

CUADERNO 9: CÁLCULO DE FRANCOBORDO Y ARQUEO

FAST FERRY CATAMARÁN 950 PAX Y 250 COCHES

Trabajo de fin de grado 14-03

Escuela politécnica superior - Universidade da coruña.

Escola Politécnica Superior

RPA:

DEPARTAMENTO DE INGENIERÍA NAVAL Y OCEÁNICA ANTEPROYECTO Y PROYECTO FIN DE CARRERA

CURSO 2.013-2014

PROYECTO NÚMERO 14-03

TIPO DE BUQUE: Fast-Ferry catamarán de 950 pax. y 250 vehículos.

CLASIFICACIÓN, COTA Y REGLAMENTOS DE APLICACIÓN: DNV, MARPOL, COLREG, ILO, CODIGO DE BUQUES DE ALTA VELOCIDAD.

CARACTERÍSTICAS DE LA CARGA: 950 pasajeros y 250 vehículos.

VELOCIDAD Y AUTONOMÍA: 38kn al 100% MCR y 10% Margen de mar.

SISTEMAS Y EQUIPOS DE CARGA / DESCARGA: 2 rampas para vehículos a popa.

PROPULSIÓN: 4 Waterjets, planta propulsora dual LNG-DIESEL.

TRIPULACIÓN Y PASAJE: 30 tripulantes, 950 pasajeros.

OTROS EQUIPOS E INSTALACIONES: Dos propulsores de proa (uno en cada casco).

Ferrol, Febrero de 2.014

ALUMNO: D Carlos Fernández Baldomir.

Contenido

RPA:	1
ntroducción	3
Cálculo del francobordo	4
Dimensiones principales	4
Eslora	4
Manga	4
Puntal de trazado	4
Puntal de francobordo	4
Coeficiente de bloque	5
Tabla con las dimensiones ¡	orincipales5
Definición de las superestruct	uras 5
Cálculo de francobordo	6
Regla 27: Tipo de buque	6
Regla 28: Francobordo tabu	ılar6
Regla 29: Corrección de fra	ncobordo para buques de eslora inferior a 100 m 6
Regla 30: Corrección por co	peficiente de bloque 6
Regla 31: Corrección por pu	untal6
Regla 32: Corrección por po	osición de línea de cubierta7
Regla 33: Altura normal de	superestructura7
Regla 34: Longitud de las su	uperestructuras
Regla 35: Reducción por su	perestructuras8
Regla 36: Corrección por ar	rufo8
Regla 37: Altura de proa	9
Francobordos finales	
\rqueo	
Arqueo Bruto	
Arqueo Neto	
Conclusión	

Introducción

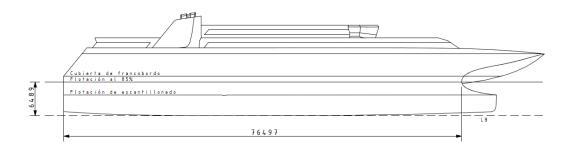
En este cuaderno se realizará el cálculo del francobordo y del arqueo del buque proyecto en base al convenio de líneas de carga y al código internacional de arqueo en buques.

Las características principales del buque proyecto son:

B(m)	26,3
Lpp (m)	83,16
Loa (m)	92,4
Bcasco (m)	5,5
T (m)	4
D (m)	7,65
BHP (Kw)	32000
СВ	0,6
CM	0,909
СР	0,68
Δ (t)	2082
Fn	0,66
Autonomía (millas)	1200

Cálculo del francobordo

El cálculo del francobordo se realiza según las directrices del convenio de líneas de carga de 1966 y el protocolo de 1988.


El francobordo se define como la distancia medida verticalmente hacia abajo en el centro del buque desde el canto alto de la línea de cubierta hasta el canto alto de la línea de carga correspondiente.

Dimensiones principales

Eslora

La eslora de francobordo se tomará como el 96% de la eslora total en una flotación a un calado equivalente al 85% del puntal mínimo de trazado o la eslora entre la cara de proa de la roda y el eje de la mecha del timón en la misma flotación.

En el caso del buque proyecto al no llevar timón se toma como eslora de reglamento el 96% de la eslora en la flotación:

Por lo tanto, la eslora de francobordo es de:

$$L = 73.4 \, m$$

Manga

La manga debe ser la manga máxima del buque, medida en el centro del mismo hasta la línea de trazado de la cuaderna.

Por lo tanto:

$$B = 26.3 m$$

Puntal de trazado

El puntal de trazado es la distancia vertical medida desde el canto alto de la quilla hasta el canto alto del bao de cubierta de francobordo medido en el centro del buque.

El puntal de trazado es de:

$$D = 7,65 m$$

Puntal de francobordo

El puntal de francobordo es el puntal de trazado más el espesor de la chapa de cubierta de francobordo.

El puntal de francobordo es:

$$D_{FB}=7,666m$$

Coeficiente de bloque

El coeficiente de bloque a un calado correspondiente al 85% del puntal mínimo de trazado del buque.

Se parte de los siguientes datos:

V	3950
L	73,4
В	26,3
d1	6,49

El coeficiente de bloque es:

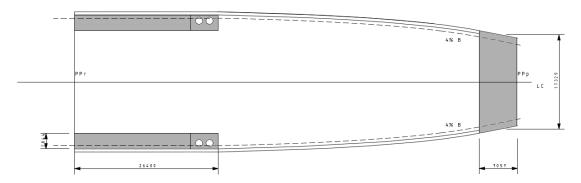

$$Cb = \frac{V}{L * B * d1} = 0.315$$

Tabla con las dimensiones principales

Una vez calculadas las dimensiones principales para el cálculo del francobordo se elabora la siguiente tabla:

Eslora (L)	73,400	m
Manga (B)	26,300	m
Puntal de trazado (D)	7,650	m
Espesor de la cubierta (t)	16	mm
Puntal de francobordo (Dfb)	7,666	m
85% del puntal de trazado (d1)	6,503	m
Coeficiente de bloque	0,315	

Definición de las superestructuras

La altura real de las superestructuras, medida en plano, es de:

$$Hr = 4.2 m$$

Cálculo de francobordo

Regla 27: Tipo de buque

El buque es un buque tipo B, ya que es un buque de pasaje y no dedicado al transporte de carga líquida a granel.

R-27 Types of ships			Αμ	pplicable
Type of ship (A,B,Br,B60)	В			

Regla 28: Francobordo tabular

Se entra en las tablas para la eslora de francobordo calculada en el apartado anterior. Se interpola entre los valores anterior y posterior para sacar el valor final.

R-28 Tabul	ar Freeboard			A	oplicable
-	Table				
L	freeboard	L	freeboard		
73	769	73,43	776		
74	784			R-28	776

Regla 29: Corrección de francobordo para buques de eslora inferior a 100 m

El francobordo tabular para buques de entre 24 y 100m de eslora con una eslora efectiva de hasta el 35% de la eslora:

$$7.5 * (100 - L) * (0.35 - \frac{E}{L})$$

R-29 Correction for ships under 100 m in leng	ght		Applic	able
Effective lenght of superestructure (E)	7,057	m		
Lenght of trunks	0	m		
Effective lenght of superestructure (E1)	7,057	m		
			R-29	51

Regla 30: Corrección por coeficiente de bloque

El buque tiene un coeficiente de bloque inferior a 0,68 por lo tanto no corrige.

R-30 Correction	n for block c	oefficient		Not	Applicable
R-28	776				
R-29	70	Factor	1		
freeboard	846				
				R-30	

Regla 31: Corrección por puntal

Esta regla se aplica cuando el puntal D exceda L/15

$$\frac{L}{15} = \frac{73.4}{15} = 4.9 \ m$$

Como el puntal D es de 7,65; hay que corregir.

$$\left(D - \frac{L}{15}\right) * R$$

Siendo R:

$$R = \frac{L}{0.48} = 152,9792$$

R-31 Correct	ion for depth					Aį	plicable
Enclosed supe	erestructure leng	ght	(7,057	m	<0.6*L	
Height of supe	erestructure		Ľ	4,200	m		
Standard Heig	ht			1,8	m		
R	152,9792	Star	ndard Heigh	t correction	1	1	
Correction	423						
						R-31	423

Regla 32: Corrección por posición de línea de cubierta

La corrección por posición de línea de cubierta no se aplica en este buque porque la línea de cubierta no está desplazada.

R-32 Correct	R-32 Correction for position of deck line				Not	Applicable
					R-32	

Regla 33: Altura normal de superestructura

La altura normal de la superestructura es la que se indica en esta tabla:

Altura normal (en m)					
L (m)	Cubierta de saltillo	Todas las demás superestructuras			
30 o menos	0,9	1,8			
75	1,2	1,8			
125 o más	1,8	2,3			

Para alturas intermedias se debe de interpolar.

Como las superestructuras no se consideran saltillo y el buque tiene 73,4 metros de eslora de francobordo, el valor de la altura normal es de:

$$Hn = 1.8 m$$

R-33 Standard	d height of su	iperstructure	(in m)			Ap	plicable
		Raised quarterdeck		All Other superestructures			
		1,19		1,8			

Regla 34: Longitud de las superestructuras

El mamparo exterior de la superestructura no llega al forro del buque, por lo tanto habrá que calcular una corrección para la longitud efectiva de esta superestructura.

La corrección para la zona de los guardacalores se va a calcular a mano e introducir en el Excel, ya que la manga de los guardacalores es muy pequeña y el Excel la excluye al no llegar al mínimo requerido. Pero como los guardacalores están situados en los costados, fuera del 4%, es necesario tenerla en cuenta:

$$S = 26.4 m$$

$$E = 26.4 * \frac{2.844 * 2}{26.3} = 5.7 m$$

Superestructure	Lenght (S)	Sup. br. (b)	Ship br. (Bs)	Height	Effective Lenght (E)
Forecastle	7,057	17,329	17,329	4,200	7,057
center	26,400	5,688	26,300	4,200	5,700
Poop					

Regla 35: Reducción por superestructuras

En los buques de tipo B no se permite reducción alguna si la longitud efectiva del castillo de proa es inferior a 0,07L.

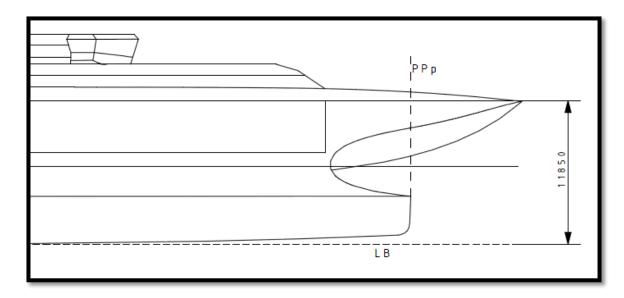
Como el buque proyecto tiene una longitud efectiva del castillo de proa de E=7,057m y 0,007L es 5,13, sí que hay que corregir.

eduction for sup	perstructures and	trunks			Applicable
Lenght of Supere	structure	12,757	m		
Lenght of Tri	unks	0	m		
Effective Lengi	ht (E)	12,757	m		
Effective Lengi	ht (E)	0,1737	*L		
Deduction fo		763	mm		
Tai	ble 37.1				
E	%				
	0,1 7				
0,17	37 12,2				
	0,2 14			R-37	

Regla 36: Corrección por arrufo

El buque no tiene arrufo en su cubierta de francobordo, pero tiene un castillo de proa que puede contribuir a la corrección por arrufo.

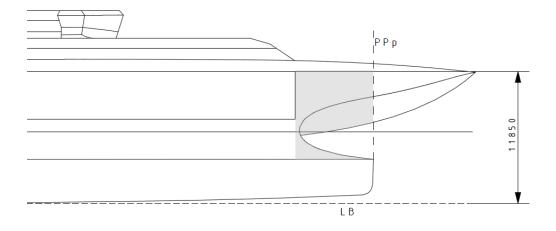
Como el arrufo, tanto en proa como en popa, presenta un defecto (ya que el buque carece de arrufo y por lo tanto es menor que el arrufo nominal), se considerará un defecto de arrufo y por lo tanto se deberá aumentar el francobordo.


R-38 Sheer					Ap	plicable	
Standard	Sheer Profile						
Station	Ordinate	Factor	Product				
After perpendicular	862	1	862				
1/6 L from A.P.	383	3	1149				
1/3 L from A.P.	97	3	291				
Amidships	0	1	0	After Sheer	2302		
Amidships	0	1	0				
1/3 L from A.P.	193	3	579				
1/6 L from A.P.	765	3	2295				
Forward perpendicular	1724	1	1724	Forward Sheer	4598		
She	er Profile				1		
Station	Ordinate	Sum for Le=L	Total	Factor	Product		
After perpendicular	0	0	0	1	0		
1/6 L from A.P.	0	0	0	3	0		
1/3 L from A.P.	0	0	0	3	0		
Amidships	0	0	0	1	0	After Sheer	0
Amidships	0	0	0	1	0		
1/3 L from F.P.	0	0	0	3	0		
1/6 L from F.P.	0	0	0	3	0		
Forward perpendicular	0	0	0	1	0	Forward Sheer	0

	Sheer cre	forecastle					
	Real	Standard	Difference	s			
Forecastle	4200	1800	2400	77			
Poop	0	1800	-1800	0			
After She	eer variation	-287					
Forward S	heer variation	-497					
Sheer	variation	-392					
Total le	enght of enclose	d superestruct	ures (S1)	33,457	m		
	n in midships o				*L		
Factor	0,5222	Correction	205	mm			
Freeboard co	orrection	205	mm				
						R-38	20

Regla 37: Altura de proa

La altura de proa es la distancia vertical en la perpendicular de proa entre la línea de flotación correspondiente al francobordo de verano con asiento de proyecto y la parte superior de la cubierta de intemperie en el costado.


En este apartado hay que aclarar que a proa del garaje se ha decidido elevar la proa mediante un castillo que llega hasta la cubierta de pasaje A.

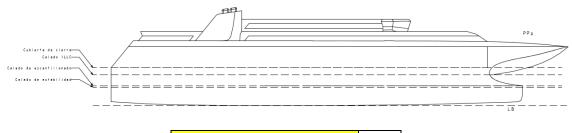
La altura del castillo, que define el límite superior de la altura de proa real, desde la línea de base es de 11,850 metros.

R-39.1 Mi	inimum bow height				Applica	ble
Waterp	plane area forward of L/2 a	at draught d1 (Awf)	446,23	m2		
_	73,43	d1	6,503			
3	26,3	Cb	0,3145			
		Cwf	0,4621			
ı	Minimun bow height (Fb)	4889	mm			
Boy	w depth corrected for R39	11,85	m			
	mum bow heigth freeboard					
	Salt water freeboard	1482	mm		R-39.1	

El área proyectada de la altura de proa es:

Y su valor es:

A = 28m2


R-39.2 R	eserve of bouyan	су			Applic	able
	F0	776	mm			
	f1	1				
	f2	423	mm			
	fmin	1199	mm			
	Minimun proj	ected area	23,33	m2		
	Actual proje	cted area	28,00	m2		
	Freeboard o	correction	0	mm	R-39.2	0

Francobordos finales

R-40 Minimum freeboards				A	oplicable
		_			
Minimun freeboa	rd without R-3	32	1347 mm		
R-28	776	mm	Freeboard in Salt Water	1347	mm
R-29	36	mm			
R-30		mm	Minimun Summer Freeboard	1347	mm
R-31	424	mm	Maximun Summer Draught	6319	mm
R-32.1		mm			
R-37	-94	mm	Maximun Scantling Draught		mm
R-38	205	mm	Maximun Stability Draught		mm
Sum	1347	mm			
R-39.1	0	mm	Summer Freeboard	1347	mm
R-39.2	0	mm	Summer Draught	6319	mm
Sum	1347	mm	Tropical Freeboard	7666	mm
			Winter Freeboard	1479	mm
R-32	0	mm	Winter N. Atlantic Freeboard	1529	mm
			Fresh Water	1336	mm
Displacement at 6,319 m	4048,75	ton			
TPCM at 6,319 m	9,148	ton/cm			

El francobordo final de verano definido por el convenio de líneas de carga es de 1347 mm, resultando un calado máximo de verano de 6319 mm.

Como la estructura se ha calculado para un calado de 4 metros y la estabilidad para la condición de carga con mayor desplazamiento se ha calculado para un calado medio de 3,725, el calado que define el francobordo es el calado de estabilidad, al ser el menor.

Calado ILLC (mm)	6,178
Calado escantillonado (mm)	4
Calado de estabilidad (mm)	3,725
Definido (mm)	3,725

Por lo tanto el francobordo del buque es de:

Francobordo (mm) 3.925	Francobordo ((mm)	3,925
------------------------	---------------	------	-------

Arqueo

El arqueo define la capacidad de volumen de un buque. Se distinguen dos tipos de arqueo: el arqueo bruto, que mide el volumen total del buque, y el arqueo neto, que mide el volumen de los espacios de carga y pasaje (todos los espacios aptos para la explotación del buque).

El arqueo bruto es útil para determinar los costes y tarifas de distintas operaciones a lo largo de la vida útil del buque, como puede ser el amarre en puerto, el uso de remolcadores, tarifa de prácticos, etc. Además de otros aspectos como la determinación del número de tripulantes del buque o la obligación de atenerse o no a distintos convenios.

El arqueo neto, por su parte, se emplea también para la asignación de varias tarifas de puerto, certificados de carga, cargas fiscales o tarifas y capacidades para el paso de canales como el de panamá o Suez.

El cálculo del arqueo se realiza en base al Convenio Internacional de Arqueo de Buques.

Arqueo Bruto

Comprende el volumen total del interior del casco y las casetas y superestructuras. Se determina por reglamento según la siguiente fórmula:

$$GT = K * V$$

Donde:

• *K*: es un factor que vale:

$$K = 0.2 + 0.02 log V$$

• *V*: es el volumen total del interior del buque, medido en maxsurf para el casco y en rhinoceros para las casetas:

Volumen entre LB y Cppal (m3)	5473,17073
Volumen entre cubiertas Ppal. Y A (m3)	5496
Volumen entre cubiertas A y B (m3)	2412
Volumen entre cubierta B y techo (m3)	946
Volumen puente de mando (m3)	124
Volumen total (m3)	14451,1707

El arqueo bruto es:

K	0,28319806
GT	4093

Arqueo Neto

El arqueo neto medirá el volumen destinado para el transporte de pasajeros y de coches.

Se calcula con la siguiente fórmula:

$$NT = K2 * V * \left(\frac{4d}{3D}\right)^2 + K3 * \left(N1 + \frac{N2}{10}\right)$$

Siendo:

 V: volumen total de los espacios de carga. Se calcula como la suma entre el volumen de los garajes y el volumen de la zona destinada al pasaje.

Volumen garajes	5283,875
Volumen pasaje	3358
Volumen tota	8641,875

• *K2*: es un factor que vale:

$$K2 = 0.2 + 0.02 log V$$

• K3: es un factor que vale:

$$K3 = 1,25 * \frac{GT + 10000}{10000}$$

- D: puntal de trazado en el centro del buque, vale 7,65 metros.
- *d*: calado de trazado en el centro del buque.
- N1: número de pasajeros en camarotes con no más de 8 literas. Se toma como 0 ya que el buque no lleva camarotes.
- N2: el resto de los pasajeros. Se toma como 950.
- $\left(\frac{4d}{3D}\right)^2$: No se toma superior a 1
- $K2 * V * \left(\frac{4d}{3D}\right)^2$: no se toma inferior a 0,25 GT
- NT: no se tomará inferior a 0,30 GT

El valor del arqueo neto es:

V (m3)	8641,875
K2	0,27873216
K3	1,76156794
D (m)	7,65
d (m)	4
N1	0
N2	950
(4d/3d)^2	0,48604288
Menor a 1?	SI
Se toma	1
0,25 GT	1023,13588
K2*V*(4d/3d)^2	1170,76477
Inferior a 0,25 GT?	NO
Se toma	1170,76477
NT	2576,11744
0,30GT	1227,76306
Inferior a 0,30	
GT?	NO
Se toma	2576,11744
NT	2577

Conclusión

Tras el cálculo de francobordo y arqueo se han obtenido los siguientes resultados

Francobordo de verano (mm)	3660
Arqueo Bruto GT	4093
Arqueo Neto NT	2577