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Abstract 

The implementation of the highly active antiretroviral therapy (HAART) and the combination of anti-HIV drugs have 

resulted in longer survival and a better quality of life for the people infected with the virus. In this work, a method is 

proposed to map complex networks of AIDS prevalence in the US counties, incorporating information about the 

chemical structure, molecular target, organism, and results in preclinical protocols of assay for all drugs in the 

cocktail. Different machine learning methods were trained and validated to select the best model. The Shannon 

information invariants of molecular graphs for drugs, and social networks of income inequality were used as input. 

The nodes in molecular graphs represent atoms weighed by Pauling electronegativity values, and the links correspond 

to the chemical bonds. On the other hand, the nodes in the social network represent the US counties and have Gini 

coefficients as weights. We obtained the data about anti-HIV drugs from the ChEMBL database and the data about 

AIDS prevalence and Gini coefficient from the AIDSVu database of Emory University. Box–Jenkins operators were 

used to measure the shift with respect to average behavior of drugs from reference compounds assayed with/in a 

given protocol, target, or organism. To train/validate the model and predict the complex network, we needed to 

analyze 152,628 data points including values of AIDS prevalence in 2310 counties in the US vs. ChEMBL results for 

21,582 unique drugs, 9 viral or human protein targets, 4856 protocols, and 10 possible experimental measures. The 

best model found was a linear discriminant analysis (LDA) with accuracy, specificity, and sensitivity above 0.80 in 

training and external validation series. 
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1. Introduction 

The rates of disease progression, opportunistic infections, and mortality have decreased with the 

implementation of the highly active antiretroviral therapy (HAART), and the combination of anti-HIV 

drugs has resulted in longer survival and a better quality of life for the people infected with the virus [1]. 

The infections with the HIV are commonly treated with drug combinations consisting of at least three 

different antiretroviral drugs. The most common drug treatment administered to patients consists of two 

nucleoside reverse transcriptase inhibitors combined with either a non-nucleoside reverse transcriptase 

inhibitor, or a “boosted” protease inhibitor or an integrase strand transfer inhibitors (INSTIs)-based 

regimen. These treatments have all resulted in decreased HIV RNA levels (< 50 copies/ml) at 48 weeks 

and increased CD4 cell counts in the majority of patients [2]. The targets of anti-HIV drugs are proteins 

present in the virus or in the host. The most important are: the reverse transcriptase enzyme (RT) that 

converts viral RNA genomes into DNA [3], the integrase enzyme (IN) that facilitates the incorporation of 

HIV-1 proviral DNA into the host cell genome, and HIV protease (PR), which is essential for viral 

maturation [4] and [5]. Other important viral proteins are envelope glycoprotein (Env), responsible for 

binding to specific target cell receptors and facilitating HIV entry [6]. On the other hand, chemokine co-

receptors like CXCR4 and/or CCR5, necessary for HIV-1 entry [7], and C-C chemokine receptor types 3 

and 2 (alternatives with CD4 for HIV-1 infection) [8] are important targets in the human host. 

 

Subsequently, the antiretroviral therapy includes: the fusion and entry inhibitors, whose use is 

normally reserved for people who have taken a lot of anti-HIV drugs in the past. The enfuvirtide belongs 

to the fusion inhibitors; it inhibits the entry of HIV into the CD4 cell [9]. The CCR5 inhibitor, Maraviroc, 

is an entry inhibitor; it binds to the CCR5 receptor on the membrane of human cells such as CD4 cells. 

This binding prevents the interaction of HIV-1 gp120 and human CCR5, which is necessary for entry into 

the cell [10]. The nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) are another type of anti-

HIV drugs. When the HIV virus enters a healthy cell, it makes replicas of itself by using an enzyme called 

RT, which is responsible for transcribing viral RNA into double stranded DNA. The NRTIs work because 

they block that enzyme. Some examples of this class of drugs are zidovudine, didanosine, zalcitabine, 

stavudine, lamivudine, abacavir, tenofovir, and emcitrabine [11]. There are also non-nucleoside reverse 

transcriptase inhibitors (NNRTIs), whose interaction with RT induces conformational changes that inhibit 

the catalytic activities of the enzyme. They are characterized by their specificity for HIV-1, which makes 

them very selective inhibitors of the virus [12]. Five NNRTIs (nevirapine, delavirdine, efavirenz, 

etravirine, and rilpivirine) are currently approved by the FDA. Moreover, all of them except for 

delavirdine have been approved by the European Union [2]. The integrase inhibitors are another 

important class of anti-HIV drugs. The HIV-1 IN transfers the viral encoded DNA into the host 

chromosome, which is a necessary event in retrovirus replication [13]. The raltegravir and dolutegravir 

are examples of integrase inhibitors [14] and [15]. Lastly, the protease inhibitors are important 

compounds; they prevent maturation of the virus protein by competitively inhibiting HIV PR, because in 

HIV-1, as in all retroviruses, the production of infectious virus invariably requires an active viral protease 

[16]. Some examples of this kind of drugs are amprenavir, atazanavir, indinavir, nelfinavir, lopinavir, 

saquinavir, tipranavir, and ritonavir [17] and [18]. 

 

Some examples of combination of anti-HIV drugs approved by the FDA are Atripla®, which contains 

two NRTIs, Emtriva® (emtricitabine) and Viread® (tenofovir disoproxil fumarate) and an NNRTI, 

Sustiva® (efavirenz) [19]. Complera® contains a combination of two NRTIs (emtricitabine and tenofovir 

disoproxil fumarate) and an NNRTI (rilpivirine) [20]. Stribild® contains a combination of an INSTI 

(elvitegravir), a pharmacokinetic enhancer (cobicistat), an NRTI (emtricitabine), and a nucleotide reverse 

transcriptase inhibitor N(t)RTI (tenofovir disoproxil fumarate) [21]. Combivir® contains two NRTIs 

(zidovudine and lamivudine) [22]. Truvada® contains two NRTIs (emtricitabine/tenofovir) [23]. 

Kaletra® contains two protease inhibitors (lopinavir and ritonavir) [24]. Trizivir® contains a fixed-dose 

combination of three NRTIs (abacavir sulfate, lamivudine, and zidovudine) [25]. Epzicom® or Kivexa® 

in Europe contains two NRTIs (abacavir sulfate, lamivudine) [26]. 

 

In this context, the computational methods such as QSAR models are used to predict the property of a 

chemical compound, using information obtained from its structure [27]. To increase the accuracy, 

artificial intelligence techniques have been applied to a quantitative structure–activity relationships 

(QSAR)- or quantitative structure–property relationships (QSPR)-analysis since the late 1980s [28], 

[29] and [30]. Gupta et al. [31] studied the curcumine derivatives as HIV-1 integrase inhibitors, and they 

concluded that their model has a good predictive power for the screening of new molecules. 

Muthukumaran et al. [32] developed anti-HIV activity models, identifying compounds with favorable 
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interactions. Debnath [33] studied the applications of 3D-QSAR studies in anti-HIV-1 drug design and he 

stated that the structure-based drug design had been successful in identifying several drugs that were 

available at the time for the treatment of HIV-1, and other applications such as the design of effective 

analogs. Some authors [34], [35], [36] and [37] indicated that the results of their in silico studies provided 

a contribution to the design of novel active molecules for the inhibition of some target proteins involved 

in the HIV. 

 

A useful model must be multi-level to account for molecular and population structure. Different types 

of input data are needed. At the beginning, we need the information about the chemical structure of the 

antiretroviral drugs and preclinical information, such as targets, organisms, assay protocols, etc. 

Afterwards, we need to incorporate the population structure descriptors that quantify the social and 

economic factors affecting the population selected for the study. Lastly, as populations in modern society 

are not close systems we should quantify also the effect of interaction of the population under study with 

other populations that may influence the pharmacoepidemiology study. We should focus on three 

characteristics of the problem resultant from the connection of chemical, pharmacological, and 

epidemiological information: (1) multi-targeting, (2) multi-objective, and/or (3) multi-scaling features. 

The interaction of the molecules with more than one target refers to the term multi-targeting [38], 

[39] and [40]. Multi-objective optimization problem (MOOP) [41], [42], [43], [44] and [45] refers to the 

necessity of prediction/optimization of results for different experimental measures obtained in different 

assays. Lastly, multi-scaling refers to the different structural levels of the organization of matter, the input 

variables. It means that we need to develop models able to link the changes in the AIDS prevalence in a 

given (a
th

) population with the changes in the biological activity of the drug (d
th

), due to variations in the 

chemical structure, detected in preclinical assays carried out under a set of j
th

 boundary conditions of 

assay (bj). 

 

There are online resources containing epidemiological data of AIDS prevalence. One of these 

databases is AIDSVu (http://aidsvu.org), created by researchers at the Rollins School of Public Health at 

Emory University. They collected state and county-level information for AIDS prevalence in the United 

States. AIDSVu gathers the information from the US Centers for Disease Control and Prevention's (CDC) 

national surveillance database. On the other hand, there is ChEMBL (https://www.ebi.ac.uk/chembl/) 

[46], [47] and [48], which is one of the biggest bioactivity database with a large number of drug-like 

bioactive compounds. It includes data from life science experiments. In addition, there are now > 1.3 

million distinct compound structures and 12 million bioactivity data points. The data are mapped to 

> 9000 targets, out of which 2827 are human protein targets [48]. 

 

In addition, Shannon's entropy measures are universal parameters used to codify biologically relevant 

information in many systems. The seminal paper “A Mathematical Theory of Communications,” written 

by Claude Elwood Shannon [49], led to the creation of concept of information theory (IT). The IT 

established a connection with theoretical physics and chemistry through the concept of entropy, a link that 

today is firmly established. It has also been applied with some success to other disciplines [50]. 

Information theory in systems biology has been successfully applied to the identification of optimal 

pathway structures, mutual information and entropy as system response in sensitivity analysis, and 

quantification of input and output information [51]. 

2. Materials and methods 

Quantitative descriptors of the molecular graph of the drug can be used. In particular, some of these 

parameters are useful to quantify information about the properties of biological, molecular, and/or social 

systems (information measures). We used the information indices implemented in the DRAGON software 

version 5.3 [52]. This software calculates different information indices, such as molecular information 

indices (MIk) [52], Balaban's information indices (BIk) [53] and [54], and neighborhood symmetry indices 

(ICk) [52] and [55]. In this work, only the MIk information indices were used. The calculation of the MIk 

requires the use of different input parameters. Some of these parameters are the number of elements or 

nodes (atoms) of the molecular graph G, the number of different classes of equivalence G, and ng is the 

number of elements in the g
th

 class, the logarithm is taken at base 2 for measuring the information content 

in bits, nAT is the number of molecule atoms (hydrogen included). Other parameters are 
g
fi, which is the 

number of distances from the vertex vi, equal to g, ηi is the atom eccentricity (i.e., the maximum 

topological distance from the vertex vi). The parameter nSK is the number of non-H atoms. The symbol 

σi, which is the i
th

 vertex distance degree (i.e., sum of topological distances from the considered atom to 
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any other atom), W is the Wiener index, dij is the topological distance between atoms i and j. In addition, 

there are two basic criteria in several information indices. The first one is the equality criterion, which 

implies that elements are considered equivalent if their values are equal (according to this criterion ng is 

the number of equivalent elements, n is the total number of elements and the sum runs over all the 

equivalence classes). The second one is the magnitude criterion, where each element is considered as an 

equivalence class whose cardinality, i.e., number of elements, is equal to the magnitude of the element 

(according to this criterion, ng is the value of each element, n is the sum of the values of all the elements 

and the sum runs over all the elements). The names, symbols, and formula for the calculation of different 

MIk descriptors is summarized in Table 1, see details on the following references [52], [56], [57], [58], 

[59], [60] and [61]. 

Table 1. Names, symbols, and formula for the calculation of different Mlk descriptors. 

Symbol D-symbol Name Formula Ref. 

     

Itot I Total information content 𝐼 = 𝑛 log2 𝑛 − ∑ 𝑛𝑔 log2 𝑛𝑔

𝐺

𝑔=1

 [56] 

Iavg Ī Mean information content Ι = − ∑
𝑛𝑔

𝑛
log2

𝑛𝑔

𝑛

𝐺

𝑔=1

 [56] 

Isiz ISIZ 
Information index on 

molecular size 
ISIZ = nAT. log2 𝑛 AT [57] 

Iac IAC 
Total information index on 

atomic composition 
𝐼 = 𝑛 log2 𝑛 − ∑ 𝑛𝑔 log2 𝑛𝑔

𝐺

𝑔=1

 [58] 

Iaac AAC 
Mean information index on 
atomic composition 

Ι = − ∑
𝑛𝑔

𝑛
log2

𝑛𝑔

𝑛

𝐺

𝑔=1

 [58] 

Idet, Ide IDET, IDE 

Total and mean information 

content on the distance 

equality 

Equality of topological distances in an H-depleted molecular 
graph 

[59] 

Idmt, Idm IDMT, IDM 

Total and mean information 

content on the distance 

magnitude 

Distribution of topological distances according to their 
magnitude in an H-depleted molecular graph  

Idde IDDE 
Mean information content on 

the distance degree equality 
Partition of vertex distance degrees according to their equality 

 

Iddm IDDM 
Mean information content on 
the distance degree magnitude 

Partition of vertex distance degrees according to their 
magnitude  

Ivde IVDE 
Mean information content on 

the vertex degree equality 
Partition of vertices according to vertex degree equality 

 

Ivdm IVDM 
Mean information content on 

the vertex degree magnitude 
Partition of vertices according to the vertex degree magnitude [60] 

Ihvcpx HVcpx Graph vertex complexity index HVcpx =
1

nSK
· ∑ (− ∑  𝑔

𝜂𝑙

𝑔=0

f nSK. log2  𝑔f nSK)

nSK

𝑖=1

 [60] 

Ihdcpx HDcpx 
Graph distance complexity 

index 
HDcpx = ∑

𝜎𝑖

2𝑊
· (− ∑

𝑑𝑖𝑗

𝜎𝑖

· log2

𝑑𝑖𝑗

𝜎𝑖

nSK

𝑗=1

)

nSK

𝑖=1

 [60] and [61] 
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2.1. ALMA models 

We have developed a similar approach called ALMA (Assessing Links with Moving Averages) using 

also Moving Average (MA) operators. We have data about a large number of experiments developed in 

very different assay conditions (bj) (targets, organisms, protocols, experimental measures, etc.).The use of 

MA operators is a potential solution; these operators were used in a time-series analysis with a similar 

purpose [62] in the same line of thinking as the Autoregressive Integrated Moving-Average (ARIMA) 

conducted by Box and Jenkins [63]. 

 

We used as inputs of the model the MIk of a given drug (d
th

) and the Shannon information indices (I
a
0) 

for the population, i.e., the US County (a
th

). This model may predict the formation of links (Lac = 1) or not 

(Lac = 0) in a complex network of AIDS pharmacoepidemiology in the US. In the present context, we can 

use MA of networks (drugs, proteins, organisms, etc.) nodes properties to predict the observed variable 

Lac(bj)obs in a specific sub-set of boundary conditions of assay (bj). This variable quantifies the formation 

of links between nodes. There are two different types of nodes making up this specific network. The first 

node represents the US counties (a
th

) and the second type of node characterizes the drugs (d
th

). The value 

is Lac(bj)obs = 1 when the cocktail–disease ratio = CDRac(bj) > cutoff = 0.001 and Lac(bj)obs = 0 otherwise. 

In our previous work [64], we have used a drug–disease ratio DDRac(bj) for a single drug to calculate 

Lac(bj) values, as this parameter is not applicable to drug cocktails. In the present work we have defined 

CDRac(bj) = [zc/Da]. The term zc = (z1 + z2 + z3)/3 is the average of the z-scores z1, z2, z3 of the biological 

activity for each drug (d
th

) present in the cocktail assayed in the sets of conditions (bj).The term Da is the 

AIDS prevalence rate for the county (a
th

). We calculated each zeta as: 

zd(bj) = δj · zd(bj) = δj · [vd(bj) − AVG(v(bj))]/SD(v(bj)). In this operator, vd(bj) is the value of biological 

activity (EC50, IC50, Ki, etc.) reported in the ChEMBL database for the drug assayed in the set of 

conditions. The parameter δj is similar to a Kronecker delta function. The parameter δj = 1 when the vd(bj) 

is directly proportional to the biological effect (e.g., Ki values, Activity (%) values, etc.). Conversely, 

δj = − 1 when vd(bj) is in inverse proportion to the biological effect (e.g., EC50 values, IC50 values, etc.). 

The parameter zd(bj) is the z-score of the biological activity that depends on the AVG and SD functions. 

These functions are the average and standard deviation of vd(bj) for all drugs assayed under the same 

conditions. The general formula for a linear model developed using the average values of MIk of the 

compounds used in a given drug cocktail was as follows: 

 

Sac = ∑ ek ⋅ (
1

3
∑ Id

k

d=3

d=1

)

k=13

k=1

+ ∑ ∑ ekj ⋅ [
1

3
∑(ΔId

kj)

d=3

d=1

]

j=4

j=1

k=13

k=1

+ ea ⋅ Ia
0 + e0

= ∑ ek ⋅ (
1

3
∑ Id

k

d=3

d=1

)

k=4

k=1

+ ∑ ekj ⋅ [
1

3
∑(Id

k − <Id
k>j)

d=3

d=1

]

j=4

j=1

+ ea ⋅ Ia
0 + e0

= ∑ ′ek ⋅ Id
k

k=13,c,d=3

k=d=1

+ ∑ ′ekj ⋅ (Id
k − <Id

k>j)

k=13,j=4,d=3

k=j=d=1

+ ea ⋅ Ia
0 + e0

 

(12) 

 

 

The reader should note that the predicted output, or dependent variable Sacj is not a discrete variable, 

but a real-valued numerical score. However, the variable is directly proportional to the observed variable 

(Lac). In general, b1, b2, b3, and b4 refer to different sets of boundary conditions for the assay, targets, 

cellular lines, organisms, experimental measures, etc. Therefore, b1 = represents the experimental 

measures of activity for the cocktail drugs. In analogy, b2 refers to the protein targets. In addition, b3 

refers to the organisms that expressed the targets of these compounds. Lastly, b4 represents different assay 

protocols used to test the activity of these compounds per se. The inputs used to perform the model were 

the MIk (13 information indices) of each anti-HIV drug making up the cocktail (152,628 anti-HIV 

cocktails), and with these data, we calculated the average of the three molecular information indices of 

the drug cocktail. In addition, we used as input the average of the MA operators of the drugs that make up 

the cocktail. Consequently, to calculate the MA, we needed the value and the average of the drug 

information indices under the same conditions. Fig. 1 shows a scheme with some examples that describe 
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the methodology used to calculate the inputs corresponding to the drugs. The MIk of the molecules, the 

average values of the different boundary conditions, and the information on the US counties are in Table 

SM1, Table SM2 and Table SM3 of the supplementary material, respectively. 

 

 

𝛥Id
kj = I k

d − <Id
k>j (13) 

  

<I k
d >j =

1

nj

∑ Id
k

d=nj

d=1

. 

(14) 

 

 
 

 
Fig. 1. Calculation details of the inputs of the anti-HIV drugs (left branch of Fig. 2). 

2.2. Shannon information indices of income inequality 

We can calculate an information index to quantify the possibility of spreading/prevalence of AIDS in 

different US counties. Let be an initial situation in which each county has a value of AIDS prevalence rate 

Da at the initial time (t0 = 2010). A simple information index (I
a
0) was used herein for income inequality 

in the different counties that year. This index depends on the probability 
0
pa, with which the county 

presents certain income inequality. This probability 
0
pa = Ga was set herein. In this definition, Ga is the 

Gini measure of income inequality in the county (a
th

) of a given state in the US [65]. The class of 

information index selected was the Shannon entropy index [66]. 

 

 

Ia
0 = − pa

0 ⋅ 𝑙𝑜𝑔( pa
0 ) (7) 
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2.3. Machine learning models 

The dataset used to train the model includes N = 91,578 statistical cases. The dataset used to validate 

the model includes N = 30,525 statistical cases. The dataset used for selection consisted of 30,525 

statistical cases. The cases used in the validation set (external validation set) were never used to train the 

model. Overall, training + validation + selection sets include N = 152,628 statistical cases. The amount of 

cases with Lac(bj)obs = 1 was 17,381 and that with Lac(bj)obs = 0 was 135,247. In order to seek the 

coefficients of the model, we can use linear or non-linear classification techniques. In this work, we used 

two different machine learning (ML) algorithms, a linear discriminant analysis (LDA) and artificial 

neural networks (ANNs). In some cases, the machine learning algorithms are carried out using as input 

the drug information indices and their Box–Jenkins MA operators. However, in other cases, a pre-

processing of data with dimensionality reduction techniques was performed. The dimensionality 

reduction techniques used are of the type determined by the factor analysis. We carried out a factor 

analysis using two different methods to extract the principal components. The methods used were the 

principal components analysis (PCA) and minimum residual method (MINRES). The combination of 

these pre-processing algorithms with machine learning resulted in two different techniques PCA-LDA 

and MINRES-LDA. We never combined PCA and MINRES with ANNs. We also trained different 

topologies of ANNs including multilayer perceptrons (MLPs) and linear neural networks (LNNs). We 

also used the LDA as variable selection strategy to make a selection out of the 66 input variables, and 

afterwards we trained the MLP network. We summarized the previous steps of the algorithm in Fig. 2. 

The statistical parameters used to support the model were number of cases in training (N), and overall 

values of, specificity (Sp), sensitivity (Sn), and accuracy (Ac). All these methods are implemented in the 

STATISTICA 6.0 [67] and [68] software package. 

 
 

 
Fig. 2. Flowchart to construct the ML methods for the AIDS pharmacoepidemiology 

model in the US. 
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3. Results and discussion 

3.1. Training and validation of the model 

In our previous work [64], we have developed a linear model using Balaban information indices for 

each anti-HIV drug from the ChEMBL database (unique drugs = 21,582, total data points = 43,249) and 

Shannon entropy based on income inequality of the US counties. The model has values of Ac, Sp, and Sn 

above 0.76 in training and external validation series. However, this previous model can predict outputs 

for only one drug each time. This previous model is unable to predict outputs for cocktails of two or three 

drugs. In this work, we obtained the first model useful to map the effect of cocktails of anti-HIV drugs vs. 

AIDS epidemiology using the present methodology based on ML-ALMA classifiers. We used 13 MIk, 52 

MA operators ΔI
d

kj for the different assay conditions for drugs and 1 I
a
0 operator for the US counties. 

First, we used LDA to seek linear models. The LDA was used as pattern classification technique, using a 

forward stepwise procedure as variable selection strategy. The LDA model has 23 variables, an accuracy 

rate of 80.39% in the training set, and an accuracy rate of 80.53% in the external validation set (see 

Table 2). In Table 3, we depict the description of the variables included in the LDA and the coefficients 

of these variables in the model. 

Table 2. Machine learning classifiers based on MIk information indices. 

Models Model 
 

Training Selection Validation 

         

 
profile a Observed Lac = 0 Lac = 1 Lac = 0 Lac = 1 Lac = 0 Lac = 1 

LDA 66-23-1 

Parameter a Sn Sp Sn Sp Sn Sp 

Predicted 83.64 77.15 – – 83.69 77.37 

Lac = 0 67971 2356 – – 45183 1599 

Lac = 1 13292 7959 – – 8801 5467 

MLP 66-26-1 

Parametera Sn Sp Sn Sp Sn Sp 

Predicted 61.31 60.97 61.47 62.13 60.77 59.36 

Lac = 0 49830 4025 16618 1354 16381 1452 

Lac = 1 31433 6290 10414 2139 10571 2121 

LDA-MLP 19-10-1 

Parameter a Sn Sp Sn Sp Sn Sp 

Predicted 77.07 76.52 77.42 76.0 76.88 76.77 

Lac = 0 62626 2422 20928 838 20722 830 

Lac = 1 18637 7893 6104 2655 6230 2743 

LNN 66-1 

Parameter a Sn Sp Sn Sp Sn Sp 

Predicted 82.27 81.31 82.57 81.93 82.11 81.52 

Lac = 0 66856 1927 22322 631 22132 660 

Lac = 1 14407 8388 4710 2862 4820 2913 

PCA-LDA 8-7-1 

Parameter a Sn Sp Sn Sp Sn Sp 

Predicted 50.98 70.66 – – 50.94 70.93 

Lac = 0 41434 3026 – – 27504 2054 

Lac = 1 39829 7289 – – 26480 5012 

MINRES-LDA 8-5-1 

Parameter a Sn Sp Sn Sp Sn Sp 

Predicted 49.80 72.06 – – 50.02 72.06 

Lac = 0 40476 2882 – – 27007 1974 

Lac = 1 40787 7433 – – 26977 5092 

         

 
a Parameter: Sp = Specificity, Sn = Sensitivity. Columns: Observed classifications Rows: Predicted classifications 
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Table 3. Variables included in the LDA and coefficients of the model. 

Index Function Description 

   

AAC 74.35 Mean information index on atomic composition 

IDE 1634.66 Mean information content on the distance equality 

IVDM 432.67 Mean information content on the vertex degree magnitude 

HVcpx − 1988.73 Graph vertex complexity index 

HDcpx − 759.29 Graph distance complexity index 

ΔAAC(c1) − 97.34 MA for AAC of drugs with the same experimental measure 

ΔIDE(c1) − 1111.82 MA for IDE of drugs with the same experimental measure 

ΔIDM(c1) − 955.75 MA for IDM of drugs with the same experimental measure 

ΔIVDM(c1) 1472.82 MA for IVDM of drugs with the same experimental measure 

ΔHVcpx(c1) 1028.83 MA for HVcpx of drugs with the same experimental measure 

ΔHDcpx(c1) 3011.83 MA for HDcpx of drugs with the same experimental measure 

ΔHVcpx(c2) 0.45 MA for HDcpx of drugs with the same protein 

ΔAAC(c3) 23.96 MA for AAC of drugs with the same organism 

ΔIDE(c3) − 519.39 MA for IDE of drugs with the same organism 

ΔIDM(c3) 954.21 MA for IDM of drugs with the same organism 

ΔIVDM(c3) − 1901.33 MA for IVDM of drugs with the same organism 

ΔHDcpx(c3) 955.72 MA for HDcpx of drugs with the same organism 

ΔHDcpx(c3) − 2256.14 MA for HDcpx of drugs with the same organism 

ΔAAC(c4) − 1.46 MA for AAC of drugs with the same assay protocol 

ΔIDE(c4) − 8.43 MA for IDE of drugs with the same assay protocol 

ΔIVDE(c4) 1.28 MA for IVDE of drugs with the same assay protocol 

ΔHVcpx(c4) 9.22 MA for HVcpx of drugs with the same assay protocol 

Ia
0 89.14 Information index based on the Gini coefficient 

e0 − 15.07 Independent term 

   

 

We also explored the possibility of training non-linear models. In so doing, we used two options 

implemented on the STATISTICA software: (1) neural networks, intelligent problem solver and (2) 

custom network designer, which are specialized tools to analyze the data and generate ANNs. These tools 

are available in the STATISTICA 6.0 [68] computer program. As it can be seen below in Table 4, we 

described the parameters of the generated neural networks. The results obtained show that the MLP 

trained with the 66 input variables fails to generate good predictions models, it presents an accuracy rate 

of 60% [67]. However, the LNN classifies correctly above 82% of the cases in the training, selection and 

external validation sets with 66 input variables (see Table 2). This LNN model presented values of 

Sn = 82.27 and Sp = 81.31 in training, and Sn = 82.11 and Sp = 81.52 in the external validation sets, but it 

uses 43 variables more than the LDA model. Additionally, we used the variables selected on the LDA 

analysis as input to train a non-linear MLP. This LDA-MLP [69] method presented values of Sp and Sn 

close to 77%. The LNN and the LDA-MLP networks show values of AUROC (Area Under Receiver 

Operating Characteristic) = 0.88 and 0.84 in training respectively, and 0.88 and 0.83 for the external 

validation set respectively (see Fig. 3). 
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Table 4. Parameters of neural networks. 

Details MLP LDA-MLP LNN 

    

ANN modulea IPS 
Custom network 

designer 
IPS 

Training details 
BP10b, iterative 

training 
BP11741b 

Pseudo-invert (PI) linear least squares 
optimization 

Dot product training algorithms 

Inputs 66 19 66 

Hidden (1) 26 10 0 

Hidden (2) 0 0 0 

Activation function Sigmoid Sigmoid Identity 

Classification error functionb Entropy Entropy Entropy 

Epochs – 10000 – 

Learning rate – 0.01 – 

Thresholdc 1.0 1.0 1.0 

Criteria to select retained 
networks 

Best performance Best performance Balance performance against diversity 

Stopping conditions Target error Target error Target error 

Training target error 0.0 0.0 0.0 

Selection target error 0.0 0.0 0.0 

    

 
a Module for ANN analysis implemented on the STATISTICA software. IPS = intelligent problem solver. BP = back-propagation. 
b Classification tasks ANN uses, the so called cross-entropy error, to train the neural networks, but the selection criteria for 

evaluating the best network is actually based on the classification rate, which can be easily interpreted as compared to the entropy-

based error function. 
c This is available only if the dependent variable is nominal with two values. A single threshold (accept = reject) is determined to 

minimize expected loss. A loss coefficient of 1.0 indicates that the two classes are equally important. 

 
 

 
Fig. 3. AUROC curve values for the ANNs.  
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We also carried out a PCA and MINRES of data. The PCA and MINRES for the bio-molecular 

factors were conducted with 65 input variables. The analyses showed seven eigenvalues for the bio-

molecular factors that account for the 90% with PCA and 80.55% with MINRES of the information. 

These analyses include mainly factors such as drug structure, experimental measure, organism, assay, and 

target (see Fig. 4). Table 5 depicts the eigenvalues obtained with these techniques. The eigenvalues 

generated give an indication of the amount of information carried by each component. Additional 

information about the extraction of the principal components with PCA and MINRES is in Tables SM4 

and SM5 of the supplementary material. Next, with the extraction of the principal components (seven 

factors) and with the I
a
0, we carried out a PCA-LDA and a MINRES-LDA separately, but they failed to 

generate good prediction models, since they presented values of specificity and sensitivity close to 50% 

(values for a random classifier) (see Table 2). 

 
 

 
Fig. 4. Plot of bio-molecular eigenvalues for PCA and 

MINRES. 
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Table 5. Eigenvalues of the factor PCA analysis. 

Extraction method Principal factors Eigenvalue % Total variance Cumulative eigenvalue Cumulative % 

      

PCA 

1 29.97708 46.11858 29.97708 46.11858 

2 8.41775 12.95038 38.39482 59.06896 

3 6.53269 10.05028 44.92751 69.11924 

4 4.95234 7.61899 49.87985 76.73823 

5 3.75442 5.77603 53.63427 82.51426 

6 3.25460 5.00707 56.88887 87.52134 

7 1.66932 2.56819 58.55819 90.08952 

MINRES 

1 27.12600 41.73230 27.12600 41.73230 

2 7.60284 11.69667 34.72883 53.42897 

3 5.83629 8.97891 40.56512 62.40788 

4 4.31739 6.64214 44.88251 69.05002 

5 3.29302 5.06618 48.17553 74.11619 

6 2.81078 4.32427 50.98630 78.44047 

7 1.37669 2.11798 52.36299 80.55845 

      

 

Consequently, the LDA model is better here with Ac, Sn, and Sp rates of 80%, similar to the LDA-

MLP performance. Considering that both models LDA-MLP and LDA have similar performance and a 

similar number of inputs, we should consider the simpler LDA (23 variables and 0 hidden neurons) model 

as a good model. Because the LDA-MLP needs 10 hidden neurons to increase performance and even its 

performance is slightly lower compared to the LDA model. All in all, the LDA was the best model in 

terms of accuracy and simplicity. 

3.2. Construction of complex networks 

In our previous work [64], we have also used a linear-ALMA model to create a complex network. The 

network had two classes of nodes (counties vs. drugs). The drug nodes contained information about the 

chemical structure, as well as, all the assay conditions (target protein, organism, assay protocol, 

experimental measure). On the other hand, the county nodes contained the information about the income 

inequality. However, because of the type of model used, these complex networks are unable to represent 

drug cocktails. In the present paper, we propose to use the predicted values (Lac(bj)pred = 1) of the LDA-

ALMA classifier to generate different sub-networks. These sub-networks are maps of the AIDS 

prevalence with respect to the preclinical activity of anti-HIV drug cocktails in each state of the US at 

county level. This type of sub-network may have different classes of nodes. There are three main classes: 

counties a
th

 of the state, the c
th

 drug cocktails, and the d
th

 drugs (chemical compounds) making up the 

cocktail. We may also include other classes of nodes for the different boundary conditions of assay b j. In 

doing so, we may include the following classes of nodes: experimental measures (b1), protein targets (b2), 

organisms of assay (b3), or assay protocols (b4). In these sub-networks we draw arcs connecting the nodes 

of the different classes when Lac(bj)pred = 1 or do not draw these arcs when the model predict 

Lac(bj)pred = 0. Fig. 5 shows the previous type of sub-network of AIDS prevalence vs. anti-HIV drug 

preclinical activity for the state of California. The sub-network has three types of nodes: anti-HIV drugs 

(blue), cocktails (red) and US counties. It is important to understand that here Lac(bj)pred = 1 expresses the 

existence of a sub-graph that connects several nodes of all classes by means of various arcs and there is 

no single arc which connects two nodes. For instance, let us see a simple sub-network including only 

nodes for drugs, cocktails, and counties. In this case, when Lac(bj)pred = 1 we connect each node of the 

compounds making up the cocktail with the node (c
th

) that represents this cocktail. Consequently, 

Lac(bj)pred = 1 expresses the existence of the sub-graph (d
1
 → c1)(d

2
 → c1)d

3
 → c1 → a1 for all the drugs in 

the cocktail, see Fig. 6. 
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Fig. 5. Sub-network of anti-HIV drug cocktails vs. AIDS prevalence for the US state of California (CA). 

 
 

 
Fig. 6. Sub-network node connection Lac(

dbj)pred = 1 and non-connection Lac(
dbj)pred = 0. The b2 represents the drug target, cth 

represents the drug cocktails, ath represents the US counties. 

In a more complicated example including also the boundary condition of assay b2 = target, for each 

drug, the situation is similar. Lac(
d
bj)pred = 1 expresses the existence of the sub-graph 

(d
1
 → b2)(d

2
 → b2)d

3
 → b2 → c1 → a1 for all the drugs in the cocktail, see also Fig. 6. Additionally, 

Table 6 shows the LDA prediction for some cases of drug cocktails vs. US counties. We included some 

examples of antiretroviral cocktails with observed Lac(bj)obs and predicted Lac(bj)pred effects over AIDS 

prevalence in several counties of the same state in the US. Table SM6 of the supplementary material 

shows the results predicted with the LDA model for all the cases in the training and external validation 

sets.  
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Table 6. LDA model prediction of some cases of drug cocktails vs. different counties. 

Lac(bj)Obs Lac(bj)Pred c-Level Drug name or ChEMBL ID IDi IDii IDiii State, county 

          

0 0 0.916 Zalcitabine Nevirapine Ritonavir 38347 38201 32404 KS, Montgomery 

0 0 0.795 Nevirapine Delavirdine Indinavir 38207 38322 32336 PA, Westmoreland 

0 0 0.925 Zidovudine Nevirapine Darunavir 38307 38265 32427 KY, Boyd 

0 0 0.89 Nevirapine Delavirdine Amprenavir 38280 38337 32362 PA, Northampton 

0 0 0.913 Delavirdine Nevirapine Ritonavir 38316 38285 32392 KS, Riley 

0 0 0.828 Delavirdine Nevirapine Indinavir 38326 38211 32341 PA, Montgomery 

0 0 0.58 Lamivudine Stavudine Ritonavir 38310 38350 32386 KS, Pottawatomie 

0 0 0.928 593 57 115 38325 38276 32339 TX, Milam 

0 0 0.918 129 57 116 38305 38280 32375 TX, Kaufman 

0 0 0.912 129 57 729 38308 38236 32275 GA, Berrien 

0 0 0.833 160 593 115 38311 38334 32304 GA, Chattooga 

0 0 0.872 57 991 114 38249 38348 32288 GA, Columbia 

0 0 0.86 57 853 114 38220 38346 32257 VA, Albemarle 

0 0 0.887 798 57 115 38343 38192 32302 VA, Nelson 

0 0 0.885 57 129 114 38241 38288 32268 TX, Lee 

1 1 0.911 129 593 114 38297 38332 32277 WY, Uinta 

1 1 0.96 57 798 115 38260 38345 32301 TX, Leon 

1 1 0.995 57 798 114 38204 38345 32250 GA, Lamar 

1 1 0.956 57 593 116 38207 38339 32362 GA, Cherokee 

1 1 0.939 593 129 1323 38340 38307 32427 GA, Whitfield 

1 1 0.883 625 57 114 38342 38245 32276 OR, Lincoln 

1 1 0.983 593 57 114 38341 38235 32270 GA, Franklin 

1 1 0.779 991 593 115 38351 38320 32297 AL, Randolph 

1 1 0.983 57 593 116 38218 38340 32356 IN, Floyd 

1 1 0.998 593 57 163 38341 38256 32382 AR, Franklin 

          

 
ChEMBL IDs are the identifiers of a drug in ChEMBL database. Some ChEMBL IDs used in this table are Nevirapine = 57, 

Delavirdine = 593, Atazanavir = 1163, AZT Triphosphate = 798, Amprenavir = 116, Zidovudine = 129, Indinavir = 115, 
Stavudine = 991, Saquinavir = 114, Ritonavir = 163. IDi, IDii, and IDiii, are the identifiers used in this work for the set of assay 

conditions for each drug of the cocktail according to supplementary material Table SM4 (these are not ChEMBL IDs). 

4. Conclusions 

This work presents the development of a model called LDA-ALMA to map networks of cocktails of 

anti-HIV drugs vs. AIDS epidemiology in the US counties. We used as inputs molecular information 

indices of drugs and Shannon entropy based on county-level income inequality. Machine learning 

techniques, such as LDA and ANNs, were used. The LDA classifier presented good values of 

sensitivity/specificity (80%) compared to the MLP, with values close to 60%. Therefore, this LDA-

ALMA model may be useful to design effective antiretroviral cocktails to treat HIV in the US counties 

with a given AIDS prevalence rate. 
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