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Abstract 9 

The use of Cold Asphalt Mixtures (CAM) usually results in financial and environmental saving, 10 

while decreasing pollution and occupational hazards. However, they require a length of curing 11 

time to reach their full potential. Regarding ecological and financial implications, CAM can be 12 

further improved when produced with 100% recycled materials from Construction and 13 

Demolition Waste (CDW). In this paper, the evolutionary properties of CAM with CDW were 14 

studied in terms of stiffness growth and water loss and the results were compared with 15 

conventional control mixes. Among other conclusions, the results showed that although CAM 16 

with CDW lost water during longer curing periods, higher stiffness can be obtained with CDW 17 

than with Natural Aggregates (NA) at any curing time. 18 
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1. Introduction 1 

Due to the massive use of minerals as raw materials (Krausmann et al., 2009), the building 2 

industry is one of the largest material consumers, responsible for 24% of global material 3 

extractions (Bribían et al., 2010). These activities are related to environmental impacts, such as 4 

damage to landscape and health, disruption of ecosystems and contamination of soil, water, and 5 

air (Blankendaal, 2014). Thanks to an increased awareness of these problems, different policies 6 

were adopted (e.g., the Directive 2010/31/EU) and research on this field was encouraged 7 

towards more sustainable building and construction techniques (Pacheco-Torgal, 2014). In the 8 

last decades, there has been a growing interest in construction materials with low embodied 9 

energy, both natural (Wang et al., 2014) and unconventional construction materials (Ashour et 10 

al., 2011), which help reducing the exploitation rate of nonrenewable resources (Milutiene et al., 11 

2012). Examples of these materials in civil engineering are the earth plasters (Melià et al., 2014) 12 

and the permeable pavement systems made of Construction and Demolition Waste (CDW
1
) 13 

(Rahman et al., 2015). 14 

In road pavement engineering, Cold Asphalt Mixtures (CAM
2
) are bituminous materials which 15 

are normally made by mixing cold aggregates with an asphalt emulsion and water. Unlike Hot 16 

Mix Asphalt (HMA
3
), and due to the fact that CAM can be produced at low temperatures, large 17 

amounts of aggregates and bitumen do not require heating. Therefore, the use of CAM usually 18 

results in financial and environmental saving, while decreasing pollution and occupational 19 

hazards. 20 

As far as the ecological and financial implications are concerned, CAM can be further improved 21 

when produced with 100% recycled materials from Construction and Demolition Waste 22 

Aggregates (CDWA
4
). Research on HMA with recycled aggregates from waste materials has 23 

experienced extensive and growing success recently (Bhusal et al., 2011; Chen et al., 2011; Liu 24 

et al., 2012; Mills-Beale and You, 2010; Modarres et al, 2015; Paranavithana and Mohajerani, 25 

2006; Pérez et al., 2010; Pérez et al., 2012; Wong et al., 2007), thus reinforcing this new 26 

approach within pavement engineering. To a lesser extent, and although more research in this 27 

regard is necessary, different studies on CAM with recycled aggregates can also be found at 28 
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present (Gómez-Meijide and Pérez, 2014b; Gómez-Meijide et al., 2015; Modarres and Ayar, 1 

2014). 2 

From a mechanical point of view, CAM can be stored at room temperature until lay-down and 3 

are sufficiently flexible to withstand traffic loads without cracking when high-quality subgrade 4 

is not used. Thus, CAM are particularly suitable for the construction and maintenance of 5 

low/medium-traffic roads in rural areas that are distant from asphalt plants. 6 

However, in recent decades, several drawbacks have resulted in the inferior consideration of 7 

CAM when compared to HMA (Thanaya et al., 2009) and the lack of a performance-based mix 8 

design procedure has prevented many agencies from promoting its use. The required length of 9 

time to reach full strength and the potential premature distress caused by rainfall water 10 

intrusions seem to be the most likely and main disadvantages in this regard (Brown and 11 

Needham, 2000). After lay-down, the development of the binder and mastic cohesion, the 12 

binder-aggregate adhesion and the mixture shear strength take place, what hinders the efforts to 13 

study the effect of the material and/or the process-related variables—e.g., moisture conditions—14 

on its mechanical properties (Khalid and Monney, 2008). Thus, CAM are described as evolutive 15 

materials (Serfass et al., 2004) and, therefore, the understanding of the development of their 16 

strength while in service still remains incomplete (Doyle et al., 2013). 17 

Although their curing processes are still subject to controversy, many authors have studied the 18 

performance of CAM and other materials stabilized with bitumen emulsions (Oruc et al., 2007; 19 

Rutherford et al., 2014). For example, Jenkings et al. (2007) predicted a behavior which first 20 

involved a 6-to-18-month “Curing Phase” characterized by growing stiffness caused by the 21 

moisture reduction and densification of the layer.  According to Ebels (2008) and Jenkings and 22 

Yu (2009), in this phase the behavior of the material is similar to that of an unbound granular 23 

material. 24 

This paper is aimed at studying in depth both the stiffness of CAM with CDWA and control 25 

mixes with Natural Aggregates (NA
5
), as well as its variation after different lengths of curing 26 

time at room temperature, in order to determine whether these aggregates affect CAM in a 27 

detrimental way or they can be considered as a feasible alternative to NA. 28 
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The Indirect Tensile Stiffness Modulus (ITSM
6
) and the weight loss of the specimens made with 1 

80 different combinations of bitumen and water contents were also studied, what enabled the 2 

discovery of changes in the optimal contents over time, as well as to determine the end of the 3 

curing processes from two different points of view: the end of the stiffness growth and the end 4 

of the water loss of the samples. 5 

Among other conclusions, the results showed that CAM with CDW have higher practical 6 

potential. Thus, although they lost water during longer curing periods (compared to mixes with 7 

NA), higher stiffness can be obtained with CDW than with NA at any curing time, including at 8 

early stages. Furthermore, it was found that the development of the stiffness during the curing 9 

time clearly depends on the binder content of the mix, being this a factor not considered by the 10 

methods normally used to design CAM. 11 

2. Material and method 12 

2.1 Materials used 13 

To determine if the curing processes of the mixes are affected by the type of aggregate used to 14 

produce the CAM, and, more in particular, by their volumetric properties—e.g. water 15 

absorption—, two notably different sources of aggregate were selected. First, a common 16 

Spanish hornfels, which is a metamorphic siliceous aggregate obtained from a natural quarry 17 

(hereafter, natural aggregate or NA), was used to produce control mixes. Second, a 100% 18 

recycled aggregate from construction and demolition waste (hereafter CDWA) was used for a 19 

wide range of combinations of bitumen and water contents. Concrete and mortar, as well as 20 

natural aggregates (mostly granite), compose the main part of this aggregate; what makes it 21 

absorb much more water than NA. In addition, other impurities such as ceramic, metal pieces, 22 

gypsum, plastic and glass were also found (Figure 1). Other important properties of these two 23 

types of aggregates are listed in Table 1 below. 24 

 25 
Among the aggregate gradations recommended by the Spanish Technical Association of 26 

Bituminous Emulsions (ATEB), the dense and continuously graded GE1 type was selected for 27 

all the specimens in this research. However, in all types of CDWA, the amount of medium and 28 
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fine particles tended to increase after the mixing and compaction processes. Therefore, the 1 

initial gradation was more closely adjusted to the lower limit, whereas the final gradation was 2 

proven to be between the upper and lower limits (Figure 2). 3 

The binder was a cationic bitumen emulsion (60% bitumen content) with 100 pen. grade-base 4 

bitumen. 5 

2.2 Laboratory testing program 6 

2.2.1 Mixture production 7 

Nowadays, there are numerous methods for the design of CAM, such as the Modified Hveem 8 

Method or the Marshall Method for asphalt-aggregate cold-mixture design, as well as many 9 

empirical formulas (Asphalt Institute, 1997). In some countries, the first step of the applied 10 

traditional methods consists in determining the optimal water content in accordance with the 11 

Modified Proctor test (UNE 103-501). Then, and in order to find both the optimal water and 12 

bitumen/emulsion contents, samples with this optimal water content but different 13 

bitumen/emulsion contents are subsequently made, tested and analyzed. In Spain, for example, 14 

it is common to use Immersion-Compression tests (NLT 162) or Indirect Tensile Strength tests 15 

(UNE EN 12697-23). Therefore, the optimal water and bitumen contents can be understood in 16 

this case as those which are supposed to produce mixtures with the best possible mechanical 17 

properties. However, none of these methods takes into account the changes in these optimal 18 

contents over the curing time. 19 

All these methods establish an artificial curing time in the oven which is most likely based on 20 

the assumption that, after this curing time, the curing processes will be stabilized and the 21 

optimal contents will no longer vary. To check whether this hypothesis is correct, the 22 

experimental part was designed as follows: a series of different binder contents was selected and 23 

for each of them, the same series of water contents was linked, obtaining a matrix of different 24 

combinations of binder-water contents. For each combination, a number of specimens were 25 

produced. For mixes with NA, 3 specimens were a satisfactory quantity but due to the higher 26 

heterogeneity of recycled aggregates, this number had to be increased to 5 for mixes with 27 

CDWA. The studied mechanical property was the stiffness, since the tests are non-destructive 28 
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and the same samples could be repeatedly tested after different curing times. Thus, a clear 1 

relationship between stiffness, bitumen/water contents and time could be found. The series of 2 

bitumen and water contents were extended until the stiffness showed a peak value surrounded 3 

by decreasing trends with higher and lower bitumen/water contents. In the end, 20 different 4 

mixes with NA were enough (5 water contents x 4 bitumen contents) but with CDWA, up to 60 5 

mixes were necessary to reach the mentioned objective (10 water contents x 6 bitumen 6 

contents). 7 

The mixing and compaction processes were performed following a new protocol developed by 8 

the authors of this paper and published in Gómez-Meijide and Pérez (2014a). Thus, and 9 

according to this method, 1,550 g of the CDWA and 1,875 g of the NA (it was necessary to 10 

make this adjustment in order to maintain the volume of the samples as the study involved the 11 

use of aggregates with different specific gravities) were dried, batched in accordance with the 12 

aforementioned gradation and mixed with pre-wetting water for 30 sec; what helped to avoid the 13 

loss of fine particles during the mechanical mixing. Then, the bitumen emulsion and the 14 

remaining water were added and mixed for 90 sec (the time needed to obtain satisfactory 15 

coating). Compaction was achieved by applying a static axial compaction effort of 21 MPa for 2 16 

min after a 1-min preload of 1 MPa, as indicated in the Spanish Standards NLT-161 and NLT-17 

162. As a result, 101.6 mm diameter x 101.6 mm high cylindrical specimens were produced and 18 

subsequently cut using a radial saw blade until 101.6 mm diameter x 50 mm high cylindrical 19 

specimens were obtained. 20 

In order to reach a sufficient level of stiffness to perform both the aforementioned cuts and the 21 

first ITSM tests, an artificial and accelerated curing time was applied. Nevertheless, and with 22 

regard to this very last aspect, it should be borne in mind that the equivalence between this 23 

artificial curing time and the real one still remains unclear. Many authors have studied the 24 

curing processes of CAM using different laboratory conditioning regimes, such as two days at 25 

60ºC (Kishore Kumar et al., 2008; Yan et al., 2010), three days at 40ºC (Kim and Lee, 2006), 26 

and three days at 60ºC (Bowering and Martin, 1976). However, it is significantly complicated to 27 

set the equivalence between these artificial curing times and the real ones that might be 28 
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observed in an actual road. Thus, and as compiled in Doyle et al. (Doyle et al., 2013), some 1 

authors such as Ruckel et al. (1983)  have reached the conclusion that curing the specimens for 2 

three days at 40ºC is equivalent to one-month under real conditions, whereas the Asphalt 3 

Academy (2002) suggests a match of a six-month period of in situ conditioning. Acott (2000) 4 

equated a three-day conditioning time at 60ºC with a notably broad span under real conditions 5 

which ranges from 23 to 200 days, whereas Maccarrone (1994) increased this time to one year. 6 

In view of this great variation, and in order to meet the ATEB recommendations, an artificial 7 

curing time of 3 days at 60ºC in an air-ventilated oven was selected among all the 8 

aforementioned options. However, it should be borne in mind that the equivalent to the real 9 

curing time in an actual road still remains unclear. After this artificial curing time, the 10 

specimens were stored at a laboratory room temperature (20±2ºC) with a relative humidity of 11 

30-40% for 18 more months (Figure 3). 12 

2.2.2 Water and bitumen contents 13 

As mentioned throughout the introduction of this study, CAM are, in general, more flexible than 14 

HMA, what can be an advantage to withstand traffic loads when high-quality subgrade is not 15 

used. In this paper, and in view of their paramount importance in order to better understand the 16 

curing processes and their development, the authors will study, among other aspects, which 17 

combinations of water and bitumen contents produce the peak stiffness at each curing time. 18 

However, it is important to point out that these contents cannot be labeled as “optimal”, since 19 

they may not necessarily be the best ones for every use (although they, in fact, could, as is the 20 

case with a stiff base layer). Hence, from this point on, the use of the terms “main water 21 

content” and “main bitumen content” was preferred. 22 

Unless specified otherwise, “water content” will refer, hereafter, to the initial water content in 23 

the mixture during the mixing process, the amount of water provided by the emulsion and the 24 

added water. It was necessary to analyze a long series of water contents (up to 36%) to finally 25 

determine the main water content at each curing time. Although after the compaction and curing 26 

processes all mixes tended to lose most of their initial water, the highest contents studied in this 27 

paper lacked any kind of practical application to road construction itself. Nevertheless, they 28 
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allowed us to find a trend which indicated that the main contents, as well as the other ones, 1 

increased over time. 2 

After the artificial curing process in an air-ventilated oven, all the samples were stored at room 3 

temperature and weighed after 0 (right after artificial curing), 6, 12 and 18 months. Finally, the 4 

specimens were dried in a ventilated oven until they reached a constant weight. The weight 5 

difference led to the determination of the water content of every sample at each curing time. 6 

Thus, the end of the curing process, in terms of the water loss of the samples, could be studied. 7 

2.2.3 Indirect tensile stiffness modulus 8 

Since the stiffness of bituminous mixes is related to the capacity of the material to distribute 9 

traffic loads, it can be considered as a synthetic indicator of their structural properties. 10 

Therefore, and for the purposes of this piece of research, the ITSM was assessed after different 11 

storage periods from the end of artificial curing process in an air-ventilated oven (0 or right after 12 

the artificial curing, 6, 12 and 18 months). The environment conditions were controlled in order 13 

to study the curing process with regard to the growth in stiffness.  14 

The ITSM test was performed in accordance with the Standard EN 12697-26, Annex C. Five 15 

semi-sinusoid impulses with a total duration of 3 s —which consisted of a rise time of 124 ms 16 

and a visco-elastic deformation recovery— were applied and studied by controlling the 17 

deformation (5 µm). Five or three specimens (depending on the source of the aggregate) per 18 

bitumen/water content were tested with an assumed Poisson ratio of 0.35. The final value for 19 

each water and bitumen content was calculated as the average value of the 5 or 3 specimens. 20 

All ITSM tests were performed in a climatic chamber at 20ºC. This temperature was selected in 21 

order to minimize the alteration of the curing processes during the storage of the samples. 22 

Although the storage temperature was notably similar, a 4-hour conditioning period in the 23 

chamber was applied to guarantee a test temperature of 20±0.5ºC, as stipulated in the 24 

aforementioned Standard EN 12697-26, Annex C. 25 

3. Results  26 

3.1 Weight loss of the specimens 27 
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In this section, the curing time (which was considered to be the time in which the specimens 1 

progressively lost weight) was studied and analyzed. This water loss, which was due to the 2 

evaporation of both interstitial water and a small portion of the volatile compounds of the binder 3 

which might have remained after the 3-day artificial curing process, is shown in Tables 2 and 3 4 

below for CDWA and NA mixes, respectively. 5 

As it can be observed, CDWA mixes considerably lost more water by the end of the 6 and 12-6 

month periods than NA mixes. This trend was noticeable even in mixes with identical initial 7 

bitumen and water contents, but with a different type of aggregate. For instance, when the 8 

mixtures with CDWA and 9% water content were analyzed after 0 and 6 months, the water 9 

content of the mix with 4% bitumen content moved from 1.56% to 0.78% (thus showing a water 10 

loss of 3.4 g in 6 months). As for the mix with 5% bitumen content, it decreased from 2.24% to 11 

0.83% (7.7 g water loss). With regard to NA mixtures, however, the mixes with 4% and 5% 12 

bitumen content dropped from 0.34% to 0.13% (0.9 g water loss) and from 0.79% to 0.20% (5.2 13 

g water loss), respectively. 14 

Thus, this result indicates that the higher level of stiffness showed by CDWA mixes is not 15 

related to shorter curing times or a greater tendency to expel the interstitial water at room 16 

temperature. In fact, after the first 6 months, almost all NA mixes had practically stopped losing 17 

weight (values between ± 1 g), whereas some CDWA mixes had lost more than 15 g and, some 18 

of them, had even lost a noticeable amount of water in the second 6-month period (for example, 19 

the CDWA mix with 8% bitumen and 36% water contents had lost 5.8 g during this period, 20 

moving from 1.43% to 1.29%). 21 

In addition, some common features were also found in both types of aggregates. First, it was 22 

observed that the water content at each curing time barely depended on the initial amount of 23 

water added to the mix during the mixing process. Second, it was also found that the greater the 24 

bitumen content of a mix, the longer the time losing weight. One possible explanation for this 25 

behavior could be the obstruction of the water-filled voids caused by the coating of the bitumen, 26 

thus making more difficult for them to release water. 27 
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A two-way analysis of variance (ANOVA) was conducted to statistically confirm the effect of 1 

both the initial water and the bitumen contents added during the mixing process on the residual 2 

water content after different curing times. In the ANOVA setting, the variance of each variable 3 

is partitioned into components attributable to different sources of variation, providing a 4 

statistical test of whether or not the means of several groups are equal. The test assumes the 5 

independence, normality and homogeneity of the variances of the residuals. Therefore, besides 6 

independence (which is clearly satisfied by the studied variables), the normality and 7 

homogeneity of the variances had to be first checked by means of Shapiro-Wilk and Levene 8 

tests respectively. In case that at least one variable affected the results with statistical 9 

significance, the Tukey’s post hoc test was applied in order to compare results in pairs and find 10 

between which values exist or not exist a significant difference. 11 

In general, it was found that both contents were statistically significant for each curing time at 12 

the 99% confidence level, being all p-values lower than 0.001. The only exception found in this 13 

study was related to the case of the water at a 0-month curing time, where the initial water was 14 

not significant and showed a p-value of 0.889. As for the mixes with NA, no significant water 15 

influence was found, since all the water contents at each curing time were very low and similar 16 

since the beginning of the test. 17 

Furthermore, a three-way ANOVA was also carried out to determine the effect of the initial 18 

water and bitumen contents, as well as of the curing time, on the residual water content at each 19 

curing time. The test showed that all parameters were statistically significant. A Tukey’s test 20 

was conducted in order to obtain a pairwise comparison of the results, being especially 21 

interesting the fact that the water contents at each curing time were not significantly different 22 

for 6 and 12-month curing times (what consequently meant that the weights of the samples were 23 

stable after 6 months). Therefore, the curing time needed to reach full curing conditions, in 24 

terms of water loss, was statistically confirmed to be at 6 months. 25 

3.2 Indirect tensile stiffness modulus 26 

In this section, the curing time was understood as the time in which the stiffness of the mixes 27 

progressively increased until it reached a stabilized value.  28 
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As previously mentioned, an artificial and accelerated curing time of 3 days at 60ºC in an air-1 

ventilated oven was applied in order to reach a sufficient level of stiffness to cut the samples 2 

and perform the first ITSM tests without damaging the specimens. After obtaining these first 3 

results, the samples were stored at room temperature for months. The results of all these ITSM 4 

tests performed with the same samples of CDWA and NA mixes after 6, 12 and 18 months are 5 

respectively shown in Tables 4 and 5 (numerically) and in Figures 4 and 5 (graphically) below. 6 

First, it is noticeable that the level of stiffness strongly depended on the bitumen content, 7 

whereas it was barely related to the water content. At the initial time (0 months), ITSM peak 8 

values were found in CDWA and NA mixes with 5% and 4% bitumen contents, respectively. 9 

With regard to the main water content (as previously defined), NA mixes tended to reach higher 10 

ITSM values with low water contents, whereas CDWA mixes showed higher values with 15-11 

27% water contents. 12 

Considering that CDWA mixes contain more water than NA mixes, it is paradoxical for the 13 

stiffness of CDWA mixes to be generally higher at 0 months. For example, the highest ITSM 14 

was 2,537 MPa for NA mixes and 4,024 MPa for CDWA mixes, what obviously meant an 15 

increase of 59%. 16 

In addition, it was also observed that the level of stiffness increased in a non-uniform way over 17 

the curing time (Tables 6 and 7). Although the largest increments tended to be caused by 18 

intermediate water contents (15-27% for CDWA mixes and 6-12% for NA mixes), the increase 19 

in stiffness undoubtedly depended on the bitumen content. Thus, higher bitumen contents 20 

corresponded to a larger increase in stiffness over the curing time. After 6 months, the ITSM of 21 

CDWA mixes with only 3% bitumen content increased by approximately 14%. However, the 22 

same mixes with 8% bitumen content increased by over 100%, i.e., they doubled their stiffness. 23 

After the next 6 months (12 months in total), and although the increase had not been that strong, 24 

some of the mixes with 8% bitumen content increased to almost 150% (in cumulative terms), 25 

whereas the mixes with 3% bitumen content barely increased to 20%. This result indicated that, 26 

in the second period of 6 months, the mixes with higher bitumen contents experienced the 27 

fastest increase with regard to their level of stiffness. The same result was obtained for NA 28 
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mixes. After 6 months, the stiffness of the mixes with 2% bitumen content increased by 1 

approximately 10%, whereas some of the mixes with 5% bitumen content became more than 2 

100% stiffer. As observed in the second 6-month period, the same trend was confirmed and 3 

mixes such as 6% water-5% bitumen content increased to approximately 150% (in cumulative 4 

terms). 5 

After 18 months, it was observed that the level of stiffness of both CDWA and NA mixes was 6 

practically the same as the value registered after 12 months (in some cases even a bit lower). 7 

Only in mixes with the highest bitumen content, marginal growths in the level of stiffness, 8 

normally below 5%, were found. Thus, a 12-month period was considered to be the total time 9 

needed to reach full curing conditions. In addition, both mixes not only needed the same time to 10 

get fully cured, but also recorded similar increases in the level of stiffness, with peak values of 11 

almost 150% for the highest bitumen contents in both cases. 12 

It was also observed that the times at which the mixes stopped losing weight and those at which 13 

the level of stiffness stopped increasing were not exactly the same. The aging of the residual 14 

bitumen after the end of water loss could be an explanation for this stiffening behavior, which 15 

also supports, to a great extent, the predicted 6-to-18-month growing stiffness phase after which 16 

the stiffness progressively falls again (Jenkings et al., 2007). 17 

In addition to these considerations, it can also be said that, in general, CDWA mixes were stiffer 18 

than NA mixes at any time. For instance, the peak ITSM values of CDWA mixes and NA mixes 19 

were 6,169 MPa and 3,389 MPa after 6 months and 6,811 MPa and 3,580 MPa after 12 months, 20 

respectively. This result indicates that, by substituting the NA for the CDWA in the CAM, 21 

stiffness raised to 59% immediately after the artificial curing time, whereas, after 6 and 12 22 

months, this increase was 82% and 90%, respectively. Therefore, and as it has previously been 23 

stated in Gómez-Meijide and Pérez (2014b), replacing a common NA by this type of recycled 24 

aggregate increases the potential stiffness of CAM. Besides, it has also been observed that the 25 

differences between both mixes increased over the curing time and that CDWA mixes could 26 

reach higher stiffness levels than NA mixes. Furthermore, and due to the fact that the stiffness 27 

of the mixes with the highest bitumen contents increased more than that of the mixtures with 28 
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lower contents, the main contents tended to be progressively displaced toward higher bitumen 1 

contents. Therefore, the main bitumen content, which is usually obtained in the lab after a 2 

normal testing program with an artificial curing time of 2 or 3 days at 40ºC or 60ºC, can no 3 

longer be considered to be the main content since it changes over the curing time. 4 

For instance, in Figure 6 below it can be seen how, after the artificial curing time of 3 days at 5 

60ºC (t=0 months), CDWA mixes showed a main bitumen content of 5%. However, after 6, 12 6 

and 18 months at room temperature, this 5% stiffness did not increase in the same way as that in 7 

6% and 7% mixes when changing the main bitumen content from 5% to 7%. A similar trend 8 

was noticed with regard to the NA, since the most significant growths were observed in mixes 9 

with the highest bitumen content (5%). In this case, however, the initial ITSM for mixes with 10 

5% bitumen content were so low at t=0 that, even when registering top increases, they could not 11 

reach the values of the mixes with 4% bitumen content (although they surpassed the values for 12 

mixes with 3% bitumen content). As a result, when too high stiffness is not desirable (typical 13 

case when working with CAM) it is advisable to use low bitumen contents, since high contents 14 

tend to produce strong increases in stiffness. 15 

A three-way ANOVA was conducted to determine the effect of the initial water content, 16 

bitumen content and curing time on the ITSM for CAM with CDWA. The results showed that, 17 

statistically speaking, all of them were significant at the 99% confidence level (pwater<0.001, 18 

pbitumen<0.001 and ptime<0.001). The p-values obtained for the intersections were also significant, 19 

with the exception of the water-time intersection, which was not significant even at the 95% 20 

confidence level (pwater*bitumen0.001, pbitumen*time<0.001 and pwater*time=0.573>0.05). Tukey’s post-21 

hoc tests showed that all curing times produced significantly different ITSM values, except for 22 

the periods of 12 and 18 months (p=0.606>0.05). Thus, the end of the curing process after 12 23 

months could be statistically verified according to the growth in stiffness. 24 

Similar results were observed for NA mixes. The bitumen content, water content and curing 25 

time were all of them, as well as the intersections (except for, again, the water-time 26 

intersection), statistically significant at the 99% confidence level (pwater<0.001, pbitumen<0.001, 27 

ptime<0.001, pwater*bitumen<0.001, pbitumen*time<0.001 and pwater*time=0.098>0.05). Tukey’s post-hoc 28 
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tests confirmed, again, that the end of the curing process corresponded to a 12-month curing 1 

time, since all ITSM values were significantly different except for the 12 and 18-month periods 2 

(p=0.055>0.05). 3 

Finally, the same previous ANOVA tests were repeated, but changing the initial water contents 4 

for the water contents at each curing time (Tables 2 and 3), in order to assess whether the water 5 

content at each curing time also affected the level of stiffness at that exact moment. The 6 

previous conclusions about curing times were reaffirmed, but, in this case, the amount of water 7 

at each curing time was statistically non-significant (p=0.871 for CDWA mixes). Taking into 8 

account that these water contents were stabilised after the first 6-month period while the ITSM 9 

kept growing for a longer time, it seems logical to think that the former did not affect the latter 10 

in any significant way. 11 

At the same time, the fact that the initial water content in the mixing process did affect the 12 

results of ITSM tests clearly indicates that it might be closely related to a better compaction or a 13 

delay in the asphalt emulsion setting during mixing and/or compaction. As explained in other 14 

publications (Gómez-Meijide and Pérez, 2014b), it seems that, due to the great water absorption 15 

of CDWA mixes, it is necessary to add a huge amount of water during the mixing process in 16 

order to avoid the premature setting of the asphalt emulsion and the formation of clots, which 17 

can lead to a deficient coating of the aggregates during the mixing and compaction processes. 18 

When the aggregate is not that absorbent (as is the case with NA), this premature setting does 19 

not take place and, therefore, the presence of large amounts of water becomes detrimental to 20 

CAM and their curing processes. For this reason, lower main water contents for NA mixes were 21 

also studied in this piece of research. 22 

The practical point of view of all the previous considerations is that mixes with CDWA need, in 23 

general, higher water and bitumen contents in order to obtain good mix designs. Thus, they 24 

needed a minimum 9% water content to avoid the premature setting of the asphalt emulsion. 25 

Mixes with CDWA stiffer than mixes with NA can be obtained with bitumen contents higher 26 

than 4%, while softer mixes can be obtained with lower contents. In case that high stiffness is 27 

desired, higher bitumen contents (up to 6%-7%) can be used. Otherwise, it is advisable to limit 28 
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bitumen contents to 4%-5% (values just similar to the main contents obtained with NA), since 1 

higher contents involve strong increases over the curing time. In addition, the use of CDW as 2 

aggregates in CAM involves raw material savings, reductions in landfilling and other 3 

environmental impacts and, as it was explained, it can even improve some properties of CAM, 4 

compared to ordinary mixtures with NA. 5 

4. Conclusions 6 

This paper studies the feasibility of improving the environmental aspects of CAM by using 7 

recycled waste materials as recycled aggregates. This feasibility was analyzed focusing on their 8 

curing properties. After examining all these considerations, the following conclusions were 9 

drawn: 10 

1. In general, CDWA mixtures are stiffer than NA mixes at any curing time, reaching values 11 

more typical of HMA. Furthermore, their increasing rate of stiffness is higher over the curing 12 

time when compared to that of NA mixes. 13 

2. Stiffness growth required the same amount of time to reach full curing conditions for both 14 

CDWA and NA mixes. Thus, the incorporation of the CDWA did not affect negatively the 15 

length of the curing time from the point of view of stiffness. 16 

3. The source of the aggregate clearly affected the remaining amount of interstitial water in the 17 

samples after the compaction process. A high-absorption aggregate, such as CDWA, 18 

significantly retains more water, what increases the length of the water loss process. 19 

4. Although a certain correlation exists, the times at which the mixes stopped losing weight and 20 

those at which the level of stiffness stopped increasing were not exactly the same. The aging of 21 

the residual bitumen after the end of water loss could be an explanation for this stiffening 22 

behavior. 23 

5. In general, higher bitumen contents correspond to a greater increase in stiffness over the 24 

curing time. This aspect, which led to a rise in the main bitumen content toward higher values, 25 

was more noticeable in CDWA mixes. Although no standard design methods have been found 26 

in this regard, this consideration should be taken into account in long-term road projects. 27 

Therefore, further research on this aspect is still needed. 28 
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6. If desired, stiffer mixes can be obtained with CDWA than with NA and with bitumen 1 

contents higher than 4%, what can be understood as a greater potential that CDWA offer. 2 

However, as far as CAM are concerned, “stiffer” does not necessarily mean “better”. Thus, in 3 

case that more flexible pavements are desired, it would be enough just limiting the bitumen 4 

content to 4%, what would also reduce both economic and ecological costs. 5 

In view of the previous conclusions, and focusing on the stiffness and curing processes, adding 6 

a waste material, such as CDWA, into the CAM did not produce any detrimental effect, 7 

although new aspects must be taken into account when designing the mixture. In some cases, it 8 

even provided CAM with greater potential and better properties. The obtained mixes showed no 9 

negative impacts on their rheo-mechanical properties, while they have better ecological and 10 

economic features. The results found in this piece of research, have demonstrated the great 11 

potential CAM with CDWA can reach, encouraging further research on this topic. 12 
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Table 1. Characterization of Recycled and Natural Aggregates 1 

Property 
Recycled 

aggregate 

Natural 

aggregate 

Flakiness Index (UNE EN 933-3) 4.5% 19.8% 

Crushed particles (UNE EN 933-5) 89% 94% 

Sand equivalent (UNE EN 933-8) 77 78 

Los Angeles coefficient (UNE EN 1097-2) 38 14 

Bulk specific gravity (UNE EN 1097-6) 2.64 t/m
3
 2.78 t/m

3
 

Dry specific gravity (UNE EN 1097-6) 2.23 t/m
3
 2.74 t/m

3
 

SSD specific gravity (UNE EN 1097-6) 2.39 t/m
3
 2.75 t/m

3
 

Absorption (UNE EN 1097-6) 7.0% 0.5% 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 



22 
 

Table 2. Water content at each curing time (% of the Dry Aggregate Weight) of the CAM with 1 
100% of CDWA after Different Curing Times (Standard Deviations in subscript) 2 

Bitumen 

content 

Initial water content in the mixing process 

9% 12% 15% 18% 21% 24% 27% 30% 33% 36% 

 

Immediately after artificial curing time 

3% 1.42±0.22 1.49±0.21 1.47±0.28 1.50±0.32 1.48±0.44 1.28±0.30 1.25±0.11 1.42±0.16 1.39±0.21 1.44±0.27 

4% 1.56±0.27 1.83±0.25 1.79±0.26 1.63±0.39 1.54±0.35 1.52±0.32 1.40±0.23 1.38±0.32 1.47±0.39 1.45±0.41 

5% 2.24±0.29 2.22±0.23 2.17±0.25 2.28±0.28 2.39±0.24 2.25±0.28 2.30±0.17 2.20±0.42 2.09±0.41 2.01±0.64 

6% 2.86±0.32 2.80±0.21 2.35±0.24 2.42±0.26 2.59±0.30 2.84±0.24 2.91±0.07 2.83±0.33 2.69±0.36 2.62±0.30 

7% 2.90±0.34 2.91±0.26 2.86±0.24 2.79±0.21 2.90±0.24 3.10±0.25 3.22±0.21 3.15±0.43 2.75±0.41 2.73±0.52 

8% 3.10±0.20 2.98±0.21 2.91±0.20 2.82±0.17 3.17±0.27 3.57±0.28 3.74±0.29 3.88±0.28 3.60±0.23 3.51±0.19 

 

After artificial curing time + 6 months at room temperature 

3% 0.71±0.03 0.72±0.02 0.70±0.03 0.74±0.03 0.70±0.03 0.75±0.03 0.88±0.02 0.86±0.03 0.72±0.02 0.68±0.02 

4% 0.78±0.02 0.66±0.03 0.67±0.02 0.69±0.01 0.64±0.01 0.72±0.02 0.94±0.03 0.95±0.04 0.84±0.03 0.80±0.03 

5% 0.83±0.02 0.70±0.02 0.63±0.03 0.66±0.02 0.70±0.02 0.79±0.03 1.03±0.03 1.08±0.04 1.00±0.03 0.96±0.04 

6% 0.92±0.02 0.80±0.03 0.72±0.01 0.76±0.02 0.81±0.02 0.90±0.04 1.11±0.02 1.16±0.02 1.18±0.04 1.15±0.06 

7% 0.95±0.03 0.93±0.02 0.90±0.03 0.90±0.02 0.94±0.02 1.05±0.01 1.22±0.05 1.26±0.10 1.30±0.03 1.31±0.03 

8% 1.14±0.01 1.07±0.01 1.03±0.02 1.00±0.04 1.20±0.05 1.36±0.08 1.42±0.03 1.45±0.05 1.46±0.05 1.43±0.03 

 

After artificial curing time + 12 months at room temperature 

3% 0.70±0.01 0.71±0.02 0.70±0.03 0.69±0.02 0.72±0.03 0.74±0.04 0.77±0.03 0.79±0.03 0.76±0.03 0.73±0.03 

4% 0.76±0.02 0.73±0.03 0.74±0.02 0.72±0.01 0.74±0.03 0.76±0.03 0.79±0.02 0.83±0.02 0.80±0.02 0.75±0.04 

5% 0.82±0.03 0.77±0.03 0.76±0.02 0.77±0.02 0.78±0.03 0.80±0.02 0.88±0.02 0.96±0.02 0.95±0.03 0.88±0.03 

6% 0.93±0.02 0.88±0.02 0.81±0.03 0.88±0.02 0.84±0.02 0.87±0.02 0.99±0.03 1.01±0.04 1.03±0.03 1.05±0.02 

7% 0.91±0.01 0.90±0.01 0.90±0.01 0.87±0.02 0.86±0.04 0.94±0.01 1.05±0.02 1.10±0.03 1.16±0.03 1.22±0.03 

8% 1.00±0.02 1.01±0.02 0.98±0.01 0.91±0.03 0.96±0.03 1.12±0.03 1.13±0.02 1.15±0.04 1.24±0.02 1.29±0.02 

 

After artificial curing time + 18 months at room temperature 

3% 0.83±0.01 0.82±0.02 0.81±0.02 0.83±0.02 0.84±0.03 0.85±0.01 0.88±0.02 0.90±0.03 0.89±0.02 0.82±0.02 

4% 0.87±0.02 0.84±0.01 0.83±0.01 0.84±0.02 0.84±0.02 0.87±0.02 0.95±0.02 0.97±0.02 0.94±0.01 0.91±0.02 

5% 0.92±0.01 0.86±0.02 0.82±0.01 0.83±0.02 0.85±0.01 0.90±0.02 1.03±0.02 1.12±0.01 1.06±0.02 0.96±0.03 

6% 0.95±0.02 0.92±0.02 0.85±0.02 0.89±0.02 0.95±0.01 0.97±0.01 1.11±0.03 1.12±0.02 1.15±0.03 1.17±0.02 

7% 0.98±0.02 1.00±0.03 0.98±0.02 0.94±0.01 0.96±0.02 1.01±0.02 1.12±0.02 1.14±0.03 1.24±0.02 1.32±0.03 

8% 1.07±0.02 1.12±0.02 1.13±0.02 1.04±0.01 1.08±0.02 1.16±0.03 1.17±0.02 1.18±0.03 1.31±0.03 1.33±0.03 
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Table 3. Water content at each curing time (% of the Dry Aggregate Weight) of the CAM with 1 
100% of NA after Different Curing Times (Standard Deviations in subscript) 2 

Bitumen 

content 

Initial water content in the mixing process 

3% 6% 9% 12% 15% 

 

Immediately after artificial curing time 

2% 0.23±0.03 0.20±0.05 0.15±0.02 0.14±0.02 0.14±0.04 

3% 0.09±0.03 0.07±0.02 0.12±0.02 0.06±0.02 0.08±0.02 

4% 0.15±0.02 0.15±0.06 0.34±0.10 0.28±0.09 0.27±0.06 

5% 0.27±0.10 0.71±0.07 0.79±0.08 0.96±0.12 0.54±0.18 

 

After artificial curing time + 6 months at room temperature 

2% 0.14±0.03 0.17±0.01 0.18±0.03 0.18±0.004 0.16±0.08 

3% 0.11±0.01 0.10±0.004 0.13±0.01 0.12±0.01 0.17±0.03 

4% 0.10±0.01 0.13±0.01 0.13±0.01 0.11±0.01 0.13±0.01 

5% 0.13±0.01 0.14±0.01 0.20±0.01 0.30±0.09 0.22±0.04 

 

After artificial curing time + 12 months at room temperature 

2% 0.13±0.014 0.12±0.010 0.12±0.022 0.10±0.003 0.15±0.07 

3% 0.11±0.006 0.09±0.013 0.10±0.006 0.09±0.010 0.11±0.014 

4% 0.10±0.007 0.10±0.002 0.11±0.001 0.10±0.010 0.11±0.004 

5% 0.10±0.007 0.11±0.003 0.12±0.007 0.17±0.030 0.16±0.012 

 

After artificial curing time + 18 months at room temperature 

2% 0.12±0.006 0.10±0.002 0.10±0.001 0.10±0.003 0.16±0.003 

3% 0.10±0.003 0.08±0.020 0.09±0.002 0.08±0.005 0.12±0.003 

4% 0.10±0.004 0.11±0.002 0.12±0.001 0.10±0.004 0.11±0.003 

5% 0.10±0.002 0.12±0.003 0.12±0.003 0.12±0.001 0.15±0.005 
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Table 4. Stiffness (in MPa) of the CAM with 100% of CDWA after Different Curing Times 1 
(Standard Deviations in subscript) 2 

Bitumen 

content 

Initial water content in the mixing process 

9% 12% 15% 18% 21% 24% 27% 30% 33% 36% 

 

Immediately after artificial curing time 

3% 2379±294 2622±282 2490±302 2710±287 3043±330 3312±219 3596±259 3566±298 3558±214 3570±111 

4% 2741±287 3013±223 3318±266 3182±305 3380±240 3595±188 3667±206 3657±313 3601±363 3583±210 

5% 3024±316 3723±266 4024±245 3854±267 3912±346 4001±356 3766±286 3640±255 3618±209 3553±196 

6% 3515±270 3642±254 3418±198 3866±223 3896±207 3786±116 4006±154 3799±289 3586±186 3451±175 

7% 3403±268 3321±209 2844±126 2987±173 3079±240 2983±279 3421±243 3812±280 3490±238 3213±146 

8% 3288±164 2837±191 2668±193 2394±211 2311±363 2269±391 2565±112 2707±178 2724±103 2526±95 

 

After artificial curing time + 6 months at room temperature 

3% 2571±391 3021±369 3328±399 3215±281 3354±175 3727±277 3921±268 3994±427 3912±360 3913±142 

4% 3498±405 4011±420 4239±432 4120±334 4400±341 4517±231 4259±254 4121±452 4153±384 4343±219 

5% 4489±437 5017±411 5368±456 5478±446 5412±487 5529±434 5007±297 4770±520 4772±309 4889±629 

6% 5010±398 5303±364 5458±358 6004±498 6010±302 5988±265 5816±290 5524±199 5430±253 5487±377 

7% 5512±506 5576±307 5497±267 5491±387 5499±317 5666±310 5844±388 6169±200 6012±335 5991±323 

8% 5374±407 5461±522 5274±458 4772±504 4759±546 4934±567 5339±335 5524±270 5607±234 5584±212 

 

After artificial curing time + 12 months at room temperature 

3% 2883±409 3229±312 3490±600 3324±341 3409±222 3924±368 4220±354 4189±440 4212±287 4163±112 

4% 3629±418 4321±389 4507±531 4430±377 4479±321 4858±347 4433±352 4461±469 4442±290 4532±286 

5% 4761±351 5274±379 5511±484 5642±430 5754±457 5827±406 5251±379 5123±808 5223±271 5379±569 

6% 5362±328 5644±298 5784±375 6502±458 6645±225 6592±187 6139±387 5888±162 5940±223 6020±315 

7% 5738±673 6012±268 6230±367 5993±452 6089±287 6177±290 6603±307 6811±174 6471±299 6356±297 

8% 5543±385 5987±422 5787±700 5370±497 5751±613 5614±270 5964±258 6240±234 6236±205 6147±235 

 

After artificial curing time + 18 months at room temperature 

3% 2890±418 3294±396 3442±482 3389±424 3583±332 4080±290 3844±314 3912±406 3915±254 4051±156 

4% 3687±425 4487±415 4399±478 4503±446 4717±321 4753±276 4362±326 4221±338 4228±212 4371±253 

5% 4993±395 5554±401 5681±492 5767±487 5808±422 5770±462 5019±352 4900±861 4893±222 5124±524 

6% 5502±364 5740±317 6133±299 6541±402 6653±200 6390±179 6132±370 5723±189 5751±198 5910±323 

7% 5934±755 6170±290 6221±298 6189±410 6031±218 6304±256 6917±307 7007±151 6497±238 6333±360 

8% 6061±377 6001±389 5720±603 5423±443 5439±580 5669±264 6161±305 6459±179 6376±188 6181±462 
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Table 5. Stiffness (in MPa) of the CAM with 100% of NA after Different Curing Times 1 
(Standard Deviations in subscript) 2 

Bitumen 

content 

Initial water content in the mixing process 

3% 6% 9% 12% 15% 

 

Immediately after artificial curing time 

2% 1844±147 1619±21 1387±185 1469±83 1691±212 

3% 2351±184 2298±67 2137±217 2308±112 2374±54 

4% 2537±296 2197±210 2137±381 1795±222 2184±198 

5% 1459±474 963±149 931±380 1310±524 1850±302 

 

After artificial curing time + 6 months at room temperature 

2% 1871±132 1653±31 1518±258 1714±49 1971±202 

3% 2532±92 2610±34 2432±273 2476±154 2716±161 

4% 3389±368 2862±384 2780±309 2621±106 3277±394 

5% 2326±397 1872±116 1923±416 2299±365 2949±171 

 

After artificial curing time + 12 months at room temperature 

2% 2208±186 1858±59 1663±266 1848±101 1887±297 

3% 2660±68 2815±140 2594±326 2671±77 2780±110 

4% 3580±410 3365±363 2953±422 2856±214 3156±128 

5% 2798±448 2321±158 2072±407 2549±398 3481±161 

 

After artificial curing time + 18 months at room temperature 

2% 2297±269 1829±120 1784±227 1792±131 1905±177 

3% 2806±117 2795±61 2630±174 2813±101 2810±231 

4% 3723±474 3325±397 3143±255 2996±95 3404±240 

5% 2933±423 2372±210 2128±371 2594±305 3408±117 
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Table 6. Cumulative increased stiffness (% of the stiffness after the artificial curing time) of 1 
the CAM with 100% of CDWA after different curing times at room temperature 2 

Bitumen 

content 

Initial water content in the mixing process 

9% 12% 15% 18% 21% 24% 27% 30% 33% 36% 

 

Increased stiffness after 6 months at room temperature 

3% 8.1 15.2 33.7 18.6 10.2 12.5 9.0 12.0 9.9 9.6 

4% 27.6 33.1 27.8 29.5 30.2 25.6 16.1 12.7 15.3 21.2 

5% 48.4 34.8 33.4 42.1 38.3 38.2 33.0 31.0 31.9 37.6 

6% 42.5 45.6 59.7 55.3 54.3 58.2 45.2 45.4 51.4 59.0 

7% 62.0 67.9 93.3 83.8 78.6 89.9 70.8 61.8 72.3 86.5 

8% 63.4 92.5 97.7 99.3 105.9 117.5 108.1 104.1 105.8 121.1 

 

Increased stiffness after 12 months at room temperature 

3% 21.2 23.2 40.2 22.7 12.0 18.5 17.4 17.5 18.4 16.6 

4% 32.4 43.4 35.8 39.2 32.5 35.1 20.9 22.0 23.4 26.5 

5% 57.4 41.7 37.0 46.4 47.1 45.6 39.4 40.7 44.4 51.4 

6% 52.5 55.0 69.2 68.2 75.7 74.1 53.2 55.0 65.6 74.4 

7% 68.6 81.0 119.1 100.6 97.8 107.1 93.0 78.7 85.4 97.8 

8% 68.6 111.0 116.9 124.3 148.9 147.4 132.5 130.5 128.9 143.3 

 

Increased stiffness after 18 months at room temperature 

3% 21.5 25.6 38.2 25.1 17.7 23.2 6.9 9.7 10.0 13.5 

4% 34.5 48.9 32.6 41.5 39.6 32.2 19.0 15.4 17.4 22.0 

5% 65.1 49.2 41.2 49.6 48.5 44.2 33.3 34.6 35.2 44.2 

6% 56.5 57.6 79.4 69.2 70.8 68.8 53.1 50.6 60.4 71.3 

7% 74.4 85.8 118.7 107.2 95.9 111.3 102.2 83.8 86.2 97.1 

8% 84.3 111.5 114.4 126.5 135.4 149.8 140.2 138.6 134.1 144.7 
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Table 7. Cumulative increased stiffness (% of the stiffness after the artificial curing time) of 1 
the CAM with 100% of NA after different curing times at room temperature 2 

Bitumen 

content 

Initial water content in the mixing process 

3% 6% 9% 12% 15% 

 

Increased stiffness after 6 months at room temperature 

2% 1.5 2.1 9.5 16.7 16.6 

3% 7.7 13.6 13.8 7.3 14.4 

4% 33.6 30.3 30.1 46.0 50.0 

5% 59.5 94.4 106.5 75.5 59.4 

 

Increased stiffness after 12 months at room temperature 

2% 19.8 14.8 19.9 25.8 11.6 

3% 13.2 22.5 21.4 15.7 17.1 

4% 41.1 53.2 38.2 59.1 44.5 

5% 91.8 141.0 122.4 94.6 88.2 

 

Increased stiffness after 18 months at room temperature 

2% 24.6 13.0 28.6 22.0 12.7 

3% 19.4 21.6 23.1 21.9 18.4 

4% 46.8 51.3 47.1 66.9 55.8 

5% 101.1 146.3 128.5 98.0 84.2 
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