

Analysis and numerical methods for
stochastic volatility models in valuation of
financial derivatives

Autor: José Germán López Salas

Tese de doutoramento UDC / 2016

Director: Carlos Vázquez Cendón

Programa de Doctorado Métodos Matemáticos y Simulación Numérica
en Ingeniería y Ciencias Aplicadas

PhD. Thesis

Analysis and numerical methods for stochastic volatility

models in valuation of financial derivatives

AUTOR:

José Germán López Salas

DIRECTOR:

Carlos Vázquez Cendón

TESE PRESENTADA PARA A OBTENCIÓN DO TÍTULO

DE DOUTOR NA UNIVERSIDADE DA CORUÑA

DEPARTAMENTO DE MATEMÁTICAS

FACULTADE DE INFORMÁTICA, A CORUÑA (SPAIN)

SETEMBRO, 2016

Funding

This research has been partially funded by the following projects:

• FPU grant whose call was published by resolution of April 25, 2012 from Minis-

terio de Educación, Cultura y Deporte. Grant holder reference AP2012-4975.

• Galician grant for Ph.D. students from Xunta de Galicia (05.12.2012 - 21.03.2013).

• I-Math Consolider Project, Reference COMP-C6-0393, with Fundación Cesga.

• Project MTM2010-21135-C02-01 from Ministerio de Ciencia e Innovación.

• Grant CN2011/004 Grupos de Referencia Competitiva by Xunta de Galicia.

• Grant GRC2014/044 Grupos de Referencia Competitiva by Xunta de Galicia.

• Project HIPeCA-High performance calibration and computation in finance, Ref-

erence 57049700 2014 DAAD, from German Federal Ministry of Education and

Research.

• Project MTM2013-47800-C2-1-P from Ministerio de Economı́a y Competitivi-

dad.

• FEDER funds.

A mi familia.

Agradecimientos

A la par del esfuerzo personal para la realización de esta tesis doctoral, quiero re-

conocer la ayuda de cuantos de me aportasteis vuestro apoyo y supisteis compartir

vuestros conocimientos.

Comienzo teniendo presentes la ilusión y confianza que mis padres pusieron en am-

pliar mi formación, junto a los ejemplos de perseverancia y constancia de mi hermana

Fani y de Carmen González.

Amplia gratitud merece Carlos Vázquez como profesor, transmisor de conocimien-

tos e impulsor de nuevas iniciativas. Me siento afortunado de haber trabajado con él,

su apoyo ha sido fundamental para lograr culminar este proyecto.

La cordial y grata colaboración de José Antonio Garćıa y Ana M. Ferreiro supuso

una enriquecedora contribución al desarrollo de este trabajo.

Le agradezco al laboratorio CMAP de la École Polytechnique su acogida. Quiero

destacar la ayuda ofrecida durante mi estancia por parte del profesor Emmanuel Gobet

y de Plamen Turkedjiev.

También quiero dar las gracias a José Luis Fernández y a Maŕıa R. Nogueiras

por su asesoramiento, aportaciones y ánimos a lo largo de este peŕıodo.

Durante los dos últimos años he tenido la oportunidad de colaborar en la docencia

de Cálculo en la Facultad de Informática. Quiero agradecer a los profesores de la

asignatura toda su ayuda y muy especialmente a Íñigo Arregui y a Teresa Iglesias.

Quiero reconocer la disponibilidad de José Antonio Garćıa y Álvaro Leitao a ten-

derme la mano en todo lo posible, atesoro gratos recuerdos de nuestras innumerables

discusiones sobre GPUs y HPC en general.

Álvaro, Dani, Paula, Marta, Alejandro, Ana, Maŕıa, Aldana y Carmen, mis

compañeros de laboratorio, merecen un agradecimiento cercano por toda la com-

prensión y apoyo que hemos compartido.

A Coruña, 2016.

10

Table of Contents

Abstract xv

Resumen xvii

Resumo xix

Introduction 1

I Stochastic volatility models 9

1 Simulated Annealing 17
1.1 Introduction . 17
1.2 Simulated annealing . 20

1.2.1 Sequential Simulated Annealing 20
1.2.2 Parallel Simulated Annealing 24

1.3 Implementation on GPUs . 27
1.3.1 General-Purpose Computing on Graphics Processing Units

(GPGPU) . 27
1.3.2 Nvidia GPUs, many core computing 29
1.3.3 Notes on the CUDA implementation 33

1.4 Numerical experiments: academic tests 36
1.4.1 Analysis of a sample test problem: Normalized Schwefel function 36
1.4.2 The set of performed tests . 44

1.5 Conclusions . 45

2 SABR models for equity 49
2.1 Introduction . 49
2.2 The SABR model . 52

2.2.1 Static SABR model . 53

i

2.2.2 Dynamic SABR model and the choice of the functional parameters 54
2.3 Calibration of the SABR model . 56
2.4 Pricing with Monte Carlo using GPUs 59
2.5 Calibration of the parameters using GPUs 62

2.5.1 Calibration with Technique I 62
2.5.2 Calibration with Technique II 63

2.6 Numerical results . 64
2.6.1 Pricing European options . 65
2.6.2 Calibration . 66
2.6.3 Pricing a cliquet option . 76

2.7 Conclusions . 78

3 SABR/LIBOR market models: Monte Carlo approach 79
3.1 Introduction . 79
3.2 SABR/LIBOR market models . 84

3.2.1 Hagan model . 84
3.2.2 Mercurio & Morini model . 86
3.2.3 Rebonato model . 87

3.3 Model calibration . 88
3.4 Numerical results . 90

3.4.1 Hagan model . 94
3.4.2 Mercurio & Morini model . 95
3.4.3 Rebonato model . 96

3.5 Conclusions . 115

4 SABR/LIBOR market models: PDE approach 117
4.1 Introduction . 117
4.2 Derivation of the PDE from the stochastic processes 118
4.3 Finite Difference Method . 123

4.3.1 Boundary conditions . 127
4.3.2 Numerical results . 128

4.4 Sparse grids and the combination technique 133
4.4.1 Sparse grids . 134
4.4.2 Combination technique . 141
4.4.3 Numerical results . 143

II BSDEs 149

5 Backward Stochastic Differential Equations 155
5.1 Introduction . 155

ii

5.2 Mathematical framework and basic properties 159
5.3 Stratified algorithm and convergence results 164

5.3.1 Algorithm . 164
5.3.2 Error analysis . 167
5.3.3 Proof of Theorem 5.3.5 . 169

5.4 GPU implementation . 174
5.4.1 Explicit solutions to OLS in Algorithm 4 175
5.4.2 Pseudo-algorithms for GPU 176
5.4.3 Theoretical complexity analysis 178

5.5 Numerical experiments . 181
5.5.1 Model, stratification, and performance benchmark 181
5.5.2 CPU and GPU performance 182

A Test functions for the Simulated Annealing 191

B SABR equity 201
B.1 Expression of implied volatility in the general case 201
B.2 Market data . 203

C BSDEs 207
C.1 Proof of Proposition 5.2.1 . 207
C.2 Stability results for discrete BSDE 209

Conclusions 211

Resumen extenso 215

Resumo extenso 229

Bibliography 242

iii

iv

List of Tables

1.1 Error of the solution obtained by the algorithm, both in the value of the

function at the minimum (columns |fa − fr|, where fa is the objective

function value found by the algorithm and fr is the exact function

value in the real minimum) and in the minimum (columns Relative

error, measured in ‖ · ‖2). 37

1.2 Performance of CUDA version vs. sequential version with one CPU core for differ-

ent number of parameters. 38

1.3 Behavior of the errors when increasing the number of launched threads. Tests were

performed with n = 16, T0 = 5, Tmin = 0.5, ϕ = 0.7, L = 5. 42

1.4 Behavior of the speedup when increasing the number of launched threads. Tests

were performed with T0 = 1000, Tmin = 0.01, ϕ = 0.99, L = 100. 42

1.5 Behavior of the speedup when increasing L. These tests were performed with the

following configuration of Simulated Annealing, T0 = 1000, Tmin = 0.01, ϕ = 0.99,

b = 256, g = 64. 43

1.6 Behavior of the speedup when increasing the number of function evaluations. . . 43

1.7 Computational times in seconds and relative quadratic errors with single and

double-precision for the next Simulated Annealing configuration: n = 16, T0 =

1000, Tmin = 0.01, ϕ = 0.99, b = 256, g = 64. 44

1.8 Set of test problems, where first column indicates the assigned reference to display

results. 46

v

1.9 Results for the test problem suite. In the column Error we indicate the relative

error in || · ||2 when the location of the minimum is non zero, otherwise the absolute

error is presented. Cells with ’-’ mark correspond to cases in which the exact

minima are unknown. 47

1.10 Results of the hybrid algorithm. The first part shows the results of the annealing

algorithm. The second one shows the results of the Nelder-Mead algorithm starting

at the point at which the annealing algorithm was stopped prematurely. 47

2.1 Pricing results for European options. RE denotes the relative error with

respect to the reference value 225.887329. 65

2.2 Pricing European options. Execution times for CPU and GPU cal-

ibration (in seconds), considering single and double precision with

∆t = 1/250. 66

2.3 Pricing with DSabr II model in GPU. Influence of the number of

strikes in computational times (time in seconds), ∆t = 1/250. We

consider 1, 5 and 41 strikes, with values K (in % of S0) of {100},
{96, 98, 100, 102, 104} and {80, 81 . . . , 119, 120}, respectively. 66

2.4 EURO STOXX 50. SSabr model: Calibrated parameters for each

maturity. 67

2.5 EURO STOXX 50. SSabr model: Performance of OpenMP vs. GPU

versions, in single precision for T = 24 months. 68

2.6 EURO STOXX 50. DSabr I model: Calibrated parameters. 68

2.7 EURO STOXX 50. DSabr I model: σmarket vs. σmodel. 69

2.8 EURO STOXX 50. DSabr I model: Performance of OpenMP vs. GPU

versions, in single precision. 70

2.9 EURO STOXX 50. DSabr II model: Calibrated parameters. 70

2.10 EURO STOXX 50. DSabr II model: Vmarket vs. Vmodel. 70

2.11 EURUSD. SSabr model: Calibrated parameters for each maturity. . . 71

2.12 EURUSD. SSabr model: Performance of OpenMP vs. GPU versions,

in single precision for T = 24 months. 72

vi

2.13 EURUSD. DSabr I model: Calibrated parameters. 73

2.14 EURUSD. DSabr I model: σmarket vs. σmodel. 73

2.15 EURUSD. DSabr I model: Performance of OpenMP vs. GPU versions,

in single precision. 74

2.16 EURUSD. DSabr II model: Calibrated parameters. 74

2.17 EURUSD. DSabr II model: Vmarket vs. Vmodel. 75

3.1 Execution times (in seconds) and speedups in the pricing of caplets

with Monte Carlo and using single precision (Hagan model). 90

3.2 Discount factor curve. 91

3.3 Smiles of forward rates. Fixing dates (first column) and moneyness

(first row). 92

3.4 Smiles of swap rates. Length of the underlying swaps (first column),

swaptions maturities (second column) and moneyness (first row). . . . 93

3.5 Hagan model, calibration to caplets with SABR formula (3.4): cali-

brated parameters. 94

3.6 Hagan model, calibration to caplets, σmarket vs. σmodel. 98

3.7 Hagan model, calibration to swaptions, SBlack vs. SMC , prices in %. . 100

3.8 Mercurio & Morini model, calibration to caplets with SABR formula

(3.4): calibrated parameters. 103

3.9 Mercurio & Morini model, calibration to caplets, σmarket vs. σmodel. . 104

3.10 Mercurio & Morini model, calibration to swaptions, SBlack vs. SMC ,

prices in %. 106

3.11 Rebonato model, calibration to caplets with SABR formula (3.4): cal-

ibrated parameters. 109

3.12 Rebonato model, calibration to caplets, σmarket vs. σmodel. 110

3.13 Rebonato model, calibration to swaptions, SBlack vs. SMC , prices in %. 112

3.14 Mean relative errors of the three models. 115

4.1 Specification of the interest rate model. 129

vii

4.2 Market data used in pricing. Data taken from 27th July 2004. 130

4.3 Convergence of the PDE solution in basis points for 1 LIBOR and

stochastic volatility, σ = 0, V (0) = 1, β = 1, 128 time steps. Exact

solution, 0.659096 basis points. 131

4.4 Convergence of Monte Carlo solution in basis points for 1 LIBOR and

stochastic volatility, σ = 0, V (0) = 1, β = 1, 128 time steps. Exact

solution, 0.659096 basis points. 131

4.5 Convergence of the PDE solution in basis points for 1 LIBOR and

stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 128 time

steps. Monte Carlo value using 107 paths, 1.657662 basis points. . . . 132

4.6 Convergence of the PDE solution in basis points for 2 LIBORs and

stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 128 time

steps. Monte Carlo value using 107 paths, 4.652644 basis points. . . . 132

4.7 Convergence of the PDE solution in basis points for 3 LIBORs and

stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 128 time

steps. Monte Carlo value using 107 paths, 8.177764 basis points. . . . 133

4.8 Convergence of the PDE solution in basis points for 1 LIBOR and

stochastic volatility, σ = 0, V (0) = 1, β = 1, 128 time steps. Exact

solution, 0.659096 basis points. 145

4.9 Convergence of the PDE solution in basis points for 1 LIBOR and

stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 128 time

steps. Monte Carlo value using 107 paths, 1.657662 basis points. . . . 145

4.10 Convergence of the PDE solution in basis points for 2 LIBORs and

stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 128 time

steps. Monte Carlo value using 107 paths, 4.652644 basis points. . . . 145

4.11 Convergence of the PDE solution in basis points for 3 LIBORs and

stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 128 time

steps. Monte Carlo value using 107 paths, 8.177764 basis points. . . . 146

viii

4.12 Convergence of the PDE solution in basis points for 4 LIBORs and

stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 128 time

steps. Monte Carlo value using 107 paths, 12.288113 basis points. . . 146

4.13 Convergence of the PDE solution in basis points for 5 LIBORs and

stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 128 time

steps. Monte Carlo value using 107 paths, 16.903377 basis points. . . 146

4.14 Convergence of the PDE solution in basis points for 6 LIBORs and

stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 2 time steps.

Monte Carlo value using 107 paths, 21.979879 basis points. 147

4.15 Convergence of the PDE solution in basis points for 8 LIBORs and

stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 2 time steps.

Monte Carlo value using 107 paths, 27.222777 basis points. 147

4.16 Convergence of the PDE solution in basis points for 8 LIBORs and

stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 2 time steps.

Monte Carlo value using 107 paths, 32.553432 basis points. 147

5.1 Comparison of numerical parameters with or without stratified sam-

pling, as a function of N . 180

5.2 Comparison of memory requirement as a function of N 181

5.3 LP0 local polynomials, d = 4, #C=
⌊
4
√
N
⌋
, M = N2. 184

5.4 LP0 local polynomials, d = 6, #C=
⌊√

N
⌋
, M = N2. 185

5.5 LP0 local polynomials, d = 6, #C=
⌊
2
√
N
⌋
, M = N2. 185

5.6 LP0 local polynomials, d = 11, #C=
⌊√

N
⌋
, M = N2. 186

5.7 LP1 local polynomials, d = 4, #C=
⌊
3
√
d
√
N − 5

⌋
, M = (d+ 1)N2. . 187

5.8 LP1 local polynomials, d = 6, #C=
⌊
1.5
√
d
√
N − 3

⌋
, M = (d+ 1)N2. 188

5.9 LP1 local polynomials, d = 11. 188

5.10 LP1 local polynomials, d = 12. 189

5.11 LP1 local polynomials, d = 13. 189

5.12 LP1 local polynomials, d = 14. 189

ix

5.13 LP1 local polynomials, d = 15, . . . , 19, ∆t = 0.2, #C = 2. 189

B.1 EURO STOXX 50 (Dec. 2011). Spot value S0 = 2311.1 e. Interest

rates and dividend yields. 203

B.2 EURO STOXX 50 (Dec. 2011). Implied volatilities for each maturity

with different strikes K (% of the spot S0). 204

B.3 EUR/USD (Dec. 2011). Spot value S0 = 1.2939 US dollars. Interest

rates and dividend yields. 204

B.4 EUR/USD (Dec. 2011). Implied volatilities for each maturity with

different strikes K. 205

x

List of Figures

1 Shape of a typical volatility smile. 13

1.1 Sketch of the asynchronous parallel algorithm. 26

1.2 Sketch of the synchronous parallel algorithm. 27

1.3 Nvidia GPU hardware structure. 29

1.4 For the three versions V0, V1 and V2, convergence rate for runs with

n = 8 and 16. 39

1.5 For the three versions V0, V1 and V2, convergence rate for runs with

n = 32 and 64. 40

1.6 For the three versions V0, V1 and V2, convergence rate for runs with

n = 128 and 256. 41

2.1 Sketch of the parallel SA algorithm using two GPUs and OpenMP. . 61

2.2 EURO STOXX 50. SSabr model: σmodel vs. σmarket for the whole

volatility surface. Maturities: 3 and 12 months (left), 6 and 24 months

(right). 67

2.3 EURO STOXX 50. DSabr I model: σmodel vs. σmarket for the whole

volatility surface. Maturities: 3 and 12 months (left), 6 and 24 months

(right). 69

2.4 EURO STOXX 50. DSabr II model: Vmodel vs. Vmarket for the whole

prices surface. Maturities: 3 and 12 months (left), 6 and 24 months

(right). 71

xi

2.5 EURUSD. SSabr model: σmodel vs. σmarket for the whole volatility

surface. Maturities: 3 and 12 months (left), 6 and 24 months (right). 72

2.6 EURUSD. DSabr I model: σmodel vs. σmarket for the whole volatility

surface. Maturities: 3 and 12 months (left), 6 and 24 months (right). 73

2.7 EURUSD. DSabr II model: Vmodel vs. Vmarket for the whole prices

surface. Maturities: 3 and 12 months (left), 6 and 24 months (right). 74

2.8 EURO STOXX 50. DSabr I model for pricing European options.

Prices (left) and relative errors (right). 76

2.9 EURUSD. DSabr I model for pricing European options. Prices (left)

and relative errors (right). 77

3.1 Sketch of the parallel SA using OpenMP and considering a Monte Carlo

method in the cost function. 91

3.2 Hagan model, σmarket vs. σmodel, smiles of F1, . . . , F13. 99

3.3 Hagan model, calibration to swaptions, SBlack vs. SMC , part I. 101

3.4 Hagan model, calibration to swaptions, SBlack vs. SMC , part II. . . . 102

3.5 Mercurio & Morini model, σmarket vs. σmodel, smiles of F1, . . . , F13. . . 105

3.6 Mercurio & Morini model, calibration to swaptions, SBlack vs. SMC ,

part I. 107

3.7 Mercurio & Morini model, calibration to swaptions, SBlack vs. SMC ,

part II. 108

3.8 Rebonato model, σmarket vs. σmodel, smiles of F1, . . . , F13. 111

3.9 Rebonato model, calibration to swaptions, SBlack vs. SMC , part I. . . 113

3.10 Rebonato model, calibration to swaptions, SBlack vs. SMC , part II. . . 114

4.1 Two-dimensional full grid hierarchy up to level n = 4. 135

4.2 Two-dimensional sparse grid hierarchy up to level n = 4. 136

4.3 Three dimensional sparse grids for levels n = 5, 6, 7 and 8. 138

4.4 Two dimensional sparse grids for levels n = 5, . . . , 10. 139

4.5 Combination technique with level n = 4 in two dimensions. 140

xii

1 Forma común de la sonrisa de volatilidad. 218

1 Forma común do sorriso de volatilidade. 232

xiii

xiv

Abstract

The main objective of this thesis concerns to the study of the SABR stochastic volatil-

ity model for the underlyings (equity or interest rates) in order to price several market

derivatives. When dealing with interest rate derivatives the SABR model is joined

with the LIBOR market model (LMM) which is the most popular interest rate model

in our days. In order to price derivatives we take advantage not only of Monte Carlo

algorithms but also of the numerical resolution of the partial differential equations

(PDEs) associated with these models. The PDEs related to SABR/LIBOR market

models are high dimensional in space. In order to cope with the curse of dimension-

ality we will take advantage of sparse grids. Furthermore, a detailed discussion about

the calibration of the parameters of these models to market prices is included. To this

end the Simulated Annealing global stochastic minimization algorithm is proposed.

The above mentioned algorithms involve a high computational cost. In order

to price derivatives and calibrate the models as soon as possible we will make use

of high performance computing (HPC) techniques (multicomputers, multiprocessors

and GPUs).

Finally, we design a novel algorithm based on Least-Squares Monte Carlo (LSMC)

in order to approximate the solution of Backward Stochastic Differential Equations

(BSDEs).

xv

Resumen

El objetivo principal de la tesis se centra en el estudio del modelo de volatilidad

estocástica SABR para los subyacentes (activos o tipos de interés) con vista a la

valoración de diferentes productos derivados. En el caso de los derivados de tipos de

interés, el modelo SABR se combina con el modelo de mercado de tipos de interés más

popular en estos momentos, el LIBOR market model (LMM). Los métodos numéricos

de valoración son fundamentalmente de tipo Monte Carlo y la resolución numérica

de los modelos de ecuaciones en derivadas parciales (EDPs) correspondientes. Las

EDPs asociadas a modelos SABR/LIBOR tienen alta dimensión en espacio, por lo

que se estudian técnicas de sparse grid para vencer la maldición de la dimensión.

Además, se discute detalladamente cómo calibrar los parámetros de los modelos a las

cotizaciones de mercado, para lo cual se propone el uso del algoritmo de optimización

global estocástica Simulated Annealing.

Los algoritmos citados tienen un alto coste computacional. Con el objetivo de

que tanto las valoraciones como las calibraciones se hagan en el menor tiempo posible

se emplean diferentes técnicas de computación de altas prestaciones (multicomputa-

dores, multiprocesadores y GPUs.)

Finalmente se diseña un nuevo algoritmo basado en Least-Squares Monte Carlo

(LSMC) para aproximar la solución de Backward Stochastic Differential Equations

(BSDEs).

xvii

Resumo

O obxectivo principal da tese céntrase no estudo do modelo de volatilidade estocástica

SABR para os subxacentes (activos ou tipos de xuro) con vista á valoración de dife-

rentes produtos derivados. No caso dos derivados de tipos de xuro, o modelo SABR

comb́ınase co modelo de mercado de tipos de xuro máis popular nestos momentos, o

LIBOR market model (LMM). Os métodos numéricos de valoración son fundamen-

talmente de tipo Monte Carlo e a resolución numérica dos modelos de ecuacións

en derivadas parciais (EDPs) correspondentes. As EDPs asociadas aos modelos

SABR/LIBOR teñen alta dimensión en espazo, polo que se estudan técnicas de sparse

grid para vencer a maldición da dimensión. Ademais, discútese detalladamente como

calibrar os parámetros dos modelos ás cotizacións de mercado, para o cal se propón

o emprego do algoritmo de optimización global estocástica Simulated Annealing.

Os algoritmos citados teñen un alto custo computacional. Co obxectivo de que

tanto as valoracións como as calibracións se fagan no menor tempo posible empréganse

diferentes técnicas de computación de altas prestacións (multicomputadores, multi-

procesadores e GPUs.)

Finalmente deséñase un novo algoritmo baseado en Least-Squares Monte Carlo

(LSMC) para aproximar a solución de Backward Stochastic Differential Equations

(BSDEs).

xix

Introduction

In this thesis we analyze the valuation of financial derivatives using some mathemat-

ical models. Our goal is to illustrate the use of these models with an emphasis on the

implementation and calibration.

A financial derivative is a contract whose value depends on one or more assets,

called underlying assets. Typically the underlying asset is a stock (or equity), a

currency exchange rate, the market price of commodities (such us oil or wheat) or

a bond (interest rate). Among the large variety of financial derivatives being traded

nowadays, an option is the simplest example. An option is a contract that gives

the right (but not the obligation) to its holder to buy or sell some amount of the

underlying asset at a future date, for an agreed price. A call option gives the right

to buy, whilst a put option gives the right to sell. An option is called European if

the right to buy or sell can be exercised only at maturity, and it is called American

if it can be exercised at any time before maturity. Call and put options are the basic

derivative instruments and for this reason they are often called plain vanilla options.

However, there exists a great amount of derivatives, usually known as exotic, having

very complicated structures. Pricing these financial derivatives is non-trivial because

the future evolutions of the prices of the underlying assets are not known at present.

The price of the derivative is the premium that the buyer of the derivative has to pay

at the initial time to get the right guaranteed by the contract. The main two reasons

for using financial derivatives are hedging the risk and speculation purposes.

The starting point of trading financial derivatives in organized markets was on 26th

April 1973 in The Chicago Board Options Exchange (CBOE). Initially there were just

1

calls on 16 stocks. Puts weren’t even introduced until 1977. Also in 1973, Merton

[104] and Black and Scholes [13] published the basic building blocks of derivatives

theory, delta hedging and no arbitrage theory. Using these strategies, the authors

obtained the celebrated Black-Scholes partial differential equation (PDE) and the

Black-Scholes formula for European plain vanilla options. Despite the huge popularity

of Black-Scholes formula, after the stock market crash of October 1987, it was clear

that the fact of assuming a constant volatility for the underlying asset leads to a

significant mispricing of options. It is well known that the market prices of European

options on the same underlying asset have different Black-Scholes implied volatilities

that vary with strike and maturity, this is known as volatility smile. Generally, we

can say that market prices tend to give more value (greater implied volatility) to

the extreme cases in or out of the money. This reflects that some situations in the

market are perceived as more risky, in particular the case of extreme falls or rises of

the quotations of the underlying asset. Modelling the volatility as a random variable

itself is a natural way to overcome the problems of assuming constant volatility. These

models are called stochastic volatility models and are useful because they are able

to fit market volatility smiles. Moreover, unlike alternative models that can recover

the smile (such as local volatility models, for example), stochastic volatility models

assume realistic dynamics for the underlying.

Among the different stochastic volatility models proposed in the literature, the

SABR model proposed by Hagan, Kumar, Lesniewski and Woodward [67] in the year

2002 stands out for becoming the market standard to reproduce the price of European

options. Although local volatility models can fit by construction the volatility smile

of the market even better than the SABR model, these models predict unrealistic

evolutions for the underlying. In fact, SABR model tells us about changes in option

prices versus strike, as opposed to local volatility models which state changes in option

prices as the underlying moves.

Among the large variety of financial derivatives being traded nowadays, when

the underlying is a particular interest rate or a set of them, the class of interest

2

rate derivatives arises. In this thesis we will mainly consider bonds, caplets, caps,

swaps and swaptions. A bond is a contract that periodically pays coupons depending

on certain floating rates. A caplet is a call option that pays the positive difference

between a floating rate and a fixed one (strike). A cap contract is a set of caplets

associated with several maturity dates. A swap is a contract that exchanges two

different interest rates. A swaption is an option giving the right to enter in a swap

at a given future time. For a detailed description about interest rate derivatives we

refer the reader to the book of Brigo and Mercurio [19]. Unlike in the case of equity

markets, in interest rate markets the long term of contracts and the behaviour of the

involved interest rates motivated the consideration of stochastic interest rate models.

These models can be mainly classified into two categories, short rate models and

market models.

Short rate models specify one-factor dynamics for the evolution of just one short

rate, which determines the future evolution of the entire yield curve. The popular

models of Vasicek (1977) [136] and Cox, Ingersoll and Ross (1985) [29] lie in this

category. The main drawback of short rate models is the impossibility of calibrate

their parameters to the initial curve of discount factors, specially for those models

that are not analytically tractable.

In 1986, Ho and Lee [75] proposed the first alternative to short rate models, which

was the initial work on market models. They modelled the evolution of the entire yield

curve in a binomial tree framework. Later, in 1992, Heath, Jarrow and Morton [69]

translate in continuous time the basic assumption of the Ho and Lee model. Their

HJM model became the standard framework for interest rates in the early 1990s.

However, the main problem of HJM model was its incompatibility with the market’s

use of the Black caplet and Black swaption formula, i.e. HJM model broke out when

the instantaneous forward rates were modelled as lognormal.

In order to overcome the main obstacle of HJM model, in 1999, Miltersen, Sand-

mann and Sondermann [108] published a PDE method to derive the Black caplet

formula within the arbitrage free HJM framework. Their main contribution was

3

modelling the forward rates as lognormal, but under the forward measure at the end

of their interval. Taking into account this realization, Brace, Gatarek and Musiela [16]

derived the so-called BGM model, also known as the LIBOR market model (LMM),

because it models forward LIBOR rates through a lognormal distribution under the

relevant measures. Jamshidian (1997) [79] also contributed significantly to its devel-

opment. The most important benchmark interest rates are the London Interbank

Offered Rates or LIBORs, which are calculated daily through an average of rates

offered by banks in London. The LMM has become the most popular interest rate

model. The main reason is the agreement between this model and Black’s formulas.

In fact, the LIBOR market model prices caps with Black’s formula, which is the stan-

dard formula employed in the cap market. Besides, the Swap market model (SMM)

prices swaptions with Black’s swaption formula, which again is the standard formula

employed in the swaption market. Taking into account that caps and swaptions are

the most traded interest rate derivatives, it is very important for a market model

to be compatible with such market formulas. In addition, the parameters of these

models can be easily calibrated to market prices using liquid products.

The standard LIBOR market model considers constant volatilities for the forward

rates. However, this is a very limited hypothesis since it is impossible to reproduce

market volatility smiles. The SABR model can not be used to price derivatives whose

payoff depends on several forward rates. In fact, SABR model works in the terminal

measure, under which both the forward rate and its volatility are martingales. This

can always be done if we work with one forward rate in isolation at a time. Under

this same measure, however, the process for another forward rate and for its volatility

would not be driftless. In order to allow LMM to fit market volatility smiles, different

extensions of the LMM that incorporate the volatility smile by means of the SABR

model were proposed. These models are known as SABR/LIBOR market models. In

this work we will study the models proposed by Hagan [68], Mercurio and Morini

[103] and Rebonato [122]. These models involve a high number of parameters. Cali-

brating these parameters to market data becomes a relevant target in practice. In this

4

thesis we address this calibration taking advantage of High Performance Computing

techniques in order to optimize execution times. Undoubtedly, this issue is crucial in

the real time financial world.

From the numerical point of view, in the LIBOR market model setting the pric-

ing of interest rate derivatives in mainly carried out using Monte Carlo simulation

[49]. Nevertheless, taking into account that Monte Carlo simulation could involve

excessively long computational times, in this work we also address for first time in

the literature the alternative pricing approach offered by PDEs. Thus, we pose the

original PDE formulations associated to the three SABR/LIBOR models proposed

by Hagan, Mercurio & Morini and Rebonato. Nevertheless, the PDEs associated to

SABR/LIBOR market models are high dimensional in space. Therefore, traditional

full grid methods, like standard finite difference or finite elements, will not be able

to price derivatives over more than three or four underlying interest rates, due to the

so-called curse of dimensionality [7]. In order to overcome the curse of dimension-

ality, the sparse grid combination technique first proposed by Zenger, Griebel and

Schneider [63] will be analyzed.

In the second part of the thesis we design a novel algorithm based on Least-Squares

Monte Carlo (LSMC) in order to approximate the (Y, Z) components of the solution

to the decoupled forward-backward stochastic differential equation (BSDE)

Yt = g(XT) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs,

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs,

where W is a q ≥ 1 dimensional Brownian motion. The algorithm will also approxi-

mate the solution to the related semilinear, parabolic PDE.

In recent times, there has been an increasing interest to have algorithms which

work efficiently when the dimension d of the space occupied by the process X is

large. This interest has been principally driven by the mathematical finance commu-

nity, where nonlinear valuation rules are becoming increasingly important. Currently

available algorithms [18, 54, 59, 60] rarely handle the case of dimension greater than

5

8. The main constraint is not only due to the computational time, but mainly due

to memory consumption requirements by the algorithms.

The purpose of this second part of the thesis is to drastically rework the algorithm

in [60] to first minimize the exposure to the memory due to the storage of simulations.

This will allow computation in larger dimension d. Secondly, in this way the algorithm

can be implemented in parallel on graphic processor units (GPUs) which enables us

to obtain substantial speedups compared to CPU implementations. For instance, we

can solve problems in dimension d = 11 within eight seconds using 2000 simulations

per hypercube. We present several numerical examples in order to illustrate the

performance of the scheme, being able to solve problems up to dimension d = 19.

Moreover, we provide an error analysis of the proposed algorithm.

The outline of this thesis is as follows.

Part I, which consists of four chapters, deals with SABR-like stochastic volatility

models both in equity/foreign exchange and interest rate markets, with the focus in

the pricing of several market derivatives and in the calibration to real market prices.

Chapter 1 is devoted to the presentation of the Simulated Annealing global opti-

mization algorithm which will be used in the forthcoming calibration of the models

studied in Chapters 2 and 3. As the calibration in the financial world should be

carried out almost in real-time we will implement the algorithms taking advantage of

High Performance Computing techniques.

In Chapter 2 we study the SABR stochastic volatility model in equity and foreign

exchange markets. Not only the classical SABR model called static SABR but also

another extension known as dynamic SABR will be analyzed. For the dynamic SABR

model we will propose an original and more general expression for the functional

parameters. Then we will calibrate the models for EURO STOXX 50 index and

EUR/USD exchange rate. Finally, a cliquet option on EUR/USD will be priced.

In Chapter 3 we present the SABR/LIBOR market models proposed by Hagan,

Mercurio & Morini and Rebonato. The main objective of this chapter is to efficiently

calibrate these models to real market prices of caplets and swaptions. We exhibit a set

6

of algorithms implemented using several GPUs which allow to calibrate the models

using Monte Carlo simulation. This approach is particularly useful when dealing with

products and models such that approximation formulas are not available or are not

accurate enough.

In Chapter 4 we also operate with the cited SABR/LIBOR market models as in

the previous chapter. Nevertheless, taking into account the drawbacks of Monte Carlo

simulation when pricing market derivatives, i.e. the slow convergence, the valuation

of options with early exercise and the computation of the “Greeks”, see [139], we take

advantage of the alternative PDE approach. The formulation of the corresponding

PDE models for the discussed SABR/LIBOR market models is posed. These PDEs

are high dimensional in space. In order to overcome the curse of dimensionality we

propose the use of the sparse grid combination technique.

Part II deals with Backward Stochastic Differential Equations and contains one

chapter, Chapter 5..

In Chapter 5 we design a novel algorithm based on Least-Squares Monte Carlo

in order to approximate the solution of discrete time Backward Stochastic Differen-

tial Equations. Our algorithm allows massive parallelization of the computations on

many core processors, such as GPUs. Our approach consists of a novel method of

stratification which appears to be crucial for large scale parallelization. In this way,

we minimize the exposure to the memory requirements due to the storage of simu-

lations. Indeed, we note the lower memory overhead of the method compared with

previous works.

Appendix A contains a brief description of the different optimization problems

than have been tested using the proposed Simulated Annealing implementation. In

Appendix B the expression of the implied volatility in the general dynamic SABR

model is obtained. Besides, the employed market data are shown. Appendix C con-

tains two mathematical results concerning the proposed algorithm for solving back-

ward stochastic differential equations.

We finish with a short section outlining the main conclusions of this thesis.

7

8

Part I

Stochastic volatility models

9

Introduction to stochastic volatility

models

One of the well-known limitations of the classical Black-Scholes model [13]

dS(t) = rS(t)dt+ σS(t)dW (t), (1)

is the assumption that the volatility σ of the underlying asset S is constant. In (1) we

consider the risk-neutral probability measure, where r represents the risk-free interest

rate and W is a Brownian motion. To fix ideas, let us consider the time t price of a

T -maturity European call option with strike K. Such a contract pays out the amount

max(S(T)−K, 0) = (S(T)−K)+,

at time T . Its value at time t < T is given by Black’s formula

V Black(S, t, σ, r,K, T) = SΦ(d1)−Ke−r(T−t)Φ(d2),

where Φ is the cumulative distribution function of the standard normal distribution

and

d1 =
log(S/K) +

(
r + 1

2
σ2
)

(T − t)
σ
√
T − t

,

d2 =
log(S/K) +

(
r − 1

2
σ2
)

(T − t)
σ
√
T − t

.

Black’s formula is the standard in the European call options market. If we know σ

and the rest of the parameters we can compute the option price. Conversely, if we

11

know the option price V Black(S, t, σ, r,K, T) we can calculate σ. This is the so-called

implied volatility.

Next, let us consider two different strikes K1 and K2. Suppose the market pro-

vides us with the prices of the two related call options V Black(S, t, σ, r,K1, T) and

V Black(S, t, σ, r,K2, T). Note that both call options have the same underlying S and

the same maturity T . The point is that there is no a single volatility parameter σ

such that

V Market(S, t,K1, T) = V Black(S, t, σ, r,K1, T),

and

V Market(S, t,K2, T) = V Black(S, t, σ, r,K2, T),

hold, i.e, two different volatilities σ(T,K1) and σ(T,K2) are required to match the

observed market prices, that is:

V Market(S, t,K1, T) = V Black(S, t, σ(T,K1), r,K1, T),

V Market(S, t,K2, T) = V Black(S, t, σ(T,K2), r,K2, T).

An analogous argument could be followed with a fixed strike K and two different

maturities T1 and T2. Therefore, each call option market price requires its own Black

volatility σ(T,K) depending on the strike K and the maturity T of the call option.

The shape of the implied volatility versus strike is commonly seen to exhibit

“smiley” or “skewed” shapes (see Figure 1), so that it is known as the volatility smile

or skew. In some markets it shows a considerable asymmetry, a skew. If we plot

implied volatilities against strikes and maturities non-flat structures are normally

observed not only in the equity or foreign-exchange markets but also in the interest

rate markets. Ignoring volatility smiles can lead to a significant mispricing of options.

Taking into account that the dynamics described by (1) can not properly fit market

implied volatilities, researchers try to find alternative models that are suitable for this

purpose. We now briefly review the major approaches proposed in the literature.

12

Strike
Im

p
lie

d
 v

o
la

ti
lit

y
Figure 1: Shape of a typical volatility smile.

Local volatility models These models are straightforward analytical extensions

of a geometric Brownian motion that allow for smiles in the implied volatility. The

main examples are the following. In 1976 Cox and Ross [30] proposed the constant-

elasticity-of-variance (CEV) processes. They considered stochastic differential equa-

tions of the form

dS(t) = rS(t)dt+ σS(t)βdW (t), β ∈ (0, 1),

where the β coefficient adds skew to the model. In 2000 Andersen and Andreasen

[4] developed the related application to the LIBOR market model. In 1994 and 1997

Dupire [37, 38] suggested the model

dS(t) = rS(t)dt+ σ(S, t)S(t)dW (t),

where the instantaneous volatility σ is a deterministic function of both the asset price

S and time t.

Jump-diffusion models These models have been introduced to model discontinu-

ities in the underlying stochastic process. In the equity market these models were

imported in 1976 by Merton [105] and are usually employed with the aim of calibrat-

ing volatility smiles. In the interest rate market, jump diffusion LIBOR models have

been developed by Glasserman and Merener (2001, [51]) and Glasserman and Kou

(2003, [50]).

13

Stochastic volatility models These models have been designed to fit market

volatility smiles and to capture the stochastic nature of the volatility. The main

examples are those of Hull and White (1987), Heston (1993) and Hagan, Kumar,

Lesniewski and Woodward (2002). These models are more realistic at the expense of

a greater complexity in terms of pricing options.

In the Hull and White model [77] the stock and its volatility are modelled as

dS(t) = rS(t)dt+
√
σ(t)S(t)dW (t), S(0) = S0,

dσ(t) = κσ(t)dt+ ζσ(t)dZ(t), σ(0) = σ0,

where dW and dZ have correlation coefficient ρ. The other parameters of the model

are the volatility return κ, the volatility of the volatility ζ and the initial value of the

volatility σ0.

The Heston model [73] is given by

dS(t) = rS(t)dt+
√
σ(t)S(t)dW (t), S(0) = S0,

dσ(t) = κ(θ − σ(t))dt+ ζ
√
σ(t)dZ(t), σ(0) = σ0,

where dW (t)dZ(t) = ρdt. The other parameters of the model are the speed of mean

reversion κ, the long-term volatility θ, the volatility of the volatility ζ and the initial

value of the volatility σ0. This model is popular among practitioners because there

are closed-form solutions for European options, which are particularly useful in the

calibration process. These analytical formulas are derived using the characteristic

function computed by solving the associated Heston PDE and by inversion of a Fourier

Transform. The application of the Heston model to the LIBOR market model was

developed by Wu and Zhang [140].

In [67] Hagan, Kumar, Lesniewski and Woodward proposed the so-called SABR

model, which is the natural extension of the classical CEV model to stochastic volatil-

ity. SABR is the acronym for Stochastic, Alpha, Beta and Rho, three of the four model

14

parameters. The dynamics of the forward price F (t) = e(r−d)(T−t)S(t) is given by

dF (t) = α(t)F (t)βdW (t), F (0) = F0,

dα(t) = να(t)dZ(t), α(0) = α0,

where (W,Z) is a bidimensional Brownian motion with constant correlation ρ. The

other parameters of the model are the variance elasticity β ∈ [0, 1], the volatility of

the volatility ν and the volatility’s reference level α0. The main applications of the

SABR model to the LIBOR market model were developed by Hagan [68], Mercurio

and Morini [103] and Rebonato [122]. Hagan model arises as the natural coupling

between SABR and LMM models. In the Mercurio & Morini model, the existence

of a lognormal common volatility process to all forward rates is assumed, while each

forward rate satisfies a particular stochastic differential equation. Rebonato model is

analogous to Hagan one, except for the dynamics of the volatilities. In this thesis we

will focus on SABR-like models because they are widely used in practice for several

reasons. Firstly, using singular perturbation techniques it is possible to derive an

approximation formula of the implied volatility in the SABR model. Secondly, the

model is simple and tractable. Thirdly, its parameters, which play specific roles

in the generation of smiles, have an intuitive meaning. Finally, it has become the

market standard for interpolating and extrapolating prices of plain vanilla caplets

and swaptions.

In the first part of this thesis we analyze the valuation of financial options using

SABR-like models both in equity/foreign-exchange and interest rate markets. Our

aim is to illustrate the use of these models with an emphasis on the implementation

and calibration.

The calibration is the procedure to fit model parameters by matching quoted op-

tion prices in the market. The standard calibration approach minimizes the distance

between model prices, V model, and market prices, V market. A common error measure

is the squared error

SE =
N∑
k=1

(
V market
k − V model

k (xxx)
)2
,

15

where N is the number of quoted option prices and xxx = (x1, x2, . . . , xn) is the vector

of model parameters. The error measure is a function f : Rn → R of xxx. Since we are

looking for a parameter vector xxx? that best fits the model to available market prices,

the calibration procedure can be interpreted as an optimization problem of the form

min
xxx∈I

f(xxx),

where I ⊆ Rn is the admissible set of the model parameters xxx, I = I1× . . .×In, where

Ik = [lk, uk], with lk, uk ∈ R for k = 1, ..., n. Due to the kind of cost functions we will

be dealing with, it is preferable to use derivative-free minimization algorithms because

analytical formulas will not be available and numerical differentiation is computation-

ally expensive. In this thesis we will focus in stochastic optimization, particularly in

the well-known Simulated Annealing algorithm [88].

16

Chapter 1

Simulated Annealing

1.1 Introduction

In this chapter we consider the box-constrained global minimization problem:

min
xxx∈I

f(xxx), (1.1)

where f is the cost function, xxx = (x1, . . . , xn) ∈ I ⊂ Rn, the search space being

I = I1 × . . . × In, where Ik = [lk, uk], with lk, uk ∈ R for k = 1, ..., n. This kind

of problems arises in many fields of application, such as physics, finance, industry,

biology, etc. Usually the dimension of the optimization problem is very large, and

the evaluation of the function involves a high computational cost.

There exists a large variety of global optimization methods. They can be classified

into deterministic and stochastic ones. Among the first ones are gradient-based meth-

ods, than can be applied when the cost function has adequate analytical properties.

However, if the cost function is not smooth enough, it results difficult or impossible

to apply these algorithms, and stochastic methods (such as Monte Carlo based ones)

are more convenient. Moreover, a heuristic can be incorporated to the optimization

algorithm to decide the next candidate to be tested or the way to compute the new

candidate. Metaheuristic global optimization algorithms are those ones proposed to

solve a general class of problems by using a combination of the cost function values

17

and certain abstract reasoning rules, without paying attention to the specific nature

of the problem. Sometimes, this combination is carried out in a stochastic way, ei-

ther by considering samples in the search space or by using somehow randomness to

obtain the optimal solution. A clear example of a metaheuristic stochastic global op-

timization algorithm is the standard Simulated Annealing (SA) method, in which the

decision of the next candidate to be considered depends on the Boltzman probability

distribution, as it will be described later in this chapter. Other important examples of

stochastic metaheuristic methods are genetic, swarm intelligence, parallel tempering

and grenade explosion algorithms. Recently, metaheuristic algorithms have gained

increasing scientific attention.

In this chapter, we focus on SA algorithm and its efficient parallelization on GPUs,

which will lead us to use optimization algorithms that can also be understood as a kind

of hybrid ones, combining SA and genetic algorithms (GA) (see [129]). They mainly

consist of SA/GA with simple deterministic crossover operations (see [28, 27, 81]).

SA is a metaheuristic stochastic optimization method that formulates the problem

of finding the optimum of a cost function as the equilibrium configuration for a

statistical thermodynamical system (see [20, 33, 135]). For a fixed temperature level,

it has been first introduced by Metropolis et al. in [106]. Next, SA has been extended

to the case of several temperatures, emulating the annealing process of steel forming,

by Kirkpatrick et al. in [88].

Due to the great computational cost of SA, its parallelization has been analyzed

by several authors and using different hardware architectures along time. In [96]

Lee et al. studied different parallelization techniques based on the multiple Markov

chains framework. Also several authors have analyzed different approaches in a SIMD

(Single Instruction, Multiple Data) machine [28], depending on the number of com-

munications performed between the independent Markov chains, and ranging from

asynchronous to synchronous schemes with different periodicity in the communica-

tions. Special attention has been addressed in reducing the number of communications

between processing threads, due the high latency of the communication network. In

18

[32] a hybrid OpenMP/MPI implementation has been developed.

The parallelization of hybrid SA/GA algorithms has been analyzed by Chen et al.

in [28]. Moreover, in [27] a parallel hybrid SA/GA in MIMD PC clusters has been

implemented, analyzing different crossover operations for generating the species.

Nowadays GPUs have become a cheap alternative to parallelize algorithms. The

main objective of the present chapter is to develop a generic and highly optimized

version of a SA algorithm for Nvidia GPUs in CUDA [109]. For this purpose, first

the more efficient versions of SA presented in [20, 135] have been analyzed, tested

and adapted to the GPU technology.

In the first Section 1.2.1 we present an introduction to the sequential Simulated

Annealing algorithm. Next in Section 1.2.2 we introduce the alternatives for the

parallelization of the algorithm following the Multiple Markov chain approach. First a

naive asynchronous implementation and then a synchronous implementation following

[96] with communication between Markov chains at each temperature level is detailed.

Then in Section 1.3 the algorithm is parallelized using GPUs. In GPUs decreasing the

periodicity of the communications does not give a relevant difference in performance,

because of the very low latency communication network between computing cores.

In the following Section 1.4 the precision of the algorithm is studied. Several

classical optimization tests have been analyzed. A numerical convergence analysis is

performed by comparing the sequential and parallel algorithms. Next the speedup

of the parallel algorithm is studied attending to the different parameters of the opti-

mization function and SA configurations.

Usually, the SA algorithm is used to obtain a starting point for a local opti-

mization algorithm. In this chapter we also present some examples of the precision

and computational time, using our CUDA SA implementation and a Nelder-Mead

algorithm.

Most of the results in this chapter are included in the reference [43].

19

1.2 Simulated annealing

1.2.1 Sequential Simulated Annealing

As indicated in the introduction, SA is a stochastic optimization method which is

mainly based on some statistical mechanics concepts. Thus, it formulates the prob-

lem of finding the optimum of a cost function in terms of obtaining the equilibrium

configuration for a statistical thermodynamical system. Statistical mechanics is based

on the description of a physical system by means of a set representing all possible

system configurations and the probabilities of achieving each configuration. Thus,

each set is associated with a partition function.

We say that a system is in equilibrium if the transition probability from state Si

to state Sj, P (Si → Sj), is the same as the probability of going from state Sj to state

Si, P (Sj → Si). A sufficient condition for equilibrium is the so-called detailed balance

or local balance condition, that can be written using the Bayesian properties:

πiP (Si → Sj) = πjP (Sj → Si), (1.2)

where πi and πj are the probabilities of being in the states i and j, respectively. These

conditions can also be formulated in terms of Markov chains. A Markov process is

said to be reversible (or time reversible), if it has a detailed balance where P (Si → Sj)

denotes the Markov transition probability between the states i and j. That is, the

forward and backwards Markov chains have the same transition probabilities.

Metropolis et al. proposed in [106] an algorithm for the simulation of atoms in

equilibrium at a given fixed temperature. It was based on the notion of detailed

balance that describes equilibrium for thermodynamical systems, whose configura-

tions have probability proportional to the Boltzmann factor. The algorithm finds the

transition probabilities for a Markov chain that yields the desired steady state dis-

tribution. They introduced a random walk (Markov chain of configurations) through

the configuration space, using a fictitious kinetics. In this Markov chain approach,

the time refers to the number of iterations of the procedure. Moreover, we assume

20

that our statistical system is considered to be in equilibrium so that the time results

to be irrelevant. Starting from a set of transition probabilities, a new set of transi-

tion probabilities satisfying the detailed balance condition can be found. This can be

done by only accepting some of the transitions (see [14]). By appropriately using this

procedure, the Markov chain converges to the steady state equilibrium distribution.

We aim to sample the space of possible configurations using a statistical ther-

modynamical system, that is in a thermal way. So, we force this system to satisfy

the equation (1.2). For the distribution function we chose the Boltzmann one, with

degeneracy factor 1, i.e. without repeated arrangements; which indicates the way the

particles are distributed among the energy levels in a system in thermal equilibrium.

More precisely, in order to define the probability of being at state Si at temperature

T we choose

π(Si, T) =
1

Z(T)
exp
(
− Ei
kbT

)
, (1.3)

where kb is the Boltzmann constant, Ei is the energy level at state Si and Z is a

normalization function, also referred as the partition function, which depends on the

temperature T in the form

Z(T) =
L∑
j=1

exp

(
− Ej
kbT

)
,

where L is the length of the Markov chain. Moreover, if the probability is given in

terms of the Boltzmann distribution (1.3) then we have

P (Si → Sj)

P (Sj → Si)
=
π(Si, T)

π(Sj, T)
=

1

Z(T)
exp
(
− Ei
kbT

)
1

Z(T)
exp
(
− Ej
kbT

) = exp
(
−∆Eij
kbT

)
, (1.4)

with ∆Eij = Ei − Ej. Thus, the ratio in (1.4) does not depend on Z.

In [106] Metropolis et al. introduced a sufficient condition for the system to satisfy

the detailed balance property. More precisely, the authors noticed that the relative

21

probability of equation (1.4) could be obtained at simulation level by choosing

P (Si → Sj)

P (Sj → Si)
=


exp

(
−∆Eij
kbT

)
if ∆Eij ≥ 0,

1 if ∆Eij < 0.

(1.5)

By using the above election, the Markov chain satisfies the detailed balance condi-

tion. Therefore, if the trial satisfies condition (1.5) for the Boltzmann probability then

the new configuration is accepted. Otherwise, it is rejected and the system remains

unchanged. By using the appropriate physical units for energy and temperature we

can take kb = 1, so that this strategy can be summarized as follows:

1. Starting from a configuration Si, with known energy Ei, make a change in the

configuration to obtain a new (neighbor) configuration Sj.

2. Compute Ej (usually, it will be close to Ei, at least near the limit).

3. If Ej < Ei then assume the new configuration, since it has lower energy (a

desirable property, according to the Boltzmann factor).

4. If Ej ≥ Ei then accept with probability exp(−∆Eij/T) the new configuration

(with higher energy) . This strategy implies that even when the temperature is

higher in the new configuration, we don’t mind following steps in the perhaps

wrong direction. Nevertheless, at lower temperatures we are more forced to

accept the lowest configuration we can find in our neighborhood and a jump to

another region is more unlikely to happen.

Note that the original Metropolis algorithm is designed to find the optimum con-

figuration of the system at a fixed temperature. Later on, the Metropolis algorithm

has been generalized by Kirkpatrick et al. in [88], where an annealing schedule is in-

troduced by defining how the temperature can be reduced. The algorithm starts with

a high enough initial temperature, T0, and the temperature is slowly decreased by fol-

lowing a geometric progression, that is Tn = ϕTn−1 with ϕ < 1 (usually 0.9 ≤ ϕ < 1

22

to obtain a slow freezing procedure). Thus, the SA algorithm consists of a temper-

ature loop [20], where the equilibrium state at each temperature is computed using

the Metropolis algorithm. Therefore, the SA algorithm can be decomposed in the

following steps (for example, see [20] for details):

• Step 1: Start with the given temperature, T0, and the initial point, xxx0, with

energy of configuration E0 = f(xxx0), where f denotes the cost function of the

problem (1.1).

• Step 2: Select a random coordinate of xxx0 and a random number to modify the

selected coordinate to obtain another point xxx1 ∈ V in the neighborhood of xxx0.

• Step 3: Compare the function value at the two previous points, by using the

Metropolis criterion as follows: let E1 = f(xxx1) and select a sample, u1, of a

uniform random variable U(0, 1). Then, move the system to the new point if

and only if u1 < exp(−(E1 − E0)/T0), where T0 is the current temperature. In

this way, E1−E0 has been compared with an exponential random variable with

mean T0. Note that we always move to the new point if E1 < E0, and that at

any temperature there is a chance for the system to move “upwards”. Note that

we need three uniform random numbers: one to choose the coordinate, one to

change the selected coordinate and the last one for the acceptance criterion.

• Step 4: Either the system has moved or not, repeat steps 2− 3. At each stage

we compare the function at the new point with the function at the previous

point until the sequence of accepted points fulfills some test of achieving an

equilibrium state.

• Step 5: Once the loop of the previous step has finished and an equilibrium state

has been achieved for a given temperature, T0, the temperature is decreased

according to the annealing schedule, T1 = ϕT0 (with a decreasing factor ϕ,

0 < ϕ < 1, usually ϕ close to one). Next, step 2 starts again with temperature

T1 from the point obtained in the last iteration of the algorithm as initial state.

23

The iteration procedure continues until a stopping criterion indicating that the

system is enough frozen, in our case until achieving a target temperature Tmin.

Notice that since we continue steps 2−3 until an equilibrium state, the starting

values in step 1 have no effect on the solution. The algorithm can be imple-

mented in numerous ways.

1.2.2 Parallel Simulated Annealing

The pseudocode of the algorithm described in the previous Section 1.2.1 can be

sketched as follows:

xxx = xxx0; T = T0;

do

for j = 1 to L do

xxx′ = ComputeNeighbour(xxx);

∆E = f(xxx′)− f(xxx); // Energy increment

if
(
∆E < 0 or AcceptWithProbability exp(−∆E/T)

)
xxx = xxx′; // The trial is accepted

end for

T = ϕT ; // with 0 < ϕ < 1

while (T > Tmin);

The SA algorithm is intrinsically sequential and thus it results difficult to paral-

lelize it without changing its recursive nature (see [28]).

Several strategies can be followed in order to parallelize SA (see [96], for example):

• Application dependent parallelization. The operations of the cost function are

decomposed among processors.

• Domain decomposition. The search space is sliced in several subdomains, each

processor searches the minimum at each subdomain and then shares its results

with the rest of processors.

• Multiple Markov chains approach. The most natural way to parallelize SA is

to follow a multiple Markov chain strategy, where multiple Markov chains are

24

executed asynchronously and they communicate their final states every certain

periods or at the end of the process. This enables independent movements on

each worker (SA chain) during the intervals between consecutive communica-

tions. Attending to the number of communications performed we can classify

parallel implementation in different categories.

The most straightforward approach is the case where the Markov chains only

communicate their states at the end of process. This is called asynchronous

approach (see [89, 96, 114]).

On the other hand, in the synchronous approach the Markov chains commu-

nicate their states at intermediate temperature levels. Only function values

are exchanged among workers. The communication can be performed at each

temperature level (intensive exchange of solutions) or at a fixed number of tem-

perature levels (periodic exchange of solutions).

Also we can classify the synchronous schemes attending to the type of the

performed exchange operation. This exchanged operation can be understood as

a crossover genetic algorithm operation where each Markov chain corresponds

to an individual of a genetic algorithm. The most simple crossover operation

is taking the minimum among all the values returned by the Markov chains at

the current temperature level (see [27, 96, 114]).

Asynchronous

In order to parallelize SA, the most straightforward approach to take advantage of

the number of processors consists of simultaneously launching a great number of SA

processes. Thus, each processor performs a SA process asynchronously. At the final

stage a reduce operation to obtain the best optimum among all of the computed ones

is performed. In this procedure, either the initial configuration can be the same for

all SA chains or a different starting configuration for each processor can be randomly

chosen (see Figure 1.1).

25

Figure 1.1: Sketch of the asynchronous parallel algorithm.

Synchronous approach with solution exchange at each temperature level

In the so-called synchronous implementation, threads start from a random initial

solution xxx0, so that each thread runs independently a Markov chain of constant length

L until reaching the next level of temperature. As the temperature is fixed, each

thread actually performs a Metropolis process. Once all threads have finished, they

report their corresponding final states xxxp and the value f(xxxp), p = 0, . . . , w−1 (where

w denotes the number of threads). Next, a reduce operation to obtain the minimum of

the cost function is performed. So, if the minimum is obtained at a particular thread

p? then xxxp
?

is used as starting point for all threads at the following temperature level

(see Figure 1.2). In the case of two or more points with the same objective function

value, the algorithm selects one of them and this choice does not affect the final result.

This algorithm can be interpreted as a mixed technique of a genetic algorithm

and a SA one in which each independent Markov chain (SA process) corresponds to

a different individual in a genetic algorithm. Moreover, the reduce operator can be

understood as a crossover operation of a genetic algorithm to select the evolution of

these species. In [96] and [114] it is noted that for this algorithm the independence

of the Markov chains is lost: actually they depend on each other due to the use of a

26

Figure 1.2: Sketch of the synchronous parallel algorithm.

deterministic crossover operation (the minimum). This fact is overcome in [114] by

introducing the so-called Synchronous approach with occasional solution exchanges

(SOS) algorithm, where the authors propose a stochastic crossover operator.

1.3 Implementation on GPUs

1.3.1 General-Purpose Computing on Graphics Processing

Units (GPGPU)

From the mid nineties of 20th century, 3D capable Graphics Processing Units (GPUs),

specialized graphics chips (coprocessors) independent from the CPU, started to be

commonly used and integrated in computers. Pushed by the spectacular growth of

graphics and videogames industries, always demanding more and more computing

power, GPUs have spectacularly evolved during the last 10 years, becoming powerful

and complex pieces of supercomputing hardware, with a massive parallel architecture.

Nowadays, a modern GPU consists of a many core processor, that can pack sev-

eral hundreds (or even thousands) of computing cores/processors that work simul-

taneously and allows to execute many computing threads in parallel. Furthermore,

all these cores can access to a common off-chip RAM memory by using a hardware

27

topology that allows these threads to retrieve simultaneously several data from this

memory, by performing memory access operations also in parallel (under certain con-

straints). With all these processors working together, the GPU can execute many

jobs in parallel. In Nvidia notation, we could call this architecture SIMT (Single

Instruction, Multiple Threads), where a common program/piece-of-code (or comput-

ing kernel) is simultaneously executed by several threads over different data. This

reminds the philosophy relying on the SIMD architecture.

As modern GPUs become more and more powerful in the last years, they in-

creasingly attract the scientific community attention, which realized their potential

to accelerate general-purpose scientific and engineering computing codes. This trend

is called General-Purpose Computing on Graphics Processing Units (GPGPU), and

consists of taking advantage of modern GPUs to perform general scientific computa-

tions.

Besides their intensive computational power, nowadays GPUs have become very

popular in the supercomputing world, mainly because of the following advantages:

they allow to save energy (as they are cheap and efficient in terms of Gflop per Watt),

they are cheap (in terms of money per Gflop), and they also allow to save space (as

many cores are packed into a small area).

As shown in the Top500 list (in June 2012), which lists the 500 more powerful

supercomputers in the world (see [151]), three of the top ten supercomputers are

heterogeneous systems, that use Nvidia GPUs for offloading calculus.

However, GPUs are very specialized and cannot live on their own. The GPU is a

coprocessor that is used to accelerate applications running on the CPU, by offloading

the most compute-intensive and time consuming portions of the code, although the

rest of the application still runs on the CPU. So, they depend on a CPU to control

their execution.

Taking into account the large number of Markov chains that can be simultane-

ously computed to solve the minimization problem, the here treated algorithms are

particularly well suited to be implemented in GPU technology.

28

Currently, there are two main GPU manufacturers, Nvidia and AMD (formerly

ATI graphics). These two architectures are conceptually similar, although each one

presents its own hardware peculiarities. In this thesis we have chosen Nvidia GPUs,

whose architecture is detailed in the next section.

1.3.2 Nvidia GPUs, many core computing

Figure 1.3: Nvidia GPU hardware structure.

A GPU (from now on, “the device”) can be seen as a powerful SIMD coprocessor,

endowed with a huge floating point processing power. Such coprocessor must be

managed from a common CPU (from now on, “the host”). In this chapter we have used

Nvidia GPUs, more precisely, the so-called Fermi architecture (or GF100) introduced

in early 2010. For a detailed explanation about this architecture, see [112].

As a physical layout (see Figure 1.3), Nvidia Fermi GPUs chipsets are organized

as a set of a variable number of Streaming Multiprocessors (SM) (from one to a

29

maximum of sixteen, in the top Fermi models) grouped into Graphics Processing

Clusters (GPC). Each SM contains a variable number of cores (or processors), 32 in

the case of the reference model of the GF100 chipsets. Each core contains a floating

point unit and an integer unit. Each floating point unit can perform IEEE 754-2008

compliant double-precision floating point operations, in two clock cycles (half the

performance of single-precision math). The SM can process several execution threads

at a time: they are planned and launched by a thread scheduler. The main differences

between GPU and CPU threads are: firstly, GPU threads are extremely lightweight,

i.e. very little creation overhead and instant switching; secondly, GPUs use thousands

of threads to achieve efficiency (instead, multi-core CPUs can only use a few).

Similarly to the CPU, Fermi GPUs have its own memory hierarchy:

• Device global memory. The GPU has its own high latency Random Access

Memory (RAM) space (called device global memory), that is completely sep-

arate from the host memory. All transfers between these two memories have

to be explicitly instructed by the programmer and these transfers have to be

carefully designed because of the connection bandwidth (PCI Express 2.0) and

the memories latencies. Global memory space can be accessed at any time by all

cores. The bandwidth from global memory to the SMs is much bigger than the

one of the CPU to its memory, with a peak of ≈ 200 GB/s in top models. That

is because under certain assumptions the global memory access by 32 threads is

coalesced into a single memory transaction, as soon as the data lie in the same

segment of memory of size 128 Bytes. On Fermi coalesced size is a full warp (32

threads). Also if data are not aligned we can achieve a high bandwidth using

textures, specifically designed to exploit data spatial locality.

Previously to performing any calculus, the data to be processed must be pulled

from the CPU to the GPU device memory and, once the calculations have

finished, the computed results must be retrieved from the GPU.

Even with the device memory bandwidth being really high, it is not enough

to feed all the processors, i.e. to keep them fully occupied (note that all the

30

processors have a theoretical peak performance of 520 double-precision Gflops),

so that a cache hierarchy is necessary.

• A “huge” 768 KB L2 cache. It is shared by all SMs and it manages the read-

/write and texture requests.

• Shared memory/L1 cache. For low-latency access to shared data by cooperating

threads in the same SM (implemented on chip).

Moreover, to benefit from frequently accessed data, each SM contains a low

latency cache SRAM, referred as shared memory, of 64 KB that is shared by

all the cores of the SM, as a shared resource. In Fermi, this memory can

be partitioned into a self-managed cache and a programmer-managed shared

memory (in blocks of 48 KB and 16 KB).

• Texture cache. With 12 KB per SM, designed for small texture filtering opera-

tions, with spatial locality.

• Registers. In addition to all these memories each SM contains a certain number

of registers to store instruction operands (more precisely, in our case 32 K

registers of 32-bits per multiprocessor).

From the programming point of view, similarly to the SIMD (Single Instruc-

tion, Multiple Data) execution model used for general data-parallel programming,

the Nvidia model is SIMT (Single Instruction, Multiple Threads): the code execu-

tion unit is called a kernel and is executed simultaneously on all SMs by independent

blocks of threads; each thread is assigned to a single processor and executes within its

own execution environment (instruction address and register state), but they all run

the same instruction at a time, although over different data. In order to efficiently

execute hundreds of threads in parallel, the SM hardware is multithreaded. The SM

also implements the synchronization barrier with a single instruction. Once a block

has its threads assigned to a SM, it is further divided by the SIMT multithreaded

instruction unit into 32-threads units called warps.

31

Each SM manages a pool of up to 48 warps (giving a total of 1536 threads),

although only one of these warps will be actually executed by the hardware at any

time instant. Threads are assigned to Streaming Multiprocessors in block granularity

(up to 8 blocks to each SM, for example 6 blocks of 256 threads). The size and

number of blocks are defined by the programmer. Threads run concurrently and the

SM maintains thread/block id’s and manages/schedules the threads execution.

There is an API for programming Nvidia GPUs called CUDA (Compute Unified

Device Architecture) [109], which consists of: some drivers for the graphics card, a

compiler and a language that is basically a set of extensions for the C/C++ language,

that allows to control the GPU (the memory transfer operations, the work assignment

to the processors and the processors/threads synchronization).

CUDA provides all the means of a parallel programming model with the partic-

ularity of the previously cited types of memory. There are CUDA instructions to

manage all of these memories and to declare variables that are stored in any of those

memory spaces. Inside the device, threads are able to access data from multiple

memory spaces. Each thread block contains a shared memory which is visible to all

threads of the block and with the same lifetime as the block. All threads from any

grid have access to the same global memory which is persistent across kernel launches

by the same application. Each transfer between these memory spaces must be also

explicitly managed. CUDA also allows to work with texture memory to exploit data

locality and with constant memory, used to store small structures that are reused

by all threads and that is also persistent across kernel launches. Transferring data

between different types of memory inside the device results also important because

of the different access patterns and the specific size and latency of the memory.

Thus due to the execution model and memory hierarchy, GPUs support two levels

of parallelism:

• An outer fully-parallel loop level that is supported at the grid level with no

synchronization. Thread blocks in a grid are required to execute independently.

It must be possible to execute them in any order, in parallel or in series. This

32

independence requirement allows thread blocks to be scheduled in any order

across any number of cores, thus enabling programmers to write scalable code.

• An inner synchronous loop level at the level of thread blocks where all threads

within a block can cooperate and synchronize.

1.3.3 Notes on the CUDA implementation

In this section we detail the pseudocodes for the proposed asynchronous and syn-

chronous versions of the parallel code.

The CUDA pseudocode of the asynchronous version is shown below:

I n i t i a l i z e T = T 0

I n i t i a l i z e L , varphi , T min

I n i t i a l i z e n blocks , n t h r e a d s p e r b l o c k

I n i t i a l i z e d po in t s = s t a r t P o i n t

I n i t i a l i z e bestPo int = 0

cusimann kernel<<<n blocks , n th r eads pe r b l o ck>>>(T, L , varphi , d po ints , bestPo int)

bestPo int = reduceMin (d po in t s)

Listing 1.1: Asynchronous Simulated Annealing.

A kernel, cusimann kernel, that executes a sequential Simulated Annealing in each

thread, is launched from the host (see the Listing 1.1). The CUDA kernel is simulta-

neously executed in parallel by a large number of threads, thus allowing to compute a

large number of Markov chains (in the here used GPU, GeForce GTX 470, the num-

ber of available CUDA cores is 448). More precisely, this kernel launches a grid of

n blocks thread blocks and each thread block groups n threads per block threads.

g l o b a l void cus imann kerne l (T, L , varphi , d po ints , bestPo int) {

I n i t i a l i z e g l o b a l t i d

I n i t i a l i z e x0 = d po in t s [g l o b a l t i d] = bestPo int

I n i t i a l i z e f x 0 = f (x0)

do {
for (i =0; i<L ; i++){

// Generate another po in t x1 in the neighborhood o f x0

d = S e l e c t randomly a coord ina te o f x0

33

u = S e l e c t a random number to modify the s e l e c t e d d coord ina te

x1 = ComputeNeighbour (x0 , d , u)

f x 1 = f (x1)

// I f x1 s a t i s f i e s the Metropo l i s c r i t e r i on , move the system to x1

i f (GenerateUniform (0 , 1) <= exp (−(f x1−f x 0) /T))

x0 = x1

f x 0 = f x 1 ;

end

}
T = T∗ varphi

} while (T>T min)

}

Listing 1.2: Asynchronous Simulated Annealing kernel.

Moreover, we take advantage of the constant memory to store the constant parame-

ters, like n, L and the box limits (lk and uk), so that these data can be broadcasted to

all threads. Furthermore, constant memory is cached, so that several consecutive ac-

cesses to the same memory position do not increase memory traffic. This is important

because these consecutive accesses are repeatedly required by the SA algorithm.

As indicated in the Step 3 of the algorithm described in Section 1.2.1, at each step

of the Markov chain three uniform random numbers are required. At this point we

take advantage of the Nvidia CURAND library [110], that allows parallel generation

of random numbers to use them immediately by the kernels, without the extra time

cost of writing and reading them from global memory.

As indicated in Section 1.2.2, once all threads have finished to compute the Markov

chains, the minimum of the function is obtained by a reduction operation (see Listing

1.1). More precisely, for this purpose we need to find the index associated to the

minimum of the vector storing the cost function values at the points returned by the

threads. This operation is carried out in parallel inside the GPU, by means of the

specific optimized Nvidia Thrust library, [147], that takes advantage of the coalesced

memory access and the involved partial reductions are performed in shared memory.

Unlike the asynchronous version, in the synchronous one the temperature loop

34

is carried out at CPU level, as detailed in the pseudocode in Listing 1.3. Thus, at

each temperature step the execution of the kernel detailed in Listing 1.4, as well as

the reduction operation are required. As illustrated in the forthcoming Table 1.2,

the repeated use of the optimized reduction operation does not cause a significant

performance overhead.

We also notice that in all implementations slow data transfers between CPU and

global GPU memory do not appear.

I n i t i a l i z e T = T 0

I n i t i a l i z e L , varphi , T min

I n i t i a l i z e n blocks , n t h r e a d s p e r b l o c k

I n i t i a l i z e d po in t s = s t a r t P o i n t

I n i t i a l i z e bestPo int = 0

do {
cus imann kernel<<<n blocks , n th r eads pe r b l o ck>>>(T, L , varphi , d po ints , bestPo int)

bestPo int = reduceMin (d po in t s)

T = T∗ varphi

} while (T>T min)

Listing 1.3: Synchronous Simulated Annealing.

g l o b a l void cus imann kerne l (T, L , varphi , d po ints , bestPo int) {

I n i t i a l i z e g l o b a l t i d
I n i t i a l i z e x0 = d po in t s [g l o b a l t i d] = bestPo int
I n i t i a l i z e f x 0 = f (x0)

for (i =0; i<L ; i++){
// Generate another po in t x1 in the neighborhood o f x0
d = S e l e c t randomly a coord ina te o f x0
u = S e l e c t a random number to modify the s e l e c t e d d coord inate
x1 = ComputeNeighbour (x0 , d , u)
f x 1 = f (x1)

// I f x1 s a t i s f i e s the Metropo l i s c r i t e r i on , move the system to x1
i f (GenerateUniform (0 , 1) <= exp (−(f x1−f x 0) /T))

x0 = x1
f x 0 = f x 1 ;

end

}

}

Listing 1.4: Synchronous Simulated Annealing kernel.

35

1.4 Numerical experiments: academic tests

In this section several experiments are presented to check the correctness and per-

formance of the here proposed CUDA implementation of SA. This CUDA implemen-

tation has been developed from an optimized C code, following the ideas of Section

1.2.2, so that both codes perform exactly the same operations and their performance

can thus be compared. The numerical experiments have been performed with the

following hardware and software configurations: a GPU Nvidia Geforce GTX470, a

recent CPU Xeon E5620 clocked at 2.4 Ghz with 16 GB of RAM, CentOS Linux,

Nvidia CUDA SDK 3.2 and GNU C++ compiler 4.1.2.

In what follows, we denote by V0 the sequential implementation, by V1 the parallel

asynchronous version and by V2 the parallel synchronous one.

1.4.1 Analysis of a sample test problem: Normalized Schwe-

fel function

A typical benchmark for testing optimization techniques is the normalized Schwefel

function (see [150], for example):

f(xxx) = − 1

n

n∑
i=1

xi sin
(√
|xi|
)
, −512 ≤ xi ≤ 512, xxx = (x1, . . . , xn). (1.6)

For any dimension n, the global minimum is achieved at the point xxx?, the coordinates

of which are x?i = 420.968746, i = 1, . . . , n, and f(xxx?) = −418.982887.

Table 1.1 illustrates the accuracy for the three versions of the SA algorithm: se-

quential (V0), asynchronous (V1) and synchronous (V2). For these three versions we

use the following configuration: T0 = 1000, Tmin = 0.01, L = 100 and ϕ = 0.99. For

the parallel versions we use the choice b = 256 and g = 64, for the number of threads

per block (block size) and the number of blocks per grid (grid size), respectively, so

that the number of Markov chains is 16384. With this configuration, the algorithm

performs 1.8776× 109 function evaluations in all cases.

36

n V0 V1 V2
|fa − fr| Relative error |fa − fr| Relative error |fa − fr| Relative error

8 1.3190× 10−1 2.4283× 10−3 1.2891× 10−2 7.4675× 10−4 1.7000× 10−5 4.1656× 10−5

16 2.3712× 10−1 3.2557× 10−3 7.4586× 10−2 1.8240× 10−3 1.9000× 10−6 5.0686× 10−5

32 3.3774× 10−1 3.8852× 10−3 2.8171× 10−1 3.5468× 10−3 1.5730× 10−4 6.0577× 10−5

64 7.9651× 10−1 5.9664× 10−3 9.7831× 10−1 6.6126× 10−3 3.1880× 10−4 1.2132× 10−4

128 1.9198 9.2648× 10−3 3.0461 1.1674× 10−2 1.2225× 10−4 1.5304× 10−4

256 3.6230 1.2733× 10−2 9.5765 8.0283× 10−2 1.4953× 10−2 8.2214× 10−4

512 7.3054 1.8097× 10−2 26.2282 4.0424× 10−1 4.6350× 10−1 4.5503× 10−3

Table 1.1: Error of the solution obtained by the algorithm, both in the value of the
function at the minimum (columns |fa − fr|, where fa is the objective function value
found by the algorithm and fr is the exact function value in the real minimum) and
in the minimum (columns Relative error, measured in ‖ · ‖2).

In order to take into account the impact of the random number seeds, we execute

each algorithm 30 times in all performed minimization examples. The synchronous

version provides much better convergence results than the other two ones. Note that

we have chosen the same SA configuration for all executions with different values of n

(n = 8, 16, 32, 64, 128, 256, 512), so that the error obviously increases with the value of

n. When the size of the problem increases, we should have selected a more restrictive

SA setting because the minimization problem becomes more complex. Nevertheless,

in order to compare in Table 1.2 the speedups of the parallel versions for different

values of n it results more convenient to consider the same SA setting for all cases.

Table 1.2 shows the performance of the GPU implementation with respect to a

one core CPU. When n increases the algorithm needs larger memory transfers, so

that the speedup decreases. Notice that even for moderate values of n the execution

of the SA algorithm becomes memory-bounded, which means that its performance is

limited by the memory bandwidth and not by the floating point performance.

In short, Tables 1.1 and 1.2 show that the asynchronous version results to be a bit

faster than the synchronous one, this is mainly because it does not perform reduction

operations. Nevertheless, the errors are much larger in the asynchronous version.

Notice that in all presented tables the computational time is expressed in seconds.

37

n V0 V1 V2
Time Time Speedup Time Speedup

8 1493.7686 5.5436 269.4595 5.6859 262.7121
16 2529.3072 15.3942 164.3027 15.5889 162.2502
32 4618.5820 56.9808 81.0550 60.1882 76.7356
64 8773.0560 106.6075 82.2930 110.2702 79.5596
128 17169.0000 210.9499 81.3890 215.5416 79.6552
256 34251.9240 455.4910 75.1978 462.8035 74.0096
512 68134.5760 871.7434 78.1589 893.7668 76.2330

Table 1.2: Performance of CUDA version vs. sequential version with one CPU core for different
number of parameters.

Numerical convergence analysis

In this case we compare the convergence of the two parallel algorithms with the se-

quential version. For this purpose the same number of explored points in the function

domain are considered. In Figure 1.4 three graphics of the relative error vs. the num-

ber of explored points for n = 8 and 16 are presented. In Figure 1.5 the same graphics

for n = 32 and 64 are shown, and in Figure 1.6 the plots are presented for n = 128

and 256. From them, it is clear that the synchronous version converges more quickly.

In order to compare the asynchronous version with the other two ones at a given

temperature step of SA, we must choose a point that summarizes the state where the

different threads are. For this purpose we have chosen the best point of all threads,

so that we are very optimistic in representing the convergence of the asynchronous

version.

As expected, all the results presented so far show that the synchronous version

results better to approximate the solution, specially for higher dimensional problems.

Therefore, in the forthcoming subsections we only analyze the behavior of this syn-

chronous version.

Increasing the number of launched threads

At this point we analyze the algorithm behavior when increasing the number of

launched threads. Table 1.3 illustrates how the error of the obtained solution is

38

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of function evaluations

R
e
la

ti
v
e
 e

rr
o
r

n = 8

400 600 800

0.01

0.02

0.03

0.04

0.05

V0

V1

V2

× 1.6384 ⋅ 10
6

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of function evaluations

R
e
la

ti
v
e
 e

rr
o
r

n = 16

500 600 700 800

0.01

0.02

0.03

0.04

0.05

V0

V1

V2

× 1.6384 ⋅ 10
6

Figure 1.4: For the three versions V0, V1 and V2, convergence rate for runs with
n = 8 and 16.

39

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of function evaluations

R
e
la

ti
v
e
 e

rr
o
r

n = 32

600 700 800 900

0.01

0.02

0.03

0.04

0.05

V0

V1

V2

× 1.6384 ⋅ 10
6

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of function evaluations

R
e
la

ti
v
e
 e

rr
o
r

n = 64

V0

V1

V2

× 1.6384 ⋅ 10
6

Figure 1.5: For the three versions V0, V1 and V2, convergence rate for runs with
n = 32 and 64.

40

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of function evaluations

R
e
la

ti
v
e
 e

rr
o
r

n = 128

V0

V1

V2

× 1.6384 ⋅ 10
6

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of function evaluations

R
e
la

ti
v
e
 e

rr
o
r

n = 256

V0

V1

V2

× 1.6384 ⋅ 10
6

Figure 1.6: For the three versions V0, V1 and V2, convergence rate for runs with
n = 128 and 256.

41

Threads Function evaluations |fa − fr| Relative error

768 2.7648× 104 47.7821 1.1085
76800 2.7648× 106 8.0830 1.9117× 10−2

7680000 2.7648× 108 1.4345 8.0156× 10−3

Table 1.3: Behavior of the errors when increasing the number of launched threads. Tests were
performed with n = 16, T0 = 5, Tmin = 0.5, ϕ = 0.7, L = 5.

Threads Function evaluations n = 16 n = 32
Time Speedup Time Speedup

128× 64 9.3881× 108 10.5519 122.1563 31.8715 73.4358
256× 64 1.8776× 109 15.5889 162.2502 57.0946 81.9460
256× 128 3.7552× 109 25.4284 203.3326 109.0251 85.9172
256× 256 7.5105× 109 46.4328 222.1904 211.5324 88.5479
256× 512 1.5021× 1010 87.7999 235.5945 414.3638 90.5019

Table 1.4: Behavior of the speedup when increasing the number of launched threads. Tests were
performed with T0 = 1000, Tmin = 0.01, ϕ = 0.99, L = 100.

reduced when we successively multiply by 100 the initial number of launched threads.

Table 1.4 shows how the speedup increases when we multiply by 2 the initial number

of launched threads, not only in the cases where the execution is not memory-bounded

(n = 16), but also in the cases where it is memory-bounded (n = 32). Note that even

in the memory-bounded case the obtained speedup is around 90.

Increasing the length of Markov chains

Table 1.5 shows the behavior of the speedup when successively doubling L, which

denotes the length of the Markov chains, also for both cases n = 16 (not memory-

bounded) and n = 32 (memory-bounded). Notice that the speedups are maintained

even for large lengths of Markov chains.

Increasing the number of function evaluations

Table 1.6 shows how the speedup evolves when we increase the number of function

evaluations by approximately successively doubling the initial value, also in both

cases n = 16 (not memory-bounded) and n = 32 (memory-bounded). In practice,

42

L Function evaluations n = 16 n = 32
Time Speedup Time Speedup

50 9.3881× 108 9.3158 138.4039 30.1144 77.9015
100 1.8776× 109 15.5889 162.2502 57.0946 81.9460
200 3.7552× 109 28.4907 181.4357 111.2561 84.2041
400 7.5104× 109 54.1433 191.1686 219.3096 85.6900
800 1.5021× 1010 105.4553 196.1659 435.2572 86.1849
1600 3.0042× 1010 208.1954 198.1213 869.2079 86.2000
3200 6.0083× 1010 413.3363 199.5752 1732.5052 86.5688

Table 1.5: Behavior of the speedup when increasing L. These tests were performed with the
following configuration of Simulated Annealing, T0 = 1000, Tmin = 0.01, ϕ = 0.99, b = 256, g = 64.

Function evaluations n = 16 n = 32
Time Speedup Time Speedup

1.8776× 109 15.6681 162.2502 60.1882 76.7356
3.7552× 109 25.4315 203.0942 109.1611 85.6823
7.5105× 109 47.8059 215.8074 215.0048 87.0605
1.5021× 1010 92.7941 222.3886 426.6933 87.6947
3.0042× 1010 182.6766 225.6187 850.9985 88.0599

Table 1.6: Behavior of the speedup when increasing the number of function evaluations.

the doubling of the number of function evaluations is achieved by different proce-

dures: doubling the length of the Markov chain, doubling the number of launched

threads, increasing the gap between the initial and the target minimum temperature

or increasing the value of ϕ.

Double vs. Float

Table 1.7 shows that executions in double-precision are twice slower than in single

one. Notice that in the best scenarios for the HPC versions of the Fermi architecture

the double precision speed results to be limited to one half of the single-precision

one. Obviously, the obtained error with double-precision is lower, but single-precision

accuracy is enough because the purpose of the SA algorithm is to find an approximate

minimum (see [88]). This is the reason why the results presented in all tables have

been obtained with single-precision.

43

Time Relative error

Single-precision 15.5889 5.0686× 10−5

Double-precision 32.3916 2.1166× 10−7

Table 1.7: Computational times in seconds and relative quadratic errors with single and double-
precision for the next Simulated Annealing configuration: n = 16, T0 = 1000, Tmin = 0.01, ϕ = 0.99,
b = 256, g = 64.

1.4.2 The set of performed tests

In the previous section a particular minimization problem has been deeply analyzed.

Furthermore, the proposed CUDA implementation for SA algorithm in GPUs has

been tested against a large enough number of appropriate examples. A brief de-

scription of the different optimization problems that have been considered in the

benchmark is listed in the Appendix A. The number and the kind of problems in-

cluded in this appendix are chosen so that they are enough to obtain some conclusions

from them and the test suite should not be overwhelming so that this study is un-

manageable. Finally, the suite contains 41 examples. Table 1.8 lists these problems

with the corresponding number of variables of each one. Moreover, the comparative

analysis of results mainly focuses on the objective function values and in the locations

of the solutions in the domain space obtained by the SA algorithm. Table 1.9 shows

the obtained results, both for the asynchronous and synchronous versions. In Table

1.9 SA configurations that achieve small errors in the synchronous version are con-

sidered. Therefore, execution times become high for functions with a large number

of parameters or with a large number of local minima. Since typically in many real

applications the hybrid approaches (in which SA provides a starting point for a local

minimization algorithm) are widely used [20], we present in Table 1.10 the obtained

results using a hybrid strategy with Nelder-Mead as local minimizer. Both execution

times and errors are much smaller when appropriately combining the SA and the

local minimization algorithm.

44

1.5 Conclusions

The extremely long execution times associated to SA algorithm in its sequential ver-

sion results to be its main drawback when applied to realistic optimization problems

that involve high dimensional spaces or function evaluations with high computational

cost. This is the reason why many authors in the literature have designed different al-

ternatives to parallelize sequential SA by using different high-performance computing

techniques. In the present chapter we have developed an efficient implementation of

a SA algorithm by taking advantage of the power of GPUs. After analyzing a sequen-

tial SA version, a straightforward asynchronous and a synchronous implementations

have been developed, the last one including an appropriate communication among

Markov chains at each temperature level. The parallelization of the SA algorithm

in GPUs has been discussed and the convergence of the different parallel techniques

has been analyzed. Moreover, the parallel SA algorithm implementations have been

checked by using classical experiments. A deeper analysis of results for a model ex-

ample problem is detailed and the list of test examples defining the benchmark is

included in the Appendix A. In summary, the results illustrate a better performance

of the synchronous version in terms of convergence, accuracy and computational cost.

Moreover, some results illustrate the behavior of the SA algorithm when combined

with the Nedler-Mead local minimization method as an example of hybrid strategy

that adequately balances accuracy and computational cost in real applications. The

resulting code, called CUSIMANN, was leveraged in open source (see [152]).

45

Function f reference Name of the problem Dimension n
F0 a Schwefel problem 8
F0 b Schwefel problem 16
F0 c Schwefel problem 32
F0 d Schwefel problem 64
F0 e Schwefel problem 128
F0 f Schwefel problem 256
F0 g Schwefel problem 512
F1 a Ackley problem 30
F1 b Ackley problem 100
F1 c Ackley problem 200
F1 d Ackley problem 400
F2 Branin problem 2
F3 a Cosine problem 2
F3 b Cosine problem 4
F4 Dekkers and Aarts problem 2
F5 Easom problem 2
F6 Exponential problem 4
F7 Goldstein and Price problem 2
F8 a Griewank problem 100
F8 b Griewank problem 200
F8 c Griewank problem 400
F9 Himmelblau problem 2
F10 a Levy and Montalvo problem 2
F10 b Levy and Montalvo problem 5
F10 c Levy and Montalvo problem 10
F11 a Modified Langerman problem 2
F11 b Modified Langerman problem 5
F12 a Michalewicz problem 2
F12 b Michalewicz problem 5
F12 c Michalewicz problem 10
F13 a Rastrigin problem 100
F13 b Rastrigin problem 400
F14 Generalized Rosenbrock problem 4
F15 Salomon problem 10
F16 Six-Hump Camel Back problem 2
F17 Shubert problem 2
F18 a Shekel 5 problem, m = 5 4
F18 b Shekel 7 problem, m = 7 4
F18 c Shekel 10 problem, m = 10 4
F19 a Modified Shekel Foxholes problem 2
F19 b Modified Shekel Foxholes problem 5

Table 1.8: Set of test problems, where first column indicates the assigned reference to display
results.

46

f Funct. eval. V1 V2
Time |fa − fr| Error Time |fa − fr| Error

F1 a 2.25× 109 56.03 8.84× 10−2 9.79× 10−2 56.42 3.20× 10−5 4.56× 10−5

F1 b 2.25× 109 221.36 9.45× 10−1 1.11 212.11 1.69× 10−4 4.26× 10−4

F1 c 2.63× 1011 52132.20 1.52× 10−1 3.95× 10−1 52916.78 1.93× 10−4 6.89× 10−4

F1 d 2.63× 1011 100481.20 3.34× 10−1 1.01 101754.88 3.90× 10−4 1.95× 10−3

F2 1.50× 109 4.14 1.00× 10−7 9.90× 10−4 4.22 1.00× 10−7 1.09× 10−4

F3 a 1.87× 109 4.18 1.00× 10−6 2.21× 10−4 4.32 1.00× 10−7 2.08× 10−5

F3 b 1.87× 109 4.93 1.02× 10−4 3.01× 10−3 5.05 1.00× 10−7 3.63× 10−5

F4 1.87× 109 4.38 3.20× 10−3 2.11× 10−5 4.53 4.20× 10−4 1.92× 10−5

F5 1.87× 109 4.19 3.00× 10−6 2.54× 10−4 4.32 1.00× 10−7 4.15× 10−5

F6 2.25× 109 4.39 9.00× 10−6 4.20× 10−3 4.63 1.00× 10−7 3.58× 10−4

F7 1.87× 109 4.13 3.00× 10−5 1.16× 10−4 4.15 2.70× 10−5 3.46× 10−5

F8 a 3.37× 109 674.93 1.11 2.16× 101 666.02 1.00× 10−7 2.80× 10−3

F8 b 5.25× 109 2102.46 1.59 4.87× 101 2090.60 3.00× 10−6 2.69× 10−2

F8 c 3.37× 109 2586.84 4.27 1.14× 102 2536.51 5.43× 10−3 1.40
F9 1.87× 109 3.90 2.00× 10−6 5.06× 10−5 4.08 1.00× 10−7 1.00× 10−7

F10 a 2.25× 109 4.77 1.00× 10−7 4.45× 10−4 4.93 1.00× 10−7 3.28× 10−7

F10 b 2.25× 109 6.83 3.20× 10−5 1.14× 10−2 6.97 1.00× 10−7 9.71× 10−7

F10 c 2.25× 109 12.01 3.42× 10−4 3.78× 10−2 12.20 1.00× 10−7 6.60× 10−6

F11 a 3.75× 109 10.37 1.04× 10−4 1.78× 10−3 10.43 1.00× 10−6 1.04× 10−5

F11 b 3.75× 109 15.90 1.87× 10−3 5.26× 10−3 15.96 1.00× 10−7 1.80× 10−5

F12 a 1.87× 109 6.18 1.00× 10−7 – 6.34 1.00× 10−7 –
F12 b 1.87× 109 10.04 3.00× 10−4 – 10.21 1.00× 10−7 –
F12 c 1.87× 109 16.96 5.30× 10−3 – 17.15 4.00× 10−6 –
F13 a 2.62× 1010 2517.40 6.36× 101 5.61 2515.49 5.49× 10−4 2.56× 10−3

F13 b 2.63× 1011 108239.15 1.46× 102 8.50 108113.13 9.52× 10−3 1.00× 10−2

F14 1.25× 109 53.53 5.37 4.63 53.06 1.00× 10−6 1.11× 10−3

F15 3.39× 1013 52220.44 4.96× 10−3 1.35× 10−2 52008.19 1.00× 10−7 1.45× 10−6

F16 1.87× 109 4.03 4.53× 10−7 4.35× 10−4 4.18 4.53× 10−7 6.53× 10−5

F17 1.87× 109 5.87 1.00× 10−7 1.20× 10−5 5.92 1.00× 10−7 2.20× 10−6

F18 a 1.87× 109 7.36 1.49× 10−4 1.36× 10−4 7.46 1.00× 10−7 2.00× 10−5

F18 b 1.87× 109 8.89 1.25× 10−4 1.84× 10−4 9.00 1.00× 10−7 1.39× 10−4

F18 c 1.87× 109 11.19 3.11× 10−4 3.30× 10−4 11.31 1.00× 10−7 1.47× 10−4

F19 a 1.87× 109 17.09 1.00× 10−7 1.07× 10−5 17.58 4.00× 10−6 4.92× 10−6

F19 b 1.87× 109 33.52 2.10× 10−3 2.89× 10−4 33.96 4.00× 10−6 4.61× 10−6

Table 1.9: Results for the test problem suite. In the column Error we indicate the relative error
in || · ||2 when the location of the minimum is non zero, otherwise the absolute error is presented.
Cells with ’-’ mark correspond to cases in which the exact minima are unknown.

f V2 Hybrid
Function eval. Time |fa − fr| Error Time |fa − fr| Error

F0 g 5.40× 107 31.13 5.10 1.51× 10−2 2.24 2.10× 10−12 1.01× 10−8

F1 d 8.33× 107 36.96 1.53 3.67 0.79 2.17× 10−8 1.50× 10−12

F8 c 9.01× 107 81.26 1.38× 10−1 6.91 1.44 3.33× 10−16 1.08× 10−6

F13 b 3.47× 108 165.57 2.36× 101 3.45× 10−1 1.40 3.63× 10−12 2.44× 10−7

Table 1.10: Results of the hybrid algorithm. The first part shows the results of the annealing
algorithm. The second one shows the results of the Nelder-Mead algorithm starting at the point at
which the annealing algorithm was stopped prematurely.

47

48

Chapter 2

SABR models for equity

2.1 Introduction

Mathematical models have become of great importance in order to price financial

derivatives on different underlying assets. However, in most cases there is no explicit

solution to the governing equations, so that accurate robust fast numerical methods

are required. Furthermore, financial models usually depend on many parameters that

need to be calibrated to market data (market data assimilation). As in practice the

model results are required almost at real time, the speed of numerical computations

becomes critical and this calibration process must be performed as fast as possible.

In the classical Black-Scholes model [13], the underlying asset follows a lognormal

process with constant volatility. However, in real markets the volatilities are not

constant and they can vary for each maturity and strike (volatility surface). In

order to overcome this problem, different local and stochastic volatility models have

been introduced (see [37, 38, 67, 73, 78], for example). Here we consider the SABR

model first proposed in [67], where a first order approximation formula for the implied

volatility of European plain-vanilla options with short maturities is obtained. In [113]

this formula is improved. In [116] a general method to compute a Taylor expansion

of the implied volatility is described. In particular, a second order asymptotic SABR

volatility formula is also computed. Next, in [130] a fifth order asymptotic expansion

49

is proposed for λ−SABR model; thus providing an extension with a mean-reversion

term in [72].

The existence of a closed-form formula simplifies the calibration of the parame-

ters to fit market data. However, when considering constant parameters (static SABR

model), the volatility surface of a set of market data for several maturities cannot

be suitably fitted. In [67, 137], the calibration of the static SABR model to fit a

single volatility smile is analyzed. Among the different techniques to deal with a set

of different maturities (see [47, 76], for example), in [67] a SABR model with time

dependent parameters (dynamic SABR) is introduced and in [115] an asymptotic ex-

pression for the implied volatility is obtained. Also by means of piecewise constant

parameters, in [52] the static SABR model is extended. In [94] a second order approx-

imation to call options prices and implied volatilities is proposed and a closed form

approximation of the option price extending dynamically the original SABR model

is gained. In [85] the SABR model with a time-dependent volatility function and a

mean reverting volatility process is obtained. In [25] a hybrid SABR−Hull-White

model for long-maturity equity derivatives is considered.

However, time dependent parameters highly increase the computational cost and

it is not always possible to compute an analytical approximation for the implied

volatility or the prices (or the expression results to be very complex). In this case, we

can use numerical methods (for example, Monte Carlo) in the calibration process. In

order to calibrate a model, an efficient, robust and fast optimization algorithm has to

be chosen, either a local optimization algorithm (such as Nelder-Mead or Levenberg-

Marquardt ones) or a global optimization one (such as Simulated Annealing, genetic

or Differential Evolution based ones). Although local optimization algorithms are

efficient, if the calibration function presents several local minima they can stuck in

any of these ones (note that the volatility surface can be uneven for some markets). On

the other hand, global optimization algorithms are more robust, although they involve

greater computational cost and are much slower. As financial instruments analysis

should be carried out almost in real-time, we use the efficient implementation of the

50

Simulated Annealing (SA) algorithm in Graphics Processing Units (GPUs) proposed

in the previous Chapter 1 and published in the article [43]. Particularly, we consider

Nvidia Fermi GPUs and the API for its programming, named CUDA (Compute

Unified Device Architecture), see [126, 109]. CUDA consists of some drivers for the

graphic card, a compiler and a language that is basically a set of extensions for

the C/C++ language. This framework allows to control the GPU (memory transfer

operations, work assignment to the processors and threads synchronization).

Once the parameters have been calibrated, the model can be used to price exotic

options. There are different techniques for pricing, such as Monte Carlo simulation,

finite difference methods, binomial trees or integration-based methods (Fourier trans-

form, for example). Among them, Monte Carlo simulation is a flexible and powerful

tool that allows to price complex options (see [49, 84]). From the computational view-

point, it results to be very expensive mainly due to its slow convergence. Once again

this is a handicap, particularly in pricing and risk analysis in the financial sector.

However, as illustrated in the present chapter, Monte Carlo simulation is suitable for

pricing options on GPUs [95].

In this chapter, we have parallelized the Monte Carlo method on GPUs for the

static and dynamic SABR models. In the literature the implementation of efficient

Monte Carlo methods for pricing options has been analyzed. In [83] Asian options

pricing with Black-Scholes model by a quasi-Monte Carlo method is considered, thus

getting a speedup factor up to 150. In [10] a Monte Carlo GPU implementation for

the multidimensional Heston and hybrid Heston−Hull-White models (using a hybrid

Taus−Mersenne-Twister random number generator) is presented, achieving speedup

factors around 50 for Heston model, and from 4 to 25 for the Heston−Hull-White

model. In [131], European and American option pricing methods on GPUs under the

static SABR model are presented. For the European case a speedup of around 100 is

obtained, while for American ones it is around 10. In [132] the pricing of barrier and

American options using a parallel version of least squares Monte Carlo algorithm is

carried out, following the techniques presented in [131]. They obtain speedups up to

51

134 in the case of barrier options and around 22 in American ones. In our present

chapter, the random number generation is performed “on the fly” by using the Nvidia

CURAND library (see [110], for details). This is an important difference with previous

works, where random numbers are previously generated and then transferred to the

GPU global RAM memory.

The outline of this chapter is as follows. In Section 2.2 the static and dynamic

SABR models are described, with a new proposal for functional parameters in the

dynamic case. In Section 2.3 the calibration to market data is detailed. In Section

2.4, the Monte Carlo method and its parallel implementation in CUDA is described.

In this chapter we use the SA method to calibrate the models. Depending on whether

the cost function uses a direct expression or a Monte Carlo method, in Section 2.5

we discuss different techniques to parallelize the SA algorithm. In Section 2.6 we

illustrate the performance of the implemented pricing technique for European call

options. Next, we present results about calibration to real market data. Finally, the

pricing of a cliquet option with the calibrated parameters is detailed.

Most of the contents presented in this chapter are included in reference [42].

2.2 The SABR model

The SABR (Stochastic α, β, ρ) model was introduced in [67], arguing that local volatil-

ity models were not able to reproduce market volatility smiles and that their predicted

volatility dynamics contradicted market smiles and skews. The main advantage of

the SABR model comes from its great simplicity compared to alternative stochastic

volatility models [67]. The dynamics of the forward price and its volatility satisfy the

following system of stochastic differential equations

dF (t) = α(t)F (t)βdW (t), F (0) = f̂ , (2.1)

dα(t) = να(t)dZ(t), α(0) = α, (2.2)

where F (t) = S(t)e(r−y)(T−t) denotes the forward price of the underlying asset S(t), r

being the constant interest rate and y being the constant dividend yield. Moreover,

52

α(t) denotes the asset volatility process, dW and dZ are two correlated Brownian

motions with constant correlation coefficient ρ (i.e. dWdZ = ρdt) and S(0) is the

spot price of the asset. The parameters of the model are: α > 0 (the volatility’s

reference level), 0 ≤ β ≤ 1 (the variance elasticity), ν > 0 (the volatility of the

volatility) and ρ (the correlation coefficient). Note the two special cases: β = 1

(lognormal model) and β = 0 (normal model).

2.2.1 Static SABR model

The static SABR model corresponds to a constant parameters assumption. When

working with options with the same maturity, the static SABR model provides good

results [67]. The great advantage is that the following asymptotically approximated

explicit formula for the implied Black-Scholes volatility can be obtained:

σmodel(K, f̂ , T) =
α

(Kf̂)(1−β)/2

[
1 +

(1− β)2

24
ln2

(
f̂

K

)
+

(1− β)4

1920
ln4

(
f̂

K

)
+ · · ·

] · (z

x(z)

)
·

{
1 +

[
(1− β)2

24

α2

(Kf̂)1−β
+

1

4

ρβνα

(Kf̂)(1−β)/2
+

2− 3ρ2

24
ν2

]
· T + · · ·

}
,

(2.3)

where z is a function of K, f̂ and T given by

z =
ν

α
(Kf̂)(1−β)/2 ln

(
f̂

K

)
,

and

x(z) = ln

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
. (2.4)

53

In this chapter, we consider the following correction to (2.3) proposed by Oblój in

[113],

σmodel(K, f̂ , T) =
1[

1 +
(1− β)2

24
ln2

(
f̂

K

)
+

(1− β)4

1920
ln4

(
f̂

K

)
+ · · ·

] ·
ν ln

(
f̂
K

)
x(z)

 ·

{
1 +

[
(1− β)2

24

α2

(Kf̂)1−β
+

1

4

ρβνα

(Kf̂)(1−β)/2
+

2− 3ρ2

24
ν2

]
· T + · · ·

}
,

(2.5)

where the following new expression for z is considered:

z =
ν
(
f̂ 1−β −K1−β

)
α(1− β)

,

and x(z) is given by (2.4). The omitted terms after + · · · can be neglected, so that

(2.5) turns to

σmodel(K, f̂ , T) =
1

ω

(
1 + A1 ln

(
K

f̂

)
+ A2 ln2

(
K

f̂

)
+BT

)
, (2.6)

where the coefficients A1, A2 and B are given by

A1 = −1

2
(1− β − ρνω),

A2 =
1

12

(
(1− β)2 + 3

(
(1− β)− ρνω

)
+
(
2− 3ρ2

)
ν2ω2

)
,

B =
(1− β)2

24

1

ω2
+
βρν

4

1

ω
+

2− 3ρ2

24
ν2,

and the value of ω is given by ω = α−1f̂ 1−β.

2.2.2 Dynamic SABR model and the choice of the functional

parameters

The main drawback of the static SABR model arises when market data for options

with several maturities are considered. In this case, too large errors could appear.

54

In order to overcome this problem, the following dynamic SABR model allows time

dependency in some parameters [67]:

dF (t) = α(t)F (t)βdW (t), F (0) = f̂ , (2.7)

dα(t) = ν(t)α(t)dZ(t), α(0) = α, (2.8)

where the correlation coefficient ρ is also time dependent. As in the static SABR

model, the dynamic one also provides the following expression to approximate the

implied volatility [115]:

σmodel(K, f̂ , T) =
1

ω

(
1 +A1(T) ln

(
K

f̂

)
+A2(T) ln2

(
K

f̂

)
+B(T)T

)
, (2.9)

where

A1(T) =
β − 1

2
+
η1(T)ω

2
,

A2(T) =
(1− β)2

12
+

1− β − η1(T)ω

4
+

4ν2
1(T) + 3

(
η2

2(T)− 3η2
1(T)

)
24

ω2,

B(T) =
1

ω2

(
(1− β)2

24
+
ωβη1(T)

4
+

2ν2
2(T)− 3η2

2(T)

24
ω2

)
,

with

ν2
1(T) =

3

T 3

∫ T

0
(T − t)2ν2(t)dt, ν2

2(T) =
6

T 3

∫ T

0
(T − t)tν2(t)dt,

η1(T) =
2

T 2

∫ T

0
(T − t)ν(t)ρ(t)dt, η2

2(T) =
12

T 4

∫ T

0

∫ t

0

(∫ s

0
ν(u)ρ(u)du

)2

dsdt.

(2.10)

Note that if ν and ρ are taken as constants, i.e. ν = ν0 and ρ = ρ0, then it follows

that ν1(T) = ν2(T) = ν0, η1(T) = η2(T) = ν0ρ0 and the dynamic SABR model

reduces to the static one.

The choice of the functions ρ and ν in (2.10) constitutes a very important decision.

The values of ρ(t) and ν(t) have to be smaller for long terms (t large) rather than

for short terms (t small). Thus, in this chapter we consider two possibilities with

exponential decay:

• Case I: It is more classical and corresponds to the choice

ρ(t) = ρ0e
−at, ν(t) = ν0e

−bt, (2.11)

55

with ρ0 ∈ [−1, 1], ν0 > 0, a ≥ 0 and b ≥ 0. In this case, the expressions of the

functions ν2
1 , ν2

2 , η1 and η2
2, defined by (2.10), can be exactly calculated and are

given by:

ν2
1(T) =

6ν2
0

(2bT)3

[(
(2bT)2/2− 2bT + 1

)
− e−2bT

]
,

ν2
2(T) =

6ν2
0

(2bT)3

[
2(e−2bT − 1) + 2bT (e−2bT + 1)

]
,

η1(T) =
2ν0ρ0

T 2(a+ b)2

[
e−(a+b)T −

(
1− (a+ b)T

)]
,

η2
2(T) =

3ν2
0ρ

2
0

T 4(a+ b)4

[
e−2(a+b)T − 8e−(a+b)T +

(
7 + 2(a+ b)T

(
− 3 + (a+ b)T

))]
.

(2.12)

• Case II: In the present chapter we propose the original and more general choice

ρ(t) = (ρ0 + qρt)e
−at + dρ, ν(t) = (ν0 + qνt)e

−bt + dν . (2.13)

In this case, the symbolic software package Mathematica allows to calculate ex-

actly the functions ν2
1 , ν2

2 and η1 (see Appendix B.1). However, an explicit

expression for η2
2 cannot be obtained, and therefore we use an appropriate

quadrature formula for its approximation.

In order to guarantee that the correlation ρ(t) ∈ [−1, 1] and the volatility ν(t) >

0 for the involved parameters, an adequate optimization algorithm has to be

used during calibration.

2.3 Calibration of the SABR model

The goal of calibration is to fit the model parameters to reproduce the market prices

or volatilities as close as possible. In order to calibrate the model, we choose a set of

vanilla options on the same underlying asset and the market prices are collected at

56

the same moment. We can either consider only one maturity or several maturities.

In the second case, a dynamic SABR model should be applied. Next, the model is

used to price other options (such as exotic options). The computational cost increases

with the increasing complexity of the pricing models.

Hereafter we denote by Datamarket(Kj, f̂ , Ti) the observed market data, for the

maturity Ti (i = 1, . . . , n) and the strike Kj (j = 1, . . . ,mi), where n denotes the

number of maturities and mi the number of strikes for the maturity Ti. The market

implied volatility is denoted by σmarket(Kj, f̂ , Ti) and the corresponding market option

price by Vmarket(Kj, f̂ , Ti). Moreover, we denote by Datamodel(Kj, f̂ , Ti) the model

value (Vmodel(Kj, f̂ , Ti) or σmodel(Kj, f̂ , Ti)) for the same option.

The calibration process tries to obtain a set of model parameters that minimizes

the error between market and model values for a given error measure. In order to

achieve this target we must follow several steps:

• Decide how to perform the calibration process, in prices or in volatilities.

• Choose market data that should be highly representative of the market situa-

tion.

• Decide which error measure will be used to compare model and market values:

– If the calibration is made for one maturity Ti, we use the cost function

fi,E(xxx) =

mi∑
j=1

(
Datamarket(Kj , f̂ , Ti)−Datamodel(Kj , f̂ , Ti)

Datamarket(Kj , f̂ , Ti)

)2

(xxx), (2.14)

where xxx denotes the parameters to calibrate.

– If the calibration is made for a set of maturity dates the cost function we

use is

fE(xxx) =

n∑
i=1

mi∑
j=1

(
Datamarket(Kj , f̂ , Ti)−Datamodel(Kj , f̂ , Ti)

Datamarket(Kj , f̂ , Ti)

)2

(xxx). (2.15)

• Choose the (local or global) optimization algorithm to minimize the error.

57

• Fix (if it is convenient) some of the parameters on beforehand, by taking into

account the previous experience or the existing information.

• Calibrate and compare the obtained results. If they are satisfactory, the pa-

rameters are accepted and used for pricing more complex financial instruments.

An advantage of the SABR model is the existence of an asymptotic approximation

formula for the implied volatility that can be used in the calibration. It is important

to take into account the meaning of the different model parameters [67, 137]. The

value of β is related to the type of the underlying stochastic process of the model and

it is usually fixed on beforehand. For example, β = 1 (lognormal model) is mostly

used in equity and currency markets, like foreign exchange markets (for example,

EUR/USD). The choice β = 0.5 corresponds to a CIR model and is used in US

interest rate desks. The value β = 0 (normal model) is commonly used to manage

risks, as for example in Yen interests rate markets. Alternatively, β can be computed

from historical data of the at-the-money volatilities, σATM = σmodel(f̂ , f̂ , T), that can

be obtained by taking K = f̂ in (2.5). Next, after some computations the identity

lnσATM = lnα− (1− β) ln f̂ ,

is obtained and β can be computed from a log-log regression of f̂ and σATM (see [137],

for details). Once β has been fixed and the term BT in (2.5) has been neglected,

the value of α can be computed by using the value of σ at-the-money (σATM =

σmodel(f̂ , f̂ , T)) with the following approximation:

α ≈ f̂ (1−β)σmodel(f̂ , f̂ , T).

In the case β = 1, α is equal to the at-the-money volatility [67]. Thus, by fixing β = 1

and α, the (possibly large) calibration cost is reduced: only ρ and ν are calibrated.

In this chapter the whole set of SABR parameters is calibrated, thus leading to a

more time consuming calibration. Nevertheless, the GPUs technology highly speeds

up this procedure.

58

2.4 Pricing with Monte Carlo using GPUs

Monte Carlo technique for the SABR model involves the simulation of a huge number

of forward and volatility paths. Let S0 = S(0) and F0 = F (0) be the asset spot value

and the initial value of the forward, respectively. For a given option data and a given

initial value of the forward F0 = f̂ = S0e
(r−y)(T−t), the European option price at the

time t = 0 is equal to V (S0, K) = e−rTE
(
V (ST , K)

)
, where V (ST , K) is the option

payoff (for example, V (ST , K) = max{ST −K, 0} for a European call option).

In order to discretize the stochastic differential equations of the SABR model, we

take a constant time step ∆t, such that M = T
∆t

denotes the number of subintervals

in [0, T]. In order to preserve some properties of the continuous model (such as

positivity), we use the following log-Euler discretization:

αi+1 = αie
ν(ti)Z

1
i

√
∆t−ν2(ti)∆t/2,

ν̂ = αiF
β−1
i , (2.16)

Fi+1 = Fie
ν̂
(
ρ(ti)Z

1
i +Z2

i

√
1−ρ2(ti)

)√
∆t−ν̂2∆t/2

,

where Z1
i and Z2

i denote two independent standard normal distribution samples. In

[26] it is pointed out that the log-Euler scheme may become unstable for specific

time-steps. So, the simulation of the conditional distribution of the SABR model

over a discrete time step (which is proved to be a transformed squared Bessel process)

and the use of an approximation formula for the integrated variance are proposed.

However, we did not find this unstable behavior in our experiments. In case of

unstability, this alternative low-bias simulation scheme in [26] could be adapted.

Note that ST = FT . If N denotes the number of simulated paths, then the option

price is given by

V̂ (S0, K) = e−rT
1

N

N∑
j=1

V (SjT , K). (2.17)

Option pricing with the Monte Carlo method is an accurate and robust technique.

However, as Monte Carlo method exhibits an order of convergence equal to 1/
√
N ,

a large number of paths is required to obtain precise results, therefore leading to

59

not affordable computational costs in real practice. For this reason, option pricing

with Monte Carlo is usually implemented in high performance systems. Here, we

propose a parallel version of Monte Carlo efficiently implemented in CUDA by using

the XORWOW pseudo-random number generator (xorshift RNG) included in the

Nvidia CURAND library [101].

The process can be summarized as follows:

1. Firstly we read the input data and send it to constant memory: Monte Carlo

parameters, SABR parameters and market data. Next, in order to store the

computed final price of each simulation, we allocate a global memory vector of

size N .

2. We compute a Monte Carlo kernel for the generation of the different paths,

where uniform random numbers are generated “on the fly” inside this kernel,

calling the curand uniform() CURAND function. This allows random num-

bers to be generated and used by the Monte Carlo kernel without requiring

them to be written to and then read from global memory. Then Box-Muller

method is used to transform the random uniform distributed numbers in nor-

mally distributed ones.

3. The option price is computed with the thrust::transform reduce method of

the Thrust Library [147] (included in the Nvidia toolkit since its version 4.0).

With this function we apply kernel fusion reduction kernels. Then, the sum in

(2.17) is computed by a standard plus reduction also available in the Thrust

Library. By fusing the payoff operation with the reduction kernel we have a

highly optimized implementation which offers the same performance as hand-

written kernels. All these operations are performed inside the GPU, so that

transfers to the CPU memory are avoided.

60

Figure 2.1: Sketch of the parallel SA algorithm using two GPUs and OpenMP.

61

2.5 Calibration of the parameters using GPUs

The calibration of the SABR model parameters can be done using the implied volatil-

ity formula or the Monte Carlo simulation method. Usually, in trading environments

the second one is not used, mainly due to its high execution times. However, if

we have a parallel and efficient implementation of the Monte Carlo method, we can

consider its usage in the calibration procedure.

In this chapter, the calibration of the parameters has been done with the Simulated

Annealing (SA) stochastic global optimization method presented in the Chapter 1.

In this chapter, we propose the two calibration techniques described in next para-

graphs.

2.5.1 Calibration with Technique I

In this calibration technique we use the implied volatility formula and an efficient

implementation in GPU of the Simulated Annealing algorithm. Thus, we consider

Datamarket = σmarket and Datamodel = σmodel in the cost functions (2.14) and (2.15),

respectively, both for individual and joint calibrations. Note that σmarket denotes the

market quoted implied volatilities and σmodel the model ones, (2.6) and (2.9) for the

static and dynamic models, respectively.

The calibration of the parameters has been done using the CUSIMANN library

[152] which implements the synchronous version detailed in the Section 1.2.2 of the

Chapter 1 (see Figure 1.2).

A host can have several discrete graphic cards attached. When dealing with com-

putationally expensive processes, as in this case, it is interesting to use the computing

power of these extra GPUs to further reduce the execution times. One possible ap-

proach is to use OpenMP [149] to control the GPUs inside one node. The strategy

is to launch as many CPU threads as GPUs available on a node. Thus, each CPU

thread handles a GPU.

The idea of this new synchronous parallel version of SA considering OpenMP and

62

several GPUs is the following; by simplicity we will consider two GPUs (see Figure

2.1): in each GPU the algorithm starts from a fixed initial point, and each thread runs

independently a Markov chain of constant length L until reaching the next level of

temperature. As the temperature is fixed, each thread actually performs a Metropolis

process. Once all the threads have finished, in each GPU a reduction operation is

made. Then, each GPU reports the corresponding final state xxxmin
∗ and yyymin

∗ , and in

the CPU another reduction operation is done to get the minimum point zzzmin
∗ . This

point is used as starting point for all GPUs threads at the following temperature level.

Note that if we had a cluster of GPUs, we could exploit an additional level of

parallelism. The final configuration which merges all the ideas is to use MPI frame-

work [148] for intercommunication between the nodes of a GPU cluster and to take

advantage of OpenMP to control the several graphic cards located inside this node.

When we double the number of GPUs used, the benefit of this approach is that the

execution times are reduced by about a half, or, from another point of view, we

could double the number of function evaluations “without” increasing the runtime.

Indeed, the time reduction would be somewhat less than a half because this extra

parallelization involves a small additional cost.

2.5.2 Calibration with Technique II

In this calibration technique the cost function is computed in GPU by a Monte Carlo

method. It turns out to be necessary when an expression for the implied volatility

is not available, as in the dynamic SABR model when considering the Case II (see

Section 2.2.2). For the joint calibration, in the cost function (2.15) we consider

Datamarket = Vmarket and Datamodel = Vmodel; Vmarket being the option market price

and Vmodel being the computed price with the Monte Carlo parallel implementation

(Section 2.4).

As the Monte Carlo method is carried out inside the GPU and Fermi GPUs do

not allow nesting kernels, the SA minimization algorithm has to be run on CPU. In

order to use all available GPUs in the system, we propose a CPU SA parallelization

63

using OpenMP. So, each OpenMP SA thread uses a GPU to assess on the Monte

Carlo objective function. This approach can be easily extrapolated to a cluster of

GPUs using, for example, MPI. Particularly, in this case the SA procedure rejects all

points violating the constraints over ρ(t) and ν(t), i.e. ρ(t) ∈ [−1, 1] and ν(t) > 0, ∀t
0 < t ≤ T .

2.6 Numerical results

From now on we denote by SSabr and DSabr the static and dynamic SABR mod-

els, respectively. As detailed in Section 2.2.2 concerning the dynamic SABR model,

depending on the choice of the time dependent functions ρ and ν, we denote by:

• DSabr I: dynamic SABR model in the Case I, where ρ and ν are given by

(2.11).

• DSabr II: dynamic SABR model in the Case II (general case), where ρ and ν

are given by (2.13).

Moreover, depending on the technique used to calibrate the model (see Section

2.5), we use the notation:

• T I: Technique I, where the model parameters are calibrated with the implied

volatility formula and using the efficient implementation of Simulated Annealing

in GPU.

• T II: Technique II, where the cost function is evaluated by the efficient imple-

mentation in GPUs of the Monte Carlo pricing method, as detailed in Section

2.4.

Numerical experiments have been performed with the following hardware and

software configurations: GPUs Nvidia Geforce GTX470, a CPU Xeon E5620 clocked

at 2.4 Ghz with 16 GB of RAM, CentOS Linux, Nvidia CUDA SDK 4.0 and GNU

C/C++ compilers 4.1.2.

64

2.6.1 Pricing European options

In this section we focus on pricing European options with both SABR models, when

using the GPU Monte Carlo method. The fixed data are S0 = 2257.37, K = 2257.37,

r = 0.018196, y = 0.034516, T = 0.495890, while the SABR parameters are:

• SSabr: α = 0.375162, β = 0.999999, ν = 0.331441 and ρ = −0.999999.

• DSabr I: α = 0.393329, β = 1.0, ν0 = 0.941565, ρ0 = −1.0, a = 0.001 and

b = 1.246906.

• DSabr II: α = 0.398436, β = 0.999579, ν0 = 1.285129, ρ0 = −0.964678, a =

0.0, b = 2.059560, dρ = 0.101632, dν = −0.086294, qρ = 0.0 and qν = 1.302296.

In Table 2.1 the results for the three presented models are shown. They correspond

to 220 simulations, ∆t = 1/250 (123 time steps) and both single and double precision

computations. In Table 2.2 the execution times for CPU an GPU programs are

compared. In single precision, the maximum speedup varies, approximately, from 357

to 567 times depending on the model. In double precision, the maximum speedup is

around of 74 times in all models. Table 2.3 shows the variation of execution times

when increasing the number of strikes, considering the DSabr II model with ∆t =

1/250. Note that execution times hardly vary: pricing 41 options by generating 220

paths takes around 0.28 and 0.86 seconds in single and double precision, respectively,

while pricing one option takes 0.25 and 0.84 seconds. Therefore, Monte Carlo pricing

method results to be affordable for calibration.

Precision SSabr DSabr I DSabr II

Result RE Result RE Result RE

Single 224.544601 0.005944 222.432648 0.015294 224.652390 0.005467
Double 224.545954 0.005938 222.434009 0.015288 224.653642 0.005461

Table 2.1: Pricing results for European options. RE denotes the relative error with
respect to the reference value 225.887329.

65

SSabr

Paths Single Double
CPU GPU Speedup CPU GPU Speedup

216 2.890 0.142 ×20.313 2.762 0.175 ×15.783
220 46.287 0.206 ×223.726 44.142 0.723 ×61.054
224 721.592 1.271 ×567.373 704.617 9.474 ×74.373

DSabr I

Paths Single Double
CPU GPU Speedup CPU GPU Speedup

216 3.638 0.144 ×25.112 3.358 0.179 ×18.759
220 58.228 0.255 ×227.674 53.663 0.840 ×63.884
224 929.254 2.047 ×453.918 860.556 11.515 ×74.733

DSabr II

Paths Single Double
CPU GPU Speedup CPU GPU Speedup

216 3.694 0.145 ×25.388 3.392 0.182 ×18.637
220 59.790 0.287 ×207.762 54.144 0.853 ×64.474
224 949.459 2.658 ×357.095 868.156 11.590 ×74.905

Table 2.2: Pricing European options. Execution times for CPU and GPU calibration
(in seconds), considering single and double precision with ∆t = 1/250.

2.6.2 Calibration

In order to check the accuracy and performance of the GPU calibration code, the

calibration of the SABR model to the volatility surfaces generated by the EURO

STOXX 50 index and EUR/USD foreign exchange rate has been tested. For both

data, we detail the calibrated parameters for SSabr, DSabr I and DSabr II models,

the computational times and the comparisons between the market volatilities or prices

and those ones with the model after parameter calibration.

Num. Strikes
216 220 224

Single Double Single Double Single Double
1 0.134374 0.183608 0.259048 0.841376 2.234662 11.595257
5 0.135871 0.184051 0.262661 0.850931 2.242463 11.605406
41 0.157753 0.190635 0.280509 0.862674 2.265047 11.645788

Table 2.3: Pricing with DSabr II model in GPU. Influence of the number of
strikes in computational times (time in seconds), ∆t = 1/250. We consider 1, 5
and 41 strikes, with values K (in % of S0) of {100}, {96, 98, 100, 102, 104} and
{80, 81 . . . , 119, 120}, respectively.

66

EURO STOXX 50 index

The data correspond to EURO STOXX 50 quotes of December of 2011. The asset

spot value is 2311.1 e. In Tables B.1 and B.2 of the Appendix B.2, the interest

rates, dividend yields and implied volatilities for 3, 6, 12 and 24 months maturities

are shown. Next, we present the calibrated parameters for these data.

1. Calibration of the SSabr model using the technique T I

By using the technique T I and the asymptotic expression (2.6) in the cost

function, the individual calibration (all strikes and one maturity) of the SSabr

model has been carried out. In Table 2.4 the calibrated parameters are detailed.

For each maturity (3, 6, 12 and 24 months), Figure 2.2 shows market and model

volatilities with the parameters of Table 2.4.

3 months 6 months 12 months 24 months

α 0.298999 0.302060 0.289271 0.277844
β 1.0 1.0 1.0 1.0
ν 0.382558 0.381724 0.308560 0.264178
ρ −1.0 −1.0 −0.999729 −1.0

Table 2.4: EURO STOXX 50. SSabr model: Calibrated parameters for each maturity.

80 90 100 110 120

24

26

28

30

32

34

36

K (% of S0)

Im
p
lie

d
 v

o
la

ti
lit

y

3m σmodel
3m σmarket
12m σmodel
12m σmarket

80 90 100 110 120

24

26

28

30

32

34

36

K (% of S0)

Im
p
lie

d
 v

o
la

ti
lit

y

6m σmodel
6m σmarket
24m σmodel
24m σmarket

Figure 2.2: EURO STOXX 50. SSabr model: σmodel vs. σmarket for the whole volatil-
ity surface. Maturities: 3 and 12 months (left), 6 and 24 months (right).

Table 2.5 shows the computational times and the speedups of the calibration

67

process for T = 24 months. As expected, the speedup is near 7.7 when us-

ing OpenMP with 8 threads, while the speedup respect to the CPU code is

around 190 when we use one GPU. Furthermore, if we use two GPUs then the

computational time is additionally almost divided by two.

CPU (1 thread) 2 threads 4 threads 8 threads GPU 2 GPUs
Time (s) 4172.746 2096.857 1056.391 545.456 21.955 12.609
Speedup - 1.99 3.95 7.65 190.06 330.93

Table 2.5: EURO STOXX 50. SSabr model: Performance of OpenMP vs. GPU
versions, in single precision for T = 24 months.

2. Calibration of the DSabr I model using the technique T I

The joint calibration for all strikes and maturities, using the DSabr I model

is made with the GPU version of SA and using the asymptotic formula (2.9),

when ρ and ν are given by (2.11). In Table 2.6 the calibrated parameters are

detailed. In Figure 2.3, the whole volatility surface for all maturities is shown.

By using the parameters in Table 2.6, for several strikes, Table 2.7 shows the

market volatilities (σmarket) vs. the model ones (σmodel, computed with formulas

(2.9), (2.11) and (2.12)). For single precision, the maximum relative error is

7.608205× 10−2 and the mean relative error is 2.073025× 10−2.

α = 0.294722 β = 1.0 ρ0 = −1.0 ν0 = 0.388539 a = 0.001000 b = 0.131466

Table 2.6: EURO STOXX 50. DSabr I model: Calibrated parameters.

In Table 2.8, the performance of the calibration procedure is illustrated. The

speedup of the mono-GPU version is around 225, while the 2 GPUs version

achieves a speedup up to 421.

3. Calibration of the DSabr II model using the technique T II

An asymptotic expression of implied volatility for the DSabr II model is not

available. So, for its calibration we use the technique T II (see Section 2.5). The

calibration process is performed in prices. For the Monte Carlo pricing method

68

80 90 100 110 120

24

26

28

30

32

34

36

K (% of S0)

Im
p
lie

d
 v

o
la

ti
lit

y

3m σmodel
3m σmarket
12m σmodel
12m σmarket

80 90 100 110 120

24

26

28

30

32

34

36

K (% of S0)

Im
p
lie

d
 v

o
la

ti
lit

y

6m σmodel
6m σmarket
24m σmodel
24m σmarket

Figure 2.3: EURO STOXX 50. DSabr I model: σmodel vs. σmarket for the whole
volatility surface. Maturities: 3 and 12 months (left), 6 and 24 months (right).

K (% of S0) 3 months 6 months

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

88% 32.21 31.7628 1.388389× 10−02 32.07 31.3150 2.354225× 10−02

100% 29.79 29.2166 1.924807× 10−02 29.63 28.8068 2.778265× 10−02

112% 27.52 27.1094 1.492006× 10−02 27.42 26.7345 2.500000× 10−02

K (% of S0) 12 months 24 months

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

88% 30.11 30.7756 2.210561× 10−02 28.16 29.6026 5.122869× 10−02

100% 28.22 28.3187 3.497519× 10−03 26.54 27.2549 2.693670× 10−02

112% 26.34 26.2941 1.742597× 10−03 24.95 25.3308 1.526253× 10−02

Table 2.7: EURO STOXX 50. DSabr I model: σmarket vs. σmodel.

we have considered 220 paths with ∆t = 1/250. In Table 2.9 the calibrated

parameters are detailed. In this case, double precision computations have been

used to ensure the convergence to the real minimum.

In Figure 2.4, the whole prices surface at maturities 3, 6, 12 and 24 months is

shown. In Table 2.10 the market and model prices are compared. The mean

relative error is 1.741038× 10−2 and the maximum relative error is 5.344231×
10−2.

In double precision, the computational time with one GPU is 37709.57 seconds

and with 2 GPUs is 19520.73 seconds, getting a speedup around 1.93. In this

69

CPU (1 thread) 2 threads 4 threads 8 threads GPU 2 GPUs
Time (s) 20162.40 10089.16 5116.84 2643.87 89.95 47.81
Speedup - 1.99 3.94 7.63 224.15 421.72

Table 2.8: EURO STOXX 50. DSabr I model: Performance of OpenMP vs. GPU
versions, in single precision.

α = 0.296790 β = 1.000000 ρ0 = −0.360610 ν0 = 0.000100 a = 15.0000000
b = 15.000000 dρ = −0.715716 dν = 0.847244 qρ = 15.000000 qν = −8.969205

Table 2.9: EURO STOXX 50. DSabr II model: Calibrated parameters.

case the CPU computation cost results prohibitive. As expected, the computa-

tional time of the calibration process with the Monte Carlo pricing method is

much higher than with the previous calibration procedures.

DSabr I vs. DSabr II

In order to compare the accuracy of DSabr II and DSabr I models, we compute the

mean relative error of the DSabr I model in prices, with Black-Scholes formula applied

to σmodel. This error is 2.154846× 10−2, so that DSabr II model captures better the

market dynamics.

EUR/USD exchange rate

In this section we consider the EUR/USD exchange rate, that expresses the amount

of American Dollars equivalent to one Euro. In Tables B.3 and B.4 of the Appendix

K (% of S0) 3 months 6 months

Vmarket Vmodel
|Vmarket−Vmodel|

Vmarket
Vmarket Vmodel

|Vmarket−Vmodel|
Vmarket

88% 316.679 316.119 1.769641× 10−03 347.371 346.830 1.556418× 10−03

100% 134.605 132.952 1.227935× 10−02 180.353 177.429 1.621589× 10−02

112% 37.252 36.895 9.572343× 10−03 74.680 72.682 2.676232× 10−02

K (% of S0) 12 months 24 months

Vmarket Vmodel
|Vmarket−Vmodel|

Vmarket
Vmarket Vmodel

|Vmarket−Vmodel|
Vmarket

88% 403.205 416.516 3.301443× 10−02 463.037 482.939 4.298152× 10−02

100% 245.905 251.015 2.077787× 10−02 316.081 322.821 2.132105× 10−02

112% 132.454 133.687 9.304021× 10−03 201.189 200.374 4.048420× 10−03

Table 2.10: EURO STOXX 50. DSabr II model: Vmarket vs. Vmodel.

70

80 90 100 110 120
0

100

200

300

400

500

600

K (% of S0)

P
ri
c
e

3m Vmodel
3m Vmarket
12m Vmodel
12m Vmarket

80 90 100 110 120
0

100

200

300

400

500

600

K (% of S0)

P
ri
c
e

6m Vmodel
6m Vmarket
24m Vmodel
24m Vmarket

Figure 2.4: EURO STOXX 50. DSabr II model: Vmodel vs. Vmarket for the whole
prices surface. Maturities: 3 and 12 months (left), 6 and 24 months (right).

B.2 the interests rates, dividend yields and volatility smiles for 3, 6, 12 and 24 months

maturities are shown. The EUR/USD spot rate is S0 = 1.2939 US dollars quoted in

December of 2011. From now on we denote the EUR/USD foreign rate as EURUSD.

Next, we present the results of calibrating the introduced models to these data.

1. Calibration of the SSabr model using the technique T I

By using the technique T I and the asymptotic expression (2.6), the individual

calibration of the SSabr model has been carried out. The parameters in Table

2.11 have been obtained. For them, in Figure 2.5 the market and the model

volatilities are shown.

3 months 6 months 12 months 24 months

α 0.146859 0.152825 0.158210 0.154572
β 1.0 0.990518 0.945088 0.999993
ν 0.911966 0.675457 0.491647 0.328907
ρ −0.447718 −0.490521 −0.511180 −0.560022

Table 2.11: EURUSD. SSabr model: Calibrated parameters for each maturity.

In Table 2.12, for T = 24 months, the GPU performance is compared to one

CPU. Time is measured in seconds and computation has been carried out in

single precision. The speedup with 8 OpenMP threads is near 8, specifically

71

1 1.2 1.4 1.6 1.8
12

14

16

18

20

22

24

K

Im
p
lie

d
 v

o
la

ti
lit

y

3m σmodel
3m σmarket
12m σmodel
12m σmarket

1 1.2 1.4 1.6 1.8
12

14

16

18

20

22

24

K

Im
p
lie

d
 v

o
la

ti
lit

y

6m σmodel
6m σmarket
24m σmodel
24m σmarket

Figure 2.5: EURUSD. SSabr model: σmodel vs. σmarket for the whole volatility surface.
Maturities: 3 and 12 months (left), 6 and 24 months (right).

7.66. As in EURO STOXX 50 calibration, 1 GPU speedup is around 190 and

2 GPUs around 333.

CPU (1 thread) 2 threads 4 threads 8 threads GPU 2 GPUs
Time (s) 4198.03 2109.56 1062.79 548.04 21.84 12.58
Speedup - 1.99 3.95 7.66 192.19 333.52

Table 2.12: EURUSD. SSabr model: Performance of OpenMP vs. GPU versions, in
single precision for T = 24 months.

2. Calibration of the DSabr I model using the technique T I

DSabr I model calibration to all strikes and maturities has been performed with

the SA GPU version and formula (2.9), with ρ and ν given by (2.11). In Table

2.13 the calibrated parameters are detailed. In Figure 2.6, the whole volatility

surface at maturities 3, 6, 12 and 24 months is shown. Note that the dynamic

SABR model captures correctly the volatility skew. In Table 2.14, the market

volatilities vs. the model ones (2.9) are shown. The mean relative error is

2.441714 × 10−2 and the maximum relative error is 6.954307 × 10−2. In Table

2.15, the computational times and the speedups in single precision are shown.

Note that for 1 GPU the speedup is around 240, while for 2 GPUs is nearly

451.

72

α = 0.155464 β = 0.971908 ρ0 = −0.642617 ν0 = 0.800275 a = 0.001 b = 2.6093

Table 2.13: EURUSD. DSabr I model: Calibrated parameters.

1 1.2 1.4 1.6 1.8
12

14

16

18

20

22

24

K

Im
p
lie

d
 v

o
la

ti
lit

y

3m σmodel
3m σmarket
12m σmodel
12m σmarket

1 1.2 1.4 1.6 1.8
12

14

16

18

20

22

24

K
Im

p
lie

d
 v

o
la

ti
lit

y

6m σmodel
6m σmarket
24m σmodel
24m σmarket

Figure 2.6: EURUSD. DSabr I model: σmodel vs. σmarket for the whole volatility
surface. Maturities: 3 and 12 months (left), 6 and 24 months (right).

3. Calibration of the DSabr II model using technique T II

Analogously to the previous Section 2.6.2, an asymptotic expression for implied

volatility in the DSabr II model is not available. The calibration has been

carried with Technique II (see Section 2.5). In this case, calibration is performed

in prices and using double precision. The set of calibrated parameters is detailed

in Table 2.16.

3 months 6 months

K σmarket σmodel
|σmarket−σmodel|

σmarket
K σmarket σmodel

|σmarket−σmodel|
σmarket

1.2075 16.85 17.0683 1.295549× 10−02 1.1700 17.71 17.4751 1.326369× 10−02

1.2950 14.70 15.4197 4.895918× 10−02 1.2975 15.17 15.3398 1.119314× 10−02

1.3715 13.75 14.3171 4.124364× 10−02 1.4099 14.07 14.0914 1.520967× 10−03

12 months 24 months

K σmarket σmodel
|σmarket−σmodel|

σmarket
K σmarket σmodel

|σmarket−σmodel|
σmarket

1.1240 18.22 17.6324 3.225027× 10−02 1.0746 17.75 17.3887 2.035493× 10−02

1.3043 15.39 15.2020 1.221572× 10−02 1.3161 15.11 15.1075 1.654533× 10−04

1.4673 14.19 14.0396 1.059901× 10−02 1.5485 13.94 14.2853 2.477044× 10−02

Table 2.14: EURUSD. DSabr I model: σmarket vs. σmodel.

73

CPU (1 thread) 2 threads 4 threads 8 threads GPU 2 GPUs
Time (s) 16793.41 8389.14 4240.11 2204.20 69.73 37.16
Speedup - 2.00 3.96 7.62 240.83 451.92

Table 2.15: EURUSD. DSabr I model: Performance of OpenMP vs. GPU versions,
in single precision.

α = 0.154037 β = 1.000000 ρ0 = −0.693682 ν0 = 7.541424 a = 0.000000

b = 150.000000 dρ = −0.200342 dν = 0.339807 qρ = 0.345973 qν = −0.992551

Table 2.16: EURUSD. DSabr II model: Calibrated parameters.

Figure 2.7 shows the comparison between market and model prices. The maxi-

mum relative error is 1.418863× 10−1 and the mean relative error is 2.192849×
10−2. In Table 2.17 the market and model prices for some strikes are shown.

1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

K

P
ri
c
e

3m Vmodel
3m Vmarket
12m Vmodel
12m Vmarket

1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

K

P
ri
c
e

6m Vmodel
6m Vmarket
24m Vmodel
24m Vmarket

Figure 2.7: EURUSD. DSabr II model: Vmodel vs. Vmarket for the whole prices surface.
Maturities: 3 and 12 months (left), 6 and 24 months (right).

The performance of calibration using 1 GPU is 35033.72 seconds and with 2

GPUs is equal to 19143.35 seconds; getting a speedup around 1.83 times. We

do not make a comparison between CPU and GPU because the computation

time in CPU results to be prohibitive.

DSabr I vs. DSabr II

The accuracy of DSabr II model with respect to DSabr I model is compared using the

mean relative error in prices. The DSabr I model error is 3.647441×10−2. Therefore,

74

3 months 6 months

K Vmarket Vmodel
|Vmarket−Vmodel|

Vmarket
K Vmarket Vmodel

|Vmarket−Vmodel|
Vmarket

1.2075 0.100489 0.101712 1.217204× 10−02 1.1700 0.144905 0.144950 3.072116× 10−04

1.2950 0.038794 0.040476 4.335060× 10−02 1.2975 0.055770 0.056139 6.611759× 10−03

1.3715 0.010770 0.011697 8.603287× 10−02 1.4099 0.015472 0.015539 4.271299× 10−03

12 months 24 months

K Vmarket Vmodel
|Vmarket−Vmodel|

Vmarket
K Vmarket Vmodel

|Vmarket−Vmodel|
Vmarket

1.1240 0.199490 0.198897 2.971219× 10−03 1.0746 0.259398 0.260539 4.399383× 10−03

1.3043 0.076379 0.075409 1.269954× 10−02 1.3161 0.102106 0.101766 3.330301× 10−03

1.4673 0.020951 0.020010 4.495205× 10−02 1.5485 0.028409 0.028189 7.756103× 10−03

Table 2.17: EURUSD. DSabr II model: Vmarket vs. Vmodel.

again the DSabr II model captures better the market dynamics.

Calibration test: pricing European options

In order to validate the correct calibration of model parameters, we price European

options with the DSabr I model and Monte Carlo pricing method. The price is

denoted with Vσmodel . Note that for the DSabr II model this task is redundant, since

the calibration was also carried out with the same Monte Carlo method.

EURO STOXX 50: In Figure 2.8, the comparison between market prices (calcu-

lated with Black-Scholes formula and market volatilities) and model prices (calculated

with the expression (2.9) and parameters of Table 2.6 in the Black-Scholes formula)

are plotted. The mean relative error is 2.840228 × 10−2 and the maximum relative

error is 1.008734× 10−1. Pricing all options with GPU takes 0.257248 seconds.

EURUSD: Analogously to the EURO STOXX 50 case, in Figure 2.9, the market

prices vs. the model ones are shown, using the parameters of Table 2.13. Furthermore,

the relative errors are shown. The mean relative error is 3.577857 × 10−02 and the

maximum relative error is 2.582023×10−01. Pricing all options in GPU takes 0.248013

seconds.

75

80 90 100 110 120
0

100

200

300

400

500

600

K (% of S0)

P
ri
c
e

3m Vσmodel

3m Vmarket
6m Vσmodel

6m Vmarket
12m Vσmodel

12m Vmarket
24m Vσmodel

24m Vmarket

80 90 100 110 120
0

0.02

0.04

0.06

0.08

0.1

0.12

K (% of S0)

R
E

3m RE
6m RE
12m RE
24m RE

Figure 2.8: EURO STOXX 50. DSabr I model for pricing European options. Prices
(left) and relative errors (right).

2.6.3 Pricing a cliquet option

In this section the pricing of a cliquet option on the EUR/USD exchange rate is

described. For this purpose, we use the GPU Monte Carlo method and consider

DSabr I and DSabr II models. For the first one, we choose the parameters of Table

2.13 and for the second one those in Table 2.16.

Cliquet options are options where the strike price is periodically reset several

times before final expiration date [138]. At the resetting date, the option will expire

worthless if the current security price is below the strike price, and the strike price

will be reset to this lower price. If the security price at resetting date is higher than

the strike, the investor will earn the difference and the strike price will be reset to

this higher price. Thus, a cliquet option is equivalent to a serie of forward-starting

at-the-money options with local limits, the so-called cap and floor limits. The option

payoff function is:

Cliquet
(
Fl, Cl, {di}i=1...D, {Sdi}i=1...D

)
=

D∑
i=2

max

(
min

(
Sdi − Sdi−1

Sdi−1

, Cl

)
, Fl

)
,

(2.18)

76

1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

K

P
ri
c
e

3m Vσmodel

3m Vmarket
6m Vσmodel

6m Vmarket
12m Vσmodel

12m Vmarket
24m Vσmodel

24m Vmarket

1 1.2 1.4 1.6 1.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

K

R
E

3m RE
6m RE
12m RE
24m RE

Figure 2.9: EURUSD. DSabr I model for pricing European options. Prices (left) and
relative errors (right).

where Cl and Fl are the local cap and floor limits, respectively, di denotes a resetting

date and Sdi is the underlying price at time di. Thus, Ri =
Sdi−Sdi−1

Sdi−1
is known as the

return between dates di−1 and di.

Usually, global limits can also be added, so that the payoff function is:

Cliquetglobal(Cg, Fg, Cliquet) = max
(
Cg,min(Fg, Cliquet)

)
, (2.19)

where Cg is the global cap limit, Fg is the global floor limit and Cliquet is given by

(2.18).

We consider the following data: T = 12 months, D = 4, di = i×T
D

, Fl = −0.02,

Cl = 0.02, Fg = 0, Cg = 0.2 and the payoff (2.19). We price the cliquet option with

DSabr I and DSabr II models using single precision. By using the DSabr I model

and the calibrated parameters in Table 2.13, the simulated cliquet option price is

Vσmodel= 0.098289, while when using DSabr II model and the parameters in Table

2.16 the simulated price is VMC= 0.120846. Note that |Vσmodel−VMC | = 0.022557 and

the execution time is 0.495199 seconds in both cases.

77

2.7 Conclusions

Static or dynamic SABR models should be chosen depending on the particular fi-

nancial derivative and the available market data. In both cases, the calibration of

parameters can be carried out either by using an asymptotic implied volatility formula

or a Monte Carlo simulation method. When using standard hardware tools, due to

the high computational time with Monte Carlo strategy, the formula is mainly used.

Nevertheless, the recently increasing use of GPU technology for scientific computing

can also be extended to the algorithms involved in the calibration procedure. In the

present chapter we propose the application of this technology to the SA global op-

timization algorithm and to the Monte Carlo simulation for the calibration in static

and dynamic SABR models. In this GPU setting, the calibration by Monte Carlo

is affordable in terms of computational time and the cost of calibration with the

asymptotic formula can be highly reduced. In order to illustrate the performance

of our GPU implementations, the calibration of static and dynamic SABR models

for EURO STOXX 50 index and EUR/USD exchange rate have been carried out

with asymptotic formula and Monte Carlo method. Once the parameters have been

calibrated, a cliquet option on EUR/USD has been priced. For the dynamic SABR

model we propose an original more general expression for the functional parameters

that reveals specially well suited for a EUR/USD exchange rate market data set.

Numerical results illustrate the expected behavior of both SABR models and the

accuracy of the calibration. In terms of computational time, if we use the formula

then the achieved speedup with respect to CPU computation is around 200 with

one GPU. Also, it is illustrated that GPU technology allows the use of Monte Carlo

simulation for calibration purposes, the corresponding computational time with CPU

being unaffordable.

78

Chapter 3

SABR/LIBOR market models:

Monte Carlo approach

3.1 Introduction

Since the seminal papers by Brace, Gatarek and Musiela [16], Jamshidian [79] and

Miltersen, Sandmann and Sondermann [108] to introduce the Libor Market Model

(LMM), several authors extended it to reproduce volatility smiles appearing in real

markets.

The basic LMM has some desirable features: it is flexible, supports multiple factors

and rich volatility structures and it justifies the use of Black’s formula for caplet

prices, which is the standard formula employed in the cap market (see [19]). The last

one constitutes its major advantage since it allows an implicit calibration of at-the-

money caps volatilities. In addition, it is possible to calibrate at-the-money swaption

volatilities via closed formula approximations with high accuracy (e.g. the Rebonato

swaption approximation, see [119]). These reasons explain the success of the model

and why it has been widely accepted by the financial industry.

Nevertheless, the standard LMM presents the same drawbacks as the classical

Black-Scholes theory. The major disadvantage comes from the assumption of de-

terministic volatility coefficients that prevents matching cap and swaption volatility

79

smiles and skews observed in the markets. This implies that after calibrating the

model to at-the-money options, the model underprices the off-the-money options.

In order to overcome this drawback, there has been great research in extending

the standard LMM to correctly capture market volatility smiles and skews. Differ-

ent extended LMMs were suggested and can mainly fall into three categories: local

volatility models, stochastic volatility models and jumps-diffusion models.

In the local volatility models the volatility is a function of the underlying asset

price (forward rate) and the time. These models were introduced by Dupire [37]

and Derman and Kani [34], who proposed this extension for equity and foreign-

exchange options. Andersen and Andreasen [4] introduced a special case of local

volatility models, the Constant Elasticity of Variance (CEV), to develop an extension

of the LMM for capturing the skew. They showed how to obtain swaption smile

asymptotically. Their method is still based in the Rebonato “freezing” argument, see

[119], which is not completely mathematically justified. CEV model can generate a

monotone skew of implied volatilities but fails to reproduce a smile, which is often

the case in reality.

Jump-diffusion models for assets were introduced by Merton [105] and Eberlein

[39]. Jamshidian [80], Glasserman and Kou [50], Glasserman and Merener [51] and

Belomestny and Schoenmakers [8] proposed alternative extensions of the LMM by

adding jumps in the forward rate dynamics. Lévy LIBOR models have been studied

by Eberlein and Özkan [40]. With these models one can manipulate the slope and the

curvature of a skewed smile by changing jump intensity and jump sizes. While this

jump approach can generate stationary nonmonotonic volatility smiles, it involves

several technical difficulties to develop numerical schemes for the resulting model.

Moreover, these models result unsuitable to generate asymmetric smiles and skews,

since the jump component of the forward rate dynamics typically needs to be of

substantial magnitude. While such dynamics are probably reasonable for equity prices

(see [3]) they might be less natural for the term structure of interest rate forwards.

In order to correctly capture the stochastic behaviour of the volatility and to

80

reproduce market smiles, different stochastic volatility models have been proposed.

The main examples are Hull and White [77] and Heston [73] models. In the Hull and

White model, lognormal variance process is modelled. When the correlation between

spot and variance is zero, by using a mixing approach, the authors obtained asymp-

totic expansions for options prices. However, the main drawback of this model comes

from its inability to capture nonsymmetric smiles. Heston proposed a model where

the volatility is a mean-reverting square-root process. By using Fourier transforms he

derived a closed form formula for option prices. The main advantages of this model

are its nice empirical properties and its analytical tractability. An application of the

Heston model to the LMM appears in Wu and Zhang [140]. They adopt a multi-

plicative stochastic factor to the volatility functions of all relevant forward rates. The

stochastic factor follows a square-root diffusion process, and it can be correlated to

the forward rates. They also develop a closed-form formula for swaptions in terms of

Fourier transforms. Other extensions of the LIBOR market model allowing stochas-

tic volatility are those we mention hereafter. Andersen and Brotherton-Ratcliffe [5]

proposed a general framework for extending the LIBOR market model. Their model

allows for nonparametric volatility structures and includes a multiplicative perturba-

tion of the forward volatility surface by a one-dimensional mean reverting volatility

process. This volatility process is driven by a Brownian motion independent of the

Brownian motions driving the forward rates, so that, under different numeraires, the

dynamics of the volatilities remains the same. Using asymptotic expansion tech-

niques, they provided closed-form pricing formulas for caplets and swaptions prices.

In [118], Piterbarg has extended this approach with a model where forward rates fol-

low shifted-lognormal diffusion processes with stochastic volatility. The volatility is a

mean reverting square-root process uncorrelated with the Brownian motions govern-

ing the dynamics of the forward rates. Using Markovian projection and parameter

averaging, Piterbarg derives fast and accurate European option pricing techniques

under general time-dependent parameters. In [82], Joshi and Rebonato proposed a

81

shifted-lognormal LIBOR model with a volatility parameterization based on a func-

tional form with stochastic coefficients. This model has very similar properties to the

Andersen and Andreasen [4] one, among them its major problem being the mono-

tonicity of implied volatility curves. All the stochastic volatility models presented so

far have one single volatility factor.

In [67], Hagan, Kumar, Lesniewski and Woodward proposed a stochastic volatility

model known as the SABR model (acronym for stochastic, alpha, beta and rho, three

of the four model parameters), arguing that local volatility models could not repro-

duce market volatility smiles and that their predicted volatility dynamics contradicts

market smiles and skews. The forward price of an asset follows, under the assets

canonical measure, a CEV type process with stochastic volatility driven by a driftless

process. The Brownian motion driving the volatility can be correlated with the one

associated to the forward price. The main advantages of the model are the following.

Firstly, it is able to correctly capture market volatility smiles. Secondly, its parame-

ters, which play specific roles in the generation of smiles and skews, have an intuitive

meaning. Thirdly, the authors obtained an analytical approximation for the implied

volatility (known as Hagan formula) through singular perturbation techniques, thus

allowing an easy calibration of the model. Finally, it has become the market standard

for interpolating and extrapolating prices of plain vanilla caplets and swaptions (see

[121]). In [113] Oblój improved Hagan formula.

Several authors have recently tried to unify SABR and LIBOR market models. In

the more standard LIBOR market model [16], the dynamics of each LIBOR forward

rate under the corresponding terminal measure are assumed to be martingales with

constant volatility. When adding the SABR model, the forward rates and volatility

processes satisfy the following coupled dynamics

dFi(t) = Vi(t)Fi(t)
βidWi(t),

dVi(t) = σiVi(t)dZi(t).

We note that if the interest rate derivative only depends on one particular forward

rate, then it is convenient to use the corresponding terminal measure. However,

82

when derivatives depend on several forward rates, a common measure needs to be

used. Thus, in the case of pricing complex derivatives a change of measure produces

the appearance of drift terms in forward rates and volatilities dynamics.

In [70, 71], Labordère presents a unification of LIBOR and SABR models using

hyperbolic geometry and heat kernel expansion to fit Taylor expansions for swaption

implied volatilities. In [68], Hagan et al. studied the natural extension of both the

LMM and the SABR model. They used the technique of low noise expansions in order

to produce accurate and workable approximations to swaption volatilities. Mercurio

and Morini, arguing that a number of volatility factors lower than the number of

state variables is often chosen, proposed in [103] a SABR/LIBOR market model with

one single volatility factor. They designed a LIBOR market model starting from the

reference SABR dynamics, with the purpose of preserving the SABR closed formula.

In [121, 120, 122], Rebonato et al. designed a time-homogeneous SABR-consistent

extension of the LMM. More precisely, they specified financially motivated dynamics

for the LMM forward rates and volatilities that match the SABR prices very close.

They also suggested a simple financially justifiable and computationally affordable

way to calibrate the model. In this chapter we focus in these last three different

SABR/LIBOR market models.

By using heuristic, empirical or very qualitative arguments, in all the here pre-

sented extensions of the LMM, the authors obtain accurate analytical approximations

for caps/swaptions to calibrate the model. In general, swaptions cannot be priced

in closed form in the LMM and the main challenge of these works comes from the

analytical approximations to price these swaptions.

All the previous papers argue that the “brute-force” approach, which consists

in calibrating the models using Monte Carlo simulation to price swaptions, is not a

practical choice, because each Monte Carlo evaluation results computationally very

expensive. However, in this chapter we propose the use of relatively old Simulated

Annealing type algorithms [88], which reveal as highly efficient when implemented

using High Performance Computing techniques. This combination makes possible

83

the calibration in a reasonable computational time. Such algorithms have already

been successfully applied in other related contexts, see [43, 42] for more details.

In this chapter we propose an efficient calibration strategy to some market prices

for the parameters appearing in the three selected SABR/LIBOR market models.

More precisely, we consider the market prices of caplets and swaptions and we pose

the corresponding global optimization problems to calibrate the model parameters.

Moreover, we use a Simulated Annealing algorithm to solve the problem. In order to

speed up the algorithm we propose a parallel implementation in GPUs.

The chapter is organized as follows. In Section 3.2, the SABR/LIBOR market

models proposed by Hagan, Mercurio & Morini and Rebonato are introduced. In

Section 3.3, the calibration procedures are explained. In Section 3.4, the obtained

numerical results are shown. Finally, in Section 3.5 some conclusions are discussed.

Most of the results in this chapter are included in the reference [44].

3.2 SABR/LIBOR market models

3.2.1 Hagan model

This model arises as the natural coupling between SABR and LMM models [68].

Thus, for each i = 1, . . . ,M let Fi and Vi be the i-th forward rate that matures

at time Ti and its corresponding stochastic volatility, respectively. Then, under a

common measure their dynamics are given by

dFi(t) = µFi(t)Fi(t)
βidt+ Vi(t)Fi(t)

βidWi(t), (3.1)

dVi(t) = µVi(t)Vi(t)dt+ σiVi(t)dZi(t), (3.2)

with the associated correlations denoted by

E[dWi(t) · dWj(t)] = ρijdt, E[dWi(t) · dZj(t)] = φijdt, E[dZi(t) · dZj(t)] = θijdt,

84

and the initial given values αi = Vi(0) and Fi(0). Thus, the correlation structure is

given by the block-matrix

P =

[
ρ φ

φ> θ

]
,

where the submatrix ρ = (ρij) contains all the correlations between the forward rates

Fi and Fj, the submatrix φ = (φij) includes the correlations between the forward

rates Fi and the instantaneous volatilities Vj, and the submatrix θ = (θij) contains

the correlations between the instantaneous volatilities Vi and Vj.

More precisely, if we introduce the bank-account numeraire β(t), defined by

β(t) =
i−1∏
j=0

(
1 + τjFj(Tj)

)
if t ∈ [Ti, Ti+1],

then, under the associated spot probability measure, the drift terms of the processes

defined in (3.1) and (3.2) are

µFi(t) = Vi(t)
i∑

j=h(t)

τjρijVj(t)Fj(t)
βj

1 + τjFj(t)
, µVi(t) = σi

i∑
j=h(t)

τjφijVj(t)Fj(t)
βj

1 + τjFj(t)
,

where h(t) denotes the index of the first unfixed Fi, i.e.,

h(t) = j, if t ∈ [Tj−1, Tj). (3.3)

In terms of the moneyness1, defined as ln
(K

Fi(0)

)
, the implied volatility2 for this

model is given by the Hagan second order approximation formula (also including the

1Moneyness measures the ratio between the strike price, K, and the current value of the under-
lying, Fi(0). Thus, if K = Fi(0) then the call or put options are said to be at the money (moneyness
is equal zero). If K < Fi(0) then a call option is said to be in the money (moneyness is negative)
and if K > Fi(0) then the call option is said to be out of the money (moneyness is positive). For
put options, out of the money and in the money correspond to negative and positive moneyness,
respectively.

2The implied volatility is the one that reproduces the market price when inserted in Black-Scholes
formula.

85

correction of Oblój in [113]):

σ
(
K,Fi(0)

)
≈ αi
Fi(0)(1−βi)

×

{
1− 1

2
(1− βi − φiiσiωi) · ln

(K

Fi(0)

)
+

1

12

(
(1− βi)2 + (2− 3φ2

ii)σ
2
i ω

2
i + 3

(
(1− βi)− φiiσiωi

))
·
[
ln
(K

Fi(0)

)]2
}
,

(3.4)

where ωi = α−1
i Fi(0)(1−βi).

For the correlations, we consider the following functional parameterizations:

ρij = η1 + (1− η1) exp[−λ1|Ti − Tj|], (3.5)

θij = η2 + (1− η2) exp[−λ2|Ti − Tj|], (3.6)

φij = sign(φii)
√
|φiiφjj| exp

[
−λ3(Ti − Tj)+ − λ3(Tj − Ti)+

]
, (3.7)

where the terms φii have been previously calibrated using (3.4) for the whole volatili-

ties surfaces. Moreover, parameters ηi, λi and φij are calibrated to fit the smiles of

swap rates.

3.2.2 Mercurio & Morini model

For this model [103], the existence of a lognormal common volatility process to all

forward rates is assumed, while each Fi satisfies a particular SDE. More precisely, we

have

dFi(t) = µFi(t)Fi(t)
βdt+ αiV (t)Fi(t)

βdWi(t), (3.8)

dV (t) = σV (t)dZ(t), (3.9)

with

E[dWi(t) · dWj(t)] = ρijdt, E[dWi(t) · dZ(t)] = φidt,

and the initial given values V (0) = 1 and Fi(0). In this case, the correlation block-

matrix is

P =

[
ρ φ

φ> 1

]
,

86

where φ = (φ1, . . . , φM)>. Under the spot probability measure, the drift terms in

equation (3.8) are

µFi(t) = αiV (t)
i∑

j=h(t)

τjρijαjV (t)Fj(t)
β

1 + τjFj(t)
,

where h(t) is given by the expression (3.3).

The calibration is similar to the previous case. By using SABR superindexes, the

parameters of the Hagan implied volatility formula (3.4) are

βSABRi = β, φSABRii = φi, σSABRi = σ,

αSABRi = αi

[
e
∫ Ti
0 Mi(s)ds

]
, where Mi(t) = −σ

i∑
j=h(t)

τjφjαjFj(0)β

1 + τjFj(0)
. (3.10)

Note that in this case we only need to consider (3.5) for the forward rates corre-

lations.

3.2.3 Rebonato model

This model is analogous to Hagan one, except for the dynamics of the volatilities.

More precisely, this model assumes the following dynamics [120]:

dFi(t) = µFi(t)Fi(t)
βidt+ Vi(t)Fi(t)

βidWi(t), (3.11)

Vi(t) = κi(t)gi(t), (3.12)

dκi(t) = µκi(t)κi(t)dt+ κi(t)hi(t)dZi(t), (3.13)

where

gi(t) =
(
a+b(Ti−t)

)
exp

(
−c(Ti−t)

)
+d, hi(t) =

(
α+β(Ti−t)

)
exp

(
−γ(Ti−t)

)
+δ,

and the correlation structure is given by the parameterizations (3.5)-(3.7).

Again, using the spot probability measure, the drift terms of the previous processes

are

µFi(t) = Vi(t)
i∑

j=h(t)

τjρijVj(t)Fj(t)
βj

1 + τjFj(t)
, µκi(t) = hi(t)

i∑
j=h(t)

τjφijVj(t)Fj(t)
βj

1 + τjFj(t)
.

87

Furthermore, in this model the parameters of the Hagan implied volatility formula

(3.4) are

βSABRi = βi, φSABRii = φii, αSABRi = κi(0)

(
1

Ti

∫ Ti

0

gi(t)
2dt

) 1
2

,

σSABRi =
κi(0)

αSABRi Ti

(
2

∫ Ti

0

gi(t)
2ĥi(t)

2tdt

) 1
2

, where ĥi(t) =

√
1

t

∫ t

0

(hi(s))
2 ds.

(3.14)

3.3 Model calibration

Model parameters are calibrated in two stages, firstly to caplets3 and secondly to

swaptions4. We note that model parameters can be classified into two categories

(volatility and correlation parameters):

• The volatility parameters for each model are given by:

– Hagan: xxx = (φii, σi, αi).

– Mercurio & Morini: xxx = (φi, σ, αi).

– Rebonato: xxx = (φii, κi, parameters of the volatility functions g and h).

• The correlation parameters for each model are given by:

– Hagan: yyy = (η1, λ1, η2, λ2, λ3).

– Mercurio & Morini: yyy = (η1, λ1).

– Rebonato: yyy = (η1, λ1, η2, λ2, λ3).

According to the previous classification, the cost functions to be minimized in the

calibration process are the following:

3A caplet is a basic interest rate derivative which mainly consists in a call option that pays the
positive difference between a floating rate and a fixed one (strike). A cap contract is a set of caplets
associated with related maturity dates (tenor structure). See [19], for example.

4A swap contract is an interest rate derivative that exchanges two different interest rates. A
swaption is an option giving the right to enter in a swap contract at a given future time. See [19],
for example.

88

• Function to calibrate the market prices of caplets:

fc(xxx) =
M∑
i=1

numK∑
j=1

(
σ
(
Kj, Fi(0)

)
− σmarket

(
Kj, Fi(0)

))2

(xxx),

where σ is given by Hagan formula ((3.4), (3.10) or (3.14), depending on the

model), σmarket are the market volatilities and xxx is the vector containing the

volatility parameters of the model. Moreover, M and numK denote the number

of maturities and strikes of the caplets, respectively.

• Function to calibrate the market prices of swaptions:

fs(yyy) =
numSws∑
i=1

(SBlack(swaptioni)− SMC(swaptioni))
2 (yyy),

where swaptioni denotes the i-th swaption, SBlack represents the Black for-

mula for swaptions and SMC(swaptioni) denotes the value of the i-th swaption

computed with Monte Carlo method. Moreover, the vector yyy contains the cor-

relation parameters and numSws is the number of swaptions.

In this chapter, the calibration of the parameters has been performed with a

Simulated Annealing (SA) global optimization algorithm introduced in the Chapter 1.

In real applications the hybrid approaches (in which SA provides a starting point for a

local minimization algorithm) are widely used, as we have explained in Chapter 1. In

this chapter we have considered the Nelder-Mead algorithm as the local minimizer. In

order to calibrate the models with fewer parameters (Hagan and Mercurio & Morini),

the mono-GPU version introduced in the Chapter 1 (see Figure 1.2) results to be

enough. However, in order to calibrate models with more parameters (Rebonato),

the multi-GPU version explained in the Chapter 2 (see Figure 2.1) becomes more

suitable, since the minimization process is much more costly. Section 3.4 contains the

achieved speedups when implied volatility formulas are available.

In the SABR/LIBOR market models, for the general calibration to swaption mar-

ket prices an explicit formula to price swaptions is not available. Therefore, we use

Monte Carlo simulation technique to price swaptions, thus leading to two nested

89

Monte Carlo loops: one for the SA and the other one for the swaption pricer. So,

as the Monte Carlo swaption pricer is carried out inside the GPU, the SA minimiza-

tion algorithm is run on CPU. At this point we illustrate in Table 3.1 the obtained

speedups in the SABR/LIBOR pricing with Monte Carlo simulation for different

number of paths and values of ∆t. Notice that speedups around 200 are obtained

for 106 paths. In order to use all available GPUs in the system, we propose a CPU

SA parallelization using OpenMP [149]. So, each OpenMP SA thread uses a GPU to

evaluate the Monte Carlo objective function (see Figure 3.1). This approach could

be easily extrapolated to a cluster of GPUs using MPI [148]. Notice that in this case

the sequential Monte Carlo pricing with CPU leads to prohibited times for the whole

calibration procedure.

Number of paths ∆t CPU (s) GPU (s) Speedup
10−1 0.558 0.094 ×5.936

103 10−2 5.580 0.222 ×25.135
10−3 55.956 1.406 ×39.798
10−1 5.572 0.119 ×46.823

104 10−2 55.740 0.390 ×142.923
10−3 557.698 3.081 ×181.012
10−1 55.692 0.323 ×172.421

105 10−2 558.331 2.886 ×193.462
10−3 5601.292 28.550 ×196.192
10−1 557.696 2.375 ×234.819

106 10−2 5588.070 27.950 ×199.931
10−3 55904.184 283.970 ×196.866

Table 3.1: Execution times (in seconds) and speedups in the pricing of caplets with
Monte Carlo and using single precision (Hagan model).

3.4 Numerical results

In this section we present a test where we calibrate Hagan, Mercurio & Morini and

Rebonato models to real market data. Market data correspond to the 6 months

EURIBOR rate. We show in Table 3.2 the discount factor curve, in Table 3.3 the

90

Figure 3.1: Sketch of the parallel SA using OpenMP and considering a Monte Carlo
method in the cost function.

smiles of the forward rates and in Table 3.4 the smiles of the swap rates.

Numerical experiments have been performed with the following hardware and

software configurations: two GPUs Nvidia Geforce GTX470, two quad-core CPUs

Xeon E5620 clocked at 2.4 Ghz with 16 GB of RAM, CentOS Linux, Nvidia CUDA

SDK 4.0 and GNU C/C++compilers 4.1.2.

Date P (0, t) Date P (0, t) Date P (0, t)

21/11/2011 1 19/09/2013 0.97713559399 23/11/2021 0.77845715189
22/11/2011 0.99998041705 25/11/2013 0.97412238564 23/11/2023 0.72565274014
23/02/2012 0.99622554093 24/11/2014 0.95730277130 23/11/2026 0.65317498182
21/03/2012 0.99575871128 23/11/2015 0.93611709432 24/11/2031 0.56564376817
21/06/2012 0.99263851754 23/11/2016 0.91144251116 24/11/2036 0.50321672724
20/09/2012 0.98966227733 23/11/2017 0.88505982818 25/11/2041 0.45392855927
19/12/2012 0.98673874563 23/11/2018 0.85798260233 23/11/2051 0.34982415774
19/03/2013 0.98372608449 25/11/2019 0.83116001862 23/11/2061 0.26125094146
20/06/2013 0.98048414547 23/11/2020 0.80486541573 23/11/2071 0.19657659346

Table 3.2: Discount factor curve.

91

-8
0%

-6
0%

-4
0%

-2
0%

0%
20

%
40

%
60

%
80

%
21

-0
5-

12
14

2.
61

%
11

7.
05

%
97

.2
6%

82
.5

8%
72

.2
9%

70
.8

9%
69

.4
9%

68
.0

8%
66

.6
7%

21
-1

1-
12

11
2.

74
%

99
.2

3%
88

.2
7%

79
.6

2%
73

.0
3%

71
.9

5%
70

.8
7%

69
.7

7%
68

.6
9%

21
-0

5-
13

91
.5

5%
83

.7
5%

77
.0

9%
71

.5
0%

67
.9

3%
67

.1
0%

66
.4

1%
65

.8
8%

65
.4

9%
21

-1
1-

13
64

.8
2%

60
.9

5%
57

.0
8%

53
.2

1%
52

.4
9%

51
.3

4%
50

.6
1%

50
.3

0%
50

.4
6%

21
-0

5-
14

66
.9

6%
61

.8
4%

56
.6

9%
52

.4
3%

50
.3

2%
48

.7
2%

47
.7

0%
47

.1
4%

46
.9

7%
21

-1
1-

14
69

.2
0%

62
.7

5%
56

.3
0%

51
.6

5%
48

.1
9%

46
.1

9%
44

.9
1%

44
.1

2%
43

.6
6%

21
-0

5-
15

71
.4

9%
63

.6
7%

55
.9

2%
50

.8
9%

46
.1

9%
43

.8
3%

42
.3

2%
41

.3
5%

40
.6

4%
21

-1
1-

15
73

.8
9%

64
.6

1%
55

.5
4%

50
.1

3%
44

.2
5%

41
.5

6%
39

.8
4%

38
.7

1%
37

.7
8%

21
-0

5-
16

76
.3

4%
65

.5
6%

55
.1

6%
49

.3
9%

42
.4

0%
39

.4
3%

37
.5

4%
36

.2
6%

35
.1

5%
21

-1
1-

16
78

.9
0%

66
.5

3%
54

.7
8%

48
.6

5%
40

.6
1%

37
.3

8%
35

.3
4%

33
.9

4%
32

.6
8%

21
-0

5-
17

81
.5

0%
67

.5
0%

54
.4

1%
47

.9
4%

38
.9

3%
35

.4
7%

33
.3

0%
31

.8
1%

30
.4

2%
21

-1
1-

17
84

.2
4%

68
.5

0%
54

.0
3%

47
.2

2%
37

.2
9%

33
.6

3%
31

.3
6%

29
.7

8%
28

.2
8%

21
-0

5-
18

87
.0

2%
69

.5
0%

53
.6

7%
46

.5
3%

35
.7

4%
31

.9
2%

29
.5

5%
27

.9
0%

26
.3

2%

T
ab

le
3.

3:
S
m

il
es

of
fo

rw
ar

d
ra

te
s.

F
ix

in
g

d
at

es
(fi

rs
t

co
lu

m
n
)

an
d

m
on

ey
n
es

s
(fi

rs
t

ro
w

).

92

-8
0%

-6
0%

-4
0%

-2
0%

0%
20

%
40

%
60

%
80

%

1
ye

ar

21
/0

5/
20

12
12

2.
30

%
10

2.
40

%
87

.1
2%

76
.4

5%
70

.4
0%

66
.4

7%
64

.2
0%

63
.0

3%
62

.5
6%

21
/1

1/
20

12
10

2.
86

%
89

.9
7%

79
.8

5%
72

.4
9%

67
.9

0%
64

.5
8%

62
.1

6%
60

.3
9%

59
.1

9%
21

/0
5/

20
13

95
.6

4%
83

.1
7%

73
.4

2%
66

.4
0%

62
.1

0%
59

.0
3%

56
.8

4%
55

.2
6%

54
.1

8%
21

/1
1/

20
13

88
.1

1%
76

.0
6%

66
.6

9%
60

.0
0%

56
.0

0%
53

.1
8%

51
.2

2%
49

.8
4%

48
.8

7%

2
ye

ar
s

21
/0

5/
20

12
11

1.
50

%
91

.6
0%

76
.3

2%
65

.6
5%

59
.6

0%
55

.6
7%

53
.4

0%
52

.2
3%

51
.7

6%
21

/1
1/

20
12

89
.6

6%
76

.7
7%

66
.6

5%
59

.2
9%

54
.7

0%
51

.3
8%

48
.9

6%
47

.1
9%

45
.9

9%
21

/0
5/

20
13

82
.9

4%
70

.4
7%

60
.7

2%
53

.7
0%

49
.4

0%
46

.3
3%

44
.1

4%
42

.5
6%

41
.4

8%
21

/1
1/

20
13

77
.8

1%
65

.7
6%

56
.3

9%
49

.7
0%

45
.7

0%
42

.8
8%

40
.9

2%
39

.5
4%

38
.5

7%

3
ye

ar
s

21
/0

5/
20

12
10

6.
40

%
86

.5
0%

71
.2

2%
60

.5
5%

54
.5

0%
50

.5
7%

48
.3

0%
47

.1
3%

46
.6

6%
21

/1
1/

20
12

83
.6

6%
70

.7
7%

60
.6

5%
53

.2
9%

48
.7

0%
45

.3
8%

42
.9

6%
41

.1
9%

39
.9

9%
21

/0
5/

20
13

78
.3

4%
65

.8
7%

56
.1

2%
49

.1
0%

44
.8

0%
41

.7
3%

39
.5

4%
37

.9
6%

36
.8

8%
21

/1
1/

20
13

73
.6

1%
61

.5
6%

52
.1

9%
45

.5
0%

41
.5

0%
38

.6
8%

36
.7

2%
35

.3
4%

34
.3

7%

4
ye

ar
s

21
/0

5/
20

12
10

1.
90

%
82

.0
0%

66
.7

2%
56

.0
5%

50
.0

0%
46

.0
7%

43
.8

0%
42

.6
3%

42
.1

6%
21

/1
1/

20
12

80
.2

6%
67

.3
7%

57
.2

5%
49

.8
9%

45
.3

0%
41

.9
8%

39
.5

6%
37

.7
9%

36
.5

9%
21

/0
5/

20
13

75
.2

4%
62

.7
7%

53
.0

2%
46

.0
0%

41
.7

0%
38

.6
3%

36
.4

4%
34

.8
6%

33
.7

8%
21

/1
1/

20
13

70
.9

1%
58

.8
6%

49
.4

9%
42

.8
0%

38
.8

0%
35

.9
8%

34
.0

2%
32

.6
4%

31
.6

7%

5
ye

ar
s

21
/0

5/
20

12
96

.1
5%

74
.2

5%
58

.8
3%

49
.8

8%
47

.4
0%

45
.7

4%
44

.6
1%

43
.7

6%
43

.0
5%

21
/1

1/
20

12
89

.5
8%

68
.8

2%
54

.1
4%

45
.5

4%
43

.0
0%

39
.3

6%
37

.3
3%

36
.1

5%
35

.3
7%

21
/0

5/
20

13
83

.9
1%

64
.5

1%
50

.7
1%

42
.5

1%
39

.9
0%

36
.4

8%
34

.5
9%

33
.5

0%
32

.7
6%

21
/1

1/
20

13
79

.1
3%

61
.0

9%
48

.1
7%

40
.3

7%
37

.7
0%

34
.5

0%
32

.7
4%

31
.7

5%
31

.0
5%

T
ab

le
3.

4:
S
m

il
es

of
sw

ap
ra

te
s.

L
en

gt
h

of
th

e
u
n
d
er

ly
in

g
sw

ap
s

(fi
rs

t
co

lu
m

n
),

sw
ap

ti
on

s
m

at
u
ri

ti
es

(s
ec

on
d

co
lu

m
n
)

an
d

m
on

ey
n
es

s
(fi

rs
t

ro
w

).

93

3.4.1 Hagan model

Calibration to caplets

In Table 3.5 the calibrated parameters with SABR formula (3.4) are shown. The

execution time was 8.739 seconds, 8.565 seconds employed by the mono-GPU SA

(launched with a relaxed configuration, specifically, T0 = 10, Tmin = 0.01, ϕ = 0.99,

L = 10, w = 256 × 64, the cost function was evaluated 112738304 times) and 0.174

seconds to the Nelder-Mead algorithm. The sequential time of the minimization

with SA is 971.960 seconds. Thus, the speedup of the proposed SA parallelization is

113.480 times.

φii σi αi φii σi αi

F1 −0.4712 1.0000 0.0847 F8 −0.4552 0.4658 0.0723
F2 −0.1879 0.7354 0.0830 F9 −0.5215 0.5369 0.0703
F3 0.0719 0.5260 0.0822 F10 −0.5663 0.6116 0.0706
F4 0.2636 0.3329 0.0686 F11 −0.5973 0.6858 0.0684
F5 0.0273 0.3242 0.0662 F12 −0.6204 0.7609 0.0674
F6 −0.1942 0.3505 0.0714 F13 −0.6378 0.8337 0.0652
F7 −0.3514 0.4008 0.0696

Table 3.5: Hagan model, calibration to caplets with SABR formula (3.4): calibrated
parameters.

In Table 3.6 market vs. model volatilities (both in %) for the first twelve smiles

and the moneyness varying from −40% to 40% are shown. In addition, the mean

relative error (MRE) considering the whole set of smiles is presented.

In order to validate the algorithm we also performed the equivalent calibration

with Monte Carlo simulation thus obtaining the same parameters as in Table 3.5,

except φ11 = 0.0287. Moreover the computational time is approximately 2 hours. We

note that with formula (3.4) the mean absolute error (MAE, in %) in prices is 4.14×
10−2, while when using Monte Carlo simulation the obtained MAE is 4.08× 10−2.

In Figure 3.2 the model fitting for the smiles of all forward rates is shown. Market

volatilities are plotted with triangles, while model volatilities are shown in continuous

94

line.

Calibration to swaptions

The calibrated parameters are η1 = 0.814904, λ1 = 3.378797, η2 = 0.975928, λ2 =

3.777324 and λ3 = 0.013940. In Table 3.7 market vs. model swaptions prices (in %)

for the first fourteen swaptions and the moneyness varying from −40% to 40% are

shown, each pair with its corresponding absolute error. In addition, for the whole set

of swaptions the mean absolute error (MAE) is presented.

In Figures 3.3 and 3.4 the model fitting when considering the whole swaption

matrix is shown. Market prices are shown using triangles and the model ones using

stars.

In the forthcoming sections 3.4.2 and 3.4.3, the analogous analysis for the other

two models using the same scheme for figures and tables is presented.

3.4.2 Mercurio & Morini model

Calibration to caplets

In Table 3.8 the calibrated parameters are shown. The execution time was 9.165

seconds, 9.124 seconds employed by the mono-GPU SA (launched with a relaxed

configuration, specifically, T0 = 10, Tmin = 0.01, ϕ = 0.99, L = 10, w = 256× 64, the

cost function was evaluated 112738304 times) and 0.041 seconds to the Nelder-Mead

algorithm. The speedup is very similar to the previous Hagan case.

In Table 3.9 market vs. model volatilities (both in %) for the first twelve smiles

and the moneyness varying from −40% to 40% are shown. In addition, the mean

relative error (MRE) considering the whole set of smiles is presented.

We also performed the equivalent calibration with Monte Carlo simulation thus

obtaining the same parameters as in Table 3.8, except for φ1 = −0.5714. We note

that the MAE in prices is 3.83× 10−2 with formula (3.4), while MAE is 3.84× 10−2

using Monte Carlo.

95

In Figure 3.5 the model fitting for the smiles of all forward rates is shown. Market

volatilities are plotted with triangles, while model volatilities are shown in continuous

line.

Calibration to swaptions

The calibrated parameters are η1 = 0.779175 and λ1 = 2.722489. In Table 3.10

market vs. model swaptions prices (in %) for the first fourteen swaptions and the

moneyness varying from −40% to 40% are shown, each pair with its corresponding

absolute error. In addition, for the whole set of swaptions the mean absolute error

(MAE) is presented.

In Figures 3.6 and 3.7 the model fitting when considering the whole swaption

matrix is shown. Market prices are shown using triangles and the model ones using

stars.

3.4.3 Rebonato model

Calibration to caplets

The calibrated parameters are shown in Table 3.11. The execution time was 146.729

seconds, 119.913 seconds employed by the multi-GPU SA (launched with a more

demanding configuration, specifically, T0 = 10, Tmin = 0.01, ϕ = 0.99, L = 100,

w = 256 × 64, #GPUs = 2, the cost function was evaluated roughly two billion

times) and the Nelder-Mead local optimization algorithm consumed the remaining

time. When using the multi-GPU approach (see Figure 2.1) we obtain a speedup of

1.88 with respect to mono-GPU version, and of 207.796 with respect to sequential

computations.

In Table 3.12, market vs. model volatilities for the smiles of F1 to F12 and the

moneyness −40% to 40% are shown. The mean relative error considering all smiles

is presented.

We also performed the equivalent calibration with Monte Carlo simulation thus

96

obtaining the same parameters as in Table 3.11, except for φ11 = 0.0940. We note

that the MAE in prices is 3.43× 10−2 with formula (3.4), while MAE is 3.39× 10−2

using Monte Carlo.

In Figure 3.8 the model fitting for the smiles of all forward rates is shown. Market

volatilities are plotted with triangles, while model volatilities are shown in continuous

line.

Calibration to swaptions

The calibrated parameters are η1 = 0.650997, λ1 = 3.617546, η2 = 0.999000, λ2 =

0.380984 and λ3 = 0.001000. Using two GPUs the execution time was approximately

2 hours, as in the previous models (by using a cluster of GPUs time could be substan-

tially reduced). In Table 3.13 market vs. model swaptions prices (in %) for the first

fourteen swaptions and the moneyness varying from −40% to 40% are shown, each

pair with its corresponding absolute error. In addition, for the whole set of swaptions

the mean absolute error is presented.

In Figures 3.9 and 3.10 the model fitting when considering the whole swaption

matrix is shown. Market prices are shown using triangles, and the model ones using

stars.

In the recent paper [122] an approximation formula for swaptions is proposed,

so that we used it to check the obtained results with our Monte Carlo simulation.

Thus, the calibration with the approximation formula provides the parameters η1 =

0.619778, λ1 = 3.617546, η2 = 0.858516, λ2 = 0.380984 and λ3 = 0.001000. Moreover

the obtained MAE with the approximation formula for swaptions is 1.05 × 10−1, a

bit larger than the one obtained with Monte Carlo (MAE = 6.30× 10−2 as shown in

Table 3.13).

97

Moneyness Smile of F1 Smile of F2

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 97.26 100.61 3.44× 10−2 88.27 89.06 8.97× 10−3

−20% 82.58 87.53 6.00× 10−2 79.62 80.85 1.55× 10−2

0% 72.29 77.45 7.13× 10−2 73.03 74.70 2.28× 10−2

20% 70.89 70.36 7.48× 10−3 71.95 70.61 1.85× 10−2

40% 69.49 66.26 4.64× 10−2 70.87 68.59 3.21× 10−2

Moneyness Smile of F3 Smile of F4

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 77.09 77.41 4.08× 10−3 57.08 57.14 1.05× 10−3

−20% 71.50 72.46 1.34× 10−2 53.21 54.37 2.18× 10−2

0% 67.93 68.77 1.24× 10−2 52.49 52.29 3.82× 10−3

20% 67.10 66.34 1.13× 10−2 51.34 50.90 8.56× 10−3

40% 66.41 65.17 1.88× 10−2 50.61 50.19 8.23× 10−3

Moneyness Smile of F5 Smile of F6

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 56.69 56.92 4.05× 10−3 56.30 56.74 7.69× 10−3

−20% 52.43 53.22 1.51× 10−2 51.65 52.10 8.76× 10−3

0% 50.31 50.37 1.07× 10−3 48.19 48.48 6.03× 10−3

20% 48.72 48.36 7.29× 10−3 46.19 45.89 6.52× 10−3

40% 47.70 47.21 1.03× 10−2 44.91 44.32 1.31× 10−2

Moneyness Smile of F7 Smile of F8

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 55.92 56.59 1.19× 10−2 55.54 56.47 1.68× 10−2

−20% 50.89 51.04 3.00× 10−3 50.13 50.01 2.35× 10−3

0% 46.19 46.70 1.09× 10−2 44.25 44.95 1.59× 10−2

20% 43.83 43.56 6.33× 10−3 41.56 41.28 6.80× 10−3

40% 42.32 41.61 1.67× 10−2 39.84 39.00 2.12× 10−2

Moneyness Smile of F9 Smile of F10

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 55.16 56.39 2.22× 10−2 54.78 56.34 2.85× 10−2

−20% 49.39 49.04 7.16× 10−3 48.65 48.09 1.15× 10−2

0% 42.40 43.28 2.07× 10−2 40.61 41.65 2.54× 10−2

20% 39.43 39.11 8.06× 10−3 37.38 37.00 1.02× 10−2

40% 37.54 36.53 2.68× 10−2 35.34 34.15 3.36× 10−2

Moneyness Smile of F11 Smile of F12

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 54.41 56.33 3.52× 10−2 54.03 56.35 4.28× 10−2

−20% 47.94 47.20 1.54× 10−2 47.22 46.34 1.87× 10−2

0% 38.93 40.09 2.99× 10−2 37.29 38.57 3.44× 10−2

20% 35.47 35.00 1.33× 10−2 33.63 33.04 1.76× 10−2

40% 33.30 31.92 4.16× 10−2 31.36 29.75 5.12× 10−2

MRE = 1.80× 10−2

Table 3.6: Hagan model, calibration to caplets, σmarket vs. σmodel.

98

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F1

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F2

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F3

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F4

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F5

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F6

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F7

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F8

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F9

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F10

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F11

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F12

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F13

σmarket
σmodel

Figure 3.2: Hagan model, σmarket vs. σmodel, smiles of F1, . . . , F13.
99

Moneyness 0.5× 1 swaptions 1× 1 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 0.4866 0.4842 2.40× 10−3 0.5917 0.5758 1.59× 10−2

−20% 0.3562 0.3628 6.60× 10−3 0.4661 0.4602 5.90× 10−3

0% 0.2356 0.2427 7.10× 10−3 0.3467 0.3450 1.70× 10−3

20% 0.1363 0.1390 2.70× 10−3 0.2394 0.2399 5.00× 10−4

40% 0.0680 0.0659 2.10× 10−3 0.1517 0.1539 2.20× 10−3

Moneyness 1.5× 1 swaptions 2× 1 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 0.7357 0.6840 5.17× 10−2 0.8184 0.7490 6.94× 10−2

−20% 0.5908 0.5548 3.60× 10−2 0.6603 0.6068 5.35× 10−2

0% 0.4536 0.4270 2.66× 10−2 0.5118 0.4651 4.67× 10−2

20% 0.3277 0.3095 1.82× 10−2 0.3754 0.3340 4.14× 10−2

40% 0.2213 0.2101 1.12× 10−2 0.2587 0.2229 3.58× 10−2

Moneyness 0.5× 2 swaptions 1× 2 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.0570 1.0144 4.26× 10−2 1.2427 1.1963 4.64× 10−2

−20% 0.7440 0.7275 1.65× 10−2 0.9322 0.9163 1.59× 10−2

0% 0.4555 0.4573 1.80× 10−3 0.6394 0.6460 6.60× 10−3

20% 0.2299 0.2418 1.19× 10−2 0.3886 0.4116 2.30× 10−2

40% 0.0925 0.1046 1.21× 10−2 0.2037 0.2343 3.06× 10−2

Moneyness 1.5× 2 swaptions 2× 2 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.4884 1.4260 6.24× 10−2 1.6938 1.6160 7.78× 10−2

−20% 1.1367 1.1168 1.99× 10−2 1.3077 1.2732 3.45× 10−2

0% 0.8059 0.8141 8.20× 10−3 0.9466 0.9320 1.46× 10−2

20% 0.5154 0.5446 2.92× 10−2 0.6269 0.6229 4.00× 10−3

40% 0.2919 0.3304 3.85× 10−2 0.3736 0.3748 1.20× 10−3

Moneyness 0.5× 3 swaptions 1× 3 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.7380 1.6538 8.42× 10−2 2.0341 1.9648 6.93× 10−2

−20% 1.1980 1.1506 4.74× 10−2 1.4851 1.4628 2.23× 10−2

0% 0.7011 0.6838 1.73× 10−2 0.9696 0.9812 1.16× 10−2

20% 0.3242 0.3277 3.50× 10−3 0.5413 0.5748 3.35× 10−2

40% 0.1128 0.1214 8.60× 10−3 0.2479 0.2882 4.03× 10−2

Moneyness 1.5× 3 swaptions 2× 3 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 2.3898 2.3012 8.86× 10−2 2.6885 2.6037 8.48× 10−2

−20% 1.7850 1.7586 2.64× 10−2 2.0311 2.0155 1.56× 10−2

0% 1.2175 1.2288 1.13× 10−2 1.4178 1.4296 1.18× 10−2

20% 0.7304 0.7676 3.72× 10−2 0.8856 0.9064 2.08× 10−2

40% 0.3749 0.4203 4.54× 10−2 0.4832 0.5044 2.12× 10−2

Moneyness 0.5× 4 swaptions 1× 4 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 2.5381 2.4226 1.15× 10−1 2.9426 2.8472 9.54× 10−2

−20% 1.7151 1.6480 6.71× 10−2 2.1123 2.0763 3.60× 10−2

0% 0.9584 0.9314 2.70× 10−2 1.3344 1.3375 3.10× 10−3

20% 0.4031 0.4035 4.00× 10−4 0.7016 0.7295 2.79× 10−2

40% 0.1188 0.1250 6.20× 10−3 0.2907 0.3268 3.61× 10−2

MAE = 6.19× 10−2

Table 3.7: Hagan model, calibration to swaptions, SBlack vs. SMC , prices in %.

100

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

0.5 x 1 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness
P

ri
c
e

 (
%

)

1 x 1 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1.5 x 1 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

2 x 1 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

0.5 x 2 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1 x 2 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1.5 x 2 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

2 x 2 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)
0.5 x 3 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1 x 3 swaptions

SBlack
SMC

Figure 3.3: Hagan model, calibration to swaptions, SBlack vs. SMC , part I.

101

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1.5 x 3 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

2 x 3 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

0.5 x 4 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1 x 4 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1.5 x 4 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

2 x 4 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

0.5 x 5 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1 x 5 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1.5 x 5 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

2 x 5 swaptions

SBlack
SMC

Figure 3.4: Hagan model, calibration to swaptions, SBlack vs. SMC , part II.

102

φi αi φi αi

F1 −0.7549 0.0888 F8 −0.3661 0.0696
F2 −0.2309 0.0842 F9 −0.4770 0.0683
F3 0.0666 0.0817 F10 −0.5760 0.0693
F4 0.1698 0.0662 F11 −0.6615 0.0682
F5 0.0302 0.0635 F12 −0.7380 0.0682
F6 −0.1098 0.0684 F13 −0.8044 0.0669
F7 −0.2417 0.0667

σ = 0.5986

Table 3.8: Mercurio & Morini model, calibration to caplets with SABR formula (3.4):
calibrated parameters.

103

Moneyness Smile of F1 Smile of F2

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 97.26 102.19 5.07× 10−2 88.27 89.59 1.50× 10−2

−20% 82.58 90.71 9.85× 10−2 79.62 81.81 2.75× 10−2

0% 72.29 81.16 1.23× 10−1 73.03 75.77 3.74× 10−2

20% 70.89 73.55 3.76× 10−2 71.95 71.47 6.69× 10−3

40% 69.49 67.88 2.31× 10−2 70.87 68.91 2.77× 10−2

Moneyness Smile of F3 Smile of F4

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 77.09 77.13 4.45× 10−4 57.08 55.98 1.92× 10−2

−20% 71.50 71.99 6.92× 10−3 53.21 52.54 1.26× 10−2

0% 67.93 68.27 5.11× 10−3 52.49 50.39 4.00× 10−2

20% 67.10 65.96 1.69× 10−2 51.34 49.53 3.51× 10−2

40% 66.41 65.07 2.03× 10−2 50.61 49.97 1.27× 10−2

Moneyness Smile of F5 Smile of F6

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 56.69 55.76 1.65× 10−2 56.30 55.70 1.08× 10−2

−20% 52.43 51.25 2.25× 10−2 51.65 50.20 2.81× 10−2

0% 50.31 48.26 4.08× 10−2 48.19 46.38 3.77× 10−2

20% 48.72 46.79 3.96× 10−2 46.19 44.25 4.21× 10−2

40% 47.70 46.83 1.82× 10−2 44.91 43.79 2.47× 10−2

Moneyness Smile of F7 Smile of F8

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 55.92 55.77 2.78× 10−3 55.54 55.93 7.03× 10−3

−20% 50.89 49.40 2.92× 10−2 50.13 48.83 2.60× 10−2

0% 46.19 44.82 2.97× 10−2 44.25 43.55 1.58× 10−2

20% 43.83 42.03 4.12× 10−2 41.56 40.09 3.54× 10−2

40% 42.32 41.02 3.08× 10−2 39.84 38.45 3.49× 10−2

Moneyness Smile of F9 Smile of F10

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 55.16 56.14 1.78× 10−2 54.78 56.39 2.94× 10−2

−20% 49.39 48.45 1.91× 10−2 48.65 48.23 8.78× 10−3

0% 42.40 42.56 3.80× 10−3 40.61 41.81 2.95× 10−2

20% 39.43 38.48 2.39× 10−2 37.38 37.15 6.21× 10−3

40% 37.54 36.21 3.53× 10−2 35.34 34.24 3.12× 10−2

Moneyness Smile of F11 Smile of F12

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 54.41 56.66 4.14× 10−2 54.03 56.96 5.41× 10−2

−20% 47.94 48.13 3.97× 10−3 47.22 48.13 1.93× 10−2

0% 38.93 41.27 6.02× 10−2 37.29 40.89 9.65× 10−2

20% 35.47 36.08 1.72× 10−2 33.63 35.21 4.70× 10−2

40% 33.30 32.57 2.22× 10−2 31.36 31.11 7.79× 10−3

MRE = 3.11× 10−2

Table 3.9: Mercurio & Morini model, calibration to caplets, σmarket vs. σmodel.

104

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F1

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F2

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F3

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F4

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F5

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F6

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F7

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F8

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F9

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F10

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F11

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F12

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F13

σmarket
σmodel

Figure 3.5: Mercurio & Morini model, σmarket vs. σmodel, smiles of F1, . . . , F13.
105

Moneyness 0.5× 1 swaptions 1× 1 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 0.4866 0.4870 4.00× 10−4 0.5917 0.5870 4.70× 10−3

−20% 0.3562 0.3670 1.08× 10−2 0.4661 0.4699 3.80× 10−3

0% 0.2356 0.2478 1.22× 10−2 0.3467 0.3517 5.00× 10−3

20% 0.1363 0.1427 6.40× 10−3 0.2394 0.2422 2.80× 10−3

40% 0.0680 0.0657 2.30× 10−3 0.1517 0.1514 3.00× 10−4

Moneyness 1.5× 1 swaptions 2× 1 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 0.7357 0.6872 4.85× 10−2 0.8184 0.7465 7.19× 10−2

−20% 0.5908 0.5516 3.92× 10−2 0.6603 0.5959 6.44× 10−2

0% 0.4536 0.4170 3.66× 10−2 0.5118 0.4469 6.49× 10−2

20% 0.3277 0.2951 3.26× 10−2 0.3754 0.3137 6.17× 10−2

40% 0.2213 0.1957 2.56× 10−2 0.2587 0.2078 5.09× 10−2

Moneyness 0.5× 2 swaptions 1× 2 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.0570 1.0338 2.32× 10−2 1.2427 1.2143 2.84× 10−2

−20% 0.7440 0.7452 1.20× 10−3 0.9322 0.9266 5.60× 10−3

0% 0.4555 0.4679 1.24× 10−2 0.6394 0.6460 6.60× 10−3

20% 0.2299 0.2428 1.29× 10−2 0.3886 0.4038 1.52× 10−2

40% 0.0925 0.0984 5.90× 10−3 0.2037 0.2242 2.05× 10−2

Moneyness 1.5× 2 swaptions 2× 2 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.4884 1.4382 5.02× 10−2 1.6938 1.6298 6.40× 10−2

−20% 1.1367 1.1173 1.94× 10−2 1.3077 1.2746 3.31× 10−2

0% 0.8059 0.8024 3.50× 10−3 0.9466 0.9220 2.46× 10−2

20% 0.5154 0.5266 1.12× 10−2 0.6269 0.6116 1.53× 10−2

40% 0.2919 0.3182 2.63× 10−2 0.3736 0.3751 1.50× 10−3

Moneyness 0.5× 3 swaptions 1× 3 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.7380 1.6737 6.43× 10−2 2.0341 1.9880 4.61× 10−2

−20% 1.1980 1.1659 3.21× 10−2 1.4851 1.4761 9.00× 10−3

0% 0.7011 0.6868 1.43× 10−2 0.9696 0.9803 1.07× 10−2

20% 0.3242 0.3198 4.40× 10−3 0.5413 0.5666 2.53× 10−2

40% 0.1128 0.1112 1.60× 10−3 0.2479 0.2825 3.46× 10−2

Moneyness 1.5× 3 swaptions 2× 3 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 2.3898 2.3268 6.30× 10−2 2.6885 2.6302 5.83× 10−2

−20% 1.7850 1.7690 1.60× 10−2 2.0311 2.0258 5.30× 10−3

0% 1.2175 1.2215 4.00× 10−3 1.4178 1.4218 4.00× 10−3

20% 0.7304 0.7526 2.22× 10−2 0.8856 0.8935 7.90× 10−3

40% 0.3749 0.4168 4.19× 10−2 0.4832 0.5068 2.36× 10−2

Moneyness 0.5× 4 swaptions 1× 4 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 2.5381 2.4434 9.47× 10−2 2.9426 2.8764 6.62× 10−2

−20% 1.7151 1.6621 5.30× 10−2 2.1123 2.0935 1.88× 10−2

0% 0.9584 0.9298 2.86× 10−2 1.3344 1.3357 1.30× 10−3

20% 0.4031 0.3918 1.13× 10−2 0.7016 0.7174 1.58× 10−2

40% 0.1188 0.1160 2.80× 10−3 0.2907 0.3205 2.98× 10−2

MAE = 5.50× 10−2

Table 3.10: Mercurio & Morini model, calibration to swaptions, SBlack vs. SMC ,
prices in %.

106

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

0.5 x 1 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness
P

ri
c
e

 (
%

)

1 x 1 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1.5 x 1 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

2 x 1 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

0.5 x 2 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1 x 2 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1.5 x 2 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

2 x 2 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)
0.5 x 3 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1 x 3 swaptions

SBlack
SMC

Figure 3.6: Mercurio & Morini model, calibration to swaptions, SBlack vs. SMC , part
I.

107

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1.5 x 3 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

2 x 3 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

0.5 x 4 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1 x 4 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1.5 x 4 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

2 x 4 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

0.5 x 5 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1 x 5 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1.5 x 5 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

2 x 5 swaptions

SBlack
SMC

Figure 3.7: Mercurio & Morini model, calibration to swaptions, SBlack vs. SMC , part
II.

108

φii κi φii κi

F1 −0.4060 0.0021 F8 −0.4218 0.0010
F2 −0.1935 0.0017 F9 −0.5355 0.0010
F3 0.0684 0.0015 F10 −0.6466 0.0010
F4 0.1825 0.0011 F11 −0.7413 0.0010
F5 0.0158 0.0010 F12 −0.8175 0.0010
F6 −0.1306 0.0010 F13 −1.0000 0.0010
F7 −0.2665 0.0010

a = 3.7789, b = 44.7668, α = 0.0010, β = 19.5812,
c = 0.3076, d = 25.3412. γ = 6.2339, δ = 0.5533.

Table 3.11: Rebonato model, calibration to caplets with SABR formula (3.4): cali-
brated parameters.

109

Moneyness Smile of F1 Smile of F2

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 97.26 99.64 2.45× 10−2 88.27 89.14 9.83× 10−3

−20% 82.58 85.31 3.31× 10−2 79.62 81.00 1.73× 10−2

0% 72.29 74.78 3.45× 10−2 73.03 74.86 2.51× 10−2

20% 70.89 68.05 4.00× 10−2 71.95 70.74 1.68× 10−2

40% 69.49 65.12 6.28× 10−2 70.87 68.63 3.16× 10−2

Moneyness Smile of F3 Smile of F4

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 77.09 77.26 2.13× 10−3 57.08 56.36 1.27× 10−2

−20% 71.50 72.20 9.78× 10−3 53.21 53.13 1.56× 10−3

0% 67.93 68.49 8.29× 10−3 52.49 51.00 2.85× 10−2

20% 67.10 66.13 1.45× 10−2 51.34 49.96 2.69× 10−2

40% 66.41 65.12 1.95× 10−2 50.61 50.02 1.17× 10−2

Moneyness Smile of F5 Smile of F6

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 56.69 55.85 1.48× 10−2 56.30 56.13 3.11× 10−3

−20% 52.43 51.58 1.61× 10−2 51.65 50.99 1.28× 10−2

0% 50.31 48.60 3.42× 10−2 48.19 47.25 1.96× 10−2

20% 48.72 46.89 3.76× 10−2 46.19 44.92 2.75× 10−2

40% 47.70 46.46 2.59× 10−2 44.91 44.00 2.01× 10−2

Moneyness Smile of F7 Smile of F8

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 55.92 56.74 1.46× 10−2 55.54 55.75 3.90× 10−3

−20% 50.89 50.82 1.45× 10−3 50.13 49.08 2.09× 10−2

0% 46.19 46.39 4.14× 10−3 44.25 43.95 6.82× 10−3

20% 43.83 43.44 8.87× 10−3 41.56 40.35 2.92× 10−2

40% 42.32 41.99 7.69× 10−3 39.84 38.28 3.92× 10−2

Moneyness Smile of F9 Smile of F10

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 55.16 57.11 3.54× 10−2 54.78 56.57 3.26× 10−2

−20% 49.39 49.84 9.09× 10−3 48.65 48.84 3.91× 10−3

0% 42.40 44.10 4.00× 10−2 40.61 42.61 4.90× 10−2

20% 39.43 39.89 1.17× 10−2 37.38 37.85 1.26× 10−2

40% 37.54 37.21 8.79× 10−3 35.34 34.59 2.13× 10−2

Moneyness Smile of F11 Smile of F12

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 54.41 57.20 5.13× 10−2 54.03 56.71 4.95× 10−2

−20% 47.94 49.07 2.36× 10−2 47.22 48.33 2.34× 10−2

0% 38.93 42.36 8.81× 10−2 37.29 41.29 1.07× 10−1

20% 35.47 37.07 4.51× 10−2 33.63 35.59 5.82× 10−2

40% 33.30 33.21 2.95× 10−3 31.36 31.23 3.95× 10−3

MRE = 2.93× 10−2

Table 3.12: Rebonato model, calibration to caplets, σmarket vs. σmodel.

110

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F1

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F2

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F3

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F4

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F5

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F6

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F7

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F8

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F9

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F10

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F11

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F12

σmarket
σmodel

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Moneyness

σ

Smile of F13

σmarket
σmodel

Figure 3.8: Rebonato model, σmarket vs. σmodel, smiles of F1, . . . , F13.
111

Moneyness 0.5× 1 swaptions 1× 1 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 0.4866 0.4870 4.00× 10−4 0.5917 0.5839 7.80× 10−3

−20% 0.3562 0.3669 1.07× 10−2 0.4661 0.4693 3.20× 10−3

0% 0.2356 0.2477 1.21× 10−2 0.3467 0.3546 7.90× 10−3

20% 0.1363 0.1441 7.80× 10−3 0.2394 0.2488 9.40× 10−3

40% 0.0680 0.0699 1.90× 10−3 0.1517 0.1606 8.90× 10−3

Moneyness 1.5× 1 swaptions 2× 1 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 0.7357 0.6902 4.55× 10−2 0.8184 0.7465 7.19× 10−2

−20% 0.5908 0.5612 2.96× 10−2 0.6603 0.6028 5.75× 10−2

0% 0.4536 0.4339 1.97× 10−2 0.5118 0.4620 4.98× 10−2

20% 0.3277 0.3171 1.06× 10−2 0.3754 0.3354 4.00× 10−2

40% 0.2213 0.2188 2.50× 10−3 0.2587 0.2308 2.79× 10−2

Moneyness 0.5× 2 swaptions 1× 2 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.0570 1.0333 2.37× 10−2 1.2427 1.2175 2.52× 10−2

−20% 0.7440 0.7514 7.40× 10−3 0.9322 0.9400 7.80× 10−3

0% 0.4555 0.4841 2.86× 10−2 0.6394 0.6713 3.19× 10−2

20% 0.2299 0.2674 3.75× 10−2 0.3886 0.4369 4.83× 10−2

40% 0.0925 0.1237 3.12× 10−2 0.2037 0.2578 5.41× 10−2

Moneyness 1.5× 2 swaptions 2× 2 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.4884 1.4357 5.27× 10−2 1.6938 1.6184 7.54× 10−2

−20% 1.1367 1.1256 1.11× 10−2 1.3077 1.2721 3.56× 10−2

0% 0.8059 0.8250 1.91× 10−2 0.9466 0.9309 1.57× 10−2

20% 0.5154 0.5599 4.45× 10−2 0.6269 0.6292 2.30× 10−3

40% 0.2919 0.3520 6.01× 10−2 0.3736 0.3931 1.95× 10−2

Moneyness 0.5× 3 swaptions 1× 3 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.7380 1.6792 5.88× 10−2 2.0341 1.9953 3.88× 10−2

−20% 1.1980 1.1850 1.30× 10−2 1.4851 1.4966 1.15× 10−2

0% 0.7011 0.7235 2.24× 10−2 0.9696 1.0176 4.80× 10−2

20% 0.3242 0.3653 4.11× 10−2 0.5413 0.6130 7.17× 10−2

40% 0.1128 0.1484 3.56× 10−2 0.2479 0.3241 7.62× 10−2

Moneyness 1.5× 3 swaptions 2× 3 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 2.3898 2.3112 7.86× 10−2 2.6885 2.6048 8.37× 10−2

−20% 1.7850 1.7661 1.89× 10−2 2.0311 2.0098 2.13× 10−2

0% 1.2175 1.2360 1.85× 10−2 1.4178 1.4192 1.40× 10−3

20% 0.7304 0.7797 4.93× 10−2 0.8856 0.9005 1.49× 10−2

40% 0.3749 0.4417 6.68× 10−2 0.4832 0.5124 2.92× 10−2

Moneyness 0.5× 4 swaptions 1× 4 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 2.5381 2.4493 8.88× 10−2 2.9426 2.8751 6.75× 10−2

−20% 1.7151 1.6834 3.17× 10−2 2.1123 2.1053 7.00× 10−3

0% 0.9584 0.9709 1.25× 10−2 1.3344 1.3649 3.05× 10−2

20% 0.4031 0.4401 3.70× 10−2 0.7016 0.7572 5.56× 10−2

40% 0.1188 0.1506 3.18× 10−2 0.2907 0.3538 6.31× 10−2

MAE = 6.30× 10−2

Table 3.13: Rebonato model, calibration to swaptions, SBlack vs. SMC , prices in %.

112

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

0.5 x 1 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness
P

ri
c
e

 (
%

)

1 x 1 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1.5 x 1 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

2 x 1 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

0.5 x 2 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1 x 2 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1.5 x 2 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

2 x 2 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)
0.5 x 3 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1 x 3 swaptions

SBlack
SMC

Figure 3.9: Rebonato model, calibration to swaptions, SBlack vs. SMC , part I.

113

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1.5 x 3 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

2 x 3 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

0.5 x 4 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1 x 4 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1.5 x 4 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

2 x 4 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

0.5 x 5 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1 x 5 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

1.5 x 5 swaptions

SBlack
SMC

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Moneyness

P
ri
c
e

 (
%

)

2 x 5 swaptions

SBlack
SMC

Figure 3.10: Rebonato model, calibration to swaptions, SBlack vs. SMC , part II.

114

3.5 Conclusions

As a summary, in Table 3.14 the mean errors obtained in the calibration to caplets

and swaptions of the three previous models are shown. The same measures are used,

MRE for the volatilities and MAE(%) for the swaptions. In both cases, the model

which achieves the best fit is highlighted.

Hagan Mercurio & Morini Rebonato
Caplets (MRE) 1.80× 10−2 3.11× 10−2 2.93× 10−2

Swaptions (MAE) 6.19× 10−2 5.50× 10−2 6.30× 10−2

Table 3.14: Mean relative errors of the three models.

The three presented models are able to correctly capture market data. An indi-

cator of the quality of the fit is the one used by Piterbarg in [117]: a mean absolute

error considered acceptable in the calibration to swaptions is 0.1%. The three models

have mean absolute errors less than this value.

In the case of the calibration to the smiles of the forward rates, Hagan model

achieves the best fit, followed by Rebonato and Mercurio & Morini models. In the

case of the calibration to the smiles of the swap rates, Mercurio & Morini model is

the best one, followed by Hagan and Rebonato models.

Therefore, a model with one single volatility factor is able to obtain a satisfactory

fit to the swaption market. Mercurio & Morini argue that models with only one

stochastic volatility disturbance can capture better market regularities on the move-

ments of the term structure, while when each rate is calibrated independently of the

others the important common factors driven the market could be missed.

In Hagan model, and mainly in Rebonato model, a set of parameters must be

specified for each forward rate. This may lead to overparameterization, with risk of

instability, considering also the presence of many cross-correlations between stochastic

volatilities not easy to determine based on market quotes. This issue is reflected in

our calibrations: in the case of the calibration to caplets, Hagan and Mercurio &

115

Morini models are easier to calibrate than the Rebonato one. When dealing with the

calibration to swaptions, Mercurio & Morini model is also simpler to calibrate than

the other two models.

Once the models have been calibrated, when pricing products using Monte Carlo

simulation, the most relevant factor in execution times is the number of processes to

be simulated. Obviously, regarding this issue, Mercurio & Morini model is the fastest.

The pricing of caplets with the Mercurio & Morini model is approximately 1.40 times

faster than the pricing using the other two models. Although the difference is not

huge, the fact that a model is a little faster or slower, could have a big impact in the

execution time of a calibration process using Monte Carlo simulation.

Moreover, in order to validate the proposed Monte Carlo calibration approach we

have successfully compared its results with the ones obtained by using the classical

SABR formula for caplets and the more recent approximated formula for swaptions.

Note that the speedup with GPUs of the Monte Carlo calibration techniques can

be applied to more complex products, for example CMS options or CMS spread

options which contain more information on the smile structure and the correlation

of LIBOR rates. In these and other complex products it is not clear that alternative

approximation formulas are easily available and accurate enough [87].

As a brief final conclusion, for the set of used market data, the model with the

best performance is the Mercurio & Morini one, since it is the easiest to calibrate, it

achieves the best fit to the swaption market prices and it results the fastest one in

the pricing with Monte Carlo simulation. The main drawback of the Rebonato model

comes from its complexity in the calibration procedure. The performance of Hagan

model falls in between the other two models: market data are reasonable well fitted

and the model results not overly difficult to calibrate.

116

Chapter 4

SABR/LIBOR market models:

PDE approach

4.1 Introduction

While Monte Carlo [49] simulation remains the industry’s tool of choice for pricing

interest rate derivatives within LIBOR market model (LMM) frameworks and re-

lated, several difficulties motivate researchers appeal to alternative partial differential

equation (PDE) approaches. The first issue is that the convergence of Monte Carlo

methods, although it depends only very weakly on the dimension of the problem, is

very slow. Indeed, if the standard deviation of the result using a single simulation

is ε then the standard deviation of the error after N simulations is ε/
√
N . There-

fore, to improve the accuracy of the solution by a factor of 10, 100 times as many

simulations must be performed. The second drawback of Monte Carlo methods is

the valuation of options with early-exercise, like in the case of the American options,

due to the so-called “Monte Carlo on Monte Carlo” effect. Available Monte Carlo

methods for American options are also quite costly, see [100] for example. In con-

trast, the modification of the PDE to a linear complementarity problem is usually

straightforward. Finally, the weakest point of Monte Carlo methods appears to be

the computation of the sensitivities of the solution with respect to the underlyings,

117

the so-called “Greeks”, which are very used by traders, and are directly given by the

partial derivatives of the PDE solution. Besides, path-dependent options, like barrier

options, can be easily priced in the PDE context where only the boundary conditions

need to be changed, in contrast to Monte Carlo methods, where Brownian bridge

techniques [53] must be applied.

Many problems in finance lead to high dimensional PDEs which need to be solved

efficiently. In order to cope with the so-called curse of dimensionality several methods

are available in the literature, see [48, 12] for example, which can be put into three

categories. The first group uses the Karhunen-Loeve transformation to reduce the

stochastic differential equation to a lower dimensional equation, therefore this results

in a lower dimensional PDE associated to the previously reduced SDE. The second

category gathers those methods which try to reduce the dimension of the PDE itself,

like for example dimension-wise decomposition algorithms. Finally, the third category

groups the methods which reduce the complexity of the problem in the discretization

layer, like for example the method of sparse grids, which we use in the present chapter.

4.2 Derivation of the PDE from the stochastic pro-

cesses

In the previous chapter we have analyzed the three SABR/LIBOR market models

proposed by Hagan, Mercurio & Morini and Rebonato using Monte Carlo simulation

in order to price several interest rate derivatives. We have concluded that the Mercurio

& Morini model is the one with the best performance: it is the easiest to calibrate,

it achieves the best fit to swaption market prices and it results the fastest one in the

pricing with Monte Carlo simulation. Taking into account these reasons, we mainly

choose this model in the present chapter to develop the numerical solution of each

PDE formulation. Nevertheless, at the end of this section the PDEs for the models

of Hagan and Rebonato will be also posed.

Next, consider a set of N − 1 LIBOR forward rates Fi, 1 ≤ i ≤ N − 1, F =

118

(F1, . . . , FN−1) on the tenor structure [T0, T1, . . . , TN−1, TN], τi = Ti+1 − Ti. The

Mercurio & Morini model is defined by the following system of stochastic differential

equations [103]:

dFi(t) = µi(t)Fi(t)
βdt+ αiV (t)Fi(t)

βdWQ
i (t), Fi(0) given,

dV (t) = σV (t)dZQ(t), V (0) = α, (4.1)

on a probability space {Ω,F ,P} with filtration {Ft}, t ∈ [T0, TN]. Here µi is the drift

of the i-th forward rate, β ∈ [0, 1] is the local volatility coefficient, αi is a deterministic

(constant) instantaneous volatility coefficient, WQ
i are standard Brownian motions

under the risk neutral measure Q, ρ is the correlation matrix between the forward

rates, i.e.

< dWQ
i (t), dWQ

j (t) >= ρijdt, ∀i, j ∈ {1, . . . , N − 1},

V is the stochastic volatility of the forward rates, dZQ is a standard Brownian motion

correlated with the Brownian motions of the forward rates and φ is the correlation

vector between the forward rates and the stochastic volatility, i.e.

< dWQ
i (t), dZQ(t) >= φidt, ∀i ∈ {1, . . . , N − 1}.

Due to the fact that the volatility process is lognormal, one can set the initial value

of the volatility equal to one, i.e. α = 1 with no loss of generality, since any different

initial value can be embedded in the model by adjusting the deterministic coefficients

αi. This is the choice we adopt in the following.

The drifts of the forward rates are determined by the chosen numeraire. Under

the terminal probability measure QTN associated with choosing the bond P (t, TN) as

numeraire, the drifts of the forwards rates are given by

µi(t) =


−αiV (t)2

N−1∑
j=i+1

τjFj(t)
β

1 + τjFj(t)
ρijαj if j < N − 1,

0 if j = N − 1.

119

Under the spot probability measure associated to the bank-account numeraire β(t),

β(t) =
i−1∏
j=0

(
1 + τjFj(Tj)

)
if t ∈ [Ti, Ti+1],

the drift terms of the forward rates are given by

µi(t) = αiV (t)2

i∑
j=h(t)

τjFj(t)
β

1 + τjFj(t)
ρijαj,

where h(t) denotes the index of the first unfixed Fi, i.e.

h(t) = j, if t ∈ [Tj−1, Tj).

Our model for the correlation structure is taken from Rebonato [119], who suggests

the time independent function

ρij = e−λ|Ti−Tj |. (4.2)

This function reflects the fact that the correlation increases as the time between the

forward rates expiry decreases, so that two consecutive forward rates influence each

other more than a forward rate in many years time.

A European option is characterized by its payoff function G, which determines

the amount G(T,F(T), V (T)) its holder receives at time t = T . The arbitrage-free

value of the option relative to a numeraire N is then given by

u(t,F(t), V (t)) = EQ

(
G(T,F(T), V (T))

N (T)

∣∣∣∣∣ Ft
)
. (4.3)

Closed-form solutions based on (4.3) are rarely available due to the multi-asset feature

of most LIBOR derivatives. In the next paragraphs we sketch the derivation of the

PDE formulation associated to the Mercurio & Morini model.

By using Itô’s formula, see [127] for example, the stochastic differential equation

120

for u is given by

du(t,F(t), V (t)) =
∂u

∂t
dt+

N−1∑
i=1

∂u

∂Fi(t)
dFi(t) +

∂u

∂V (t)
dV (t)+

1

2

N−1∑
i,j=1

∂2u

∂Fi(t)∂Fj(t)
dFi(t)dFj(t) +

1

2

∂2u

∂V (t)2
(dV (t))2+

N−1∑
i=1

∂2u

∂Fi(t)∂V (t)
dFi(t)dV (t), (4.4)

with box algebra:

dt dWQ
i dWQ

j dZQ

dt 0 0 0 0

dWQ
i 0 dt ρijdt φidt

dWQ
j 0 ρijdt dt φjdt

dZQ 0 φidt φjdt dt

.

The interpretation of the box algebra [102] is the following. In an expansion to

terms of order dt, as dt → 0 higher order terms such as (dt)j are all negligible for

j > 0. For example, (dt)2 is of order 0 as dt → 0, which is denoted as (dt)(dt) ∼ 0.

Similarly, cross terms such as (dt)(dWQ
i) are negligible because the increment dWQ

i

is normally distributed with mean 0 and standard deviation (dt)1/2 and so (dt)(dWQ
i)

has standard deviation (dt)3/2 which tends to 0 as dt→ 0.

Substituting equations (4.1) in (4.4) and using the box algebra, one can obtain

du(t,F(t), V (t)) =

(
∂u

∂t
+

N−1∑
i=1

µi(t)Fi(t)
β ∂u

∂Fi(t)
+

1

2

N−1∑
i,j=1

αiαjV (t)2Fi(t)
βFj(t)

βρij
∂2u

∂Fi(t)∂Fj(t)
+

1

2
σ2V (t)2 ∂2u

∂V (t)2
+

N−1∑
i=1

σV (t)2αiFi(t)
βφi

∂2u

∂Fi(t)∂V (t)

)
dt+

N−1∑
i=1

αiV (t)Fi(t)
β ∂u

∂Fi(t)
dWQ

i + σV (t)
∂u

∂V (t)
dZQ. (4.5)

121

In order to comply with the no-arbitrage conditions and (4.3), the process du(t,F, V)

has to be martingale under the measure Q. Thus, to satisfy this requirement, the drift

term dt in (4.5) must be equal to zero. The same result could be directly obtained

by applying Feynman-Kac theorem, see [127, 19]. The final parabolic PDE takes the

following form:

∂u

∂t
+

1

2
σ2V 2 ∂

2u

∂V 2
+

1

2
V 2

N−1∑
i,j=1

ρijαiαjF
β
i F

β
j

∂2u

∂Fi∂Fj
+ σV 2

N−1∑
i=1

φiαiF
β
i

∂2u

∂Fi∂V
+

N−1∑
i=1

µi(t)F
β
i

∂u

∂Fi
= 0, (4.6)

with the terminal condition given by the derivative payoff,

u(T,F(T), V (T)) = g(T,F(T), V (T)),

on [0, T] × RN−1 × R. For simplicity of notation, we have used the relative payoff

g(·) =
G(·)
N (T)

.

Analytic solutions for (4.6) can be only found for suitable simple specifications of

the functionals forms of the PDE and for straightforward boundary conditions (e.g.

simple caplets without stochastic volatility, i.e. σ = 0, see Section 4.3.2).

Finally, we are going to present the PDE for Hagan model, which is defined by

the following system of stochastic differential equations [68]:

dFi(t) = µFi(t)Fi(t)
βidt+ Vi(t)Fi(t)

βidWQ
i (t), Fi(0) given,

dVi(t) = µVi(t)Vi(t)dt+ σiVi(t)dZ
Q
i (t), Vi(0) = αi, (4.7)

with the associated correlations denoted by

< dWQ
i (t), dWQ

j (t) > = ρijdt,

< dWQ
i (t), dZQj (t) > = φijdt,

< dZQi (t), dZQj (t) > = θijdt.

122

The PDE for this model is obtained in the same way as previously with the Mercurio

& Morini model, thus obtaining:

∂u

∂t
+

1

2

N−1∑
i,j=1

θijσiViσjVj
∂2u

∂Vi∂Vj
+

1

2

N−1∑
i,j=1

ρijViF
βi
i VjF

βj
j

∂2u

∂Fi∂Fj
+

1

2

N−1∑
i,j=1

φijViF
βi
i σjVj

∂2u

∂Fi∂Vj
+

N−1∑
i=1

µFi(t)F βi
i

∂u

∂Fi
+

N−1∑
i=1

µVi(t)Vi
∂u

∂Vi
= 0. (4.8)

Rebonato model is analogous to Hagan one, therefore its PDE will be also quite

similar to (4.8).

4.3 Finite Difference Method

Hereafter, as we have motivated in the previous section, we are going to just focus on

the PDE (4.6) of the Mercurio & Morini model. This backward parabolic PDE must

be supplemented with a terminal condition, which describes the value of the variable u

at the final time T . Moreover, appropriate boundary conditions are required, which

prescribe how the function u, or its derivatives, behave at the boundaries of the

necessarily bounded computational domain.

We are going to define a (N + 1)-dimensional mesh with the time sampled from

today (time 0) to the final expiry of the option (time T) at M + 1 points uniformly

spaced by the time step ∆t =
T

M
.

The variables representing the forward rates F = (F1, . . . , FN−1) and their stochas-

tic volatility V , often referred as the “space variables” will be sampled at Mi + 1 (i =

1, . . . , N − 1) and S + 1 points spaced by hi =
Fmax
i − Fmin

i

Mi

and hv =
V max − V min

S
,

respectively.

Notice that while the choice of the range of the time variable is totally unambigu-

ous, [0, T], an a priori choice must be made about which values of the space variables

are too high or too low to be of interest, so far we will denote them by [Fmin
i , Fmax

i]

and [V min, V max]. Selecting boundary values such that the option of interest is too

deeply in or out-of-the money is a common and reasonable choice.

123

For a given mesh, each point is uniquely determined by the time level m (m =

0, . . . ,M), the index vector of the N−1 forward rates f = (f1, . . . , fi, . . . , fN−1) (fi =

0, . . . ,Mi) and the stochastic volatility level v (v = 0, . . . , S). We seek approximations

of the solution at these mesh points, which will be denoted by

Um
f ,v ≈ u(m∆t, (fihi)1≤i≤N−1, vhv).

It is natural for this PDE to be solved backwards in time. We approximate the

time derivative by the time-forward approximation

∂u

∂t

∣∣∣∣∣
t=m∆t,F=(fihi)1≤i≤N−1,V=vhv

=
∂u

∂t

∣∣∣∣∣
m,f,v

≈
Um+1
f ,v − Um

f ,v

∆t
.

For the space derivatives we have chosen second-order approximations. We will

write fi±1 to mean the forward rates index vector (f1, . . . , fi ± 1, . . . , fN−1) which

corresponds to the forward rates point (f1h1, . . . , (fi ± 1)hi, . . . , fN−1hN−1).

The first derivatives are approximated by central differences:

∂u

∂Fi

∣∣∣∣∣
m,f,v

≈
Um
fi+1,v

− Um
fi−1,v

2hi
.

The second derivatives are approximated by:

• ∂2u

∂F 2
i

∣∣∣∣∣
m,f,v

≈
Um
fi+1,v

− 2Um
fi,v

+ Um
fi−1,v

h2
i

,

• ∂2u

∂V 2

∣∣∣∣∣
m,f,v

≈
Um
f ,v+1 − 2Um

f ,v + Um
f ,v−1

h2
v

.

The cross derivatives terms are approximated by:

• For i 6= j,
∂2u

∂Fi∂Fj

∣∣∣∣∣
m,f,v

≈
Um
fi+1,j+1,v

+ Um
fi−1,j−1,v

− Um
fi+1,j−1,v

− Um
fi−1,j+1,v

4hihj
,

• ∂2u

∂Fi∂V

∣∣∣∣∣
m,f,v

≈
Um
fi+1,v+1 + Um

fi−1,v−1 − Um
fi+1,v−1 − Um

fi−1,v+1

4hihv
.

124

The finite difference solution under the so-called θ-scheme is:

Um+1
f ,v − Um

f ,v

∆t
+ θWm

f ,v + (1− θ)Wm+1
f ,v = 0,

where θ ∈ [0, 1] and Wm
f ,v is the discretization given by

Wm
f,v =

1

2
σ2V 2

Um
f ,v+1 − 2Um

f ,v + Um
f ,v−1

h2
v

+

1

2
V 2

N−1∑
i,j=1

i 6=j

ρijαiαjF
β
i F

β
j

Um
fi+1,j+1,v

+ Um
fi−1,j−1,v

− Um
fi+1,j−1,v

− Um
fi−1,j+1,v

4hihj
+

1

2
V 2

N−1∑
i=1

α2
iF

2β
i

Um
fi+1,v

− 2Um
fi,v

+ Um
fi−1,v

h2
i

+

σV 2

N−1∑
i=1

φiαiF
β
i

Um
fi+1,v+1 + Um

fi−1,v−1 − Um
fi+1,v−1 − Um

fi−1,v+1

4hihv
+

N−1∑
i=1

µi(m∆t)F β
i

Um
fi+1,v

− Um
fi−1,v

2hi
, (4.9)

and with terminal condition UM
f ,v = g(T,F(T), V (T)).

Three different θ values represent three canonical discretization schemes, θ = 0 is

the explicit scheme, θ = 1 the fully implicit scheme and θ = 0.5 the Crank-Nicolson

scheme. The fully implicit discretization is the best method with respect to stability,

whereas the Crank-Nicolson timestepping provides the best convergence rate. Al-

though the explicit method is the simplest to implement, it has the disadvantage of

not being unconditionally stable.

We shall first discriminate explicit and implicit parts as follows:

Um
f ,v

∆t
− θWm

f ,v =
Um+1
f ,v

∆t
+ (1− θ)Wm+1

f ,v . (4.10)

As a result of such discretization we arrive to the linear system of equations

Ax = b, where A is the band matrix of known coefficients, x is the vector of the

unknown solutions Um
f ,v and b is the vector of known values corresponding to the

right-hand side of (4.10).

125

Equation (4.10) can be rewritten as:

dθUm
f ,v−1 + dθUm

f ,v+1 +
N−1∑
i=1

(bi − ri)θUm
fi−1,v

+
N−1∑
i=1

(bi + ri)θU
m
fi+1,v

+

N−1∑
i=1

(
aiθU

m
fi−1,v−1 + aiθU

m
fi+1,v+1 − aiθUm

fi−1,v+1 − aiθUm
fi+1,v−1

)
+∑

ij∈C

(
ψijθU

m
fi−1,j−1,v

+ ψijθU
m
fi+1,j+1,v

− ψijθUm
fi−1,j+1,v

− ψijθUm
fi+1,j−1,v

)
+(

−1− 2dθ − 2θ
N−1∑
i=1

bi

)
Um
f ,v =

− dθ̂Um+1
f ,v−1 − dθ̂U

m+1
f ,v+1 −

N−1∑
i=1

(bi − ri)θ̂Um+1
fi−1,v

−
N−1∑
i=1

(bi + ri)θ̂U
m+1
fi+1,v

−
N−1∑
i=1

(
aiθ̂U

m
fi−1,v−1 + aiθ̂U

m+1
fi+1,v+1 − aiθ̂U

m+1
fi−1,v+1 − aiθ̂U

m+1
fi+1,v−1

)
−
∑
ij∈C

(
ψij θ̂U

m+1
fi−1,j−1,v

+ ψij θ̂U
m+1
fi+1,j+1,v

− ψij θ̂Um+1
fi−1,j+1,v

− ψij θ̂Um+1
fi+1,j−1,v

)
+(

−1 + 2dθ̂ + 2θ̂
N−1∑
i=1

bi

)
Um+1
f ,v , (4.11)

where θ̂ = (1−θ), C is the set containing the combinations of numbers 1, 2, . . . , N−1

taken two at a time without repetition (the number of elements in C is
(
N−1

2

)
=

2−1(N − 1)(N − 2)) and the known coefficients d, bi, ri, ai and ψij are defined as

d =
∆tσ2V 2

2h2
v

, bi =
∆tV 2α2

iF
2β
i

2h2
i

,

ri =
∆tµi(t)F

β
i

2hi
, ai =

∆tσV 2φiαiF
β
i

4hihv
,

ψij =
∆tV 2ρijαiαjF

β
i F

β
j

4hihj
,

where we have denoted F = (Fi = fihi)1≤i≤N−1 and V = vhv.

126

4.3.1 Boundary conditions

In order to specify boundary conditions, a combination of mathematical, financial

and heuristic reasoning allows us to find consistent and acceptable ones. There are

several possibilities, see [36] for example.

In principle forward rates and their stochastic volatility are non negative and hence

take values in the range zero to infinity. We first truncate the unbounded interval to

a bounded one and then we must specify conditions at the new boundary. Thus we

will consider the truncated domain [Fmin
i , Fmax

i] × [V min, V max], with Fmin
i = 0 and

V min = 0.

For the forward rates we have considered Dirichlet boundary conditions. Partic-

ularly, the terminal condition will hold on the forward rates boundaries, i.e.

Um
{f |∃fi=0},v = UM

f ,v, ∀m = 0, . . . ,M − 1,

Um
{f |∃fi=Mi},v = UM

f ,v, ∀m = 0, . . . ,M − 1.

For the stochastic volatility we have considered the following boundary conditions:

∂u

∂t
+

N−1∑
i=1

µi(t)F
β
i

∂u

∂Fi
= 0, V = 0, (4.12)

∂u

∂V
= 0, V = Vmax. (4.13)

When V = 0 we require that the PDE itself must be satisfied on this boundary, this

is known as a smoothing condition. When V approaches to infinity, the price of the

derivative becomes independent of V . This is reflected by using Neumann conditions

instead of the Dirichlet ones used for the forward rates boundaries.

At the boundary V = 0, after discretizing the boundary condition (4.12) we obtain

(note that the coefficients d, bi, ai and ψij of equation (4.11) are zero):

−
N−1∑
i=1

riθU
m
fi−1,0

+
N−1∑
i=1

riθU
m
fi+1,0

− Um
f ,0 =

N−1∑
i=1

riθ̂U
m+1
fi−1,0

−
N−1∑
i=1

riθ̂U
m+1
fi+1,0

+ Um+1
f ,0 .

For the boundary V = Vmax in order to maintain the second order accuracy in

the discretization of the first derivative the ghost point method is considered. The

127

ghost grid points Uf ,S+1 are added. Then, the finite difference scheme of equation

(4.11) can also be applied at the points Uf ,S. However, we now have more unknowns

than equations. The additional equations come from the central finite difference

discretization of the Neumann boundary condition (4.13):

Uf ,S+1 − Uf ,S−1

2hv
= 0,

which yields Uf ,S+1 = Uf ,S−1. Inserting this into the finite difference equation at

V = Vmax we achieve

d̂θUm
f ,S−1 +

N−1∑
i=1

(bi − ri)θUm
fi−1,S

+
N−1∑
i=1

(bi + ri)θU
m
fi+1,S

+∑
ij∈C

(
ψijθU

m
fi−1,j−1,S

+ ψijθU
m
fi+1,j+1,S

− ψijθUm
fi−1,j+1,S

− ψijθUm
fi+1,j−1,S

)
+(

−1− d̂θ − 2θ
N−1∑
i=1

bi

)
Um
f ,S =

− d̂θ̂Um+1
f ,S−1 −

N−1∑
i=1

(bi − ri)θ̂Um+1
fi−1,S

−
N−1∑
i=1

(bi + ri)θ̂U
m+1
fi+1,S

+

−
∑
ij∈C

(
ψij θ̂U

m+1
fi−1,j−1,S

+ ψij θ̂U
m+1
fi+1,j+1,S

− ψij θ̂Um+1
fi−1,j+1,S

− ψij θ̂Um+1
fi+1,j−1,S

)
+(

−1 + d̂θ̂ + 2θ̂
N−1∑
i=1

bi

)
Um+1
f ,S ,

where d̂ = 2d =
∆tσ2V 2

max

h2
v

.

4.3.2 Numerical results

It is not clear where to place Fmax
i and V max. On one hand, it is advantageous

to place them far away of the initial forward rates. This reduces the error of the

artificial boundary conditions. On the other hand a large computational domain

requires a large discretization width. This increases the error of the approximation

of the derivatives. In our experiments we will consider Fmax
i = 0.1 and V max = 2.0.

128

We are going to value Tα × (Tβ − Tα) European swaptions, meaning that the

swaption has maturity at time Tα and the length of the underlying swap is (Tβ − Tα)

(also known as the tenor of the swaption).

The pricing model is described in Table 4.1 and the employed market data are

given in Table 4.2. We will consider λ = 0.1 in the model for the correlation structure

(4.2). Besides, the Crank-Nicolson scheme will be used in (4.10).

For solving the system (4.11) the Gauss-Seidel iterative solver has been employed

using a tolerance of 10−6.

The numerical experiments have been performed with the following hardware and

software configurations: two recent multicore Intel Xeon CPUs E5-2620 v2 clocked at

2.10 GHz (6 cores per socket) with 62 GBytes of RAM, CentOS Linux, GNU C++

compiler 4.8.2.

Currency EUR
Index EURIBOR

Day Count e30/360
Strike 5.5%

Table 4.1: Specification of the interest rate model.

First of all, the results from pricing a 1×1 European swaption are discussed. The

value ϑ of this swaption is the same as the price of the corresponding caplet, and so

depends only on F1. Hence, in one dimension a closed form expression for the price

of a European swaption can be found by using Black’s formula:

ϑ = P (T0, T2)τ1Bl(K,F (T1, T2;T0), ν1),

where

Bl(K,F, ν) = FΦ
(
d1(K,F, ν)

)
−KΦ

(
d2(K,F, ν)

)
,

d1(K,F, ν) =
ln(F/K) + ν2/2

ν
,

d2(K,F, ν) =
ln(F/K)− ν2/2

ν
,

129

Start date End date LIBOR Rate (%) Volatility (%)

T0 29-07-04 29-07-05 2.423306 0
T1 29-07-05 29-07-06 3.281384 24.73
T2 29-07-06 29-07-07 3.931690 22.45
T3 29-07-07 29-07-08 4.364818 19.36
T4 29-07-08 29-07-09 4.680236 17.43
T5 29-07-09 29-07-10 4.933085 16.15
T6 29-07-10 29-07-11 5.135066 15.02
T7 29-07-11 29-07-12 5.273314 14.24
T8 29-07-12 29-07-13 5.376115 13.42

Table 4.2: Market data used in pricing. Data taken from 27th July 2004.

νi = σBlack
√
Ti,

where P (T0, T2) is the price at time T0 of a bond with maturity T2 and σBlack is the

constant volatility of the forward rate. This value is equal to 0.659096 basis points

(one basis point is one hundredth of one percent,
1%

100
=

1

10000
). As Black-Scholes

formula for caplets considers constant volatility σBlack, in this first test the volatility

of the volatility parameter of Mercurio & Morini model is considered equal to zero,

i.e., σ = 0, therefore a standard LIBOR market model is used. The solution was

found on several levels and Table 4.3 shows the convergence of the model. In all

tables of this chapter, Level refers to the refinement level n, i.e., the mesh size is

hi = 2−n · ci in each coordinate direction, where ci denotes the computational domain

length in direction i, which is Fmax
i in the case of the forward rates and V max in the

case of the stochastic volatility. Besides, the solution and the error with respect to

the exact solution are also shown in basis points. Additionally, the execution time is

measured in seconds and the column labeled as Grid points shows the number of grid

points employed in the full grid used by the finite difference method without taking

into account the time coordinate.

When the volatility of the volatility σ of the model is non zero or when the length

of the underlying swap of the swaption being considered is greater than one, no closed

130

form solutions are available. However, an estimate can be obtained from Monte Carlo

simulations. On Table 4.4 Monte Carlo values for the 1× 1 European swaption with

σ = 0 are shown for several numbers of paths (#Paths). More details about Monte

Carlo simulation of SABR/LIBOR market models can be found in Chapter 3.

Level Solution Error Time Grid points

3 2.078086 1.418989 0.0024 81
4 1.108211 0.449114 0.0094 289
5 0.779033 0.119936 0.07 1089
6 0.672004 0.012907 0.53 4225
7 0.665176 0.006079 6.34 16641
8 0.661164 0.002067 84.12 66049
9 0.659380 0.000283 1122.86 263169

10 0.659032 0.000064 14288.34 1050625

Table 4.3: Convergence of the PDE solution in basis points for 1 LIBOR and stochas-
tic volatility, σ = 0, V (0) = 1, β = 1, 128 time steps. Exact solution, 0.659096 basis
points.

#Paths Solution

105 0.616799
107 0.658598
109 0.659506

Table 4.4: Convergence of Monte Carlo solution in basis points for 1 LIBOR and
stochastic volatility, σ = 0, V (0) = 1, β = 1, 128 time steps. Exact solution,
0.659096 basis points.

In Table 4.5 the pricing of the 1× 1 European swaption with σ = 0.3 for different

resolution levels n are shown.

In Table 4.6 the results for the 1 × 2 swaption are given. Note that with this

numerical method it was not feasible to price the swaption past refinement level

n = 7 due to the huge number of required grid points.

In Table 4.7 the results for the 1× 3 swaption are given. Full grid pricing is only

possible on low grid levels. It is not achievable to obtain a solution for a level greater

131

Level Solution Time Grid points

3 6.254822 0.0039 81
4 2.501988 0.0122 289
5 1.991646 0.07 1089
6 1.597470 0.62 4225
7 1.526047 7.48 16641
8 1.519841 98.45 66049
9 1.519742 1291.76 263169

10 1.519732 16238.98 1050625

Table 4.5: Convergence of the PDE solution in basis points for 1 LIBOR and stochas-
tic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 128 time steps. Monte Carlo value
using 107 paths, 1.657662 basis points.

Level Solution Time Grid points

3 7.036058 0.05 729
4 6.644769 0.54 4913
5 5.500283 8.59 35937
6 4.943895 182.56 274625
7 4.909506 4689.62 2146689

Table 4.6: Convergence of the PDE solution in basis points for 2 LIBORs and stochas-
tic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 128 time steps. Monte Carlo value
using 107 paths, 4.652644 basis points.

than 6 in reasonable computational time due to the high number of grid points.

Theoretically, it is possible to solve the discrete system (4.11) for a general number

of dimensions. However, in computational science, a major problem occurs when the

number of dimensions increases. A natural way to diminish the discretization error is

to decrease the mesh width in each coordinate direction. However, then the number

of grid points in the resulting full grid grows exponentially with the dimension, i.e.

the size of the discrete solution increases drastically. This is called the curse of

dimensionality [7]. Therefore, this procedure of improving the accuracy by decreasing

the mesh width is mainly bounded by two factors, the storage and the computational

complexity. Due to these limitations, using a full grid discretization method which

132

Level Solution Time Grid points

3 6.070182 0.78 6561
4 6.149721 22.03 83521
5 6.513167 752.60 1185921
6 6.721081 34081.58 17850625

Table 4.7: Convergence of the PDE solution in basis points for 3 LIBORs and stochas-
tic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 128 time steps. Monte Carlo value
using 107 paths, 8.177764 basis points.

achieves sufficiently accurate approximations is only possible for problems with up

to three or four dimensions, even on the most powerful machines presently available

[21]. Two approaches to try to overcome the curse of dimensionality are increasing

the order of accuracy of the applied numerical approximation scheme or reducing

the dimension of the problem by choosing suitable coordinates. Both approaches

are not always possible for every option pricing problem. In this chapter we will

take advantage of the sparse grid combination technique first introduced by Zenger

and co-workers [63] in order to try to overcome the curse of dimensionality. The

combination technique replicates the structure of a so-called sparse grid by linearly

combining solutions on coarser grids of the same dimensionality. This technique will

reduce the computational effort and the storage space involved with the mentioned

traditional finite difference discretization methods. The number of sub-problems to

solve will increase, while the computational time per problem decreases drastically.

This method can be implemented in parallel as each sub-grid is independent of the

others. In the next section we present this technique.

4.4 Sparse grids and the combination technique

The sparse grid method was originally developed by Smolyak [128], who used it for

numerical integration. It is based on a hierarchical basis [141, 142], a representation

of a discrete function space which is equivalent to the conventional nodal basis, and

133

a sparse tensor product construction. Zenger [144] and Bungartz and Griebel [21]

extended this idea and applied sparse grids to solve partial differential equations with

finite elements, finite volumes and finite differences methods. Besides working directly

in the hierarchical basis the sparse grid can also be computed using the combination

technique [63] by linearly combining solutions on traditional Cartesian grids with

different mesh widths. This is the approach we have followed in this chapter. In the

next two subsections we give a brief introduction to sparse grids and the combination

technique. For a detailed discussion we refer to [21].

4.4.1 Sparse grids

First of all we introduce some notation and definitions. Let l = (l1, l2, . . . , ld) ∈ Nd
0

denote a d-dimensional multi-index. Let |l|1 and |l|∞ denote the discrete L1−norm

and L∞−norm of the multi-index l, respectively, that are defined as

|l|1 =
d∑

k=1

lk and |l|∞ = max
1≤k≤d

lk.

We define the anisotropic grid Ωl with mesh size h = (h1, h2, . . . , hd) = (2−l1c1,

2−l2c2, . . . , 2
−ldcd) with multi-index l and grid length c = (c1, c2, . . . , cd).

Then, the full grid at refinement level n ∈ N and mesh size hi = 2−n · ci for all i

can be defined via the sequence of subgrids

Ωn = Ω(n,...,n) =
⋃
|l|∞≤n

Ωl.

Figure 4.1 visualizes two dimensional full grids for levels n = 0, . . . , 4. The number

of grid points in each coordinate direction of the full grid is 2n + 1 and therefore the

number of grid nodes in the full grid increases with O(2n·d), i.e. grows exponentially

with the dimensionality d of the problem.

134

Figure 4.1: Two-dimensional full grid hierarchy up to level n = 4.

The sparse grid Ωn
s at refinement level n consists of all anisotropic Cartesian grids

Ωl, where the total sum of all refinement factors lk in each coordinate direction equals

the resolution n. Then, the sparse grid Ωn
s is given by

Ωn
s =

⋃
|l|1≤n

Ωl =
⋃
|l|1=n

Ωl.

Figure 4.2 shows the two-dimensional grid hierarchy for levels n = 0, . . . , 4.

135

Figure 4.2: Two-dimensional sparse grid hierarchy up to level n = 4.

136

The total number of nodes in the grid Ωl is
d∏

k=1

(2lk + 1) = O(2|l|1) = O(2n). In

addition, there exist exactly
(
n+d−1
d−1

)
grids Ωl with |l|1 = n,(

n+ d− 1

d− 1

)
=

(n+ d− 1)!

(d− 1)!n!
=

(n+ d− 1) · . . . · (n+ 1)n!

(d− 1)!n!

=
n+ (d− 1)

d− 1
· n+ (d− 2)

d− 2
· . . . · n+ (d− (d− 1))

d− (d− 1)

=

(
1 +

n

d− 1

)
·
(

1 +
n

d− 2

)
· . . . ·

(
1 +

n

2

)
·
(

1 +
n

1

)
≤ (1 + n)d−1 = O(nd−1).

Thus, the total number of grid points of the sparse grid Ωn
s grows according to(

n+ d− 1

d− 1

)
·

d∏
k=1

(2lk + 1) = O(nd−1)O(2n) = O(nd−12n), (4.14)

which is far less the size of the corresponding full grid with O(2nd) grid points. Let

hn = 2−n, therefore the sparse grid employs O(h−1
n ·log2(h−1

n)d−1) grid points compared

to O(h−dn) nodes in the full grid.

Bungartz and Griebel [21] show that the accuracy of the sparse grid using O(h−1
n ·

log2(h−1
n)d−1) nodes is of order O(h2

n log2(h−1
n)d−1)) in the case of finite elements dis-

cretization and under certain smoothness conditions. Thus, the accuracy of the sparse

grid is only slightly deteriorated from the accuracy O(h2
n) of conventional full grid

methods which need O(h−dn) grid points. Therefore, to achieve a similar approxima-

tion quality sparse grids need much less points than regular full grids.

However, the structure of a sparse grid is more complicated than of a full grid.

Common partial differential equation solvers usually only manage full grid solutions.

Existing sparse grid methods working directly in the hierarchical basis involve a chal-

lenging implementation [1, 143]. This handicap can be circumvented with the help of

the sparse grid combination technique which not only exploits the economical struc-

ture of the sparse grids but also allows for the use of traditional full grid PDE solvers.

Finally, three and two dimensional sparse grids for several resolution levels n are

137

shown in Figures 4.3 and 4.4, respectively. Additionally, the growth of the grid points

when increasing n can be observed.

(a) Ω5
s, 705 grid points. (b) Ω6

s, 1649 grid points.

(c) Ω7
s, 3809 grid points. (d) Ω8

s, 8705 grid points.

Figure 4.3: Three dimensional sparse grids for levels n = 5, 6, 7 and 8.

138

(a) Ω5
s, 177 grid points. (b) Ω6

s, 385 grid points.

(c) Ω7
s, 833 grid points. (d) Ω8

s, 1793 grid points.

(e) Ω9
s, 3841 grid points. (f) Ω10

s , 8193 grid points.

Figure 4.4: Two dimensional sparse grids for levels n = 5, . . . , 10.

139

Figure 4.5: Combination technique with level n = 4 in two dimensions.

140

4.4.2 Combination technique

Similar to the Richarson extrapolation, the so-called combination technique linearly

combines the numerical solution on the sequence of anisotropic grids Ωl where

|l|1 = n− q, q = 0, . . . , d− 1.

The combination technique reads

Un
s =

d−1∑
q=0

(−1)q ·
(
d− 1

q

)
·
∑
|l|1=n−q

Ul, lk ≥ 0, ∀k = 1, . . . , d, (4.15)

where Ul denotes the numerical solution on the grid Ωl and Un
s the combined solution

on the sparse grid Ωn
s .

The grids employed by the combination technique of level n = 4 in two dimensions

are shown in Figure 4.5.

The idea of this technique is that the leading order errors from the dicretization

on each grid cancel each other out in the combination solution.

The number of grid points involved in the approximation of Un
s grows according to

O(nd−1 · 2n). In fact, from the formula (4.14) we have to solve
(
n+d−1
d−1

)
problems with

O(2n) unknowns,
(
n+d−2
d−1

)
problems with O(2n−1) unknowns, ... and

(
n
d−1

)
problems

with O(2n−(d−1)) unknowns. This results in a total number of O(nd−1 ·2n) grid points

which is much less than the O(2n·d) grid nodes used by traditional full grid methods.

Thus, the efficient use of sparse grids greatly reduces the computing time and the

storage requirements which allows for the treatment of problems with ten variables

and even more [21].

We have seen that the combination technique linearly combines the numerical

solution on several traditional full grids. The solution can be calculated on each of

these grids by using any existing PDE numerical method like finite difference, finite

volume or finite elements. In addition, since all these sub-problems are independent

the combination technique can be parallelized [62].

The combination technique approach presumes the existence of a so-called error

splitting. It requires for an associated numerical approximation method on the full

141

grid Ωl an error splitting of the form

u(x)− Ul(x) =
d∑

k=1

∑
{j1,...,jk}
⊆{1,...,d}

Cj1,...,jk(x, hj1 , . . . , hjk) · h
p
j1
· . . . · hpjk , (4.16)

at each grid point x ∈ Ωl. Here u denotes the exact solution of the partial differential

equation under consideration, Ul the numerical solution on the grid Ωl, p > 0 is

the order of accuracy of the numerical approximation method with respect to each

coordinate direction and the coefficient functions Cj1,...,jk of x and the mesh sizes hjk ,

k = 1, . . . , d are required to be bounded by a positive constant K such that

|Cj1,...,jk(x, hj1 , . . . , hjk)| ≤ K, ∀k, 1 ≤ k ≤ d, ∀{j1, . . . , jm} ⊆ {1, . . . , d}.

In [64] Griebel and Thurner showed that if the solution of the PDE is sufficiently

smooth, the pointwise accuracy of the sparse grid combination technique is O(nd−1 ·
2−n·p) = O([log2 h

−1
n]d−1hpn), which is only slightly worse than O(2−n·p) = O(hpn)

obtained by the full grid solution.

The solution at points which does not belong to the sparse grid can be computed

through interpolation. The applied interpolation method should provide at least the

same order of accuracy of the numerical discretization scheme used to solve the PDE.

Otherwise, the accuracy of the numerical scheme will be deteriorated.

Up to now we have presupossed the existence of an error splitting of type (4.16).

However, such an error splitting has to be shown for every model problem and de-

pends on the specific discretization used. In fact, proving the existence of this error

splitting is usually very complex. Bungartz et al. [22, 23] showed the existence of such

an error splitting for the finite difference discretization of the 2-d Laplace equation

with sufficiently smooth boundary conditions with the help of Fourier series. Arcin-

iega and Allen [6] proved the existence of this error splitting for the fully implicit as

well as the Crank-Nicolson discretization scheme of the European call option. More

recently, Reisinger [123] showed that such a splitting also holds for a wider class of

linear PDEs, for example convection-diffusion equations. The author gives general

conditions which need to be fulfilled to ensure the existence of the desired splitting

142

structure: sufficiently smooth initial data and compatible boundary data, a consistent

numerical scheme which provides a truncation error of the desired splitting structure

and stability of the discretization scheme. As a summary, we can say that the deduc-

tion of the error splitting formula is very complex and was until now only performed

for some reference problems. However, we will see in the following Section 4.4.3 that

the numerical results for the sparse grid combination technique seem promising, even

for more complex payoff functions.

4.4.3 Numerical results

Taking advantage of the discussed sparse grid combination technique, in this section

we are pricing the same interest rate derivatives that have been valued in the former

Section 4.3.2 where traditional full grid finite difference methods were considered. In

addition to those products, we are going to price interest rate derivatives with up to

eight underlying LIBORs and their stochastic volatility, showing that the sparse grid

combination technique is able to cope with the curse of dimensionality up to a certain

extent. As in the previous Section 4.3.2, we will use Crank-Nicolson scheme, we will

consider the Gauss-Seidel iterative solver and the same boundary conditions as in

Section 4.3.1. In the present case, we are interested in the evaluation of the solution

at a single point which corresponds with the value of the forward rates at time zero

(see Table 4.2) and V (0) = 1, the numerical solution on each grid handled by the

combination technique is interpolated at this point using multilinear interpolation

and then added up with the appropriate weights.

The sparse grid combination technique has been implemented to run on multicore

CPUs. The program was optimized and parallelized using OpenMP [149]. CPU

times, measured in seconds, correspond to executions using 24 threads, so as to take

advantage of Intel Hyperthreading. The speedups of the parallel version with respect

to the pure sequential code are around 16. To the best of our knowledge, GPUs

are not well-suited to parallelize the combination technique, due to the fact that

the different grids employed by the combination technique involve memory accesses

143

patterns totally different, therefore, it is not possible to access the device memory

in a coalesced way [109], thus GPU global memory can not serve threads in parallel.

In this scenario, the GPU code will be ill performing. In the work [46] the authors

take advantage of GPUs to parallelize the solver of each full grid considered by the

combination technique. However, they do not parallelize the combination technique

itself.

In Table 4.8 a 1× 1 European swaption is priced. The exact price of this deriva-

tive is 0.659096 basis points, as discussed in Section 4.3.2. These results are to be

compared with those of Table 4.3, where it can be seen how the computational times

and the grid points employed by the sparse grid combination technique have been

substantially reduced.

Next, in Table 4.9 a 1 × 1 European swaption is priced considering stochastic

volatility. These results are to be compared with those of Table 4.5.

In the following Tables 4.10 and 4.11, the pricing of 1 × 2 and 1 × 3 European

swaptions taking into account stochastic volatility is shown, as in Tables 4.6 and

4.7, respectively. For the higher resolution levels, the full grid method became very

slow, while the sparse grid combination technique results much faster. Note that the

combination technique is able to price successfully the 1× 3 European swaption, this

was not attainable in Table 4.6.

Finally, in Tables from 4.12 to 4.16, 1×4, ..., 1×8 European swaptions are priced

considering stochastic volatility. The pricing of these interest rate derivatives was

not viable with the full grid approach of Section 4.3. In order to be able to price

derivatives with more than 9 underlyings, the combination technique method should

be parallelized to run on a cluster of processors. In the Chapter 13 of the book [48]

Philipp Schröder et al. discuss the parallelization of the combination technique using

MPI (Message Passing Interface) API. In [93] the authors parallelize the sparse grid

combination technique taking advantage of a MapReduce framework, algorithms that

are inherently fault tolerant.

144

Level Solution Error Time Grid points

3 6.715346 6.056250 0.04 37
4 2.182057 1.522961 0.05 81
5 1.097761 0.438665 0.05 177
6 0.782767 0.123671 0.05 385
7 0.663808 0.004712 0.06 833
8 0.657536 0.001560 0.11 1793
9 0.658183 0.000913 0.46 3841

10 0.659363 0.000267 2.32 8193

Table 4.8: Convergence of the PDE solution in basis points for 1 LIBOR and stochas-
tic volatility, σ = 0, V (0) = 1, β = 1, 128 time steps. Exact solution, 0.659096 basis
points.

Level Solution Time

3 6.818116 0.05
4 2.694770 0.05
5 1.919198 0.05
6 1.596501 0.08
7 1.499332 0.12
8 1.505709 0.14
9 1.515855 0.64

10 1.521027 2.83

Table 4.9: Convergence of the PDE solution in basis points for 1 LIBOR and stochas-
tic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 128 time steps. Monte Carlo value
using 107 paths, 1.657662 basis points.

Level Solution Time

5 7.169601 0.07
6 5.167631 0.09
7 4.924462 0.13
8 4.543098 0.25
9 4.336457 0.62

10 4.346780 2.37

Table 4.10: Convergence of the PDE solution in basis points for 2 LIBORs and
stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 128 time steps. Monte Carlo
value using 107 paths, 4.652644 basis points.

145

Level Solution Time

7 1.407581 0.19
8 10.824603 0.41
9 5.879247 1.15

10 7.390891 3.90
11 9.395706 13.66
12 9.079540 68.85
13 7.998961 402.88
14 7.934538 2780.26

Table 4.11: Convergence of the PDE solution in basis points for 3 LIBORs and
stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 128 time steps. Monte Carlo
value using 107 paths, 8.177764 basis points.

Level Solution Time

9 6.781234 4.30
10 7.759745 11.16
11 14.756789 33.88
12 16.827907 106.35
13 8.431096 408.81
14 11.928714 1946.60

Table 4.12: Convergence of the PDE solution in basis points for 4 LIBORs and
stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 128 time steps. Monte Carlo
value using 107 paths, 12.288113 basis points.

Level Solution Time

11 21.324254 158.15
12 9.715573 433.61
13 18.790682 1227.26
14 18.342280 3786.28

Table 4.13: Convergence of the PDE solution in basis points for 5 LIBORs and
stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 128 time steps. Monte Carlo
value using 107 paths, 16.903377 basis points.

146

Level Solution Time

13 17.325454 143.20
14 10.310617 506.85
15 22.378643 2611.43

Table 4.14: Convergence of the PDE solution in basis points for 6 LIBORs and
stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 2 time steps. Monte Carlo
value using 107 paths, 21.979879 basis points.

Level Solution Time

15 17.931891 5939.81
16 13.890495 19719.87
17 27.590595 87733.59

Table 4.15: Convergence of the PDE solution in basis points for 8 LIBORs and
stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 2 time steps. Monte Carlo
value using 107 paths, 27.222777 basis points.

Level Solution Time

17 50.609493 228319.90
18 27.228950 774389.53

Table 4.16: Convergence of the PDE solution in basis points for 8 LIBORs and
stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 2 time steps. Monte Carlo
value using 107 paths, 32.553432 basis points.

147

148

Part II

BSDEs

149

Introduction to BSDEs

Backward Stochastic Differential Equations (BSDEs) form an interesting recent con-

cept in financial mathematics. Their range of applicability has increased, for exam-

ple by nonlinear pricing formulas derived from Credit Valuation Adjustment (CVA)

frameworks [31], dynamic measures of risk, portfolio optimization with trading con-

straints, stochastic optimal control (Hamilton-Jacobi-Bellman equation) or optimal

execution of American options. BSDEs are directly connected to semilinear partial

differential equations as the solution to these PDEs can be found by solving the

corresponding decoupled forward-backward stochastic differential equation (FBSDE)

problem. Recently, several advanced probabilistic numerical methods have been de-

veloped for FBSDEs, like advanced Monte Carlo methods [55], integration methods

[146] and also Fourier methods [124]. In this second part of the thesis, our goal is to

design highly efficient Monte Carlo methods.

Let (Ω,F , (Ft)0≤t≤T ,P) be a filtered probability space supporting a q-dimensional

Brownian motion (Wt)t≥0, with (Ft)0≤t≤T the natural filtration of the Brownian mo-

tion, and T a fixed time horizon. A general backward stochastic differential equation

is given by

−dYt = f(t, Yt, Zt)dt− ZtdWt,

YT = ξ,

where the function f is the so-called driver or generator of the process and the ter-

minal condition ξ is a FT -measurable random variable, f and ξ are called standard

parameters for the BSDE. The solution of this BSDE is a pair of adapted processes

151

(Y, Z) satisfying

∫ T

0

|Zt|2dt <∞,

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs, 0 ≤ t ≤ T.

A result from [86] is that, given a pair of standard parameters (f, ξ) there exists a

unique solution (Y, Z) ∈ H2
T (R)×H2

T (R) to this BSDE.

Now we are in position of introducing the so-called decoupled forward-backward

stochastic differential equations (FBSDEs). Assume 0 ≤ t ≤ T , f(t, w, x, y) =

f(t,Xt, Yt, Zt) and ξ = g(XT) where X is given by the forward SDE (FSDE),

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x0,

and Y by the backward SDE (BSDE),

dYt = −f(t,Xt, Yt, Zt)dt+ ZtdWt, YT = g(XT),

whose terminal condition is determined by the terminal value of FSDE. This FBSDE

can also be presented in its integral form

Xt = x0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs,

Yt = g(XT) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs.

Let u be the solution to the related semilinear parabolic PDE

∂tu(t, x) +
∑
i

bi(t, x)∂xiu(t, x)

+
1

2

∑
i,j

[σσ∗]i,j(t, x)∂2
xi,xj

u(t, x) + f
(
t, x, u(t, x),∇u(t, x)σ(t, x)

)
= 0,

u(T, x) = g(x).

By Itô’s formula one knows that Yt = u(t,Xt) and Zt = ∇u(t,Xt)σ(t,Xt) solves

the BSDE. Therefore, solving the semilinear PDE and the corresponding decoupled

FBSDE result in the same solution. The PDE can be solved by applying numerical

152

discretization techniques, while for the FBSDE probabilistic numerical methods are

available, for example Monte Carlo methods. In fact, by using Feynman-Kac theorem

one achieves Yt = u(t, x) = E
(
g(XT) +

∫ T

t

f(s,Xs, Ys, Zs)ds
∣∣ Xt = x

)
, which is

the starting point for the probabilistic solution of BSDE or related semilinear PDEs.

153

154

Chapter 5

Backward Stochastic Differential

Equations

5.1 Introduction

The problem The aim of the algorithm in this chapter is to approximate the (Y, Z)

components of the solution to the decoupled forward-backward stochastic differential

equation (BSDE)

Yt = g(XT) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs, (5.1)

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, (5.2)

where W is a q ≥ 1 dimensional Brownian motion. The algorithm will also approx-

imate the solution u to the related semilinear, parabolic partial differential equation

(PDE) of the form

∂tu(t, x) +Au(t, x) + f(t, x, u(t, x),∇xuσ(t, x)) = 0 for t < T and u(T, .) = g(.),

(5.3)

where A is the infinitesimal generator of X, through the Feynman-Kac relation

(Yt, Zt) = (u(t,Xt), (∇xuσ)(t,Xt)). In recent times, there has been an increasing

155

interest to have algorithms which work efficiently when the dimension d of the space

occupied by the process X is large. This interest has been principally driven by

the mathematical finance community, where nonlinear valuation rules are becoming

increasingly important.

In general, currently available algorithms [54, 9, 15, 92, 18, 59, 60, 58] rarely

handle the case of dimension greater than 8. The main constraint is not only due to

the computational time, but mainly due to memory consumption requirements by the

algorithms. For example, the recent work [60] uses a Regression Monte Carlo approach

(a.k.a. Least Squares MC), in which the solutions (u,∇xuσ) of the semi-linear PDE

are approximated on a K-dimensional basis of functions at each point of a time grid of

cardinality N . Popular choices of basis functions are global [92] or local polynomials

[60]. In both cases, the approximation error behaves in general like K−α′/d where α′

measures the smoothness of the function of interest and d is the dimension (curse

of dimensionality): see [45, Theorem 6.2.6] for global polynomials, see [66, Section

11.2] for local polynomials. Later, we use local approximations in order to allow

parallel computing. We restrict to affine polynomials for implementation in GPU.

The coefficients of the basis functions are computed at every time point ti with the

aid of M simulations of a discrete time Markov chain (which approximates X) in

the interval [ti, T]. The main memory constraints of this scheme are (a) to store the

K × N coefficients of the basis functions, and (b) to store the M× N simulations

used to compute the coefficients. To illustrate the problem of high dimension, in order

to ensure the convergence the dimension of the basis is typically K = const × Nαd,

for some α > 0 (which decreases with the regularity of the solution), so K increases

geometrically with d. Moreover, the error analysis of these algorithms demonstrates

that the local statistical error is proportional to NK/M, so that one must choose

M = const×KN2 to ensure a convergence O(N−1) of the scheme. This implies that

the simulations pose by far the most significant constraint on the memory.

Objectives The purpose of this chapter is to drastically rework the algorithm of [60]

to first minimize the exposure to the memory due to the storage of simulations. This

156

will allow computation in larger dimension d. Secondly, in this way the algorithm can

be implemented in parallel on GPU processors to optimize the computational time.

New Regression Monte Carlo paradigm We develop a novel algorithm called

the Stratified Regression MDP (SRMDP) algorithm; the name is aimed to distin-

guish from the related LSMDP algorithm [60]. The key technique is to use stratified

simulation of the paths of X. In order to estimate the solution at ti, we first define

a set of hypercubes (Hk ⊂ Rd : 1 ≤ k ≤ K). Then, for each hypercube Hk, we

simulate M paths of the process X in the interval [ti, T] starting from i.i.d. random

variables valued in Hk; these random variables are distributed according to the con-

ditional logistic distribution, see (Aν) later. By using only the paths starting in Hk,

we approximate the solution to the BSDE restricted to Xti ∈ Hk on linear functions

spaces LY,k and LZ,k (both of small dimension), see (AStrat.) later. 1 This allows us

to minimize the amount of memory consumed by the simulations, since we only need

to generate samples on one hypercube at a time. In Theorem 5.3.5, we demonstrate

that the error of our scheme is proportional to N max(dim(LY,k), dim(LZ,k))/M and,

since max(dim(LY,k), dim(LZ,k)) = const, we require only M = const × N2 to en-

sure the convergence O(N−1). Therefore, the memory consumption of the algorithm

will be dominated by the storage of the coefficients, which equals const × Nαd (the

theoretical minimum). Moreover, the computations are performed in parallel across

the hypercubes, which allows for massive parallelization. The speedup compared to

sequential programming increases as the dimension d increases, because of the geo-

metric growth of the number of hypercubes with respect to d. In the subsequent tests

(Section 5.5), for instance we can solve problems in dimension d = 11 within eight

seconds using 2000 simulations per hypercube.

1To distinguish from previous algorithms, we use two notations for the number of simulations
in this section: M and M . M stands for the overall number of simulations for computing the full
approximation in the unstratified algorithms, while M stands for the number of simulations used to
evaluate the approximation locally in each stratum (our stratified regression algorithm). Later we
will mainly use M .

157

This regression Monte Carlo approach is very different from the algorithm pro-

posed in [60]. Although local approximations were already proposed in that work,

the paths of the process X were simulated from a fixed point at time 0 rather than

directly in the hypercubes. This implies that one must store all the simulated paths

at any given time, rather than only those for the specific hypercubes. This is because

the trajectories are random, and one is not certain which paths will end up in which

hypercubes a priori. Therefore, our scheme essentially removes the main constraint

on the memory consumption of LSMC algorithms for BSDEs.

The choice of the logistic distribution for the stratification procedure is crucial.

Firstly, it is easy to simulate from the conditional distribution. Secondly, it possesses

the important USES property (see later (Aν)), which enables us to recover equivalent

L2-norms (up to constant) for the marginal of the forward process initialized with the

logistic distribution (Proposition 5.2.1).

Literature review Parallelization of Monte-Carlo methods for solving non-linear

probabilistic equations has been little investigated. Due to the non-linearity, this is a

challenging issue. For optimal stopping problems, we can refer to the works [90, 91, 41]

with numerical results up to dimension 4. To the best of our knowledge, the only

work related to BSDEs in parallel version is [92]. It is based on a Picard iteration

for finding the solution, coupled with iterative control variates. The iterative solution

is computed through an approximation on sparse polynomial basis. Although the

authors report efficient numerical experiments up to dimension 8, this study is not

supported by a theoretical error analysis. Due to the stratification, our proposed

approach is quite different from [92] and additionally, we provide an error analysis

(Theorem 5.3.5).

Most of the results in this chapter are included in the reference [56].

Notation

(i) |x| stands for the Euclidean norm of the vector x.

158

(ii) log(x) stands for the natural logarithm of x ∈ R+.

(iii) For a multidimensional process U = (Ui)0≤i≤N , its l-th component is denoted

by Ul = (Ul,i)0≤i≤N .

(iv) For any finite L > 0 and x = (x1, . . . , xn) ∈ Rn, define the truncation function

TL(x) := (−L ∨ x1 ∧ L, . . . ,−L ∨ xn ∧ L). (5.4)

(v) For a probability measure ν on a domain D, and function h : D → Rl in

L2(D, ν), denote the L2 norm of h by |h|ν :=
√∫

D
|h|2(x)ν(dx).

(vi) For a probability measure ν, disjoint sets {H1, . . . ,HK} in the support of ν, and

finite dimensional function spaces L{L1, . . . ,LK} such that the domain of Lk is

in the respected set Hk

ν(dim(L)) =
K∑
k=1

ν(Hk)dim(Lk).

(vii) For function g : R+ → R+, the order notation g(x) = O(x) means that there

exists some universal unspecified constant, const > 0, such that g(x) ≤ const×x
for all x ∈ R+.

5.2 Mathematical framework and basic properties

We work on a filtered probability space (Ω,F , (Ft)0≤t≤T ,P) containing a q-dimensional

(q ≥ 1) Brownian motion W . The filtration (Ft)0≤t≤T satisfies the usual hypotheses.

The existence of a unique strong solution X to the forward equation (5.2) follows from

usual Lipschitz conditions on b and σ, see (AX). The BSDE (5.1) is approximated

using a multistep-forward dynamical programming equation (MDP) studied in [59].

Let π := {ti := i∆t : 0 ≤ i ≤ N} be the uniform time-grid with time step ∆t = T/N .

159

The solution (Yi, Zi)0≤i≤N−1 of the MDP can be written in the form:

Yi = Ei
(
g(XN) +

∑N−1
j=i fj(Xj , Yj+1, Zj)∆t

)
,

∆tZi = Ei
(

(g(XN) +
∑N−1

j=i+1 fj(Xj , Yj+1, Zj)∆t)∆Wi

)
 for i ∈ {0, . . . , N − 1},

(5.5)

where (Xj)i≤j≤N is a Markov chain approximating the forward component (5.2)

(typically the Euler scheme, see Algorithm 2 below), ∆Wi := Wti+1
− Wti is the

(i + 1)-th Brownian motion increment, and Ei (·) := E (· | Fti) is the conditional

expectation. Our working assumptions on the functions g and f are as follows:

(Ag) g is a bounded measurable function from Rd to R, the upper bound of which is

denoted by Cg.

(Af) for every i < N , fi(x, y, z) is a measurable function Rd×R×Rq to R, and there

exist two finite constants Lf and Cf such that, for every i < N ,

|fi(x, y, z)− fi(x, y′, z′)| ≤ Lf (|y − y′|+ |z − z′|),

∀(x, y, y′, z, z′) ∈ Rd × (R)2 × (Rq)2,

|fi(x, 0, 0)| ≤ Cf , ∀x ∈ Rd.

The definition of the Markov chain (Xj)j is made under the following assumptions.

(AX) The coefficients functions b and σ satisfy

(i) b : [0, T]×Rd → Rd and σ : [0, T]×Rd → Rd⊗Rq are bounded measurable,

uniformly Lipschitz in the space dimensions;

(ii) there exists ζ ≥ 1 such that, for all ξ ∈ Rd, the following inequalities hold:

ζ−1|ξ|2 ≤ ξ>σ(t, x)σ(t, x)>ξ ≤ ζ|ξ|2.

Let Xi be a random variable with some distribution η (more details on this to follow).

Then Xj for j > i is generated according to one of the two algorithms below:

Algorithm 1 (SDE dynamics). Xj+1 = X̄tj+1
= Xj+

∫ tj+1

tj
b(s, X̄s)ds+

∫ tj+1

tj
σ(s, X̄s)dWs;

160

Algorithm 2 (Euler dynamics). Xj+1 = Xj + b(ti, Xi)∆t + σ(ti, Xi)∆Wi.

The above ellipticity condition (ii) will be used in the proof of Proposition 5.2.1.

As in the continuous time framework (5.1), the solution of the MDP (5.5) admits a

Markov representation: under (Ag), (Af) and (AX) (and using for X either the SDE

itself or its Euler scheme), for every i, there exist measurable deterministic functions

yi : Rd → R and zi : Rd → Rq, such that Yi = yi(Xi) and Zi = zi(Xi), almost surely.

In fact, the value functions yi(·) and zi(·) are independent of how we initialize the

forward component.2

For the subsequent stratification algorithm, Xi will be sampled randomly (and

independently of the Brownian motion W) according to different squared-integrable

distributions η. When Xi ∼ η, we will write (X
(i,η)
j)i≤j≤N the Markov chain given in

(AX), using either the SDE dynamics (better when possible) or the Euler one. One

can recover the value functions from the conditional expectations: almost surely,

yi(X
(i,η)
i) = E

g(X
(i,η)
N) +

N−1∑
j=i

fj(X
(i,η)
j , yj+1(X

(i,η)
j+1), zj(X

(i,η)
j))∆t

∣∣ X(i,η)
i

 ,

(5.6)

∆tzi(X
(i,η)
i) = E

(g(X
(i,η)
N) +

N−1∑
j=i+1

fj(X
(i,η)
j , yj+1(X

(i,η)
j+1), zj(X

(i,η)
j))∆t)∆Wi

∣∣ X(i,η)
i

 ;

the proof of this is the same as [60, Lemma 4.1].

Approximating the solution to (5.5) is actually achieved by approximating the

functions yi(·) and zi(·). In this way, we are directly approximating the solution to

the semilinear PDE (5.3). Our approach consists in approximating the restrictions of

the functions yi and zi to subsets of a cubic partition of Rd using finite dimensional

2Actually under our assumptions, the measurability of yi and zi can be easily established by
induction on i. More precisely, we can write yi and zi as a (N − i)-fold integrals in space, using
the C2 transition density of X given in Algorithms 1 or 2. From this, we observe that zi is a C2

function of xi; regarding yi all the contributions in the sum for j > i are also smooth, and only the
j = i term may be non-smooth (because of xi 7→ fi(xi, .) is only assumed measurable). From this,
we easily see that the initialization xi of X at time i can be made arbitrary, provided that this is
independent of W .

161

linear function spaces. The basic assumptions for this local approximation approach

are given below.

(AStrat.) There are K ∈ N∗ disjoint hypercubes (Hk : 1 ≤ k ≤ K), that is

Hk ∩Hl = ∅,
K⋃
k=1

Hk = Rd and Hk =
d∏
l=1

[x−k,l, x
+
k,l)

for some −∞ ≤ x−k,l < x+
k,l ≤ +∞. Additionally, there are linear function

spaces LY,k and LZ,k, valued in R and Rq respectively, which are subspaces of

L2(Hk, νk) w.r.t. a probability measure νk on Hk defined in (Aν) below.

Common examples of hypercubes are:

(i) Hypercubes of equal size: x+
k,l − x−k,l = const > 0 for all k and l, except for

exterior strata that must be infinite.

(ii) Hypercubes of equal probability: ν(Hk) = 1/K for some probability ν to be

defined later in (Aν).

Common examples of local approximations spaces LY,k and LZ,k are:

(i) Piece-wise constant approximation (LP0): LY,k := span{1Hk}, and LZ,k :=

(LY,k)q; dim(LY) = 1 and dim(LZ,k) = q.

(ii) Affine approximations (LP1): LY,k := span{1Hk , x11Hk , . . . , xd1Hk}, and LZ,k :=

(LY,k)q; dim(LY) = d+ 1 and dim(LZ,k) = q(d+ 1).

The key idea in this chapter is to select a distribution ν, the restriction of which to

the hypercubesHk, νk, can be explicitly computed. Then, we can easily simulate i.i.d.

copies of X
(i,νk)
i directly in Hk and use the resulting paths of the Markov chain to

estimate yk(·)|Hk . This sampling method is traditionally known as stratification, and

for this reason we will call the hypercubes in (AStrat.) the strata. For the stratification,

the components X
(i,νk)
i are sampled as i.i.d. conditional logistic random variables,

which is precisely stated in the following assumption.

162

(Aν) Let µ > 0. The distribution of X
(i,νk)
i is given by P ◦ (X

(i,νk)
i)−1(dx) = νk(dx),

where

νk(dx) =
1Hk(x)ν(dx)

ν(Hk)
,

and

ν(dx) = p
(µ)
logis.(x)dx, p

(µ)
logis.(x) :=

d∏
l=1

µe−µxl

(1 + e−µxl)2
, x = (x1, . . . , xd) ∈ Rd.

Remark 5.2.1. An important relation of ν and νk is that one has the L2-norm

identity |·|2ν =
∑K

k=1 ν(Hk) |·|2νk .

In order to generate the random variable X
(i,νk)
i , we make use of the inverse

conditional distribution function of νk and the simulation of uniform random variables,

as shown in the following algorithm:

Algorithm 3. Draw d independent random variables (U1, . . . , Ud) which are uni-

formly distributed on [0, 1], and compute

X
(i,νk)
i :=

(
F−1

ν,[x−k,1,x
+
k,1)

(U1), . . . , F−1

ν,[x−k,d,x
+
k,d)

(Ud)

)
d∼ νk,

where we use the functions Fν(x) :=
∫ x
−∞ ν(dx′) = 1/ (1 + exp(−µx)) and

F−1
ν,[x−,x+)(U) = − 1

µ
log

(
1

Fν(x−) + U(Fν(x+)− Fν(x−))
− 1

)
.

A further reason for the choice of the logistic distribution is that it induces the

following stability property on the L2 norms of the Markov chain (X
(i,ν)
j)i≤j≤N ; this

property will be crucial for the error analysis of the stratified regression scheme in

Section 5.3.2. The proof is postponed to Appendix C.1.

Proposition 5.2.1. Suppose that ν is the logistic distribution defined in (Aν). There

is a constant c(Aν) ∈ [1,+∞) such that, for any function h : Rd 7→ R or Rq in L2(ν),

for any 0 ≤ i ≤ N , and for any i ≤ j ≤ N − 1, we have

1

c(Aν)

E[|h(X
(i,ν)
j)|2] ≤ |h|2ν ≤ c(Aν)E[|h(X

(i,ν)
j)|2].

163

To conclude this section, we recall standard uniform absolute bounds for the

functions yi(·) and zi(·).

Proposition 5.2.2 (a.s. upper bounds, [60, Proposition 3.3]). For N large enough

such that T
N
L2
f ≤ 1

12q
, we have for any x ∈ Rd and any 0 ≤ i ≤ N − 1,

|yi(x)| ≤ Cy := e
T
4

+6q(1∨L2
f)(T∨1)

(
Cg +

T

2
√
q
Cf

)
, |zl,i(x)| ≤ Cz :=

Cy√
∆t

. (5.7)

5.3 Stratified algorithm and convergence results

5.3.1 Algorithm

In this section, we define the SRMDP algorithm mathematically, and then expose

in Section 5.4 how to efficiently perform it using GPUs. Our algorithm involves

solving a sequence of Ordinary linear Least Squares regression (OLS) problems. For a

precise mathematical statement, we recall the seemingly abstract but very convenient

definition from [60]; explicit algorithms for the computation of OLS solutions are

exposed in Section 5.4.1.

Definition 5.3.1 (Ordinary linear least-squares regression). For l, l′ ≥ 1 and for

probability spaces (Ω̃, F̃ , P̃) and (Rl,B(Rl), η), let S be a F̃ ⊗ B(Rl)-measurable Rl′-

valued function such that S(ω, ·) ∈ L2(B(Rl), η) for P̃-a.e. ω ∈ Ω̃, and L a lin-

ear vector subspace of L2(B(Rl), η) spanned by deterministic Rl′-valued functions

{pk(.), k ≥ 1}. The least squares approximation of S in the space L with respect

to η is the (P̃× η-a.e.) unique, F̃ ⊗ B(Rl)-measurable function S? given by

S?(ω, ·) = arg inf
φ∈L

∫
|φ(x)− S(ω, x)|2η(dx).

We say that S? solves OLS(S,L, η).

On the other hand, suppose that ηM = 1
M

∑M
m=1 δX (m) is a discrete probability

measure on (Rl,B(Rl)), where δx is the Dirac measure on x and X (1), . . . ,X (M) : Ω̃→
Rl are i.i.d. random variables. For an F̃ ⊗ B(Rl)-measurable Rl′-valued function S

164

such that
∣∣S(ω,X (m)(ω)

)∣∣ < ∞ for any m and P̃-a.e. ω ∈ Ω̃, the least squares

approximation of S in the space L with respect to ηM is the (P̃-a.e.) unique, F̃ ⊗
B(Rl)–measurable function S? given by

S?(ω, ·) = arg inf
φ∈L

1

M

M∑
m=1

|φ
(
X (m)(ω)

)
− S

(
ω,X (m)(ω)

)
|2.

We say that S? solves OLS(S,L, ηM).

Definition 5.3.2 (Simulations and empirical measures). Recall the Markov chain

(X
(i,νk)
j)i≤j≤N initialized as in (Aν). For any i ∈ {0, . . . , N − 1} and k ∈ {1, . . . , K},

define M ≥ dim(LY,k) ∨ dim(LZ,k) independent copies of (∆Wi, (X
i,νk
j)i≤j≤N) that we

denote by

Ci,k :=
{

(∆W
(i,k,m)
i , (X

(i,k,m)
j)i≤j≤N) : m = 1, . . . ,M

}
.

The random variables Ci,k form a cloud of simulations used for the regression at

time i and in the stratum k. Furthermore, we assume that the clouds of simulations

(Ci,k : 0 ≤ i ≤ N − 1, 1 ≤ k ≤ K) are independently generated. All these random

variables are defined on a probability space (Ω(M),F (M),P(M)). Denote by νi,k,M the

empirical probability measure of the Ci,k-simulations, i.e.

νi,k,M =
1

M

M∑
m=1

δ
(∆W

(i,k,m)
i ,X

(i,k,m)
i ,...,X

(i,k,m)
N)

.

Denoting by (Ω,F ,P) the probability space supporting (∆Wi, X
i,νk : 0 ≤ i ≤ N−1, 1 ≤

k ≤ K), which serves as a generic element for the clouds of simulations Ci,k, the

full probability space used to analyze our algorithm is the product space (Ω̄, F̄ , P̄) =

(Ω,F ,P)⊗ (Ω(M),F (M),P(M)). By a slight abuse of notation, we write P (resp. E) to

mean P̄ (resp. Ē) from now on.

We now come to the definition of the stratified LSMDP algorithm, which computes

random approximations y
(M)
i (.) and z

(M)
i (.)

Algorithm 4 (SRMDP). Recall the linear spaces LY,k and LZ,k from (AStrat.), the

bounds (5.7) and the truncation function TL (see (5.4)).

165

Initialization. Set y
(M)
N (·) := g(·).

Backward iteration for i = N − 1 to i = 0. For any stratum index k ∈ {1, . . . , K},
generate the empirical measure νi,k,M as in Definition 5.3.2, and define

ψ
(M)
Z,i,k(·) solution of OLS(S

(M)
Z,i (w,xi) , LZ,k , νi,k,M)

for S
(M)
Z,i (w,xi) :=

1

∆t

S
(M)
Y,i+1(xi) w,

z
(M)
i (·)|Hk := TCz

(
ψ

(M)
Z,i,k(·)

)
(truncation),

ψ
(M)
Y,i,k(·) solution of OLS(S

(M)
Y,i (xi) , LY,k , νi,k,M)

for S
(M)
Y,i (xi) := g(xN) +

N−1∑
j=i

fj
(
xj, y

(M)
j+1 (xj+1), z

(M)
j (xj)

)
∆t,

y
(M)
i (·)|Hk := TCy

(
ψ

(M)
Y,i,k(·)

)
(truncation),

(5.8)

where w ∈ Rq and xi = (xi, . . . , xN) ∈ (Rd)N−i+1.

An important difference between SRMDP and established Monte Carlo algorithms

[55, 98, 59, 60] is that the number of simulations falling in each hypercube is no

more random but fixed and equal to M . Observe first that this is likely to improve

the numerical stability of the regression algorithm: there is no risk that too few

simulations will land in the hypercube, leading to under-fitting. Later, in Section 5.4,

we shall explain how to implement Algorithm 4 on a GPU device. The key point is

that the calculations at every time point are fully independent between the different

hypercubes, so that we can perform them in parallel across the hypercubes. The

choice of M independent on k is made in order to maintain a computational effort

equal on each of the strata. In this way, the gain in parallelization is likely to be

the largest. However, the subsequent mathematical analysis can be easily adapted to

make the number of simulations vary with k whenever necessary.

An easy but important consequence of Algorithm 4 and of the bounds of Propo-

sition 5.2.2 is the following absolute bound; the proof is analogous to that of [60,

Lemma 4.7].

166

Lemma 5.3.3. With the above notation, we have

sup
0≤i≤N

sup
xi∈(Rd)N−i+1

|S(M)
Y,i (xi)| ≤ C5.3.3 := Cg + T

(
LfCy

[
1 +

√
q

√
∆t

]
+ Cf

)
.

5.3.2 Error analysis

The analysis will be performed according to several L2-norms, either w.r.t. the prob-

ability measure ν, or the empirical norm related to the cloud simulations. They are

defined as follows:

E(Y,M, i) :=
K∑
k=1

ν(Hk)E
(∣∣∣y(M)

i (·)− yi(·)
∣∣∣2
i,k,M

)
,

Ē(Y,M, i) :=
K∑
k=1

ν(Hk)E
(∣∣∣y(M)

i (·)− yi(·)
∣∣∣2
νk

)
= E

(∣∣∣y(M)
i (·)− yi(·)

∣∣∣2
ν

)
,

E(Z,M, i) :=
K∑
k=1

ν(Hk)E
(∣∣∣z(M)

i (·)− zi(·)
∣∣∣2
i,k,M

)
,

Ē(Z,M, i) :=
K∑
k=1

ν(Hk)E
(∣∣∣z(M)

i (·)− zi(·)
∣∣∣2
νk

)
= E

(∣∣∣z(M)
i (·)− zi(·)

∣∣∣2
ν

)
,

where

|h|i,k,M :=

(∫
|h|2(ω,xi)νi,k,M(dω, dxi)

)1/2

.

In fact, the norms E(.,M, i) and Ē(.,M, i) are related through model-free concentration-

of-measures inequalities. This relation is summarized in the proposition below.

Proposition 5.3.4. For each i ∈ {0, . . . , N − 1}, we have

Ē(Y,M, i) ≤ 2E(Y,M, i) +
2028C2

y log(3M)

M
(ν(dim(LY,.)) + 1) ,

Ē(Z,M, i) ≤ 2E(Z,M, i) +
2028qC2

y log(3M)

∆tM
(ν(dim(LZ,.)) + 1) .

167

Proof. It is clearly sufficient to show that

E
(∣∣∣y(M)

i (·)− yi(·)
∣∣∣2
νk

)
≤ 2E

(∣∣∣y(M)
i (·)− yi(·)

∣∣∣2
i,k,M

)
+

2028C2
y log(3M)

M
(dim(LY,.) + 1) ,

E
(∣∣∣z(M)

i (·)− zi(·)
∣∣∣2
νk

)
≤ 2E

(∣∣∣z(M)
i (·)− zi(·)

∣∣∣2
i,k,M

)
+

2028qC2
y log(3M)

∆tM
(dim(LZ,.) + 1) ,

which follows exactly as in the proof of [60, Proposition 4.10].

From the previous proposition, the controls on Ē(Y,M, i) and Ē(Z,M, i) stem

from those on E(Y,M, i) and E(Z,M, i), which are handled in Theorem 5.3.5 below.

In order to study the impact of basis selection, we define the squared quadratic ap-

proximation errors associated to the basis in hypercube Hk by

T Yi,k := inf
φ∈LY,k

|φ− yi|2νk , TZi,k := inf
φ∈LZ,k

|φ− zi|2νk .

These terms are the minimal error that can possibly be achieved by the basis LY,k
(resp. LZ,k) in order to approximate the restriction yi(·)|Hk (resp. zi(·)|Hk) in the L2

norm. Consequently, the global squared quadratic approximation error is given by

T Yi :=
K∑
k=1

ν(Hk)T
Y
i,k = inf

φ s.t. φ|Hk∈LY,k
|φ− yi|2ν , (5.9)

TZi :=
K∑
k=1

ν(Hk)T
Z
i,k = inf

φ s.t. φ|Hk∈LZ,k
|φ− zi|2ν . (5.10)

As we shall see in Theorem 5.3.5 below, the terms T Yi and TZi are closely associated

to the limit of the expected quadratic error of the numerical scheme in the asymptotic

M →∞; for this reason, these terms are usually called bias terms.

Now, we are in the position to state our main result giving non-asymptotic error

estimates.

168

Theorem 5.3.5 (Error for the Stratified LSMDP scheme). Recall the constants Cy

from Proposition 5.2.2, C5.3.3 from Lemma 5.3.3, and c(Aν) from Proposition 5.2.1.

For each i ∈ {0, . . . , N − 1}, define

E(i) := 2
N−1∑
j=i

∆t

(
T Yj + 3C2

5.3.3

ν(dim(LY,.))
M

+ 12168L2
f∆t

(ν(dim(LZ,.)) + 1)qC2
y log(3M)

M

+ 3TZj + 6qC2
5.3.3

ν(dim(LZ,.))
∆tM

)
+ (T − ti)

1014C2
y log(3M)

M

(
(ν(dim(LY,.)) + 1) +

q

∆t

(ν(dim(LZ,.)) + 1)

)
.

For ∆t small enough such that Lf∆t ≤
√

2
15

and ∆tL
2
f ≤ 1

288c2
(Aν)

CC.2.1(1+T)
, we have,

for all 0 ≤ i ≤ N − 1,

E(Y,M, i) ≤ T Yi + 3C2
5.3.3

ν(dim(LY,.))
M

+ 12168L2
f∆t

(ν(dim(LZ,.)) + 1)qC2
y log(3M)

M

+ (1 + 15L2
f∆t)C5.3.5E(i), (5.11)

N−1∑
j=i

∆tE(Z,M, j) ≤ C5.3.5E(i), (5.12)

where C5.3.5 := exp(288c2
(Aν)CC.2.1(1 + T)L2

fT).

5.3.3 Proof of Theorem 5.3.5

We start by obtaining estimates on the local empirical quadratic errors terms

E
(∣∣∣y(M)

i (·)− yi(·)
∣∣∣2
i,k,M

)
, E

(∣∣∣z(M)
i (·)− zi(·)

∣∣∣2
i,k,M

)
,

on each of the hypercubesHk (k = 1, . . . , K). We first reformulate (5.6) with η = νk in

terms of the Definition 5.3.1 of OLS. For each i ∈ {0, . . . , N −1} and k ∈ {1, . . . , K},

169

let νi,k := P ◦ (∆Wi, X
i,νk
i , . . . , X i,νk

N)−1, so that we have

yi(·)|Hk solution of OLS(SY,i(xi) , L
(1)
k , νi,k)

where SY,i(xi) := g(xN) +
N−1∑
j=i

fj
(
xj, yj+1(xj+1), zj(xj)

)
∆t,

zi(·)|Hk solution of OLS(SZ,i(w,xi) , L
(q)
k , νi,k)

where SZ,i(w,xi) :=
1

∆t

SY,i+1(xi) w,

where w ∈ Rq, xi := (xi, . . . , xN) ∈ (Rd)N−i+1 and where L(l′)
k is any dense separable

subspace in the Rl′-valued functions belonging to L2(B(Hk), νk). The above OLS

solutions and those defined in (5.8) will be compared with other intermediate OLS

solutions given by ψY,i,k(·) solution of OLS(SY,i(xi) , LY,k , νi,k,M),

ψZ,i,k(·) solution of OLS(SZ,i(w,xi) , LZ,k , νi,k,M).

In order to handle the dependence on the simulation clouds, we define the following

σ-algebras.

Definition 5.3.6. Define the σ-algebras

F (∗)
i := σ(Ci+1,k, . . . , CN−1,k : 1 ≤ k ≤ K), F (M)

i,k := F (∗)
i ∨ σ(X

(i,k,m)
i : 1 ≤ m ≤M).

For every i ∈ {0, . . . , N − 1} and k ∈ {1, . . . , K}, let E(M)
i,k (·) (resp. PMi,k (·)) with

respect to F (M)
i,k .

Defining additionally the functions

ξ∗Y,i(x) := E
(
S

(M)
Y,i (Xi)− SY,i(Xi) | Xi = x,F (M)

)
,

ξ∗Z,i(x) := E
(
S

(M)
Z,i (∆Wi,Xi)− SZ,i(∆Wi,Xi) | Xi = x,F (M)

)
,

170

now we are in the position to prove that

E
(∣∣∣yi(·)− y(M)

i (·)
∣∣∣2
i,k,M

)
≤ T Yi,k + 6E

(∣∣ξ∗Y,i(·)∣∣2νk)+ 3C2
5.3.3

dim(LY,k)
M

,

+ 15L2
f∆

2
tE
(∣∣∣zi(·)− z(M)

i (·)
∣∣∣2
i,k,M

)
+ 12168L2

f∆t

(dim(LZ,k) + 1)qC2
y log(3M)

M
, (5.13)

E
(∣∣∣zi(·)− z(M)

i (·)
∣∣∣2
i,k,M

)
≤ TZi,k + 2E

(∣∣ξ∗Z,i(·)∣∣2νk)+ 2qC2
5.3.3

dim(LZ,k)
∆tM

. (5.14)

In fact, the proof of (5.13)–(5.14) follows analogously the proof of [60, (4.12)–(4.13)];

in order to follow the steps of that proof, one must note that the term Rπ of that paper

is equal to 1 here, Cπ is equal to ∆t, and θL = 1. Moreover, one must exchange all

norms, OLS problems, σ-algebras, and empirical functions from the reference to the

localized versions defined in the preceding paragraphs. Indeed, the proof method of

[60, (4.12)–(4.13)] is model free in the sense that it does not care about the distribution

of the Markov chain at time ti.

We now aim at aggregating the previous estimates across the strata and propa-

gating them along time. For this, let

E1(i) :=
N−1∑
j=i

∆t

(
T Yj + 3C2

5.3.3

ν(dim(LY,.))
M

+ 12168L2
f∆t

(ν(dim(LZ,.)) + 1)qC2
y log(3M)

M

+ 3TZj + 6qC2
5.3.3

ν(dim(LZ,.))
∆tM

)
Γj, (5.15)

where Γi := (1 + γ∆t)
i with γ to be determined below. Next, defining

γ := 288c2
(Aν)CC.2.1(1 + T)L2

f . (5.16)

and recalling that ∆tL
2
f ≤ 1

288c2
(Aν)

CC.2.1(1+T)
, then γ and ∆t satisfy

max

(
1

γ
× 12c2

(Aν)CC.2.1(1 + T)L2
f ,∆t × 12c2

(Aν)CC.2.1(1 + T)L2
f

)
≤ 1

6
× 1

4
.

(5.17)

171

Additionally, Γi ≤ exp(γT) := C5.3.5 for every 0 ≤ i ≤ N . Now, multiply (5.13) and

(5.14) by ν(Hk)∆tΓi and sum them up over i and k to ascertain that

N−1∑
j=i

∆tE(Y,M, j)Γj +
N−1∑
j=i

∆tE(Z,M, j)Γj

≤
N−1∑
j=i

∆t

(
T Yj + 3C2

5.3.3

ν(dim(LY,k))
M

+ 12168L2
f∆t

(ν(dim(LZ,k)) + 1)qC2
y log(3M)

M

)
Γj

+

N−1∑
j=i

∆t

{(
TZj + 2qC2

5.3.3

ν(dim(LZ,k))
∆tM

+ 2E
(∣∣ξ∗Z,j(·)∣∣2ν)) (1 + 15L2

f∆2
t) + 6E

(∣∣ξ∗Y,j(·)∣∣2ν)}Γj

≤ E1(i) + 6
N−1∑
j=i

∆t

(
E
(∣∣ξ∗Y,j(·)∣∣2ν)+ E

(∣∣ξ∗Z,j(·)∣∣2ν))Γj , (5.18)

where we have used (1 + 15L2
f∆

2
t) ≤ 3 (since Lf∆t ≤

√
2
15

), and the term E1 from

(5.15) above. Next, from Proposition 5.2.1, we have

E
(∣∣ξ∗Y,j(·)∣∣2ν)+ E

(∣∣ξ∗Z,j(·)∣∣2ν) ≤ c(Aν)

(
E
(
|ξ∗Y,j(X

0,ν
j)|2

)
+ E

(
|ξ∗Z,j(X

0,ν
j)|2

))
.

Furthermore, note that (ξ∗Y,j(X
0,ν
j), ξ∗Z,j(X

0,ν
j) : 0 ≤ j ≤ N−1) solves a discrete BSDE

(in the sense of Appendix C.2) with terminal condition 0 and driver

fξ∗,j(y, z) := fj(X
0,ν
j , y

(M)
j+1 (X0,ν

j+1), z
(M)
j (X0,ν

j))− fj(X0,ν
j , yj+1(X0,ν

j+1), zj(X
0,ν
j)).

This allows the application of Proposition C.2.1, with the first BSDE (ξ∗Y,j(X
0,ν
j), ξ∗Z,j(X

0,ν
j) :

0 ≤ j ≤ N − 1), and the second one equal to 0: since Lf2 = 0, any choice of γ > 0 is

valid and we take γ as in (5.16). We obtain

N−1∑
j=i

∆t

(
E
(∣∣ξ∗Y,j(·)∣∣2ν)+ E

(∣∣ξ∗Z,j(·)∣∣2ν))Γj

≤ 6c(Aν)CC.2.1(1 + T)

(
1

γ
+ ∆t

)
L2
f

N−1∑
j=i

∆t

×
[
E
(
|y(M)
j+1 (X0,ν

j+1)− yj+1(X0,ν
j+1)|2

)
+ E

(
|z(M)
j (X0,ν

j)− zj(X0,ν
j)|2

)]
Γj.

172

Now, Proposition 5.2.1 yields to

E
(
|y(M)
j+1 (X0,ν

j+1)− yj+1(X0,ν
j+1)|2

)
+ E

(
|z(M)
j (X0,ν

j)− zj(X0,ν
j)|2

)
≤ c(Aν)[Ē(Y,M, j + 1) + Ē(Z,M, j)]

≤ 2c(Aν)[E(Y,M, j + 1) + E(Z,M, j)] + c(Aν)

2028C2
y log(3M)

M
(ν(dim(LY,.)) + 1)

+ c(Aν)

2028qC2
y log(3M)

∆tM
(ν(dim(LZ,.)) + 1) ,

where the last inequality follows from the concentration-measure inequalities in Propo-

sition 5.3.4. In order to summarize this, we define

E2(i) :=
1014C2

y log(3M)

M

(
N−1∑
j=i

∆tΓj

)(
(ν(dim(LY,.)) + 1) +

q

∆t

(ν(dim(LZ,.)) + 1)

)

and make use of (5.17), and that Γj ≤ Γj+1 in order to ascertain that we have

N−1∑
j=i

∆t

(
E
(∣∣ξ∗Y,j(·)∣∣2ν)+ E

(∣∣ξ∗Z,j(·)∣∣2ν))Γj

≤ 12c2
(Aν)CC.2.1(1 + T)

(
1

γ
+ ∆t

)
L2
f

[
N−1∑
j=i

∆t (E(Y,M, j) + E(Z,M, j)) Γj + E2(i)

]

≤ 1

6
× 1

2

[
N−1∑
j=i

∆t (E(Y,M, j) + E(Z,M, j)) Γj + E2(i)

]
.

By plugging this into (5.18) readily yields to

N−1∑
j=i

∆tE(Y,M, j)Γj +
N−1∑
j=i

∆tE(Z,M, j)Γj

≤ E1(i) +
1

2

[
N−1∑
j=i

∆t (E(Y,M, j) + E(Z,M, j)) Γj + E2(i)

]

and therefore

N−1∑
j=i

∆tE(Y,M, j)Γj +
N−1∑
j=i

∆tE(Z,M, j)Γj ≤ 2E1(i) + E2(i). (5.19)

173

This completes the proof of the estimate (5.12) on z as stated in Theorem 5.3.5, using

1 ≤ Γi ≤ C5.3.5 and 2E1(i) + E2(i) ≤ C5.3.5E(i). It remains to derive (5.11). Starting

from (5.13), multiplying by ν(Hk) and summing over k yields to

E(Y,M, i) ≤T Yi + 6E
(∣∣ξ∗Y,i(·)∣∣2ν)+ 3C2

5.3.3

ν(dim(LY,.))
M

+ 15L2
f∆t(2E1(i) + E2(i))

+ 12168L2
f∆t

(ν(dim(LZ,.)) + 1)qC2
y log(3M)

M
(5.20)

where we use the inequality (5.19) to control ∆tE(Z,M, i). Using the same arguments

as before, we upper bound E
(∣∣ξ∗Y,i(·)∣∣2ν) by

6c2
(Aν)CC.2.1

(
1

γ
+ ∆t

)
L2
f

N−1∑
j=i

∆t

(
Ē(Y,M, j) + Ē(Z,M, j)

)
Γj.

By additionally bounding Ē(Y,M, j) and Ē(Z,M, j) using the concentration-measure

inequalities of Proposition 5.3.4 and plugging this in (5.20), we finally obtain

E(Y,M, i) ≤ T Y1,i + 3C2
5.3.3

ν(dim(LY,.))
M

+ 15L2
f∆t (2E1(i) + E2(i))

+ 12168L2
f∆t

(ν(dim(LZ,.)) + 1)qC2
y log(3M)

M

+ 72c2
(Aν)CC.2.1

(
1

γ
+ ∆t

)
L2
f

[
N−1∑
j=i

∆t (E(Y,M, j) + E(Z,M, j)) Γj + E2(i)

]
.

From (5.17) and (5.19), the last term in previous inequality is bounded by(
1

4(1 + T)
+

1

4(1 + T)

)
(2E1(i) + E2(i) + E2(i)) ≤ E1(i) + E2(i) ≤ 2E1(i) + E2(i).

This completes the proof of (5.13), using again 2E1(i) + E2(i) ≤ C5.3.5E(i).

5.4 GPU implementation

In this section, we consider the computation of y
(M)
i (·) for a given stratum Hk and

time point i. The calculation of z
(M)
i (·) is rather similar, only requiring component-

wise calculations to be taken into account, so that we do not provide details. The

174

theoretical description of the calculation was given in Section 5.3.1. In this section, we

first describe the required computations to implement the approximations with LP0

and LP1 local polynomials in Section 5.4.1, and then present their implementation

on the GPU in Section 5.4.2. 3

5.4.1 Explicit solutions to OLS in Algorithm 4

LP0 This piecewise solution is given by the simple formula [66, Ch. 4]

y
(M)
i (·)|Hk = TCy

(∑M
m=1 S

(M)
Y,i (X

(i,k,m)
i)

M

)
. (5.21)

Observe that there will be a memory consumption of O(1) per hypercube to store

the simulations needed for the computation of S
(M)
Y,i (X

(i,k,m)
i). Once added in the sum

(5.21), their allocation can be freed.

LP1 Let A be the RM ⊗ Rd+1 matrix, the components of which are given by

A[m, j] = 11{0}(j) +X
(i,k,m)
i,j 1{0}c(j), where X

(i,k,m)
i,j is the j-th component of X

(i,k,m)
i ,

and let S be the RM vector given by S[m] = S
(M)
Y,i (X

(i,k,m)
i). In order to compute

y
(M)
i (·)|Hk , we first perform a QR-factorization A = QR, where Q is an RM ⊗ RM

orthogonal matrix, and R is an RM ⊗ Rd+1 upper triangular matrix. The computa-

tional cost to compute this factorization is (d + 1)2 (M − (d+ 1)/3) flops using the

Householder reflections method [61, Alg. 5.3.2]. Using the form of LP1 and the

density of νk, we can prove that the rank of A is d + 1 with probability 1, i.e. R is

invertible a.s. (the OLS problem is non-degenerate).

Then, we obtain the approximation y
(M)
i (·)|Hk by computing the coefficients α =

(α0, . . . , αd) ∈ Rd+1 using the QR factorization and backward-substitution method as

3 Theoretically, we are not restricted from going to higher order local polynomials. We restrict
to LP1 for implementation in GPU due to memory limitations. In our forthcoming numerical
examples, the GPU’s global memory is limited to 6GB. Higher order polynomials would require not
only more memory per hypercubes but also more memory for storing the regression coefficients,
therefore we would be able to estimate over fewer hypercubes in parallel. Note that this is not an
issue for parallel computing on CPUs.

175

follows:

Rα = Q>S, y
(M)
i (x(k)) = TCy

(
α0 +

d∑
j=1

αj × xj(k)

)
, (5.22)

for any vector (x(k) = (x1(k), . . . , xd(k)) in Hk. By using the Householder reflection

algorithm for computing the QR-factorization, there will be memory consumption of

O (M × (d+ 1)) for the storage of the matrix A on each hypercube. This memory can

be deallocated once the computation (5.22) is completed. We remark that the memory

consumption is considerably lower than other alternative QR-factorization methods,

as for example the Givens rotations method [61, Alg. 5.2.2], which requires a memory

consumption O(M2) to store the matrix Q. This reduced memory consumption is

instrumental in the GPU approach, as we explain in forthcoming Section 5.5.2.

5.4.2 Pseudo-algorithms for GPU

Algorithm 4 will be implemented on an NVIDIA GPU device. The device architecture

is built around a scalable array of multithreaded Streaming Multiprocessors (SMs);

each multiprocessor is designed to execute hundreds of threads concurrently. To

manage such a large amount of threads, it employs a unique architecture called SIMT

(Single-Instruction, Multiple-Thread). The code execution unit is called a kernel and

is executed simultaneously on all SMs by independent blocks of threads. Each thread

is assigned to a single processor and executes within its own execution environment.

Thus, all threads run the same instruction at a time, although over different data. In

this section we briefly describe pseudo-codes for the Algorithm 4.

The algorithm has been programmed using the Compute Unified Device Archi-

tecture (CUDA) toolkit, specially designed for NVIDIA GPUs, see [109]. The code

was built from an optimized C code. The below pseudo-algorithms reflect this pro-

gramming feature. For the generation of the random numbers in parallel we took

advantage of the NVIDIA CURAND library, see [110].

The time loop corresponding to the backward iteration of Algorithm 4 is shown in

Listing 5.1; the kernel corresponds to the use of either the LP0 or the LP1 basis. In

176

Listing 5.2, a sketch for the LP0 kernel is given. Notice that we are paralellizing the

loop for any stratum index k ∈ {1, . . . , K} in the Algorithm 4; the terms S
(M)
Y,i (xi)

and S
(M)
Z,i (w,xi) are computed in the compute responses i function, and the coeffi-

cients for ψ
(M)
Y,i,k(·) and ψ

(M)
Z,i,k(·) are computed in compute psi Y and compute psi Z,

respectively, according to (5.21). Having in view an optimal performance, matrices

storing the simulations, responses and regression coefficients are fully interleaved, thus

allowing coalesced memory accesses, see [109]. Note that all device memory accesses

are coalesced except those accesses to the regression coefficients in the resimulation

stage during the computation of the responses, because one is not certain in which

hypercube up each path will land. In Listing 5.3, the sketch for the LP1 kernel is

given. Additionally to the tasks of the kernel in Listing 5.2, each thread builds the

matrix A and applies a QR factorization, as detailed in Section 5.4.1. Note that in

addition to the matrices just explained in LP0, the matrix A is fully interleaved thus

allowing fully coalesced accesses. The global memory is allocated at the beginning of

the program and is freed at the end, thus allowing kernels to reuse already-allocated

memory wherever possible. In addition to global memory, kernels are also using local

memory, for example for storing the resimulated forward paths used for computing

the responses. The coefficients for ψ
(M)
Y,i,k(·) and ψ

(M)
Z,i,k(·) are computed according to

(5.22).

int i

curandState ∗ devStates

I n i t i a l i z e devStates

I n i t i a l i z e n blocks , n t h r e a d s p e r b l o c k

for (i=N−1; i>=0; i−−)

ke rne l bsde<<<n blocks , n th r eads pe r b l o ck>>>(i , devStates , . . .)

Listing 5.1: Backward iteration for i = N − 1 to i = 0.

g l o b a l void kerne l bsde LP0 (int i , curandState ∗ devStates , . . .) {
const unsigned int g l o b a l t i d = blockDim . x ∗ blockIdx . x + threadIdx . x

curandState l o c a l S t a t e = devStates [g l o b a l t i d]

unsigned long long int bin

for (bin=g l o b a l t i d ; bin<K; bin+=n b locks ∗ n t h r e a d s p e r b l o c k) {
s imu la t e s x (& l o c a l S t a t e , g l o b a l t i d , bin , . . .)

177

compute re sponse s i (& l o c a l S t a t e , g l o b a l t i d , i , . . .)

compute psi Z (g l o b a l t i d , bin , i , . . .)

compute psi Y (g l o b a l t i d , bin , i , . . .)

}
devStates [g l o b a l t i d] = l o c a l S t a t e

}

Listing 5.2: Kernel for the approximation with LP0.

g l o b a l void kerne l bsde LP1 (int i , curandState ∗devStates , . . .) {
const unsigned int g l o b a l t i d = blockDim . x ∗ blockIdx . x + threadIdx . x

curandState l o c a l S t a t e = devStates [g l o b a l t i d]

unsigned long long int bin

for (bin=g l o b a l t i d ; bin<K; bin+=n b locks ∗ n t h r e a d s p e r b l o c k) {
s imu la t e s x (& l o c a l S t a t e , g l o b a l t i d , bin , . . .)

compute re sponse s i (& l o c a l S t a t e , g l o b a l t i d , i , . . .)

bui ld d A (g l o b a l t i d , d A , . . .)

qr (g l o b a l t i d , d A , . . .)

compute psi Z (g l o b a l t i d , bin , i , d A , . . .)

compute psi Y (g l o b a l t i d , bin , i , d A , . . .)

}
devStates [g l o b a l t i d] = l o c a l S t a t e

}

Listing 5.3: Kernel for the approximation with LP1.

5.4.3 Theoretical complexity analysis

In this section, we assume that the functions yi(·) and zi(·) are smooth, namely

globally Lipschitz (resp. C1 and the first derivatives are globally Lipschitz) in the

LP0 (resp. LP1) case. The strata will be composed of uniform hypercubes of side

length δ > 0 in the domain [−L,L]d, where L = log(N)/µ and µ is the parameter

178

of the logistic distribution. This choice ensures ν
(
Rd\[−L,L]d

)
≤ 2d exp(−µL) =

O(N−1). Our aim is to calibrate the numerical parameters (number of simulations

and number of strata) so that the error given in Theorem 5.3.5 is O(N−1), where N

is the number of time-steps. This tolerance error is the one we usually obtain after

time discretization with N time points [145, 57, 133]. In the following, we focus on

polynomial dependency w.r.t. N , keeping only the highest degree, ignoring constants

and log(N) terms.

Squared bias errors T Y1,i and TZ1,i in (5.9)-(5.10). First, we remark that the ap-

proximation error of the numerical scheme, namely the error due to basis selection,

depends principally on the size δ of strata. In the case of LP0, the squared bias er-

ror is proportional to the squared hypercube diameter plus the tail contribution, i.e.

O
(
δ2 + ν

(
Rd\[−L,L]d

))
; to calibrate this bias to O(N−1), we require δ = O(N−1/2).

In contrast, the squared bias in [−L,L]d using LP1 is proportional to the fourth

power of the hypercube diameter, whence δ = O(N−1/4). As a result, ignoring the

log terms the number of required hypercubes is

LP0 : K = O(Nd/2), LP1 : K = O(Nd/4),

in both cases.

Statistical and interdependence errors These error terms depend on the num-

ber of local polynomials, as well as on the number of simulations. Indeed, denoting

K ′ = dim(LY or Z,.) the number of local polynomials and M the number of simulations

in the hypercube, then both errors are dominated by O (NK ′ log(M)/M), where the

factor N comes from the Z part of the solution (see E(i) in Theorem 5.3.5). For LP0

(resp. LP1), K ′ = 1 or q (resp. K ′ = d+ 1 or q(d+ 1)). This implies to select

LP0 : M = O(N2), LP1 : M = O(N2),

again omitting the log terms.

Computational cost The computational cost (in flops) of the simulations per

hypercube is equal to O(M × N), because we simulate M paths (of length N) of

179

the process X. The cost of the regression per hypercube is O (M ×N), see Section

5.4.1, and thus equivalent to the simulation cost. Putting in the values of M from

the last paragraph, the overall computational cost Ccost (summed over all hypercubes

and time steps) is

LP0 : CSEQcost = O(N4+d/2), LP1 : CSEQcost = O(N4+d/4).

This quantity is related to the computational time for a sequential system (SEQ

implementation) where there is no parallel computing. For the GPU implementation,

described in Section 5.4.2, there is an additional computational time improvement

since the computations on the hypercubes will be threaded across the cores of the

card. Thus, the computational cost on GPU is

LP0 : CGPUcost = O(N4+d/2)/CLoad factor, LP1 : CGPUcost = O(N4+d/4)/CLoad factor.

where the load factor CLoad factor is ideally the number of threads on the device.

Finally, we quantify the improvement in memory consumption offered by the SR-

MDP algorithm compared to the LSMDP algorithm of [60]. This is a very important

improvement, because, as explained in the introduction, the memory is the key con-

straint in solving problems in high dimension. We only compare sequential versions

of the algorithms, meaning that the computational costs will be the same. The main

difference between the two schemes is then in the number of simulations that must

be stored in the machine at any given time. We summarize this in Table 5.1 below.

Algorithm Number of Computational
simulations cost

LP0 LP1 LP0 LP1

SRMDP N2 N2 N4+d/2 N4+d/4

LSMDP N2+d/2 N2+d/4 N4+d/2 N4+d/4

Table 5.1: Comparison of numerical parameters with or without stratified sampling,
as a function of N .

In SRMDP, the memory consumption is mainly related to storing coefficients

representing the solutions on hypercubes, that is O(N × dim(LY or Z,.) × K); if one

180

is using the LP1 basis, one must also take into account the memory consumption

per strata M × (d + 1) = O(N2) for the QR factorization, explained in Section

5.4.1. In contrast, the memory consumption for LSMDP is mainly O(K×N2), which

represents the number of simulated paths of the Markov chains that must be stored

in the machine at any given time. We summarize the memory consumption of the

two algorithms in Table 5.2.

Algorithm LP0 LP1

SRMDP N1+d/2 N1+d/4 ∨N2

LSMDP N2+d/2 N2+d/4

Table 5.2: Comparison of memory requirement as a function of N .

Observe that SRMDP requires N times less memory than LSMDP with the LP0

basis. This implicitly implies a gain of 2 on the dimension d that can be handled. On

the other hand, if the LP1 basis is used, the SRMDP requires O(Nd/4) less memory

for d ≤ 4 than LSMDP, and N times less memory for d ≥ 4. Therefore, there is an

implicit gain of 4 in the dimension that can be handled by the algorithm.

5.5 Numerical experiments

5.5.1 Model, stratification, and performance benchmark

We use the Brownian motion model X = W (d = q). Moreover, the numerical ex-

periments will consider the performance according to the dimension d. We introduce

the function ω(t, x) = exp(t +
∑q

k=1 xk). We perform numerical experiments on the

BSDE with data g(x) = ω(T, x)(1 + ω(T, x))−1 and

f(t, x, y, z) =

(
q∑

k=1

zk

)(
y − 2 + q

2q

)
,

where z = (z1, . . . , zq). The BSDE has explicit solutions in this framework, given by

yi(x) = ω(ti, x)(1 + ω(ti, x))−1, zk,i(x) = ω(ti, x)(1 + ω(ti, x))−2,

181

where zk,i(x) is the k-th component of the q-dimensional cylindrical function zi(x) ∈
Rq.

The logistic distribution for Algorithm 4 is parameterized by µ = 1 and we consider

T = 1. For the least-squares Monte Carlo, we stratify the domain [−6.5, 6.5]q with

uniform hypercubes. To assess the performance of the algorithm, we compute the

average mean squared error (MSE) over 103 independent runs of the algorithm for

three error indicators:

MSEY,max := ln

{
10−3 max

0≤i≤N−1

103∑
m=1

|yi(Ri,m)− y(M)
i (Ri,m)|2

}
,

MSEY,av := ln

{
10−3N−1

103∑
m=1

N−1∑
i=0

|yi(Ri,m)− y(M)
i (Ri,m)|2

}
,

MSEZ,av := ln

{
10−3N−1

103∑
m=1

N−1∑
i=0

|zi(Ri,m)− z(M)
i (Ri,m)|2

}
,

where the simulations {Ri,m; i = 0, . . . , N − 1, m = 1, . . . , 103} are independent and

identically ν-distributed, and independently drawn from the simulations used for the

LSMC scheme. We parameterize the hypercubes according to the instructions given

in the theoretical complexity analysis, see Section 5.4.3. In particular, we consider

different values of N and always set K = O(Nd/2) in LP0 (resp. O(Nd/4) in LP1)

and M = O(N2). Note, however, that we do not specify the value of δ, but rather

the number of hypercubes per dimension K1/q, which we denote #C in what follows;

this being equivalent to setting δ, but is more convenient to program. As we shall

illustrate, the error converges as predicted as N increases, although the exact error

values will depend on the constants that we choose in the parameterization of K and

M .

5.5.2 CPU and GPU performance

In this section, several experiments based on Section 5.5.1 are presented to assess

the performance of CUDA implementation of Algorithm 4; the pseudo-algorithms are

182

given in Section 5.4.2. We shall compare its performance with a version of SRMDP

implemented to run on multicore CPUs. For the design of this comparison we have

followed some ideas in [97]. Moreover, in order to test the theoretical results of Section

5.4.3, we compare the performance of the two algorithms according to the choice of the

basis functions, the impact of this choice on the convergence of the approximation of

the BSDE, and the impact of this choice on the computational performance in terms

of computational time and memory consumption.

There are two types of basis functions we investigate: LP0 in Section 5.5.2, and

LP1 in Section 5.5.2. As explained in Section 5.4.3, the LP0 basis is highly suited

to GPU implementation because it has a very low memory requirement per thread

of computation. On the other hand, it has a very high global memory requirement

for storing coefficients. This represents a problem in high dimensions because one

needs many coefficients to obtain a good accuracy. On the other hand, the LP1

basis involves a higher cost per thread, although requires a far lower global memory

for storing coefficients; this implies that the impact of the GPU implementation is

lower in moderate dimensional problems, but that one can solve problems in higher

dimension. Moreover, the full performance impact of the GPU implementation on

the LP1 basis is in high dimension, where the number of strata is very high and

therefore the GPU is better saturated with computations. We illustrate numerically

all of these effects in the following sections.

The numerical experiments have been performed with the following hardware and

software configurations: a GPU GeForce GTX TITAN Black with 6 GBytes of global

memory (see [111] for details in the architecture), two recent multicore Intel Xeon

CPUs E5-2620 v2 clocked at 2.10 GHz (6 cores per socket) with 62 GBytes of RAM,

CentOS Linux, NVIDIA CUDA SDK 7.5 and INTEL C compiler 15.0.6. The CPU

programs were optimized and parallelized using OpenMP [149]. Since the CUDA code

has been derived from an optimized C code, both codes perform the same algorithms,

and their performance can be fairly compared according to computational times; the

multicore CPUs time (CPU) and the GPU time (GPU) will all be measured in seconds

183

in the forthcoming tables. CPU times correspond to executions using 24 threads so as

to take advantage of Intel Hyperthreading. The speedups of the CPU parallel version

with respect to pure sequential CPU code are around 16. The results are obtained in

single precision, both in CPU and GPU.

Examples with the approximation with LP0 local polynomials

All examples will be run using 64 thread blocks each with 256 threads. In Table 5.3 we

show results for d = 4, with #C=
⌊
4
√
N
⌋

and M = N2. Except for the cases ∆t = 0.2

and ∆t = 0.1 where there are not enough strata to fully take advantage of the GPU,

the GPU implementation provides a significant reduction in the computational time:

the GPU speedup reaches the value 18.90. Moreover, the speedup improves as we

increase the #C.

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 8 4096 25 −3.712973 −3.774071 −0.964842 0.23 2.00
0.1 12 20736 100 −4.066741 −4.303750 −1.607104 5.23 2.20

0.05 17 83521 400 −4.337988 −4.698645 −2.302092 171.92 12.39
0.02 28 614656 2500 −4.472564 −4.988069 −3.225411 58066.33 3070.92

Table 5.3: LP0 local polynomials, d = 4, #C=
⌊
4
√
N
⌋
, M = N2.

Tables 5.4 and 5.5 show results for d = 6 with #C=
⌊√

N
⌋

and #C=
⌊
2
√
N
⌋
, re-

spectively. Convergence is clearly improved by doubling #C. In Table 5.5 the case of

∆t = 0.02 is not shown due to insufficient GPU global memory.4 In Table 5.4, the

GPU speedup reaches 15.93, whereas in Table 5.5 it reaches 14.85. As in Table 5.3,

the increase in the speedup is explained due to the increased number of hypercubes,

thus demonstrating how important it is to have many hypercubes in the GPU im-

plementation. However, the finer basis requires 26 times as much memory for storing

coefficients.

4For ∆t = 0.02, the array for storing the regression coefficients will be of size N ×K × (D + 1),
i.e. 50× 146 × 7× 4 bytes using single precision, which equals 9.81 GBytes, much greater than the
available 6 GBytes of device memory.

184

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 2 64 25 −2.392320 −2.451332 −0.431059 0.21 1.99
0.1 3 729 100 −2.440274 −2.500775 −1.096603 0.47 2.05

0.05 4 4096 400 −2.829757 −2.905192 −1.687142 17.21 3.15
0.02 7 117649 2500 −3.235130 −3.539011 −2.557686 13930.70 874.25

Table 5.4: LP0 local polynomials, d = 6, #C=
⌊√

N
⌋
, M = N2.

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 4 4096 25 −2.707882 −2.784022 −0.477751 0.29 1.94
0.1 6 46656 100 −3.195937 −3.294488 −1.133834 13.72 2.44

0.05 8 262144 400 −3.505867 −3.664396 −1.795697 775.33 52.20

Table 5.5: LP0 local polynomials, d = 6, #C=
⌊
2
√
N
⌋
, M = N2.

Table 5.6 shows that the algorithm can work for d = 11 in several seconds with a

reasonable accuracy in a GPU. The corresponding speedup with respect to CPU ver-

sion is around 13.35. For the execution with ∆t = 0.1 we are going to report the GFlop

rate, and also the memory transfer to/from the global memory. Inside the kernel,

the functions computing the regression coefficients (denoted by compute psi Z and

compute psi Y in the Listing 5.2) are memory bounded, reaching 236.795 GBytes/s

when reading/writing from/to global memory. The rest of the kernel is more compu-

tationally limited. In the overall kernel, the memory transfer from/to global memory

is around 160 GBytes/s and the Gflop rate is around 238 GFlop/s, although around

the 30% of the instructions executed by the kernel are integer instructions to assign

the simulations to the strata in the resimulation stage during the computation of the

responses.

Examples with the approximation with LP1 local polynomials

In this section we show the results corresponding to the approximation with the LP1

basis. Compared to LP0, this basis consumes much less global memory to store

185

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 2 2048 25 −2.152253 −2.202357 0.211590 0.27 1.99
0.1 3 177147 100 −2.144843 −2.267742 −0.469759 67.96 6.29

0.05 4 4194304 400 −2.484169 −2.633602 −1.070096 28154.07 2108.64

Table 5.6: LP0 local polynomials, d = 11, #C=
⌊√

N
⌋
, M = N2.

coefficients, because it requires far fewer hypercubes, see Section 5.4.3. On the other

hand, the approximation with LP1 basis demands higher thread memory due to the

storage of a large matrix for each hypercube, as explained in Section 5.4.3. This

may have an impact on the computational time on the GPU: recalling from Section

5.4.2 the GPU handles multiple hypercubes at any given time, each one requiring

the storage of a matrix A, the global memory capacity of the GPU device restricts

the number of threads we can handle at any given time. This issue is much less

significant with the LP0 basis. In order to optimize the performance of the LP1

basis, we must minimize the thread memory storage. We implement the Householder

reflection method for QR-factorization, [61, Alg. 5.3.2]. For this, we must store a

matrix containing M × (d+ 1) = O(N2) floating point values per thread on the GPU

memory. Thanks to the reduced global memory storage for coefficients, we are able

to work in a rather high dimension d = 19.

Remark 5.5.1. There are many methods to implement QR-factorization. However,

the choice of method has a substantial impact on the performance of the GPU im-

plementation. For example, the Givens rotation method [61, Alg. 5.2.2] requires the

storage of an M ×M matrix, which corresponds to O(N4) floating points. This is

rather more than the required O(N2) for the Householder reflection method given in

Section 5.4.1. Therefore, the Givens rotation method would be far slower when im-

plemented on a GPU than the Householder reflection method, because it may not be

possible to use an optimal thread configuration.

Remark 5.5.2. In the forthcoming examples, we use more simulations per stratum

186

for the LP1 basis compared to the equivalent results for LP0. This is to account for

the additional statistical and interdependence errors, as explained in Section 5.4.3.

In Table 5.7, we present results for d = 4. These results are to be compared

with Table 5.3, where in particular the MSEZ,av results are closer line to line. The

computational time is substantially improved for the CPU and GPU calculations.

Also note that, unlike for the Z component, the accuracy for the Y component is

substantially better for the LP1 basis than for the LP0 one. The difference in the

accuracy results between the Y and Z components is likely explained by the fact that

the function x 7→ zi(x) is rather flat, so it is much better approximated by LP0 basis

functions than x 7→ yi(x). The GPU speedup reaches 8.05.

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 3 81 125 −4.021483 −4.131725 −0.900286 0.11 0.23
0.1 5 625 500 −4.290881 −4.695769 −1.551480 1.26 0.79

0.05 7 2401 2000 −4.541253 −5.022405 −2.281332 43.56 7.83
0.02 10 10000 12500 −4.574551 −5.143310 −3.228237 6827.98 847.83

Table 5.7: LP1 local polynomials, d = 4, #C=
⌊
3
√
d
√
N − 5

⌋
, M = (d+ 1)N2.

Next, results for d = 6 are shown. Thus, we compare Table 5.8 below with Table

5.5. For a given precision on the Z component of the solution, we observe substantial

improvements in the CPU codes, but no such gains on the GPU version. In contrast,

the accuracy of the Y approximation is, as in the d = 4 case, substantially better.

Moreover, whereas we were not able to do computations for ∆t = 0.02 with the LP0

basis due to insufficient GPU memory, we are now able to make these calculations

with the LP1 basis. The GPU speedup reaches 6.13, which is lower than the LP0

basis speedup factor, as expected.

In the high dimensional d = 11 setting shown in Table 5.9, we compare with Table

5.6. We observe a speedup of order 5.63 compared to the CPU implementation.

In the remainder of this section, we present results in dimension d = 12 to d = 19

(in Tables 5.10, 5.11, 5.12 and 5.13, respectively) for which the capacity of the GPU is

187

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 2 64 175 −3.504153 −3.668801 −0.461077 0.20 0.32
0.1 3 729 700 −3.804091 −3.911488 −1.133263 1.84 1.66

0.05 4 4096 2800 −4.075928 −4.231639 −1.791519 125.81 20.50
0.02 6 46656 17500 −3.809734 −4.529827 −2.689432 82529.21 15283.18

Table 5.8: LP1 local polynomials, d = 6, #C=
⌊
1.5
√
d
√
N − 3

⌋
, M = (d+ 1)N2.

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 2 2048 2000 −3.271648 −3.368051 −1.455388 10.33 3.41
0.2 3 177147 4000 −3.269004 −3.403994 −1.975300 1635.95 290.56

Table 5.9: LP1 local polynomials, d = 11.

maximally used to provide the highest possible accuracy. The GPU speedup reaches

up to 5.67 compared to the CPU implementation. Note that for the example with

d = 19 in Table 5.13 the LSMDP algorithm would require 118 GBytes of memory to

store all the simulations at a given time, whereas the here proposed SRMDP algorithm

can be executed with less than 6 GBytes and with much less computational time owing

to it does not need to associate the simulations to hypercubes. Finally, for the example

with ∆t = 0.2, #C= 2 and M = 4000 of Table 5.11 we next report the GFlop rate

and the memory transfer from/to global memory. In the overall kernel, the memory

transfer from/to global memory is around 132 GBytes/s and the GFlop rate is around

136 GFlop/s. In order to understand why the device memory bandwidth used by LP1

kernel is lower than the one used by LP0 kernel, observe that at any given time, for

each strata we are accessing (d + 1) times more elements in the LP1 framework in

the re-simulation stage of the responses computation. Moreover, these accesses are

potentially non-coalesced, because the forward process is randomly re-simulated and

we do not know a priori in which strata is going to fall.

188

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 2 4096 2000 −3.111153 −3.232051 −1.297737 22.29 4.95
0.2 3 531441 4000 −3.214096 −3.272644 −1.821935 5554.49 1196.28

Table 5.10: LP1 local polynomials, d = 12.

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 2 8192 3000 −2.995413 −3.153302 −1.460911 69.45 12.46
0.2 2 8192 4000 −3.022855 −3.158471 −1.649632 94.07 16.58

Table 5.11: LP1 local polynomials, d = 13.

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 2 16384 2000 −3.011673 −3.092870 −1.026128 102.11 19.55
0.2 2 16384 4000 −3.029663 −3.105833 −1.558935 205.82 50.62

Table 5.12: LP1 local polynomials, d = 14.

d K M MSEY,max MSEY,av MSEZ,av CPU GPU

15 32768 5000 −2.981181 −3.106590 −1.574532 578.88 139.60
16 65536 6000 −2.795353 −2.959375 −1.588716 1411.75 429.53
17 131072 5000 −2.772595 −2.936549 −1.371146 2580.06 793.61
18 262144 4000 −2.845755 −2.918057 −1.114600 4275.13 1589.30
19 524288 3200 −2.726427 −2.851617 −0.839849 7245.91 4370.31

Table 5.13: LP1 local polynomials, d = 15, . . . , 19, ∆t = 0.2, #C = 2.

189

190

Appendix A

Test functions for the Simulated

Annealing

In this appendix we present the expressions of the functions in our test problem suite

for the implemented Simulated Annealing algorithm (see Table 1.8).

1. Test 1 (Ackley problem):

Originally the Ackley’s problem (see [2]) was defined for two dimensions, but

the problem has been generalized to n dimensions [24].

Formally, this problem can be described as finding a point xxx = (x1, x2, . . . , xn),

with xi ∈ [−30, 30], that minimizes the following equation:

f(xxx) = −20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2
i

− exp

(
1

n

n∑
i=1

cos(2πxi)

)
+ 20 + e.

The minimum of the Ackley’s function is located at the origin with f(000) = 0.

This test was performed for n = 30, n = 100, n = 200 and n = 400.

2. Test 2 (Branin problem):

The expression of the Branin function (see [35]) is,

191

f(xxx) =

(
x2 −

5.1

4π2
x2

1 +
5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10,

with x1, x2 ∈ [−20, 20]. The minimum of the objective function value is equal

to f(xxx?) = 0.397887, and it is located at the following three points: xxx? =

(−π, 12.275), xxx? = (π, 2.275) and xxx? = (9.425, 2.475).

3. Test 3 (Cosine mixture problem):

The expression of this function is (see [17]):

f(xxx) = −0.1
n∑
i=1

cos(5πxi)−
n∑
i=1

x2
i ,

with xi ∈ [−1, 1], i = 1, 2 . . . , n. The global minimum is located at the origin

with the function values −0.2 and −0.4 for n = 2 and n = 4, respectively.

4. Test 4 (Dekkers and Aarts problem):

The Dekkers and Aarts function (see [33]) has the following expression

f(xxx) = 105x2
1 + x2

2 − (x2
1 + x2

2)2 + 10−5(x2
1 + x2

2)4,

with x1, x2 ∈ [−20, 20]. This function has more than three local minima, but

there are two global minima located at xxx? = (0,−14.945) and xxx? = (0, 14.945)

with f(xxx?) = −24776.518.

5. Test 5 (Easom problem):

The Easom function (see [107]) has the following definition

f(xxx) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2),

where the considered search space is x1, x2 ∈ [−10, 10]. The minimum value is

located at xxx? = (π, π) with f(xxx?) = −1.

192

6. Test 6 (Exponential problem):

The definition of the Exponential problem (see [17]) is the following

f(xxx) = − exp

(
−0.5

n∑
i=1

x2
i

)
,

with xi ∈ [−1, 1], i = 1, . . . , n. The optimal objective function value is f(xxx?) =

−1, and it is located at the origin. In our tests we consider n = 4.

7. Test 7 (Goldstein and Price problem):

The Goldstein and Price function (see [35]) has the following definition,

f(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2) + 3x2

2]

×[30 + (2x1 − 3x2)2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)],

with x1, x2 ∈ [−2, 2]. There are four local minima and the global minimum is

located at xxx? = (0,−1) with f(xxx?) = 3.

8. Test 8 (Griewank problem):

The Griewank function (proposed in [65]) is defined as follows,

f(xxx) = 1 +
n∑
i=1

[
x2
i

4000
−

n∏
i=1

cos

(
xi√
i

)]
,

where xi ∈ [−600, 600], i = 1, . . . , n. The global minimum is located at the

origin and its function value is 0; moreover the function has also a very large

number of local minima, exponentially increasing with n (in the two dimensional

case there are around 500 local minima). Tests were performed for n = 100,

n = 200 and n = 400.

9. Test 9 (Himmelblau problem):

The expression of the Himmelblau’s function (see [74]) is the following

193

f(xxx) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2,

where x1, x2 ∈ [−6, 6]. The global minima is located at the following four points

xxx? = (3.0, 2.0), xxx? = (−2.805118, 3.131312), xxx? = (−3.779310,−3.283186) and

xxx? = (3.584428,−1.848126), with f(xxx?) = 0.

10. Test 10 (Levy and Montalvo problem):

The expression of the Levy and Montalvo function (see [99]) is,

f(xxx) =
π

n

(
10 sin2(πy1) +

n−1∑
i=1

(yi − 1)2
(
1 + 10 sin2(πyi+1)

)
+ (yn − 1)2

)
,

where yi = 1 + 1
4
(xi + 1) for xi ∈ [−10, 10], i = 1, . . . , n. This function has

approximately 5n local minima and the global minimum is located at the point

xxx? = (−1, . . . ,−1) with f(xxx?) = 0. Tests were performed for n = 2, n = 5 and

n = 10.

11. Test 11 (Modified Langerman problem):

The expression of the Modified Langerman function (see [11]) is,

f(xxx) = −
5∑
i=1

ci

[
exp

(
− 1

π

n∑
j=1

(xj − aij)2

)
cos

(
π

n∑
j=1

(xj − aij)2

)]
,

where xi ∈ [0, 10], i = 1, . . . , n and

AAA = (aij) =



9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.020

9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374

8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.734 4.982

2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.377 1.426

8.074 8.777 3.467 1.863 6.708 6.349 4.534 0.276 7.633 1.567


,

ccc = (ci) =
(

0.806 0.517 0.100 0.908 0.965
)
.

194

In this case it is unknown the number of local minima. The global optimum

when n = 2 is searched at xxx? = (9.6810707, 0.6666515) with f(xxx?) = −1.080938,

and for n = 5 the global minimun is located at xxx? = (8.074000, 8.777001, 3.467004,

1.863013, 6.707995) with f(xxx?) = −0.964999.

12. Test 12 (Michalewicz problem):

The definition of the Michalewicz function (see [107]) is the following,

f(xxx) = −
n∑
i=1

sin(xi)

[
sin

(
ix2
i

π

)]2m

,

where xi ∈ [0, π], i = 1, . . . , n. It is usual to set m = 10. The objective function

value at the global minimum is f(xxx?) = −1.8013 for n = 2, f(xxx?) = −4.6877

for n = 5, and f(xxx?) = −9.6602 for n = 10.

13. Test 13 (Rastrigin problem):

The expression of the Rastrigin function (see [129] and [134], for example) has

the following definition,

f(xxx) = 10n+
n∑
i=1

(
x2
i − 10 cos(2πxi)

)
,

where xi ∈ [−5.12, 5.12], i = 1, . . . , n. The global minimum is located at xxx? =

(0, . . . , 0) and the objective function at this point is f(xxx?) = 0. In our tests we

consider n = 100 and n = 400.

14. Test 14 (Generalized Rosenbrock problem):

The Rosenbrock’s function (see [81]), also known as Rosenbrock valley, banana

function or the second function of De Jong, has the following expression,

f(xxx) =
n−1∑
i=1

[
100(xi+1 − xi)2 + (1− xi)2

]
,

195

with xi ∈ [−2.048, 2.048], i = 1, . . . , n. The global minimum is located at

xxx? = (1, . . . , 1) with the function value f(xxx?) = 0. In our tests we consider

n = 4.

15. Test 15 (Salomon problem):

The Salomon function (see [125]) has the following definition,

f(xxx) = 1− cos(2π||xxx||2) + 0.1||xxx||2,

where ||xxx||2 =

√
n∑
i=1

x2
i , and xi ∈ [−100, 100], i = 1, . . . , n. In the general case

(n) the number of local minima is not known. This function has a global minima

located at xxx? = (0, . . . , 0) with f(xxx?) = 0. For our tests we consider n = 10.

16. Test 16 (Six-Hump Camel Back problem):

The expression of the Six-Hump Camel Back function (see [35]) is the following,

f(xxx) =

(
4− 2.1x2

1 +
1

3
x4

1

)
x2

1 + x1x2 + (−4 + 4x2
2)x2

2,

with x1 ∈ [−3, 3] and x2 ∈ [−2, 2]. This function has two global minima equal to

f(xxx?) = −1.0316, located at xxx? = (−0.0898, 0.7126) and xxx? = (0.0898,−0.7126).

17. Test 17 (Shubert problem):

The Shubert function (see [99]) has the following definition

f(xxx) =
n∏
i=1

(
5∑
j=1

j cos((j + 1)xi + j)

)
,

subject xi ∈ [−10, 10], i = 1, . . . , n. For the n-dimensional case the number of

local minima is unknown, however for n = 2, the function has 760 local minima,

where 18 of them are global with f(xxx?) ≈ −186.7309. We have performed the

tests for n = 2. For this case, the global optimizers are (−7.0835, 4.8580),

196

(−7.0835,−7.7083), (−1.4251,−7.0835), (5.4828, 4.8580), (−1.4251,−0.8003),

(4.8580, 5.4828), (−7.7083,−7.0835), (−7.0835,−1.4251), (−7.7083,−0.8003),

(−7.7083, 5.4828), (−0.8003,−7.7083), (−0.8003,−1.4251), (−0.8003, 4.8580),

(−1.4251, 5.4828), (5.4828,−7.7083), (4.8580,−7.0835), (5.4828,−1.4251) and

(4.850,−0.8003).

18. Test 18 (Shekel problem):

The expression of the Shekel function (see [11]) is

f(xxx) = −
m∑
i=1

1
4∑
j=1

(xj − aij)2 + ci

,

where the matrix A = (aij) and the vector ccc = (ci) are the following,

ccc =



0.1

0.2

0.2

0.4

0.4

0.6

0.3

0.7

0.5

0.5



, A =



4 4 4 4

1 1 1 1

8 8 8 8

6 6 6 6

3 7 3 7

2 9 2 9

5 5 3 3

8 1 8 1

6 2 6 2

7 3.6 7 3.6



.

The search domain is xi ∈ [0, 10], i = 1, . . . , 4. The global optimum is xxx? =

(4, 4, 4, 4) and the function value at this point is f(xxx?) = −10.1532 for m = 5,

f(xxx?) = −10.4029 for m = 7 and f(xxx?) = −10.5364 for m = 10.

19. Test 19 (Modified Shekel Foxholes problem):

The expression of the Modified Shekel Foxholes function (see [11]) is

197

f(xxx) = −
30∑
i=1

1
n∑
j=1

(xj − aij)2 + ci

,

where the matrix A = (aij) and the vector ccc = (ci) are the following,

ccc =



0.806

0.517

0.100

0.908

0.965

0.669

0.524

0.902

0.531

0.876

0.462

0.491

0.463

0.714

0.352

0.869

0.813

0.811

0.828

0.964

0.789

0.360

0.369

0.992

0.332

0.817

0.632

0.883

0.608

0.326



, A =



9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.020

9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374

8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.734 4.982

2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.377 1.426

8.074 8.777 3.467 1.863 6.708 6.349 4.534 0.276 7.633 1.567

7.650 5.658 0.720 2.764 3.278 5.283 7.474 6.274 1.409 8.208

1.256 3.605 8.623 6.905 4.584 8.133 6.071 6.888 4.187 5.448

8.314 2.261 4.224 1.781 4.124 0.932 8.129 8.658 1.208 5.762

0.226 8.858 1.420 0.945 1.622 4.698 6.228 9.096 0.972 7.637

7.305 2.228 1.242 5.928 9.133 1.826 4.060 5.204 8.713 8.247

0.652 7.027 0.508 4.876 8.807 4.632 5.808 6.937 3.291 7.016

2.699 3.516 5.874 4.119 4.461 7.496 8.817 0.690 6.593 9.789

8.327 3.897 2.017 9.570 9.825 1.150 1.395 3.885 6.354 0.109

2.132 7.006 7.136 2.641 1.882 5.943 7.273 7.691 2.880 0.564

4.707 5.579 4.080 0.581 9.698 8.542 8.077 8.515 9.231 4.670

8.304 7.559 8.567 0.322 7.128 8.392 1.472 8.524 2.277 7.826

8.632 4.409 4.832 5.768 7.050 6.715 1.711 4.323 4.405 4.591

4.887 9.112 0.170 8.967 9.693 9.867 7.508 7.770 8.382 6.740

2.440 6.686 4.299 1.007 7.008 1.427 9.398 8.480 9.950 1.675

6.306 8.583 6.084 1.138 4.350 3.134 7.853 6.061 7.457 2.258

0.652 2.343 1.370 0.821 1.310 1.063 0.689 8.819 8.833 9.070

5.558 1.272 5.756 9.857 2.279 2.764 1.284 1.677 1.244 1.234

3.352 7.549 9.817 9.437 8.687 4.167 2.570 6.540 0.228 0.027

8.798 0.880 2.370 0.168 1.701 3.680 1.231 2.390 2.499 0.064

1.460 8.057 1.336 7.217 7.914 3.615 9.981 9.198 5.292 1.224

0.432 8.645 8.774 0.249 8.081 7.461 4.416 0.652 4.002 4.644

0.679 2.800 5.523 3.049 2.968 7.225 6.730 4.199 9.614 9.229

4.263 1.074 7.286 5.599 8.291 5.200 9.214 8.272 4.398 4.506

9.496 4.830 3.150 8.270 5.079 1.231 5.731 9.494 1.883 9.732

4.138 2.562 2.532 9.661 5.611 5.500 6.886 2.341 9.699 6.500



.

198

The search domain is xi ∈ [−5, 15]. For this function the number of local

minima is unknown. For n = 2 the global minimum is located at the point

xxx? = (8.024, 9.146) with f(xxx?) = −12.1190. For n = 5 the global minima is

xxx? = (8.025, 9.152, 5.114, 7.621, 4.564) with f(xxx?) = −10.4056.

199

200

Appendix B

SABR equity

In this appendix we present the expressions of the implied volatility in the general

case and the market data employed in Chapter 2.

B.1 Expression of implied volatility in the general

case

For the Case II of Section 2.2.2 (general case), using Mathematica, the functions ν2
1 ,

ν2
2 , η1 and η2

2 given by (2.10) have the following expressions:

ν2
1(T) =

1

4b5T 3

[
9q2
ν + 6b4ν0(4dν + ν0)T 2 + 4b5d2

νT
3 + 9bqν(16dν + ν0 − qνT)

+6b3T (−ν0(8dν + ν0) + (4dν + ν0)qνT) + 3b2
(
ν0(16dν + ν0)− 4(8dν + ν0)qνT + q2

νT
2
)

−3e−2bT

(
3q2
ν + 3bqν

(
16dνe

bT + ν0 + qνT
)

+ b2(ν0 + qνT)
(

16dνe
bT + ν0 + qνT

))]
,

ν2
2(T) =

1

4b5T 3
e−2bT

{
18q2

ν + 6b3T (ν0 + qνT)2 + 6b2(ν0 + qνT)(ν0 + 3qνT)

+9bqν(2ν0 + 3qνT) + e2bT
[
− 18q2

ν + 6b3ν0(8dν + ν0)T + 4b5d2
νT

3

+9bqν(−32dν − 2ν0 + qνT) + 6b2
(
− ν0(16dν + ν0) + 2(8dν + ν0)qνT

)]
+48bdνe

bT
(

6qν + b
(
ν0(2 + bT) + qνT (4 + bT)

))}
,

201

η1(T) =
2

T 2

{
− 2dνqρ

a3
− 2dρqν

b3
− 6qρqν

(a+ b)4
+
dρν0T

b
+
dνρ0T

a
+
a3ν0ρ0T

(a+ b)4
+
b3ν0ρ0T

(a+ b)4

+
dν(−ρ0 + qρT)

a2
+
dρ(−ν0 + qνT)

b2
+
a2(−ν0ρ0 + ν0qρT + qνρ0T)

(a+ b)4

−
2a
(
ν0qρ + qν(ρ0 − qρT)

)
(a+ b)4

+
b
[
− 2ν0(qρ + aρ0) + aν0(2qρ + 3aρ0)T + 2qν

(
qρT + ρ0(−1 + aT)

)]
(a+ b)4

+
b2
[
qνρ0T + ν0

(
qρT + ρ0(−1 + 3aT)

)]
(a+ b)4

+
1

2a3b3(a+ b)4
e−(a+b)T

{
4b7dνe

bT qρ + 8a2b5dνe
bT
(
bρ0 + qρ(3 + bT)

)
+2ab6dνe

bT
(
bρ0 + qρ(8 + bT)

)
+ a7dρe

aT
(

4qν + b3dνe
bTT 2 + 2b(ν0 + qνT)

)
+4a6bdρe

aT
(

4qν + b3dνe
bTT 2 + 2b(ν0 + qνT)

)
+2a5b2

[
12dρe

aT qν + 3b3dρdνe
(a+b)TT 2 + 6bdρe

aT (ν0 + qνT)

+b(ρ0 + qρT)
(
dνe

bT + ν0 + qνT
)]

+ 4a4b3
[
dνe

bT qρ + ν0qρ + 4dρe
aT qν + qνρ0 + 2qρqνT

+b3dρdνe
(a+b)TT 2 + 2bdρe

aT (ν0 + qνT) + b(ρ0 + qρT)
(

2dνe
bT + ν0 + qνT

)]
+a3b3

[
12qρqν + b4dρdνe

(a+b)TT 2 + 4b
(

4dνe
bT qρ + ν0qρ + qν

(
dρe

aT + ρ0 + 2qρT
))

+2b2
[
dρe

aT (ν0 + qνT) + (ρ0 + qρT)
(

6dνe
bT + ν0 + qνT

)]]}}
,

η2
2(T) =

12

T 4

∫ T

0

∫ t

0

{
1

a2b2(a+ b)3
e−(a+b)s

{
b5dνe

bs (−1 + eas) qρ6

−ab4dνebs
(
3qρ + bρ0 − eas(3qρ + bρ0) + bqρs

)
+a5dρe

as
(
−qν − b(ν0 + qνs) + ebs

(
qν + b(ν0 + bdνs)

))
+ a3b2 [−qν (3dρe

as + ρ0)

+e(a+b)s
(
(dν + ν0)qρ + qν(3dρ + ρ0) + b(3dρν0 + 3dνρ0 + 2ν0ρ0) + 3b2dρdνs

)
−dνebs(qρ + 3bρ0 + 3bqρs)− qρ(ν0 + 2qνs)− b(ν0 + qνs)

(
3dρe

as + 2(ρ0 + qρs)
)]

+a2b2
[
− 2qρqν + e(a+b)s

(
2qρqν + b2

(
3dνρ0 + ν0(dρ + ρ0)

)
+ b
(
(3dν + ν0)qρ

+qν(dρ + ρ0)
)

+ b3dρdνs
)
− 3bdνe

bs(qρ + bρ0 + bqρs)− b2 (dρe
as + ρ0 + qρs) (ν0 + qνs)

−b
(
ν0qρ + qν (dρe

as + ρ0 + 2qρs)
)]

+ a4b
[
e(a+b)s

(
3bdρν0 + 3dρqν + b(dν + ν0)ρ0

+3b2dρdνs
)
− b(ρ0 + qρs)

(
dνe

bs + ν0 + qνs
)
− 3dρe

as
(
qν + b(ν0 + qνs)

)]}}2

dsdt.

Note that for this general case, it is not possible to obtain an explicit expression

202

for η2
2(T), so that it must be approximated using an appropriate numerical quadrature

formula.

B.2 Market data

Time Year fraction, T Interest rate, r Dividend yield, y

3 months 0.2438 1.4198 % 1.5620 %
6 months 0.4959 1.2413 % 2.9769 %
12 months 1 1.0832 % 1.9317 %
24 months 2 1.0394 % 1.8610 %

Table B.1: EURO STOXX 50 (Dec. 2011). Spot value S0 = 2311.1 e. Interest rates
and dividend yields.

203

K (% of S0) 3 months 6 months 12 months 24 months

80% 33.90% 33.81% 31.38% 29.25%
82% 33.47% 33.37% 31.06% 28.98%
84% 33.05% 32.93% 30.75% 28.70%
86% 32.62% 32.49% 30.43% 28.43%
88% 32.21% 32.07% 30.11% 28.16%
90% 31.79% 31.64% 29.79% 27.89%
92% 31.38% 31.23% 29.48% 27.62%
94% 30.98% 30.82% 29.16% 27.34%
96% 30.58% 30.42% 28.85% 27.08%
98% 30.18% 30.02% 28.53% 26.81%
100% 29.79% 29.63% 28.22% 26.54%
102% 29.40% 29.24% 27.90% 26.27%
104% 29.01% 28.87% 27.59% 26.00%
106% 28.63% 28.49% 27.28% 25.74%
108% 28.26% 28.13% 26.96% 25.47%
110% 27.89% 27.77% 26.65% 25.21%
112% 27.52% 27.42% 26.34% 24.95%
114% 27.16% 27.07% 26.03% 24.68%
116% 26.80% 26.73% 25.72% 24.42%
118% 26.45% 26.40% 25.41% 24.16%
120% 26.10% 26.07% 25.10% 23.90%

Table B.2: EURO STOXX 50 (Dec. 2011). Implied volatilities for each maturity
with different strikes K (% of the spot S0).

Time Year fraction, T Interest rate, r Dividend yield, y

3 months 0.2528 1.3696 % 0.5894 %
6 months 0.5083 1.2110 % 0.6185 %
12 months 1 1.0832 % 0.6907 %
24 months 2 1.0394 % 0.7438 %

Table B.3: EUR/USD (Dec. 2011). Spot value S0 = 1.2939 US dollars. Interest rates
and dividend yields.

204

3 months 6 months 12 months 24 months
K σmarket K σmarket K σmarket K σmarket

1.1075 19.27% 1.0241 20.75% 0.9217 21.80% 0.8245 21.01%
1.1516 18.58% 1.0877 19.90% 1.0084 20.82% 0.9302 20.11%
1.1817 17.93% 1.1316 19.11% 1.0693 19.91% 1.0063 19.27%
1.2075 16.85% 1.1700 17.71% 1.1240 18.22% 1.0746 17.75%
1.2262 16.40% 1.1972 17.19% 1.1621 17.64% 1.1244 17.21%
1.2425 16.00% 1.2210 16.70% 1.1956 17.09% 1.1686 16.70%
1.2570 15.62% 1.2423 16.26% 1.2257 16.60% 1.2089 16.24%
1.2704 15.28% 1.2618 15.85% 1.2534 16.15% 1.2463 15.82%
1.2830 14.97% 1.2801 15.49% 1.2794 15.74% 1.2818 15.44%
1.2950 14.70% 1.2975 15.17% 1.3043 15.39% 1.3161 15.11%
1.3066 14.46% 1.3145 14.88% 1.3286 15.07% 1.3500 14.81%
1.3183 14.25% 1.3315 14.64% 1.3530 14.80% 1.3843 14.55%
1.3302 14.07% 1.3489 14.44% 1.3781 14.58% 1.4199 14.34%
1.3427 13.93% 1.3673 14.28% 1.4047 14.41% 1.4579 14.16%
1.3563 13.83% 1.3872 14.15% 1.4339 14.28% 1.5000 14.03%
1.3715 13.75% 1.4099 14.07% 1.4673 14.19% 1.5485 13.94%
1.3899 13.74% 1.4370 14.02% 1.5080 14.16% 1.6074 13.88%
1.4140 13.80% 1.4733 14.09% 1.5635 14.26% 1.6890 13.94%
1.4510 13.89% 1.5300 14.21% 1.6514 14.42% 1.8203 14.06%

Table B.4: EUR/USD (Dec. 2011). Implied volatilities for each maturity with differ-
ent strikes K.

205

206

Appendix C

BSDEs

In this appendix the proof Proposition 5.2.1 and the stability results for discrete

BSDE are shown.

C.1 Proof of Proposition 5.2.1

It is known from [58, Proposition 3.1] that it is sufficient to show that there is a

continuous Cρ : R→ [1,∞) such that, for all Λ ≥ 0, λ ∈ [0,Λ], and y ∈ Rd,

p
(µ)
logis.(y)

Cρ(Λ)
≤
∫
Rd
p

(µ)
logis.(y + z

√
λ) exp(−|z|

2

2
)dz ≤ Cρ(Λ)p

(µ)
logis.(y). (C.1)

The proof is given for d = 1; generalization to higher dimensions is obvious because

the multidimensional density is just the product of the one-dimensional densities over

the components. Moreover, for simplicity the proof is given for µ = 1, as generality in

this parameter does not change the proof. For simplicity, we will write p
(µ)
logis.(x) = p(x)

in what follows.

In terms of the hyperbolic cosine function, the density can be expressed as

p(x) =
exp(−x)(

1 + exp(−x)
)2 =

(
exp(

x

2
) + exp(−x

2
)
)−1

=
(

2 cosh(
x

2
)
)−1

.

We define I(y, λ) := 2
∫
R p(y + z

√
λ) exp(− z2

2
)dz, so that from the relation cosh(x +

207

y) = cosh(x) cosh(y) + sinh(x) sinh(y), we have that

I(y, λ) =

∫
R

exp(− z2

2
)

cosh(y
2
) cosh(z

√
λ

2
) + sinh(y

2
) sinh(z

√
λ

2
)
dz := I+(y, λ) + I−(y, λ)

where I+,− denotes respectively the integral on R+ and R−.

Upper bound Suppose that y ≥ 0. Then, if z ≥ 0, it follows that sinh(y/2) sinh(z
√
λ/2) ≥

0, whence

I+(y, λ) ≤
∫
R+

exp(− z2

2
)

cosh(y
2
) cosh(z

√
λ

2
)
dz = 2

∫
R+

e−
z2

2 dz × p(y).

On the other hand, if z ≤ 0, then sinh(y
2
) sinh(z

√
λ

2
) ≥ cosh(y

2
) sinh(z

√
λ

2
), therefore

I−(y, λ) ≤
∫
R−

exp(− z2

2
)

cosh(y
2
){cosh(z

√
λ

2
) + sinh(z

√
λ

2
)}

dz = 2

∫
R−

exp

(
−z

2

2
− z
√
λ

2

)
dz × p(y).

Therefore, if y ≥ 0 then I(y, λ) ≤ 2
∫
R exp(−z

2+(z)−
√

Λ
2

)dz × p(y). Observing that

I(y, λ) is symmetric in y, thus the upper bound (C.1) is proved.

Lower bound Suppose that y ≥ 0. For z ≤ 0, observe that sinh(y
2
) sinh(z

√
λ

2
) ≤ 0,

whence

I−(y, λ) ≥
∫
R−

exp(− z2

2
)

cosh(y
2
) cosh(z

√
λ

2
)
dz ≥ 2

∫
R−

exp(− z2

2
)

cosh(z
√

Λ
2

)
dz × p(y).

For z ≥ 0, we use that sinh(y
2
) sinh(z

√
λ

2
) ≤ cosh(y

2
) sinh(z

√
λ

2
) to obtain

I+(y, λ) ≥
∫
R+

exp(− z2

2
)

cosh(y
2
){cosh(z

√
λ

2
) + sinh(z

√
λ

2
)}

dz

≥ 2

∫
R+

exp

(
−z

2

2
− z
√

Λ

2

)
dz × p(y).

The result on y < 0 follows again from the symmetry of I(y, λ).

208

C.2 Stability results for discrete BSDE

We recall standard results borrowed to [60] and adapted to our setting, they are aimed

at comparing two solutions of discrete BSDEs of the form (5.5) with different data.

Namely, consider two discrete BSDEs, (Y1,i, Z1,i)0≤i<N and (Y2,i, Z2,i)0≤i<N , given by

Yl,i = Ei

(
g(XN) +

N−1∑
j=i

fl,j(Xj, Yl,j+1, Zl,j)∆t

)
,

∆tZl,i = Ei

(
(g(XN) +

N−1∑
j=i+1

fl,j(Xj, Yl,j+1, Zl,j)∆t)∆Wi

)
,

for i ∈ {0, . . . , N − 1}, l ∈ {1, 2}.
To allow the driver f1,i to depend on the clouds of simulations (necessary in the

analysis), we require that it is measurable w.r.t. FT instead of Fti as usually.

Proposition C.2.1. Assume that (Ag) and (AX)hold. Moreover, for each i ∈
{0, . . . , N − 1}, assume that f1,i(Xi, Y1,i+1, Z1,i) ∈ L2(FT) and f2 satisfies (Af) with

constants Lf2 and Cf2. Then, for any γ ∈ (0,+∞) satisfying 6q(∆t + 1
γ
)L2

f2
≤ 1, we

have for 0 ≤ i < N

|Y1,i − Y2,i|2Γi +
N−1∑
j=i

∆tEi
(
|Z1,j − Z2,j|2

)
Γj

≤ 3CC.2.1

(
1

γ
+ ∆t

)N−1∑
j=i

∆tEi
(
|f1,j(Xj, Y1,j+1, Z1,j)− f2,j(Xj, Y1,j+1, Z1,j)|2

)
Γj,

(C.2)

where Γi := (1 + γ∆t)
i and CC.2.1 := 2q + (1 + T)eT/2.

209

210

Conclusions

The main objectives of this thesis have been to propose efficient procedures to cal-

ibrate and price market derivatives under different SABR-like stochastic volatility

models, not only in equity/foreign exchange markets but also in interest rate mar-

kets. Furthermore, we have developed an original algorithm to efficiently approximate

the solution of Forward-Backward Stochastic Differential Equations.

For these purposes, we have proposed a highly optimized version of a Simu-

lated Annealing algorithm adapted to the more recently developed hardware tools

of Graphic Processor Units (GPUs). The programming has been carried out with

CUDA toolkit, specially designed for Nvidia GPUs. Efficient versions of Simulated

Annealing have been first analyzed and adapted to GPUs. Thus, an appropriate se-

quential Simulated Annealing algorithm has been developed as starting point. Next,

a straightforward asynchronous parallel version has been implemented and then a spe-

cific and more efficient synchronous version has been developed. A wide appropriate

benchmark to illustrate the performance properties of the implementation has been

considered. Among all tests, a classical sample problem provided by the minimization

of the normalized Schwefel function has been selected to compare the behavior of the

sequential, asynchronous and synchronous versions, the last one being more advan-

tageous in terms of balance between convergence, accuracy and computational cost.

Also the implementation of a hybrid method combining Simulated Annealing with

a local minimizer method has been developed. Note that the generic feature of the

Simulated Annealing algorithm allows its application in a wide set of real problems

arising in a large variety of fields, such as biology, physics, engineering, finance and

211

industrial processes.

In the more classical models for equities and interest rates evolution, constant

volatility is usually assumed. However, in practice the volatilities are not constant in

financial markets and different models allowing a varying local or stochastic volatility

also appear in the literature. Particularly, here we have considered the SABR model

that has been first introduced in a paper by Hagan and coworkers, where an asymp-

totic closed-form formula for the implied volatility of European plain-vanilla options

with short maturities is proposed. For the calibration of the parameters in static and

dynamic SABR stochastic volatility models, we have proposed the application of the

GPU technology to the Simulated Annealing global optimization algorithm and to

the Monte Carlo simulation. This calibration has been performed for EURO STOXX

50 index and EUR/USD exchange rate with an asymptotic formula for volatility or

Monte Carlo simulation. Moreover, in the dynamic model we have proposed an orig-

inal more general expression for the functional parameters, specially well suited for

the EUR/USD exchange rate case. Numerical results illustrate both the expected

behavior of SABR models and the accuracy of the calibration. In terms of compu-

tational time, when the asymptotic formula for volatility is used the speedup with

respect to CPU computation is around 200 with one GPU.

More recently, different works (Hagan-Lesniewski, Mercurio-Morini and Rebon-

ato) have extended the use of SABR model to the context of LIBOR market models

for the evolution of forward rates (SABR-LMM). One drawback of these models in

practice comes from the increase of computational cost, mainly due to the growth of

model parameters to be calibrated. Additionally, sometimes either it is not always

possible to compute an analytical approximation for the implied volatility or its ex-

pression results to be very complex, so that numerical methods (for example, Monte

Carlo in the calibration process) need to be used. The numerical results have clearly

illustrated the advantages of using the proposed multi-GPUs tools when applied to

real market data and popular SABR/LIBOR models.

In order to be able to overcome the drawbacks of the Monte Carlo simulation of the

212

studied SABR/LIBOR market models, we have also posed original partial differential

equations associated to the studied systems of stochastic differential equations. The

resulting partial differential equations are high dimensional in space, therefore we

have implemented the sparse grid combination technique to cope with the curse of

dimensionality to some extent. Indeed, we have efficiently priced derivatives with up

to eight underlying LIBORs and their stochastic volatility.

Finally, we have designed a novel algorithm based on Least-Squares Monte Carlo

(LSMC) in order to approximate the solution of discrete time Backward Stochastic

Differential Equations (BSDEs). As a first step, we have drastically reworked an

algorithm by Gobet and Turkedjiev to first minimize the exposure to the memory due

to the storage of the simulations. This has allowed the computations in significantly

larger dimensions. In this way, the algorithm could be implemented in parallel on

GPU processors to optimize computational time. Numerical results up to dimension

19 have been illustrated. Moreover, the error analysis of the algorithm has been

addressed.

213

214

Resumen extenso

En esta tesis hemos analizado la valoración de derivados financieros empleando de-

terminados modelos matemáticos. Nuestro objetivo ha sido ilustrar el uso de estos

modelos, poniendo énfasis en su implementación y calibración.

Un derivado financiero es un contrato cuyo valor depende de uno o más activos,

denominados activos subyacentes. Normalmente, el activo subyacente es una acción,

un tipo de intercambio de divisas, el precio de mercado de determinadas materias

primas como el aceite o el trigo, o un bono (tipo de interés). Entre la gran variedad

de derivados financieros que se comercializan hoy en d́ıa, una opción es el ejemplo

más sencillo. Una opción es un contrato que da a su poseedor el derecho (pero no

la obligación) de comprar o vender el activo subyacente a un precio prefijado en una

fecha futura. Una opción de compra da el derecho a comprar, mientras que una opción

de venta da el derecho a vender. Una opción se denomina europea si el derecho a com-

prar o vender puede ser ejercido solamente en la fecha de vencimiento, y se conoce

como americana si puede ejercerse en cualquier instante anterior al vencimiento. Las

opciones de compra y venta son los instrumentos derivados básicos y por ello normal-

mente se conocen como opciones vainilla. Sin embargo, existe una gran cantidad de

derivados, normalmente conocidos como exóticos, cuya estructura entraña más com-

plejidad. Valorar estos instrumentos derivados no es trivial, debido a que se desconoce

el modo en que evolucionarán en el futuro los precios de los activos subyacentes.

La primera vez que se comercializaron estos derivados financieros en mercados

organizados fue el 26 de abril de 1973 en el CBOE (Chicago Board Options Exchange).

Primeramente simplemente se operaba con opciones de compra sobre 16 acciones, las

215

opciones de venta no fueron introducidas hasta 1977. En el año 1973, Merton [104] y

Black y Scholes [13] publicaron por separado la teoŕıa básica de valoración de opciones,

la cobertura dinámica y la teoŕıa de no arbitraje. Empleando estas estrategias, los

autores obtuvieron la celebrada ecuación en derivadas parciales (EDP) de Black-

Scholes y la fórmula de Black-Scholes para valorar opciones vainilla europeas. A

pesar del gran éxito de esta fórmula, después de la quiebra del mercado de acciones

en octubre de 1987, se reveló que el hecho de asumir en el modelo de Black-Scholes

[13]

dS(t) = rS(t)dt+ σS(t)dW (t), (1)

que la volatilidad σ del activo subyacente S era constante originaba limitaciones

significativas en la valoración de las opciones. En (1) estamos considerando la medida

de probabilidad riesgo neutro, donde r representa el tipo de interés libre de riesgo

y W es un movimiento Browniano. Con el objetivo de fijar ideas, consideremos el

precio en tiempo t de una opción europea de compra con precio de ejercicio K. Este

contrato paga la cantidad

max(S(T)−K, 0) = (S(T)−K)+,

en su fecha de vencimiento T . Su valor a tiempo t < T viene dado por la fórmula de

Black

V Black(S, t, σ, r,K, T) = SΦ(d1)−Ke−r(T−t)Φ(d2),

donde Φ es la función de distribución acumulada de la distribución normal estándar

y

d1 =
log(S/K) +

(
r + 1

2
σ2
)

(T − t)
σ
√
T − t

,

d2 =
log(S/K) +

(
r − 1

2
σ2
)

(T − t)
σ
√
T − t

.

Dicha fórmula de Black es el método estándar de valoración en el mercado de opciones

europeas de compra. Si conocemos el valor de la volatilidad σ y el resto de los

parámetros podemos calcular el precio de la opción y viceversa, si disponemos de la

cotización del precio de la opción V Black(S, t, σ, r,K, T) podemos deducir el valor de

216

la volatilidad σ, que se denomina volatilidad impĺıcita. A continuación consideramos

dos precios de ejercicio diferentes K1 y K2. Supongamos que en el mercado cotizan los

precios de las dos opciones de compra correspondientes a los mencionados precios de

ejercicio, V Black(S, t, σ, r,K1, T) y V Black(S, t, σ, r, K2, T). Nótese que ambas opciones

de compra tienen el mismo subyacente S y el mismo vencimiento T . La cuestión clave

es que no existe un único parámetro de volatilidad σ tal que

V Market(S, t,K1, T) = V Black(S, t, σ, r,K1, T),

y

V Market(S, t,K2, T) = V Black(S, t, σ, r,K2, T),

es decir, se necesitan dos volatilidades diferentes σ(T,K1) y σ(T,K2) para recuperar

los precios de mercados observados:

V Market(S, t,K1, T) = V Black(S, t, σ(T,K1), r,K1, T),

V Market(S, t,K2, T) = V Black(S, t, σ(T,K2), r,K2, T).

Se podŕıa seguir un argumento análogo fijando el precio de ejercicio K y considerando

dos fechas de vencimiento T1 y T2. Por tanto, cada precio de mercado de la opción

de compra precisa su propia volatilidad de Black σ(T,K) dependiendo del precio de

ejercicio K y del vencimiento T de la opción de compra. La forma de la gráfica de

la volatilidad impĺıcita frente al precio de ejercicio normalmente presenta formas de

sonrisa (ver Figura 1), por tanto se conoce como sonrisa de volatilidad (volatility smile

o skew). En algunos mercados muestra una asimetŕıa considerable.

Teniendo en cuenta que las dinámicas descritas por la ecuación diferencial es-

tocástica (1) no son capaces de capturar adecuadamente las volatilidades impĺıcitas

de mercado, los investigadores han tratado de encontrar modelos alternativos que sean

adecuados para este propósito. A continuación revisamos brevemente los principales

enfoques propuestos en la literatura.

217

Precio de ejercicio

V
o
la

ti
lid

a
d
 i
m

p
líc

it
a

Figure 1: Forma común de la sonrisa de volatilidad.

Modelos de volatilidad local Estos modelos son extensiones anaĺıticas directas

de un movimiento Browniano geométrico, que permiten hasta cierto punto capturar

sonrisas en la volatilidad impĺıcita. Los principales ejemplos son los siguientes. En

el año 1976 Cox y Ross [30] propusieron los procesos conocidos como CEV, constant-

elasticity-of-variance. Los autores consideraron ecuaciones diferenciales estocásticas

de la forma

dS(t) = rS(t)dt+ σS(t)βdW (t), β ∈ (0, 1),

donde el parámetro β es el que añade al modelo la capacidad de capturar las sonrisas

de volatilidad del mercado. En los años 1994 y 1997 Dupire [37, 38] sugiere el modelo

dS(t) = rS(t)dt+ σ(S, t)S(t)dW (t),

donde la volatilidad instantánea σ es una función determinista del precio del activo

S y del tiempo t.

Modelos de difusión con saltos Estos modelos han sido introducidos con el

objetivo de modelar discontinuidades en el proceso estocástico subyacente. En los

mercados de acciones estos modelos fueron incorporados en el año 1976 por Merton

[105] y se emplean normalmente con el objetivo de calibrar sonrisas de volatilidad.

218

Modelos de volatilidad estocástica Estos modelos han sido diseñados para re-

producir las sonrisas de volatilidad en el mercado y para capturar la naturaleza es-

tocástica de la volatilidad. Los principales ejemplos son los modelos de Hull y White

(1987), Heston (1993) y Hagan, Kumar, Lesniewski y Woodward (2002). Son modelos

más realistas, pero tienen la contrapartida de ser más complejos en términos de la

valoración de opciones.

En el modelo de Hull y White [77] el activo y su volatilidad se modelan de la

siguiente forma

dS(t) = rS(t)dt+
√
σ(t)S(t)dW (t), S(0) = S0,

dσ(t) = κσ(t)dt+ ζσ(t)dZ(t), σ(0) = σ0,

donde dW y dZ tienen coeficiente de correlación ρ. Los otros parámetros son el valor

de retorno de la volatilidad κ, la volatilidad de la volatilidad ζ y el valor inicial de la

volatilidad σ0.

El modelo de Heston [73] está definido por

dS(t) = rS(t)dt+
√
σ(t)S(t)dW (t), S(0) = S0,

dσ(t) = κ(θ − σ(t))dt+ ζ
√
σ(t)dZ(t), σ(0) = σ0,

donde dW (t)dZ(t) = ρdt. Los otros parámetros del modelo son la velocidad de

reversión a la media κ, la volatilidad a largo plazo θ, la volatilidad de la volatilidad ζ

y el valor inicial de la volatilidad σ0. Este modelo es muy popular entre los operadores

de mercado debido a la existencia de fórmulas cerradas para valorar las opciones

europeas, lo cual resulta particularmente útil durante el proceso de calibración a

los datos de mercado. Dichas fórmulas anaĺıticas se obtienen empleando la función

caracteŕıstica, que se calcula resolviendo la EDP correspondiente al modelo de Heston

y mediante la inversión de una transformada de Fourier.

En [67] Hagan, Kumar, Lesniewski y Woodward han propuesto el llamado modelo

SABR, que es la extensión natural del modelo CEV clásico a la volatilidad estocástica.

El nombre SABR es un acrónimo de Stochastic, Alpha, Beta y Rho, tres de los cuatro

219

parámetros del modelo. Las dinámicas del precio forward F (t) = e(r−d)(T−t)S(t) están

determinadas por el siguiente sistema de ecuaciones diferenciales estocásticas

dF (t) = α(t)F (t)βdW (t), F (0) = F0,

dα(t) = να(t)dZ(t), α(0) = α0,

donde (W,Z) es un movimiento Browniano bidimensional con correlación constante

ρ. Los otros parámetros del modelo son la elasticidad de la varianza β ∈ [0, 1], la

volatilidad de la volatilidad ν y el nivel de referencia de la volatilidad α0. El hecho de

que el modelo SABR se haya convertido en el estándar de mercado para reproducir los

precios de opciones europeas hace que este modelo destaque sobre todos los demás

propuestos en la literatura hasta el momento. Aunque los modelos de volatilidad

local podŕıan ajustarse al mercado incluso mejor que el modelo SABR, estos modelos

predicen evoluciones para el subyacente que son poco realistas. De hecho el modelo

SABR refleja cambios en los precios de las opciones con respecto al precio de ejercicio,

a diferencia de los modelos de volatilidad local que capturan variaciones en los precios

de las opciones con respecto a la evolución del subyacente.

Entre la gran cantidad de derivados financieros comercializados hoy en d́ıa, cuando

el derivado es un tipo de interés o un conjunto de ellos, aparece la clase de derivados

de tipos de interés. En este trabajo hemos considerado principalmente bonos, caplets,

caps, swaps y swaptions. Un bono es un contrato que paga periódicamente cupones

dependiendo de la evolución de ciertos tipos de interés. Un caplet es una opción de

compra que paga la diferencia positiva entre un tipo de interés variable y otro fijo

(strike). Un contrato cap es un conjunto de caplets asociados con varias fechas de

vencimiento. Un swap es un contrato que intercambia dos tipos de interés diferentes.

Un swaption es una opción que da el derecho a entrar en un swap en una fecha

futura dada. En el libro de Brigo y Mercurio [19] puede encontrarse una descripción

detallada sobre estos y otros derivados de tipos de interés. A diferencia del caso de

mercados de acciones/divisas, en los mercados de tipos de interés la larga duración de

los contratos y el comportamiento de los tipos de interés ha originado la consideración

de modelos de tipos de interés estocásticos. Estos modelos pueden clasificarse en dos

220

categoŕıas, modelos de tipo a corto plazo (short rate models) y modelos de mercado

(market models).

Los modelos de tipo a corto plazo especifican las dinámicas de la evolución de un

sólo tipo de interés, y a partir de ellas se determina la evolución futura de toda la

curva de factores de descuento. Los populares modelos de Vasicek (1977) [136] y Cox,

Ingersoll y Ross (1985) [29] pertenecen a esta categoŕıa. El principal inconveniente

de los modelos de tipos de interés a corto plazo es la imposibilidad de calibrar sus

parámetros a la curva inicial de los factores de descuento, especialmente para aquellos

modelos en los que no hay disponibles fórmulas de valoración anaĺıticas.

En 1986, Ho y Lee [75] propusieron la primera alternativa a los modelos de tipos de

interés a corto plazo, lo que supuso el primer trabajo en la categoŕıa de los modelos

de mercado. Los autores modelaron la evolución de toda la curva de factores de

descuento empleando un árbol binomial. Más tarde, en el año 1992, Heath, Jarrow

y Morton [69] trasladaron a tiempo continuo la hipótesis básica del modelo de Ho y

Lee. Su modelo HJM se convirtió en el estándar de mercado para los tipos de interés

a principios de los noventa. Sin embargo, el principal inconveniente del modelo HJM

era su incompatibilidad con el uso en el mercado de las fórmulas de Black para valorar

caplets y swaptions.

Con el objetivo de superar el principal obstáculo del modelo HJM, en el año 1999,

Miltersen, Sandmann y Sondermann [108] publicaron un método basado en EDPs

para derivar la fórmula de Black de valoración de caplets dentro del marco libre

de arbitraje ofrecido por el modelo HJM. Teniendo en cuenta dicho método, Brace,

Gatarek y Musiela [16] derivaron el llamado modelo BGM, también conocido como

modelo de mercado LIBOR (LMM), ya que modela la evolución de los tipos LIBOR

futuros empleando una distribución lognormal bajo determinadas medidas relevantes.

En el año 1997, Jamshidian [79] también contribuyó significativamente a su desarrollo.

Los tipos de interés de referencia más importantes son los London Interbank Offered

Rates o LIBORs, que se calculan diariamente a partir de una media de los tipos de

interés ofrecidos por bancos en Londres. El modelo LMM se ha convertido en el

221

modelo de tipos de interés más empleado. La principal razón es la consonancia entre

este modelo y las fórmulas de Black. De hecho, el modelo LIBOR valora caps con

la fórmula de Black para caps, que es la fórmula estándar empleada en el mercado

de caps. Además, el modelo Swap market model (SMM) valora swaptions con la

fórmula de Black para swaptions, que de nuevo es la fórmula estándar empleada en

el mercado de swaptions. Teniendo en cuenta que los caps y los swaptions son los

derivados de tipos de interés más comercializados, es muy importante que un modelo

de mercado sea compatible con tales fórmulas de mercado. Además, los parámetros

de estos modelos pueden calibrarse fácilmente a los precios de mercado empleando

productos que cotizan diariamente.

El modelo de mercado LIBOR estándar considera volatilidades constantes para

los tipos futuros. Sin embargo, esta es una hipótesis muy limitada, debido a que es

imposible reproducir las sonrisas de volatilidad de los mercados. El modelo SABR

no puede ser empleado para valorar derivados cuyas funciones de pago dependan de

varios tipos futuros. De hecho, el modelo SABR trabaja en la medida terminal, bajo

la cual tanto el tipo futuro como su volatilidad son martingalas. Esto siempre puede

hacerse si trabajamos con un único tipo futuro aislado en cada tiempo. Sin embargo,

bajo esta misma medida los procesos para otro tipo futuro y su volatilidad tendŕıan

derivas. Para permitir que el modelo LMM capture las sonrisas de volatilidad del

mercado, se han propuesto diferentes extensiones del modelo LMM que incorporaron

la sonrisa de volatilidad por medio del modelo SABR. En este trabajo hemos estudiado

los modelos propuestos por Hagan [68], Mercurio y Morini [103] y Rebonato [122].

El modelo de Hagan es la fusión natural entre los modelos de mercado SABR y

LIBOR. En el modelo de Mercurio & Morini se asume la existencia de un único

proceso de volatilidad lognormal que es común para todos los tipos forward. El

modelo de Rebonato es análogo al modelo de Hagan, excepto en las dinámicas de las

volatilidades.

En esta tesis nos hemos centrado en los modelos de tipo SABR debido a que son

ampliamente empleados en la práctica por varios motivos. En primer lugar, haciendo

222

uso de técnicas de perturbación singulares es posible derivar fórmulas de aproximación

para la volatilidad impĺıcita bajo el modelo SABR. En segundo lugar, el modelo es

relativamente simple y manejable. En tercer lugar, sus parámetros, que desempeñan

roles espećıficos en la generación de sonrisas de volatilidad, tienen un significado

intuitivo. Finalmente, se ha convertido en el estándar de mercado para interpolar y

extrapolar precios de caplets y swaptions vainilla.

Desde el punto de vista numérico, en el marco de trabajo ofrecido por el modelo

de mercado LIBOR la valoración de derivados de tipos de interés se realiza prin-

cipalmente empleando simulación de Monte Carlo [49]. Sin embargo, teniendo en

cuenta que la simulación de Monte Carlo tiene un elevado coste computacional, en

este trabajo también hemos abordado, por primera vez en la literatura, el enfoque

de valoración alternativo ofrecido por las EDPs. Aśı pues hemos planteado la origi-

nal formulación en EDPs asociada a los tres modelos SABR/LIBOR propuestos por

Hagan, Mercurio & Morini y Rebonato. No obstante, las EDPs asociadas a los

modelos SABR/LIBOR tienen alta dimensión en espacio. Por tanto, los métodos

tradicionales de mallas completas, como los métodos estándar de diferencias finitas o

elementos finitos, no serán capaces de valorar derivados sobre más de tres o cuatro

tipos de interés subyacentes, debido a la denominada maldición de la dimensión [7].

Con el propósito de vencer la maldición de la dimensión, el método de sparse grid

combination technique propuesto originalmente por Zenger, Griebel y Schneider [63]

ha sido analizado.

Los modelos estudiados en la primera parte de la tesis tienen un número elevado

de parámetros. Calibrar estos parámetros a los datos de mercado es un objetivo real

en la práctica. La calibración es el procedimiento de calcular los parámetros de un

modelo ajustándolo a los precios cotizados de las opciones en el mercado. El enfoque

de calibración estándar minimiza la distancia entre los precios del modelo, V model, y

los precios de mercado, V market. Una medida común del error es el error cuadrático

SE =
N∑
k=1

(
V market
k − V model

k (xxx)
)2
,

223

donde N denota el número de precios de opciones a los que se desea calibrar el modelo

y xxx = (x1, x2, . . . , xn) es el vector de los parámetros del modelo. La medida del error

es una función f : Rn → R de los parámetros del modelo xxx. Debido a que estamos

buscando el vector de parámetros xxx? que permita el mejor ajuste del modelo a los

precios de mercado disponibles, el procedimiento de calibración puede ser interpretado

como un problema de optimización de la forma

min
xxx∈I

f(xxx),

donde I ⊆ Rn es el conjunto admisible de los parámetros del modelo xxx, I = I1×. . .×In,

Ik = [lk, uk], con lk, uk ∈ R para k = 1, ..., n. Es deseable emplear un algoritmo

de minimización que no haga uso de las derivadas de la función de coste debido a

que para el tipo de funciones de coste con las que vamos a tratar no disponemos de

fórmulas anaĺıticas. Además, en este caso la derivación numérica no es una alternativa

debido a que es computacionalmente costosa. En este trabajo nos hemos centrado

en la optimización estocástica, en particular en el conocido algoritmo de Simulated

Annealing [88]. Con el objetivo de que las calibraciones de los modelos se realicen en el

menor tiempo posible hemos empleado técnicas de computación de altas prestaciones.

En la segunda parte de la tesis hemos diseñado un nuevo algoritmo basado en

Monte Carlo de Mı́nimos Cuadrados (Least-Squares Monte Carlo, LSMC) para aproxi-

mar los componentes (Y, Z) de la solución de la siguiente ecuación diferencial es-

tocástica forward-backward (FBSDE),

Yt = g(XT) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs,

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs,

donde W es un movimiento Browniano q-dimensional (q ≥ 1). Además el algoritmo

también ha aproximado la solución de la EDP parabólica semilineal asociada a dicha

FBSDE.

En los últimos tiempos ha ido aumentando el interés de disponer de algoritmos

que sean capaces de trabajar de manera eficiente cuando la dimensión d del espacio

224

ocupado por el proceso X es alta. Este interés ha sido propiciado principalmente por

la comunidad de matemática financiera, en la que las reglas de valoración no lineales

están siendo cada vez más importantes. Los algoritmos disponibles hasta el momento

[18, 54, 59, 60] no eran capaces de manejar los casos en los que la dimensión era

mayor que 8. El principal inconveniente no era simplemente el tiempo computacional

necesario, sino principalmente el elevado uso de memoria principal de los citados

algoritmos.

El objetivo de esta segunda parte de la tesis ha sido modificar totalmente el algo-

ritmo propuesto en [60] para en primer lugar minimizar el uso de memoria principal

debido al almacenamiento de las simulaciones. Esto nos ha permitido resolver el

problema en dimensiones d más altas. De este modo, en segundo lugar el algoritmo

ha podido ser implementado de forma paralela en unidades de procesamiento gráfico

(GPUs), lo que nos ha permitido obtener substanciales aceleraciones con respecto a

implementaciones tradicionales en CPU. Por ejemplo, hemos podido resolver proble-

mas en dimensión d = 11 en ocho segundos empleando 2000 simulaciones por hiper-

cubo. Con el objetivo de ilustrar el rendimiento del esquema propuesto hemos pre-

sentado varios experimentos numéricos, llegando a resolver problemas en dimensión

d = 19. Además, se ha llevado a cabo el análisis del error de aproximación del

algoritmo propuesto.

El esquema de esta memoria es el siguiente.

En la Parte I, que consta de cuatro caṕıtulos, hemos trabajado con modelos de

volatilidad estocástica de tipo SABR tanto en mercados de acciones/divisas como

en mercados de tipos de interés. Nos hemos centrado en la valoración eficiente de

distintos derivados financieros, aśı como en la calibración eficiente de los modelos

estudiados a precios reales cotizados en los mercados.

El Caṕıtulo 1 se ha dedicado a la presentación del algoritmo de optimización global

estocástica Simulated Annealing. Este algoritmo se ha empleado posteriormente en las

calibraciones de los modelos estudiados en los Caṕıtulos 2 y 3. Hemos implementado

los algoritmos haciendo uso de técnicas de computación de altas prestaciones (HPC)

225

debido a que en el mundo financiero las calibraciones deben hacerse en el menor

tiempo posible.

En el Caṕıtulo 2 hemos estudiado el modelo de volatilidad estocástica SABR

en mercados de acciones y de divisas. Hemos analizado el modelo SABR clásico,

llamado SABR estático, y otras extensiones de este modelo conocidas como SABR

dinámico. Para el modelo SABR dinámico hemos propuesto una expresión original

y más general para los parámetros funcionales. Posteriormente, hemos calibrado los

modelos al ı́ndice EURO STOXX 50 y al tipo de cambio EUR/USD. Finalmente,

hemos valorado un opción cliquet sobre el tipo de intercambio EUR/USD.

En el Caṕıtulo 3 hemos presentado los modelos de mercado SABR/LIBOR, pro-

puestos por Hagan, Mercurio & Morini y Rebonato. El principal objetivo de este

caṕıtulo ha sido calibrar eficientemente estos modelos a precios de mercado reales

de caplets y swaptions. Hemos construido un conjunto de algoritmos, implementados

haciendo uso de varias GPUs, que nos han permitido calibrar estos modelos empleando

simulación de Monte Carlo. Este enfoque es particularmente útil cuando consideramos

productos y modelos en los que no hay disponibles fórmulas de valoración, o bien estas

no son suficientemente precisas.

En el Caṕıtulo 4, al igual que en el caṕıtulo anterior, hemos trabajado con los

citados modelos de mercado SABR/LIBOR. Sin embargo, hemos seguido el enfoque

alternativo ofrecido por las EDPs con el objetivo de intentar superar las limitaciones

de la simulación de Monte Carlo, ver [139], a saber, convergencia muy lenta, la valo-

ración de opciones con ejercicio anticipado y el cálculo de las denominadas “griegas”.

Hemos formulado los correspondientes modelos de EDPs para los modelos de mer-

cado SABR/LIBOR introducidos en el Caṕıtulo 3. Las EDPs resultantes tienen alta

dimensión en espacio. Con el propósito de vencer la maldición de la dimensión hemos

empleado la denominada sparse grid combination technique.

La Parte II, constituida por un único caṕıtulo, se ha centrado en el estudio de las

ecuaciones diferenciales estocásticas hacia atrás, BSDEs.

En el Caṕıtulo 5 hemos diseñado un nuevo algoritmo basado en Monte Carlo de

226

Mı́nimos Cuadrados para aproximar la solución de Backward Stochastic Differential

Equations discretas en tiempo. Nuestro algoritmo permite una paralelización masiva

de las computaciones en procesadores multinúcleo tales como GPUs. El enfoque pro-

puesto ha consistido en un nuevo método de estratificación, que ha sido crucial para

permitir una paralelización altamente escalable. De este modo, hemos minimizado

el consumo de memoria principal debido al almacenamiento de las simulaciones. De

hecho, cabe destacar el menor consumo de memoria principal del algoritmo propuesto

en comparación con el de los trabajos previos.

El Apéndice A contiene una breve descripción de los diferentes problemas de

optimización que han sido testeados empleando la implementación propuesta del al-

goritmo Simulated Annealing. En el Apéndice B se ha obtenido la expresión de la

volatilidad impĺıcita del modelo SABR dinámico general. Además se han mostrado

los datos de mercado empleados en el correspondiente Caṕıtulo 2. El Apéndice C

contiene dos resultados matemáticos relativos al algoritmo propuesto en el Caṕıtulo

5 para resolver BSDEs.

Finalizamos con una breve sección que resume las principales conclusiones de este

trabajo.

227

228

Resumo extenso

Nesta tese analizamos a valoración de derivados financeiros empregando determinados

modelos matemáticos. O noso obxectivo foi ilustrar o uso destes modelos, poñendo

énfase na súa implementación e calibración.

Un derivado financeiro é un contrato cuxo valor depende de un ou máis activos,

denominados activos subxacentes. Normalmente, o activo subxacente é unha acción,

un tipo de intercambio de moedas, o prezo de mercado de certas materias primas

como o aceite ou o trigo, ou un bono (tipo de xuro). Entre a gran variedade de

derivados financeiros que se comercializan hoxe en d́ıa, unha opción é o exemplo máis

sinxelo. Unha opción é un contrato que dá ao seu posuidor o dereito (pero non a obri-

gación) de comprar ou vender o activo subxacente a un prezo prefixado nunha data

futura. Unha opción de compra dá o dereito a comprar, mentres que unha opción de

venda dá o dereito a vender. Unha opción denomı́nase europea se o dereito para com-

prar ou vender pode ser exercido soamente na data de vencemento, e coñécese como

americana se pode exercerse en calquer instante anterior ao vencemento. As opcións

de compra e venda son os instrumentos derivados básicos e por iso normalmente

coñécense como opcións vainilla. Con todo, existe unha gran cantidade de derivados,

normalmente coñecidos como exóticos, cuxa estrutura entraña máis complexidade.

Valorar estes instrumentos derivados non é trivial, debido a que se descoñece o modo

en que evolucionarán no futuro os prezos dos activos subxacentes.

A primeira vez que se comercializaron estes derivados financeiros en mercados

organizados foi o 26 de abril do 1973 no CBOE (Chicago Board Options Exchange).

Primeiramente operábase simplemente con opcións de compra sobre 16 accións, as

229

opcións de venda non foron introducidas ata o ano 1977. No ano 1973, Merton [104] e

Black e Scholes [13] publicaron por separado a teoŕıa básica de valoración de opcións,

a cobertura dinámica e a teoŕıa de non arbitraxe. Empregando estas estratexias, os

autores obtiveron a celebrada ecuación en derivadas parciais (EDP) de Black-Scholes

e a fórmula de Black-Scholes para valorar opcións vainilla europeas. A pesar do gran

éxito desta fórmula, despois da quebra do mercado de accións en outubro de 1987,

revelouse que o feito de asumir no modelo de Black-Scholes [13]

dS(t) = rS(t)dt+ σS(t)dW (t), (1)

que a volatilidade σ do activo subxacente S era constante orixinaba limitacións sig-

nificativas na valoración das opcións. En (1) estamos a considerar a medida de pro-

babilidade risco neutro, onde r representa o tipo de xuro libre de risco e W é un

movemento Browniano. Co obxectivo de fixar ideas, consideremos o prezo en tempo

t dunha opción europea de compra con prezo de exercicio K. Este contrato paga a

cantidade

max(S(T)−K, 0) = (S(T)−K)+,

na súa data de vencemento T . O seu valor a tempo t < T ven dado pola fórmula de

Black

V Black(S, t, σ, r,K, T) = SΦ(d1)−Ke−r(T−t)Φ(d2),

onde Φ é a función de distribución acumulada da distribución normal estándar e

d1 =
log(S/K) +

(
r + 1

2
σ2
)

(T − t)
σ
√
T − t

,

d2 =
log(S/K) +

(
r − 1

2
σ2
)

(T − t)
σ
√
T − t

.

Dita fórmula de Black é o método estándar de valoración no mercado de opcións euro-

peas de compra. Se coñecemos o valor da volatilidade σ e o resto dos parámetros pode-

mos calcular o prezo da opción e viceversa, se dispoñemos da cotización do prezo da

opción V Black(S, t, σ, r,K, T) poderemos deducir o valor da volatilidade σ, que se de-

nomina volatilidade impĺıcita. A continuación consideramos dous prezos de exercicio

230

diferentes K1 e K2. Supoñamos que no mercado cotizan os prezos das dúas opcións de

compra correspondentes aos mencionados prezos de exercicio, V Black(S, t, σ, r,K1, T)

e V Black(S, t, σ, r,K2, T). Nótese que ámbalas dúas opcións de compra teñen o mesmo

subxacente S e o mesmo vencemento T . A cuestión clave é que non existe un único

parámetro de volatilidade σ tal que

V Market(S, t,K1, T) = V Black(S, t, σ, r,K1, T),

e

V Market(S, t,K2, T) = V Black(S, t, σ, r,K2, T),

é dicir, prećısanse dúas volatilidades diferentes σ(T,K1) e σ(T,K2) para recuperar os

prezos de mercados observados:

V Market(S, t,K1, T) = V Black(S, t, σ(T,K1), r,K1, T),

V Market(S, t,K2, T) = V Black(S, t, σ(T,K2), r,K2, T).

Podeŕıase seguir un argumento análogo fixando o prezo de exercicio K e considerando

dúas datas de vencemento T1 e T2. Por tanto, cada prezo de mercado da opción de

compra precisa a súa propia volatilidade de Black σ(T,K) dependendo do prezo de

exercicio K e do vencemento T da opción de compra. A forma da gráfica da volati-

lidade impĺıcita fronte ao prezo de exercicio normalmente presenta formas de sorriso

(ver Figura 1), de ah́ı que se coñeza como sorriso de volatilidade (volatility smile

ou skew). Nalgúns mercados mostra unha asimetŕıa considerable. Se debuxamos as

volatilidades impĺıcitas fronte aos prezos de exercicio e vencementos, obsérvanse nor-

malmente estructuras non planas, non só nos mercados de accións ou de divisas, senón

tamén nos mercados de tipos de xuro. O feito de ignorar os sorrisos de volatilidade

pode levar a unha incorrecta valoración das opcións.

Tendo en conta que as dinámicas descritas pola ecuación diferencial estocástica (1)

non son capaces de capturar axeitadamente as volatilidades impĺıcitas de mercado, os

investigadores trataron de atopar modelos alternativos que fosen apropiados para este

propósito. A continuación revisamos brevemente os principais enfoques propostos na

literatura.

231

Prezo de exercicio

V
o
la

ti
lid

a
d
e
 i
m

p
líc

it
a

Figure 1: Forma común do sorriso de volatilidade.

Modelos de volatilidade local Estes modelos son extensións anaĺıticas directas

dun movemento Browniano xeométrico, que permiten ata certo punto capturar sorri-

sos na volatilidade impĺıcita. Os principais exemplos son os seguintes. No ano 1976

Cox e Ross [30] propuxeron os procesos coñecidos como CEV, constant-elasticity-of-

variance. Os autores consideraron ecuacións diferenciais estocásticas da forma

dS(t) = rS(t)dt+ σS(t)βdW (t), β ∈ (0, 1),

onde o parámetro β é o que engade ao modelo a capacidade de capturar os sorrisos

de volatilidade de mercado. Nos anos 1994 e 1997 Dupire [37, 38] suxire o modelo

dS(t) = rS(t)dt+ σ(S, t)S(t)dW (t),

onde a volatilidade instantánea σ é unha función determinista do prezo do activo S

e do tempo t.

Modelos de difusión con saltos Estes modelos foron introducidos co obxectivo

de modelar discontinuidades no proceso estocástico subxacente. Nos mercados de

accións estes modelos foron incorporados no ano 1976 por Merton [105] e empréganse

normalmente co obxectivo de calibrar sorrisos de volatilidade.

Modelos de volatilidade estocástica Estes modelos foron deseñados para repro-

ducir os sorrisos de volatilidade do mercado e para capturar a natureza estocástica da

232

volatilidade. Os principais exemplos son os modelos de Hull e White (1987), Heston

(1993) e Hagan, Kumar, Lesniewski y Woodward (2002). Son modelos máis realistas,

pero teñen o inconvinte de ser máis complexos en termos da valoración de opcións.

No modelo de Hull e White [77] o activo e a súa volatilidade modélanse do seguinte

xeito

dS(t) = rS(t)dt+
√
σ(t)S(t)dW (t), S(0) = S0,

dσ(t) = κσ(t)dt+ ζσ(t)dZ(t), σ(0) = σ0,

onde dW e dZ teñen coeficiente de correlación ρ. Os outros parámetros son o valor

de retorno da volatilidade κ, a volatilidade da volatilidade ζ e o valor inicial da

volatilidade σ0.

O modelo de Heston [73] ven definido por

dS(t) = rS(t)dt+
√
σ(t)S(t)dW (t), S(0) = S0,

dσ(t) = κ(θ − σ(t))dt+ ζ
√
σ(t)dZ(t), σ(0) = σ0,

onde dW (t)dZ(t) = ρdt. Os outros parámetros do modelo son a velocidade de re-

versión á media κ, a volatilidade a longo prazo θ, a volatilidade da volatilidade ζ

e o valor inicial da volatilidade σ0. Este modelo é moi popular entre os operadores

de mercado debido á existencia de fórmulas pechadas para valorar as opcións euro-

peas, o cal resulta particularmente útil durante o proceso de calibración aos datos de

mercado. Ditas fórmulas anaĺıticas obtéñense empregando a función caracteŕıstica,

que se calcula resolvendo a EDP correspondente ao modelo de Heston e mediante a

inversión dunha transformada de Fourier.

En [67] Hagan, Kumar, Lesniewski e Woodward propuxeron o chamado modelo

SABR, que é a extensión natural do modelo CEV clásico á volatilidade estocástica.

O nome SABR é un acrónimo de Stochastic, Alpha, Beta e Rho, tres dos catro

parámetros do modelo. As dinámicas do prezo forward F (t) = e(r−d)(T−t)S(t) veñen

233

determinadas polo seguinte sistema de ecuacións diferenciais estocásticas

dF (t) = α(t)F (t)βdW (t), F (0) = F0,

dα(t) = να(t)dZ(t), α(0) = α0,

onde (W,Z) é un movemento Browniano bidimensional con correlación constante ρ.

Os outros parámetros do modelo son a elasticidade da varianza β ∈ [0, 1], a volatilida-

de da volatilidade ν e o nivel de referencia da volatilidade α0. O feito de que o modelo

SABR se convertese no estándar de mercado para reproducir os prezos de opcións

europeas fai que este modelo destaque sobre todos os demais propostos na literatura

ata o momento. Aı́nda que os modelos de volatilidade local podeŕıan axustarse ao

mercado mesmo mellor que o modelo SABR, estes modelos pred́ın evolucións para

o subxacente que son pouco realistas. De feito o modelo SABR reflicte cambios

nos prezos das opcións con respecto ao prezo de exercicio, a diferenza dos modelos

de volatilidade local que capturan variacións nos prezos das opcións con respecto á

evolución do subxacente.

Entre a gran cantidade de derivados financeiros comercializados hoxe en d́ıa, cando

o derivado é un tipo de xuro ou un conxunto deles, aparece a clase de derivados de

tipos de xuro. Neste traballo consideramos principalmente bonos, caplets, caps, swaps

e swaptions. Un bono é un contrato que paga periodicamente cupóns dependendo da

evolución de certos tipos de xuro. Un caplet é unha opción de compra que paga a

diferenza positiva entre un tipo de xuro variable e outro fixo (strike). Un contrato

cap é un conxunto de caplets asociados con varias datas de vencemento. Un swap

é un contrato que intercambia dous tipos de xuro diferentes. Un swaption é unha

opción que dá o dereito a entrar nun swap nunha data futura dada. No libro de

Brigo e Mercurio [19] pode atoparse unha descrición detallada sobre estes e outros

derivados de tipos de xuro. A diferenza do caso dos mercados de accións/divisas,

nos mercados de tipos de xuro a longa duración dos contratos e o comportamento

dos tipos de xuro orixinou a consideración de modelos de tipos de xuro estocásticos.

Estes modelos poden clasificarse en dúas categoŕıas, modelos de tipo a curto prazo

(short rate models) e modelos de mercado (market models).

234

Os modelos de tipo a curto prazo especifican as dinámicas da evolución dun só

tipo de xuro, e a partir delas determı́nase a evolución futura de toda a curva de

factores de desconto. Os populares modelos de Vasicek (1977) [136] e Cox, Ingersoll

e Ross (1985) [29] pertencen a esta categoŕıa. O principal inconveniente dos modelos

de tipos de xuro a curto prazo é a imposibilidade de calibrar os seus parámetros á

curva inicial dos factores de desconto, especialmente para aqueles modelos nos que

non hai dispoñibles fórmulas de valoración anaĺıticas.

En 1986, Ho e Lee [75] propuxeron a primeira alternativa aos modelos de tipos

de xuro a curto prazo, o que supuxo o primeiro traballo na categoŕıa dos modelos

de mercado. Os autores modelaron a evolución de toda a curva de factores de des-

conto empregando unha árbore binomial. Máis tarde, no ano 1992, Heath, Jarrow

e Morton [69] trasladaron a tempo continuo a hipótese básica do modelo de Ho e

Lee. O seu modelo HJM converteuse no estándar de mercado para os tipos de xuro

a principios dos noventa. Con todo, o principal inconveniente do modelo HJM era a

súa incompatibilidade co uso no mercado das fórmulas de Black para valorar caplets

e swaptions.

Co obxectivo de superar o principal obstáculo do modelo HJM, no ano 1999, Mil-

tersen, Sandmann e Sondermann [108] publicaron un método baseado en EDPs para

derivar a fórmula de Black de valoración de caplets dentro do marco libre de arbi-

traxe ofrecido polo modelo HJM. Tendo en conta devandito método, Brace, Gatarek

e Musiela [16] derivaron o chamado modelo BGM, tamén coñecido como modelo de

mercado LIBOR (LMM), xa que modela a evolución dos tipos LIBOR futuros empre-

gando unha distribución lognormal baixo determinadas medidas relevantes. No ano

1997, Jamshidian [79] tamén contribúıu significativamente ao seu desenvolvemento.

Os tipos de xuro de referencia máis importantes son os London Interbank Offered

Rates ou LIBORs, que se calculan diariamente a partir dunha media dos tipos de

xuro ofrecidos por bancos en Londres. O modelo LMM converteuse no modelo de

tipos de xuro máis empregado. A principal razón é a consonancia entre este mode-

lo e as fórmulas de Black. De feito, o modelo LIBOR valora caps coa fórmula de

235

Black para caps, que é a fórmula estándar empregada no mercado de caps. Ademais,

o modelo Swap market model (SMM) valora swaptions coa fórmula de Black para

swaptions, que de novo é a fórmula estándar empregada no mercado de swaptions.

Tendo en conta que os caps e os swaptions son os derivados de tipos de xuro máis

comercializados, é moi importante que un modelo de mercado sexa compatible con

tales fórmulas de mercado. Ademais, os parámetros destes modelos poden calibrarse

facilmente aos prezos de mercado empregando produtos que cotizan diariamente.

O modelo de mercado LIBOR estándar considera volatilidades constantes para os

tipos futuros. Con todo, esta é unha hipótese moi limitada, debido a que é imposible

reproducir os sorrisos de volatilidade dos mercados. O modelo SABR non pode ser

empregado para valorar derivados cuxas funcións de pago dependan de varios tipos

futuros. De feito, o modelo SABR traballa na medida terminal, baixo a cal tanto

o tipo futuro como a súa volatilidade son martingalas. Isto sempre pode facerse

se traballamos cun único tipo futuro illado en cada tempo. Non obstante, baixo

esta mesma medida os procesos para outro tipo futuro e a súa volatilidade teŕıan

derivas. Para permitir que o modelo LMM capture os sorrisos de volatilidade do

mercado, propuxéronse diferentes extensións do modelo LMM que incorporaron o

sorriso de volatilidade por medio do modelo SABR. Neste traballo estudamos os

modelos propostos por Hagan [68], Mercurio e Morini [103] e Rebonato [122]. O

modelo de Hagan é a fusión natural entre os modelos de mercado SABR e LIBOR. O

modelo de Mercurio & Morini asume a existencia dun único proceso de volatilidade

lognormal que é común para todos os tipos forward. O modelo de Rebonato é análogo

ao modelo de Hagan, excepto nas dinámicas das volatilidades.

Nesta tese centrámonos nos modelos de tipo SABR debido a que son amplamente

empregados na práctica por varios motivos. En primeiro lugar, facendo uso de técnicas

de perturbación singulares é posible derivar fórmulas de aproximación para a volati-

lidade impĺıcita baixo o modelo SABR. En segundo lugar, o modelo é relativamente

sinxelo e manexable. En terceiro lugar, os seus parámetros, que desempeñan roles

236

espećıficos na xeración de sorrisos de volatilidade, teñen un significado intuitivo. Fi-

nalmente, converteuse no estándar de mercado para interpolar e extrapolar prezos de

caplets e swaptions vainilla.

Desde o punto de vista numérico, no marco de traballo ofrecido polo modelo de

mercado LIBOR a valoración de derivados de tipos de xuro reaĺızase principalmente

empregando simulación de Monte Carlo [49]. Con todo, tendo en conta que a si-

mulación de Monte Carlo ten un elevado custo computacional, neste traballo tamén

abordamos, por primeira vez na literatura, o enfoque de valoración alternativo ofre-

cido polas EDPs. Aśı pois, propuxemos a orixinal formulación en EDPs asociada

aos tres modelos SABR/LIBOR propostos por Hagan, Mercurio & Morini e Rebo-

nato. Non obstante, as EDPs asociadas aos modelos SABR/LIBOR teñen alta di-

mensión en espazo. Por tanto, os métodos tradicionais de mallas completas, como

os métodos estándar de diferenzas finitas ou elementos finitos, non serán capaces de

valorar derivados sobre máis de tres ou catro tipos de xuro subxacentes, debido á

denominada maldición da dimensión [7]. Co propósito de vencer a maldición da di-

mensión, o método de sparse grid combination technique proposto orixinalmente por

Zenger, Griebel e Schneider [63] foi analizado.

Os modelos estudados na primeira parte da tese teñen un número elevado de

parámetros. Calibrar estes parámetros aos datos de mercado é un obxectivo real

na práctica. A calibración é o procedemento de calcular os parámetros dun modelo

axustándoo aos prezos cotizados das opcións no mercado. O enfoque de calibración

estándar minimiza a distancia entre os prezos do modelo, V model, e os prezos de

mercado, V market. Unha medida común do error é o error cadrático

SE =
N∑
k=1

(
V market
k − V model

k (xxx)
)2
,

onde N denota o número de prezos de opcións aos que se desexa calibrar o modelo

e xxx = (x1, x2, . . . , xn) é o vector dos parámetros do modelo. A medida do error é

unha función f : Rn → R dos parámetros do modelo xxx. Debido a que estamos a

buscar o vector de parámetros xxx? que permita o mellor axuste do modelo aos prezos

237

de mercado dispoñibles, o procedemento de calibración pode ser interpretado como

un problema de optimización da forma

min
xxx∈I

f(xxx),

onde I ⊆ Rn é o conxunto admisible dos parámetros do modelo xxx, I = I1 × . . .× In,

Ik = [lk, uk], con lk, uk ∈ R para k = 1, ..., n. É desexable empregar un algoritmo

de minimización que non faga uso das derivadas da función de custo debido a que

para o tipo de funcións de custo coas que vamos a tratar non dispoñemos de fórmulas

anaĺıticas. Ademais, no caso que nos ocupa a derivación numérica non é unha alter-

nativa debido a que é computacionalmente costosa. Neste traballo centrámonos na

optimización estocástica, en particular no coñecido algoritmo de Simulated Annealing

[88]. Co obxectivo de que as calibracións dos modelos se leven a cabo no menor tempo

posible empregamos técnicas de computación de altas prestacións.

Na segunda parte da tese deseñamos un novo algoritmo baseado en Monte Carlo

de Mı́nimos Cadrados (Least-Squares Monte Carlo, LSMC) para aproximar as com-

poñentes (Y, Z) da solución da seguinte ecuación diferencial estocástica forward-

backward (FBSDE),

Yt = g(XT) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs,

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs,

onde W é un movemento Browniano q-dimensional (q ≥ 1). Ademais o algoritmo

tamén aproximou a solución da EDP parabólica semilineal asociada a dita FBSDE.

Nos últimos tempos foi aumentando a interese por dispoñer de algoritmos que

fosen capaces de traballar de maneira eficiente cando a dimensión d do espazo ocupado

polo proceso X é alta. Esta interese foi propiciada principalmente pola comunidade

de matemática financeira, na que as regras de valoración non lineais veñen sendo

cada vez máis importantes. Os algoritmos dispoñibles ata o momento [18, 54, 59, 60]

non eran capaces de manexar os casos nos que a dimensión era maior que 8. O

238

principal impedimento non era simplemente o tempo computacional necesario, senón

principalmente o elevado uso de memoria principal dos citados algoritmos.

O obxectivo desta segunda parte da tese foi modificar totalmente o algoritmo pro-

posto en [60] para en primeiro lugar minimizar o uso de memoria principal debido ao

almacenamento das simulacións. Esto permitiunos resolver o problema en dimensións

d máis altas. Deste xeito, en segundo lugar o algoritmo puido ser implementado de

forma paralela en unidades de procesamento gráfico (GPUs), o que nos permitiu obter

aceleracións substanciais con respecto a implementacións tradicionais en CPU. Por

exemplo, puidemos resolver problemas en dimensión d = 11 en oito segundos em-

pregando 2000 simulacións por hipercubo. Co obxectivo de ilustrar o rendemento do

esquema proposto presentamos varios experimentos numéricos, chegando a resolver

problemas en dimensión d = 19. Ademais, levouse a cabo a análise do erro de aproxi-

mación do algoritmo proposto.

O esquema desta memoria é o seguiente.

Na Parte I, que consta de catro caṕıtulos, traballamos con modelos de volatilidade

estocástica de tipo SABR tanto en mercados de accións/divisas como en mercados de

tipos de xuro. Centrámonos na valoración eficiente de distintos derivados financeiros,

aśı como na calibración eficiente dos modelos estudados a prezos reales cotizados nos

mercados.

O Caṕıtulo 1 dedicouse á presentación do algoritmo de optimización global es-

tocástica Simulated Annealing. Este algoritmo foi empregado posteriormente nas

calibracións dos modelos estudados nos Caṕıtulos 2 e 3. Implementamos os algorit-

mos facendo uso de técnicas de computación de altas prestacións (HPC) debido a que

no mundo financeiro as calibracións deben facerse no menor tempo posible.

No Caṕıtulo 2 estudamos o modelo de volatilidade estocástica SABR en mercados

de accións e de divisas. Analizamos o modelo SABR clásico, chamado SABR estático,

e outras extensións deste modelo coñecidas como SABR dinámico. Para o modelo

SABR dinámico propuxemos unha expresión orixinal e máis xeral para os parámetros

funcionais. Posteriormente, calibramos os modelos ao ı́ndice EURO STOXX 50 e ao

239

tipo de cambio EUR/USD. Finalmente, valoramos unha opción cliquet sobre o tipo

de intercambio EUR/USD.

No Caṕıtulo 3 presentamos os modelos de mercado SABR/LIBOR propostos por

Hagan, Mercurio & Morini e Rebonato. O principal obxectivo deste caṕıtulo foi cali-

brar eficientemente estes modelos aos prezos de mercado reais de caplets e swaptions.

Construimos un conxunto de algoritmos, implementados facendo uso de varias GPUs,

que nos permitiron calibrar estes modelos empregando simulación de Monte Carlo.

Este enfoque é particularmente útil cando consideramos produtos e modelos nos que

non hay dispoñibles fórmulas de valoración, ou ben estas non son suficientemente

precisas.

No Caṕıtulo 4, ao igual que no caṕıtulo anterior, traballamos cos citados modelos

de mercado SABR/LIBOR. Sen embargo, seguimos o enfoque alternativo ofrecido

polas EDPs co obxectivo de intentar superar as limitacións da simulación de Monte

Carlo, ver [139], a saber, converxencia moi lenta, a valoración de opcións con exer-

cicio anticipado e o cálculo das denominadas “gregas”. Formulamos os correspon-

dentes modelos de EDPs para os modelos de mercado SABR/LIBOR introducidos no

Caṕıtulo 3. As EDPs resultantes teñen alta dimensión en espazo. Co propósito de

vencer a maldición da dimensión empregamos a denominada sparse grid combination

technique.

A Parte II, constitúıda por un único caṕıtulo, centrouse no estudo das ecuacións

diferenciais estocásticas cara atrás, BSDEs.

No Caṕıtulo 5 deseñamos un novo algoritmo baseado en Monte Carlo de Mı́nimos

Cadrados para aproximar a solución de Backward Stochastic Differential Equations

discretas en tempo. O noso algoritmo permite unha paralelización masiva das com-

putacións en procesadores multinúcleo tales como GPUs. O enfoque proposto consiste

nun novo método de estratificación, que foi crucial para permitir unha paralelización

altamente escalable. Deste xeito, minimizamos o consumo de memoria principal de-

bido ao almacenamento das simulacións. De feito, cabe destacar o menor consumo

de memoria principal do algoritmo proposto en comparación co dos traballos previos.

240

O Apéndice A contén unha breve descrición dos diferentes problemas de opti-

mización que foron testeados empregando a implementación proposta do algoritmo

Simulated Annealing. No Apéndice B obt́ıvose a expresión da volatilidade impĺıcita do

modelo SABR dinámico xeral. Ademais mostráronse os datos de mercado emprega-

dos no correspondente Caṕıtulo 2. O Apéndice C contén dous resultados matemáticos

relativos ao algoritmo proposto no Caṕıtulo 5 para resolver BSDEs.

Finalizamos cunha breve sección que resume as principais conclusións deste tra-

ballo.

241

242

Bibliography

[1] S. Achatz. Higher order sparse grid methods for elliptic partial differential

equations with variable coefficients. Computing, 71(1):1–15, 2003.

[2] D. H. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer,

Boston, 1987.

[3] L. Andersen and J. Andreasen. Jump diffusion processes: volatility smile fitting

and numerical methods for option pricing. Review of Derivatives Research,

4:231–262, 2000.

[4] L. Andersen and J. Andreasen. Volatility skews and extension of the Libor

Market Model. Applied Mathematical Finance, 7:1–32, 2000.

[5] L. Andersen and R. Brotherton-Ratcliffe. Extended LIBOR market models with

stochastic volatility. Journal of Computational Finance, 9(1):1–40, 2005.

[6] A. Arciniega and E. Allen. Extrapolation of difference methods in option valu-

ation. Applied Mathematics and Computation, 135:165–186, 2004.

[7] R. Bellmann. Adaptive control processes: A guided tour. Princenton University

Press, 1961.

[8] D. Belomestny and J. G. M. Schoenmakers. A jump-diffusion Libor model and

its robust calibration. Quantitative Finance, 11:529–546, 2011.

243

[9] C. Bender and J. Steiner. Least-squares Monte Carlo for BSDEs. In R. Car-

mona, P. Del Moral, P. Hu, and N. Oudjane, editors, Numerical Methods in Fi-

nance, volume 12, pages 257–289. Springer Proceedings in Mathematics, 2012.

[10] A. Bernemann and R. Schereyer. Accelerating Exotic Option Pricing and Model

Calibration Using GPUs. Social Science Research Network, pages 1–19, 2011.

[11] H. Bersini, M. Dorigo, S. Langerman, G. Seront, and L. M. Gambardella. Re-

sults of the first international contest on evolutionary optimisation (1st ICEO).

In Proceedings of IEEE International Conference on Evolutionary Computation,

IEEE-EC 96, pages 611–615, New York, 1996. IEEE Press.

[12] G. Beylkin and M. J. Mohlenkamp. Algorithms for numerical analysis in high

dimensions. SIAM Journal on Scientific Computing, 26(6):2133–2159, 2005.

[13] F. Black and M. Scholes. The Pricing of Options and Corporate Liabilities.

Journal of Political Economy, 81:637–654, 1973.

[14] W. M. Bolstad. Understanding Computational Bayesian Statistics. Wiley, New

York, 2001.

[15] B. Bouchard and X. Warin. Monte-Carlo valuation of American options: facts

and new algorithms to improve existing methods. In R. Carmona, P. Del Moral,

P. Hu, and N. Oudjane, editors, Numerical Methods in Finance, volume 12,

pages 215–255. Springer Proceedings in Mathematics, 2012.

[16] A. Brace, D. Gatarek, and M. Musiela. The Market model of interest rate

dynamics. Mathematical Finance, 7(2):127–155, 1997.

[17] L. Breiman and A. Cutler. A deterministic algorithm for global optimization.

Mathematical Programming, 58(1):179–199, 1993.

[18] P. Briand and C. Labart. Simulation of BSDEs by Wiener Chaos Expansion.

Annals of Applied Probability, 24:1129–1171, 2014.

244

[19] D. Brigo and F. Mercurio. Interest Rate Models - Theory and Practice. With

Smile, Inflation and Credit. Springer, second edition, 2007.

[20] S. B. Brooks and B. J. T. Morgan. Optimization using simulated annealing.

The Statistician, 44(2):241–257, 1995.

[21] H. J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.

[22] H. J. Bungartz, M. Griebel, D. Röschke, and C. Zenger. Pointwise convergence

of the combination technique for the Laplace equation. East-West Journal of

Numerical Mathematics, 2:21–45, 1994.

[23] H. J. Bungartz, M. Griebel, D. Röschke, and C. Zenger. A proof of convergence

for the combination technique for the Laplace equation using tools of symbolic

computation. Mathematics and Computers in Simulation, 41:595–605, 1996.

[24] T. Bäck. Evolutionary algorithms in theory and practice. Oxford University

Press, 1996.

[25] B. Chen, L. A. Grzelak, and C. W. Oosterlee. Calibration and Monte Carlo

Pricing of the SABR-Hull-White Model for Long-Maturity Equity Derivatives.

Journal of Computational Finance, 15:79–113, 2012.

[26] B. Chen, C. W. Oosterlee, and H. van der Weide. A low-bias simulation scheme

for the SABR stochastic volatility model. International Journal of Theoretical

and Applied Finance, 15:1–27, 2012.

[27] D. J. Chen, C. Y. Lee, C. H. Park, and P. Mendes. Parallelizing simulated

annealing algorithms based on high-performance computer. Journal of Global

Optimization, 39:261–289, 2007.

[28] H. Chen, N. S. Flann, and D. W. Watson. Parallel genetic simulated anneal-

ing: A massively parallel SIMD algorithm. IEEE Transactions on Parallel and

Distributed Systems, 9:126–136, 1998.

245

[29] J. C. Cox, J. E. Ingersoll, and S. A. Ross. A Theory of the Term Structure of

Interest Rates. Econometrica, 53:385–407, 1985.

[30] J. C. Cox and S. A. Ross. The Valuation of Options for Alternative Stochastic

Processes. Journal of Financial Economics, 3:145–166, 1976.

[31] S. Crépey. Financial Modeling: A Backward Stochastic Differential Equations

Perspective. Springer, 2013.

[32] A. Debudaj-Grabysz and R. Rabenseifner. Nesting OpenMP in MPI to Imple-

ment a Hybrid Communication Method of Parallel Simulated Annealing on a

Cluster of SMP Nodes. In EuroPVM/MPI, Sorrento, September 19, 2005.

[33] A. Dekkers and E. Aarts. Global optimization and simulated annealing. Math-

ematical Programming, 50(1):367–393, 1991.

[34] E. Derman and I. Kani. Riding on a smile. Risk, 7(2):32–39, 1994.

[35] L. Dixon and G. Szegö. Towards Global Optimization. North Holland, New

York, 1978.

[36] D. J. Duffy. Finite Difference methods in financial engineering. A Partial Dif-

ferential Equation Approach. Wiley Finance Series, 2006.

[37] B. Dupire. Pricing with a smile. Risk, 7:18–20, 1994.

[38] B. Dupire. Pricing and Hedging with Smiles. In M.A.H. Dempster and S.R.

Pliska, editors, Mathematics of Derivative Securities, pages 103–111. Cambridge

University Press, Cambridge, 1997.

[39] E. Eberlein, U. Keller, and K. Prause. New insights into smile, mispricing, and

value at risk: the hyperbolic model. Journal of Business, 71(3):371–405, 1998.

[40] E. Eberlein and F. Ozkan. The Lèvy LIBOR model. Finance and Stochastics,

9:327–348, 2005.

246

[41] M. Fatica and E. Phillips. Pricing American options with least squares Monte

Carlo on GPUs. In Proceeding of the 6th Workshop on High Performance Com-

putational Finance, ACM, 2013.

[42] J. L. Fernández, A. M. Ferreiro, J. A. Garćıa, A. Leitao, J. G. López-Salas, and

C. Vázquez. Static and dynamic SABR stochastic volatility models: calibration

and option pricing using GPUs. Mathematics and Computers in Simulation,

94:55–75, 2013.

[43] A. M. Ferreiro, J. A. Garćıa, J. G. López-Salas, and C. Vázquez. An efficient

implementation of parallel simulated annealing algorithm in GPUs. Journal of

Global Optimization, 57(3):863–890, 2013.

[44] A. M. Ferreiro, J. A. Garćıa, J. G. López-Salas, and C. Vázquez. SABR/LI-

BOR market models: Pricing and calibration for some interest rate derivatives.

Applied Mathematics and Computation, 242:65–89, 2014.

[45] D. Funaro. Polynomial approximation of differential equations. In Lecture Notes

in Physics, New Series m: Monographs, volume 8. Springer-Verlag, Berlin, 1992.

[46] A. Gaikwad and I. M. Toke. GPU Based Sparse Grid Technique for Solving

Multidimensional Options Pricing PDEs. In Proceedings of the 2nd Workshop

on High Performance Computational Finance, WHPCF ’09, pages 6:1–6:9, New

York, NY, USA, 2009. ACM.

[47] J. Gatheral. The Volatility Surface: A Practitioner’s Guide. Wiley Finance,

2006.

[48] T. Gerstner and P. Kloeden, editors. Recent Developments in Computational

Finance. Foundations, Algorithms and Applications. World Scientific Publish-

ers, Interdisciplinary Mathematical Science, 2013.

[49] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer-

Verlag, New York, 2003.

247

[50] P. Glasserman and S. Kou. The term structure of simple forward rates with

jump risk. Mathematical Finance, 13(3):383–410, 2003.

[51] P. Glasserman and N. Merener. Numerical solution of jump-diffusion LIBOR

market models. Journal of Computational Finance, 7(1):1–27, 2003.

[52] P. Glasserman and Q. Wu. Forward and Future Implied Volatility. International

Journal of Theoretical and Applied Finance, 14:407–432, 2011.

[53] E. Gobet. Advanced Monte Carlo methods for barrier and related exotic op-

tions. Mathematical Modeling and Numerical Methods in Finance, pages 497–

528, 2009.

[54] E. Gobet and C. Labart. Solving BSDE with adaptive control variate. SIAM

Numerical Analysis, 48:257–277, 2010.

[55] E. Gobet, J. P. Lemor, and X. Warin. A regression-based Monte Carlo method

to solve backward stochastic differential equations. Annals of Applied Probabil-

ity, 15:2172–2202, 2005.

[56] E. Gobet, J. G. López-Salas, P. Turkedjiev, and C. Vázquez. Stratified Regres-

sion Monte-Carlo Scheme for Semilinear PDEs and BSDEs with Large Scale

Parallelization on GPUs. Accepted for publication in SIAM Journal on Scien-

tific Computing, 2016.

[57] E. Gobet and A. Makhlouf. L2-time regularity of BSDEs with irregular terminal

functions. Stochastic Processes and their Applications, 120:1105–1132, 2010.

[58] E. Gobet and P. Turkedjiev. Adaptive importance sampling in least-squares

Monte Carlo algorithms for backward stochastic differential equations. Accepted

for publication in Stochastic Processes and Applications, 2015.

[59] E. Gobet and P. Turkedjiev. Approximation of BSDEs using Malliavin weights

and least-squares regression. Bernoulli, 22(1):530–562, 2016.

248

[60] E. Gobet and P. Turkedjiev. Linear regression MDP scheme for discrete back-

ward stochastic differential equations under general conditions. Mathematics of

Computation, 85(299):1359–1391, 2016.

[61] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies

in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD,

third edition, 1996.

[62] M. Griebel. The combination technique for sparse grids solution of PDEs on

multiprocessor machines. Parallel Processing Letters, 3:66–71, 1992.

[63] M. Griebel, M. Schneider, and C. Zenger. A combination technique for the

solution of sparse grid problems. In P. de Groen and R. Beauwens, editors,

Proceedings of the IMACS International Symposium on Iterative Methods in

Linear Albegra, pages 263–281, Brussels, April 1991. Elsevier, Amsterdam, 1992.

[64] M. Griebel and V. Thurner. The efficient solution of fluid dynamics problems

by the combination technique. International Journal of Numerical Methods for

Heat and Fluid Flow, 5(3):251–269, 1995.

[65] A. O. Griewank. General descent for global optimization. Journal Optimization

Theory Applications, 34:11–39, 1981.

[66] L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A distribution-free theory of

nonparametric regression. Springer Series in Statistics, Springer-Verlag, New

York, 2002.

[67] P. Hagan, D. Kumar, A. Lesniewski, and D. Woodward. Managing Smile Risk.

Wilmott Magazine, pages 84–108, 2002.

[68] P. Hagan and A. Lesniewski. LIBOR market model with SABR style stochas-

tic volatility. Working paper, available at http: // lesniewski. us/ papers/

working/ SABRLMM. pdf (2008), 2008.

249

http://lesniewski.us/papers/working/SABRLMM.pdf
http://lesniewski.us/papers/working/SABRLMM.pdf

[69] D. Heath, R. Jarrow, and A. Morton. Bond Pricing and the Term Structure of

Interest Rates: A New Methodology. Econometrica, 60:77–105, 1992.

[70] P. Henry-Labordère. Unifying the BGM and SABR Models: A Short ride in

Hyperbolic Geometry. SSRN, available at http: // papers. ssrn. com/ sol3/

papers. cfm? abstract_ id= 877762 (2006), 2006.

[71] P. Henry-Labordère. Combining the SABR and LMM models. Risk (2007),

2007.

[72] P. Henry-Labordère. Analysis, Geometry and Modeling in Finance: Advanced

Methods in Option Pricing. Financial Mathematics Series, Boca Raton, FL,

New York, Chapman & Hall, 2008.

[73] S. Heston. A Closed-Form Solution for Options with Stochastic Volatility with

Applications to Bond and Currency Options. The Review of Financial Studies,

6:327–343, 1993.

[74] D. M. HimmelBlau. Applied Linear Programming. McGraw-Hill, New York,

1972.

[75] T. S. Y. Ho and S. B. Lee. Term Structure Movements and the Pricing of

Interest Rate Contingent Claims. The Journal of Finance, 41:1011–1029, 1986.

[76] C. Homescu. Implied volatility surface: construction methodologies and char-

acteristics. http: // arxiv. org/ abs/ 1107. 1834 , 2011.

[77] J. Hull and A. White. The Pricing of Options on Assets with Stochastic Volatil-

ities. The Journal of Finance, 42(2):281–300, 1987.

[78] J. Hull and A. White. An Analysis of the Bias in Option Pricing Caused by

a Stochastic Volatility. Advances in Futures and Options Research, 3:27–61,

1988.

250

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=877762
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=877762
http://arxiv.org/abs/1107.1834

[79] F. Jamshidian. LIBOR and swap market models and measures. Finance and

Stochastic, 1:293–330, 1997.

[80] F. Jamshidian. Libor market model with semimartigales. In E. Jouini, J. Cvi-

tanić, and Marek Musiela, editors, Option pricing, interest rates and risk man-

agement. Cambridge University Press, 2001.

[81] K. A. De Jong. An analysis of the behavior of a glass of genetic adaptive systems.

PhD thesis, University of Michigan, Ann Arbor, 1975.

[82] M. Joshi and R. Rebonato. A displaced-diffusion stochastic volatility LIBOR

market model: motivation, definition and implementation. Quantitative Fi-

nance, 3(6):458–469, 2003.

[83] M. S. Joshi. Graphical Asian Options. Wilmott Journal, 2(2):97–107, 2010.

[84] P. Jäckel. Monte Carlo Methods in Finance. Wiley Finance, 2002.

[85] L. Kaisajuntti and J. Kennedy. Stochastic Volatility for Interest Rate

Derivatives. http: // papers. ssrn. com/ sol3/ papers. cfm? abstract_

id= 189488 , 2011.

[86] N. El Karoui, S. Peng, and M. C. Quenez. Backward stochastic differential

equations in finance. Mathematical Finance, 7(1):1–71, 1997.

[87] J. Kienitz and M. Wittke. Option Valuation in Multivariate SABR Models.

Research Paper Quantitative Finance Research Centre, University of Technology

Sydney, 272:1–24, 2010.

[88] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, 220(4598):671–680, 1983.

[89] A. Kliewer and S. Tschöke. A General Parallel Simulated Annealing Library

and Its Applications in Industry. Working paper, Department of Mathematics

and Computer Science, University of Paderborn, Germany, 1998.

251

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=189488
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=189488

[90] L. Abbas-Turki and B. Lapeyre. American options pricing on multi-core graphic

cards. In Business Intelligence and Financial Engineering, BIFE’09, pages 307–

311. IEEE, 2009.

[91] L. Abbas-Turki and S. Vialle and B. Lapeyre and P. Mercier. High dimensional

pricing of exotic European contracts on a GPU cluster, and comparison to a

CPU cluster. In Parallel & Distributed Processing, IPDPS 2009, pages 1–8.

IEEE, 2009.

[92] C. Labart and J. Lelong. A parallel algorithm for solving BSDEs. Monte Carlo

Methods and Applications, 19:11–39, 2013.

[93] J. W. Larson, M. Hegland, B. Harding, S. Roberts, L. Stals, A. P. Ren-

dell, P. Strazdins, M. M. Ali, C. Kowitz, R. Nobes, J. Southern, N. Wilson,

M. Li, and Y. Oishi. 2013 International Conference on Computational Science:

Fault-Tolerant Grid-Based Solvers: Combining Concepts from Sparse Grids and

MapReduce. Procedia Computer Science, 18:130–139, 2013.

[94] K. Larsson. Dynamic extensions and probabilistic expansions of the

SABR model. http: // papers. ssrn. com/ sol3/ papers. cfm? abstract_

id= 1536471 , 2010.

[95] A. Lee, C. Yau, M. B. Giles, A. Doucet, and Ch. C. Holmes. On the utility

of graphic cards to perform massively parallel simulation of advanced Monte

Carlo methods. Journal of Computational and Graphical Statistics, 19(4):769–

789, 2010.

[96] S. Y. Lee and K. G. Lee. Synchronous and asynchronous parallel simulated

annealing with multiple Markov Chains. IEEE Transactions on Parallel and

Distributed Systems, 7(10):993–1008, 1996.

[97] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,

M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey. De-

bunking the 100X GPU vs. CPU myth: an evaluation of throughput computing

252

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1536471
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1536471

on CPU and GPU. Newsletter ACM SIGARCH Computer Architecture News -

ISCA ’10, 38(3):451–460, 2010.

[98] J. P. Lemor, E. Gobet, and X. Warin. Rate of convergence of an empirical

regression method for solving generalized backward stochastic differential equa-

tions. Bernoulli, 12:889–916, 2006.

[99] A. V. Levy and A. Montalvo. The tunneling algorithm for the global mini-

mization of functions. SIAM Journal on Scientific and Statistical Computing,

6:15–29, 1985.

[100] F. A. Longstaff and E. S. Schwartz. Valuing american options by simulation: A

simple least-squares approach. The Review of Financial Studies, 14(1):113–147,

2001.

[101] G. Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8(4):1–6, 2003.

[102] D. L. McLeish. Monte Carlo Simulation and Finance. Wiley, 2005.

[103] F. Mercurio and M. Morini. No-Arbitrage dynamics for a tractable SABR

term structure Libor Model. Modeling Interest Rates: Advances in Derivatives

Pricing, Risk Books (2009), 2009.

[104] R. C. Merton. Theory of rational option pricing. Bell Journal of Economics

and Management Science, 4:141–183, 1973.

[105] R. C. Merton. Option pricing when underlying stock returns are discontinuous.

Journal of Financial Economics, pages 125–144, 1976.

[106] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation

of State Calculations by Fast Computing Machines. The Journal of Chemical

Physics, 21(6):1087–1092, 1953.

[107] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.

Springer, Berlin, 1998.

253

[108] K. Miltersen, K. Sandmann, and D. Sondermann. Closed-form solutions for

term structure derivatives with lognormal interest rates. Journal of Finance,

52(1):409–430, 1997.

[109] Nvidia Corporation. CUDA C Programming guide.

[110] Nvidia Corporation. CURAND Library.

[111] Nvidia Corporation. NVIDIA’s Next Generation CUDA Compute Architecture:

Kepler GK110/210.

[112] Nvidia Corporation. Whitepaper. NVIDIA’s Next Generation CUDA Compute

Architecture: Fermi.

[113] J. Oblój. Fine-Tune your smile: Correction to Hagan et al. Wilmott Magazine,

2008.

[114] E. Onbasoglu and L. Özdamar. Parallel Simulated Annealing Algorithms in

Global Optimization. Journal of Global Optimization, 19:27–50, 2001.

[115] Y. Osajima. The asymptotic expansion formula of implied volatility for dynamic

SABR Model and FX Hybrid Model. Capital markets: asset pricing and valua-

tion e-Journal, http: // papers. ssrn. com/ sol3/ papers. cfm? abstract_

id= 965265 , 2007.

[116] L. Paulot. Asymptotic implied volatility at second order with application to the

SABR model. http: // papers. ssrn. com/ sol3/ papers. cfm? abstract_

id= 1413649 , 2009.

[117] V. Piterbarg. Pricing and Hedging Callable Libor Exotics in Forward Libor

Models. The Journal of Computational Finance, 8(2):65–119, 2005.

[118] V. Piterbarg. Stochastic Volatility Model with Time-dependent Skew. Applied

Mathematical Finance, 12(2):147–185, 2005.

254

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=965265
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=965265
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1413649
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1413649

[119] R. Rebonato. Modern pricing of interest-rate derivatives: the Libor market

model and beyond. Princeton University Press, 2002.

[120] R. Rebonato. A time-homogeneous SABR-consistent extension of the LMM.

Risk (2008), 2008.

[121] R. Rebonato, K. Mckay, and R. White. The SABR/LIBOR Market Model.

Pricing, Calibration and Hedging for Complex Interest-Rate Derivatives. John

Wiley & Sons, first edition, 2009.

[122] R. Rebonato and R. White. Linking caplets and swaptions prices in the LMM-

SABR model. The Journal of Computational Finance, 13(2):19–45, 2009.

[123] C. Reisinger. Analysis of linear difference schemes in the sparse grid combination

technique. IMA Journal of Numerical Analysis, 33(2):544–581, 2013.

[124] M. J. Ruijter and C. W. Oosterlee. A Fourier Cosine Method for an Efficient

Computation of Solutions to BSDEs. SIAM Journal on Scientific Computing,

37(2):A859–A889, 2015.

[125] R. Salomon. Reevaluating genetic algorithms performance under coordinate

rotation of benchmark functions. BioSystems, 39(3):263–278, 1995.

[126] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-

Purpose GPU Programming. Addison-Wesley, Michigan, 2011.

[127] S. E. Shreve. Stochastic Calculus for Finance. Springer, 2004.

[128] S. Smolyak. Quadrature and interpolation formulas for tensor products of cer-

tain classes of functions. Dokl. Akad. Nauk SSR, 148:1042–1045, 1963.

[129] R. Storn and K. Price. Differential evolution: A simple and efficient heuristic

for global optimization over continuous spaces. Journal of Global Optimization,

11:341–359, 1997.

255

[130] A. Takahashi, A. Takehara, and M. Toda. Computation in an asymptotic expan-

sion method. http: // papers. ssrn. com/ sol3/ papers. cfm? abstract_

id= 1413924 , 2009.

[131] Y. Tian, Z. Zhu, F. C. Klebaner, and K. Hamza. Option pricing with the SABR

model on the GPU. High Performance Computational Finance (WHPCF) IEEE

Workshop, 14:1–8, 2010.

[132] Y. Tian, Z. Zhu, F. C. Klebaner, and K. Hamza. Pricing barrier and American

options under the SABR model on the graphics processing unit. Concurrency

and Computation: Practice and Experience, pages 1–13, 2011.

[133] P. Turkedjiev. Two algorithms for the discrete time approximation of Markovian

backward stochastic differential equations under local conditions. Electronic

Journal of Probability, 20, 2015.

[134] A. Törn and A. Ẑilinskas. Global Optimization. In Lecture Notes in Computer

Science, volume 350, Berlin, 1996. Springer.

[135] P. J. M van Laarhoven and E. H. L. Aarts. Simulated Annealing: Theory and

Applications. Kluwer, Dordrecht, 1987.

[136] O. Vasicek. An Equilibrium Characterization of the Term Structure. Journal

of Financial Economics, 5:177–188, 1977.

[137] G. West. Calibration of the SABR Model in Illiquid Markets. Applied Mathe-

matical Finance, 12:371–385, 2005.

[138] P. Wilmott. Cliquet Options and Volatility Models. Wilmott Magazine, pages

78–83, 2002.

[139] P. Wilmott. Paul Wilmott on Quantitative Finance. John Wiley & Sons, second

edition, 2006.

256

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1413924
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1413924

[140] L. Wu and F. Zhang. LIBOR market model with stochastic volatility. Journal

of Industrial and Management Optimization, 2:199–207, 2006.

[141] H. Yserentant. On the multi-level splitting of finite element spaces. Numerische

Mathematik, 49:379–412, 1986.

[142] H. Yserentant. Hierarchical bases. In Proceedings of the Second International

Conference on Industrial and Applied Mathematics, ICIAM 91, pages 256–276,

Philadelphia, PA, USA, 1992. Society for Industrial and Applied Mathematics.

[143] A. Zeiser. Fast Matrix-Vector Multiplication in the Sparse-Grid Galerkin

Method. Journal of Scientific Computing, 47(3):328–346, 2010.

[144] C. Zenger. Sparse grids. In W. Hackbusch, editor, Parallel Algorithms for

Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, vol-

ume 31, pages 241–251, Kiel, Germany, 1990. Vieweg-Verlag, 1991.

[145] J. Zhang. A numerical scheme for BSDEs. The Annals of Applied Probability,

14:459–488, 2004.

[146] W. Zhao, L. Chen, and S. Peng. A new kind of accurate numerical method for

backward stochastic differential equations. SIAM Journal on Scientific Com-

puting, 28(4):1563–1581, 2006.

[147] Thrust Library web page: https://github.com/thrust/thrust/wiki/

Documentation.

[148] MPI web page: http://www.mpi-forum.org.

[149] OpenMP web page: http://www.openmp.org.

[150] http://www.it.lut.fi/ip/evo/functions/node10.html.

[151] http://www.top500.org/list/2012/06/100.

257

https://github.com/thrust/thrust/wiki/Documentation
https://github.com/thrust/thrust/wiki/Documentation
http://www.mpi-forum.org
http://www.openmp.org
http://www.it.lut.fi/ip/evo/functions/node10.html
http://www.top500.org/list/2012/06/100

[152] CUSIMANN web pages: http://gforge.i-math.cesga.es/projects/

cusimann/ or http://code.google.com/p/cusimann/.

258

http://gforge.i-math.cesga.es/projects/cusimann/
http://gforge.i-math.cesga.es/projects/cusimann/
http://code.google.com/p/cusimann/

	Modelo_portada_tese_UDC
	SKMBT_C25316092110120
	tesis
	Abstract
	Resumen
	Resumo
	Introduction
	I Stochastic volatility models
	Simulated Annealing
	Introduction
	Simulated annealing
	Sequential Simulated Annealing
	Parallel Simulated Annealing

	Implementation on GPUs
	General-Purpose Computing on Graphics Processing Units (GPGPU)
	Nvidia GPUs, many core computing
	Notes on the CUDA implementation

	Numerical experiments: academic tests
	Analysis of a sample test problem: Normalized Schwefel function
	The set of performed tests

	Conclusions

	SABR models for equity
	Introduction
	The SABR model
	Static SABR model
	Dynamic SABR model and the choice of the functional parameters

	Calibration of the SABR model
	Pricing with Monte Carlo using GPUs
	Calibration of the parameters using GPUs
	Calibration with Technique I
	Calibration with Technique II

	Numerical results
	Pricing European options
	Calibration
	Pricing a cliquet option

	Conclusions

	SABR/LIBOR market models: Monte Carlo approach
	Introduction
	SABR/LIBOR market models
	Hagan model
	Mercurio & Morini model
	Rebonato model

	Model calibration
	Numerical results
	Hagan model
	Mercurio & Morini model
	Rebonato model

	Conclusions

	SABR/LIBOR market models: PDE approach
	Introduction
	Derivation of the PDE from the stochastic processes
	Finite Difference Method
	Boundary conditions
	Numerical results

	Sparse grids and the combination technique
	Sparse grids
	Combination technique
	Numerical results

	II BSDEs
	Backward Stochastic Differential Equations
	Introduction
	Mathematical framework and basic properties
	Stratified algorithm and convergence results
	Algorithm
	Error analysis
	Proof of Theorem 5.3.5

	GPU implementation
	Explicit solutions to OLS in Algorithm 4
	Pseudo-algorithms for GPU
	Theoretical complexity analysis

	Numerical experiments
	Model, stratification, and performance benchmark
	CPU and GPU performance

	Test functions for the Simulated Annealing
	SABR equity
	Expression of implied volatility in the general case
	Market data

	BSDEs
	Proof of Proposition 5.2.1
	Stability results for discrete BSDE

	Conclusions
	Resumen extenso
	Resumo extenso
	Bibliography

	Página en blanco

