
Biosorption of Cadmium by the protonated Macroalga Sargassum 

muticum: binding analysis with a non-ideal, competitive and 

thermodynamically consistent adsorption (NICCA) model  

 

P. Lodeiro, C. Rey-Castro, J.L. Barriada, M.E. Sastre de Vicente and R. Herrero* 

Departamento de Química Física e Enxenería Química I, Universidade da Coruña, 

Alejandro de la Sota 1, 15008 A Coruña, Spain. 

*Corresponding author e-mail: erob@udc.es; Phone: (34) 981 167000 (ext.2199); Fax: 

(34) 981 167065 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1

mailto:erob@udc.es


ABSTRACT 

Protonated biomass of the seaweed Sargassum muticum was investigated for its 

ability to remove cadmium(II) from aqueous solutions. In this work, a non-ideal, semi-

empirical, thermodynamically consistent (NICCA) isotherm was proposed to fit the 

experimental ion binding data obtained in NaNO3 0.05 mol·L-1. This model describes 

satisfactorily the competition between protons and metal ions. Moreover, it reflects the 

complexity of the macromolecular systems that take part in biosorption considering the 

heterogeneity of the sorbent. It was demonstrated in this work that NICCA isotherm 

constitutes a great improvement with respect to a simpler Langmuir competitive 

equation, which was not able to describe satisfactorily all the experimental data. 

Potentiometric acid-base titrations in absence of cadmium were made to estimate the 

maximum amount of acid functional groups (2.61 mmol·g-1), and the conditional proton 

binding parameters, log HK~  (3.8) and mH (0.54). The values of the binding parameters 

for the cadmium ion were chosen to provide the best simultaneous description of the 

isotherm at pH 4.5, as well as the dependence of cadmium adsorption on pH. Values of 

log CdK~  (3.1), nCd (1.8) and p (0.19) in the case of NICCA isotherm or log KCd (2.94-

3.4) for Langmuir competitive models were obtained. Kinetic experiments were 

performed at two different pH values (3.0 and 4.5), establishing the time dependence 

that represents the sorption of cadmium with a pseudo-second-order kinetic model. It 

was observed that 4 hours are enough to ensure that the equilibrium uptake was reached. 
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INTRODUCTION 

Sargassum muticum has been considered an invasive species in European 

waters, making its obliteration very important. Biosorption, the passive removal of 

contaminants (metallic cations, anions, colorants, etc.) by inert biomass, could be a 

powerful alternative to attempt the alga eradication. This marine macroalga came from 

Japanese and Chinese waters mainly due to aquaculture industry, and it is now playing a 

conspicuous role in the recipient ecosystems, taking the place of keystone species and 

being economically and ecologically harmful, i.e. a pest. 

The employment of this alga as a useful biosorbent for heavy metal removal has 

been previously studied [1-4]. However, the use of protonated S. muticum alga 

(proposed in this paper), which results in a great increase in adsorption capacity, 

biomass stabilization and attrition characteristics compared with native biomass, was 

not systematically studied for its practical application. 

The development of mathematical models that reflect the influence of variables 

such as pH, ionic strength or presence of competing cations is very useful for the 

quantitative description of the biosorption process in order to predict metal adsorption. 

Langmuir and Freundlich models have been widely used to describe biosorption data, 

although they were developed under many assumptions that are well known not to be 

meet in the case of biosorption. Other improved models accounting for pH or ionic 

strength effects were proposed by different authors [5,6]. 

In this work NICCA competitive isotherm is proposed to fit experimental data. It 

addresses heterogeneity and stoichiometry effects, and it was initially developed for 

humic and fulvic acids [7]. This model was able to describe different types of 

experiments (metal sorption isotherms, acid-base titrations and influence of pH on 

biosorption) simultaneously with great accuracy and a relatively small number of 
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parameters. This constitutes a great improvement with respect to the simpler Langmuir 

or Freundlich models. 

The results obtained in a previous paper [2], dealing with the physical chemistry 

of cadmium biosorption on the native and pretreated seaweed S. muticum, encouraged 

further studies focusing on the suitability of the protonated algae for cadmium recovery 

process. The acid treatment led to an increase close to 50% for the cadmium uptake, 

compared with the raw biomass and a greater stabilization of the biomaterial. Moreover, 

it allows the release of metal and regeneration of the alga using a mineral acid in only 

one step. 

 

MATERIALS AND METHODS 

1. Biomass 

 Samples of the brown marine alga Sargassum muticum were collected from the 

coast of A Coruña (Galicia, NW Spain). The seaweed was washed with tap and 

deionized water to eliminate impurities. After drying at 60 ºC for 12 hours, it was 

crushed and ground in an analytical mill (IKA A 10) to granules of 0.5-1 mm and stored 

in polyethylene bottles until use. 

This algal raw biomass was protonated [8] by soaking and shaking it in a 0.2 

mol·L-1 HNO3 (Merck p.a.) solution in a rotary shaker (175 rpm) for 4 h, at a biomass 

concentration of 10 g·L-1. Afterwards, the material was rinsed thoroughly with 

deionized water until pH 4.5 was attained. Following filtration, treated biomass was 

dried in an oven at 60ºC overnight. 
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2. Experiments 

2.1. Kinetic studies 

The experiments were carried out in a glass cell at constant temperature (25.0 ± 

0.1 ºC) adding 0.25g of the biomass to 100 ml of a 2.2 mmol·L-1 solution of 

cadmium(II) prepared by dissolving accurately weighed samples of Cd(NO3)2·4H2O 

(Merck p.a.) in deionized water. Two series of experiments were performed at pH 

values of 3.0 (natural pH) and 4.5 (the same value employed in the equilibrium studies). 

The ionic strength was adjusted to 0.05 mol·L-1 with NaNO3 (Merck p.a.). A cadmium 

ion selective electrode (CdISE, Orion) with a Ag/AgCl reference electrode (Orion), 

previously calibrated as a function of the free cadmium concentration at the same ionic 

strength, was used to follow the reaction kinetics. 

 The cadmium uptake at each moment was calculated from the equation: 

s

t,Cdi,Cd
t,Cd m

)cc(V
q

−⋅
=  ( 1 )

where V is the volume of cadmium solution, cCd,i is the initial cadmium concentration, 

cCd,t is the concentration of cadmium in solution at a given time, and ms is the mass of 

sorbent (dry weight). 

 

2.2. Potentiometric titrations  

The proton binding equilibria were studied through potentiometric titrations of 

the protonated biomass using glass electrodes (GK2401C Radiometer). Electromotive 

force measurements were done with a Crison micropH 2000 meter. For each titration, 

ca. 0.5 g of protonated algal biomass were placed in a thermostated titration cell at 

25.0±0.1 ºC, with 100 mL of 0.05 mol·L-1 NaNO3 solution. Inert gas (nitrogen 

99.9995%) was bubbled into the solution. A certain amount of HNO3 (standardized with 

di-Sodium tetraborate decahydrate, Merck p.a.) was also added to yield an initial pH 
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value ca. 2. The titrating solution (0.05 mol·L-1 NaOH, Merck p.a., prepared with boiled 

deionized water and standardized with potassium hydrogen phthalate, Carlo Erba PRE) 

was added from a Crison microBu 2031 automatic burette.  

The procedure followed for the titrations and glass electrode calibrations was 

described in greater detail elsewhere [9].  

The amount of proton bound was calculated from the acid and base additions by 

means of charge balance considerations: 
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where Vi, Ci are the volume and concentration of the acid and base added (subscripts a 

and b refer to acid and base, respectively), VT is the total volume in the titration vessel, 

KW is the ionic product of water, and Qmax,H is the total amount of titratable groups, 

calculated from the equivalence point of the titrations. 

 

2.3. Adsorption isotherms 

 A volume of 40 mL of eight cadmium(II) solutions of several concentrations 

(from 0.089 to 3.11 mmol·L-1), was placed in 100 mL Erlenmeyer flask containing 0.1 g 

of alga. Each solution was prepared by dissolving the appropriate amount of 

Cd(NO3)2·4H2O in NaNO3. The mixtures were stirred in a rotary shaker at 175 rpm for 

4 hours until equilibrium was reached; a NaOH solution (0.3 mol·L-1) was used for pH 

adjustment to a value of 4.5±0.1. After that, the algal biomass was filtered through a 

0.45 µm pore size cellulose nitrate membrane filter and the filtrate was analysed for the 

remaining cadmium ion concentration by differential pulse anodic stripping 

voltammetry (DPASV) using a 757 VA Computrace (Metrohm) with a conventional 
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system of three electrodes: hanging mercury drop electrode as working electrode, a Pt 

auxiliary electrode and 3 mol·L-1 Ag/AgCl as reference electrode. 

The amount of cadmium sorbed at equilibrium, QCd, which represents the metal 

uptake, was calculated from the difference in metal concentration in the aqueous phase 

before and after adsorption, according to an equation formally identical to Eq. (1), but 

referred to the equilibrium concentration; where now cCd, the equilibrium concentration 

of cadmium in solution, substitutes cCd,t. 

 

2.4. Influence of pH on metal adsorption 

The dependence of the metal uptake on pH was studied following the procedure 

described for the adsorption isotherms, using a 2.22 mmol·L-1 cadmium concentration 

solution in the pH range from 1 to 6, with ionic strength adjusted to 0.05 mol·L-1 with 

NaNO3. The pH adjustments were carried out using NaOH and HNO3 solutions. 

 

MODELS 

The development of a technology based on biosorption implies the use of 

mathematical models for the quantitative description of the process. These models 

should be capable of predicting metal biosorption, reflecting the mechanism of the 

sorbate uptake and the influence of variables such as pH, ionic strength, presence of 

competing cations, etc. 

The most commonly used model in biosorption is the Langmuir isotherm, Eq. 

(3). This model incorporates easily interpretable constants: Qmax,Cd, that represents the 

maximum biosorption capacity and b, the affinity for the sorbate, which can be used to 

compare the biosorption performance. The Langmuir isotherm assumes that all sites 

have the same affinity and the secondary effects between sorbed species are negligible. 
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However, this equation may reproduce satisfactorily the experimental data if 

environmental parameters, such as pH, are controlled carefully during experiments. 

Cd

CdCdmax,
Cd

cb1

cbQ
Q

+
=  ( 3 )

In order to account for stoichiometry and pH effects, a modified competitive 

Langmuir sorption model, Eq. (4), was proposed by Schiewer et al. [10]. It describes the 

metal and proton binding at equilibrium as a function of pH and free metal ion 

concentration in solution. 

( )
( )n

CdCdHH

n
CdCd

Hmax,Cd
cKcK1

cK
QnQ

++
=  ( 4 ) 

where KCd and KH are the equilibrium constants for the binding of cadmium and 

protons, respectively; cH is the proton concentration in solution, and the parameter n 

defines the stoichiometry ratio, 1:1 (n=1) or 1:2 (n=0.5). 

However, these isotherm models were developed under many assumptions that 

are often not met in complexation phenomena of macromolecular systems (and 

particularly in biosorption); for instance, they do not take into account the presence of 

functional groups with different acidities. 

Carboxylic groups are the main functionalities involved in metal binding 

reactions in brown algae [11]. Nevertheless, a smaller amount of functional groups such 

as sulphonic groups from fucoidans and, to a lesser extent, N- and S- containing groups 

from proteins may also be important for metal ion binding. As a consequence of this 

chemical heterogeneity, there will be a more or less broad range of affinities for the 

inorganic ions. 

Moreover, it is expected a polyelectrolytic effect as a consequence of the 

ionization of these functional groups at the experimental pH values, which influences 
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the apparent (overall) affinity for the charged species (protons or metal cations) and is 

responsible for what is called non-specific binding. This effect was previously studied 

for protons [9,12]. The study for cadmium will be undertaken in future works. 

Finally, an important issue to consider in the biosorption phenomena are the 

conformational effects such as the swelling/shrinking behaviour of the biomass 

particles, the leaching of soluble organic matter from the biomass and what is of most 

interest in brown algae, the formation of the characteristic alginate arrangement known 

as the egg-box structure [13,14]. These effects involve alterations in the steric 

conformation of the sorbent polymers caused by changes in the chemical conditions of 

the medium, which may affect biosorption to a large extent. 

These phenomenons reflect the complexity of macromolecular systems that take 

part in biosorption. As a consequence, the Langmuir competitive model could result too 

simple to describe all the experimental data with the desired accuracy. In this case, new 

models with additional parameters that reflect the complexity of the system would be 

required.  

The literature about humic substances has paid much attention to the study of 

competitive ion binding. Very recently, a non-ideal competitive adsorption model 

(NICCA) was developed [7] (and references therein) for humic and fulvic acids. This 

model is a semi-empirical, thermodynamically consistent model, which addresses the 

effects of chemical heterogeneity and metal-ligand stoichiometry; yet, its application is 

fairly simple. The basic NICCA equation for the overall binding of species i in the 

competitive situation is: 
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where θi is the coverage fraction of the species i, iK~  is the median value of the affinity 

distribution for species i, p is the width of the distribution (usually interpreted as a 

generic or intrinsic heterogeneity seen by all ions) and ni is an ion-specific non-ideality 

term. Strictly speaking, ci should be the local concentration of species i at the binding 

site, i.e., the bulk concentration (or activity) corrected for the double layer effect (for 

instance, the concentrations in the Donnan phase). In this work, the bulk concentrations 

will be used instead and, therefore, the metal binding constants calculated will be 

conditional parameters (referred to 0.05 mol·L-1 ionic strength). 

 The following normalization condition is used to calculate the amount of species 

i bound, Qi: 

Hmax,
H

i
ii Qn

nQ ⎟
⎠
⎞⎜

⎝
⎛θ=  

( 6 )

where Qmax,H is the maximum binding capacity for protons, which has been calculated 

from the equivalence point of the acid-base titrations in absence of heavy metal. 

 The ratio ni/nH has been interpreted by Kinniburgh et al [7] in terms of 

stoichiometry and cooperativity. When this ratio is less than one, then the maximum 

binding of species i is lower than the total amount of sites (defined as the amount of 

titratable protons), which would be a consequence of some degree of multidentism. On 

the other hand, a value of ni/nH greater than one would reflect some degree of 

cooperativity. Finally, if ni/nH =1, it can be demonstrated that the maximum 

proton/metal exchange ratio is one. 

 If only the proton binding is considered (i.e., absence of competing ions), Eqs. 

(5) and (6) simplify to the Langmuir-Freundlich (LF) isotherm: 

( )
( ) H

H

m
HH

m
HH

Hmax,H
cK~1

cK~
QQ

+
=  

( 7 ) 
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where now the heterogeneity parameter mH describes the combined effect of nH and p 

(mH = nH·p). In the case of a homogeneous system (where all the binding sites behave as 

independent, chemically equivalent sites) ni and p are 1, and then the mono or 

multicomponent Langmuir isotherm is obtained.  

 

 RESULTS AND DISCUSSION 

1. Kinetics of adsorption 

Kinetic studies of cadmium adsorption by the acid-treated Sargassum muticum 

were accomplished to estimate the time required to reach the sorption equilibrium. 

Figure 1 shows the kinetics of cadmium adsorption for an initial cadmium concentration 

of 2.22 mmol·L-1. The experiments were performed at natural pH (3.0) and at the same 

pH value (4.5) used in adsorption isotherm studies. It can be observed that the process is 

relatively fast, especially in the first case where 90% of the equilibrium uptake is 

achieved in the first 20 minutes of contact. When the pH value is adjusted, the system 

took over 75 minutes to adsorb identical percentage of metal; this increment is probably 

due to conformational effects that occur in the alga as cadmium is complexed when pH 

is adjusted to 4.5, which are reflected in the decrease in the rate constant. Therefore, a 

time of 4 hours was selected for the following adsorption experiments in order to ensure 

that the equilibrium uptake was reached. This equilibrium time is shorter than those 

usually employed for the adsorption of cadmium by other adsorbent materials [15-17], 

so it can constitute a great advantage when biosorption systems are designed, as it will 

facilitate shorter adsorption columns ensuring, in principle, efficiency and economy. 

In order to establish the time dependence representing the sorption of cadmium 

in the alga during the kinetic experiments, a pseudo-second-order model proposed by 

Ho [18,19] was chosen among others (Elovich, first and pseudo-first order, second order 
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and diffusion) which can only reproduce with accuracy the first 5 or 10 minutes of 

experimental data. The kinetic rate equation, Eq. (8), can be considered a pseudo-second 

order chemical biosorption process with respect to the algal biosorption sites: 

2
t,CdCd

t,Cd )qQ(k
dt

dq
−⋅=  ( 8 )

where k (g·mmol-1·min-1) is the pseudo-second order constant of sorption. 

Separating variables in Eq. (8) and integrating for the boundary conditions  

qCd,t = 0 at t = 0 and qCd,t at time t, the following equation is obtained: 

tkQ1

tkQ
q

Cd

2
Cd

t,Cd
⋅+

⋅
=  ( 9 )

which can be linearised to the following equation 

t·
Q

1

Qk

1

q

t

Cd
2
Cdt,Cd

+=
·

 (10)

The equilibrium sorption capacity, QCd, and the pseudo-second order rate 

constant, k, were experimentally determined from slope and intercept of straight-line 

plots of t/qCd,t against t. The values obtained are shown in Table 1. These parameters can 

change depending on experimental conditions as it was found by Lodeiro et al. [2], who 

obtained simple empirical equations to derive the dependence of k and QCd under 

different experimental conditions (ionic strength, algal mass and metal concentration). 

The fits show very good regression coefficients and good compliance between predicted 

curves and the experimental data points was found. However, the fact that experimental 

data may be fitted by a given rate expression is not sufficient evidence that the 

molecularity of the reaction is that implied by the rate expression [20]. 

 

2. Equilibrium studies 
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2.1. Description of H+/Cd+2 binding data 

The cadmium uptake capacity of the biomaterial was tested by means of batch 

sorption experiments performed with the protonated Sargassum biomass in NaNO3 

aqueous solutions of 0.05 mol·L-1 overall ionic strength. As a matter of comparison the 

experimental data obtained were fitted to a simple Langmuir isotherm (Figure 2). The 

maximum uptake (Qmax,Cd) obtained was 1.2 mmol·g-1 (Table 2), equivalent to 13% of 

the total dry weight of the alga. As it is expected, this value is higher than the obtained 

for the raw Sargassum (0.58 mmol·g-1) [2]; however, the Qmax,Cd value found for 

protonated biomass in the same conditions, but in absence of electrolyte addition, is 

slightly lower (0.85 mmol·g-1) (Table 2). It is well known that light metal ions, such as 

sodium, compete with divalent cations for the electrostatic binding to the biomass [11]. 

Therefore, the cadmium sorption should decrease as the concentration of light metal 

ions increases. Indeed, at low metal concentration, the cadmium uptake is appreciably 

enhanced in absence of electrolyte, while as the metal concentration increases this effect 

decreases. This can be clearly observed in the comparison between the isotherms in 

presence and absence of NaNO3 shown in Figure 2. Therefore, the fact that Qmax,Cd was 

lower in deionized water than in presence of background salt is attributed to model 

fitting artifacts. 

The acid-base titrations of protonated biomass samples allow the evaluation of 

the maximum amount of acid functional groups, Qmax,H (Table 3) by estimation of the 

position of inflection point in the resulting titration curve [2]. This amount is 2.2 times 

greater than the maximum cadmium uptake capacities. This fact can be explained if a 

certain degree of multidentism in the binding mechanism is present; i.e., more than one 

acid group can be involved in the binding to a single metal ion. 
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Figure 3 shows the proton binding data obtained from the potentiometric 

titrations. It has already been mentioned that the NICCA equation is reduced to a LF 

isotherm, Eq. (7), under these conditions (absence of heavy metal ions). As it can be 

observed, the fit of this equation to the experimental data is very good. Similar results 

have been obtained with other seaweed species [9]. On the other hand, the fit of proton 

binding data to a simple Langmuir isotherm is also shown in Figure 3. This equation is 

not able to describe satisfactorily the experimental data, due to the fact that it assumes 

an homogeneous ligand behaviour (i.e., an affinity distribution represented by a discrete 

value of the binding constant). 

The procedure followed for the interpretation of proton and metal binding in 

terms of competitive adsorption isotherms was as follows. The proton binding data (in 

absence of cadmium) (Figure 3) was used to obtain the best fit values of the conditional 

parameters in Eq. (7) (Qmax, H, log HK~  and mH). These values were assumed to apply 

also in the presence of cadmium. The binding parameters for the cadmium ion were 

chosen to provide the best simultaneous description of the isotherm at constant pH (4.5), 

and the data of cadmium adsorption vs. pH. The values of log CdK~ , nCd and p, in the 

NICCA isotherm or log KCd in the Langmuir competitive models, were first optimized 

by least squares fit for each data set, and then average values (see Table 3) were used to 

plot the model calculations showed in Figure 4 and Figure 5. In the NICCA model, the 

separation of nH and p was made using the constraint mH = nH·p. 

As it is shown in Figure 4, an S shape curve centred at pH 3-4 was obtained 

from the plot of cadmium binding vs. pH. This curve is characteristic of other seaweeds 

and it is closely related to the acid-base properties of the functional groups on the algal 

cell surface, mainly carboxylic groups, and to the metal solution chemistry [21-23]. At 

pH values lower than 8.0, cadmium is present in its free ionic form, Cd+2, so the 
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increase in cadmium adsorption from pH 2.0 to pH 4.0 cannot be explained by the 

change in cadmium speciation but by the type and ionic state of the carboxyl functional 

groups that present a dissociation constant (in log units) between 3 and 4 [24]. This 

implies that the metal biosorption depends on the protonation or deprotonation of the 

cell wall polymer functional groups. Above pH 4.5 the cadmium biosorption capacity 

levelled off at a maximum value reaching a plateau. 

 The inset of Figure 4 and the Figure 5 show the fits of the NICCA (Eq. (5-6)) 

and Langmuir competitive (Eq. (4)) models to the cadmium uptake data. In the latter 

case, KH was fixed to the value obtained from the Langmuir fit of the proton binding 

data (dashed line in Figure 3).  

The data obtained in the plots of cadmium(II) uptake vs. pH at pH values lower 

than pKH were excluded from the model discussion. The carboxylate groups are closely 

associated with the hydrogen ions at these low pH values, restricting access to sites to 

cadmium ions and resulting in a low cadmium uptake. Therefore, the cadmium uptake is 

very small, but not negligible. It can be a result of the presence of a relatively low 

amount of very strong acid groups like sulfonic groups from fucoidans [25], that were 

not included in the model. Crist et al. reported the pK of biomass sulfate groups to be 

between 1 and 2.5 [26]. 

It can be observed that only the NICCA model can reflect adequately the 

experimental data, employing the same constants attained through proton binding 

studies, in both experiments (concentration and pH dependence of cadmium uptake). In 

fact, this model could constitute a powerful tool for the description of competition 

between metals and protons for the algae binding sites. 

 However, despite these encouraging results, the knowledge of the geometric 

parameters that determine the electrostatic description of the system would be required 
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in order to derive the intrinsic binding parameters (i.e., independent of the bulk ionic 

strength) [27]. 

Since the value of the ratio nCd/nH is lower than one (in fact, 0.6), the maximum 

metal binding is somewhat lower than the total number of acid sites, which would 

reflect a certain degree of multidentism as it was explained before. In fact, FTIR 

analysis demonstrates the participation of carboxyl groups in the formation of chelates 

of different stoichiometries [28,29]. However, it must be pointed out that the NICCA 

isotherm does not require a priori assumptions about the binding stoichiometry [7]. 
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FIGURE CAPTIONS 

 

Figure 1  

Sorption of cadmium as a function of contact time, for aqueous suspensions of 

the protonated S. muticum in 0.05 mol·L-1 NaNO3 and 2.22 mmol·L-1 initial cadmium 

concentration. The symbols correspond to the experimental points at pH 4.5 (open 

squares) and pH 3.0 (open circles). The solid lines represent the best fits to Eq. (9). 

 

Figure 2  

Cadmium biosorption isotherms for suspensions of protonated S. muticum (2.5 

g·L-1) in deionized water (filled triangles) and in 0.05 mol·L-1 NaNO3 (open triangles) at 

pH 4.5 ± 0.1 and 25 ºC. The lines represent the fits to the Langmuir equation, Eq. (3).  

 

Figure 3  

 Proton binding by S. muticum (in absence of cadmium) in 0.05 mol·L-1 NaNO3. 

Symbols represent experimental points, solid line corresponds to the best fit of a 

Langmuir-Freundlich isotherm, Eq. (7), and dashed line to a simple Langmuir isotherm. 

In both cases, the value of Qmax,H was set equal to the total amount of titratable groups, 

determined from the equivalence point of the titrations.  

 

Figure 4  

 Effect of pH on cadmium biosorption by 2.5 g·L-1 of protonated S. muticum in 

0.05 mol·L-1 NaNO3 at 25ºC, with initial cadmium concentrations of 2.22 mmol·L-1 

(open rhombuses). The inset represents the fit of the data at the higher pH values to 
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different equations: NICCA isotherm (solid line), competitive Langmuir isotherm 

assuming 1:1 stoichiometry (dotted line) and assuming 1:2 stoichiometry (dashed line). 

 

Figure 5 

 Cadmium binding by S. muticum at pH= 4.5 ± 0.1 in 0.05 mol·L-1 NaNO3. 

Symbols represent experimental points, solid line is the fitted NICCA isotherm, Eqs.(5-

6), dotted line is the competitive Langmuir isotherm assuming 1:1 stoichiometry and 

dashed line assuming 1:2 stoichiometry, Eq. (4). 
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TABLES 

 

Table 1 

 Parameters obtained from the pseudo-second order rate reaction. 2.5 g·L-1 of 

algal dose (protonated S. muticum) with ionic strength adjusted to 0.05 mol·L-1 with 

NaNO3 at 2.22 mmol·L-1 initial cadmium concentration. (Errors between brackets). 

 

Final pH 
QCd 

(mmol·g-1) 

k 

(g·mmol-1·min-1)
r2

4.5 0.731 (0.007) 0.076 (0.003) 0.9962 

3.0 0.342 (0.002) 0.83 (0.03) 0.9929 

 

 

Table 2 

 Optimal Langmuir isotherm parameters, Eq. (3), estimated for cadmium binding 

by the protonated Sargassum biomass at pH 4.5 in deionized water and with ionic 

strength adjusted to 0.05 mol·L-1 with NaNO3. (Errors between brackets). 

 

 
Qmax,Cd 

(mmol·g-1) 
 Log b  r2

Deionized Water 0.85 (0.02) 1.64 (0.04) 0.9955 

NaNO3 1.2 (0.1) 0.48 (0.08) 0.9831 
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Table 3 

 Optimal parameters estimated for proton and cadmium binding by the acid-

treated biomass in 0.05 mol·L-1 NaNO3. 

 

Proton binding parameters 

 
Site density,  

Qmax,H (mmol·g-1) a
log HK~ /logKH b mH = p·nH b

LF fit 2.61 (0.06) 3.8 (0.2) 0.54 (0.01) 

Lang. fit 2.61 (0.06) 3.8 (0.1) 1 

Cadmium binding parameters 

 log CdK~ /logKCd c nCd /nc
Heterogeneity 

parameter, p c

NICCA fit 3.1 (0.1) 1.80 (0.2) 0.19 (0.01) 

Lang. fit 2.94 (0.05) 1  

Lang. fit 3.4 (0.2) 0.5  

 

a Estimated from the equivalence point of the acid-base titrations performed in absence 

of heavy metal. b Calculated from least-squares fit of the LF isotherm (log HK~ ), Eq. (7), 

or Langmuir isotherm to the proton binding data (logKH). c Calculated from least-

squares fit of the NICCA isotherm (log CdK~ , nCd, p), Eqs. (5-6), or Langmuir isotherm 

(logKCd, n), Eq. (4), to the cadmium sorption data. (Errors between brackets). 
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