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Abstract 

Cell membrane permeability (P) governs the molecules or ions to transport through the cell membrane. In this study, 

we measured P of ruminal microbes in different initial levels of surface tension (ST) and specific surface area (SSA). 

Data of P in present study and published data of pH, ammonia concentration, digestibility of neutral detergent fibre 

and gas production in two time scales (tk and ′tk) as input variables Vq(tk) were took into consideration for developing 

a predictive model. The ideas of Box–Jenkins Operators and Covariance Perturbation Theory Operators were used for 

the first time to establish a model to predict the variations of cellular permeability. The best model presented 

sensitivity, specificity and accuracy of > 0.89, and MCC > 0.78 for 77,781 cases (training + validation series). In 

addition, we also reported a simulation of ternary phase diagram with predicted values of cell permeability at various 

experimental conditions. 
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1. Introduction 

Cell membrane surface properties are vital to the metabolism or dynamic processes for surviving 

organisms like cell membrane permeability, fluidity, hydrophobicity, etc. Cell membrane permeability (P) 

plays an important role in governing the molecules or ions to transport through cell membrane [1]. In 

addition, the cell membrane is more permeable to uncharged or hydrophobicity compounds and less 

permeable to polar or charged compounds [2], [3] and [4]. Among the charged compounds, negative 

compounds tend to have much higher permeability than the positive ones. P might depend on the 

compositions of cell membrane, environmental conditions (pressure, concentration, temperature or 

surface tension), and the properties of solute. 

The physicochemical characteristics of medium or substrate, such as surface tension (ST) and specific 

surface area (SSA), were considered as key factors influencing on cell membrane permeability 

[5] and [6]. Surfactants and metabolites have been proved to influence ST [7] and [8]. ST has been proved 

to change hydrophilic pore structure in lipid layers [9]. On the other hand, SSA could directly influence 

the microbial metabolism processes and adhesion ability [10]. However, there are few works that report 

the combinatorial influence of ST and SSA over cell membrane permeability of ruminal microbes. Our 

previous work showed that P values change with the ST of medium and SSA of material by ruminal 

mimic in vitro fermentation. In our previous work, we had also reported the effects of ST and SSA on gas 

production (Vg), pH values, and ammonia concentration (c(NH3)) [10]. In principle, we can use all the 
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datasets obtained on these works to develop a general predictive model for P as a function of media 

physicochemical properties and experimental conditions. However, we carried out the experiments and 

measured all variables in two different time scales (tk and ′tk). 

Covariance provides a measure of the strength of the similarity between two or more sets of random 

variables. Cross-covariance is the analogue of covariance when the variables have been measured on 

different time scales. In other words, if the greater value of one variable is corresponding to the greater 

value of the other variable, i.e., the variable tends to show similar behaviour, the covariance is positive 

[11]. In recently years, covariance or cross-covariance is a hot research subject in biological field. Li et al. 

[12], measured the strength of the correlations between neuron pairs using cross-covariance to show 

dynamic changes over time. Xiao et al. [13], developed iNR-PhysChem: a sequence-based predictor for 

identifying nuclear receptors and their subfamilies using cross-covariance transformations. Doytchinova 

et al. [14], developed a new alignment-free approach for antigen prediction based on auto-cross 

covariance transformation and based on protein sequences. Liu et al. [15], proposed a method for protein 

remote homology detection using auto-cross covariance transformation. In addition, chemometric [16] 

and experimental approaches are widely combined to use in the research field of biology [17], and 

metabolism process [18] and [19]. 

Perturbation Theory (PT) methods start with a known exact solution of a problem by adding 

corrections due to the variations of different experimental conditions (cj). In general, the outputs of the 

model are functions f(εi) of one variable (εi) or property of the system under a given set of conditions (cj) 

[20]. We have proposed to use Box–Jenkins Operators (BJOs) to measure the deviation of the values of 

different input variables (
i
Vp) in PT models of molecular biosystems [21], [22], [23] and [24], including 

fatty acid metabolism and distribution on rumen microbes [19] and [25]. In a very recent work, we also 

introduced Covariance Perturbation Theory Operators (CPTOs) to predict the properties of molecular 

biosystems like binary micelle nanoparticles [26]. 

In the present work, we propose a new method for the prediction of cell membrane permeability of 

ruminal microbes based on the methods mentioned before. So, the covariance BJO/CPTOs were set as 

input variables but using dual time scales for the first time. The best Covariance Perturbation Theory 

(CPT) model found predicted the effects of > 77,000 perturbations in experimental conditions over cell 

membrane permeability of ruminal microbes. Accordingly, our new CPT model might provide an 

opportunity to investigate the effect of perturbations on cell membrane permeability of ruminal microbes 

involved in vitro fermentation variables. 

2. Materials and methods 

2.1. Experimental section 

The experimental was conducted to investigate the variations of cell membrane permeability under 

various initial combinatorial conditions of ST and SSA. In doing so, 12 different combinatorial conditions 

of ST and SSA (4 ST × 3 SSA) were implemented in vitro fermentation system. In addition, each 

combination was conducted in 3 individual runs with 3 replicates each. In this study, the first factor (ST) 

was composited of 4 levels (36, 43, 46, and 54 mN/m), whereas, the second factor (SSA) composited of 3 

levels (3.27, 3.73, and 4.44 m
2
/g). The details see the following steps. 

2.1.1. Experimental animal 

The experiment and experimental animal use were approved by the Animal Care Committee, Institute 

of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China. Three ruminal fistulae 

Liuyang black wether goats (average BW ± SD; 25.0 ± 4.5 kg) were set as fluid donor animals. The goats 

were fed with a total mixed rations consisted of maize stover and concentrated in a ratio of 40:60 (w/w) 

for 650 g/d. For the concentrate ingredients see our previous work [10]. 

2.1.2. Surface tension factor 

The ST gradients of the inoculum were altered by adding the non-ionic surfactant alkyl polyglucoside 

(APG; Hunan Diyuan Co., Ltd., China). The APG was added in a concentration of 0, 0.02, 0.05 and 

0.12% (v/v) to each flask of inoculum. The ST of the inoculum with buffer was measured immediately by 

a tensiometer with model K100 (KRÜSS GmbH, Germany) [27]. The responding ST was 54, 46, 43 and 

36 mN/m, respectively.  
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2.1.3. Specific surface area factor 

A sample of rice straw containing 630 g/kg dry matter of neutral detergent fibre (NDF) was obtained 

from rice straw. The NDF was extracted from rice straw without using sodium sulfite or amylase addition 

described by Van Soest et al. [28]. The dried NDF was ground through three screens (0.15, 0.25 and 

0.84 mm) using a grinder (DF-2, Changsha Instrument Factory, Changsha, China) to obtain three 

different particle sizes. The screen sizes were chosen to represent the known particle distribution of digest 

particles in the rumen of small ruminants [29], [30] and [31]. A representative sample of each particle size 

was used to measure and calculate its SSA. The measurement of SSA was performed in duplicate with the 

procedure of Brunauer–Emmett-Teller [32] by a Surface Area Analyzer (Quadrasorb-SI, Quantachrome 

Inc., Florida, CA, USA). 

2.1.4. In vitro fermentation technique and sample collecting 

Rumen fluid was obtained from 3 goats, appropriate equal amount from each, approximately 1 h 

before the morning feeding, pooled, and strained through 4 layers of cheesecloth into a flask and flushed 

with oxygen-free CO2. This process was aimed to retain ruminal microbes but remove the feed particle. 

Rumen fluid was transported in insulated flasks to the laboratory within 30 min of collection. The rumen 

fluid was transferred to four flasks and buffer medium was added in a ratio of 1:2 ratio (v/v, rumen 

fluid:buffer medium) under continuous flushing with CO2. The buffer medium compositions were 

according to the description of Tang et al. [33]. 

In vitro incubations were performed according to Tang et al. [34]. Appropriate NDF sample 

(500 ± 50 mg) was accurately weighed into a screw-cap serum bottle (145 mL volume) and flushed with 

CO2. Three replicate vials were prepared for each treatment for each end-point measurement time (6, 12, 

24, 48 and 72 h). Inoculum with the appropriate conditions of ST (50 mL) was added, bottles were sealed 

with rubber stoppers and then gently shaken and incubated at 39 °C in an incubator. The in vitro 

fermentation was separately run three times on different days to collect the mixed rumen fluid, so that 

each treatment was conducted in triplicate. 

The inoculum sample (fermentation supernatant) for determining cell membrane permeability was 

collected from each fermented bottle. Briefly, 10 mL of supernatant from each bottle was centrifuged at 

500 × rpm at 4 °C for 10 min to remove the feed particles. The supernatant was then further centrifuged at 

5000 × rpm and 4 °C for 10 min. The supernatant (3 mL) was used to be carried out from the cell 

membrane permeability assay. 

2.1.5. Cell membrane permeability assay 

The P value of rumen microbiome was measured according to the fluorescence method of 

fluorescein–isothiocyanate to dextrans (FITC-Dextran, Sigma, molecular weight ≈ 38 kDa) [35]. Briefly, 

the mixture (A0, the initial concentration of FITC-Dextran in media) of 1 mL FITC-Dextran solution 

(100 mg/L) was added to a 3 mL supernatant from the incubation bottle, and incubated at 37 °C in 

darkness for 1 h. Then a subsample of 2 mL was centrifuged under anaerobic conditions at 10, 000 × g 

and 4 °C for 10 min and 1.5 mL supernatant (A1, the final concentration of FITC-Dextran in media) was 

measured using a fluorospectrophotometer (excitation wavelength 488 nm, emission wavelength 520 nm). 

Blanks were prepared to account for any non-specific effects of the rumen inoculum using 5 mL of the 

incubation inoculum from each bottle. The inoculum was centrifuged at 10, 000 × g and 4 °C for 10 min, 

3 mL of supernatant was obtained, and 1 mL of distilled water was added. After homogenization the 

absorbance was measured under the same condition as described above. The permeability value 

(expressed as Pij(%) or Pij) was calculated as the following equation. 

 

Pij(%) = 100 ×
A0 − A1

A0

. 
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2.2. Dataset 

The dataset comes from two different sources, results of cellular permeability presented here and data 

of experimental parameters published by Liu et al. [10]. In these papers we studied the combinatorial 

effects of four levels of ST = 54, 46, 43 and 36 mN/m with three levels of SSA = 3.27, 3.73 and 4.44 m
2
/g 

on fermentation performance with two different parts of experiment. However, there are two important 

differences between these two parts of experiment. The first difference was that in one part we measured 

mimic fermentation variables like pH, c(NH3), and digestibility (D). In the other part, we measured gas 

production (Vg) in vitro fermentation micro-ecosystem under the same conditions. 

Another important difference was the scale of time used (sampling frequency). In fact, two time series 

were used in experiments. The time series of Pij sampling (frequency over time) used in this work was 

tk = 6, 12, 24, 36, 48, and 72 h. This time series coincided the one used to measure pH, c(NH3), and D. 

However, the second time series used to measure Vg sampling was ′tk = 1, 2, 3, 4, 6, 8, 12, 16, 20, 24, 28, 

32, 36, 40, 48, 52, 56, 58, 62, 68 and 72 h. In Fig. 1, it shows that the details of experimental section of 

present work and previous published work for providing the dataset to develop a prediction CPT model. 

The full dataset of present work was published on the website of Figshare with Doi: 

doi.org/10.6084/m9.figshare.1591840[36]. 

 
 

 
Fig. 1. Flow chart of experimental section for constructing the dataset used in present work. 

2.3. Computational model 

In this work we want to develop a model for the variation of cellular permeability (ΔPij) in 

fermentation as a function of different experimental variables like pH, c(NH3), D, and Vg. We denoted 

these variables Vq(tk). The subscript q indicates the type of variable and tk indicates that the variables 

change over time. However, it is probable that ΔPij depends not only on the additive effect of each 

variable Vq(tk) but also on the interaction among some of them. In addition, as the degree of variability in 

fermentation experiment used to be high, we decided to incorporate terms to measure deviations of data 

from the expected values (data dispersion). Moreover, as we mentioned in the previous section, these 

variables have been measured on two different time scales tk and 
′
tk. Consequently, we decided to fit a 

model based on the following types of terms. 

a) Single variables Vq(tk) to account for the additive effect of one variable alone. 

b) Cross-product of single variables Vq(tk) · V′q(tk) for direct interaction among variables. 

c) Moving average terms ΔVq(tk) = Vq(tk)− < Vq(tk) > to account for variable dispersion. In these 

terms < Vq(tk) > is the average of the variable q in the same experimental condition [20] and [25]. 
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d) We also incorporate the effect of interactions between these terms and original variables 

Vq(tk) · ΔV′q(tk) to account for the interaction of dispersion in one variable with respect to others. 

e) Covariance terms ΔVq(tk) · ΔV′q(tk) to account for the covariance of two variables at the same time. 

f) Cross-covariance terms ΔVq(tk) · ΔVꞌq(
′
tk) to account for the covariance of two variables measured 

in two different time scales [37]. 

 

The model is one linear additive model of all the terms mentioned above. These terms were added as 

corrections to the expected value of cell permeability (Pij). Therefore, the first input variable 
1
f(Pj, 

tk)expt = P(tk) = Pexpt · tk, refers to expected cell membrane permeability values calculated as the variation 

on different time scales. Among, Pexpt refers to the expected cell permeability values. In this sense, the 

model resembles to a CPT model with terms similar to those used by ARIMA models of Box and Jenkins 

Operator for Time Series Analysis [38]. The general formula of the model proposed is the following: 

 

f0 (Pij)pred
= a0 + f1 (Pij, tk)expt

+ ∑

q=q𝑚𝑎𝑥

q=1

aq · Vq(tk) + ∑

q=q𝑚𝑎𝑥,′q=′q𝑚𝑎𝑥

q=1,′q=1

aq,′q · Vq(tk) ⋅ V′q(′tk)

+ ∑

q=q𝑚𝑎𝑥 ,′q=′q𝑚𝑎𝑥

q=1,′q=1

aq ⋅ ΔV′q(′tk) + ∑

q=q𝑚𝑎𝑥,′q=′q𝑚𝑎𝑥

q=1,′q=1

aq,′q · ΔVq(tk) ⋅ ΔV′q(′tk)

+ ∑

q=q𝑚𝑎𝑥,′q=′q𝑚𝑎𝑥

q=1,′q=1

aq,′q · Vq(tk) ⋅ ΔV′q(′tk)

 

 

 

We can try to seek this model using a regression method. However, as our aim was to detect the 

changes in Pij we decided to carry out a classification analysis. For this we calculated the variable ΔPij to 

measure the changes on cellular permeability from experimental values using a cut-off. In this sense, 

ΔPij = 1 when Pij > < Pij > (Pij higher than average < Pij >) or ΔPij = 0 otherwise (no change or decrease in 

Pij). After that, we performed the statistical analysis with Linear Discriminant Analysis (LDA) [38] and 

obtained the CPT model. The workflow diagram of theoretical section was presented in Fig. 2. The 

diagram briefly explains theory processes to develop the CPT model. 

 
 

 
Fig. 2. Flow chart of theoretical section for developing the LDA CPT model (P values represent the cellular 

permeability, Pij presents each permeability value under various conditions, < Pij > means the permeability 

average values within the same conditions, c(NH3) = ammonia concentration, D = digestibility of NDF (neutral 
detergent fibre), Vg = gas production, tk and ‘tk represent the two different time scales and CPT = Covariance 

Perturbation Theory).  
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3. Results and discussion 

3.1. Cell membrane permeability 

In this study, the experimental results of P in time scale (tk) were presented in Table 1. The values of P 

were changed under the different combinatorial conditions of ST and SSA in the time scale (tk). In 

general, all the factors (ST, SSA and time) were contributed to the variation of P values from the analysis 

and the original data of present work. For instance, the P value was higher for ST at 43 and 46 mN/m 

compared to ST at 36 mN/m. The P values also varied with the time scale (tk). The P value was greater for 

SSA at 4.44 m
2
/g than that of 3.37 m

2
/g as the time from 12 h to 24 h. The treatment of ST = 36 mN/m, 

the P value was decreased from 6 to 12 h. 

Table 1. The cell membrane permeability values of ruminal microbes in the time scale of tk. 

Experimental treatmentsa 
 

The experimental results of P in the time scale of tk
b 

SSA (m2/g) ST (mN/m) 
 

h6 h12 h24 h36 h48 h72 

         

3.37 53.95  26.6 24.5 39.4 35.2 49.5 54.0 

46.09  30.0 23.9 44.1 34.5 54.2 55.1 

42.78  29.3 27.6 40.6 36.3 41.3 54.1 

36.07  35.8 22.3 35.6 28.7 48.6 48.9 

3.73 53.95  27.1 24.3 42.2 33.3 47.0 54.0 

46.09  27.2 25.0 43.0 37.7 50.5 56.3 

42.78  26.1 23.4 48.6 37.7 49.0 54.8 

36.07  28.9 22.1 36.0 29.6 45.7 51.4 

4.44 53.95  27.7 25.6 43.4 39.9 48.6 59.0 

46.09  28.8 22.2 44.6 39.6 50.0 56.5 

42.78  24.5 31.3 48.3 38.6 50.6 53.5 

36.07  28.8 25.5 38.2 35.5 45.4 50.7 

         

 
a SSA represents specific surface area (m2/g); ST represents surface tension (mN/m). 
b 6 h, 12 h, 24 h, 36 h, 48 h and 72 h mean the mimic in vitro fermentation hours, respectively. 

The ST of rumen fluid decreased by supplying exogenous non-ionic surfactant, and a moderate 

decreasing of ST could increase P of microbe which was noted in present study. Ye et al., [39] also found 

that the P of Staphylococcus aureus and Bacillus subtillis increased with the concentrations of 

octadecanoyl acetal sodium sulfite which decreased the ST of liquid media. In addition, the high P values 

in cellular organisms may be beneficial to the release of enzymes from intracellular to extracellular. 

Nakamura et al., [40] reported that the changes in P of hepatocytes could result in a significant leakage of 

enzymes from the cells. Wang et al., [41] found that the extracellular enzymatic activity of laccase, lignin 

peroxidase and manganese peroxidase of Phanerochaete chrysosporium was firstly increased as the 

strains were exposed to either direct current or alternating current, and accompanied increases in cellular 

permeability. 

3.2. CPT model for cell membrane permeability 

In this work we reported the experimental determination of cell membrane permeability and in a 

previous work we published the experimental valuables of variables like pH, c(NH3), D, and Vg measured 

on the same fermentation system with different time scales. This opens a door to the development of 

general predictive models. In fact, the researchers are looking for a connection between different 

fermentation systems and replace the traditional partial research works with the integral ecosystem to 

obtain more information. However, such is a problem that nearly every scientist faces when combining 
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many diverse experimental conditions in an integral ecosystem. In doing so, we proposed to use 

Covariance Perturbation Theory on the situation of dual-time scales to develop theoretical models to 

reduce the deviation of different conditions on the properties from experimental results. In this sense, we 

decided to develop for the first time one unified CPT model that is able to predict all these properties (cell 

membrane permeability and fermentation performances or variables) with a single theoretical model. The 

CPT model proposed here is able to predict with reasonable accuracy the value of output properties of cell 

membrane permeability obtained after perturbations on the experimental conditions. The dataset was 

composited of 77, 871 cases (i
th

) for this new model. The best CPT model developed with this algorithm 

was the following, the parameters of this new model are presented in Table 2. 

 

f0 (ΔPij > 0)
pred

= 0.820670 − 0.001283 · f1 (Pj) ⋅ tk

+0.003199 ⋅ ST(tk) ⋅ ΔD(t′k) + 0.004033 ⋅ ΔcNH3
(tk) ⋅ tk

−0.003349 ⋅ ST(tk) ⋅ ΔcNH3
(tk)‐ 0.138611 ⋅ ΔcNH3

(tk) ⋅ ΔpH(tk)

+0.095564 ⋅ ΔcAPG(′tk) ⋅ ΔVg(′tk)

N = 77871Rc = 0.78F = 55167.5p < 0.001

 

 

 

Table 2. Results of the CPT model for the perturbation of cell membrane permeability in vitro fermentation performance. 

Data sub-seta 

Prediction casesb 

Statistical parametersc Prediction rates 

n(ΔPij > 0) n(ΔPij < = 0) 

 

Training dataset 

n(ΔPij > 0) 25, 903 3 781 Specificity (Sp) 0.873 

n(ΔPij < = 0) 2 374 26, 346 Sensitivity (Sn) 0.917 

   
Accuracy (Ac) 0.895 

Validation dataset 

n(ΔPij > 0) 8 673 1 242 Specificity (Sp) 0.875 

n(ΔPij < = 0) 833 8 720 Sensitivity (Sn) 0.913 

   
Accuracy (Ac) 0.893 

     

 
a The data sub-set was separated by a random training/validation (t/v) rate as 3:1. 
b n(ΔPij > 0) means the Pij value was greater than average < Pj >, otherwise as n(ΔPij < = 0). 
c The statistical parameters used to evaluate the performance of new model are specificity (Sp), sensitivity (Sn), accuracy 

(Ac), and Matthews correlation coefficient (MCC). Among, the values of MCC are 0.78 and 0.79 for training and 

validation sub-datasets. 

The output function 
0
f(ΔPij > 0)pred is one score function that quantifies the numerical values as the 

changes of cell membrane permeability ΔPij > 0, Pij are greater than average, under the condition of 

experimental variables Vq(tk) for i
th

 cases (perturbations). The statistical parameters used for estimating 

the model in present study are specificity, sensitivity, and accuracy as well as the Matthews correlation 

coefficient (MCC) [42]. This new model developed is able to predict the effects of perturbations under the 

experimental conditions or variables Vq(tk) over cell membrane permeability property of ruminal 

microbes with sensitivity, specificity, and accuracy of > 0.89, and MCC > 0.78 for a dataset with 77, 871 

cases. On the view of statistical, these predicting performances of this new model are considered good for 

any LDA model. 

The new CPT model obtained in present studyshowed that both of two time series (tk and ′tk) were 

important for prediction model over the changes of cell membrane permeability (ΔPij). However, not all 

types of variables mentioned previously entered the CPT model in present study. For instance, the 

variable terms like single variables Vq(tk), cross-product of single variables Vq(tk) · V′q(tk), single moving 

average ΔVq(tk) = Vq(tk)− < Vq(tk)>, and cross-covariance terms ΔVq(tk) · ΔV′q(
′
tk) were not mentioned in 

the new CPT model. It implies that the interaction of different type variables terms like ΔVq(tk) · ΔV′q(tk) 

and Vq(tk)·ΔV′q(tk) rather than the single variables Vq(tk) or cross-product of single variables 

Vq(tk) · V′q(tk) is vital in the variations of cell membrane permeability ΔPij. On the other hand, the 

experimental input conditions or variables used for developing the CPT models, like c(NH3), pH values, 

digestibility and gas production, were vital in this CPT model.  
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3.3. CPT model simulation of cell permeability 

In here, we would like to illustrate the use of this new CPT model with the numerical simulation of 

the effects of perturbations over ΔPij. In this section, we calculated the values of output 
0
f(ΔPij > 0)pred of 

the new CPT model obtained in the previous section. All the predicted values of 
0
f(ΔPij > 0)pred are in the 

range − 2 to 2. After that, we used these output calculated values combined with some experimental 

variables used as input variables to reflect the relationship of the changes of cellular membrane 

permeability ΔPij with c(NH3), D, and Vg. The correlation changes were showed in Fig. 3. 

 
 

 
Fig. 3. Ternary diagram for cell membrane permeability changes; 

ΔPijvs. c(NH3), D, and Vg. 

In ternary plot, every point represents a different composition of the three components. The 

concentration of each species is 100% or 1 (pure phase) in each corner of the triangle, and 0% or 0 at the 

line opposite to it [43]. In our case, the different types of ΔPij were presented in Fig. 3 individually. When 

ΔPij > 0, the points were appeared in the bigger value side of D (the triangle corner of D), whereas 

ΔPij < = 0 were appeared in opposite to it. All the ΔPij > 0, and ΔPij < = 0 cases were separated 

mechanically by a red dotted line (Fig. 3). In addition, the variation values of cell membrane permeability 

ΔPij were decreased with the increasing of NDF digestibility, it implies that the ruminal microbes have 

strong cell permeability in the initiation of metabolism processes. In other words, it means when the value 

of NDF digestibility is small, it implies that the cell membrane permeability value > the average, whereas 

the opposite. As in the previous work, the cell membrane permeability or absorption is modulated by 

factors such as intestinal lumen osmolality and the interaction with mediated nutrients uptake [44] or 

other exogenous substances [45]. In addition, in real fermentation environment, gas production was 

changed with different conditions of ST and SSA. However, the predicted values of cell membrane 

permeability did not show a strong correlation with gas production but increased with the concentration 

levels of ammonia nitrogen in this simulation model. 

4. Conclusions 

In this work, we presented a new computational method for predicting variations on cell membrane 

permeability, an important parameter in microbiome. For this purpose, we developed a model that used 

the experimental parameters to predict the cell membrane permeability. It combines the ideas of 

Covariance and Cross-covariance analysis, Perturbation Theory, and Time Series Analysis. We show that 

this CPT model has a good quality to predict the cell permeability with the performance of sensitivity, 

specificity and accuracy of > 0.89, and MCC > 0.78 for 77, 781 perturbation cases in training and 

validation series. With this simulation model, we can also predict the values of different experimental 

variables that were not experimentally measured. In final, we also reported a simulation of ternary phase 

diagram with the predicted values of cell permeability at different experimental conditions.  
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