynamics of flexible beams under langs-
all motions — The plane case: PartJournal of Applied Mechani¢c$3:849-854,
1986a.

J. C. Sind and L. Vu-Quoc. On the dynamics of flexible beams under lakgeall
motions — The plane case: Part [lournal of Applied Mechani¢$3:855-863,
1986b.

J. C. Sind and L. Vu-Quoc. A finite strain beam formulation. The thrdierensional
dynamic problem. Part IComputer Methods in Applied Mechanics and Engineer-
ing, 49:253-271, 1986¢.

J. C. Sind and L. Vu-Quoc. A three—-dimensional finite strain rod modRart Il
Computational aspect€omputer Methods in Applied Mechanics and Engineering
58:79-116, 1986d.

J. 0. Song and E. J. Haug. Dynamic analysis of planar flexielehanismsComputer
Methods in Applied Mechanics and Engineerifig:359-381, 1980.

J. T. Sopanen and A. M. Mikkola. Description of elastic farée absolute nodal
coordinate formulationNonlinear Dynamics34(1-2):53-74, 2003.

W. Stelzle, A. Kecskeig@thy, and M. Hiller. A comparative study of recursive mets.od
Archive of Applied Mechanic$6:9-19, 1995.

H. Sugiyama, A. A. Shabana, M. A. Omar, and W. Loh. Developnoémonlinear
leaf spring model for multibody vehicle system€omputer Methods in Applied
Mechanics and Engineerind95(50-51):6925-6941, 2006.

W. Sunada and S. Dubowsky. The application of finite elemegthods to the dy-
namic analysis of flexible spatial and coplanar linkageesyst Journal of Me-
chanical Design103:643—-651, 1981.

W. Sunada and S. Dubowsky. On the dynamic analysis and kmravi industrial
robotic manipulators with elastic member3ournal of Mechanical Designl05:
42-51, 1983.



142 BIBLIOGRAPHY

R. E. Valembois, P. Fisette, and J. C. Samin. Comparisonridustechniques for
modelling flexible beams in multibody dynamidgonlinear Dynamicsl12(4):367—
397, 1997.

T. Vampola and M. VaiSek. Composite rigid body formalism for flexible multibody
systemsMultibody System Dynamic$8(3):413-433, 2007.

G. N. VanderplaatdNumerical Optimization Techniques for Engineering Des¥gith
Application McGraw—Hill, New York, 1984.

S. Von Dombrowski. Analysis of large flexible body defornoatiin multibody sys-
tems using absolute coordinat®4ultibody System Dynamic8(4):409-432, 2002.

N. Vukasovic. Analisis dirhmico de sistemas m&@ticos con elementos flexibles en
coordenadas naturalesPhD thesis, University of Navarra, San SeldstiSpain,
1990.

M. W. Walker and D. E. Orin. Efficient dynamic computer sintida of robotic
mechanismsJournal of Dynamic Systems Measurement and Caritf(3):205—
211, 1982.

O. Wallrapp. Standardization of flexible body modeling inltimody system codes,
Part I: Definition of standard input dat&lechanics of Structures and Machingg
(3):283-304, 1994.

O. Wallrapp and S. Wiedemann. Simulation of deployment oéxzilfle solar array.
Multibody System Dynamicg(1):101-125, 2002.

T. M. Wasfy and A. K. Noor. Computational strategies for fldgimultibody systems.
Applied Mechanics Reviews6(6):553—-613, 2003.

R. A. Wehage and E. J. Haug. Generalized coordinate paititiofor dimension re-
duction in analysis of constrained dynamic systedosirnal of Mechanical Design
104(1):247-255, 1982.

R. A. Wehage, A. A. Shabana, and Y. L. Hwang. Projection naghio flexible multi-
body dynamics. Part Il: Dynamicdnternational Journal for Numerical Methods
in Engineering 35(10):1941-1966, 1992.

J. Wittenburg.Dynamics of Systems of Rigid Bodidgubner, Stuttgart, 1977.

S.C.Wuand E. J. Haug. Geometric non-linear substructéwirdynamics of flexible
mechanical systemsnternational Journal for Numerical Methods in Engineagin
26(10):2211-2226, 1988.

R. Y. Yakoub and A. A. Shabana. Three dimensional absolualraordinate formu-
lation for beam elements: Implementation and applicatidoarnal of Mechanical
Design 123:614—621, 2001.



BIBLIOGRAPHY 143

E. V. Zahariev. Nonlinear dynamics of rigid and flexible nitudidy systemsMechan-
ics of Structures and Maching28(1):105-136, 2000.

E. V. Zahariev. Relative finite element coordinates in nbaitly system simulation.
Multibody System Dynamicg(1):51-77, 2002.

J. Zname&cek and M. Vadsek. An efficient implementation of the recursive approach
to flexible multibody dynamicsMultibody System Dynamic8(3):227-252, 1998.



	Introduction
	Motivation
	Background
	Earlier developments in flexible multibody dynamics
	Floating frame of reference formulations
	Inertial frame formulations
	Corotational frame formulations
	Other types of formulations

	Objectives

	Method in Relative Coordinates
	Introduction
	Modeling and kinematics of the flexible body
	Floating frame of reference in natural coordinates
	Component mode synthesis
	Kinematics of boundary points and joint frames

	Recursive kinematics in open–loop systems
	Opening of closed loops
	Modeling of the kinematic joints
	Kinematic relations for the forward position analysis
	Recursive relations for velocities and accelerations

	Inertia terms in Cartesian coordinates
	Mass matrix
	Centrifugal and Coriolis forces vector

	Non–inertial forces
	Elastic forces
	Applied forces
	Volume forces
	Springs and dampers

	Kinematic constraints
	Projection of the dynamic terms
	Mass matrix projection
	Projection of the forces vector

	Dynamic formalism
	Equations of motion
	Time integration

	Numerical examples
	Double four–bar mechanism
	Iltis suspension
	Iltis vehicle

	Conclusions and criteria of use

	Inertia Shape Integrals
	Introduction
	General description
	Derivation of the inertia terms
	Definition of the inertia shape integrals

	Implementation in absolute coordinates
	Mass matrix
	Velocity dependent inertia forces

	Implementation in relative coordinates
	Mass matrix
	Velocity dependent inertia forces

	Efficient calculation of the inertia shape integrals
	Numerical example
	Conclusions and criteria of use

	Geometric Stiffening
	Introduction
	Substructuring
	Nonlinear stiffness matrix
	Linear formulation
	First nonlinear formulation
	Second nonlinear formulation

	Foreshortening formulation
	Calculation of the foreshortening
	Inertia terms

	Examples and results
	Two–dimensional case
	Three–dimensional case

	Conclusions and criteria of use

	Conclusions and Future Research
	Conclusions
	Future Research

	Appendix
	Bibliography

