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Abstract 

There are multiple intrinsic mechanisms for diastolic dysfunction ranging from molecular to structural 

derangements in ventricular myocardium. The molecular mechanisms regulating the progression from normal 

diastolic function to severe dysfunction still remain poorly understood. Recent studies suggest a potentially 

important role of core cardio-enriched transcription factors (TFs) in the control of cardiac diastolic function in 

health and disease through their ability to regulate the expression of target genes involved in the process of 

adaptive and maladaptive cardiac remodeling. The current relevant findings on the role of a variety of such 

TFs (TBX5, GATA-4/6, SRF, MYOCD, NRF2, and PITX2) in cardiac diastolic dysfunction and failure are 

updated, emphasizing their potential as promising targets for novel treatment strategies. In turn, the new 

animal models described here will be key tools in determining the underlying molecular mechanisms of 

disease. Since diastolic dysfunction is regulated by various TFs, which are also involved in cross talk with 

each other, there is a need for more in-depth research from a biomedical perspective in order to establish 

efficient therapeutic strategies. 
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Introduction 

Heart failure with preserved ejection fraction (HFpEF), termed in the past “diastolic HF,” is a 

heterogeneous clinical syndrome of impaired diastolic function with normal or near normal left 

ventricular EF (LVEF ≥ 50 %). Patients with HFpEF have a normal-sized LV, often with signs of 

a mild hypertrophy, with impaired filling, to different degrees, due to abnormal LV relaxation and 

increased LV stiffness. While extra-cardiac pathophysiological conditions, such as hypertension, 

obesity, diabetes mellitus, renal dysfunction, and aging, can contribute to HFpEF development, a 

maladaptive concentric LV remodeling appears to be the main underlying substrate of impaired 

diastolic function in patients (recently reviewed in [1–7]). 

 

Studies of gene expression in human HFpEF settings are limited by the low availability of 

tissue samples from diseased and non-failing control hearts. These limitations with human cardiac 

tissue are overcome, with varying degrees of success, by the use of patient-mimicking animal 

models [8, 9] in which HFpEF is developed as a consequence of spontaneous and experimentally 

induced hypertension or metabolic syndromes (obesity and diabetes). The results of these and 

other cross-sectional studies showed that LV diastolic dysfunction conditions can be associated 

with: (1) fluctuation in cardiac calcium-handling protein levels [10], (2) alterations in proteins, 

which play an important role in maintaining the sarcomeric structure and functionality [11–13], 

and (3) aberrant extracellular matrix protein turnover [14–17]. Although these data reflect some 

underlying expression features in HFpEF settings, the molecular mechanisms regulating the 

progression from normal diastolic function to severe dysfunction and then to HFpEF still remain 

poorly understood. Only a few recent studies point to the cardiomyocyte circadian clock [18] and 

mineralocorticoid receptor signaling [19] as potentially important mediators in triggering and in 

the progression of diastolic dysfunction in mice. 

 

Transcription factors (TFs) are essential players in the control of gene expression by 

influencing RNA polymerase activity in a gene-selective manner. One distinct feature of TFs is 

that they have DNA-binding domains which recognize specific sequences in the promoters or 

enhancers of target genes. The other characteristic feature of their structure is an 

activation/repression domain that interacts with various cofactors, which either promote or impair 

the transactivation of target genes. Normal heart development is orchestrated by a suite of highly 

conserved TFs that includes (among others) TBX5, GATA-4, GATA-6, SRF/MYOCD, NRF2, and 

PITX2 (Fig. 1a). These multifaceted cardio-enriched TFs are responsible for the tight regulation of 

expression of a broad array of myocardial-related genes during heart development, and the 

perturbation of expression and regulation of these TFs disrupts normal heart structure and function 

(recently reviewed in [20, 21]). Of note, these core TFs can physically interact with each other and 

co-occupy the promoters of target genes (Fig. 1b). These TFs are co-expressed in the adult human 

myocardium (Fig. 1c), suggesting that interactions between them could be physiologically relevant 

in heart. 

 

It has become increasingly apparent that fetal cardiac-enriched TFs play critical roles in the 

regulation of expression of many myocardial genes in the adult normal and diseased heart 

(reviewed in [22–24]). Regarding heart disease, there is recent, mounting evidence suggesting a 

causal and specific role of several cardiac-enriched TFs in development and progression of 

HFpEF. In this review, we provide a research status update of the expression and function of the 

fetal cardiac TFs in adult diastolic dysfunction. Targeting TFs could be a promising therapeutic 

approach to modulate gene expression in the HFpEF in a specific fashion. Although TFs have 

traditionally been considered as “undruggable” targets for therapeutics, targeting them, due to 

recent technological advances, is again becoming a realistic therapeutic perspective (recently 

reviewed in [25]). 
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Fig. 1. Schematic overview of cardiac-enriched transcription factors governing diastolic function. a 

DNA-binding and transactivation domains of the human TBX5, GATA-4, GATA-6, SRF, NRF2, and 
PITX2 transcription factors (TFs) are shown [129]. N/C: amino/carboxyl terminus; aa—amino acids. b 

Combinatorial TF interactions. Schematic illustrates TBX5::GATA4 [130], TBX5::GATA-6 [131], 

TBX5::MYOCD [132], GATA-4::GATA-6 [54], SRF::MYOCD [68], SRF::PITX2 [133], 
PIXT2::GATA-4 [134], and PITX2::NRF2 [82] protein–protein interactions that lead to cooperative 

regulation of target gene expression in vitro. cTBX5 [29], GATA-4 [135], SRF [136], MYOCD [137], 

NRF2 [138], and PITX2 [97] are co-expressed in the adult human left ventricle (LV), suggesting that the 
interplay of these TFs in vitro (shown in b) also takes place in vivo (data for GATA-6 equivalent to those 

for GATA-4 are currently lacking). LVTF—left ventricular TF machinery which can be involved in 

molecular regulation of diastolic function 
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TBX5 transcription factor 

The TBX5 gene belongs to a family of genes that share the so-called T-box DNA-binding 

domain of about 180 amino acid residues (reviewed in [26–28]). TBX5 is expressed in human 

embryonic and adult heart [29] and transcriptionally activates multiple cardiomyocyte lineage-

associated genes encoding, among others, NPPA (natriuretic peptide precursor A or ANP), CX40 

(connexin 40), MYH7 (myosin, heavy chain 7, cardiac muscle, beta), TNNI2 (troponin I type 2 

skeletal), TNNT2 (troponin T type 2 cardiac), and SCN5A (sodium channel, voltage-gated, type V 

alpha subunit) [30, 31]. It should be noted that several splicing variants of TBX5 mRNA have been 

identified in the adult mouse [32] and human heart [33], and the resulting protein isoforms are 

characterized by diverse transcriptional and functional activities. This production of different 

TBX5 isoforms seems to be a mechanism which can play an important role in TBX5 dosage 

regulation. 

 

TBX5 function in the heart appears to be exquisitely sensitive to gene dosage. Both over- and 

under-expression of the TBX5 gene have equally deleterious effects on the heart. In transgenic 

mouse embryos, cardiac TBX5 overexpression results in inhibition of ventricular-specific gene 

expression and impaired ventricular trabeculation [34]. Similarly, in humans, TBX5 

overexpression due to gene duplication leads to cardiac abnormalities [35]. In the mouse, systemic 

TBX5 gene ablation (TBX5
−/−

 mice) causes decreased expression of myocardial genes associated 

with extreme underdevelopment of the heart, whereas heterozygous TBX5
−/+

 mice mimic heart and 

limb abnormalities observed in Holt–Oram (“heart-hand”) syndrome (HOS) in humans [36]. Of 

note, TBX5 was the first T-box gene where loss-of-function mutations (mainly located within the 

highly conserved T-box domain) were found to cause a HOS (recently reviewed in [37]); diastolic 

dysfunction is detected in a cohort of HOS patients [38]. Patients with low diastolic blood pressure 

show substantially increased ventricular–arterial stiffness and a tendency for diastolic dysfunction 

(reviewed in [39]). In this regard, large-scale genome-wide association studies have identified an 

association of TBX5 with diastolic blood pressure [40]. 

 

Mice with heterozygous conditional deletion of TBX5 (TBX5
del/+

 mice) manifested a clear LV 

diastolic dysfunction (attributed to a disturbance of LV isovolumic relaxation) with preserved LV 

systolic function. In addition, a significant correlation was found between decreased TBX5 gene 

expression and increased LV filling pressure [41]. However, the possibility that deterioration of 

LV relaxation is secondary to right heart overloads due to atrial or ventricular septal defects in 

these mice could not be excluded. The latter issue has been addressed by Zhu et al. [38] who 

generated mice (TBX5
Vdel/+

 mice) with haploinsufficiency of TBX5 in only ventricular 

cardiomyocytes. These mice did not have septal or any other defects in cardiac structure, but did 

manifest impaired ventricular relaxation and diastolic dysfunction, whereas the systolic function 

remained normal. In the LV of TBX5
Vdel/+

 mice, the decrease in TBX5 expression was paralleled by 

a comparable reduction in transcript and protein levels of SERCA2a (sarcoplasmic reticulum Ca
2+

 

ATPase) which was found to be a dose-dependent target of TBX5 in cardiomyocytes. This model 

suggests that the molecular pathogenesis of isolated diastolic dysfunction is due to downregulation 

of the TBX5–SERCA2a pathway in ventricular cardiomyocytes that may have implications for 

clinical management. Intriguingly, in this regard, a significant downregulation of cardiac 

SERCA2a levels has been observed in the diabetic (mRen-2)27 rat model of HFpEF [10]. 

GATA-4 and GATA-6 transcription factors 

GATA-binding protein 4 (GATA-4) and GATA-binding protein 6 (GATA-6) are the members 

of the GATA family of zinc finger transcription factors which recognize the GATA motif in the 

promoters of most cardiac muscle-specific genes, especially those that are altered by the 

hypertrophic response (reviewed in [24, 42]). GATA-4 directly regulates expression of MYH6 

(myosin, heavy chain 6, cardiac muscle, alpha), MYL1 (myosin, light chain 1, alkali, skeletal, 

fast), TNNC1 (cardiac troponin C type 1), NPPA (natriuretic peptide precursor A), NPPB 

(natriuretic peptide precursor B), ANKRD1 (cardiac-restricted ankyrin repeat protein 1), SLC8A1 

(solute carrier family 8 sodium/calcium exchanger, member 1), and CDK2 and 4 (cyclin-
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dependent kinase 2 and 4) [42–44]. GATA-6 seems to regulate the expression of NPPA, EDN1 

(endothelin-1), AT1A (angiotensin II receptor isoform A), and SEMA3C (semaphorin 3C) [45]. In 

addition, either GATA-4 or GATA-6 is essential for expression of other cardio-associated TFs that 

regulate the onset of cardiomyocyte gene expression in early cardiogenesis. Not surprisingly, when 

both GATA-4 and GATA-6 were simultaneously disrupted in mouse embryos, the onset of cardiac 

development was completely blocked [46]. 

 

GATA-4 and GATA-6 are expressed in both fetal and adult cardiomyocytes and required for 

physiological hypertrophic remodeling during postnatal heart growth as suggested by controlled 

GATA-4 [47] and GATA-6 overexpression [48, 49] in the heart. There is a good reverse correlation 

between these results and the data from conditional GATA-4-/GATA-6-knockout models: Mutant 

mice with mid-to-late fetal cardio-specific deletion of GATA-4 [50] or combined deletion of 

GATA-4 and GATA-6 [49] develop dilated cardiomyopathy with severe systolic dysfunction in 

adulthood. Similarly, the simultaneous loss of both GATA-4 and GATA-6 in perinatal 

cardiomyocytes causes progressive systolic dysfunction and ventricular dilatation [51]. 

 

GATA-4 and GATA-6 regulate cardiac morphogenesis, cardiomyocyte differentiation, and gene 

expression in a dosage-dependent manner. Mice homozygous for a hypomorphic GATA-4 

mutation (GATA-4
H/H

 mice), expressing 70 % less GATA-4 protein in the atria and LV, displayed 

a common atrioventricular canal, double outlet right ventricle, and hypoplasia of the LV compact 

myocardium. Altered diastolic function was suspected in mutants because ventricular active 

relaxation was found to be correlated with the compact myocardium development in normal 

mouse embryos [52]. In fact, in vivo hemodynamics in GATA-4
H/H

 mice did reveal signs of severe 

diastolic dysfunction, in the absence of changes in systolic function. The diastolic dysfunction 

phenotype of these mutants did not result from downregulation of putative GATA-4 target genes in 

the heart; GATA-6 expression was not altered in GATA-4
H/H

 mutant embryos [53]. This fetal heart 

model was suggestive of a possible involvement of GATA-4 in the regulation of diastolic function 

of fetal heart. However, the possibility of a direct causative role for GATA-4 in regulating the 

diastolic function remained in question, since mutant mice lacking 70 % of the GATA-4 protein 

displayed complex cardiac structural and functional abnormalities. 

 

Recently, the functions of GATA-4 and GATA-6 in adult heart have been highlighted using 

mouse models of temporally controlled, cardiomyocyte-specific gene inactivation [51]. In the 

adult heart, simultaneous cardiomyocyte-specific deletion of GATA-4 and GATA-6 leads to 

dramatically attenuated diastolic function, whereas systolic performance is only slightly impaired. 

Molecular characterization of these mutant mice demonstrated that expression of the GATA-4 

preferential target, MYH6 (myosin, heavy chain 6, cardiac muscle, alpha), is decreased in the 

diastolic heart. However, the expression of the other GATA-4-dependent gene, MYH7 (myosin, 

heavy chain 7, cardiac muscle, beta) as well as the NPPA gene (a bona fide target for both GATA-4 

y GATA-6 factors [54]) is increased in mutant myocardium, suggesting that the diastolic phenotype 

could not result from a general downregulation of GATA-4/6 target genes. 

Overall, therefore, the results of GATA-4 and GATA-6 knockdown in the adult heart strongly 

suggest that stress-induced downregulation of these TFs in myocardium might play a critical role 

in or contribute to the development of diastolic dysfunction. It should be noted in this sense that 

either GATA-4 or GATA-6 physically interact with FOG-2 (friend of GATA-2), a multi-zinc 

finger transcription cofactor, which is co-expressed with GATA-4/6 in the heart and is known to 

potently repress GATA-4 activation of target promoters (reviewed in [55]). Adult mice with fetal 

cardiomyocyte-restricted loss of FOG-2 developed a dilated cardiac phenotype, indicating that 

FOG-2 is required for normal adult heart function [56]. FOG-2 upregulation is a feature of human 

cardiomyopathic heart. Mice with cardiac-specific overexpression of FOG-2 display normal-sized 

ventricles with enlarged atria; a significant downregulation of MYH6 and SERCA2a was found in 

ventricular myocardium of FOG-2 transgenic mice [57]. Although unproven as yet, it is tempting 

to speculate that a severe decrease in GATA-4 and GATA-6 transcriptional activity, which could 

lead to diastolic dysfunction [51], might be associated, at least in part, with overexpression of 

FOG-2 in the stressed heart. 
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SRF and myocardin transcriptional regulators 

Serum response factor (SRF) is a founding member of the MADS (MCM1, agamous, 

deficiens, and SRF)-box superfamily of TFs. This ubiquitously expressed TF binds DNA as a 

dimer (through the highly conserved DNA-binding and dimerization MADS-box domain) and 

regulates many target genes through serum response elements in their promoters (reviewed in [58, 

59]). More than 200 SRF-dependent genes that are important for metabolism, cytoskeleton, 

extracellular matrix, ion transport, stress response, transcription, and translational regulation have 

been identified in the ventricular myocardium [24, 60]. Alternative splicing generates several 

isoforms of SRF, with full-length SRF being the predominant cardiac isoform. SRF is highly 

expressed in the heart during embryonic, fetal, and postnatal development. Gene-targeting studies 

in mouse models provided insights into potentially pathological consequences of both SRF 

redundancy and deficiency in the adult heart. Augmented SRF expression leads to hypertrophic 

cardiomyopathy, while inhibition of SRF activity results in development of dilated 

cardiomyopathy (reviewed in [61, 62]). 

 

During aging, the heart undergoes, even in the absence of evident cardiovascular pathology, 

subtle remodeling changes that include moderate LV hypertrophy and altered LV diastolic 

function. SRF expression is increased from adulthood to senescence. In this context, in transgenic 

mouse models, in which upregulation of the SRF gene was low-to-mild, young adult animals 

displayed accelerated cardiac aging and developed diastolic dysfunction [63]. A subsequent report 

showed that a low-forced SRF expression did not affect either cardiac gene expression or cellular 

structure [64]. Whether low-amplitude increases in cardiac SRF levels are causative for triggering 

diastolic dysfunction or merely reflective of aging heart remodeling remained unclear. 

 

SRF is characterized by a relatively low intrinsic transcriptional activity itself, but its 

association with a wide array of cofactors that possess potent transactivation domains leads to a 

strong enhancement of SRF transactivation capacity in a cell context-dependent manner. One of 

such cofactors is myocardin (MYOCD) that regulates the expression of multiple smooth muscle 

(SM) and cardiac contractile genes, including CNN1 (calponin 1, basic, smooth muscle), MYH11 

(myosin, heavy chain 11, smooth muscle), ACTA2 (actin, alpha 2, smooth muscle, aorta), ACTG2 

(actin, gamma 2, smooth muscle), TAGLN (transgelin), and MYH6 (myosin, heavy chain 6, cardiac 

muscle, alpha) (reviewed in [23, 65–68]). 

 

Loss- and gain-of-function experiments demonstrated that MYOCD is absolutely required for 

maintenance of adult heart function. Postnatal cardio-restricted MYOCD knockdown induces 

dilated cardiomyopathy and fatal HF in mice [69], while forced expression of MYOCD in 

ventricular myocardium impairs LV systolic function and cardiac ECG activity in pigs [70]. In 

light of these results, it comes as no surprise that a strong association between the altered 

expression of MYOCD and cardiac pathological conditions has been established in different animal 

models as well as patients with end-stage HF (reviewed in [23, 67, 68]). 

 

In the porcine model of doxorubicin (Dox)-induced HFpEF, gene expression profiling revealed 

a significant upregulation of MYOCD- and MYOCD-dependent SM genes in falling LV 

myocardium, with the SRF levels unchanged as compared to controls. ACTG2 was the most 

remarkably upregulated MYOCD target gene in Dox-injected piglets. Of note, the ectopic 

expression of ACTG2 in the mouse heart significantly reduces the rates of ventricular relaxation 

[71]. In vivo silencing of endogenous upregulated MYOCD via intramyocardial delivery of short-

hairpin RNAs at mid-advanced stages of HFpEF resulted in downregulation of MYOCD-

dependent SM gene expression in the failing porcine myocardium. Such adjusting of MYOCD and 

SM-target expression levels to the range of physiological variation led to restoring diastolic 

function and extending the survival of failing animals without compromising the physiological 

functions of MYOCD signaling as part of the adaptive response of the heart to stress [72]. These 

findings demonstrate that the normalization of altered MYOCD signaling could represent a 

strategic operative tool for the prevention of the development of diastolic dysfunction. 
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NRF2 transcription factor 

Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-sensitive basic leucine zipper TF 

which controls the gene expression of several hundred of detoxification and antioxidant enzymes 

bearing a target sequence, known as the antioxidant-responsive element (ARE), in their promoters 

[73]. NRF2 transcriptionally activates ARE-bearing genes in response to oxidative stress-induced 

injury (reviewed in [74, 75]). NRF2 ubiquitously expressed in the cardiovascular system is an 

essential endogenous suppressor of oxidative stress in both cardiomyocytes and cardiac 

fibroblasts, and NRF2 deficiency appears to be a condition for the early onset of HF in humans 

[76, 77]. In addition, functional NRF2 polymorphisms are associated with risk of human 

cardiovascular disorders [78]. 

 

The results from loss- and gain-of-function experiments in animal models have provided clues 

to the understanding of the role/impact of NRF2 in cardiac function. Several lines of mice devoid 

of NRF2 have been generated by homologous recombination in embryonic stem cells, using 

various strategies. In all cases, disruption of the targeted NRF2 gene did not lead to any apparent 

structural and functional abnormalities in the neonatal and early postnatal heart under non-stressed 

physiological conditions [79]. However, NRF2 deficiency resulted in a rapid onset of cardiac 

dysfunction during experimental pressure overload (due to transverse aortic constriction [80]) or 

regional ischemic injury (due to cardiac artery occlusion [81, 82] in young adult (2-month-old) 

mice. These results indicated that NRF2 inhibition can increase sensitivity of the young heart to 

pathological stress and thus exaggerate susceptibility to cardiac dysfunction. Recently, it was 

found that NRF2 loss-of-function leads to suppression and distortion of regenerative processes in 

the apex resection mouse model [82]. 

 

Further studies focused on adult NRF2-knockout mice (5–6 months of age) demonstrated that a 

NRF2 gene deficiency leads to the development of LV diastolic dysfunction even in non-stressed 

heart. Impaired diastolic function in these NRF2 knockouts was associated with mild cardiac 

hypertrophy but preserved systolic function. In addition, a significant decline in cardiac SERCA2a 

and total glutathione levels were found in the myocardium of these animals [83]. The results 

suggest that NRF2 is an essential regulator of cardiac diastolic function upon non-stressed 

physiological conditions and that its downregulation might cause severe maladaptive reactions. 

 

NRF2 expression is upregulated during early stages of physiological cardiac hypertrophy but 

decreased at mild pathological hypertrophy (a condition often associated with HFpEF 

development). In various models of hypertrophic cardiomyopathy, forced expression of NRF2 and 

its target genes, such as HO-1 (heme oxygenase-1), GPX (glutathione peroxidise), TXNRD1 

(thioredoxin reductase 1), NQO1 (NADPH:oxioreductase 1), and SOD2 (superoxide dismutase 2, 

mitochondrial), significantly reverses LV remodeling and fibrosis [84, 85]. Similarly, an increase 

in NRF2 expression/activity (due to phytochemical intake) attenuates diastolic dysfunction in 

hypertensive Dahl salt-sensitive rats with HFpEF [86]. 

 

In patients, diabetic cardiomyopathy is characterized by signs of clinically significant diastolic 

dysfunction independent of coronary disease or hypertension [87]. Expression of NRF2 is 

downregulated in cardiomyocyte nuclei in cardiac samples from patients with diabetes. 

Promisingly, emerging evidence revealed that induction of NRF2 expression can protect from 

diabetes-associated cardiac dysfunction by decreasing the oxidative stress and preventing 

oxidative DNA damage of myocardium (reviewed in [88, 89]). 
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PITX2 transcription factor 

The PITX2, a paired-like homeodomain transcription factor 2, was originally identified as the 

candidate gene for the human Axenfeld-Rieger syndrome [90] associated, although not frequently, 

with congenital heart defects [91, 92]. Aggregating evidence demonstrates that PITX2 is 

expressed, as three distinct variants/isoforms (A, B, and C), in the mammalian and human heart, 

with PITX2C being the predominant or the only variant detected in the adult LV myocardium [93–

98]. A fourth isoform, PITX2D described, to date, only in humans acts as a dominant-negative 

factor [99]. PITX2 regulates the expression of cyclin D2 (CCND2) [100], forkhead box J1 

(FOXJ1) TF [101], lymphoid enhancer factor (LEF-1) [102], natriuretic peptide precursor A 

(NPPA) [103, 104], myogenic factor 5 (MYF5) [105], and antioxidant scavenger genes [82]. Other 

target genes of PITX2 include channel and calcium-handling genes, and genes are expressed in 

intercalated disks of cardiac myocytes (recently reviewed in [106]). 

 

Selective PITX2 deletion in the developing myocardium resulted in delayed differentiation of 

ventricular (but not atrial) cardiomyocytes and enlargement of right heart chambers associated 

with severely impaired ventricular systolic function [107]. The roles played by PITX2 within the 

four chambered adult heart are still poorly understood. Genes involved in cell junction assembly, 

ion transport, and proliferation pathways were found to be activated in mouse mutants with 

conditionally inactivated PITX2 in the postnatal atrial myocardium [108], but it is unclear whether 

these are direct or indirect PIXT2C target genes in a cardiomyocyte background. Recently, a total 

of 505 direct PITX2 target genes were identified in the mouse postnatal ventricular myocardium, 

including genes encoding transport chain components and reactive oxygen species scavengers 

[82]. 

 

While several lines of evidence from animal models as well as clinical studies strongly support 

that PITX2C has a role in susceptibility to atrial fibrillation [94, 109–114], the relevance of this TF 

to LV diastolic dysfunction remained unsuspected and was therefore not tested till recently. LV 

levels of PITX2C mRNA and protein were first shown to be elevated in the Dox-induced porcine 

model of HFpEF [97]. In particular, it was found that the expression of PITX2C is significantly re-

activated in HFpEF myocardium which, in turn, is associated with increased expression of a 

restrictive set of PITX2 target genes. Among these, MYF5 (myogenic factor 5) was identified as 

the top upregulated gene. In vitro, forced expression of PITX2C in cardiomyocytes activates MYF5 

in dose-dependent manner. Of note, ectopic overexpression of MYF5 in the heart activates a 

skeletal muscle gene expression that results in progressive cardiomyopathy [115, 116]. The latter 

suggests that aberrant PITX2–MYF5 co-activation seen in the porcine model of HFpEF might 

negatively impact on diastolic cardiac function. 

 

Expression of both PITX2 and MYF5 was detected in LV myocardium from HFpEF piglets 

[97] as well as cardiomyocyte-like (CML) cells from patients with dilated cardiomyopathy. Forced 

expression of SERCA2a improved contractility of CML cells that, in turn, was associated with 

downregulation of PITX2 and MYF5 in SERCA2a-transduced cardiomyocytes [117]. Myocardial 

hypertrophy and subsequent diastolic dysfunction are prominent features of diabetic 

cardiomyopathy. In this sense, PITX2C is significantly upregulated in human cardiac myocytes in 

response to high glucose treatment [118]. 

 

In spite of the results discussed above, it is not known whether upregulation of PITX2C can 

cause HFpEF or if its activation is merely a secondary manifestation of impaired LV diastolic 

function. Notably, PITX2 expression is induced in ischemically injured ventricular myocardium 

and is required for neonatal cardiac regeneration in mice [82]. 
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Conclusions and perspectives 

HFpEF can be considered as the new epidemic of the twenty-first century, since the prevalence 

of this complex clinical syndrome caused by a variety of diseases has remained high or has even 

increased throughout the last two decades (reviewed in [6]). Investigation into molecular 

mechanisms underlying HFpEF has been hampered by lack of relevant and tractable models in 

animals which could recapitulate phenotypic features of diastolic dysfunction in humans. 

Nevertheless, some studies which focused on single specific endpoints have revealed concordant 

changes in increased calcium and sodium levels and elevated expression of the stiff titin isoform 

with myocardial diastolic dysfunction (reviewed in [3]). Despite these efforts, advancement has 

been made over the past several years, proving essential for the identification of the transcriptional 

regulation of diastolic function with potential implications for HFpEF. Surprisingly, the study of 

the molecular regulatory background of diastolic dysfunction and HFpEF does not show a great 

diversity of responsible TFs and downstream gene pathways (Fig. 2). All of these TFs play 

important roles in cardiac development and regulate inducible gene expression in cardiac 

myocytes in the adult heart. It should be pointed out that there is an experimental evidence to 

suggest that diastolic dysfunction could result from altered expression of more than one of these 

TFs in the LV myocardium. In the porcine model of HFpEF, upregulation of MYOCD and its SM-

target genes is associated with augmented PITX2 and MYF5 expression, suggesting an additive 

negative effect on diastolic function [72, 97]. 

 
 

 
Fig. 2. Dissecting the roles of cardiac TFs in development of diastolic 
dysfunction. Cardiac transcription factors (TFs) are members of gene 

regulatory circuits, each of which can play a role in the control of a 

branch of terminal effector genes in ventricular myocardium. The results 
from loss- and gain-of-function experiments in animal models provide 

clues toward the understanding the roles of TBX5, GATA-4/6, 

SRF/MYOCD, NRF2, and PITX2 in development of cardiac diastolic 
dysfunction. Severe inhibition of TBX5, GATA-4/6, and NRF2 as well as 

augmented expression of SRF/MYOCD and PITX2 leads to molecular 

changes that may contribute to ventricular diastolic impairment. These 

changes include, respectively, downregulation of SERCA2a, MYH6, and 

antioxidative enzyme (AOE) genes, on the one hand, and activation of 

smooth muscle (SM) and skeletal muscle (MYF5) gene expression in 
ventricular myocardium, on the other hand. AOE—NRF2 target genes 

encoding HO-1, GPX, TXNRD1, NQO1 (NAD(P), SOD2, and SOD3. 
SM—MYOCD target genes encoding CNN1, MYH11, ACTA2, 

ACTG2, and TAGLN. See text for further details 
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The discovery that deficiency in core cardiac TFs, such as TBX5, GATA-4/6 and NRF2, causes 

diastolic dysfunction will prompt an evaluation or re-evaluation of the expression of these TFs in 

other animal models of HFpEF as well as patients with diastolic dysfunction. Perhaps, the best 

example of this is the identification of a TBX5-dependent pathway in the regulation of diastolic 

function that has direct relevance to patients with HOS [38]. Collectively, the results suggest that 

mutant mice with cardio-specific knockdown of TBX5, GATA-4/6, or NRF2 are promising models 

for investigating the molecular mechanisms underpinning the development of diastolic 

dysfunction. 

 

Through the use of other animal models that mimic of HFpEF, upregulation of SRF, MYOCD, 

and PITX2 is linked to the development of diastolic dysfunction, whereas restoration of their 

altered expression to the range of physiological variation can potentially reduce or even eliminate 

diseases, as demonstrated through silencing MYOCD overexpression in the porcine model of 

HFpEF [72]. Of note, detection of elevated levels of MYOCD in circulating blood cells has been 

shown to have a certain biomarker utility in patients (reviewed in [68]). Thus, it appears to be 

reasonable to test whether adjusting a given TF expression level to the range of its physiological 

variation may lead to restoring diastolic function in preclinical settings. 

 

In sum, the above studies clearly illustrate how inappropriately high or low expression of a set 

of cardiac TFs can lead to diastolic dysfunction (see Fig. 2). Therefore, manipulating their levels to 

either increase the expression of stress-downregulated TFs or suppress the expression of stress-

upregulated TFs may represent therapeutic tools to ameliorate HFpEF progression. 

Mechanistically viewed, modulation of TFs in myocardium in vivo can be achieved by direct 

targeting (through gene therapy) their expression levels as well as by affecting the combinatory TF 

interactions (see Fig. 1b) or altering their DNA-binding activity (reviewed in [25]). In this context, 

a number of delivery platforms have been described that are translatable to the clinical setting 

(reviewed in [119]). However, it is necessary to develop more efficient delivery systems for 

cardio-selective (not systemic) targeting of TFs in the diastolic heart. An alternative and 

complementary approach (as demonstrated in the case of NRF2; see [89]) may be pharmacological 

activation/inhibition of the candidate TF or its critical cofactors for improving diastolic 

dysfunction in certain cardiovascular settings. 

 

In addition to the points raised above, it is essential to pinpoint a possible involvement of 

microRNAs (miRNAs) in pathophysiological mechanisms underlying HFpEF (recently reviewed 

in [120]). Compared to the cardiac-enriched TFs (cardiac TF-ome system) which control gene 

expression at the level of transcriptional regulation, cardiac-expressed microRNAs (cardiac 

miRNA-ome system) regulate gene expression at posttranscriptional levels. Rather than acting 

independently of one another, these systems act in an integrated fashion to regulate cardiac gene 

expression in a coordinated manner. In fact, several cardiac-expressed miRNAs were found to be 

involved in the TBX5 [114, 121], GATA-4 [122–126], SRF/MYOCD [124, 126, 127], and PITX2 

[97] regulatory network in settings of cardiovascular disease. There is evidence that circulating 

miRNAs may be used as biomarkers for patients with HFpEF, but their expression has not yet 

been assessed in the diastolic heart [128]. Nonetheless, each advance discussed above highlights 

the importance of multiple layers of molecular control in regulating cardiac gene expression at 

HFpEF. 
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